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Abstract

Magnetic reconnection and turbulence are two of the most important and enigmatic

phenomena in plasma physics. Although they have been widely studied individually

in a wide range of configurations, the research about the links between turbulence

and reconnection is still in its early stages. It is accepted that there is a bi-directional

feedback between the two phenomena, and understanding it is crucial to solve the

longstanding problem of energy dissipation in collisionless plasmas. In this thesis, I

present my contribution to this research field. I use 3D fully kinetic particle-in-cell

simulations to explore reconnection that occurs from the turbulent interaction of

anisotropic fluctuations consistent with the plasma conditions in the solar wind. I

characterise the turbulence in the simulation and propose a set of indicators to find

reconnection sites in the simulation. I select one reconnection event and study its

geometry, magnetic field configuration, and the associated particle flows. I also ex-

plore the profiles of plasma and magnetic-field fluctuations recorded along artificial-

spacecraft trajectories passing near and through the reconnection region. Further-

more, I develop and apply a mathematical framework to explore the reversible and

irreversible energy density transfer rates. I compare my results with previous studies

of turbulent and laminar reconnection. The results presented in this thesis suggest

that turbulent reconnection presents a complex three-dimensional problem, and the

use of two-dimensional laminar or turbulent models to describe this type of recon-

nection does not accurately capture its energy transfer properties. Finally, I use my

turbulent simulations for the preparation of a new multi-spacecraft mission concept

(MagneToRE) to study the magnetic field topology in space plasmas.



Impact statement

More than 99% of the visible mater in the universe is in plasma state. Most of the

plasma in the universe, collisional or collisionless, exhibits turbulence. The energy of

fluctuations at large scales cascades to smaller and smaller scales until the conditions

for energy dissipation are achieved. Although we understand energy dissipation in

collisional plasmas, collisionless energy dissipation is a highly active research field

since there is no consensus about the mechanisms responsible for the energy dissi-

pation. Among the extensive list of potential energy transfer mechanisms, magnetic

reconnection is particularly important because it changes the magnetic field topol-

ogy, it can transfer energy from the turbulent fields into the particles, and it occurs

in a broad range of plasmas. Understanding the energy transfer across scales and

the mechanisms responsible for the energy transfer is essential to illuminate our

understanding of matter and energy across the universe. Although turbulence and

reconnection have been studied extensively in two dimensions, the extension to the

third dimension is still in its early stage due to the complexity of the problem and

the computation limitations in the previous decades. Currently, the advent High

Performance Computing facilities is opening the road to address this question.

In this thesis, I explore the links between turbulence and reconnection by performing

particle-in-cell simulations of anisotropic turbulence consistent with spacecraft ob-

servations in the solar wind. The main simulation that I present is one of the largest

simulations of its kind at present. I study the characteristics and properties of three-

dimensional magnetic reconnection that occur from a turbulent cascade. I propose

new methods to explore turbulent reconnection and its energy transfer. This is an
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important contribution towards answering the question of collisionless dissipation.

These methods can be applied to in-situ measurements from spacecraft missions such

as Parker Solar Probe and Solar Orbiter. This research has led me to gain a deep in-

sight into the geometric properties associated with this three-dimensional turbulent

reconnection, and into the fundamental differences with previous two-dimensional

models. This work has received widespread international media attention and cita-

tions. I have also presented my results at several international conferences.

The future of space plasma physics exploration points towards multi-spacecraft mis-

sions. The turbulent simulations that I perform to study reconnection are a valuable

tool for modelling and testing multi-spacecraft methods to study space plasmas.

In this manuscript, I present part of my contribution to the development of the

new mission concept MagneToRE. The mission concept has been accepted for fur-

ther development under NASA’s Heliophysics Flight Opportunities Studies (H-FOS)

programme.
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“The family section is a community of everybody doing a different part,

everybody being different. You know? And, in a household you learn

about authority, right. You learn about order, you learn about

selflessness, you learn about organisation, you learn about competition.
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the way to the white whale! I am not afraid. ” . . . “Remember, you all

swore to hunt the white whale with me, and we will hunt it! We are in

this together and we will not turn back. No storm can stop me! No one

can stop me!”» Captain Ahab, Moby Dick - Herman Melville.

“The melody of chaconne is just like the turbulence of life, from the

first cry to the endless ups and downs. Music is truth, purity, love,

beauty, and freedom.” Lucia Fox. Comment in Tomaso Antonio Vitali.

Chaconne in G Minor for violin and piano.
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Chapter 1

Introduction

The sun is a highly dynamic system in which the pull between plasma pressure

and magnetic pressure is constantly evolving. The Sun’s magnetic field expands

beyond the interplanetary space forming the so-called heliosphere until the boundary

between the interstellar medium (magnetopause) is reached. The convection and

magnetic bouyancy of the magnetic field below the solar surface produces magnetic

arcades (Magara, 2004; Vargas Domínguez et al., 2012) who retain the plasma.

However, the complex non-linear interaction between magnetic structures on the

surface leads to the onset of explosive events that release plasma radially outwards at

supersonic speeds. This stream of plasma particles, the so-called solar wind, was first

predicted by Parker Parker (1958) inspired by comet tail observations (Biermann

and Schlüter, 1951). As the solar wind expands into the heliosphere, the rotation of

the Sun drags the Sun’s magnetic field forming an the plasma follows an Archimedes

spiral Figure 1.1a. Likewise, the solar wind stretches away the magnetic field and

the precession of Sun’s magnetic dipole generate a characteristic heliospheric current

sheet (HCS) that resembles a ballerina skirt pattern 1.1b.

The solar wind is a low-collisionality plasma produced in the solar corona (Marsch,

2006). Although it is still not clear what the specific source regions of the solar

wind are, two main types of streams have been identified, both originating in the

solar corona (Srivastava and Schwenn, 2000; Feldman et al., 2005; McComas et al.,

2003): the slow and the fast wind. The former has a speed ranging from 300 km/s
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to 500 km/s and a minimum proton temperature ∼ 5 × 104 K whilst the latter has

a speed in the range from 500 km/s to 800 km/s and a proton temperature in the

range ∼ 5−8×105 K at 1 au (Marsch et al., 1982; Marsch, 2006). Ulysses spacecraft

measurements of velocity and density show that during solar minimum the fast/slow

wind is largely restricted to high/low heliospheric latitudes Figure 1.1c. During solar

maximum, coronal holes, which are the sources of fast wind (Krieger et al., 1973),

move to lower latitudes mixing the sources of fast and slow wind.

The solar wind expands across the solar system exhibiting spatial and temporal vari-

ations in composition, density, velocity, and temperature as well as in the electric

and magnetic fields. The solar wind shows a non-adiabatic temperature profile with

distance from the Sun (Gazis and Lazarus, 1982; Cranmer, 2009, 2012) which sug-

gests the presence of local heating and particle-acceleration mechanisms (Goldstein

et al., 2015). The observed velocity distribution functions of the solar wind species

often exhibit non-thermal features (e.g., Marsch et al., 1982; Feldman et al., 1975,

1978; McComas et al., 1992).

In the solar wind, the magnetic-field fluctuations exhibit a power-law distribution

of the magnetic energy across a large range of spatial scales from about 0.1 au to

sub-proton scales (Coleman Jr, 1968; Marsch and Tu, 1990) which indicates the

presence of turbulence in the solar wind. The transport of energy between scales is

known as the energy cascade. At sub-proton scales, kinetic dissipation mechanisms

become important, particles are energised and the entropy of the system irreversibly

increases (Tatsuno et al., 2009; Eyink, 2018; Verscharen et al., 2019). The nature

of the fluctuations at sub-proton scales and the properties of the plasma determine

whether the turbulent energy is mainly dissipated by ions or whether it cascades to

electron scales at which it is ultimately dissipated in the form of electron heating. In

the theoretical framework of wave turbulence, the energy-transfer mechanisms are

classified into two main categories: resonant heating such as Landau damping and

ion-cyclotron damping (Marsch et al., 2003; Kasper et al., 2008), and non-resonant

heating such as stochastic heating (Chandran et al., 2010, 2013). In this framework,

turbulent fluctuations with polarisation properties consistent with kinetic Alfvén
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a) b)

c)

Figure 1.1: a) Sketch of the Archimedes spiral of a plasma stream, adapted from Dessler
(1967). b) Ballerina skirt pattern of the heliospheric current sheet (HCS),
adapted from Jokipii and Thomas (1981). c) Polar plots of the solar wind
speed during solar minimum (top left) and solar maximum (top right). The
distance from the center represents the magnitude of the speed. The red/blue
colour marks the positive(outward)/negative(inward) interplanetary mag-
netic field. The background images are a composition of images taking by
the Solar and Heliospheric Observatory (SOHO). Adapted from McComas
et al. (2003)

waves (KAWs) and whistler waves are often invoked as the mechanisms that carry

the turbulent cascade to electron scales. In general, observations more often find

evidence for KAW-like fluctuations than for whistler-wave-like fluctuations (Smith

et al., 2011; Salem et al., 2012; Podesta and TenBarge, 2012; Podesta, 2013; Roberts

et al., 2013; Goldstein et al., 2015).

Another mechanism proposed to carry the turbulent cascade to sub-proton scales

is magnetic reconnection (Sundkvist et al., 2007; Franci et al., 2017; Loureiro and

Boldyrev, 2020). Magnetic reconnection is a process in which particles are heated

and accelerated while the magnetic field topology changes. It takes place when

magnetic structures form a region in which the frozen-in condition is locally broken

allowing the exchange of particles between the magnetic structures and leading to
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a change in the magnetic connectivity (Hesse and Schindler, 1988; Pontin, 2011).

Magnetic reconnection is a multiscale phenomenon that appears in both space and

laboratory plasmas under conditions reaching from fully collisional to effectively

collisionless. It has been predicted to occur in coronal mass ejections, solar flares,

explosive events in planetary magnetospheres, accretion discs, star-formation re-

gions, fusion plasmas, and in the solar wind (see Priest and Forbes, 2007; Zweibel

and Yamada, 2009, and references therein). In the solar wind, reconnection events

are characterised by streams of particles associated with Alfvénic disturbances and

magnetic-field rotations (Gosling et al., 2005; Davis et al., 2006; Gosling et al., 2006;

Phan et al., 2006, 2009; Gosling, 2012; Phan et al., 2020). These structures are

interpreted as the so-called “exhaust regions” of reconnection events.

Although magnetic reconnection has been studied for over 60 years, there is still

no consensus in terms of a complete theory to describe magnetic reconnection at

all scales involved. The problem is rooted in the fact that the range of spatial (L)

and temporal (τ) scales involves fluid-like behaviour at L ≫ ρi,di, where ρi is the

ion gyroradius and di is the ion inertial length, as well as kinetic behaviour and

energy dissipation at sub-proton scales, L ≲ ρi,di. In addition, since plasmas are

often in a turbulent state, the presence of a turbulent field alters the onset and evo-

lution of reconnection events (Matthaeus and Lamkin, 1986; Strauss, 1988; Lazarian

and Vishniac, 1999; Kim and Diamond, 2001; Servidio et al., 2011; Boldyrev and

Loureiro, 2017; Adhikari et al., 2020b; Loureiro and Boldyrev, 2020). Unlike in col-

lisional plasmas, in the solar wind, the heating and energy dissipation cannot be

attributed to the viscous interaction due to binary particle collisions nor to any pro-

cess that depends directly on collisions, such as the collisional electric resistivity for

instance. To understand the mechanisms of energy dissipation and plasma heating

in the solar wind, it is necessary to study the energy partition at small scales where

particle energisation occurs and the free energy is removed from the system in an

irreversible way increasing the entropy.

Turbulence, plasma instabilities, and magnetic reconnection are phenomena that

can generate the necessary conditions for energy dissipation in collisionless plasmas
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(e.g., Kiyani et al., 2015; Li et al., 2016; Matthaeus et al., 2020). Nonetheless, the

partition of energy between the electromagnetic fields and the plasma particles as

well as the dissipation of energy through the different channels is still under debate.

The plasma-physics processes responsible for this heating are not fully understood.

Important progress has been made to understand heating and energy dissipation

(e.g., Gary, 1999; Howes et al., 2017; Klein et al., 2017; Matthaeus et al., 2020).

Landau damping, ion-cyclotron damping, and stochastic heating are considered col-

lisionless dissipation mechanisms that transfer energy from the electromagnetic field

to the plasma particles (Marsch et al., 2003; Kasper et al., 2008; Chandran et al.,

2010, 2013). The dissipation occurs predominantly in intermittent structures which

form in plasma turbulence (Matthaeus et al., 1999; Kiyani et al., 2015).

The use of numerical simulations has been proven to be an invaluable tool to test

existing theories over a wide range of parameters. Moreover, using simulations,

we self-consistently explore nonlinear problems which lie beyond analytical theory.

Simulations expand our knowledge regarding magnetic reconnection processes in 2D

(Birn et al., 2001; Shay et al., 2001; Servidio et al., 2009; Loureiro et al., 2009; Ser-

vidio et al., 2010b; Bessho et al., 2017) and in 3D (Hesse et al., 2001b; Pritchett and

Coroniti, 2001; Lapenta, 2003; Lapenta et al., 2006; Kowal et al., 2009; Daughton

et al., 2011; Pritchett, 2013; Baumann et al., 2013; Liu et al., 2013; Muñoz and

Büchner, 2018). The use of high-performance computing facilities and the increas-

ing computational capabilities facilitate the study of plasmas from first principles

using particle-in-cell (PIC) simulations (Lapenta, 2012; Germaschewski et al., 2016).

These simulations are able to resolve proton and electron scales and to account for

phenomena that only reveal themselves using kinetic theory. For instance, electron-

kinetic effects can affect ion-scale processes (Told et al., 2016) even in linear theory.

These effects may be even enhanced in nonlinear processes. Currently, full PIC sim-

ulations are unable to cover the whole range of scales involved in natural plasma

turbulence and reconnection since they are expensive in terms of computing memory

and require small time steps to satisfy stability criteria. However, their ability to

model the physics behind the energy partition at small scales makes PIC the most
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appropriate method to address sub-proton and electron-scale phenomena as well as

collisionless energy dissipation.

The main aim of this study is to identify and quantify the role of reconnection in the

turbulent cascade as a dissipation channel. To do this, we perform 3D fully kinetic

simulations using the Plasma Simulation Code (PSC Germaschewski et al., 2016)

which is an explicit PIC code. We simulate anisotropic Alfvénic turbulence in the

solar wind which has been widely observed (Bavassano and Bruno, 1989; Grappin

et al., 1991; Chen et al., 2012; Wicks et al., 2011; Chen et al., 2011). Although, the

role of reconnection in the small-scale turbulent cascade has been studied previously

(Franci et al., 2017; Boldyrev and Loureiro, 2017; Cerri and Califano, 2017), it is still

unclear how 3D reconnection proceeds in the turbulent solar wind and how energy

is dissipated through magnetic reconnection. Therefore, we study the formation of

electric current structures and the spontaneous onset of magnetic reconnection as

part of the turbulent cascade in a 3D geometry. We also define a set of indicators of

reconnection, taking into account the differences and similarities between 2D and 3D

reconnection. Once we identify reconnection sites in the simulation, we determine

the percentage of energy exchange from the electromagnetic fields to the plasma

particles through magnetic reconnection. In this way, by determining the amount

of reconnection events in our simulation domain, we will be able to quantify the

particle acceleration due to reconnection as well as the dissipation owing to heating

mechanisms that can be triggered due to magnetic reconnection.

Having stated the aim of this thesis and the open questions that we want to address,

following Baumjohann and Treumann (1997); Klimontovich (1997), I introduce the

concept of plasma and the essential mathematical description that we use to describe

plasmas in Chapter 2. In Chapter 3, I present the concept of magnetic reconnection

as well as the basic models and properties of magnetic reconnection. Then, in

Chapter 4, I introduce the models of plasma turbulence and discuss the characteristic

features of plasma turbulence that are important for our study.

In Chapter 5, I introduce the simulation method that we use to study the occurrence
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of reconnection in a turbulent cascade and present a set of tests which allows us

to estimate the best simulation parameters to use. In Chapter 6, I introduce our

results characterising the turbulent simulations and the geometry of the reconnection

events that occur in our simulation domain. We visualise the role of turbulence as

a mechanism to create magnetic reconnection.

In Chapter 7, I present the results of our second work in which we develop a frame-

work to study the energy density transfer rate associated with magnetic reconnection

in plasma turbulence. This allows us to explore and quantify the role of magnetic

reconnection as an energy transfer mechanism in turbulent plasmas.

Afterwards, in Chapter 8, I introduce a new method to reconstruct the magnetic

field geometry from multi-point measurements. This is part of my contribution to

the MagneToRE mission concept (Maruca et al., 2021). Finally, in Chapter 9, I

present the conclusions and perspectives for future work derived from our research.



Chapter 2

Plasma physics

In this chapter I introduce the basic plasma physics that is essential for my project.

I begin with the definition of a plasma from a kinetic description and explain the

parameters often used to characterise plasmas. Then, I introduce the single-fluid

magnetohydrodynamic equations. Finally, I introduce wave modes that exist in

plasmas.

2.1 The Concept of Plasma
A plasma is an overall quasi-neutral gas consisting of charged particles that respond

to electric E and magnetic B fields. A plasma consists of electrons of mass me,

charge qe = −e and ions of mass mi and charge qi = Ze, where e is the elemental

charge and Z is the atomic charge number. The electromagnetic fields add forces

and drifts that considerably change the motions of the charged particles compared to

the neutral case. In general, the equations of motion of a plasma particle of species

s are

dxs
dt

= vs, (2.1)
dvs
dt

= qs
ms

(Em+vs×Bm), (2.2)

where Em and Bm are the microscopic electric and magnetic fields acting on the

particle with velocity vs, charge qs and mass ms. Although a description of the
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plasma evolution based on the individual particle motion is exact, it is not feasible

given the large number of particles (≳ 1023) in a typical plasma. Instead, the dy-

namics of the plasma species s = i,e is approached by looking at the evolution of

the distribution function Fs(x,v, t) in phase space (x,v). In Eq. (2.2), Em and Bm

evolve according to the Maxwell’s equations

∇·Em = ρm
ϵ0
, (2.3)

∇·Bm = 0, (2.4)
∂Em

∂t
= c2∇×Bm− Jm

ϵ0
, (2.5)

∂Bm

∂t
= −∇×Em, (2.6)

where c is the speed of light and ϵ0 is the vacuum electric permitivity. In Eq. (2.3)

ρm(x, t) =
∑
s
qs

∫
Fs(x,v, t)d3v (2.7)

is the microscopic charge density. In Eq. (2.5),

Jm(x, t) =
∑
s
qs

∫
Fs(x,v, t)vd3v (2.8)

is the microscopic current density. The equation that governs the evolution of Fs,

based on Eqs.(2.1) and (2.2), is the Klimontovich–Dupree equation:

∂Fs
∂t

+v ·∇xFs+ qs
ms

(Em+v ×Bm) ·∇vFs = 0. (2.9)

If we take an ensemble average ⟨..⟩ of Eq. (2.9) and define the following quantities

as fs = ⟨Fs⟩, E = ⟨Em⟩, B = ⟨Bm⟩, where the fluctuations of these quantities are

statistical ensembles with ⟨δFs⟩ = ⟨δE⟩ = ⟨δB⟩ = 0, the equation of evolution of

the phase space averaged distribution function fs can be simplified to the kinetic

equation

∂fs
∂t

+v ·∇xfs+ qs
ms

(E+v ×B) ·∇vfs = − qs
ms

⟨(δE+v × δB) ·∇vδFs⟩, (2.10)
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where fs(x,v, t) is the coarse-grained distribution function which represents the

probability of finding a particle in an element dxdv of phase space under the effect of

averaged electric and magnetic fields. These fields are averaged over small Coulomb

potentials of single particles in the ensemble. From now on, we refer to fs(x,v, t)

simply as the distribution function. If the second-order interactions on the right-

hand side of Eq. (2.10) are dropped, the equation becomes the Vlasov equation

∂fs
∂t

+v ·∇xfs+ q

m
(E+v ×B) ·∇vfs = 0. (2.11)

Eq. (2.11) describes the evolution of the particle species s in a collisionless plasma.

If the initial fs and the initial fields E and B are known, the plasma dynamics can

be studied using Eq. (2.11) and Maxwell’s equations (2.3) through (2.6). This is

known as the kinetic approach. However, there are cases in which it is not feasible to

study the plasma evolution directly from fs but from macroscopic quantities derived

from fs. One such approach is known as magnetohydrodynamics (MHD).

In multifluid MHD, the macroscopic quantities that describe the evolution of the

plasma are the density

ns =
∫
fs(x,v, t)d3v, (2.12)

the bulk velocity us

us = 1
ns

∫
vfs(x,v, t)d3v, (2.13)

the pressure tensor

Ps =ms

∫
(v −us)(v −us)fs(x,v, t)d3v, (2.14)

where (v −us)(v −us) is a dyadic product, the scalar temperature

Ts = ms

3kbns

∫
(v −us) · (v −us)fs(x,v, t)d3v, (2.15)
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where kB is the Boltzmann constant, the heat flux tensor

Qs =ms

∫
(v −us)(v −us)(v −us)fs(x,v, t)d3v, (2.16)

and the heat flux vector

hs = ms

2

∫
(v −us) · (v −us)(v −us)fs(x,v, t)d3v. (2.17)

2.2 From Kinetic to MHD
The equations that describe the evolution of the macroscopic quantities are derived

by taking velocity moments of Eq. (2.11). Thus, the zeroth moment leads to the

continuity equation

∂ns
∂t

+∇· (nsus) = 0, (2.18)

the first moment yields the momentum equation

∂(nsus)
∂t

+∇· (nsusus)+ 1
ms

∇·Ps− qs
ms

ns(E+us×B) = 0, (2.19)

and the second moment leads to the energy equation

3
2nskB

(
∂Ts
∂t

+us ·∇Ts
)

+ps∇·us = −∇·hs− (Ps
s ·∇) ·us. (2.20)

Since each moment of the Vlasov equation includes a new high-order quantity, an-

other higher-order equation is required to close the system. This is known as the

closure problem (Chew et al., 1956; Chust and Belmont, 2006). To close the system

and considering different scenarios for the plasma, it is a common approach to define

an equation of state. For instance, in isotropic plasmas, i.e., Ps = psI, where I is

the unitary matrix and

ps =
∑

Pii,s/3 (2.21)
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is the scalar pressure, the equation of state that closes the system is

ps = ps0

(
ns
ns0

)γ
, (2.22)

where ps0 and ns0 are constant initial values and γ = Cp/CV is the adiabatic index

which represents the ratio between the specific heats at constant pressure Cp and

at constant volume CV . In more general scenarios, the index γ is also known as the

polytropic index. In isobaric conditions (constant pressure) γ = 0. In adiabatic con-

ditions (no heat transfer) γ = 5/3. In isothermal conditions (constant temperature),

γ = 1, and in isometric conditions (constant density), γ = ∞.

If the plasma cannot be considered isotropic, a possible fluid closure is based on

the double-adiabatic invariants, also known as the Chew-Goldberger-Low (CGL)

invariants (Chew et al., 1956):

d

dt

(
ps,⊥
nsB

)
= 0 (2.23)

and

d

dt

(
ps,∥B

2

n3
s

)
= 0, (2.24)

where ps,∥ and ps,⊥ are the pressures parallel and perpendicular to the magnetic

field B and B = |B| is the magnetic field strength. Equations (2.23) and (2.24) can

be used to close the system of equations and to model the evolution of a multi-fluid

plasma.

2.2.1 Characteristic Parameters
The characteristic length parameters used to describe plasmas are:

• The characteristic size of the system L. In the solar wind, L is similar to the

size of the inner heliosphere.
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• The inertial length of the species s

ds = c

ωps
, (2.25)

where

ωps =
√
nsq2

s

msϵ0
(2.26)

is the plasma frequency. The inertial length is the distance associated to the

exponential decay of electromagnetic fluctuations with frequency ω ≤ ωps in

the plasma.

• The gyroradius

ρs = msv⊥,s
qsB

, (2.27)

v⊥,s is the component of the particle’s speed in the plane perpendicular to the

magnetic field. The gyroradius is associated with the gyration motion of the

particle around the magnetic field with the gyrofrequency

Ωs = qB

ms
. (2.28)

• The Debye length

λDs =
√
ϵ0kBTs
nsq2

s
. (2.29)

The Debye length is the distance over which thermal fluctuations of particles

are balanced with the Coulomb potential such that the plasma remains quasi-

neutral on scales ≳ λDs .

The characteristic values of these parameters in the solar wind, at 1 au (1.49 × 108

km), are shown in table 2.1 where the periods are calculated as ΠΩs = 2π/Ωs and

Πωps = 2π/ωps. It is worth noting that, owing to the low density of the solar wind
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L 1 au characteristic size of the system
di 140 km proton inertial length
ρi 160 km proton gyroradius
de 3 km electron inertial length
ρe 2 km electron gyroradius

λi,λe 12 m proton and electron Debye lengths
ΠΩi

26 s proton gyroperiod
ΠΩe 14 ms electron gyroperiod
Πωpi 3 ms proton plasma period
Πωpe 70 µs electron plasma period

Table 2.1: Characteristic length and time scales at 1 au. Adapted from Verscharen et al.
(2019)

at 1 au, ns ∼ 5 cm−3, the proton collisional mean free path λmfp,i is ∼ 3 au. Hence,

particle collisions are extremely low and a collisionless description, Eq. (2.11), is

suitable to study the plasma dynamics.

2.2.2 Single Fluid MHD
The MHD approach describes low frequency phenomena, i.e., ω ≪ ωps and λ≫ ds.

In single-fluid MHD, the plasma is considered a highly-conducting and quasi-neutral

single-component fluid (n= ni = ne) where the charge density is defined as

ρc =
∑
s
qsns. (2.30)

For a quasi-neutral fluid, ρc ≈ 0. The electric current density is defined as

J =
∑
s
qsnsus, (2.31)

and the fluid density is defined as

n=
∑
smsns∑
sms

. (2.32)

The mass of a fluid volume is

m= nimi+neme

ni+ne
, (2.33)
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and

u = meneue+miniui
mene+mini

, (2.34)

is the fluid velocity. Multiplying the continuity equation Eq. 2.18 for each species

s with its respective mass ms and adding them, we obtain the continuity equation

for the fluid

∂n

∂t
+∇· (nu) = 0., (2.35)

In addition, by adding the momentum equation Eq. 2.19 for ions and electrons we

obtain the momentum equation for the fluid

∂(nmu)
∂t

+∇· (nmuu) = −∇·P+J×B = 0, (2.36)

where P = Pe+ Pi. Another important equation in MHD theory is the generalised

Ohm’s law

E+u ×B = ηJ+ 1
nq

J×B− 1
nq

∇·Pe+ me

nq2
∂J
∂t
, (2.37)

where η is the electric resistivity and Pe is the electron pressure. If the right-

hand side of Eq. (2.37) is identically zero, the plasma is consider as ideal and it

is attached to the magnetic field. Thus, convected magnetic field structures carry

plasma particles without diffusion and vice-versa (see section 3.1). The equation

(2.37) takes into account that the mass of electrons is considerably smaller than

the ion’s mass, i.e., mi/me ≫ 1. Thus, the contribution of the ion pressure Pi and

the ion velocity ui are negligible. For details on how to calculate this expression

see Baumjohann and Treumann (1997) section 7.3. The generalised Omh’s law is

important for the Hall MHD theory that is used to describe reconnection as I will

briefly show in subsection 3.2.1.
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2.3 Plasma Waves
In plasmas, in addition to the density and velocity perturbations, the electric

and magnetic field perturbations generate a rich variety of propagating and non-

propagating normal modes of these systems. This is mostly due to the additional

restoring forces acting on both the plasma particles and the electromagnetic fields

in comparison to neutral gases. To describe the perturbations from linear theory

(Baumjohann and Treumann, 1997; Brambilla, 1998), consider a physical quantity

A(x, t) = A0 + δA(x, t) (2.38)

which depends on the position x and time t. The term δA(x, t) represents

the fluctuating perturbations around the equilibrium state A0. We assume that

|δA(x, t)| ≪ |A0| and that the perturbation has the form of a plane wave with a

wavelength λ. We then find

δA(x, t) = Re
[
Ã(k,ω)e(ik·x−iωt)

]
, (2.39)

where k is the real wave-vector and ω = ωr+ iγ is the complex frequency. The term

Ã(k,ω) =
∫ ∞

−∞
A(x, t)eik·x−iωtdxdt (2.40)

is the complex Fourier amplitude of A(x, t) in Fourier space. The components of the

wave vector are the wave numbers kj = 2π/λj . The real frequency ωr corresponds to

the real part of ω, and γ corresponds to the imaginary part of ω, which is the linear

damping/growth rate. The two velocities for a plane wave are the phase velocity

vph = ωk
k2 (2.41)

and the group velocity

vgr = ∂ω

∂k
, (2.42)
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where the vph is the velocity of the wave front and vgr is the velocity of the energy

flow carried by the wave. According to Eqs. (2.38) and (2.39), the electric and

magnetic fields can be expressed as

E = Re
[
Ẽ(k,ω)e(ik·x−iωt)

]
(2.43)

and

B = B0 +Re
[
B̃(k,ω)e(ik·x−iωt)

]
, (2.44)

where the background electric field E0 is neglected. In Fourier space, ∂/∂t → −iω

and ∇ → ik. Thus, according to Eqs. (2.43) and (2.44), Maxwell’s equations (2.3)

through (2.6) can be expressed as

k · Ẽ = −i ρ̃c
ϵ0
, (2.45)

k · B̃ = 0, (2.46)

k × B̃+ ω

c2
Ẽ = −iJ̃µ0, (2.47)

k × Ẽ−ωB̃ = 0, (2.48)

where µ0 = 1/(ϵ0c2) is the vacuum magnetic permeability. The left-hand sides of

Eqs. (2.45) through (2.45) contain the interactions between the electric and magnetic

fields whereas the right-hand sides contain the interaction of the fields with the

particles. The fluctuations quantified by J̃ are correlated with Ẽ through

J̃ = σ(k,ω) · Ẽ, (2.49)

where σ(k,ω) is the so-called conductivity tensor. Taking the cross product of k/ω

with Eq. (2.48) and substituting it along with Eq. (2.49) into Eq. (2.47) we obtain

the expression

[(
k2 − ω2

c2

)
I−kk − iωµ0σ(k,ω)

]
· Ẽ(k,ω) = 0, (2.50)
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where we have used the identity k × k × E = (kk −k2I) · E. Defining the dielectric

tensor

ϵ(k,ω) = I+ i

ωϵ0
σ(k,ω), (2.51)

Eq (2.50) can be expressed as

[
k2c2

ω2

(
kk
k2 − I

)
+ ϵ(k,ω)

]
· Ẽ(k,ω) = 0. (2.52)

The wave modes that can be excited in a plasma are described by the relation

between k and ω that depends on the plasma properties captured by ϵ(k,ω). The

non-trivial solutions of Eq (2.52) require that

Det
[
k2c2

ω2

(
kk
k2 − I

)
+ ϵ(k,ω)

]
= 0. (2.53)

Eq. (2.53) is the so-called dispersion relation. The solution of this equation requires

to know the dielectric tensor. The functional form of ϵ(k,ω) depends on the model

used to describe the plasma (Gary and Gary, 1993; Baumjohann and Treumann,

1997). The explicit calculation of ϵ is beyond the scope of this manuscript. Instead,

we discuss the wave modes as known solutions of Eq. (2.53) that are excited in

plasmas and that are relevant for this study.

2.3.1 Plasma Wave Modes
The most important plasmas modes that are excited at large scales (kdi ≪ 1 and

kρi ≪ 1) are the non-compressive Alfvénic (Alfvén, 1942) and compressive modes.

In the solar wind, the more relevant mode for this study is the Alfvén mode due to

the majority of the turbulent fluctuations in space plasmas is the Alfvén mode (Tu

and Marsch, 1995; Bruno and Carbone, 2013). The magnetic energy associated with

compressive modes is around 2%-10% of the magnetic energy associated with Alfvén

modes (Chen, 2016). The Alfvén waves correspond to magnetic perturbations δB

perpendicular to the background magnetic field B0 and to k. The perturbation

propagates along B0. For this mode, the restoring force is the magnetic tension.
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The linear dispersion relation is

ωr = ±|k∥|vA, (2.54)

where k∥ is the wave-number parallel to B0 and vA = |B0|/√nmµ0 is the Alfvén

speed. The perturbations δB are (anti-)correlated with the perturbations δu in the

plasma velocity u through the polarisation relation

δB
|B0|

= ∓δu
vA
, (2.55)

where the sign −(+) indicates the perturbation is propagating in the direction par-

allel (anti-parallel) to the magnetic field B0. This type of fluctuations are routinely

measured in the solar wind (Unti and Neugebauer, 1968; Belcher et al., 1969; Velli

and Pruneti, 1997; Podesta and TenBarge, 2012). Parallel-propagating Alfvén waves

are left-circularly polarized (Verscharen et al., 2019) and can be resonantly damped

by resonant ions with parallel speed

vr = ωr − lΩi

k∥
, (2.56)

where l is an integer number. Another family of modes that are excited at large

scales are magnetosonic modes. The dispersion relation for these modes is

ω2
ms = k2

2

c2ms±
[
(v2
A− c2s)2 +4v2

Ac
2
s
k2

⊥
k2

]1/2 (2.57)

where c2s = γkBT/mi is the sound speed and c2ms = c2s + v2
A is the magnetosonic

speed. The positive/negative sign is for the fast/slow magnetosonic mode. The fast

mode propagates into the perpendicular direction with phase velocity vph,f⊥ = cms

whereas the slow mode does not propagates into the perpendicular direction. The

propagation into the parallel direction depends on the relation between va and cs.

In the case vA > cs, the fast mode propagates with speed vph,f∥ = va and the slow

mode propagates with phase speed vph,s∥ = cs. In the opposite case, vA < cs the fast
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a) b)

Figure 2.1: a) Phase velocity diagram of the MHD modes for vA > cs (a) and vA < cs

(b). Adapted from Baumjohann and Treumann (1997)

mode propagates with phase speed vph,f∥ = cs while the slow mode propagates with

phase speed vph,s∥ = vA. Figure 3.7 shows a phase velocity diagram that summarizes

these relations.

Returning to the Alfvén mode, the dispersion relation for Alfvén waves, at low

frequencies (ωr ≪ Ωi), splits into two branches at small-scales (kdi ≳ 1 and kρi ≳

1): kinetic Alfvén waves (KAW) and ion-cyclotron waves. i) Kinetic Alfvén waves

(KAW) exist at k⊥ρi ≳ 1 and k⊥ ≫ k∥, are right-hand polarised oblique-propagating

modes (Hollweg, 1999; Howes et al., 2006; Schekochihin et al., 2009). They are

compressive. The fluctuations in density δn and in the parallel magnetic field δB∥

generate fluctuations in the parallel electric field δE∥. ii) Ion-cyclotron waves exist

at k∥ρi ≳ 1 and k⊥ ≪ k∥. They are left-hand polarised quasi-parallel propagating

modes (Verscharen et al., 2012). At high frequencies (ωr ≫ Ωi), the family of fast-

magnetosonic whistler (FM/W) waves exist. This includes whistler waves, lower-

hybrid waves and kinetic magnetosonic waves. The quasi-parallel propagating mode,

also known as the R-mode, is right-handed in polarisation and can resonate with

electrons (Verscharen et al., 2012). The R-mode connects with the Alfvén mode at

large scales. In oblique propagation and at kdi ≫ 1, the FM/W branch becomes the

dispersive whistler mode, whereas in quasi-perpendicular propagation, it becomes
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the lower-hybrid mode (Verscharen et al., 2019).



Chapter 3

Magnetic reconnection

In this chapter, I review the general concept of magnetic reconnection. Then, I cover

the models in two dimensions starting with the Sweet–Parker model, on which I put

special emphasis due to its pedagogic values. I then continue with the Hall-MHD

reconnection model and follow on with the tearing reconnection model. Afterwards

I present a general discussion of three-dimensional magnetic reconnection and finish

by commenting on the observation of magnetic reconnection in the solar wind.

3.1 The General Concept of Magnetic Reconnec-

tion
Since plasma particles gyrate around magnetic field, they are bounded to the

magnetic-field lines as long as there is no electric resistivity (ideal plasmas) or as

long as there are no strong gradients in the magnetic field. Under this conditions the

plasma is “frozen” onto the magnetic field. As a consequence, if an external force

modifies the magnetic topology, for instance by bending the magnetic field lines (see

Figure 3.1a), the motion of the plasma particles is modified accordingly. Likewise,

if the external force acts on the plasma particles, the magnetic-field lines are also

modified. This is known as the “frozen-in theorem”. Therefore, any change in the

magnetic field is associated with a convective motion of the plasma. The equation

that describes this behavior is the ideal induction equation



3.1. THE GENERAL CONCEPT OF MAGNETIC RECONNECTION 46

∂B
∂t

−∇× (u ×B) = 0. (3.1)

which follows from inserting the electric field

E = −u ×B (3.2)

into Faraday’s law Eq. (2.6)

∂B
∂t

+∇×E = 0, (3.3)

where u is the bulk velocity of the particles. Integrating Eq. 3.5 on a surface area S

∂

∂t

∫
S

B ·dS =
∫
S

∇× (u ×B) ·dS, (3.4)
∂ϕB
∂t

= 0, (3.5)

where ϕB is the magnetic flux thought the surface area S. Thus, the magnetic flux

remains constant.

On the contrary, if the plasma is non-ideal, i.e., there is a source of resistivity, the

equation that represents this behavior is the non-ideal induction equation

∂B
∂t

= ∇× (u ×B)−∇×R, (3.6)
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which follows from inserting the generalized Ohm’s law, Eq. (2.37)

E+u ×B = R, (3.7)

into Faraday’s law Eq. (2.6). The term R represents any non-ideal contributions.

In the particular case of resistive MHD, the dominant term on the right-hand side

of Eq. (2.37) is ηJ. Thus, R = ηJ and Eq. (3.6) can be written as

∂B
∂t

= ∇× (u ×B)+ η

µ0
∇2B, (3.8)

where the displacement current term in Ampère’s law, Eq. (2.5), is neglected. From

Eq. (3.8), whenever η or ∇2B are so large that the first and second terms on the

right side of Eq. (3.8) are comparable, the frozen-in condition is locally broken.

Therefore, magnetic field not only advects according to Eq. (3.5) but also diffuses

locally (see Figure 3.1b), allowing for a reconfiguration of magnetic topology (Axford,

1984; Wilmot-Smith et al., 2005).

This behavior can be expressed in term of the diffusion time τdiff ∼ µ0L2/η and

convective time τcon ∼ L/u. The ratio between these two times is the magnetic

Reynolds number (Rem):

Rem = Luµ0
η

. (3.9)

For large Rem, the convective motion of the magnetic field dominates the evolution

of the plasma flow and any magnetic field diffusion is negligible.

A fundamental feature of magnetic reconnection, regardless of the theory used to

describe it, is that it is a non-linear process which leads to the merging and recon-
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a)

b)

Figure 3.1: a) Sketch of the frozen in theorem. The magnetic-field lines and the plasma
parcels are couple to each other. b) Sketch of the magnetic field diffusion.
The magnetic field diffuses in space as a function of time. Adapted from
Baumjohann and Treumann (1997)

figuration of magnetic field structures which otherwise would experience convection

but not diffusion. This mechanism changes the topology of the magnetic field and

mixes plasmas from different, otherwise separated magnetic environments. In or-

der for reconnection to occur, plasma and magnetic field within a local region, the

so-called diffusion region must move independently of each other. Whenever this

happens, the magnetic field is not bound to the particles and vice-versa which means

that the frozen-in condition, Eq. 3.5, is locally broken and the ideal single fluid ap-

proach (section 2.2.2) is no longer valid at the diffusion region. Thus, magnetic

reconnection is a process that depends highly on the diffusion of the magnetic field.

This is true no matter which theory is used to describe the process. However, there

are several discrepancies about reconnection rates, plasma parameters dependen-
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cies, and energy transport between the predictions from early steady-state models

(Parker, 1957; Sweet, 1958; Dungey, 1961), from the most recent turbulent models

(Eyink, 2015; Huang and Bhattacharjee, 2016; Lazarian et al., 2020) and from ob-

servations made in different regimes in the solar wind (Gosling, 2012; Lalescu et al.,

2015). Despite these discrepancies, we will first introduce the 2D case to give an

idea about the concept of the reconnection process and then talk about the theories

in 3D geometry and the role of turbulence in magnetic reconnection.

3.2 Magnetic Reconnection in 2D
The study of magnetic reconenction has been motivated as a way to explain explosive

events (i.e., flares) in the Sun. It was first discussed by Parker (1957); Sweet (1958)

and Dungey (1961) as a particle acceleration process in the vicinity of magnetic

null points in solar flares and later as a steady-state magnetic merging process by

Vasyliunas (1975). The Sweet–Parker model of 2D reconnection is based on the

conservation of mass, momentum, energy and magnetic flux for an incompressible,

resistive and steady-state MHD flow. As a 2D geometry is assumed, there are no

variations along ŷ, i.e., ∂/∂y = 0. Because of the steady-state assumption, there are

no temporal variations either, i.e., ∂/∂t= 0.

In this model, oppositely directed magnetic fields in a laminar setup approach each

other. As they are convected in a converging pattern, a current sheet forms to sustain

the gradient of the magnetic field. Thus, we consider a current sheet of length 2L

along x̂ and thickness δ along ẑ, see Figure 3.2, where v0 (vout) and B0 (Bout) are

the inflow (outflow) plasma speed and magnetic field strength respectively.

Since particles enter the current sheet with speed v0 through 2L and leave the current

sheet with speed vout and through 2δ, the mass conservation

∇· (ρu) =
∮
ρu ·dA= −4ρv0L+4ρvoutδ = 0, (3.10)
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Figure 3.2: Sweet–Parker reconnection model. Oppositely directed magnetic fields B0
are convected with speed v0. This forms a current sheet J directed out of
the reconnection plane. The current sheet has length 2L and thickness 2δ.
A self-consistent uniform electric field E is directed out of the plane. The
reconnected field Bout is convected away from the reconnection region at the
speed vout. Adapted from Somov (2012)

where the factor 2 accounts for the symmetry in the mass flow, leads to

v0L= voutδ, (3.11)

where ρ is the mass density of the plasma and A defines the surface area of the

current sheet. If there is a diffusion region between the magnetic field lines in

which the electric resistivity is high enough to break down the frozen-in condition,

the particles moving along with the field lines de-magnetize and join the particles

associated with the field lines on the other side of the current sheet. To illustrate

this, we consider Ohm’s law outside the current sheet, the electric field

Ey = (v0 ×B0)y = (v0B0). (3.12)

Ohm’s law within the current sheet, where the speed of the plasma is zero, i.e., in
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the so-called stagnation point, leads to

Ey = ηJy. (3.13)

Using the Ampère’s law and considering the curl of B over a distance δ

∇×B0 = µ0J, (3.14)

leads to an expression for the current

Jy = B0
δµ0

. (3.15)

Combining Eq. (3.15) with Eq. (3.13), we find

Ey = η
B0
δµ0

. (3.16)

This expression, along with Eq. (3.12), gives us v0 = η/δµ0 which, along with Eq.

(3.11), leads to

v2
0 = vout

η

Lµ0
, (3.17)

linking the inflow speed with the outflow speed. In the equation of motion for the

steady-state plasma, neglecting any variation in pressure,

∇· (ρuu) = ρE+J×B, (3.18)

the second term on the right-hand side, the Lorentz term, accelerates the particles

in the stagnation region to the speed vout over the distance L. Thus, taking the x

component of Eq. (3.18) we get

ρ(u ·∇)ux = (J×B)x, (3.19)
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and thus, under our geometric simplifications,

ρv2
out

L
= JyBout = B0

δµ0
Bout. (3.20)

Taking the conservation of magnetic flux across the surface A, as magnetic flux is

convected in and out of the current sheet,

∮
B ·dA= −4ρB0δ+4ρBoutL= 0, (3.21)

so that

B0δ =BoutL. (3.22)

By replacing Eq. (3.22) into Eq. (3.20), this leads us to

v2
out = B2

0
ρµ0

, (3.23)

which is the square of the Alfvén speed vA = B0/
√
µ0ρ associated with the recon-

necting magnetic field. Thus, according to the SP, plasma particles leave the recon-

nection region at the Alfvén speed. As particles are frozen into the pre-reconnection

magnetic field lines, they move with the convection speed v0 into current sheet.

Since a steady-state is considered, the conduction electric field E induced by this

flow and magnetic field pattern generates a self-consistent E×B drift

vd = E×B
|B2|

. (3.24)

This drift bends the field lines, thus increases the magnetic tension, and is the

responsible for the “dragging” of the magnetic field lines closer to the current sheet as

long as the particles continue to be magnetised (outside of the diffusion region). Since

outside the diffusion region the frozen-in condition is valid again, the reconnected

field lines are then expelled out of the region along with the plasma particles.

When the velocity v is equal to the Alfvén speed, the magnetic Reynolds number



3.2. MAGNETIC RECONNECTION IN 2D 53

Eq. 3.9 is known as the Lundquist number

S = LvAµ0
η

, (3.25)

This number is fundamental to characterize the behaviour of reconnection in plas-

mas. For instance, by replacing vout with vA in Eq. (3.17), the initial incoming

speed is v0 = vA/
√
S. Therefore, in Sweet–Parker model and for large S, the in-

flow velocity is smaller than the outflow velocity. The efficiency of reconnection as

a mechanism to exchange energy between fields and particles is quantified by the

reconnection rate

Υ = v0
vout

. (3.26)

Replacing v0 and vout, we find

ΥSP = 1√
S

= δSP
LSP

, (3.27)

where we find the last expression follows from the conservation of mass Eq. (3.11).

Thus, in the Sweet–Parker model, the reconnection rate is limited by the Lundquist

number. For most plasmas, the Lundquist number is much larger than one. For

instance, S ∼ 1012 − 1014 in the solar corona, S ∼ 1015 − 1016 in the magnetotail,

and S ∼ 106 − 108 in fusion plasmas (Loureiro and Uzdensky, 2015). Hence, the

reconnection time predicted is big and thus SP reconnection is slow. However,

observations in the solar corona show that reconnection is rather a fast and bursty

process with a typical reconnection rate Υ ∼ (0.01−0.1). This slowness of the Sweet–

Parker reconnection is the fundamental shortcoming of this model. Nonetheless, it

is worth quantifying the energy exchange by reconnection based on the divergence

of the electromagnetic energy flux

ΦEM = ∇·
(

E×B
µ0

)
, (3.28)
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and the divergence of the kinetic energy flux

ΦK = ∇·
(1

2ρu
2u
)
. (3.29)

Considering the ratio of the inflowing kinetic energy flux to the inflowing electro-

magnetic energy flux

ΦK0
ΦEM0

=
∇·

(
1
2ρv

2
0v0

)
∇·

(
E×B0
µ0

) =
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0
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ρv3

0
2

v0B2
0

µ0

= v2
0
v2
A

= 1
S
, (3.30)

where we consider the variation over the distance δ. Thus, for S ≫ 1, the inflowing

kinetic energy flux is negligible, and most of the incoming energy is of electromag-

netic character.

Considering the ratio of the outflowing kinetic energy flux to the outflowing electro-

magnetic energy flux
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ΦEMout
=
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2
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2v3
A

= S

2 , (3.31)

where we consider the variation over the distance L. Therefore, the outflowing

magnetic energy flux is negligible. This is related to the fact that Bout =B0
√
S which

shows that the reconnected (Bout) magnetic field is smaller than the reconnecting

(B0) magnetic field.

We lastly consider the ratio of the outflowing kinetic energy flux to the inflowing

magnetic energy flux

ΦKout

ΦEM0
=

∇·
(

1
2ρv

2
outvout

)
∇·

(
E×B0
µ0

) =
ρv3

out
2L

EyB0
δµ0

=
ρv3

A
2L
v0B2

0
µ0δ

=
√
Sv3

Aδ

2v3
AL

=
√
Sδ

2L = 1
2 . (3.32)

Therefore, half of the magnetic energy is converted through reconnection into kinetic

energy of the outflowing particles. According to the Sweet–Parker model (SP),

magnetic reconnection is a process that exchanges energy between the fields and the

particles. Although the Sweet–Parker model is a good pedagogical approximation for
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reconnection, this model does not address the actual mechanism that breaks down

the frozen-in condition. It is based on the existence of an electrical resistivity that

is usually associated with collisions. Hence, its extension to collisionless plasmas is

not straight-forward because the collisions are too scarce to account for any kind of

resistivity. Moreover, even in the resistive case, the predicted reconnection rate is

too slow compared with observation (Kliem et al., 2000; Vaivads et al., 2004; Egedal

et al., 2007; Yamada et al., 2010). Although anomalous resistivity mechanisms

have been proposed to increase the reconnection rate (Ugai, 1984; Che, 2017), the

Sweet–Parker model is laminar and it cannot explain the formation of plasmoids

(Biskamp, 1986; Loureiro and Uzdensky, 2015) or the bursty nature of the magnetic

reconnection that involves a period of energy accumulation (Scholer, 1988; Shay

et al., 2003; Birn et al., 2011).

To overcome the slow reconnection problem, the reconnection community have fo-

cused their efforts on finding mechanisms able to make δ comparable with L. For

instance, Petschek (1964) proposes a model which considers localized regions of re-

sistivity and the presence of standing slow shocks near the diffusion region. In this

model, instead of an elongated current sheet, the reconnection region is an X-like

structure due to the presence of slow shocks, and a central point where the magnetic

field is zero. However, the existence of a mechanism for the self-consistent formation

of slow shocks is not clear (Yamada et al., 2010). Nevertheless, artificial variation

of the resistivity as a function of the current density produces slow shock forma-

tion (Ugai and Tsuda, 1977; Sato and Hayashi, 1979). Although the reconnection

rate predicted by the Petschek model is faster than SP, the lack of self-consistency

precludes the widespread use of this model.

3.2.1 Hall MHD Reconnection
Another attempt to find a better description for 2D reconnection is the Hall MHD

reconnection theory which is based on the effects related to the electron physics

within the diffusion region of the Sweet–Parker model. Following the previous sub-

section, within the reconnection region, the current is initially carried by both ions

and electrons. However, at scales smaller than the ion inertial length, the assumption
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of a single neutral fluid is no longer valid. The electron motion is dominant in the

rest-frame of the reconnection region, and electrons make the largest contribution

to J. Thus, ions decouple from the electrons due to the Hall term (∼ J ×B) in the

generalised Ohm’s law Eq. (2.37). To see this, we substitute the generalised Ohm’s

law Eq. (2.37) into Faraday’s law Eq. (3.3) to obtain the more general induction

equation:

∂B
∂t

= ∇×
(

u ×B−ηJ− 1
nq

J×B+ 1
nq

∇·Pe− me

nq2
∂J
∂t

)
. (3.33)

Considering only the convective and Hall terms,

∂B
∂t

= ∇×
(

u ×B− 1
nq

J×B
)
. (3.34)

Expressing the electron velocity from Eq. (2.31) as

ve = vi−J/nq (3.35)

and substituting it into Eq. (3.34), we obtain

∂B
∂t

= ∇×ve×B, (3.36)

where u ≈ vi for me ≪mi according to Eq. (2.34). From Eq. (3.36), it is clear that

the effect of the Hall term is the demagnetization of the ions. At these scales, the

magnetic field is convected with the electron motion. Moreover, the drift velocity Eq.

(3.24), which now only affects electrons, carries them closer to the central region. As

the electrons are still magnetised at these scales, they “drag” the magnetic field lines

towards the electron diffusion region. Therefore, the diffusion region is divided into

an external ion diffusion region and a smaller electron diffusion region inside it (see

Figure 3.3). To continue with the discussion, we adopt the definitions of “poloidal

field” (in the reconnection plane) and “toroidal field” (out of the reconnection plane)

used by Uzdensky and Kulsrud (2006). The incoming magnetic field lines lie in the

reconnection plane and their magnetic field is poloidal. The same applies to the
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Figure 3.3: 2D Hall MHD reconnection model. Unlike in SP, the diffusion region is di-
vided between ion and electron diffusion regions. Poloidal (in plane) electron
currents form and generate a characteristic quadrupole-like toroidal (out of
the plane) magnetic field. Adapted from Sonnerup (1979).

reconnected magnetic field lines. According to our frame of reference, x− z is the

poloidal plane and y is the toroidal direction.

We consider the field lines entering (upstream) the ion-diffusion region in a quasi-

steady state. As the field lines enter and approach the central part of the current

sheet, a portion of the magnetic field of the top is cancelled with the opposite

magnetic field of the bottom. Because the magnetic field is reduced, the distance

between the field lines increases to keep the magnetic flux constant. As the field

expands, the electron gas expands changing its density. Because ions are not af-

fected by this expansion, as they are demagnetised, electrons inflows are required

to maintain quasi-neutrality. These electrons flow parallel to the upstream poloidal

magnetic field. Likewise, when the reconnected (downstream) fields expand out of

the diffusion region, their associated volume is reduced. Thus, electron outflows

leave the central region. These electron flows represent currents in the opposite di-

rections. These currents generate a toroidal magnetic field (Btor). In the top-right

and bottom-left part of the reconnection region, the toroidal magnetic field points

into the plane. In the top-left and bottom-right, the toroidal magnetic field points

out of the plane.
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Figure 3.4: The charge separation in the ion-diffusion region generates a poloidal electric
field Epol. Adapted from Uzdensky and Kulsrud (2006).

Another effect of the separation of charges within the reconnection region is the

existence of a poloidal electric field (Epol), see Figure 3.4. This electric field is re-

sponsible for the acceleration of ions in the ion-diffusion region. Because of the

toroidal magnetic field, the entering ions are deflected towards the downstream re-

gion where they leave the diffusion region. Outside the electron diffusion region,

ions are accelerated out of the reconnection region as in SP. The electron diffusion

region length Le and width δe are expected to be of order the electron scales ∼ de;

however, observations suggest that the length of the electron diffusion region can

reach ion scales (Deng and Matsumoto, 2001; Wei et al., 2007; Stawarz et al., 2019).

An additional effect of the ion demagnetization is the existence of a toroidal compo-

nent of the electron velocity within the ion diffusion region. Some authors (Mandt

et al., 1994) argue that these electrons are responsible for dragging the magnetic field

out of the reconnection plane, creating the toroidal component of the magnetic field.

However, Uzdensky and Kulsrud (2006) state that, in order to have a change in the

toroidal field along the electron streamlines, the toroidal velocity of the electrons

must be non-uniform. This only happens in a transition region in which the velocity

of the ions is not exactly zero. Outside the electron diffusion region, any contribu-

tion from electrons to the toroidal field is cancelled by the toroidal contribution of

the ions. Deep inside the diffusion region, where the velocity of ions is negligible,
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Figure 3.5: Reconnection diffusion region. The dashed black lines define the reconnection
separatrix. Within the ion diffusion region (gray area) ions are demagnetised
and the ion flows (blue dashed lines) accelerate away of the reconnection
ion-diffusion region. As magnetic field lines (continuous black lines) are con-
vected to the central region, poloidal electron flows (red dashed lines) form to
maintain quasi-neutrality. These flows generates the characteristic toroidal
quadrupole-like magnetic field (green crosses and dots). Within the electron
diffusion region (yellow area) electrons are demagnetised and accelerated out
of the reconnection region. Adapted from Zweibel and Yamada (2016).

the total toroidal component of the electron velocity depends on Epol and a drift

associated with the gradient of the electron pressure term ∼ ∇ · Pe in Eq. (3.33).

This balance maintains uniformity in the toroidal electron velocity. Therefore, the

toroidal magnetic fields are generated in this transition region and convected to-

wards the centre by the poloidal electron flow. In addition, as the pressure term

does not affect the convection of magnetic field lines, the bend of the field lines out

of the reconnection plane in the toroidal direction is due to Epol. This shows that,

although electrons play a principal role at these scales, the ion contribution must be

considered.

Figure 3.5 shows the expected trajectories of particles in the poloidal plane within

the reconnection diffusion region according to Hall MHD theory. The dashed black

lines define the reconnection separatrix associated with this reconnection model.

Within the ion diffusion region (gray area) ions are demagnetised, and the ion flows

(blue dashed lines) accelerate away from the reconnection region. As magnetic field

lines (continuous black lines) proceed to the central region, poloidal electron flows
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(red dashed lines) form to maintain quasi-neutrality. These flows generate the char-

acteristic toroidal, quadrupole-like magnetic field (green crosses and dots). Within

the electron diffusion region (yellow area), electrons are demagnetised and acceler-

ated out of the reconnection region. It is worth noting that the quadrupole magnetic

field pattern and the poloidal electric fields are independent of the initial direction

of the poloidal fields. Although the presence of a quadrupole toroidal field and a

poloidal electric field have been supported by two fluid simulations (Mandt et al.,

1994; Shay and Drake, 1998; Shay et al., 2001; Le et al., 2014) and observations

in the magnetosphere (Mozer et al., 2002; Wygant et al., 2005; Borg et al., 2005),

this structure is considerably distorted in the presence of a guide magnetic field

(toroidal) or asymmetries in the reconnection region. For instance, when an intense

guide magnetic field is present, poloidal electron flows are distorted along the up-

stream direction (Eastwood et al., 2010). Moreover, shear flows in the reconnection

region, asymmetric reconnecting magnetic field and asymmetric density can preclude

reconnection by shifting the stagnation point out of the diffusion region (Eastwood

et al., 2013).

An important point to highlight from this model is the fact that, at small scales, non-

ideal terms such as the gradient of the electron pressure or the electron inertia term

(∼ ∂J/∂t) must be considered where relevant. From Eq. (3.33), even when there is

no resistivity term ηJ, the additional terms can account for the breaking down of the

frozen-in condition. For instance, in collisionless plasmas, the breaking down of the

frozen-in condition may be due to the anisotropic electron pressure or the electron

inertia terms in Eq. (2.37) (Shay et al., 2001). Therefore, the reconnection diffusion

region and the mechanisms that break down the frozen-in condition are governed

by sub-proton scale processes. In fact, in Hall MHD reconnection, the reconnection

rate is fast and independent of the resistivity.

3.2.2 Tearing Reconnection
One important theory of 2D reconnection, which includes turbulence effects and

explains a reconnection rate higher than in Sweet–Parker, is the plasmoid-dominated

reconnection model. In this model, the presence of fluctuations in the initial Sweet–
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Figure 3.6: Plasmoid chain formation. For large plasma size and high Lundquist number
S, the current sheet is unstable to tearing instability. Magnetic islands are
formed while the current sheet is disrupted. Adapted from Ji and Daughton
(2011).

Parker current sheet induces the production of magnetic islands. As the current

sheet is a thin structure, for critical values of non dimensional plasma parameters

(Drake and Lee, 1977; Hosseinpour et al., 2009), the current sheet is highly unstable

to the second tearing instability, also known as the plasmoid instability (Biskamp,

1986). This instability modulates the current sheet and creates magnetic islands (O-

points) along with X-like regions between the O-points. As the system evolves, the

nonlinear interaction between islands breaks the current sheets even more as long

as their size makes them unstable to the plasmoid instability (Ji and Daughton,

2011), see Figure 3.6. Therefore, during this process, a chain of magnetic islands

forms along the current sheet. The x-points between subsequent magnetic islands

are potential reconnection sites. Thus the reconnection rate increases (Samtaney

et al., 2009; Loureiro et al., 2009). In this model, the assumption of a steady state is

no longer valid, and the process can be bursty as the small-scale interactions become

dominant for thin current sheets δ ∼ di.

A natural question regarding this mechanism is whether the plasmoid instability
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and the generation of multiple x-like regions can take place at all scales in both the

collisional and the collisioneless limit. As the Lundquist number is related to the size

and aspect ratio of the current sheet, a way to characterise the onset of the plasmoid

instability is to use the effective plasma size for the reconnection λ = L/di. Figure

3.7 shows a phase diagram relating the critical value of the Lundquist number to

the plasma size. In this diagram, there are five sectors. In the sector called Single

x-line collisioness, if the current sheet length is of order a few di, the current sheet

is not unstable to the plasmoid instability and the expected reconnection process

is like in Hall MHD. For a current sheet length greater than the critical plasma

size λc, the current sheet becomes unstable to tearing and a chain of magnetic

islands is expected. In the sector called Single x-line collisional, the current sheet

length is large and the expected reconnection process is the usual Sweet–Parker

type. For systems with Lundquist number above the critical value Sc (the green

line), the current sheets become unstable to tearing instability. Finally, in the region

defined between S = λ2/4 and S = λ
√
Sc/2, any collisional reconnection transitions

to collisionless reconnection. The diagram also shows ranges in which laboratory

plasmas and simulations can proceed (orange square) and the positions of different

plasmas in the universe in this phase diagram. The diagram also shows the wide

variety of plasmas and broad range of scales where reconnection can take place.

At the end of this section, we highlight the tireless effort that has been done by

the reconnection community to understand the 2D process. It is still a matter

of ongoing research how effects such as electron inertia or electron pressure are

changed by turbulence. Likewise, the effects of a guide field and of asymmetries in

the reconnection geometry are important open questions. Although 2D models of

magnetic reconnection approximately explain reconnection rates and flow patterns

as observed at the Sun, there are 3D structures whose behaviour is very difficult to

explain with 2D models. For example, the rising of coronal loops is intimately related

with reconnection. Coronal loops reconnect and create solar flares and CMEs. From

a 2D model it is not clear how magnetic flux ropes can undergo self-reconnection.

This process is associated with open magnetic flux ropes at CMEs (Gosling et al.,
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Figure 3.7: 2D magnetic reconnection phase diagram as a function of the Lundquist num-
ber and the plasma size. The orange vertical line marks the critical plasma
size λc. The horizontal green line marks the critical Lundquist number Sc.
The diagonal black line marks the transition from multiple X-line collisionless
reconnection to the hybrid phase. The blue diagonal line marks the tran-
sition from multiple X-line collisional reconnection to the hybrid phase. In
the hybrid phase, collisional and collisionless reconnection can proceed with
single and multiple X-lines. The orange square shows the range of plasma
size and Lundquist number that can be studied by laboratory experiments
and numerical simulations. Adapted from Ji et al. (2019).

1995). Moreover, reconnection is a 3D process in nature and there are turbulence

effects that only appear in a 3D geometry (Lazarian and Vishniac, 1999; Kowal

et al., 2009, 2017; Lazarian et al., 2020).

3.3 3D Magnetic Reconnection
From the previous section, it is clear that, in general and even in the 2D picture,

toroidal fields and currents as well as guide fields are present with a third vector

component, out of the reconnection plane. Thus there is a need to study recon-

nection in a 3D geometry. The study of 3D magnetic reconnection, as in 2D, has

been divided into a steady, non-turbulent approach which focuses on the study mag-
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netic field topology change through the diffusion region (Hesse and Schindler, 1988;

Schindler et al., 1988; Priest and Démoulin, 1995; Priest et al., 2003; Pontin, 2011)

and a turbulent approach in which the effect of a turbulent field on top of the back-

ground magnetic field and in the reconnection current sheet (Lazarian and Vishniac,

1999; Lazarian, 2006; Lazarian et al., 2020). Important mechanisms such as the 3D

plasmoid instability are considerably different from the 2D approach. For example,

the equivalent to magnetic islands are twisted flux tubes also known as flux ropes in

3D (Daughton et al., 2011). The non-linear interaction of flux ropes is considerably

different from the non-linear interaction of magnetic islands. In addition, the exten-

sion of the reconnection phase diagram to 3D reconnection is still a topic of active

research which requires the use of Peta-scale simulations to test and constrain the

models of 3D reconnection.

3.3.1 Laminar 3D Reconnection
Null points are regions in which oppositely directed field lines converge, either into

the region or out of the region, forming a dense structure, the so-called “spine”,

see Figure 3.8 left. The spine spreads in or out of the region, forming a fan-like

structure. When these structures are perturbed, they collapse and form current

sheets. Magnetic reconnection models in 2D require the presence of region in which

B = 0. Conversely, in 3D steady state reconnection, there is no need of regions

with B = 0 inside the diffusion region for reconnection to happen (Priest et al.,

2003; Pontin, 2011). For regions without null points, fan surfaces can intersect,

generating a separator line, see Figure 3.8 right, which also forms current sheets.

The formation of a current sheet alone is not a sufficient condition for reconnection.

In a topological sense, reconnection represents a change in the magnetic field line

mapping when crossing diffusion region. Additionally, the magnetic flux thought the

diffusion region is conserved. Before reconnection, plasma elements are frozen into

a particular field line, and after reconnection, the plasma elements are connected to

another field line. For the 3D case, Schindler et al. (1988) show that this happens

whenever a component of the electric field parallel to the magnetic field, E∥, is non-

zero within the diffusion region. In other words, a sufficient condition for magnetic
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Figure 3.8: Left: In the neighbourhood of a null point, hyperbolic magnetic field lines
converge to the spine line and spread out, forming a fan-like structure. The
spine-fan configuration can collapse and form current sheets. Right: In the
absence of magnetic null points, the intersection of spine-fan structures define
the so-called separator. Separators can collapse as well. Adapted from Pontin
(2011).

reconnection in regions in which the magnetic field is non-zero, is

∫
fl
E∥ds ̸= 0, (3.37)

where fl refers to the trajectory along the magnetic field line, and ds is a line element

of this trajectory. Thus, unlike in 2D reconnection where E∥ in the null region

must be zero, in 3D reconnection, E∥ ̸= 0 is a necessary condition for the onset of

reconnection. Another fundamental difference between 2D and 3D reconnection is

that magnetic reconnection no longer presents a unique mapping between a pair of

field lines. In contrast, the plasma elements bond to one magnetic field line connect

to different field lines during reconnection(Priest et al., 2003). On the contrary,

the connectivity of plasma elements to reconnected field lines is more complicated.

A review of this geometrical approach to magnetic reconnection in 3D is given by

Pontin (2011).

In 3D reconnection the interconnection of braided magnetic flux ropes which re-

connect multiple times until the system reaches a stationary state (Parnell et al.,

2010). Haynes and Parnell (2010) apply these concepts to solar flux emergence and
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magnetospheric MHD models. However, the direct application of these geometrical

approaches to turbulent systems in which the magnetic field lines are not tied to a

surface or without null-point formation is not clear (Daughton et al., 2014). Since

the quantification of the reconnection rate in simulations requires the identification

of reconnection events at each time step, the formation of current sheets as places

where reconnection may happen has been widely used. However, there is evidence

for reconnection sites located at places without null points, as well as places shifted

to a different location away from the current sheets (Zhdankin et al., 2013). More-

over, the existence of a current sheet is not a guarantee for reconnection in 3D;

the parallel component of the electric field is a more reliable parameter to identify

reconnection. Moreover, the formation of coherent acceleration of particles (ions

and electrons) in and out of the diffusion region must be consistent with reconnec-

tion flow patterns. Although the reconnection rate changes in time as the system

is driven away from the stationary case (Owen and Cowley, 1987), a reconnection

theory is successful if it accounts for a fast reconnection rate, in agreement with,

for example, the rate estimated for solar flares (Narukage and Shibata, 2006). In

addition, it must describe the exchange of energy between particles and fields as

well as the presence of kinetic instabilities which can produce conditions for local

resistivity even in collisionless plasmas (Chen et al., 1997; Del Sarto et al., 2003;

Divin et al., 2012; Moser and Bellan, 2012).

3.4 Observations of Reconnection in the Solar

Wind
Although magnetic reconnection was first presented as a process mostly occurring

in the low solar atmosphere, there has been considerable evidence of in-situ ob-

servations of reconnection in the solar wind across interplanetary space. Ulysses

measurements show encounters with magnetic flux ropes and coincident electron

heating at the heliospheric current sheet (HCS) which suggests reconnection (Mold-

win et al., 1995). Helios and Wind measurements show regions with characteristic

Alfvénic outflows, named “exhaust regions” bounded by back-to-back rotational dis-
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Figure 3.9: Idealised 2D projection of an exhaust region. The continuous black (red)
lines and arrows represent the reconnecting (reconnected) magnetic field.
The dashed red lines and arrows represent the rotational discontinuities as-
sociated with the reconnection region and the dash-dotted line illustrate a
representative spacecraft trajectory. Adapted from Gosling (2012).

continuities, indicating reconnection events between 0.3 au to 5.4 au (Gosling et al.,

2006; Gosling, 2007). ISEE data show evidence of accelerated Alfvénic plasma flows

across rotational discontinuities at Earth’s magnetopause (Paschmann et al., 1979).

Data from Cluster and the Magnetospheric Multiscale (MMS) mission show nu-

merous reconnection events in the Earth’s magnetosheath and magnetotail (Runov

et al., 2003; Borg et al., 2005; Burch and Phan, 2016).

The main feature used to identify spacecraft encounters with reconnection exhausts

is the existence of a rotation in the magnetic field (quantified by the shear angle).

Figure 3.9 shows an idealized sketch of a reconnection site where two field lines with

(at least) one opposite component reconnect (continuous black lines and arrows).

The reconnected lines (continuous red lines and arrows) are convected away from

the reconnection site driven by Alfvénic disturbances. The separatrix layers are

current sheets, and A1 and A2 represent the pair of rotational discontinuities that

bound the exhaust.
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The events studied by Gosling (2012) show exhaust widths within the range 10 −

400 di, crossing times of around 3−100 s, and shear angles in the range 0−180◦ for

small ∆β on the opposite sides, where β is the ratio between the thermal pressure

and the magnetic pressure. The exhaust regions identified occur mostly in the slow

wind and within ICMEs. They are rarely seen at leading edges of ICMEs or in the

Alfvénic fast solar wind. Likewise, Phan et al. (2006, 2009), using multi-spacecraft

analysis, identify reconnection X-line lengths in the range of 1.02×102 −2.47×104

di and estimate the crossing time in the range of 5.5 - 150 minutes. Although it is

suggested by the Petscheck model that reconnection is associated with a slow shock,

for which increases in proton density and temperature with a decrease in |B| are

the main signatures, most of the exhaust regions identified by Gosling (2012) do not

exhibit these features.



Chapter 4

Turbulence in the Solar Wind

In this chapter, I review the concept of plasma turbulence in the context of the solar

wind. I start by introducing turbulence and the energy cascade in fluids. I continue

by describing the concept of plasma turbulence and the different models of the non-

linear energy cascade and related observations in the solar wind. Afterwards, I

comment on kinetic turbulence and finish with the effects of turbulence in magnetic

reconnection.

4.1 Fluid Turbulence
Turbulence is the state of a fluid in which nonlinear interactions between fluid vor-

tices or eddies occur. The equation of motion of a fluid of mass density ϱ= nm and

velocity u is the Navier-Stokes equation

∂u
∂t

+(u ·∇)u = −∇p
ϱ

+ν∇2u, (4.1)

where p is the scalar pressure of the fluid and ν is the kinematic viscosity. The

second term on the left-hand side, (u · ∇)u, is the nonlinear term which represents

the interaction between eddies. Considering the characteristic scale of an eddy L

and the characteristic velocity U at that scale, the nonlinear time τnl ∼ L/U . The

second term on the right-hand side, ν∇2u, is the viscous term which represents the

effect of viscosity on the fluid evolution. The characteristic time associated with this

term is the viscous time τν ∼L2/ν. If ∇p≈ 0 and τnl ≪ τν , the nonlinear interaction
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dominates and the eddies are distorted. Conversely, if τnl ≫ τν , the viscous term

dominates the fluid transport, and turbulence is supressed. The ratio of τν to τnl is

the Reynolds number

Re= LU

ν
. (4.2)

This non-dimensional number is useful to characterise the fluid. For instance, for low

Reynolds numbers Re≲ 10−2, the fluid motion is laminar. In this case, there is no

mixing between fluid layers and the fluid remains stable under small perturbations.

If Re increases, the fluid motion becomes sensitive to small perturbations, i.e., the

fluid becomes turbulent and chaotic, and mixing between fluid layers takes place

(Bohr et al., 1998).

4.1.1 Nonlinear Energy Cascade, K41
The shredding of eddies leads to the formation of smaller eddies and to the energy

transport across scales, forming the so-called “energy cascade” (Kolmogorov, 1941;

Frisch and Kolmogorov, 1995). The energy is usually injected into the system by

large-scale fluctuations, defining the “outer scale” of the energy cascade at lengths

LI . In closed systems, LI is comparable to the size of the system. Conversely, in

the solar wind, LI ∼ 0.01 au (Matthaeus et al., 2005; Wicks et al., 2013). The range

of scales associated with LI is the so-called injection range. As nonlinear interac-

tions occur, the energy is transported without dissipation to smaller eddies with

characteristic scales l. This dissipationless cascade process occurs mostly in the so-

called inertial range (Kolmogorov, 1941). Finally, the eddies reach the characteristic

lengths scales lD at which the energy is dissipated via viscosity. This range of scales

is the so-called dissipation or kinetic range.

We can assume that the energy injection rate ϵL ∼ U2/τI per unit mass is constant,

where τLI
∼ LI/U . In the inertial range, the energy is transported locally, so the

local energy rate ϵl ∼ εl/τc is fixed. Considering the increments of the fluctuating

velocity δu(l) = u(r + l) − u(r) with a given set of eddies over a distance l = |l|,

the kinetic energy of these eddies is εl ∼ δu2. Approximating the cascade time as
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τc ∼ l/δu, the kinetic energy scales like εl ∼ ϵ
2/3
l l2/3. Considering the wave number

k ∼ l−1 associated with the eddy of amplitude δu, the energy transport across scales

in k-space is E(k) = εl/k, i.e., the energy per unit k, is

E(k) ∼ ϵ
2/3
l k−5/3. (4.3)

This is the so-called Kolmogorov spectrum (K41, Kolmogorov, 1941) with a spectral

slope of −5/3 in the inertial range.

4.2 Plasma Turbulence
In plasmas, as in neutral fluids, the nonlinear interactions play a decisive role. In

the single-fluid MHD framework and considering the incompressible limit, the mo-

mentum equation Eq. (2.36) takes the form

∂u
∂t

+(u ·∇)u = −∇p
ϱ

+ν∇2u +(b ·∇)b, (4.4)

where the term ν∇2u is introduced to account for viscous effects and b = B/√µ0ϱ is

the magnetic field in Alfvén units. Likewise, the induction equation from Eq. (3.8)

can be expressed as

∂b
∂t

+(u ·∇)b = η∇2b+(b ·∇)u. (4.5)

Eqs. (4.4) and (4.5) are coupled. The four nonlinear terms in Eqs. (4.4) and (4.5)

show that the magnetic and velocity fields not only interact with themselves but

with each other. The magnetic Reynolds number Rem from Eq. (3.9) along with

the Reynolds number Re from Eq. (4.2) characterise the strength of these nonlinear

terms.

4.2.1 Elsässer Variables
Given the presence of a background magnetic field b0 = B0/

√
µ0ϱ, perturbations in

the magnetic field, b′ = b − b0, travel parallel to b0 at the Alfvén speed vA = |b0|.

Considering two wave packages travelling parallel and anti-parallel to b0 and using

the so-called Elsässer variables z± = u ± b′ (Elsasser, 1950), Eqs. (4.4) and (4.5)
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can be expressed in a more symmetric form as

∂z±

∂t
∓ (b0 ·∇)z± +(z∓ ·∇)z± = −∇p

ϱ
+ν+∇2z± +ν−∇2z∓, (4.6)

where ν± = (ν ± η)/2 are the dissipative coefficients (Bruno and Carbone, 2013).

Eq. (4.6) describes the evolution of counter-propagating wave packets in an MHD

plasma. The solenoidality of the velocity and magnetic fields in the incompressible

limit (∇·u = 0,ϱ= const) is presented as ∇·z± = 0. The non-linear term (z∓ ·∇)z±

shows that if either the parallel (z+) or the anti-parallel (z−) perturbation is zero

or aligned with the spatial variation of the opposite perturbation, the non-linear

interaction vanishes.

If two counter-propagating Alfvén-wave packets collide, their interaction produces

secular non-propagating wave modes with higher k⊥ while k∥ remains unchanged

(Howes et al., 2008b). As the interaction between the different modes proceeds, the

anisotropy k⊥ > k∥ increases. This highlights the importance of Alfvén waves as the

building blocks of turbulence (Howes et al., 2012; Howes and Nielson, 2013a; Nielson

et al., 2013).

In this framework, there are two important interaction times at the scale l, i) the

Alfvén time τA ∼ 1/k∥vA associated with (b0 · ∇)z±
l and ii) the non-linear time

τnl ∼ 1/δul k⊥ associated with (z∓
l · ∇)z±

l , where δu ∼ δz±. Thus, τA is the time

in which an Alfvénic perturbation travels along b0 a distance l∥, whereas τnl is the

time in which the oppositely travelling perturbations interact with each other. Since

z∓ and ∇z± lie in the perpendicular plane to b0, the non-linear interaction occurs

in the perpendicular plane and the scale of the non-linear interaction is l⊥ ∼ k−1
⊥ .

4.2.2 Nonlinear Energy Cascade, IK
The first important extension of the non-linear energy cascade in the inertial range to

plasma turbulence (Iroshnikov, 1963; Kraichnan, 1965), considered weak non-linear

interactions such that τnl > τA and a cascade time of τc ∼ τ2
nl/vA. The authors

assumed as well an isotropic cascade with k∥ ∼ k⊥ ∼ k. Thus, ϵl = εl/τc leads to

δu ∼ (ϵlvA)1/4k
−1/4
⊥ and to the energy transport across the scales in k-space of the
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form

E(k) ∼ (ϵl)1/2k−3/2. (4.7)

This is the so-called Iroshnikov–Kraichnan spectrum (IK, Iroshnikov, 1963; Kraich-

nan, 1965) with a spectral slope of −3/2. However, observational evidence (Horbury

et al., 2008; Wicks et al., 2010, 2011; Chen et al., 2011) shows that the energy cascade

in the solar wind is indeed highly anisotropic (k∥ ̸∼ k⊥), especially at the small-scale

end of the inertial range. Unlike in neutral fluid turbulence, the sensitivity of plasma

to magnetic field imposes this anisotropy with respect to the local mean magnetic

field (Cho and Vishniac, 2000) in the turbulent evolution of a plasma.

4.2.3 Nonlinear Energy Cascade, GS95
In 1994, Sridhar and Goldreich (1994) postulated that the accumulation of weak non-

linear interactions will eventually become strong. This leads to the so-called critical

balance (CB) condition that τnl ∼ τA (Goldreich and Sridhar, 1995) henceforth GS95.

Thus, the non-linear time is comparable to the linear time. If τnl ≫ τA, where

the non-linear interaction is weak, the non-linear interaction will pile up so τnl ∼

τA (Ng and Bhattacharjee, 1997; Perez and Boldyrev, 2007; Boldyrev and Perez,

2009; Meyrand et al., 2016). Conversely, if τnl ≪ τA, the non-linear interactions

shred eddies, and the perturbations cease to propagate, which terminates the non-

linear interactions and stops the energy cascade (Boldyrev, 2005; Nazarenko and

Schekochihin, 2011; Howes, 2015a).

In the inertial range, the characteristic cascade time in the perpendicular direction

is τc ∼ τnl. Considering an anisotropy with k⊥ ̸∼ k∥, ϵl⊥ = εl⊥/τc leads to δu ∼

(ϵl⊥)1/3k
−1/3
⊥ and to the perpendicular energy transport across the scales E(k⊥) =

εl⊥/k⊥ of the form

E(k⊥) ∼ (ϵl⊥)2/3k
−5/3
⊥ , (4.8)

which is the same scaling as in K41, but with k⊥ instead of k. Likewise, considering

the characteristic cascade time in the parallel direction τc ∼ τA, ϵl∥ = εl∥/τc leads
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to δu ∼ (ϵl∥/vA)1/2(k∥)−1/2 and to the parallel energy transport across the scales

E(k∥) = εl∥/k∥ of the form

E(k∥) ∼
ϵl∥
vA
k−2

∥ . (4.9)

Eqs. (4.8) and (4.9) constitute the scaling laws of the so-called Goldreich–Sridhar

spectrum (GS95, Goldreich and Sridhar, 1995). Additionally, since ϵl⊥ ∼ ϵl∥ ∼ ϵl,

the relation between the parallel and perpendicular scales is

k∥ ∼ ϵ
1/3
l

vA
k

2/3
⊥ . (4.10)

Thus, in GS95, the energy cascade is anisotropic. The spectral slope for the perpen-

dicular fluctuations is −5/3 and the slope for the parallel fluctuations is −2.

4.2.4 Nonlinear Energy Cascade and Dynamic Alignment
In 2006, Boldyrev (2006) proposed an additional condition for the nonlinear time

based on θλ, the angle of alignment between δu and δb. Since δz± and any gradient

of δz± mostly occur in the plane perpendicular to b0, there are three scales involved:

l∥ (along b0), l⊥ (along δz±) and λ (perpendicular to l∥ and l⊥), where λ∼ l⊥ sinθλ,

and l∥ ≫ l⊥ ≫ λ. Thus, the non linear time is

τ±
nl ∼ l⊥

δz± ∼ λ

δz± sinθλ
, (4.11)

which leads to the perpendicular energy transport across the scales E(k⊥) = ελ/k⊥

of the form

E(k⊥) ∼ (ϵλvA)1/2k
−3/2
⊥ , (4.12)

where k⊥ ∼ 1/λ. Additionally, the relation between the parallel and perpendicular

scales is

k∥ ∼ ϵ
1/2
λ

v
3/2
A

k
1/2
⊥ . (4.13)



4.2. PLASMA TURBULENCE 75

Figure 4.1: Power spectral density of magnetic field fluctuations. The vertical dashed
lines corresponds to the frequencies associated, through the Taylor hy-
pothesis, with spatial variations at different scales in the spacecraft frame.
Adapted from Verscharen et al. (2019).

This model recovers the IK slope in the perpendicular direction while keeping the

same parallel-cascade slope of −2.

4.2.5 Plasma Turbulence in the Solar Wind
Since the solar wind is supersonic and super-Alfvénic, the time required for δz±

to evolve significantly is greater than the travelling time over a fixed point in the

Sun-at-rest frame. For low-frequency fluctuations (ω ≪ ωpi), a time series of space-

craft measurements represents convected fluctuations in the plasma. Therefore, the

frequencies (f), based on temporal variations in a fixed-point measurement (∆t), cor-

respond to wavenumbers (k) associated with spatial fluctuations (∆l) in the plasma

frame. This is known as Taylor’s hypothesis (Taylor, 1938).

Figure 4.1 shows omnidirectional power spectral density (∼ ε/f) of the magnetic

field fluctuations as a function of frequency measured by different spacecraft in the

solar wind. In the injection range, the spectral slope is −1 (Bavassano et al., 1982;
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Denskat and Neubauer, 1983; Matthaeus and Goldstein, 1986; Kiyani et al., 2015).

In the inertial range, the index is often observed as -5/3. However, the spectral

slopes for the perpendicular and parallel cascades are different. Multiple different

theories agree on a slope of −2 for the parallel cascade (Goldreich and Sridhar,

1995; Boldyrev, 2006; Beresnyak, 2015). The slope of the perpendicular cascade

is under constant debate. Although solar wind observations (Horbury et al., 2008;

Podesta, 2009; Wicks et al., 2011; Chen, 2016) support a −5/3 slope, simulations of

incompressible MHD (Cho and Vishniac, 2000; Maron and Goldreich, 2001; Müller

et al., 2003) present a −3/2 slope. Moreover, recent solar wind observations (Chen

et al., 2020) have shown that the spectral slope varies between −3/2 close to the

Sun and −5/3 at larger heliocentric distances.

In the dissipation range, the index is about -2.8, but this value shows an even

larger variability than the spectral slopes in the other ranges. At sub-proton scales,

below the ion inertial length or the ion gyroradius, wave–particle interactions become

stronger. The exchange of energy between fluctuations and particles at these scales

generates the acceleration of particles and energy dissipation as well as entropy

increase. At these scales, kinetic processes such as Landau damping, ion-cyclotron

damping or magnetic reconnection are candidate processes to explain the exchange

of energy between waves and particles.

4.2.6 Kinetic Turbulence
In the kinetic range, at sub-proton scales where MHD is no longer valid, the GS95

theory of critical balance has been extended to account for the anisotropy at small

scales where kinetic Alfvén waves (KAW) (Leamon et al., 1999; Salem et al., 2012;

Boldyrev et al., 2013) and whistler waves (Cho and Lazarian, 2004; Narita, 2016)

carry the turbulence at sub-proton scales. These theories predict an anisotropy in

the range k∥ ∼ k
1/3
⊥ to k∥ ∼ k

2/3
⊥ . However it is still a matter of debate whether

the main carriers of turbulence at kinetic scales are KAWs, whistler waves, or even

other structures and modes (Roberts et al., 2013; Huang et al., 2014; Roberts et al.,

2017; Zhu et al., 2019b; Narita et al., 2020; He et al., 2020). In the kinetic range,

the spectral index for the parallel cascade is between -5 and -3.5, whereas for the
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perpendicular cascade, it is observed at values between -2.8, and -1.5 (Chen et al.,

2010a; Boldyrev et al., 2011; Chen et al., 2011; Alexandrova et al., 2013).

In the dissipation range, there are several mechanisms that can be involved in the

turbulent cascade. The importance of unambiguously determining the spectral slope

lies in the fact that it constrains the mechanisms that take place in the energy

cascade and in the energy partition. It is not well understood what mechanisms at

small scales (∼ di,de) are responsible for the transition from the inertial range to

the kinetic range. The phenomena responsible for the change in the slope at proton

scales is also matter of ongoing research (Goldstein et al., 2015).

At the end of the energy cascade, ions and electrons are heated by different pro-

cesses and at different rates. Magnetic reconnection is a candidate to explain how

plasma evolves to states in which different acceleration and heating processes ap-

pear. For instance, reconnection is attributed to particle acceleration during solar

flares (Goldstein et al., 1986) and in the fast solar wind (Gosling, 2007). The parallel

component of the electric field during reconnection is a strong channel for electron

acceleration and plasma heating (Egedal et al., 2012). Moreover, using 2D MHD

simulations of incompressible decaying turbulence, the spontaneous occurrence of

thin current sheets and magnetic reconnection has been recognised when the sys-

tems reaches a fully developed turbulent state (Servidio et al., 2011). Thus, it is

clear that reconnection plays a fundamental role in the particle acceleration at the

end of the cascade.

4.2.7 Turbulent 3D Reconnection
A common system used to study reconnection is the Harris current sheet (Harris,

1962), which is a single laminar sheet that divides two regions of uniform magnetic

field with opposite directions. The effect of turbulence in 3D reconnection has been

approached in two ways. On one hand, there have been simulation studies of the

effects of a turbulent field within the Harris current sheet and how it changes the

current sheet size Karimabadi et al. (2013); Zweibel and Yamada (2016). Previous

studies (Rogers et al., 2000; Eastwood et al., 2009; Daughton et al., 2011; Muñoz and
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Figure 4.2: In the laminar SP model, the aspect ratio (∆/L) is defined by the size of
the current sheet. In the presence of pre-existing turbulence, the magnetic
field lines wander and change the effective width ∆ of the reconnection re-
gion. This change increases the aspect ratio and thus the reconnection rate.
Adapted from Lazarian et al. (2020).

Büchner, 2018) have shown the self-consistent onset of turbulent fluctuations in the

ion diffusion region and in the exhaust jets. These fluctuations lead to the generation

of flux ropes as a consequence of the plasmoid instability and a turbulent cascade as

the result of the non-linear interaction of filamentary currents (Karimabadi et al.,

2013; Zweibel and Yamada, 2016). On the other hand, there have been simulation

studies of the effects of turbulence that changes the initial reconnection magnetic

field from a laminar to a turbulent state (Lazarian and Vishniac, 1999; Lazarian

et al., 2020). This is a more general theory of turbulent reconnection in which the

effective width of the current sheet is associated with an initial wandering of the

magnetic field lines (see Figure 4.2).

In this theory, the wandering of the magnetic field lines is associated with a time-

dependent mechanism called Richardson dispersion, which accounts for a stochastic

separation of magnetic field lines and for the violation of the flux freezing. An

interesting result from this theory is the fact that the reconnection rate becomes

independent of the Lundquist number and depends on the level of turbulence present

in the system. This is a powerful result since it can be applied to all scales on which
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the fluid treatment of plasma is appropriate. It can also account for the different

reconnection rates. Thus, a system can have slow reconnection or fast reconnection,

depending on its level of turbulence (Lazarian and Vishniac, 1999). However, it is not

clear how this theory can be extended to small scales where the fluid approximation

is not longer valid and where the Richardson dispersion (Richardson, 1926; Eyink

et al., 2013) produces a diffusion of magnetic field lines consistent with a Lyapunov

growth (Lazarian, 2006).

Finally, it has been shown that turbulence can affect the magnetic reconnection

process (Matthaeus and Lamkin, 1986; Karimabadi and Lazarian, 2013) through

an enhancement of viscous and resistive dissipation as well as the occurrence of

reconnection at thin current sheets generated by turbulence in the solar wind.



Chapter 5

Simulation method: Particle In

Cell Simulations

In this chapter I give an overview of the computational method that I use to simulate

plasmas at small-scales. Afterwards, I present the initial conditions to simulate

anisotropic turbulence. I finish this chapter by presenting a set of numerical tests

and the method that I use to establish the presence of turbulent fluctuations in the

simulation.

5.1 Overview Particle-In-Cell Method
Simulations are widely used to address the reconnection problem (Birn et al., 2001).

The approaches from MHD theory include resistive MHD (RMHD; Biskamp, 1986;

Shay et al., 1999), Hall MHD (HMHD; Huba and Rudakov, 2004; Ma and Bhat-

tacharjee, 2001; Shay et al., 2001), lattice-Boltzmann based methods (Chen et al.,

1991; Mendoza and Munoz, 2010; Zhu et al., 2019a) and electron MHD (EMHD;

Drake et al., 1997). However, in order to understand the energy dissipation at the

end of the turbulent cascade, it is crucial to resolve the ion and electron scales. At

this point, the MHD assumptions are no longer valid, and the use of either hybrid

codes (ions as particles – electrons as a fluid; Mandt et al., 1994; Lottermoser et al.,

1998; Karimabadi et al., 2004) or fully kinetic codes ((ions and electrons as parti-

cles); Hesse et al., 2001b; Ricci et al., 2004b; Drake et al., 2006; Fox et al., 2011;
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Wang et al., 2015; Daughton et al., 2014) is essential.

The advantage of particle-in-cell (PIC) methods lies mostly in the fact that they

are fully kinetic and simultaneously resolve the ion and electron plasma frequencies

ωpi and ωpe as well as the ion and electron inertial lengths di and de. Therefore,

these methods reproduce kinetic effects beyond MHD. However, they are compu-

tationally expensive, memory intensive and require the use of High-Performance-

Computing (HPC) facilities that allow the parallelization of computational calcu-

lations to reduce the total simulation time to a few weeks instead of thousands of

years. Notwithstanding the use of HPC facilities, the scalability (parallelization) is

limited (Amdahl, 1967; Gustafson, 1988). This limits the resolution and the size of

3D simulation boxes Lx×Ly ×Lz to ∼ 102di× 102di× 102di. Thus, these methods

are suitable for the study of local kinetic phenomena at small scales rather than

inertial-range physics where fluid-like models are more appropriate.

In PIC methods, the particle distribution function fs(x,v, t) is approximated as a

superposition of Ms extended quasi-particles in the phase space:

fs(x,v, t) =
Ms∑
k=1

fk(x,v, t), (5.1)

where x and v are the phase-space coordinates and

fk(x,v, t) =Ns
kSx(x −xsk(t))Sv(v −vsk(t)) (5.2)

is the distribution function of the quasi-particle k. The number of real particles of

species s is Ns
k . The Ns

k are represented by a quasi-particle k who lives in an element

of the phase space. The functions Sx and Sv are symmetric shape functions with

compact support and with the property

∫ ∞

−∞
Sx(x −xsk(t))dx = 1;

∫ ∞

−∞
Sv(v −vsk(t))dv = 1. (5.3)
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Figure 5.1: First three standard b-splines functions. Adapted from Lapenta (2012).

The shape function for the velocity variables x is typically a delta function

Sv(v −vsk(t)) = δ(vx−vxk)δ(vy −vyk)δ(vz −vzk). (5.4)

This ensures that all the particles in the phase space element represented by the

quasi-particle k have the same speed (Lapenta, 2012). The shape function for the

spatial variables x is typically of the functional form

Sx(x −xsk(t)) = 1
∆xk∆yk∆zk

bl

(
x−xk
∆xk

)
bl

(
y−yk
∆yk

)
bl

(
z− zk
∆zk

)
, (5.5)

where ∆xk,∆yk and ∆zk are the lengths of the support of the quasi-particle. The

standard b-splines functions bl are high order function of compact support. The first

three functions (Figure 5.1) are

b0(ζ) =


1 if |ζ| ≤ 1/2

0 otherwise,
(5.6)

b1(ζ) =



1+ ζ if −1 ≤ ζ ≤ 0

1− ζ if 0< ζ ≤ 1

0 otherwise,

(5.7)
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and

b2(ζ) =



1
2

(
3
2 + ζ

)2
if − 3

2 ≤ ζ ≤ −1
2

3
4 − ζ2 if − 1

2 < ζ < 1
2

1
2

(
3
2 − ζ

)2
if 1

2 ≤ ζ ≤ −3
2

0 otherwise.

(5.8)

5.1.1 Equation of Motion of the Quasi-Particles
The use of quasi-particles instead of the real particles not only reduces the compu-

tational requirements needed by Vlasov methods (Pukhov, 2005), but also simplifies

the equations of motion to be solved. To derive the equation of motion for the

quasi-particles, we take the zeroth moment of the Vlasov equation Eq. (2.11) for

fk(x, t),

∂ ⟨fk⟩
∂t

+ ⟨v ·∇xfk⟩+
〈
qs
ms

(E+v ×B) ·∇vfk

〉
= 0, (5.9)

where we have used the interchangeability of the time partial derivative and the

integration in dxdv and

⟨(. . .)⟩ =
∫ ∞

−∞

∫ ∞

−∞
(. . .)dxdv. (5.10)

Considering Eqs. (5.2) and (5.3), the first term on the left-hand side of Eq. (5.9) is

∂Ns
k/∂t. The second term is zero given the compact support of Sx. Likewise, the

factor with the electric field E in the third term of vanishes. The factor with v×B

also vanishes due to the coordinates in the phase space are independent and the

components in the product v × B are different from the components in ∇v. Thus,

the first equation of motion for the quasi-particles is

dNs
k

dt
= 0. (5.11)
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To derive the second equation of motion, we consider the moment

∂ ⟨xfk⟩
∂t

+ ⟨xv ·∇xfk⟩+
〈
q

m
x(E+v ×B) ·∇vfk

〉
= 0. (5.12)

Since by definition ⟨xfk⟩ =Ns
kxk and ⟨vfk⟩ =Ns

kvk, the first term in Eq. (5.12) is

∂(Ns
kxk)/∂t. For the second term, we consider a component-wise notation

⟨xv ·∇xfk⟩ =
〈
xivj

∂fk
∂xj

êiêj
〉
, (5.13)

where êiêj = δ(i, j). In virtue of the fact that Sx has compact support, the off

diagonal terms (i ̸= j) vanish, the diagonal terms are

∫ ∫
vixi

∂fk
∂xi

dxidvi = −
∫ ∫

vifkdxidvi = −Ns
kv

s
ik, (5.14)

and the second term in Eq.(5.12) is −Ns
kvsk. The third term is is zero due to the

integration in v. Therefore, the second equation of motion is

dxsk
dt

= vsk. (5.15)

To derive the third equation of motion, we consider the moment

∂ ⟨vfk⟩
∂t

+ ⟨vv ·∇xfk⟩+
〈
q

m
v(E+v ×B) ·∇vfk

〉
= 0. (5.16)

The first term in Eq. (5.16) is ∂(Ns
kvk)/∂t. The second term is zero in virtue of

integration over x. The third term in Eq. (5.16) is analogous to the second term in

Eq. (5.12), i.e.,

⟨v(E+v ×B) ·∇vfk⟩ = qs
ms

〈
vi(Ej +vµBν)

∂fk
∂vj

êiêj
〉
, (5.17)
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where the indices µ,ν ̸= j. The off diagonal terms (i ̸= j) vanish due to Sv has

compact support. The diagonal terms are

qs
ms

∫ ∫
vi(Ej +vµBν)

∂fk
∂vj

dxidvi = − qs
ms

∫ ∫
(Ej +vµBν)fkdxidvi (5.18)

and defining the electric and magnetic field acting on each quasi-particle are calcu-

lated as

Ek =
∫

ESx(x −xsk)d3x (5.19)

and

Bk =
∫

BSx(x −xsk)d3x, (5.20)

the third term in Eq. (5.16) becomes

⟨v(E+v ×B) ·∇vfk⟩ = −Ns
k
qs
ms

Ek +(vk ×Bk), (5.21)

which leads to the third equation of motion

dvsk
dt

= qs
ms

(Ek +vsk ×Bk). (5.22)

Equations (5.11),(5.15) and (5.22) describe the evolution of each quasi-particle. This

set of equations resemble Newton’s equations of motion for real particles and this

system of equations is easier to resolve than Eq. (2.11).

5.1.2 Method for Solving the Equations of Motion
The Plasma Simulation Code (PSC; Germaschewski et al., 2016) is an explicit

code that solves the equations (5.11),(5.15) and (5.22) for each species s and self-

consistently evolves the electromagnetic fields using Maxwell’s equations (2.3) - Eq.

(2.6). The quasi-particle charge density is

ρs(x, t) =
∑
k

qsN
s
k Sx(x −xsk), (5.23)
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and the quasi-particle current density is

Js(x, t) =
∑
k

qsN
s
kvsi Sx(x −xsk). (5.24)

To solve the equations of motion, PSC uses a finite-difference time domain method

in which space is discretized as a Lx×Ly ×Lz mesh, employing the staggered Yee

grid (Yee, 1966) as shown in Figure 5.2). The time steps are discretized using the

leap-frog algorithm (Figure 5.3).

On a Yee grid, magnetic fields are represented on the faces of each cell, electric fields

and current densities on its edges, and charge densities in its corners. The use of a

Yee grid guarantees that, if the initial magnetic field is divergence-free (∇ · B = 0),

this condition is always fulfilled at any later time.

In the leap-frog algorithm, position, electric field and density are calculated at integer

times whereas momentum, magnetic field and current density are calculated at half

time steps between the integer time steps.

To advance the particles in the electromagnetic fields, the update of the momentum

of each particle is made in three steps according to the Boris algorithm (Boris and

Shanny, 1972; Birdsall and Langdon, 2018):

1. a half-time-step acceleration due to the electric field;

2. a rotation of the momentum vector due to the magnetic field, and

3. another half-time-step acceleration due to the electric field.

Afterwards, the evaluated charge and current densities, according to Eqs. (5.23) and

(5.24), are used to feed back into Maxwell’s equations. Hence, when the particles are

advanced, the fields are static and, when the electromagnetic fields are advanced,

the particles are static (Germaschewski et al., 2016).

The explicit discretization in time requires a small time step ∆t to ensure stabil-

ity in the solution. For a characteristic frequency of the system Ω, the condition
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Figure 5.2: Yee grid unit cell. The magnetic field components are calculated on the cell
faces. The components of the electric field and the electric current density
are calculated on the edges of the cell. The charge density is calculate on
the corners of the cell. Adapted from Germaschewski et al. (2016).

Figure 5.3: Leap-frog algorithm. The position, the electric field and the charge density
are calculated at integer times. The momentum, the magnetic field and the
electric current density are calculated at half time steps between the integer
time steps. Adapted from Germaschewski et al. (2016).
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Ω∆t < 2 needs to be hold. Moreover, to avoid numerical heating the time step needs

to fulfil the condition Ω∆t < 0.1(Birdsall and Langdon, 2018). Likewise, space dis-

cretization introduces a spatial constraint as ∆x/λDe ≲ 1 for the spatial resolution

∆x (Lapenta, 2012). Notwithstanding the large amount of steps required by this

method to simulate the evolution of plasmas, PSC shows good scalability on su-

percomputer clusters and uses a load-balancing algorithm which redistributes the

computational power onto each core such that the computation time per time step

remains roughly constant as the number of time steps increases (Germaschewski

et al., 2016).

Finally, along with the fact that, in reality, the fields are not stagnant when the

particles move and vice versa, another pitfall of explicit PIC methods is that they

use a uniform and finite fixed-shape discretization of phase space. This neglects

the possibility of distortion in the phase space elements representing the particles.

These distortions due to microscopic electromagnetic field would represent collisions

between individual plasma particles (Lapenta, 2012).

There is another family of PIC codes available that use an implicit integration in

time to avoid the space and time resolution constraints allowing larger time steps

(Brackbill and Forslund, 1982; Lapenta et al., 2003; Markidis et al., 2009). However,

their scalability is not straightforward, and due to the fact that this study requires

the resolution of length scales near the Debye length, an explicit code as PSC is a

more suitable option.

5.2 Initial Conditions to Simulate Anisotropic

Turbulence
In this section, I introduce the initial conditions for the turbulence simulations that

we use to study turbulent reconnection. We initialise the simulation with eight

anisotropic low-frequency counter-propagating Alfvén waves within a box of volume

Lx×Ly×Lz (see section 2.3). We take the background magnetic field to be along the

z-axis, B0 =B0ẑ, and set up the fluctuations with wavevectors following the theory
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of critical balance by GS95. According to GS95, turbulence is isotropic at the large-

scale end of the inertial range and develops an anisotropic cascade of energy with

respect to the local magnetic field. The anisotropic cascade of energy is associated

with a wavevector anisotropy k∥ ∝ (|k⊥|)γ , where k∥ and k⊥ are the wavevector

components in the directions parallel and perpendicular with respect to the local

background magnetic field. The index γ is a power index that is approximately

constant in each wavevector range of the turbulent power spectrum. For the inertial

range, γ = 2/3. The relation between k⊥ and k∥ can be expressed as

k∥di = C (k⊥di)2/3 , (5.25)

where C is a constant which is chosen so that k∥ = k⊥ at the large-scale end of the

inertial range, which we set up as k⊥di = 10−4 consistent with observations (Wicks

et al., 2010; Chen et al., 2012). Defining km,⊥ =
√
k2
m,x+k2

m,y where the index m

refers to the mode of the wave. We use periodic boundary conditions and adjust

the wavelengths of the initial modes λm,i so that Li is an integer multiple of λm,i.

Then, the wavevector components are

km,x =m
2π
Lx

; km,y =m
2π
Ly

; and km,z =m
2π
Lz
. (5.26)

Since we only use m = 1, we drop the index m for simplicity. Each wave satisfies

the Alfvénic polarisation relation

δus,α
vA,i

= (−1)α δBα

B0
, (5.27)

where vA,i = B0/
√
µ0nimi is the Alfvén speed, ni is the ion density, mi is the ion

mass, and us,α is the bulk velocity of the species s. The index α = 1, ...,8 refers to

each wave. The four waves with odd α travel along the z-direction and the other

four in the opposite direction. The amplitude Aα of the perturbation δBα of each

wave is perpendicular to both the background magnetic field B0 and to the wave’s
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wavevector kα. Thus, the components of the wavevector can be written as

kα,x = kα,⊥ cosϕα (5.28)

and

kα,y = kα,⊥ sinϕα, (5.29)

where ϕα is the azimuthal angle of kα,⊥. The waves propagating in the +z−direction

have ϕα = 0,π,π/4 and 5π/4 whereas the waves propagating in the −z−direction

have ϕα = π/2,3π/2,3π/4 and 7π/4. This distribution of azimuthal angles produces

a quasi-gyrotropic distribution of fluctuations in the plane perpendicular to the

background magnetic field while keeping the initial magnetic field divergence-free.

The components of the fluctuating fields for each wave are given by

δBα,x = −|Aα|cos
(
kα,xx+kα,yy+(−1)α+1kα,zz+ψα

)
sinϕα (5.30)

and

δBα,y = |Aα|cos
(
kα,xx+kα,yy+(−1)α+1kα,zz+ψα

)
cosϕα, (5.31)

where ψα represents a random phase for each α. The amplitude |Aα|, according to

Chandran et al. (2010), follows

|Aα| = CB0
(
|kα,⊥|di

)−1/3
. (5.32)

Thus, the components of the total initial magnetic variations are

δBT,x =D
8∑

α=1
δBα,x and δBT,y =D

8∑
α=1

δBα,y, (5.33)
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where D is a normalization constant defined as

D = B0√∑8
α=1 |Aα|2

, (5.34)

which ensures that the total amplitude of all modes |δBT /B0| ∼ 1 at the beginning of

the simulation. Assuming that the nonlinear time is comparable to the linear time

at the initial time step, we initialise the simulation with strong turbulence. The

nonlinearity parameter χ = (δBT /B0)/(k∥/k⊥) ∼ LZ/Lx ∼ 5.2 at the initial time

which quantitatively states that the initialised turbulence is strong. The components

of the velocity fluctuations δuT are calculated self-consistently according to Eq.

(5.27).

The wavelengths of the initial waves at k⊥di = 1 are λ⊥ = 2πdi and λ∥ = 2π/10−4/3di.

Therefore, the size of the box required to simulate the initial (m = 1) anisotropic

Alfvén waves is Lz = λ∥ and Lx = Ly =
√

2λ⊥. However, we use Lz = 125di, Lx =

Ly = 24di, λ∥ = Lz and λ⊥ =
√

2Lx/4. This choice keeps the ratio λ⊥/λ∥ ≈ 10−4/3

while allowing a several wavelengths in the perpendicular direction.

The critical-balance scaling k∥ ∼ k
2/3
⊥ applies to Alfvén waves in the inertial range.

The initial fluctuations in the simulation have k⊥di ∼ 1, which is at the transition

scale from the inertial to the dissipation range. Natural fluctuations at this scale

have an anisotropy consistent with the critical-balance scaling based on the size of

the inertial range (Wicks et al., 2010). The scale dependence of the anisotropy in

the inertial range also varies when considering dynamic alignment and intermittency

(Cho and Lazarian, 2004; Boldyrev et al., 2011; Chandran et al., 2015; Chen, 2016).

We assume a critical-balance scaling over an inertial range of four decades to capture

the relative amplitude of the anisotropy without including the true evolution of the

inertial-range turbulence. Therefore, we initialise with fluctuations at k⊥di ∼ 1 that

have such an anisotropy. The wavevector anisotropy in the dissipation range is

less well understood and, at kinetic scales, it is not clear whether the turbulence

is mostly carried by KAWs, whistler waves or a combination of compressive and

non-compressive modes (Schekochihin et al., 2009; Chen et al., 2010b; Boldyrev
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and Perez, 2012). Moreover, pressured-balanced structures also contribute to the

turbulent cascade (Verscharen et al., 2012; Narita and Marsch, 2015; Verscharen

et al., 2017). Nevertheless, the anisotropic initialisation is supported by solar-wind

measurements (Horbury et al., 2008; Alexandrova et al., 2009; Wicks et al., 2010,

2011) and allows a kinetic cascade to develop self-consistently as the simulation

evolves.

5.3 Numerical Tests
In this section, I show a series of test simulations with the aim to establish the most

appropriate configuration and parameters to study 3D turbulent reconnection using

explicit PIC simulations.

In PIC simulations, especially in the PSC code, the normalization parameters are c,

ϵ0, µ0, kb, e, mi, ni = ne di and ωpi. This means that all equations are normalised

in such a way that these parameters have a numerical dimensionless value of one.

The main parameters that affect an explicit PIC simulation performance as well as

the applicability of the simulation results are: the Alfvén speed ratio vA,i/c, c is the

speed of light; the mass ratio mi/me where me is the electron mass, and the number

of quasi-particles per cell (ppc). Thus, we run 17 different tests. Table 5.1 shows

the list of parameters used in these tests.

For these tests, we simulate eight isotropic, counter-propagating Alfvén waves trav-

elling along the ẑ-direction in an ion-electron plasma. The simulation domain is

a cubic box of size Lx = Ly = LZ = 10di
. The magnetic field is normalised to the

value of the constant background field B0. We set βs,∥ = 1 and Ts,∥/Ts,⊥ = 1, where

βs,∥ = 2nsµ0kBTs,∥/B
2
0 is the ratio of the parallel thermal pressure to the magnetic

pressure, B0 is the background magnetic field, and the index s indicates the plasma

species. Ts,∥ and Ts,⊥ are the parallel and perpendicular temperatures respectively.

5.3.1 Evidence of Turbulence
To estimate the effects of these simulation parameters on the turbulent evolution in

the simulation, we use a spectral analysis of the magnetic field fluctuations following
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Test # vA,i/c ppc mi/me τA(ω−1
pi ) tR(τA) de(di) λD(di)

s1 0.06 100 100 32 1.5 0.100 0.042
s2 0.08 100 100 24 3.0 0.100 0.057
s3 0.10 100 100 19 3.0 0.100 0.071
s4 0.10 50 100 19 3.0 0.100 0.071
s5 0.10 150 100 19 3.0 0.100 0.071
s6 0.10 200 100 19 3.0 0.100 0.071
s7 0.10 250 100 19 3.0 0.100 0.071
s8 0.10 300 100 19 3.0 0.100 0.071
s9 0.06 100 1 32 1.5 1.000 0.042
s10 0.06 100 10 32 1.5 0.316 0.042
s11 0.06 100 50 32 1.5 0.141 0.042
s12 0.06 100 150 32 1.5 0.081 0.042
s13 0.06 100 200 32 1.5 0.070 0.042
s14 0.06 100 250 32 1.5 0.063 0.042
s15 0.06 100 300 32 1.5 0.057 0.042
s16 0.06 100 400 32 1.5 0.050 0.042
s17 0.06 100 500 32 1.5 0.044 0.042

Table 5.1: Simulation test runs.

Franci et al. (2018). We calculate the energy associated with the 3D Fourier modes

ψ3D(k) of a quantity ψ as

ψ3D(k) = ψ̃(k)ψ̃∗(k), (5.35)

where k is the wavevector, ψ̃(k) is the 3D spatial Fourier transform of ψ and ψ̃∗(k)

represents its complex conjugate. If ψ is a vector quantity, the 3D Fourier transform

is taken over each component and the product is defined as

ψ̃(k)ψ̃∗(k) =
∑
i

ψ̃i(k)ψ̃∗
i (k), (5.36)

where the index i represents the components x,y and z. Since the system does not

include any anisotropy within the plane perpendicular to the background magnetic

field on average, we assume that the energy distribution in the turbulent fluctuations

remains axially symmetric on average. Thus, the wavevector can be expressed,

without loss of generality, as its perpendicular and parallel components (k⊥,k∥).

We calculate the perpendicular and parallel components of the wavevector as k⊥ =
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√
k2
x+k2

y and k∥ = kz, respectively, and assume that the fluctuations are statistically

independent of the azimuthal angle. We integrate ψ3D over concentric rings in k⊥-

space. The energy associated with the jth-ring is

ψj2D(k⊥,k∥) =
∫ kj

⊥+dk⊥

kj
⊥

ψ3D(k′
⊥,k∥)2πkj′⊥dk

′
⊥, (5.37)

where the thickness dk′
⊥ of these rings is taken as the magnitude of the smallest

perpendicular wavevector in the system dk′
⊥ = 2π/

√
2Lx. To visualise the energy

cascade in k-space as well as the level of anisotropy in the system, we compute the

reduced 2D power spectral density Pψ2D(k⊥,k∥) as

Pψ2D(k⊥,k∥) =
∑
j

1
k⊥
ψj2D(k⊥,k∥). (5.38)

In order to explore the effect of the simulation parameters on the anisotropic en-

ergy cascade, we compute the perpendicular one-dimensional reduced power spectral

density

Pψ1D⊥
(k⊥) =

∫ ∞

0
Pψ2D(k⊥,k∥)dk∥, (5.39)

and the parallel one-dimensional reduced power spectral density

Pψ1D∥
(k∥) =

∫ ∞

0
Pψ2D(k⊥,k∥)dk⊥. (5.40)

In plasmas, the properties of wave modes such as kinetic Alfvén waves (KAWs),

Alfvén/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves

depend on the values of the plasma frequency ωpi and the gyro-frequency Ωi. The

ratio between the plasma frequency ωpi and the gyro-frequency Ωi depends on the

ratios vA,i/c and mi/me as

Ωi

ωpi
= vA,i

c

√
mi

me
. (5.41)

A realistic value of vA,i/c and mi/me leads to an accurate description of the plasma
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Figure 5.4: Perpendicular one-dimensional reduced power spectral density of the mag-
netic field fluctuations P B

1D⊥
(top) and of the ion velocity fluctuations P vi

1D⊥
(bottom) for the test runs s1 (vA,i/c = 0.06; black), s2 (vA,i/c = 0.08; red)
and s3 (vA,i/c = 0.1; orange) at t = tR. The vertical dashed lines from left to
right indicate k⊥di = 1, k⊥de = 1, k⊥λDs3 = 1, k⊥λDs2 = 1 and k⊥λDs1 = 1.
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Figure 5.5: Perpendicular one-dimensional reduced power spectral density of the mag-
netic field fluctuations P B

1D⊥
(top) and the ion velocity fluctuations P vi

1D⊥
(bottom) for the test runs s4 (ppc = 50; black), s3 (ppc = 100; red), s5
(ppc = 150; orange), s6 (ppc = 200; blue), s7 (ppc = 250; gray) and s6
(ppc = 300; pink) at t = tR. The vertical dashed lines from left to right
indicate k⊥di = 1, k⊥de = 1, k⊥λD = 1.
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Figure 5.6: Perpendicular one-dimensional reduced power spectral density of the mag-
netic field fluctuations P B

1D⊥
(top) and the ion velocity fluctuations P vi

1D⊥
(bottom) for the test runs s9 (mi/me = 1; black), s10 (mi/me = 10; red), s1
(mi/me = 100; orange), s13 (mi/me = 200; blue), s15 (mi/me = 300; gray),
s16 (mi/me = 400; pink) and s17 (mi/me = 500; purple) at t = tR. The verti-
cal dashed lines from left to right indicate k⊥di = 1, k⊥des1 = 1, k⊥des13 = 1,
k⊥des17 = 1 and k⊥λD = 1.
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dynamics. However, using a realistic vA,i/c increases the spatial resolution since the

minimum spatial scale that needs to be resolved in an explicit PIC simulation is the

Debye length, which depends on vA,i/c as λD = di
√
βi/2(vA/c).

In order to establish a reasonable value for vA,i/c which can be used in a large PIC

simulation with the set up described in section 5.2, we explore the effect of vA,i/c on

the perpendicular one-dimensional reduced power spectral density of the magnetic

field fluctuations PB1D⊥
and on the perpendicular one-dimensional reduced power

spectral density of the ion velocity fluctuations P vi
1D⊥

according to Eq. (5.39). The

top panel of Figure 5.4 shows PB1D⊥
for the test runs s1 (vA,i/c = 0.06; black), s2

(vA,i/c = 0.08; red) and s3 (vA,i/c = 0.1; orange) at each t = tR according to Table

5.1. The quantity PB1D⊥
is steeper for test s1 compared with tests s2 and s3 in the

range between k⊥di ∼ 1 and k⊥de ∼ 1, and s2 and s3 show the same trend. At the

k⊥λDs1 ∼ 1 (blue dashed line), PB1D⊥
for s1 becomes slightly shallower. Conversely,

PB1D⊥
for s2 and s3 show no change in the slope at k⊥λDs2 ∼ 1 (magenta dashed

line) and k⊥λDs3 ∼ 1 (cyan dashed line) respectively. The bottom panel of Figure

5.4 depicts P vi
1D⊥

. Like for the magnetic case PB1D⊥
, P vi

1D⊥
is steeper for s1 than for

s2 and s3. The sudden jump in P vi
1D⊥

for each test corresponds to the scale at which

the fluctuations reach the scale of the Debye length.

In PIC simulations, the finite number of ppc directly impacts the resolution of the

particle distribution function. The more ppc, the better is the resolution of the non-

thermal effects. A low number of ppc may preclude the onset of kinetic effects which

are triggered by non-thermal features. We explore the effect of the number of ppc

on PB1D⊥
and P vi

1D⊥
in order to define a number of ppc that allows the simulation to

accurately describe nonlinear interactions while keeping the computational demands

reasonable. The top panel of Figure 5.5 shows PB1D⊥
for the test runs s4 (ppc= 50;

black), s3 (ppc= 100; red), s5 (ppc= 150; orange), s6 (ppc= 200; blue), s7 (ppc= 250;

gray) and s6 (ppc= 300; pink) at each t= tR according to Table 5.1. The quantity

PB1D⊥
presents the same trend in each of the runs. Conversely, P vi

1D⊥
(bottom panel)

shows a bump for s4 (black line) between k⊥di ∼ 1 and k⊥de ∼ 1. This suggests that

ppc= 50 is not sufficient to resolve the turbulent motion of ions at scales below di.
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The use of an unrealistic mass ratio mi/me is often necessary, even though it affect

the plasma evolution as the inertial effects of ions and electrons may become arti-

ficially comparable. However, using the realistic mi/me considerably decreases de
and λD compared to di which utterly increases the spatial resolution needed for the

PIC simulations to be stable. We explore the effect of mi/me on PB1D⊥
and P vi

1D⊥

to define a value of mi/me that accurately describes the energy transfer at small

scales while keeping a feasible spatial resolution for the simulation of anisotropic

turbulence described in section 5.2. The top panel of Figure 5.5 depicts PB1D⊥
for

the test runs s9 (mi/me = 1; black), s10 (mi/me = 10; red), s1 (mi/me = 100; or-

ange), s13 (mi/me = 200; blue), s15 (mi/me = 300; gray), s16 (mi/me = 400; pink)

and s17 (mi/me = 500; purple) at t = tR. The quantity PB1D⊥
for s9 (black line)

and s10 (red line) presents large fluctuations at small scales. This is because, in a

electron-positron plasma, there are no de-coupling effects between positive and neg-

ative charges, i.e., no hall effect that contribute to the cascade of magnetic energy

towards smaller scales (Blackman and Field, 1993; Bessho and Bhattacharjee, 2005;

Mininni et al., 2007). For the rest of the tests presented in this figure, PB1D⊥
follows

the same trend up to k⊥de ∼ 1. For the ion velocity fluctuations, the bottom panel

of Figure 5.5 shows that, at small scales, P vi
1D⊥

presents a shallower trend that shifts

towards smaller scales as mi/me increases.

Although more realistic values of mi/me and vA,i/c and a greater number of ppc

yield better results as shown in Figures 5.4, 5.5 and 5.6, PIC codes are computa-

tionally extremely expensive, and the use of realistic values for simulations in 3D is

not feasible yet, even for the latest outstanding high-performance computing (HPC)

facilities. Therefore, to accurately simulate anisotropic turbulence in an elongated

box as described in section 5.2, we select the following parameters: vA,i/c = 0.1,

ppc= 100 (100 ions and 100 electrons), and mi/me = 100. The use of mi/me = 100

leads to de = 0.1di in the simulation which ensures at least one order of magnitude

of separation in k-space. This is important in order for a simulation to account for

kinetic effects, such as the quadrupolar magnetic field characteristic of the Hall mag-

netic reconnection, which emerge due to the de-magnetisation of ions and electrons
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at different spatial scales. A value of vA,i/c= 0.1, which implies λD = 0.07di, allows

a minimum spatial resolution of ∆x = ∆y = ∆z = 0.06di. Finally, for a simulation

domain of size Lz = 125di and Lx = Ly = 24di, the spatial resolution of 0.06di and

ppc = 100 represents a total number of 6.4512 × 1010 particles. This is the number

of particles for the largest successful simulation that we managed to perform on the

DiRAC Data Intensive service at Leicester, operated by the University of Leicester

IT Services, which forms part of the STFC DiRAC HPC Facility (www.dirac.ac.uk).



Chapter 6

Three-dimensional magnetic

reconnection in particle-in-cell

simulations of anisotropic plasma

turbulence

In this chapter, I present the PIC simulations of anisotropic Alfvénic turbulence that

we have performed. We conduct a scaling analysis as well as a spectral analysis to

characterise the turbulence that develops in the simulation. We find that the initial

anisotropic shape of the magnetic structures evolves into smaller structures that tend

towards more isotropic shapes. Afterwards, I introduce the general reconnection

indicators that we use to find reconnection sites in my simulation and we perform a

statistical analysis of the reconnection events that we find using the set of indicators.

We select one reconnection event and study its properties. We find that, in a 3D

geometry, the magnetic reconnection events that occur from a turbulent cascade

present reconnection exhaust with complex geometries that differ from the Harris

current-sheet configuration often used to study reconnection. Finally, we use the

reconnection event to produce synthetic data to mimic the type of observations

that a single spacecraft mission would encounter when crossing near and through

the reconnection site. I discuss the variation of the plasma quantities along 1D
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trajectories.

This work is published in: Agudelo Rueda, J. A., Verscharen, D., Wicks, R. T.,

Owen, C. J., Nicolaou, G., Walsh, A. P., Zouganelis, I., Germaschewski, K., and

Vargas Domínguez, S. (2021). Three-dimensional magnetic reconnection in particle-

in-cell simulations of anisotropic plasma turbulence. Journal of Plasma Physics,

87(3):905870228

6.1 Introduction
It is unclear how turbulence and reconnection affect each other and how the energy

is partitioned between particles and fields through both processes. For instance,

although the role of reconnection in the small-scale turbulent cascade has been

studied previously (Franci et al., 2017; Boldyrev and Loureiro, 2017; Cerri and Cal-

ifano, 2017; Papini et al., 2019b), it is still unclear how 3D reconnection proceeds

in the turbulent solar wind. It is not well understood whether 3D reconnection

disrupts current sheets and coherent magnetic-field structures associated with in-

termittency at small scales in the same way as it disrupts these structures at large

scales (Boldyrev et al., 2013; Mallet et al., 2017). Moreover, it is unclear how recon-

nection changes the turbulent cascade as the wavevector anisotropy increases with

decreasing scale and how turbulence affects the reconnection process itself (Boldyrev

and Loureiro, 2017). Therefore, it is necessary to study the energy partition as well

as the links between turbulence and reconnection at small scales in order to fully

understand the mechanisms of energy dissipation and plasma heating in the solar

wind.

Kinetic simulations of magnetic reconnection are often based on idealised conditions,

such as the Harris current-sheet configuration (Shay et al., 2001; Scholer et al., 2003;

Shay et al., 2004; Ricci et al., 2004b; Daughton et al., 2006, 2011; Liu et al., 2013;

Leonardis et al., 2013; Goldman et al., 2016; Beresnyak, 2016). In this work, we study

the formation of current structures and the occurrence of 3D magnetic reconnection

as a result of turbulent dynamics in PIC simulations of collisionless anisotropic

Alfvénic turbulence. We initialise our simulation with counter-propagating Alfvén
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waves (see Sections 2.3 and 5.2) that then self-consistently interact and generate

turbulence (Howes and Nielson, 2013b; Howes, 2015a) (see Section 4.2.1), current-

sheet structures (Howes, 2016), and regions of magnetic reconnection. The overall

objective of this work is to discover the properties of reconnection events that termi-

nate the inertial-range cascade of solar-wind turbulence and define criteria that can

identify such features in future 3D simulations and in spacecraft data. These results

will allow future work to advance the study of linked reconnection and turbulence

based on a solid and consistent framework of observable features. In Section 6.2, we

describe our initial conditions for the simulation as well as our numerical setup. We

present our results in Section 6.3 and our conclusions in Section 6.4.

6.2 Simulation Setup
We use the explicit Plasma Simulation Code (PSC, Germaschewski et al., 2016)

to simulate eight anisotropic counter-propagating Alfvén waves in an ion-electron

plasma. Since the theories of turbulence dissipation through reconnection in the solar

wind are intrinsically connected to anisotropy through the generation of thin struc-

tures that form the precursors of current sheets, our initial waves are anisotropic.

The anisotropy of the initial fluctuations is set up according to the theory of crit-

ical balance GS95. A detailed explanation of the initial conditions is presented in

Section 5.2.

For this simulation, we set βs,∥ = 1 and Ts,∥/Ts,⊥ = 1. The magnetic field is nor-

malised to the value of the constant background field B0 and the Alfvén speed ratio

is vA/c = 0.1. We use 100 particles per cell (100 ions and 100 electrons), a mass

ratio of mi/me = 100 so that de = 0.1di as discussed in Section 5.3. The simulation

box size has a size of Lx×Ly×Lz = 24di×24di×125di, and the spatial resolution is

∆x= ∆y = ∆z = 0.06di. We use a time step of ∆t= 0.06/ωpi. In our normalisation,

λD = 0.07di defines the minimum spatial distance that needs to be resolved in the

simulation. Although our numerical parameters VA/c and mi/me are not identical

to the corresponding parameters in the solar wind, they allow us to perform simu-

lations within the computational limitations. With these parameters, the simulated
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electrons are mildly relativistic, which they are not in the real solar wind. However,

the effect of mildly relativistic electrons on the propagation and damping of kinetic-

scale normal modes, including kinetic Alfvén waves (KAWs), Alfvén/ion-cyclotron

(A/IC) waves, and fast-magnetosonic/whistler (FM/W) waves, is negligible (Ver-

scharen et al., 2020) and not important for the evolution of the turbulent cascade

regardless of the processes that carry the cascade to sub-proton scales.

6.3 Results
In this section, we discuss the time evolution (Section 6.3.1) and the spectral prop-

erties of the turbulence in our simulation (Section 6.3.2). We then define a new set

of indicators of reconnection based on 2D and 3D reconnection models and study

a self-consistently formed reconnection region in detail (Section 6.3.3). We then

record and discuss the plasma properties that an artificial spacecraft observes in the

spacecraft frame as it passes through our simulation box (Section 6.3.4).

6.3.1 Time Evolution and Formation of Current Structures
We first identify a representative time tR for our subsequent analysis of the tur-

bulence properties. The root mean square (rms) of the current density Jrms is an

indicator commonly used to identify the time at which the system reaches a quasi-

stationary state. At this time, the generation of current sheets by waves is balanced

by their decay so that the growth of Jrms saturates, which marks the time of maxi-

mum turbulent activity in the simulation (Franci et al., 2017). The rms of a quantity

ψ is defined as

ψrms =
√

⟨ψ2⟩−⟨ψ⟩2, (6.1)

where ⟨...⟩ represents the spatial average over the whole simulation domain. Fig-

ure 6.1 shows the time evolution of the rms of the current density J (blue), the

magnetic field B (black), and the ion velocity vi (red) in our simulation. Since we

start our simulation under the assumption that the linear time τl is approximately

equal to the nonlinear time τnl, we estimate τnl ∼ τl ∼ 1/k∥vA ∼Lz/2πvA ≈ 200/ωpi.

This estimate for the nonlinear time τnl is therefore related to the scale of the initial
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Figure 6.1: Time evolution of the rms of the current density J (blue), magnetic field B
(black), and ion velocity vi (red). The vertical dashed line marks the time
tR = 120/ωpi at which Jrms begins to decrease.

fluctuations and represents an upper limit. We observe a peak in Jrms at t= 12/ωpi
which is due to the self-consistent formation of current structures as a response to

the initial magnetic-field fluctuations. The variation in Brms and Jrms during the

initial phase, between t= 12/ωpi and t= 96/ωpi, suggests that the system is still in a

phase of self-adjustment. The formation of the plateau in Jrms at t≈ τnl/2 ≈ 100/ωpi
indicates that the system has reached a quasi-stationary state. Therefore, we ex-

pect the formation of current structures such as current sheets and current filaments

by this time. The vertical dashed line marks the time t = 120/ωpi at which Jrms

begins to decrease monotonously until the simulation ends. In this sense, the time

t = 120/ωpi represents the beginning of the decaying phase in our system. As the

system evolves in time, current and magnetic structures dissipate, and we expect an

exchange of the energy stored in the magnetic field with the kinetic energy of the

particles. Based on these considerations, we use the time t= tR = 120/ωpi to study

the spectral properties of the turbulence in our system.

Figure 6.2 shows a 3D rendering of the magnitude of the transverse magnetic field

|Bxy| =
√
B2
x+B2

y at two different time steps: panel (a) at t = 0 and panel (b) at

t= tR. Panel (a) shows the anisotropic interference pattern of the linear superposi-
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(a)

(b)

Figure 6.2: 3D rendering of the transverse magnetic field magnitude |Bxy| =
√

B2
x +B2

y

at t = 0 (a) and t = tR (b). The colour bar ranges from the minimum magni-
tude (black) to the maximum magnitude (yellow) throughout the simulation
domain at t = tR. We use the same colour bar in both panels for a direct com-
parison. The initial background magnetic field is directed along z-direction.
At the initial time, the fluctuations are anisotropic and elongated along the
z-direction. At t = tR, small-scale magnetic eddies have formed and interact
nonlinearly with each other. The eddies present varying cross section diam-
eters LD and lengths L∥.
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(a) t = 0 (b) t = tR

(c) t = 0 (d) t = tR

Figure 6.3: Panels (a) and (b): Probability distribution functions of elongations L∥ (top),
cross section diameters LD (middle), and aspect ratios L∥/LD (bottom) of
the magnetic structures at t = 0 (a) and t = tR (b). Panel (c): Scaling
between L∥ and LD at t = 0. The black dashed line shows a linear fit. Panel
(d): Scaling between L∥ and LD of the large-scale population (orange) and
small-scale population (blue) at t = tR. The top black dashed line shows a
linear fit to the former while the bottom red dashed line shows a linear fit
to the latter.

tion of Alfvén waves at t= 0. Initially, there are no coherent eddies present because

no nonlinear interaction has taken place yet. However, the initial magnetic-field

fluctuations are already anisotropic. Panel (b) shows that, at time t = tR, there is

a clear presence of magnetic eddies with varying cross section diameters LD and

elongations L∥, where L∥ represents the length of these eddies along the local mag-

netic field. Even though we start with a superposition of only eight waves, nonlinear

interactions generate magnetic eddies of different shapes and anisotropies. At this

time, the magnetic-field structures consist of a combination of linear fluctuations

and magnetic eddies. To estimate the shape of the magnetic structures at t= 0 and
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(a)

(b)

Figure 6.4: Visualisations of the simulation domain at t = tR. (a) 3D rendering of the
magnetic-field component Bz. Blue represents negative, red positive and
white zero values of Bz. The eddies’ centres present different values of Bz

with either positive or negative polarity. (b) 3D rendering of the magnitude
of the current density |J| from the same vantage point as (a). The colour
represents in blue (red) the smallest (largest) values of |J|. Filaments of
intense current density are aligned with the eddies’ centres. Current filaments
and extended current-sheet-like structures are mainly elongated along the z-
direction.
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t= tR, we calculate

∆B =
√
B2
x+B2

y +(Bz −B0)2 (6.2)

and use an intensity threshold defined as

∆B > ⟨∆B⟩+2∆Brms. (6.3)

We define a magnetic structure as the combination of those cells in our simulation

that are connected as next neighbours and fulfil Eq. (6.3). The exact value of the

threshold is chosen to improve the performance of the algorithm in the identification

of these structures. After the identification of the structures, we calculate their prin-

cipal axes. We define LD =
√
L2

⊥1 +L2
⊥2, where L⊥1 and L⊥2 are the two orthogonal

diameters in the plane perpendicular to the local magnetic field and L∥ is the axis

along the local magnetic field.

Panel (a) of Figure 6.3 shows the probability distribution function (PDF ) of L∥,

LD, and the aspect ratio L∥/LD at t = 0 and panel (b) at t = tR. The mean value

and standard deviation of the distributions of L∥, LD, and L∥/LD at t= 0 are L∥ =

(16.33 ± 8.32)di, LD = (1.55 ± 0.95)di, and
(
L∥/LD

)
= (11.01 ± 7.06)di. At t = tR,

we find L∥ = (2.16±5.08)di, LD = (0.62±0.72)di, and L∥/LD = (2.55±1.94)di. This

shows that the nonlinear interaction has formed magnetic structures with smaller

elongations and cross section diameters continuously distributed between LD = 1di
and 8di. The distribution of aspect ratios is less uniform at t = tR than at t = 0.

The number of magnetic structures with nearly isotropic aspect ratios is greater at

t = tR. To study the distribution of the large-scale structures at t = tR, we further

apply a filter to remove all regions with an equivalent volume V ≤ 1d3
i , where V is

defined as the space filled by the sum of all contiguous cells associated with a given

magnetic structure. For all structures with V > d3
i , we find L∥ = (14.97 ± 9.01)di,

LD = (3.14±2.25)di, and L∥/LD = (5.46±2.48)di. The distribution of the large-scale

magnetic structures maintains an anisotropy consistent with our initial conditions.

Panel (c) of Figure 6.3 shows the scaling between L∥ and LD for the magnetic
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structures at t= 0. The linear fit to these structures, dashed line, reveals the scaling

L∥ ∼ L0.66
D which is consistent with our initial anisotropy, i.e., L∥ ∼ L

2/3
D . Panel (d)

of Figure 6.3 shows the scaling between L∥ and LD for the magnetic structures at

t = tR. The orange dots represent the structures satisfying V > d3
i while the blue

dots show the structures satisfying V ≤ d3
i . The linear fit to the former population,

top black dashed line, reveals the scaling L∥ ∼ L0.7
D . In contrast, the linear fit to

the latter population, bottom red dashed line, shows the isotropic scaling, L∥ ∼ LD.

Around LD ∼ di, we find a transition and mixing between structures with both

scalings. This suggests that the large-scale structures tend to maintain the initial

anisotropy while the small-scale structures become more isotropic. This isotropic

scaling at sub-proton scales has also been observed in hybrid simulations (Franci

et al., 2018; Arzamasskiy et al., 2019; Landi et al., 2019).

Figure 6.4 shows 3D renderings of Bz and |J| at t = tR. Panel (a) shows Bz, from

the same vantage point as panel (b) of Figure 6.2. Although the initial B0 is uniform

and points into the +z-direction, nonlinear interactions generate regions in which Bz
is negative. These regions are mostly localised in the centres of the small eddies in

panel (b) of Figure 6.2. Panel (b) in Figure 6.4 shows that the locations of the most

intense current filaments coincide with the centres of the magnetic eddies. Current

filaments are intense quasi-cylindrical current structures. Similar to the case of the

magnetic structures, we apply the threshold |J | ≥ ⟨|J |⟩+4(|J |)rms to determine the

shape of the current filaments. The mean cross section diameter of these current

filaments is L̂D = (1.94 ± 0.84)di. Their mean length is L̂∥ = (12.32 ± 6.70)di, and

their mean aspect ratio is L̂∥/L̂D = (6.84±3.48). The filaments are mostly elongated

along the z-direction. Some filaments have undergone bending and twisting due to

the nonlinear interactions. The elongations of the current filaments are distributed

similarly to the elongations of the magnetic eddies (not shown here) and vary in the

range of scales from ∼ 4di to ∼ 30di. Panel (b) shows in addition the formation of

thin current-sheet-like structures at the edges of the eddies where the perpendicular

component of the magnetic field is nearly zero (see panel (b) in Figure 6.2). We

define current sheets as current structures in which Lcs ≫ δcs and ∆cs ≫ δcs, where
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Lcs is the current-sheet length along the local magnetic field, ∆cs is the current-

sheet width tangential to the magnetic eddies, and δcs is the current-sheet thickness

normal to the edge of the eddies. The formation of these current sheets is due to the

turbulent motions that “squeeze” the eddies together. In the supplementary material

to the published paper (Agudelo Rueda et al., 2021), we provide a movie that shows

the time evolution of the volume rendering of Jz in the zx-plane. We observe the

tearing and breaking up of current sheets as well as the onset of instabilities arising

from the nonlinear interactions and of jets oblique to the major axes of the current

sheets as a result of the turbulent evolution. However, a detailed study of these

phenomena is beyond the scope of this thesis.

6.3.2 Evidence of Turbulence in Our Simulation
A broad power-law spectrum of the fluctuations indicates the presence of turbulence

as the energy cascades from large to small scales (see Chapter 4). Following Franci

et al. (2018), we use the formalism introduced in Section 5.3.1 to analyse the spectral

properties of the system. We note that the local (rather than the global) average

magnetic field defines the cylindrical symmetry axis for the turbulent fluctuations

(Cho and Vishniac, 2000). However, we use the global background magnetic field as

a proxy for the local field. This simplification is motivated by the strong alignment

of the eddies with the background magnetic field at this time in our simulation

(see Figures 6.2 and 6.4). Moreover, the definition of the local magnetic field is a

matter of ongoing research and debate (Podesta, 2009; Chen et al., 2011; TenBarge

et al., 2012; Oughton et al., 2015; Gerick et al., 2017), and the development of an

anisotropic energy cascade is sufficient for the determination of reconnection events

in the present study.1 Thus, we compute the reduced 2D power spectral density

Pψ2D(k⊥,k∥) using Eq. (5.38).

Figure 6.5 shows the logarithm of the 2D reduced power spectral density of the

magnetic-field fluctuations PB
2D normalised to maxPB

2D in the k∥-k⊥ plane at t = 0

(panel (a)), t = 12/ωpi (panel (b)), t = tR (panel (c)), and t = 240/ωpi (panel (d)).
1An analysis of the fluctuations with respect to the local magnetic field based on second-order

structure functions supports this assumption and is provided in Appendix A.
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The horizontal dashed line marks k⊥de = 1 which corresponds to k⊥di = 10 owing to

our mass ratio of mi/me = 100. The vertical dashed line marks k∥di = 1. At t = 0,

the energy is entirely stored in the initial modes. At t = 12/ωpi, the isocontours

show that the energy has already cascaded to k⊥de > 1 whereas the parallel cascade

has not yet reached the kinetic range. At t = tR, the perpendicular cascade has

not proceeded any further but the parallel energy transport reached k∥di > 1. At

t= 240/ωpi, the energy distribution has not considerably changed compared to the

distribution at t= 120/ωpi. For comparison with analytical predictions, we overplot

the expected critical-balance scaling of k⊥ ∼ k
3/2
∥ (see Section 4.2.3) as a dashed line

at small k⊥. We note, however, that PB
2D exhibits a broad distribution in k-space

around this prediction.

In order to explore the anisotropy of the cascade in more detail, we compute the

perpendicular one-dimensional reduced power spectral density using Eq. (5.39) and

the parallel one-dimensional reduced power spectral density using Eq. (5.40) of

multiple fluctuating quantities ψ. Panel (a) in Figure 6.6 shows the perpendicular

one-dimensional reduced power spectral density of the magnetic-field fluctuations

PB1D⊥
(black line), of the ion velocity fluctuations P vi

1D⊥
(red line), and of the ion

density fluctuations Pni
1D⊥

(blue line) at t = tR. The vertical dashed lines mark

k⊥di = 1, k⊥de = 1, and k⊥λD = 1. The enhancement in P vi
1D⊥

at k⊥di = 17 is

an artefact created by Debye-length effects and the finite spatial resolution of the

system. The scale of the initial waves in the perpendicular direction coincides with

the transition point of the energy cascade from inertial to kinetic scales, i.e., k⊥di = 1.

Therefore, our simulations do not describe the cascade at k⊥di ≤ 1. During the first

nonlinear time, the system develops a broadband spectrum of perpendicular density

fluctuations in the kinetic range. PB1D⊥
and P vi

1D⊥
exhibit similar spectral indices in

part of the kinetic range between k⊥di ∼ 3 and ∼ 6. Within the same interval, Pni
1D⊥

follows a steeper spectrum. These features suggest the presence of both Alfvénic and

compressive fluctuations, consistent with the presence of kinetic Alfvén waves. PB1D⊥

in the interval k⊥di ∼ 1.8 to ∼ 7, follows a power-law scaling with a spectral slope

of −3. In the range between k⊥di ∼ 7 and ∼ 20, the slope is slightly steeper with
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(a) t = 0/ωpi (b) t = 12/ωpi

(c) t = tR (d) t = 240/ωpi

Figure 6.5: Isocontours of log10 P B
2D of the fluctuating magnetic field as a function of k∥

and k⊥ at different time-steps. The dashed lines provide a reference for the
scaling of k⊥ and k∥. The horizontal (vertical) dashed line marks k⊥de = 1
(k∥di = 1). At t = 0, the spectrum shows the modes of our initialisation and
their Fourier harmonics. At t = 12/ωpi, the cascade in the perpendicular
direction (vertical axis) has proceeded beyond electron scales (k⊥di ≥ 10). At
t = tR, although the perpendicular cascade has not proceeded significantly
further, the cascade in the parallel direction (horizontal axis) has reached
the kinetic range (k∥di ≈ 1) up to ion scales but not to electron scales. At
t = 240/ωpi the distribution has not considerably changed compared to t = tR.



6.3. RESULTS 114

(a) (b)

Figure 6.6: (a) Perpendicular and (b) parallel reduced one-dimensional power spectral
densities P B

1D∥,⊥
(black), P vi

1D∥,⊥
(red), and P ni

1D∥,⊥
(blue) at t = tR. The

vertical dashed lines indicate k∥,⊥di = 1, k∥,⊥de = 1, and k∥,⊥λD = 1.

a power index of approximately −4 2. Although we calculate the energy spectrum

of the magnetic-field fluctuations using the global background magnetic field, these

values are within the range of slope variability measured in the solar wind (Chen

et al., 2010a; Bruno et al., 2014) as well as in hybrid simulations (Franci et al., 2018;

González et al., 2019).

Panel (b) in Figure 6.6 shows the parallel one-dimensional reduced power spectral

density of the magnetic-field fluctuations PB1D∥
(black line), ion velocity fluctuations

P vi
1D∥

(red line), and ion density fluctuations Pni
1D∥

(blue line) at t= tR. The vertical

dashed lines mark k∥di = 1, k∥de = 1, and k∥λD = 1. At k∥di ≤ 1, PB1D∥
and P vi

1D∥
fol-

low a similar trend as expected for Alfvénic turbulence. The spectral slope for P B̃1D∥

is close to −2 between k∥di ∼ 0.1 and ∼ 0.3 which is in agreement with the magnetic-

field power spectrum k−2
∥ observed in the solar wind (Bavassano and Bruno, 1989;

Grappin et al., 1991; Wicks et al., 2010, 2011; Chen et al., 2011). At smaller par-

allel scales, the spectrum steepens to −2.5 between k∥di ∼ 0.4 and ∼ 2, and further

towards −4 between k∥di ∼ 2 and ∼ 4. Both the perpendicular and parallel spec-

tral indices have values of -4. The equality of these exponents has been observed
2We note that we observe a change in slope within a single decade in k⊥. The change in

slope over such a small range of scales must be interpreted with caution. Although it indicates a
steepening in P B

1D⊥ towards increasing k⊥, the scale separation is insufficient to apply Kolmogorov-
like scaling arguments to these spectral slopes.
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in 3D hybrid PIC simulations and has been suggested to be a consequence of the

anisotropy being frozen at sub-proton scales (Franci et al., 2018; Arzamasskiy et al.,

2019; Cerri et al., 2019; Landi et al., 2019). Although we initialise the system with

non-compressive waves, the simulation swiftly develops a cascade of density fluctu-

ations which suggests that compressive modes form self-consistently in the energy

cascade. The development of compressive fluctuations has been suggested to depend

on the plasma parameters rather than the initial conditions (Cerri et al., 2017a). The

level of compressive fluctuations in our simulation is greater than observed in the

solar wind (Chen, 2016), but the reasons for the creation of such strong compressive

fluctuations is unknown. At k∥di ≈ 1.4, the slope of P vi
1D∥

separates from the slope

of P B̃1D∥
and approaches the slope of Pni

1D∥
. The flattening of Pni

1D∥
at k∥di ≈ 4 is due

to finite particle noise.

6.3.3 Reconnection Sites
In this section, we confirm that magnetic reconnection occurs in our simulation

domain. Methods to find reconnection sites in 2D simulations are based on the

identification of magnetic islands and their closest x-point within a current sheet

(Wan et al., 2014; Papini et al., 2019a). However, the interaction of magnetic struc-

tures such as flux tubes, which are the 3D equivalent of 2D magnetic islands, is

more complex than in the 2D case, and magnetic reconnection does not happen at

a single point but in an extended region (Daughton et al., 2011; Liu et al., 2013;

Daughton et al., 2014). In 2D and 3D theories of reconnection, strong current sheets

are often associated with reconnection events as the key locations of energy dissipa-

tion. However, there are events in which the x-points are not placed exactly within

the current-sheet (Priest and Démoulin, 1995; Wan et al., 2014). The presence of

a strong guide magnetic field and asymmetries of the reconnection event can shift

the position of the x-point and even preclude the occurrence of the reconnection

event (Eastwood et al., 2010, 2013). Moreover, proton temperature anisotropies in

reconnection events can trigger kinetic instabilities, which then have a stabilising

effect on the current sheet (Matteini et al., 2013).

In our turbulent simulation setup, we expect that, once the reconnection events oc-



6.3. RESULTS 116

curred, most of them exhibit local asymmetries due to the turbulent nature of the

domain. Moreover, the background magnetic field acts as a guide field in recon-

necting flux ropes. Therefore, in order to capture all reconnection events in such

a complex and asymmetric field geometry, we require a new method to determine

reconnection sites in our 3D simulations. Strong gradients in at least one component

of the magnetic field as well as magnetic null points are common features of both 2D

and 3D reconnection events. Strong gradients are directly related to the presence of

current sheets according to Ampère’s law. The presence of magnetic null points is

not a requirement for reconnection. In 2D reconnection, for instance, the presence of

a guide field removes this requirement (Hesse et al., 2004). 3D reconnection, on the

other hand, can take place in collapsing structures that form current sheets related

to quasi-separator lines, which do not require magnetic null points (Pritchett and

Coroniti, 2004; Pontin, 2011), see Section 3.3.1. Exhaust regions in which parti-

cles are accelerated to velocities near the Alfvén speed are another common feature.

Magnetic reconnection not only accelerates particles but also increases their thermal

energy. Hence, an enhancement in the population of heated particles is a further

indicator of reconnection as long as it occurs near a region in which accelerated

particles and magnetic field gradients are present.

During magnetic reconnection, the electric field is responsible for the energy ex-

change between particles and fields in the current sheet. The associated heating

is quantified by J · E (Somov and Titov, 1985; Ni et al., 2016). We expect to find

coherent regions in the simulation domain in which J · E is non-zero. According to

3D steady-state theories of magnetic reconnection (Hesse and Schindler, 1988; Priest

et al., 2003; Pontin, 2011), when a magnetic field line enters a diffusion region, the

integral of the parallel electric field (E∥ = E · B/|B|) along the magnetic field line

within the diffusion region must be different from zero. Since a non-zero E∥ can in-

dicate the presence of non-vanishing diffusive terms in Ohm’s law (see Section 3.1),

we use the presence of non-zero E∥ as a possible indicator for a diffusion region lo-

cated within a finite volume. Although E∥ is not a good indicator in the absence of

a guide magnetic field, we expect to find coherent regions in the simulation domain
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with non-zero E∥.

In summary, we identify the following indicators that we consider essential for the

presence of reconnection in a region of our simulation domain. We adopt a clustering

detection method (Uritsky et al., 2010) based on the mean value of each quantity

ψ, its rms value ψrms, and a threshold value Nth. Thus, we search the simulation

domain for regions in which ψ ≥ ⟨ψ⟩ +Nth(ψ)rms. Our indicators for magnetic

reconnection are:

C1 Current-density structures, |J| ≥ ⟨|J|⟩+Nth(|J|)rms; 3

C2 Fast ions and electrons, |vi,e| ≥ ⟨|vi,e|⟩+Nth(|vi,e|)rms;

C3 Heated particles, Ti,e ≥ ⟨Ti,e⟩+Nth(Ti,e)rms;

C4 Energy transfer between fields and particles, |J · E − ⟨|J · E|⟩| ≥ Nth(|J ·

E|)rms;

C5 Non-zero parallel electric fields, |E∥ −⟨|E∥|⟩| ≥Nth(|E∥|)rms.

To find the number of events satisfying these conditions, we use the first-neighbour

volumetric method described in Section 6.3.1. We apply the algorithm to identify

clusters of contiguous cells fulfilling each condition separately as well as combina-

tions of them. Afterwards, we apply a filter to remove all regions with an equivalent

volume V ≤ 1d3
i , where V is defined as the sum of the volumes of all contiguous cells

associated with the cluster. This is motivated by the fact that we are mostly inter-

ested in events in which both ions and electrons experience reconnection. Therefore,

we expect to find coherent regions with a size of at least d3
i . We analyse two values

for the threshold: Nth = 3 and Nth = 4.

We present our results in Table 6.1, where C2i and C2e refer to the separate applica-

tion of criterion C2 to ions and to electrons respectively. The same definitions apply
3We note that given the ambiguity in the definition of current sheets when studying observa-

tional data, the indicator C1 can be defined with ∇×B instead of |J|.
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Nth C1 C2e C2i C3e C3i C4+ C4− C5+ C5−

3 149 144 77 92 82 68 77 0 0
4 97 92 29 50 39 23 17 0 0

Nth C1 & C2i,e C1 & C3i,e C1 – C3i,e C1 – C4− C1 – C4+

3 34 55 24 3 3
4 9 27 6 6∗ 6∗

Table 6.1: Number of events in our simulation domain at time t = tR fulfilling each of
our criteria for reconnection.

to C3. C4+ and C4− refer to the application of condition C4 separated by cases in

which J ·E> 0 (+) and J ·E< 0 (-). The same definitions apply to C5. As expected,

a larger number of locations fulfil these conditions if the threshold is lower. More-

over, all events detected with Nth = 4 are also detected when using Nth = 3. There

are no events that fulfil our condition C5. The reason for this result is that, although

local regions fulfil C5, the size of contiguous volumes of cells fulfilling C5 are never

greater than 1d3
i . We attribute this effect to particle noise, which has a strong effect

on parallel electric fields in PIC simulations. If we reduce the threshold to Nth = 2,

the algorithm is also unable to define clusters of cells, because our method is based

on intensity thresholds which perform well for quantities with heavy-tail distribu-

tions. The distribution of E∥ in our simulation is spread with ⟨|E∥|⟩ = 2.0×10−3B0c

and standard deviation (|E∥|)std = 1.5 × 10−3B0c. The same argument applies to

J · E. Despite detecting at least 17 regions fulfilling C4 with Nth = 4, there are no

regions that satisfy all conditions C1 through C4 within a volume greater than 1d3
i .

However, if we reduce the equivalent volume threshold to 0.3d3
i , we find 6 regions

that fulfil conditions C1 through C4. We mark the corresponding numbers with an

asterisk in Table 6.1.

In Figure 6.7, we visualise our indicators for magnetic reconnection. We use a 2D

projection on the zx-plane of a part of our simulation domain, 50di < z < 100di.

Panel (a) shows the isosurfaces of |J| = ⟨|J|⟩+3(|J|)rms (indicator C1) colour-coded

in light blue. The selected structures mainly correspond to current filaments. Panel

(b) shows regions in which |vi| = ⟨vi⟩ + 3(vi)rms (green) and |ve| = ⟨ve⟩ + 3(ve)rms

(purple), our indicator C2. The locations of fast electrons according to C2 coincide
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(a) Indicator C1 (b) Indicator C2

(c) Indicator C3 (d) Indicator C4

(e) Indicator C5 (f) Indicators C1 through C4

Figure 6.7: Reconnection indicators projected onto a 2D cut in the zx-plane at y =
21di. (a) Indicator C1: Isosurfaces of |J| = ⟨|J|⟩+3(|J|)rms (light blue). (b)
Indicator C2: Isosurfaces of |vi,e| = ⟨vi,e⟩+3(vi,e)rms for ions (green) and for
electrons (purple). (c) Indicator C3: Isosurfaces of Ti,e = ⟨Ti,e⟩ + 3(Ti,e)rms

for ions (gold) and for electrons (pink). (d) Indicator C4: Isosurfaces of
J ·E = ⟨J ·E⟩±3(J ·E)rms for positive J ·E (red) and negative J ·E (blue). (e)
Indicator C5: Isosurfaces of E∥ = ⟨|E∥|⟩±2(|E∥|)rms for positive E∥ (orange)
and negative E∥ (blue). Panel (f ) shows, on top of the isosurfaces related to
indicators C1 through C4, magnetic field lines colour-coded with |B|. The
magnetic field lines suggest the reconnection of a twisted flux rope with an
adjacent flux rope. The white sphere of radius 1di at (z,x) = (77,13.5)di in
panel (f ) is a reference point that marks the position of a reconnection site.
In panel (f), we also indicate the regions R1 and R2 defined in the text.
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with the locations of large currents according to C1, since the electrons are the main

carriers of the electric current. This electron behaviour is consistent with observa-

tions in space plasma and reproduced in simulations (Phan et al., 2018). We identify

five structures in which accelerated ions coincide with our condition C1. Panel (c)

shows isosurfaces of Ti = ⟨Ti⟩+3(Ti)rms (gold) and Te = ⟨Te⟩+3(Te)rms (pink), ac-

cording to our indicator C3. Although the electric current is mostly carried by elec-

trons, we find current structures that are not associated with high-temperature elec-

trons and vice-versa. The structures associated with heated electrons have mostly

filamentary shapes. Panel (d) shows the application of our indicator C4. The regions

in which J · E = ⟨J · E⟩ ± 3(J · E)rms is positive (negative) are colour-coded in red

(blue). There are large and diffuse clusters of positive and negative J · E between

z = 55di and z = 85di. We also locate filamentary structures of positive J ·E which

partially coincide with the regions fulfilling C3. Panel (e) shows our indicator C5.

The regions in which E∥ = ⟨|E∥|⟩±2(|E∥|)rms is positive (negative) are colour-coded

in orange (blue). The effect of particle noise on the electric field leads to difficulties

in the determination of the associated clusters. Panel (f ) shows the combination of

our indicators C1 through C4. We define two regions, R1 and R2, as the regions

in which our indicators C1 through C4 are fulfilled. This suggests that magnetic

reconnection is taking place in the vicinity of these regions.

To visualise the change of magnetic connectivity, we trace magnetic field lines in

our simulation domain. The region of most intense |B| is co-located with R1. The

magnetic field lines suggest the reconnection of a twisted flux rope with an adjacent

flux rope. The white sphere of radius 1di at (z,x) = (77,13.5)di is a reference re-

gion that marks the position at which the magnetic field lines associated with the

flux ropes exchange connectivity. We provide a movie to support this claim in the

supplementary material of the paper (Agudelo Rueda et al., 2021). The change of

connectivity between the flux ropes lasts for ∼ 96/ωpi ∼ 0.46τnl, which is a long time

compared to the time the turbulent cascade requires to develop. The long existence

of connectivity exchange and of the current structure can be associated with the

suppression of nonlinearities in the current sheet. In 2D geometries, the rate of
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magnetic-flux change between two magnetic islands, the so-called reconnection rate,

is determined by the electric field at the x-point (Smith et al., 2004; Servidio et al.,

2011). It can also be computed as the difference in the out-of-plane component of the

magnetic vector potential between the x-point and the o-point (Franci et al., 2017;

Papini et al., 2019a). In 3D, the reconnection rate can be computed by integrating

E∥ along the magnetic field lines crossing the diffusion region (Schindler et al., 1988;

Pontin, 2011). However, the complex structure of the field lines makes it unclear

how to apply this method to our type of simulations (Liu et al., 2013; Daughton

et al., 2014). An extension of 2D methods that avoid the use of the electric field

(Franci et al., 2017; Papini et al., 2019a) to the 3D case requires the calculation of

the vector potential which (a) is elaborate in 3D PIC simulations of the type used

in this study and (b) impractical in the comparison with spacecraft data.

As the flux rope twists, it bends towards the region of changing magnetic connec-

tivity, henceforth we refer to this region as the “x-region”. During the flux-rope

bending, plasma ions are accelerated towards the x-region. To illustrate this be-

haviour, we visualise the streamlines of the ion and electron bulk velocities that

leave the reconnection region. Panel (a) in Figure 6.8 shows a view over an xy-plane

cut of Jz. Gray colour represents negative values, red colour represents positive

values, and white indicates a value of zero for Jz. The displayed streamlines of the

ion bulk velocity emerge from the centre of the x-region. The streamlines are colour-

coded with vix. The dark-blue segment near the dark-gray region indicates that the

ions primarily move towards the reconnection site in the negative x-direction. As the

ions approach the x-region, their speed decreases, and their trajectories are deflected

into the y-direction. The displayed streamlines maintain a coherent shape of width

∼ 2di along the z-direction. Panel (c) shows the same ion velocity streamlines but

over an zx-plane cut of Jz. The region where ions have large |vix| coincides with the

core of the twisted flux rope in panel (f ) of Figure 6.7 (black region) which suggests

that they are accelerated by the bending of the flux rope.

Considering the ion velocity streamlines as indicative of the shape of the exhaust

region associated with the x-region, the branch of the stream lines on the right-hand
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(a) (b)

(c) (d)

Figure 6.8: Streamlines of the ion and electron bulk velocities over 2D cuts of the sim-
ulation plane showing Jz. (a) and (b) view over the xy-plane in which the
x-direction points downward and the y-direction points towards the right-
hand side. (c) and (d) view over the zx-plane in which the x-direction points
downward and the z-direction points towards the left-hand side. (a) and (c)
show ion bulk velocity streamlines colour-coded with vix. (b) and (d) show
electron velocity streamlines colour-coded with vez. The arrows indicates the
direction of the ion bulk motion and of the electron bulk motion.
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side in panel (a) represents the reconnection exhaust of the event. It is three-

dimensional and asymmetric. Likewise, the electron motion associated with the

x-region is asymmetric. However, it differs considerably from the ion motion. Panel

(b) shows the electron velocity streamlines colour-coded with vez in the same view as

in panel (a). These streamlines remain contained within a smaller region compared

to the ion streamlines. They are mainly aligned with the z-direction. On the left-

hand side of the reconnection site in panel (d), the electron streamlines are directed

along the Jz structure as expected since the current is mostly (but not entirely)

carried by electrons. In contrast, on the right-hand side of the reconnection site,

the electrons move in directions towards and away from the reconnection site as is

shown by the arrows. Considering the electron velocity streamlines, the electron

exhaust is also asymmetric and three-dimensional but smaller than the ion exhaust.

The diffusion region associated with the x-region of the reconnection event is likely

to be the large structure of positive Jz crossing the x-region in the z-direction in

panel (c). The shape of the electron streamlines suggests a diffusion region that

resembles the distorted diffusion region observed in 3D Hall magnetic reconnection

(Drake et al., 2008; Yamada et al., 2014).

In summary, our set of criteria suggests the presence of multiple reconnection sites in

our simulation domain. Our automated identification based on our criteria allows for

a detailed inspection of the magnetic-field connectivity of each event. Our method

searches for clusters of cells fulfilling all conditions. This approach misses events in

which ions and electrons are accelerated and heated in different locations near the

reconnection site. If the event is large enough to affect both ions and electrons, we

expect streams of accelerated particles for both species related to the reconnection

event. Given the variability in the shape and size of these particle outflows, the

volume threshold must be adjusted depending on the problem at hand in different

simulation setups.

6.3.4 1D Trajectories Across the Reconnection Region
In-situ measurements of spacecraft typically record the plasma and magnetic-field

fluctuations along the spacecraft trajectory. In order to compare such measurements
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(a)

(b)

Figure 6.9: Trajectories of an artificial spacecraft crossing our simulation domain. (a)
Trajectory T1. The spacecraft moves from the top-left corner to the bottom-
right corner. This trajectory crosses a region that we identify as a reconnec-
tion exhaust. (b) Trajectories T2 and T3 are parallel to each other. The
former crosses through the reconnection site while the latter passes right
outside of the reconnection site.
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(a) Particle temperature Ti,e, magnetic field B, ion density ni, and particle speed
vi,e normalised as described in the text. The shaded areas mark the data
recorded within the white squares in panel (a) of Figure 6.9.

(b) Components of the magnetic field (black) and ion velocity (red) for T1.
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(c) Derivative correlations ρviB and ρ|v||B| for trajectory T1.

(d) Particle temperature Ti,e, magnetic field B, ion density ni, and particle speed
vi,e normalised as described in the text. The shaded areas mark the data
recorded within the white squares in panel (b) of Figure 6.9.
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(e) Components of the magnetic field (black) and ion velocity (red) for T2.

(f) Derivative correlations ρviB and ρ|v||B| for trajectories T2 and T3.

Figure 6.10: Plasma and magnetic-field fluctuations associated with our trajectories T1
and T2.
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with our 3D simulations, we “fly” an artificial spacecraft through our simulation box

along three trajectories, T1, T2, and T3, and record the plasma and magnetic-field

fluctuations along these trajectories. According to Taylor’s hypothesis, we assume

that the plasma structures are static as they are convected over the spacecraft with

the average solar-wind bulk speed. The trajectories are taken within the xy-plane

and are shown as the white lines in Figure 6.9.

The trajectory T1, shown in panel (a) of Figure 6.9, passes close to the reconnection

site when it crosses the white square, although it does not carry the spacecraft right

through the centre of the x-region. Panel (a) of Figure 6.10 shows the plasma and

magnetic-field fluctuations for our trajectory T1. We normalise these quantities to

their initial values at the beginning of the simulation. Thus, the ion and electron

temperatures are normalised to T0. The magnetic field and its components are nor-

malised to the initial background magnetic field B0. The ion density is normalised

to the initial density n0. The ion and electron velocities are normalised to the initial

Alfvén speed vA0. The shaded area in panel (a) of Figure 6.10 represents the region

delimited by the white square in panel (a) of Figure 6.9. The ion and electron tem-

peratures are positively correlated with each other as well as with the density across

this trajectory. The magnetic-field and ion-density fluctuations exhibit mainly anti-

correlation with each other across the trajectory. This correlation directly reflects

the presence of slow-mode-like compressive fluctuations. The electron speed shows

local peaks at r ∼ 11di and r ∼ 15di with no associated peaks in ion speed. This

behaviour suggests the presence of local mechanisms that accelerate electrons only.

This behaviour resembles “electron-only reconnection events” (Phan et al., 2018;

Stawarz et al., 2019; Sharma Pyakurel et al., 2019; Mallet, 2020). However, our

indicators show that both ions and electrons interact with this reconnection region.

When the artificial spacecraft trajectory T1 enters the region marked with the white

square in panel (a) of Figure 6.9, it encounters a coherent structure which exhibits

an enhancement in the ion and electron temperatures by a factor of about 1.5 to

2 compared to the background level at r ∼ 20di. At this position, the spacecraft

observes a decrease in the magnetic field associated with an increase in the particle



6.3. RESULTS 129

speed as well as an increase in the particle density. These are characteristic features

associated with slow-mode-like fluctuations and shocks. Since in the trajectories

shown in this section the particle bulk speed is always less than the local magne-

tosonic speed, these events are not slow-mode shocks but rather fluctuations with a

slow-mode-like polarisation. At r ∼ 22di, there is a slight enhancement in the elec-

tron speed which corresponds to the spike within the two large eddies seen in the

white square in panel (a) of Figure 6.10. At r∼ 23di, the spacecraft observes another

slow-mode-polarised region which corresponds to the large structure in the middle

of the square. According to the Petschek (1964) model of magnetic reconnection,

the exhaust of particles is limited by a pair of slow-mode shocks. However, in recent

studies of reconnection in the solar wind (Phan et al., 2006, 2009; Gosling, 2012),

the boundaries of reconnection exhausts often lack these features. Instead, exhausts

are typically characterised through a rotation in the magnetic field along with a

change in the sign of the correlation between the particle speed and the magnetic

field (Gosling, 2012; Phan et al., 2020), consistent with our simulation results.

Panel (b) of Figure 6.10 shows from top to bottom Bx, By, Bz, and |B| in black as

well as vix, viy, viz, and |vi| in red for trajectory T1. In the shaded area (i.e., near

the reconnection site), the velocity component vix changes its sign between r ∼ 19di
and r ∼ 25di, while B undergoes a partial rotation. During the same interval, viy
shows little variation and Biy reverses its sign. Since the background magnetic

field dominates Bz, the variations in the magnetic components Bx and By are more

pronounced than the variations in Bz. As seen in the profile of viz, although ions are

mostly stationary in the direction parallel to the background magnetic field, they are

accelerated in the parallel direction near the slow-mode-like fluctuations. We note

that the velocity spikes and magnetic-field drop-offs seen in the z-component of B to

a certain degree resemble the properties of the magnetic-field switchbacks observed

in the solar wind (Kasper et al., 2019; McManus et al., 2020). Moreover, the blue

regions in panel (a) of Figure 6.4 suggest the possibility of magnetic reversals within

the simulation domain. A comparison and further study is required to establish a

potential correspondence between our simulation and observational data.
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To visualise the correlation between the magnetic-field and velocity components, we

define the derivative correlation between the two variables vj and Bj as

ρvBj = ∆vj
∆r

∆Bj
∆r , (6.4)

where ∆r is a distance increment, ∆vj = vj(r+∆r)−vj(r), and ∆Bj =Bj(r+∆r)−

Bj(r). We use ∆r= 0.6di to reduce the effect of noise when calculating the derivative

while keeping the spatial step small to cover small-scale fluctuations. Panel (c) of

Figure 6.10 shows from top to bottom ρvBx, ρvBy, ρvBx, and ρ|v||B| for trajectory

T1, where ρ|v||B| is defined accordingly with the magnitudes of v and B. The vix and

Bx components exhibit mostly positive correlation along the trajectory. However,

there are two strong peaks of anti-correlation within the shaded area. Likewise,

the viy and By components show more variability in the correlations from positive

and negative derivative correlations within the shaded area than outside the area.

This is due to the transit of the artificial spacecraft through the slow-mode-like

fluctuations. In particular, around r = 23di, all three components present a change

from anti-correlation to positive correlation. The presence of a pair of slow-mode-like

fluctuations along with a magnetic-field rotation suggests that this region is indeed

an exhaust region similar to those reported in previous observational studies in the

solar wind (Gosling, 2012).

Trajectory T2 (the white line on the left in panel (b) of Figure 6.9) carries the

spacecraft right through the centre of the x-region. In panel (d) of Figure 6.10, at

r ∼ 5di and r ∼ 9di, the artificial spacecraft records particle temperature minima

associated with density cavities as well as local peaks in the magnetic field. As

the spacecraft moves towards the x-region, within the shaded region, the particle

temperature remains approximately constant. There is a local minimum in the

magnetic field which corresponds to the centre of the x-region at r= 14di. On either

side of the x-region, we find small enhancements in the electron speed. These peaks,

in addition to the electron streams in panel (d) of Figure 6.8, suggest the presence

of electron-only streams in the vicinity of the x-region. The ion speed decreases

as the spacecraft enters the x-region and increases as the spacecraft leaves the x-
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region. After leaving this region, the spacecraft encounters the highly twisted flux

rope at r = 16di, where it records an enhancement in all bulk quantities as well as

in the magnetic field. The pair formed by the x-region and the closest twisted flux

rope resembles the pairs of x-points and magnetic islands known from 2D models

of reconnection. At the end of the trajectory, at r ∼ 23di, the spacecraft encounters

a slow-mode-polarised structure which corresponds to the bright structure in the

right-bottom-corner in panel (b) of Figure 6.9. Panel (e) of Figure 6.10 shows the

components of the magnetic field and ion bulk velocity for trajectory T2. From

r= 10di to r= 16di, Bx changes polarity, and from r= 8di to r= 15di, By undergoes

a partial rotation. The change in the sign of viy at the point where the spacecraft

enters the shaded area and its value of approximately zero at the point where it

leaves the shaded area in T2 shows a local stream of particles leaving the region

along the y-direction. This corresponds to the right-hand side branch of the ion

streamline velocity in panel (a) of Figure 6.8. At r = 13di, viz presents a mild peak

corresponding to a weak current sheet. Entering the shaded area and up to r∼ 19di,

vix is negative along T2 consistent with the stream of ions described in Figure 6.8.

Trajectory T3 is parallel to trajectory T2, and the separation of these trajectories

is 1.5di. Along trajectory T3, Bz and By as well as viz and viy follow approximately

similar behaviours (not shown here). However, the local variations along T2 are

more pronounced as this trajectory crosses through the centres of multiple struc-

tures. Panel (f ) shows the derivative correlation of the magnetic field and velocity

components for trajectories T2 (black) and T3 (cyan). Trajectory T2 shows stronger

positive and negative correlations in all components due to the transit through the

structures. For the x-component, the peak of positive correlation corresponds to the

transit through the flux rope which is associated with particle acceleration.

6.4 Discussion and Conclusions
The nonlinear interaction of the anisotropic waves self-consistently creates Alfvénic

turbulence and generates magnetic-field and current-density structures such as cur-

rent filaments and current sheets as part of the turbulent cascade (Howes and Niel-
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son, 2013b; Howes, 2015a, 2016). The initial scaling between L∥ and LD, for the

magnetic structures, is L∥ ∼ L
2/3
D . At t = tR, the magnetic structures satisfying

V > d3
i maintain an anisotropy consistent with the initial conditions and follow a

L∥ ∼ L0.7
D scaling. Although theoretical predictions including those based on inter-

mittency (Boldyrev and Perez, 2012; Boldyrev and Loureiro, 2019), kinetic simula-

tions (Cerri et al., 2017b, 2019), and observations in the solar wind (Wang et al.,

2020) suggest the scaling L∥ ∼ L
2/3
D at sub-proton scales, our analysis of structures

with V ≤ d3
i is more consistent with an isotropic scaling L∥ ∼ LD which has been

observed in hybrid simulations as well (Franci et al., 2018; Arzamasskiy et al., 2019;

Landi et al., 2019). The change of anisotropy over time (Figure 6.3) is also ob-

served in the evolution of the 2D reduced power spectral density (Figure 6.5). The

anisotropy initially decreases due to the change in the mean value of the distribution

of cross-section diameters and of the elongation of the magnetic structures.

The spectral index of the corresponding perpendicular 1D power spectrum of the

magnetic-field fluctuations in the kinetic range varies between −3 and −4. Mean-

while, the spectral index of the parallel power spectrum of the magnetic-field fluc-

tuations varies from −2 in the interval 0.1 ≲ k∥di ≲ 0.3 to −4 at sub-proton scales.

These results show that the simulation develops an anisotropic turbulent cascade and

the associated 3D structures predicted to contribute to reconnection as a dissipation

mechanism for turbulence.

The critical-balance theory of Alfvénic turbulence has been tested using gyrokinetic

simulations (Howes et al., 2008a; TenBarge and Howes, 2012) and 3D PIC simu-

lations (Grošelj et al., 2018). The evolution and morphology of 3D reconnection

events, starting from a Harris current-sheet configuration, have been studied at ki-

netic scales (Hesse et al., 2001b; Pritchett and Coroniti, 2001; Wiegelmann and

Büchner, 2001; Lapenta et al., 2006; Vapirev et al., 2013; Liu et al., 2013; Muñoz

and Büchner, 2018; Lapenta et al., 2020), as has been the effect of turbulence on

the development of reconnection events (Daughton et al., 2014; Lapenta et al., 2015;

Pucci et al., 2017; Papini et al., 2019b). However, little attention has been given

to the occurrence of small-scale reconnection as a product of the turbulent cascade
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in a fully 3D geometry. Our study contributes to the understanding, identification,

and to the knowledge of the geometry of these reconnection events.

We identify three regions that fulfil our set of indicators C1 through C4 for Nth = 3

and have an equivalent volume greater than 1d3
i . We also illustrate the working of

our method in a subset of our simulation domain. We inspect the time evolution

of the magnetic field lines and observe the change of connectivity between a highly

twisted flux rope and a less twisted flux rope. We find a good agreement between

the geometry of the flux ropes formed by turbulence in our simulation with the

flux ropes formed by the turbulent disruption of a Harris current sheet (Daughton

et al., 2011). We observe the occurrence of a complex reconnection event in which

the region of changing connectivity (x-region) has a volume of ∼ 12.5d3
i . This event

dissipates turbulent fluctuations in current structures of order a few di which are

smaller than the smallest events recently observed in the solar wind (Phan et al.,

2020) and different from the events observed in space which are mostly very large

interface regions between plasmas (Phan et al., 2006; Gosling, 2007).

Recent studies show the presence of reconnection events in the turbulent mag-

netosheath (Phan et al., 2018; Stawarz et al., 2019). Most of these events are

reconnection-only events in which there are no associated ion flows. Numerical

studies support the occurrence of predominantly electron-only events from a turbu-

lent cascade (Franci et al., 2022). Kinetic-scale current sheets whose thickness is

∼ 0.1 − 10di have been recently identified in the solar wind (Lotekar et al., 2022).

The occurrence of electron-only reconnection (Phan et al., 2018; Stawarz et al.,

2019), electron-scale turbulent fluctuations and kinetic scale current sheets suggests

that events as the one we describe take place in the solar wind as well as in the

magnetosheath.

Although there is good agreement between studies using the Harris configuration and

solar-wind observations (Mistry et al., 2016), our event is considerably more complex

than the idealised steady and non-turbulent Harris current-sheet configuration often

invoked to study magnetic reconnection. The shape of our reconnection region is
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asymmetric, and the regions in which particle heating and acceleration occur are

mostly associated with current filaments rather than current sheets. This suggests

that the twist of the flux ropes plays a crucial role for the particle heating in our

simulation. In addition, this finding supports the notion that reconnection events

occur in the solar wind through small-scale flux ropes (Crooker et al., 1996; Moldwin

et al., 2000).

We trace 1D artificial-spacecraft trajectories across the simulation domain to study

the fluctuations in the bulk quantities ni, vi,e, Ti,e, and B. These samplings may

facilitate direct comparisons between our simulations and spacecraft observations in

the solar wind. Our trajectories T1 and T3 pass near the identified reconnection

region, and our trajectory T2 crosses through the centre of the x-region. We observe

the presence of slow-mode-polarised fluctuations as anti-correlated fluctuations in ni
and |B|, rotations in the magnetic field, and changes in the sign of the correlation be-

tween the magnetic field and the ion velocity consistent with reconnection exhausts

observed in the solar wind (Gosling, 2012). Our artificial-spacecraft trajectory T2

(panel (d) in Figure 6.10) shows an enhancement in all bulk quantities, which may

be associated with a reconnecting flux rope. Moreover, this trajectory suggests that

the encounter of a magnetic minimum followed by an enhancement in all bulk quan-

tities may be associated with the encounter of an x-region and a flux rope. Such

a pair x-region/flux-rope corresponds to the traditional pair x-point/o-point in 2D

models of reconnection. It would be worthwhile to compare our simulated spacecraft

trajectories with spacecraft observations of small-scale reconnection events and re-

connection exhausts in the solar wind. The instrumentation onboard Solar Orbiter

and Parker Solar Probe has the appropriate time resolution for such a comparison.

In our reconnection event, ions and electrons behave differently as shown in Fig-

ure 6.8. Both ions and electrons move towards and away from the x-region but in

different directions. Our trajectories in the vicinity of the reconnection event suggest

that the slow-mode-like features associated with the partial rotation in the magnetic

field and the change in the vi-B correlation are also present in these spontaneously

created small-scale events.
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The finite number of particles per cell has an important effect on the determination of

coherent regions of strong E∥, our indicator C5. Therefore, C5 is not a good indicator

when the number of particles per cell is ≲ 100. Although 2D studies of turbulence,

magnetic reconnection (Franci et al., 2020), and plasma instabilities (Hellinger and

Štverák, 2018) are able to use considerably larger numbers of particles per cell (∼

1000), our work requires the third dimension in order to model the turbulence and

the complex reconnection geometry more appropriately (Howes, 2015b; Lazarian

et al., 2020). Nonetheless, the increasing computational power of high-performance-

computing facilities will allow us to perform increasingly more accurate 3D PIC

simulations and to test all of our indicators over a wider range of parameters. Before

these methods become computationally viable, divergence-cleaning of the electric

field (Jacobs and Hesthaven, 2009) is a possible route to reduce the effect of particle

noise.



Chapter 7

Energy transport during 3D

small-scale reconnection driven by

anisotropic turbulence using PIC

simulations

In this chapter, I present the framework that we derive from a two-fluid approach

based on the Boltzmann equation to study the spatial energy transfer associated with

3D magnetic reconnection events that occur self-consistently in plasma turbulence.

In particular, I present the results for the reconnection event that involves two

reconnecting flux ropes presented in Chapter 6. We discuss the agyrotropy patterns

in the reconnection event and compare them with previous 2D studies. We compare

the power density terms in the two-fluid energy equations with standard energy-

based damping, heating, and dissipation proxies. Our findings suggest that the

electron bulk flow transports thermal energy density more efficiently than kinetic

energy density. Moreover, in our turbulent reconnection event, the energy density

transfer is dominated by plasma compression. This is consistent with turbulent

current sheets and turbulent reconnection events, but not with laminar reconnection.

This work is currently under revision at The Astrophysical Journal under the title
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Energy transport during 3D small-scale reconnection driven by anisotropic turbulence

using PIC simulations.

7.1 Introduction
Energy dissipation in collisionless plasmas is a longstanding fundamental physics

problem. Although it is well known that magnetic reconnection and turbulence

are coupled and transport energy from system-size scales to sub-proton scales, the

details of the energy distribution and energy dissipation channels remain poorly

understood. Especially, the energy transfer and transport associated with 3D small-

scale reconnection that occurs as a consequence of a turbulent cascade is unknown.

Important progress has been made to understand heating and energy dissipation

(e.g., Gary, 1999; Howes et al., 2017; Klein et al., 2017; Matthaeus et al., 2020).

Landau damping, ion-cyclotron damping, and stochastic heating are considered col-

lisionless dissipation mechanisms that transfer energy from the electromagnetic field

to the plasma particles (Marsch et al., 2003; Kasper et al., 2008; Chandran et al.,

2010, 2013). The dissipation occurs predominantly in intermittent structures which

form in plasma turbulence (Matthaeus et al., 1999; Kiyani et al., 2015).

The energy transfer and transport associated with magnetic reconnection has been

addressed by previous studies that focus on idealized 2D Harris current-sheet re-

connection (Yin et al., 2001; Schmitz and Grauer, 2006; Wang et al., 2015; Pezzi

et al., 2021), 3D laminar collisionless reconnection in the context of magnetospheres

(Wang et al., 2018), and 2D reconnection in turbulent plasmas (Fadanelli et al.,

2021). In this work, we use particle-in-cell (PIC) simulations to study the energy

transfer associated with 3D small-scale magnetic reconnection that self-consistently

occurs as a consequence of an anisotropic turbulent cascade. In Section 7.2, we

present our theoretical framework to study the energy transfer and transport in our

plasma simulations. In Section 6.2, we present our simulation results emphasizing

the presence of agyrotropy in Section 7.3.1 and the energy distribution in Section

7.3.2. In Section 7.4, we discuss the implications of our results and in Section 6.4

we provide conclusions for this chapter.
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7.2 Energy Transfer and Transport
The total energy in a closed volume of plasma is partitioned amongst the particles

and the electromagnetic fields. The bulk kinetic energy density of the particle species

s is associated with the first velocity moment of the particle velocity distribution

function fs = fs(x,v, t) and therefore with the bulk flux of the particles. The thermal

energy density is associated with the second velocity moment and thus the pressure

of the particles. The evolution of fs follows the Boltzmann equation

∂fs
∂t

+v ·∇fs+ qs
ms

(E+v ×B) ·∇vfs =
(
∂fs
∂t

)
c

, (7.1)

where v is the velocity, E is the electric field, B is the magnetic field, qs is the

charge and ms is the mass of the particle of species s (see Chapter 2). The term

(∂fs/∂t)c on the right-hand side represents the change in the distribution function

due to collisions. This term includes individual correlations between fields and par-

ticles, based on the particles’ individual Coulomb potentials (Klimontovich, 1997).

To study the energy transport, we derive a set of energy equations based on the

Boltzmann equation (7.1). Considering the macroscopic quantities ns (Eq. 2.12),

us (Eq. 2.13), Ps (Eq. 2.14) and defining the heat flux vector

hs ≡ 1
2ms

∫
fs(v −us) · (v −us)(v −us)d3v. (7.2)

We define the first moment of the collision term in Eq. (7.1) as

Ξ1 =
∫

v
(
∂fs
∂t

)
c

d3v, (7.3)

and the second moment as

Ξ2 =
∫

vv
(
∂fs
∂t

)
c

d3v. (7.4)

With these definitions, we compute the first and second moments of Eq. (7.1); see

Appendix B for details. The first moment of Eq. (7.1) yields the kinetic energy
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equation

dεks
dt

+us ·∇ ·Ps+ εks∇·us− qsns(us ·E) = Ξks , (7.5)

where d/dt= ∂/∂t+(us ·∇) is the total time derivative,

εks = 1
2nsms(us ·us) (7.6)

is the kinetic energy density, and

Ξks =msus ·Ξ1
s (7.7)

represents the irreversible kinetic energy transfer. The terms us · ∇ · Ps, εks∇ · us,

and the advective term (us ·∇)εks are associated with the term v ·∇fs in Eq. (7.1).

Therefore, these terms represent kinetic energy density transport due to the free

streaming of particles. Conversely, the term −qsns(us · E), associated with the

electric field, represents the energy density transfer between particle bulk flows and

fields. The second moment of Eq. (7.1) yields the thermal energy equation

dεths
dt

+∇·hs+∇us : Ps+ εths ∇·us = Ξths , (7.8)

where

εths = 1
2Tr(Ps) (7.9)

is the thermal energy density, and

Ξths = −msus ·Ξ1 + ms

2 Tr
(
Ξ2) (7.10)

represents the irreversible thermal energy transfer. The term Tr stands for the

trace of the tensor, and ∇us : Ps is the double contraction of the strain tensor

∇us with Ps. The terms ∇ · hs, ∇us : Ps, and εths ∇ · us, associated with v · ∇fs
in Eq. (7.1), represent thermal energy density transport due to the free streaming
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of particles. The terms on the left-hand sides of Eqs. (7.5) and (7.8) describe

collisionless processes, whereas the terms on the right-hand sides describe collisional

processes in the plasma which generate an increase in the plasma entropy.

Equations (7.5) and (7.8) alone do not completely capture the energy conservation

because they do not account for the rate of change in the electromagnetic energy

density ∂εem/∂t, nor the electromagnetic energy flux ∇·S, where

εem = 1
2

(
1
µ0

B ·B+ ϵ0E ·E
)

(7.11)

is the electromagnetic energy density and S = E×B/µ0 is the Poynting vector. The

expression that account for these changes is the Poynting theorem

∂εem

∂t
+∇·S+J ·E = 0 (7.12)

Nevertheless, equations (7.5) and (7.8) are exact and describe the energy density

transfer and transport as well as the energy density transfer between fields and par-

ticles. Before tackling the energy transfer problem, we explicitly define the following

three terms, which are often used interchangeably in the literature:

• Heating is any increase in εths , and cooling is any decrease in εths . Heating can

be either reversible or irreversible.

• Damping is any decrease in εem, and growth is any increase in εem. Damp-

ing/growth can be either reversible or irreversible.

• Dissipation is any irreversible energy transfer leading to an increase in εths .

Dissipation is challenging to quantify directly both in space measurements and in

simulations. Nonetheless, recent studies (Pezzi et al., 2019; Matthaeus et al., 2020;

Pezzi et al., 2021) show that in collisionless plasmas energy-based dissipation proxies,

such as the Zenitani parameter (Zenitani et al., 2011)

Dz,s = J · (E+us×B)−nsqs(us ·E) (7.13)
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and the strain-pressure interaction ∇us : Ps (Yang et al., 2017) are spatially cor-

related with non-dimensional measures of non-thermal distribution function (Kauf-

mann and Paterson, 2009; Greco et al., 2012; Liang et al., 2019) and plasma agy-

rotropy (Scudder and Daughton, 2008). In Eq. (7.13), J = ∑
s=i,e qsnsus is the

electric current density.

These energy-based dissipation proxies are effectively power density terms, derived

from the left-hand sides of our Eqs. (7.5) and (7.8). According to our definitions,

Dz,s is a damping measure, since it quantifies the energy transfer from the electro-

magnetic fields into bulk kinetic energy and vice versa.

The strain-tensor interaction has gyrotropic and agyrotropic contributions. We de-

compose the pressure tensor as Pij,s = psδij +Πij,s, where

ps =
3∑
i=1

Pii,s/3 (7.14)

is the isotropic scalar pressure and

Πij,s = (Pij,s+Pji,s)/2−psδij (7.15)

is the deviatoric pressure. Likewise, the strain-rate tensor ∇us can be expressed as

∇uij,s = θsδij/3+Dij,s, where θs = ∇·us represents the dilatation term and

Dij,s = 1
2

(
∂ui,s
∂xj

+ ∂uj,s
∂xi

)
− 1

3θsδij (7.16)

represents the symmetric traceless strain-rate tensor (Yang et al., 2017). Thus,

the strain-tensor interaction, which is a heating/cooling proxy according to our

definitions, is

∇us : Ps = psθs+Πij,sDij,s, (7.17)

where the first term on the right-hand side is known as p-θs, and the second term

on the right-hand side is known as Pi-Ds(Yang et al., 2017). For comparison with
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previous studies (Pezzi et al., 2021; Bandyopadhyay et al., 2020), in Section 7.3.3,

we compute Dij,s, psθs, and Πij,sDij,s and compare them with the energy transfer

and transport terms, −nsqs(us · E) and ∇us : Ps, in Eqs. (7.5) and (7.8). This

framework can be used to quantify the energy transfer from in-situ observations. In

appendix C, we present an extension of Eqs. (7.5) and (7.8) in terms of distribution

functions for each species s.

7.2.1 Reconnection Event Overview
For the current analysis, we use the same simulations as described in Chapter 6

the energy analysis. Panel a) in Figure 7.1 shows the volume rendering of the

current density in our simulation domain at the simulated time t= 120ω−1
pi . Current

filaments that form in the turbulent cascade are mostly elongated along the direction

of the background magnetic field. At this time in the simulation, we apply the set

of indicators presented in Section 6.3.3 to identify and locate reconnection sites. We

select the reconnection event that we studied in Section 6.3.3, which involves two

reconnecting flux-ropes as shown in panel b) of Figure 7.1. The magnetic-field lines

are colour-coded with |B|. The magnetic flux-ropes contain an intense magnetic

field, especially the lower flux-rope which is more twisted and has a smaller radius

than the upper flux-rope. Conversely, the magnetic field between the flux-ropes is

weak. The cuts in panel b) show Jz in the xy simulation plane. For our analysis of

this event, we apply a 2D cut in the xy-plane at z = 77di. Panel c) of Figure 7.1

shows the magnetic-field lines of the field components in the xy-plane, i.e., (Bx,By)

as black contours. Panel c) illustrates the complexity of the magnetic topology in the

region of interest. For our energy analysis, we select a volumetric sub-region of size 10

d3
i around the identified reconnecting region. The green square in panel c) highlights

the intersection of the selected sub-region with the central 2D cut from panel b).

Even though the background field is in the z-direction, the current structures are

not exactly aligned with the z-direction. Instead, the geometric features of the

reconnection event are aligned with the plane perpendicular to the current sheet

that sustains the magnetic gradient. Therefore, we determine a reference frame that

is aligned with the main axis of the current sheet. We determine the direction of
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a)

b)

c)

Figure 7.1: Spatial context of the reconnection event within the simulation domain.
Panel a) shows a volume rendering of |J|. Panel b) shows the 3D mag-
netic field lines colour-coded with |B|. On the vertical cuts in panel b), we
show Jz. Panel c) shows the magnetic field lines in the xy-plane. The black
contours show in-plane magnetic-field lines. The green square highlights the
size and position of the region for the energy analysis.

the main axis of the current sheet by 3D rendering Jz and measuring the inclination

of the coherent structure that crosses the point x= 13.5di and y = 21.5di in the xy-

plane. We then apply a coordinate transformation from the reference frame (RF)

(x,y,z) to a new RF (r,p,a) aligned with the main axis of the current sheet. The unit

vectors of this RF are (r̂, p̂, â). In this RF, â is anti-parallel to the main axis of the

current sheet, p̂ is an arbitrary vector in the plane perpendicular to â, and r̂ is the

vector that completes the right-handed coordinate system. Since the components r

and p are in the plane perpendicular to the current structure, we denote them as

the in-plane components.

In the following analysis, we use the RF (r,p,a) and select a squared-shape region
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a) b) c) d)

Figure 7.2: 2D cuts in the rp-plane at simulation time t = 120ω−1
pi . a) Magnetic field

magnitude |B|/B0. The black contours represent the in-plane magnetic-field
lines, and the black stars represent two x-points. b) Out-of-plane component
of the magnetic field, (Ba −B0)/B0. The black arrows in this panel represent
the in-plane magnetic vectors (Brp). c) Out-of-plane electron speed ua,e/VA,i.
The black arrows in this panel represent the in-plane electron velocity vectors
(vrp,e/VA,i). d) Out-of-plane ion speed ua,i/VA,i. The black arrows in this
panel represent the in-plane ion velocity vectors (vrp,i). In all panels, the
black square outlines the diffusion region.

of edge length 10 di in the rp-plane similar to the green square in panel c) of Figure

7.1. Panel a) in Figure 7.2, shows the magnetic field magnitude in the region of

interest normalised to B0. The black contours are the in-plane magnetic-field lines.

Panel b) in Figure 7.2 shows (Ba−B0)/B0 where Ba is the out-of-plane component

in the magnetic field. We subtract the background magnetic field to improve the

visibility of the multipolar configuration of this component. The black arrows in this

panel represent the in-plane magnetic-field vectors Brp = Brr̂ +Bpp̂. In order for

reconnection to occur, the in-plane components of the magnetic fields of reconnecting

structures must have different directions. The thin structures of (Ba−B0) ≈ 0 that

separate regions of opposite in-plane magnetic field vectors are effectively magnetic

separatrices. The in-plane magnetic field lines in panel a) along with the direction

of the in-plane magnetic-field vectors suggest the presence of two x-points which we

mark with two black stars, one located at r = 5.8di and p = 6.6di, and the other

at r = 6.7di and p = 6.2di. The magnetic configuration is complex, and the black

square outlines the central region in which reconnection occurs. Within this region,

we do not identify a magnetic null region nor a region of sustained uniform magnetic
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field. From now on, we refer to the region enclosing the x-points as the diffusion

region. Since transverse 2D cuts to 3D magnetic flux-ropes resemble the geometry

of magnetic islands, we now refer to the quasi-circular magnetic-field lines in panel

a) as magnetic islands.

Panel c) shows the out-of-plane component of the electron velocity ua,e, normalised

to the ion Alfvén speed vA,i. The red colour indicates electrons moving out of

the plane, whereas the blue colour indicates electrons moving into the plane. The

black arrows of this panel represent the in-plane electron velocity vectors urp,e =

ur,er̂ +up,ep̂. Within the region of interest, there are counter-streaming electrons

following the separatrices. Likewise, we locate electrons streaming out of the plane

through the diffusion region. Within the magnetic islands, the electrons stream

into the plane. In most of the magnetic islands, the electrons follow quasi-circular

orbits due to their magnetization. However, in the magnetic island centered at

r = 4.5di and p = 2.2di, the electrons demagnetise and traverse into the magnetic

island connecting with the stream of electrons at the edge of the magnetic island.

Panel d) shows the out-of-plane component of the ion velocity ua,i, normalised to

vA,i. The black arrows in this panel represent the in-plane ion velocity vectors

urp,i = ur,ir̂ + up,ip̂. Within the diffusion region, the out-of-plane ion velocity is

small, which suggests that the ion motion is mostly constrained to the plane. The

in-plane motion, however, is considerable, and the ions move across the separatrices

since they are demagnetised.

7.3 Results

7.3.1 Particle Agyrotropy in the Diffusion Region
During the reconnection of magnetic flux-ropes, the plasma expansion/contraction

is not isotropic. Therefore, at kinetic scales, the plasma pressure of each species can

develop anisotropy and agyrotropy. Figure 7.3 shows our pressure terms according

to Eqs. (7.14) and (7.15) for electrons and ions, normalised to p0 = n0miv
2
A,i. Panels

a) and e) show the isotropic scalar pressure for electrons pe and ions pi. For both

species, the scalar pressure is greater inside the magnetic islands than outside due to
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the large density of particles (not shown here). Likewise, pe and pi display gradients

along and across the separatrices. We find that pe is lower in the region between the

magnetic islands as well as between the x-points compared to inside the magnetic

islands.

Panels b), c), and d) of Figure 7.3 show the off-diagonal components of the electron

pressure tensor according to Eq. (7.15): Πra,e, Πpa,e, and Πpr,e. The average absolute

values of the off-diagonal terms ⟨|Πra,e|⟩ and ⟨|Πpa,e|⟩ are about 10% of ⟨pe⟩. Πra,e

and Πpa,e present a strong dipole-like configuration centered on the magnetic islands.

There is a shallower, yet visible, gradient in Πra,e, Πpa,e, and Πpr,e in the region

between the islands as well as in the diffusion region. Conversely, Πpr,e exhibits

a quadrupolar configuration within the magnetic islands. The non-zero values of

Πra,e, Πpa,e, and Πpr,e show that the plasma is agyrotropic, suggesting that small-

scale kinetic processes occur. Similar patterns are reported along the separatrices

of 2D collisionless reconnection (Yin et al., 2001; Schmitz and Grauer, 2006; Wang

et al., 2015) and laminar 3D collisionless reconnection (Wang et al., 2018). However,

unlike previous studies, we observe the same patterns within the magnetic islands of

turbulent 3D magnetic reconnection. This is a fundamental difference between the

reconnection that occurs in turbulence and steady-state reconnection that occurs in

Harris current-sheet configurations.

Panels f), g), and h) of Figure 7.3 show the off-diagonal components of the ion

pressure tensor according to Eq. (7.15): Πra,i, Πpa,i, and Πpr,i. The off-diagonal

terms for ions, unlike electrons, have a less coherent pattern attached to the in-plane

magnetic field topology. The reason for this detachment lies in the de-magnetization

of the ions at these scales. Nevertheless, there is a gradient of these terms suggesting

agyrotropy effects in the ion dynamics as well.

Figure 7.4 shows a magnification of the region enclosed by the black square in Figure

7.2. Panels a) to d) show a magnification of the electron pressure terms from panels

a) to d) of Figure 7.3. To make a direct comparison with previous 2D studies, panels

e) to h) show sketches summarizing known patterns associated with the electron
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a) b) c) d)

e) f) g) h)

Figure 7.3: 2D cuts of the pressure tensor components in the rp-plane at the simulation
time t = 120ω−1

pi . a) Electron scalar pressure pe/p0. Off-diagonal components
of the electron pressure tensor: b) Πra,e/p0, c) Πpa,e/p0, and d) Πpr,e/p0. e)
Ion scalar pressure pi/p0. Off-diagonal components of the ion pressure tensor:
f) Πra,i/p0, g) Πpa,i/p0, and h) Πra,i/p0.

pressure components that emerge from 2D collisionless reconnection in the absence

of a guide field (Yin et al., 2001; Schmitz and Grauer, 2006; Wang et al., 2015). In

this region, unlike within the magnetic islands of Figure 7.3, our simulation results of

the electron pressure patterns match those patterns shown in the sketches in panels

e) to h) in the region where the magnetic field has a local minimum according to

panel a) in Figure 7.1. However, below the x-point located at r= 5.8di and p= 6.6di,

the pattern no longer corresponds to the sketched expectations. Moreover, Πpr,e is

less coherent, and we do not recognise a clear quadrupolar configuration as in the

sketches for the 2D case.
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a) b) c) d)

e) f) g) h)

Figure 7.4: Magnification of the region delimited by the black square in Figure 7.2 in the
rp-plane at the simulation time t = 120ω−1

pi . a) Electron scalar pressure pe.
Off-diagonal components of the electron pressure tensor: b) Πra,e, c) Πpa,e,
and d) Πpr,e. Panel e) shows a sketch of the patterns of the scalar pressure
emerging in 2D simulations of reconnection, and f) to h) show sketches of
the off-diagonal terms of the electron pressure based on 2D Harris current
sheet reconnection without guide field (Yin et al., 2001).

7.3.2 Energy Transfer and Transport
We use the power density expressions for the kinetic energy in Eq. (7.5) and thermal

energy in Eq. (7.8) to describe the energy transfer and transport associated with

our reconnection event. To compute the partial time derivatives of a quantity, we

use a central-difference approach. Since the Alfvén transient time is ∼ 100 ω−1
pi , a

time resolution of 6 ω−1
pi is sufficient to capture the relevant dynamics of interest.

To estimate the spatial derivatives, we use a standard cell-centred first-neighbours

approach. We calculate all scalar products cell-wise in the simulation domain. Panels

a) to e) of Figure 7.5 show 2D cuts of each term in Eq. (7.5) for electrons, normalised

to ∆ε0 = ωpimiv
2
A,i.
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Panel a) shows, at the simulation time t = 120ω−1
pi , the total time derivative of the

kinetic energy density dεke/dt. The domain exhibits considerable temporal changes

of the kinetic energy density at the centers of the magnetic islands. We also detect

negative dεke/dt at the edge of the top-left magnetic island and positive dεke/dt in the

diffusion region. Conversely, there is almost no change in εthe in the region between

the x-points.

Panel b) shows the scalar product ue · ∇ · Pe which quantifies the change of kinetic

energy due to the advection of the pressure tensor. This energy change is transported

by the electron flow. The quantity ue · ∇ · Pe is also known as the pressure work

(Fadanelli et al., 2021). There is a strong conversion of energy associated with the

pressure work at the center of the magnetic islands. However, the energy change

associated with this term is around 10 times greater than the local dεke/dt. Unlike

dεke/dt, at the edge of the top-left magnetic island, there is a strong gradient of

ue · ∇ · Pe from the left-hand side of the magnetic island to the right-hand side. In

addition, ue ·∇ ·Pe has a local minimum in the region between the x-points.

Panel c) shows εke∇·ue which represents the kinetic energy change due to divergent

or convergent flow patterns in the electron bulk velocity. Like for the previous terms,

εke∇ · ue is greater at the center of the magnetic islands than in the region between

them. There is no noticeable gradient of this terms between the x-points. Although

panels a), b), and c) show similar patterns in their signs, there are local differences,

especially in the diffusion region.

Panel d) shows −qene(ue · E) which represents the energy exchange between the

electrons and the electric field. We find a considerable energy conversion, not only

within the magnetic islands but also in the region between the islands as well as in

the region between the x-points. In the region between the x-points, the electrons

gain kinetic energy from the electric field. Along the separatrix next to the top-

left island, the electron bulk motion is decelerated by the electric field. Comparing

panels b) and d), ue ·∇·Pe and −qene(ue ·E) balance with each other in the diffusion

region.
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a) b) c) d) e)

f) g) h) i) j)

Figure 7.5: 2D cuts in the rp-plane at the simulation time t = 120ω−1
pi . Panels a) to

e): kinetic power density terms for electrons. Panels f) to j): thermal power
density terms for electrons. All quantities are normalised to ∆ε0 = ωpimiv

2
A,i.

Panel e), shows Ξks which we compute as the sum of all terms at the left-hand side

of Eq. (7.5). There are regions with positive and negative Ξke within the magnetic

islands. On the contrary, Ξke is predominately positive within the diffusion region

and along the separatrices. Although we do not include binary collisions in our

code explicitly, we acknowledge that the finite number of macro-particles affects

the system in a way similar to collisions and leads to an undersampling of non-

thermal fine structure in the velocity distribution function, which generates a loss of

information and thus increase in entropy. We note, however, that this effect occurs

earlier in PIC simulations with a finite number of particles than in the real solar

wind. We conjecture that the impact is ultimately comparable.

Panels f) to j) of Figure 7.5 show 2D cuts of each term in Eq. (7.8), normalised

to ∆ε0. Panel f) depicts dεthe /dt. As in the kinetic-energy case, dεthe /dt has local

extrema associated with the magnetic islands. The main change in dεthe /dt is due to

the advective term (ue ·∇)εthe . By direct comparison with panel b), we note similar
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power density patterns between dεthe /dt and ue ·∇ ·Pe.

For the heat-flux term ∇·he, we do not directly compute ∇·he as a particle moment,

but use a Hammett–Perkins approach (Hammett and Perkins, 1990) to estimate its

contribution. This approach has been successfully applied in previous collisionless

reconnection studies (Wang et al., 2015; Ng et al., 2015, 2017). In this framework,

we estimate

∇·he ≈ vthe
1
2 |k0|Tr [Pij,e−⟨Pij,e⟩− δij(ne−⟨ne⟩)⟨Te⟩] , (7.18)

where vthe =
√

2kBTe/me is the thermal speed of the electrons and ⟨...⟩ represents

the spatial average over the sub-domain. The wave number k0 =
√

3/|Ls| is a rep-

resentative wave number associated with a sub-domain of volume Vs = L3
s where

Ls = 10.08di, which we select as the region where we study the energy conversion

during the reconnection event. Panel g) shows our estimation of ∇ · he. There is

a positive power density contribution from particle heat flux inside the magnetic

islands. Conversely, there is a negative contribution in the regions between the

magnetic islands.

Panel h) depicts the energy transfer ∇ue : Pe between kinetic and thermal energies.

This term has contributions from the diagonal elements of the tensors associated

with the isotropic energy transport and from the off-diagonal elements that quantify

the agyrotropy in the plasma. There is positive ∇ue : ∇Pe in the region between the

magnetic islands which is associated with counter-streaming electrons. We locate

an x-like structure centered in the region where the magnetic field strength exhibits

a local minimum. In the region between the x-points as well as to the left of the

diffusion region, ∇ue : Pe < 0.

Panel i) shows the thermal energy transport εthe ∇·ue associated with the compres-

sion/expansion of the electron flow. At first glance, the positive/negative patterns in

εthe ∇·ue seem very similar to the patterns in ∇ue : Pe. The reason for this similarity

is that the main energy transport in ∇ue : Pe is associated with the contribution of

diagonal elements as we show in Section 7.3.3. However, we find local differences
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due to the agyrotropic contributions. From all terms on the left-hand sides of Eqs.

(7.5) and (7.8), only the terms associated with the strain tensor present an extended

asymmetric x-point-like structure in the diffusion region. Comparing panels c) and

i), εthe ∇·ue is on average greater and forms broader structures than εke∇·ue.

Panel j), shows Ξths , which we compute as the sum of all terms on the left-hand

side of Eq. (7.8). This energy transfer is significant as the different terms on the

left-hand side of Eq. (7.8) do not sum to zero.

In Figure 7.6, we show vertical 1D cuts of the power density terms along the p-

direction at r= 5.58di to visualise the relation between the different terms for plasma

electrons. We further show a magnification of the region delimited by the black

square from Figure 7.2. Panel a) shows the kinetic power density terms in Eq. (7.5).

We observe that the fluctuations in dεke/dt (green line) and εke∇ · ue (black line)

are negligible compared with ue · ∇ · Pe (red line) and −qeneE · ue (yellow line).

However, there is a noticeable disturbance in all quantities in the range p = 6.96di
to p= 7.84di which is located in the region of the diffusion region where the magnetic

field is nearly zero. Along the 1D cut, ue ·∇·Pe and −qeneE ·ue are anti-correlated.

This anti-correlation breaks down when the disturbances in dεke/dt and εke∇ · ue
occur. For this panel, the curve of Ξks (blue line) changes sign when crossing the

x-point.

Panel b) shows the thermal power density terms in Eq. (7.8). Comparing panels a)

and b), we observe that the fluctuations in the thermal power density terms are more

pronounced than those in the kinetic power density. In panel b), the fluctuations

in dεthe /dt (green line) and ∇ · he (red line) are negligible compared with ∇us : Pe

(black line) and εthe ∇·ue (yellow line). Unlike in the kinetic power density case, the

contributions from all terms in Eq. (7.8) are either positive or negative at the same

location, showing no anti-correlation between the dominant terms. We note that

Ξthe (blue line), unlike Ξke , is positive on both sides of the x-point.



7.3. RESULTS 153

a)

b)

Figure 7.6: 1D cuts of the power density terms along the p̂-direction at r = 5.58 di and
at the simulation time t = 120ω−1

pi . a) Kinetic power density terms in Eq.
(7.5). b) Thermal power density terms in Eq. (7.8). The vertical dashed
line represents the crossing of the x-point r = 5.8di and p = 6.6di.
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7.3.3 Comparison with Damping and Heating Proxies
In recent studies (Yang et al., 2017; Pezzi et al., 2019; Matthaeus et al., 2020; Pezzi

et al., 2021), the collisionless energy dissipation problem is tackled by studying

quantities such as the Zenitani parameter defined in Eq. (7.13) and the strain-

pressure interaction defined in Eq. (7.17). We also explore these damping and

heating proxies for comparison with our methods. Figure 7.7 depicts 2D cuts in the

rp-plane and 1D cuts of these damping and heating proxies. Panel a) shows Dze.

Similar to our kinetic and thermal power density terms, the magnetic islands present

strong variations of Dze. On the contrary, in the diffusion region, we see a coherent

positive Dze signature.

Panel b) shows pθe. The positive/negative patterns of this quantity are almost iden-

tical to our patterns of ∇ue : Ps (panel h) in Figure 7.5. This similarity illustrates

that the main contribution to the strain-tensor interaction comes from the diagonal

elements of the strain tensor.

Panel c) shows Pi-De. Although the positive/negative patterns in Pi-De are similar

to those in pθe, Pi-De presents clear differences, especially near the null region

where Pi-De has the opposite sign of pθe along the separatrices. Moreover, along

the separatrices, |Pi-De|>Dze and they share the same sign, whereas in the region

between the x-points, Pi-De < 0 and Dze > 0.

Panel d) shows 1D cuts of Dze (blue line), pθe (red line), and Pi-De (black line). We

find that pθe is highly variable and, on average, greater than Dze and Pi-De. This

is considerably different compared with the Harris current-sheet case (Pezzi et al.,

2021) in which Dze is the dominant energy-transfer proxy. However, this behaviour

is consistent with turbulent simulations (Pezzi et al., 2021) and with observations

of turbulent reconnection (Bandyopadhyay et al., 2021).

7.4 Discussion and Conclusions
The type of magnetic reconnection that occurs from a turbulent cascade (Servidio

et al., 2010a; Loureiro and Boldyrev, 2020; Fadanelli et al., 2021; Agudelo Rueda
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a) b) c) d)

Figure 7.7: Damping and heating proxies at the simulation time t = 120ω−1
pi . 2D cuts

in the rp-plane of a) The Zenitani parameter for electrons Dze. b) Diagonal
part of the strain-pressure interaction pθe. c) Off-diagonal part of the strain-
pressure interaction Pi-De. d) 1D cut of these terms like in Figure 7.6.

et al., 2021) presents a more complex geometry of the diffusion region compared to

its laminar counterpart. Likewise, the geometry of the regions with enhanced energy

transport and transfer is more complex. Moreover, in a 3D geometry, the particle

motion along the out-of-plane direction allows energy transfer that 2D geometry

precludes. For instance, the agyrotropic patterns in magnetic islands of 2D recon-

nection (Scudder and Daughton, 2008) are located in the diffusion region outside

the magnetic islands. Conversely, in our 3D case, we observe agyrotropic patterns

in the cross-section of the flux-ropes, which we call magnetic islands.

Since the plasma density is greater in the centers of the magnetic islands, these

regions exhibit a greater plasma pressure compared to outside the islands. Patterns

of agyrotropic plasma pressure are present, not only within the magnetic islands but

also in the regions between them (Figure 7.3).

The non-uniform guide magnetic field present in this reconnection event affects its

geometry. Despite the 3D nature of this event, for the diffusion region in which |B|

is negligible (no guide field), we observe gyrotropic/agyrotropic patterns (Section

7.3.1) similar to those observed in 2D laminar reconnection without guide field (Yin

et al., 2001). However, given the complex geometry of our event, we do not observe

gyrotropic/agyrotropic patterns matching 2D reconnection in the part of the diffu-



7.4. DISCUSSION AND CONCLUSIONS 156

sion region below the x-points. Moreover, we do not observe a quadrupolar pattern

of the in-plane component Πpr,e (Figure 7.4d) within the diffusion region which is

characteristic of agyrotropy in 2D reconnection without guide field (Yin et al., 2001).

In the reconnection event that we analyze, although of turbulent nature, the out-of-

plane electron motion is consistent with the 3D shape of electron diffusion regions

observed in laboratory plasmas (Furno et al., 2005; Yoo et al., 2013; Yamada et al.,

2014).

In our event, dεke/dt > 0 along the separatrices, and dεke/dt < 0 in the outer part of

the reconnecting magnetic island (Figure 7.5a). This corresponds to the acceleration

of electrons along the separatrices (Figure 7.5c) and the presence of a stagnation

region. The shear between the flux ropes increases the electron thermal energy and

pressure, and the bulk kinetic energy reduces at the stagnation point.

At the locations of the separatrices, ue · ∇ · Pe > 0 (Figure 7.5b). This suggests

electron streams that increase the electron pressure. Conversely, ue · ∇ · Pe < 0 in

the region between the x-points. This suggests electron streams that reduce the

electron pressure and drive the plasma within the diffusion region to a local thermal

equilibrium. While reconnection is occurring, the high-pressure electrons are allowed

to fill the diffusion region.

Within the diffusion region, the electric field increases the electron kinetic energy

density, and the work done by the electric field on the electrons −qene(ue · E) par-

tially balances with the advection of the electron pressure. This is consistent with

previous studies (Fadanelli et al., 2021).

The irreversible electron energy density change Ξke (Figure 7.5e) is non-zero ev-

erywhere in the vicinity of the reconnecting structures. The quantity Ξke displays

structures with positive and negative values within the magnetic islands, suggest-

ing that collisional processes accelerate and decelerate electron bulk flows within

the magnetic islands. Conversely, in the diffusion region, the positive value of Ξke
indicates that electrons are irreversibly accelerated.
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Unlike previous studies of turbulent reconnection (Fadanelli et al., 2021), we esti-

mate the electron thermal energy transfer associated with each term of Eq. (7.8).

Compared to the case of the kinetic power density, the thermal power density terms

present stronger fluctuations. This is evident when comparing dεke/dt (Figure 7.5a)

and dεthe /dt (Figure 7.5f) as well as comparing εke∇ · ue (Figure 7.5c) and εthe ∇ · ue
(Figure 7.5i). This difference suggests that the electron bulk flows more efficiently

transport thermal energy density than bulk kinetic energy density.

The power density terms associated with the compression/expansion of the flow,

∇ue : Ps and εthe ∇·ue, exhibit a strong coherence with the electron motion along the

reconnection separatrices. The electron streams gain thermal energy (i.e., heating)

associated with the reconnection. This is consistent with simulations of fast collision-

less reconnection at low β (Loureiro et al., 2013) and observations of magnetospheric

reconnection (Chasapis et al., 2017; Holmes et al., 2019). The most important con-

tribution to ∇ue : Ps comes from the isotropic part of the strain-pressure term.

Correspondingly, εthe ∇·ue presents patterns similar to ∇ue : Ps. Moreover, the con-

tribution of the off-diagonal elements in ∇ue and Pe to the thermal energy transport

is less than the isotropic contribution, which is consistent with previous studies of

turbulent reconnection (Fadanelli et al., 2021; Bandyopadhyay et al., 2021). The

terms associated with electron compressibility εthe ∇ · ue and ∇ue : Ps are typically

greater than the heat-flux contribution ∇·hs, suggesting that compressible thermal

energy density transport is important for electrons in collisionless reconnection.

Similar to the irreversible kinetic energy density transfer Ξke , the irreversible thermal

energy transfer Ξthe is non-zero within the reconnecting structures as well as within

the diffusion region. Moreover, electrons irreversibly gain thermal energy density at

the location of the separatrices and within the diffusion region.

Comparing our results with damping (Dz,e) and heating (pθe and Pi-De) proxies

(Pezzi et al., 2021), we observe that fluctuations of pθe inside the diffusion region

(Figure 7.7d) are typically greater than fluctuations of Dz,e and Pi-De. This is

consistent with results from turbulent simulations (Pezzi et al., 2021) and observa-



7.4. DISCUSSION AND CONCLUSIONS 158

tions of turbulent reconnection (Bandyopadhyay et al., 2021), but not with results

from simulations of laminar reconnection (Scudder and Daughton, 2008; Pezzi et al.,

2021). The proxies pθe and Pi-De share the same signs at most locations in our sim-

ulation domain. However, in the diffusion region near the null region, the opposite

signs of Pi-De and pθe suggest that agyrotropic heating mechanisms can emerge

to compensate for any reduction or increase in the thermal energy density due to

isotropic heating mechanisms.

The positive values of Dz,e and the negative value of pθe and Pi-De in the region

between the x-points suggest that electrons gain kinetic energy density from the

fields while losing thermal energy density.



Chapter 8

A method to reconstruct magnetic

field from multi-spacecraft

measurements in preparation of

MagneToRE

In this chapter, I present my contribution to the mission concept “Magnetic Topol-

ogy Reconstruction Explorer” (MagneToRE, Maruca et al., 2021). MagneToRE is

a mission concept that will use a multi-spacecraft set-up consisting of one main

spacecraft (hub) and a large number (∼ 24) of 6U Cubesats (probes) that will carry

magnetometers. The aim of MagneToRE is to study and characterise the interplane-

tary magnetic field at scales corresponding to the inertial range of turbulence. With

this configuration, the mission budget fits into a SMEX or MIDEX envelope within

NASA’s Explorer Program.

In section 8.2, I present the simulations and synthetic data that I use to develop

a magnetic-field topology reconstruction method for a mission like MagneToRE. In

Section 8.2.1, I describe the method itself, and in Section 8.3, I present our results.

Finally, in Section 8.4, I present the discussion and conclusions from this study.
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8.1 The Need of Multi-spacecraft Missions
The evolution of collisional and collisionless plasmas is largely determined by the

topology of the magnetic field. The prediction of the energy cascade quantified by

the spectral slope in the existing plasma turbulence models (see Chapter 4) depends

on the geometric properties of the magnetic structures (Narita, 2018; Zhou et al.,

2020). The geometry of the magnetic structures (e.g., their aspect ratio) is associated

with the turbulence anisotropy. The anisotropy of the turbulent fluctuations that

results from the turbulent cascade determines the energy dissipation channels. For

instance, if k⊥ ≫ k∥, KAW modes can continue the cascade, and the energy is

ultimately dissipated by resonant electrons (Leamon et al., 1999). Conversely, if

k⊥ ≪ k∥, whistler waves or ion-cyclotron waves can continue the energy cascade

(Stawicki et al., 2001), and resonant ions dissipate the energy. Moreover, the role

of magnetic reconnection in the turbulent cascade is a matter of ongoing research

(Franci et al., 2017; Loureiro and Boldyrev, 2017; Vech et al., 2018; Bhat et al., 2021,

see also Chapter 6). To resolve this open question, multi-spacecraft measurements

are required (Büchner, 2007; Viall and Borovsky, 2020).

For over 50 years, single-spacecraft missions have been our best tool to study space

plasma with in-situ measurements. Although single-spacecraft missions have proven

to be crucial for our understanding of plasma phenomena that occur in the solar

wind and the Earth’s magnetosphere, the use of 1D trajectories precludes the correct

representation of the 3D characteristics of the plasma and, crucially, of the magnetic

field.

Single-spacecraft missions have been wisely combined, whenever possible, to study

events from multiple observation points. For instance, Phan et al. (2006) use mea-

surements from ACE, Wind, Geotail, Stereo A, and Stereo B to study large-scale

reconnection events in the solar wind. More recently, Parker Solar Probe and Solar

Orbiter have been used jointly to study the radial evolution of the solar wind prop-

erties (Jannet et al., 2021; Telloni et al., 2021). However, the use of combined single

spacecraft is very limited to certain observation windows defined by the spacecraft

orbits. Therefore, a longitudinal study in which the plasma properties are mea-
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sured over long periods of time spanning multiple days is very challenging with this

approach. To overcome this limitation, multi-point measurement missions such as

THEMIS (Angelopoulos, 2009), Cluster (Escoubet et al., 1997) and Magnetospheric

Multi Scale (MMS, Burch et al., 2016) were designed to study plasma properties

using four spacecraft. Moreover, multi-spacecraft mission concepts (DeForest et al.,

2019; Klein et al., 2019; Maruca et al., 2021) have flourished in recent years as the

need for multi-point measurements has become evident to understand the 3D char-

acter of the mechanisms involved in the energy evolution in collisionless plasmas.

MagneToRE is designed to study the mesoscales, i.e. the inertial range in the tur-

bulent jargon, see Figure 8.1. Although mesoscales are routinely covered but single

space craft, there is no multi-spacecraft mission that has ever catalogued 3D mag-

netic structures and their properties, namely morphology (shape), topology (inter-

linking), and interactions. MagneToRE has three main objetives: i) “Determine the

3-D morphology and topology of mesoscale IMF structures.”, ii) “Determine how

time variations affect the mesoscale IMF” and iii) “Determine how the mesoscale

IMF varies with solar-wind conditions.”. To achieve these objectives, MagneToRE

would carry observation windows of at least one hour on the solar wind for multi-

ple periods over at least one year. Under these time-window conditions, there are

several orbits that can be used. e.g., lunar orbit or L1 orbit to name a few.

8.2 Case Study: Magnetic Field Reconstruction
For the MagneToRE mission, the required reconstruction method must resolve the

geometry and topology of the magnetic field in the solar wind, which is a turbulent

environment (see Chapter 4). In addition to the background turbulence, there is a

broad range of magnetic structures present in the solar wind, e.g., magnetic flux-

ropes (Moldwin et al., 2000; Janvier et al., 2014) and magnetic clouds (Burlaga,

1991; Bothmer and Schwenn, 1997; Hu and Sonnerup, 2002). The topology of the

magnetic field is highly complex. Therefore, the reconstruction method must be

designed, calibrated, and tested against different magnetic configurations. For this

purpose, we produce a set of synthetic data in a simulation box with dimensions
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Figure 8.1: Representation of the macroscales (left), mesoscales (middle) and microscales
(right) in the interplanetary magnetic field (IMF) and of the scales covered by
multi-spacecraft missions past/present (solid) and future (dashed). Adapted
from Maruca et al. (2021)

Lx = Ly = Lz = 40di. The set consists of:

• A magnetic dipole oriented along the ẑ-direction (Figure 8.2a). The Cartesian

components of the magnetic dipole are

Bx = µ0
4π

3M(x−x0)(z− z0)
r5 , (8.1)

By = µ0
4π

3M(y−y0)(z− z0)
r5 , (8.2)

Bz = µ0
4π

M(3(z− z0)2 − r2)
r5 , (8.3)

where x0 = Lx/2,y0 = Ly/2, z0 = Lz/2 are the coordinates of the dipole’s

centre, M is a constant that represents the dipole magnetic moment and,

r =
√

(x−x0)2 +(y−y0)2 +(z− z0)2. For simplicity, we set M = 4π/µ0 and

we use non-dimensional units for the magnetic field.

• Multiple dipoles oriented along the ẑ-direction (Figure 8.2b). The centres of

eight dipoles described by Eqs. (8.1) through (8.1) are randomly selected in

the simulation box.

• A flux-rope oriented along the x̂-direction (Figure 8.2c). Following Inoue and
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Kusano (2006), we model the magnetic field B of a flux-rope centred at L0 =

Ly/8 and h = Lz/16 as the superposition of an external (if rc > r0) magnetic

field Bout and an internal (if 0 < rc < r0) magnetic field Bin, so that B =

Bout + Bin. The external field is a uniform dipole elongated along the x̂-

direction, and the internal field is a co-axial force-free magnetic field. The

distance from the centre of the flux rope is rc =
√

(y−L0)2 +(z−h)2, and

r0 = 10di is the boundary between the inner and external fields. The internal

field is produced by an internal current

I0 = 2r0πBcJ1(x1), (8.4)

where Bc = 0.01 is the non-dimensional strength of the axial field, J1(x1) is

the Bessel function of first kind and order 1, and x1 = 2.4045 is the first zero

of the Bessel function J0(x1). The Cartesian components of Bin are

Bin
x =BcJ0(αrc), (8.5)

Bin
y = −BcJ1(αrc)

z−h√
(y−L0)2 +(z−h)2

+ I0
2π

z+h√
(y−L0)2 +(z+h)2

, (8.6)

Bin
z =BcJ1(αrc)

y−L0√
(y−L0)2 +(z−h)2

− I0
2π

y−L0√
(y−L0)2 +(z+h)2

, (8.7)

where α = x1/r0. The Cartesian components of Bout are

Bout
x = 0, (8.8)

Bout
y = − I0

2π
z−h√

(y−L0)2 +(z−h)2
+ I0

2π
z+h√

(y−L0)2 +(z+h)2
, (8.9)

Bout
z = I0

2π
y−L0√

(y−L0)2 +(z−h)2
− I0

2π
y−L0√

(y−L0)2 +(z+h)2
. (8.10)

• Three flux-ropes oriented along the x̂-direction (Figure 8.2d). The centres of

the three flux-ropes, where each one is described by Eqs. (8.5) through (8.10),

are shifted by 20di with respect to L0 and h to the positions (y−20di, z+20di),

(y−20di, z+20di), and (y−20di, z−20di).
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Additionally, I use a simulation of anisotropic Alfvénic turbulence based on the same

configuration of 8 counter-propagating anisotropic Alfvén waves as in Section 5.2.

The dimension of the simulation domain in this latter case is Lx = Ly = 18di and

Lz = 63di (Figure 8.3).

8.2.1 Reconstruction Method
To produce synthetic measurements of the magnetic field components Bx,By, and

Bz that emulate the transit of spacecraft through the solar wind plasma, we trace

1D trajectories along the ẑ-direction and throughout the simulation domain. We

consider a magnetometer data acquisition rate of 10Hz and a typical value for

the solar-wind speed of vsw = 400km/s. These values and Taylor’s hypothesis (see

Section 4.2.5) yield a spatial resolution of ∆r = 0.3di.

The number of simultaneous 1D trajectories depends on the spacecraft configuration

(SC) which will be discussed in Section 8.2.1.1. The combination of the different 1D

trajectories in each SC constitutes a data set. The length of the arrays in each data

set corresponds to Lz multiplied by ∆r.

Our method for the reconstruction of the magnetic field is based on the interpolation

algorithm ParaView point volume interpolator. This interpolation method generates

a set of equally distributed points qN in a volumetric Cartesian domain of size

Mx×My ×Mz. The resolution of this domain is ∆r.

This interpolation algorithm uses an interpolation kernel (IK) to estimate the value

of a given function (Schoenberg, 1973), for instance the magnetic field Bq, at each

point q of the set qN . The value Bq is computed as the weighted average of the

neighbouring measurements Bp at the N-closest probe points p.

The probe points p for the interpolation correspond to positions of the measurements

in the data set. Thus, the estimated value for the magnetic field at a given point q

is

Bq = 1
N

N∑
p=1

wpBp, (8.11)

where wp is the normalised weight (∑N
p=1wp = 1) assigned by the IK to the measure-
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(a) (b)

(c) (d)

Figure 8.2: Synthetic data set designed to test the reconstruction method. Magnetic
field lines for a) a dipole, b) multiple dipoles, c) a flux-rope, and d) multiple
flux-ropes. The magnetic-field lines are colour-coded with |B| in logarithmic
scale.
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Figure 8.3: Magnetic field magnitude |B| on the surface of the simulation domain in the
turbulence case. The magnetic field shows elongated structures such as null
regions (dark patches) and intense magnetic field regions (orange patches).

ment Bp. Although several IKs can be employed to estimate wp (Schoenberg, 1973;

Maz’ya and Schmidt, 1996; Rasche et al., 1999; Romano-Díaz and Van De Weygaert,

2007; Hockney and Eastwood, 2021), the interpolation algorithm is sensitive to the

IK. Therefore, the geometry of the reconstructed magnetic field is also sensitive to

the selection of the IK.

The Voronoi interpolation kernel (Fortune, 1995; Rasche et al., 1999)1 estimates

wp = 1 for the Bp at the closest point p to the point q. The Euclidean distance

between p and q is rpq =
√

(xp−xq)2 +(yp−yq)2 +(zp− zq)2. Using the Voronoi

kernel, the estimated value for the magnetic field is

Bq =Bp|min(rpq) , (8.12)

where Bp|min(rpq) represents the magnetic field at the point p with the minimum

distance to the point q, i.e., the closest neighbour point. Although this kernel is

simple, the geometry of the reconstructed magnetic field is biased by the geometry

of the Voronoi cells (Fortune, 1995), and the reconstructed magnetic field presents
1https://fossies.org/dox/ParaView-v5.9.1/classvtkVoronoiKernel.html
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sharp discontinuities at the boundaries of the cells.

The Gaussian IK (Rasche et al., 1999; Platte and Driscoll, 2005)2 returns a recon-

structed magnetic field with less sharp discontinuities at the boundaries. The weight

is computed with the Gaussian IK as

wp = cpe
−
(srpq
R

)2

, (8.13)

where R is the radius of the sphere containing the N closest points, and cp is a

normalisation coefficient. The parameter s is the sharpness which represents the

rate of fall-off of the Gaussian. The estimated value for the magnetic field Bq is

then given by Eq. (8.11).

Although the Gussian IK overcomes the limitations of the Voronoi IK, the perfor-

mance of the reconstruction method for a given R depends on the SC. Thus, the

parameter R must be adjusted based on the specific SC.

Alternatively, the selection of the N closest points p and computing the weights

according to Eq. (8.13), where R is the distance from q to the most distant p,

allows the use of the same set of parameters for different SCs.

8.2.1.1 Spacecraft Configurations (SC)
For a multi-spacecraft mission like MagneToRE, the SC depends on the mission

orbital trajectory. The most simple SC is a planar distribution of the spacecraft in

a plane perpendicular to the plasma flow. As long as Taylor’s hypothesis is valid, a

planar configuration has the advantage of capturing the 3D nature of the magnetic

field.

To determine the number of spacecraft required to obtain an appropriate 3D picture

of the magnetic field, we test four planar SC, namely C1 (4 spacecraft), C2 (8

spacecraft), C3 (16 spacecraft) and C4 (24 spacecraft) as shown in Figure 8.4. In

C1, the four spacecraft are equally distributed on a circle centred at x0,y0 with
2https://fossies.org/dox/ParaView-v5.9.1/classvtkGaussianKernel.html
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(a) C1 (b) C2

(c) C3 (d) C4

Figure 8.4: Spacecraft configurations a) C1: 4 spacecraft, b) C2: 8 spacecraft, c) C3:
16 spacecraft, and d) C4: 24 spacecraft in the xy-plane. Each bundle of
arrows represents a point in the plane perpendicular to the direction of the
spacecraft motion in the ẑ-direction. The arrows show the direction of the
magnetic field at each point along the trajectory.

diameter d1 (Figure 8.4a). In C2, four spacecraft are added to C1 on the same circle

for a total of eight spacecraft (Figure 8.4b). In C3, eight spacecraft are added to C2

in a concentric circle with diameter d2 for a total of 16 spacecraft. The spacecraft

in the two concentric circles are aligned (Figure 8.4c). In C4, eight more spacecraft

are added to C3 in a concentric circle with diameter d3 for a total of 24 spacecraft.

The spacecraft in the outer-most circle are out of phase by π/6 with respect to

the spacecraft in the inner circles. The diameters of the circles fulfil d1 < d3 < d2

(Figure 8.4d). The diameters d1, d2, and d3 required to accurately capture the

geometry of the local magnetic field is practically defined based on the scale of

interest ℓ.
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8.3 Results
We use a visual comparison between the original magnetic field Borg and the recon-

structed magnetic field Brec to select the kernel and parameters N and s (not shown

here). We test the kernels and parameters across the set of synthetic data and the

turbulent simulation. To apply the reconstruction method, we use a Gaussian kernel

with N = 16 points and s = 2. For the synthetic data set, the SCs are centred at

x0 = 20di and y0 = 20di. For C1 and C2, we use d1 = 20di. For C3, d1 = 6di and

d2 = 20di. Additionally, for C4 d1 = 6di, d2 = 20di, and d3 = 10di.

8.3.1 Magnetic Dipole
Panel a) in Figure 8.5 shows the 3D magnetic field lines of the synthetic magnetic

field colour-coded with |B| in a logarithmic colour scale. Panel b) shows the magnetic

field lines of the reconstructed magnetic field for C1. The magnetic field lines of the

reconstructed magnetic field exhibit a similar curvature like the magnetic dipole

near the equatorial plane (10di < z < 30di). However, in the polar regions (z < 10di
and z > 30di), the curvature of the reconstructed field lines is opposite to the input

dipole.

Panel c) shows the magnetic field lines of the reconstructed magnetic field for C2.

There is no improvement between C1 and C2 because the additional 4 measurement

points in C2 add no significant extra information given the symmetry of the magnetic

dipole. Panel d) shows the magnetic field lines of the reconstructed magnetic field

for C3. The reconstructed magnetic field exhibits internal structure that is not

captured by C2. There is a discontinuity in the curvature at the outer circle of C3

(d2) because the interpolation does not capture the rapid change in the magnetic

field direction. The magnetic field lines of the reconstructed magnetic field for C4

(not shown here) are similar to the magnetic field lines in panel c), but with a

less sharp discontinuity. Comparing panels a) to d), the spacecraft configuration

C1 already captures the external dipolar nature of the magnetic field well. This is

expected given the smoothness and uniformity of a magnetic dipole. However, a SC

of concentric rings of spacecraft as C3 or C4 is necessary for capturing details and

substructures.
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(a) Synthetic (b) C1

(c) C2 (d) C3

Figure 8.5: a) Magnetic field lines of the synthetic magnetic dipole. b) Reconstructed
magnetic field for C1. c) Reconstructed magnetic field for C2. d) Recon-
structed magnetic field for C3. The magnetic field lines are colour-coded
with |B| on a logarithmic scale.
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(a) Synthetic (b) C4

Figure 8.6: Magnetic field lines. a) Synthetic multiple magnetic dipoles. b) Recon-
structed magnetic field of the multiple dipoles for C4. The magnetic field
lines are colour-coded with |B| on a logarithmic scale.

8.3.2 Multiple Magnetic Dipoles
Panel a) in Figure 8.6 shows the magnetic field lines of the synthetic multiple mag-

netic dipoles. The magnetic field topology of multiple randomly located magnetic

dipoles is clearly more complex than a single dipole. The reconstruction method

for C1 (not shown here) captures the large-scale features of the magnetic field but

not the details between the dipoles. Given the complexity of this magnetic field

topology, it is worth showing the results for the best spacecraft configuration. Panel

b) shows the magnetic field lines of the reconstructed magnetic field for C4. The

reconstruction method captures some of the original complexity of the input data.

However, it is unable to resolve individual magnetic structures near the centres of

the magnetic dipoles.

8.3.3 Magnetic Flux-Rope
Panel a) in Figure 8.7 shows the magnetic field lines of the synthetic magnetic flux-

rope oriented along the x̂-direction. Panel b) shows the magnetic field lines of the
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reconstructed magnetic field for C4. By comparison between panels a) and b), it

is clear that the reconstruction method resolves the external shape of the magnetic

topology, and two lobes are visible in panel b). However, the details of the inner

part of lobes are lost.

8.3.4 Multiple Magnetic Flux-Ropes
Panel a) in Figure 8.8 shows the magnetic field lines of the synthetic multiple mag-

netic flux-ropes oriented along the x̂-direction. Panel b) shows the magnetic field

lines of the reconstructed magnetic field for C4. Like in the previous cases, the re-

constructed magnetic field is similar to the input data at large scales. Unlike for the

multiple magnetic dipole case (Figure 8.6), the reconstruction method correctly iden-

tifies sub-structure of the field: three different structures (dark lines) corresponding

to the three flux ropes can be identified in the reconstructed field. The region where

the magnetic-field lines separate at y ≈ 17di and z ≈ 12di is partially resolved by

the method. This suggests that our method performs better for extended magnetic

structures that have a smooth spatial variation (i.e., flux ropes) than for structures

with sharp spatial variation (such as a combination of dipoles).

8.3.5 Turbulent Magnetic Field
For the turbulent simulation, the SCs are centred at x0 = 9di and y0 = 9di. For C1

and C2, we use d1 = 14di. For C3, d1 = 4di and d2 = 14di. Additionally for C4,

d3 = 10di. Panel a) in Figure 8.9 shows the 3D magnetic field lines of the synthetic

magnetic field colour-coded with |B| on a linear colour scale. The magnetic field lines

are mainly oriented along the ẑ-direction. There are distinct regions with high/low

|B|. The magnetic field lines present local variations in direction and regions of high

magnetic helicity, i.e., regions where the magnetic field lines are highly twisted.

Panel b) shows the magnetic field lines of the reconstructed magnetic field in the

turbulence case for C2. The reconstructed magnetic field lines are less twisted than

in the synthetic input data. Although C2 captures some of the regions with high

|B|, the position of these reconstructed regions is shifted with respect to their actual

location in the input data.
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(a) Synthetic (b) C4

Figure 8.7: Magnetic field lines. a) Synthetic magnetic flux-rope. b) Reconstructed
magnetic field of the flux-rope for C4. The magnetic field lines are colour-
coded with |B| on a logarithmic scale.

Panel c) shows the magnetic field lines of the reconstructed magnetic field for C3.

As expected, the reconstructed magnetic field lines for a SC with multiple spacecraft

rings capture more details. The position of the regions with high |B| for C3 is closer

to the synthetic data than for C2. However, the magnetic helicity is not recovered.

Panel d) shows the magnetic field lines of the reconstructed magnetic field for C4.

The reconstructed magnetic field lines for these SC are more similar to the magnetic

field lines of the synthetic input data than for the other configurations, as it clearly

captures local details of the magnetic field, for instance, the intense magnetic field at

x≈ 12di and z ≈ 10di. Visually, the magnetic helicity is still not properly recovered

though. This suggests that our method does not accurately capture the magnetic

helicity of highly twisted structures with any of the chosen SCs.

8.3.6 Goodness of the Reconstruction Method
According to our qualitative analysis in Sections 8.3.1 through 8.3.5, the reconstruc-

tion method does not accurately capture structures below the spacecraft separation.
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(a) Synthetic (b) C4

Figure 8.8: Magnetic field lines. a) Synthetic multiple magnetic flux-ropes. b) Recon-
structed magnetic field of the multiple magnetic flux-ropes for C4. The
magnetic field lines are colour-coded with |B| on a logarithmic scale.

Nevertheless, the aim of the MagneToRE mission is to resolve magnetic structures

at scales greater than di (Maruca et al., 2021). Therefore, we consider a 3di coarse-

grained down-sampling for Borg and Brec. In this section, we only consider the

reconstruction method using the spacecraft configuration C4 as it returns the best

qualitative results.

To estimate the goodness of our reconstruction method, we define the point-wise

error of the magnetic field strength

ϵB = |Borg|− |Brec|
⟨|Borg|⟩

, (8.14)

where

⟨|Borg|⟩ = 1
V

∑
|Borg|, (8.15)

and V is the total number of cells. According to our definition in Eq. (8.14), ϵB < 0 in
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(a) Synthetic (b) C2

(c) C3 (d) C4

Figure 8.9: Magnetic field lines of the turbulence simulation data set designed to test the
reconstruction method. a) Magnetic field lines of the synthetic input data.
b) Reconstructed magnetic field lines for C2. c) Reconstructed magnetic field
lines for C3. c) Reconstructed magnetic field lines for C4. The magnetic field
lines are colour-coded with |B| on a linear scale.
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a given point represents |Borg|< |Brec|, i.e., the reconstruction method overestimates

the magnetic field strength |B|. Conversely, if ϵB > 0 the reconstruction method

underestimates |B| in that point.

To quantify the goodness of the reconstruction method for obtaining the correct |B|,

we compute the average absolute error

⟨|ϵB|⟩ = 1
V

∑
|ϵB|, (8.16)

and the conditioned number of counts with |ϵB| less than 30%:

CNϵ0.3(|ϵB|< 0.3) = Counts(|ϵB|< 0.3)
N

, (8.17)

where Nc is the total number of counts. Figure 8.10 depicts the point-wise error

(Eq. 8.14) distribution for the synthetic data set. For the magnetic dipole case,

panel (a), ⟨|ϵB|⟩ = 0.8, and the error distribution is asymmetric, showing that the

reconstruction method overestimates |B| more than underestimating it. According

to Eq. (8.17), CNϵ0.3 = 0.42. Thus, the reconstructed magnetic field strength differs

by less than 30% of the ⟨|Borg|⟩ for 42% of the counts.

For the case of multiple magnetic dipoles, panel (b), ⟨|ϵB|⟩ = 0.78, CNϵ0.3 = 0.77,

and the error distribution is slightly asymmetric towards positive ϵB suggesting that

the method underestimates |B| on average.

For the case of the magnetic flux-rope, panel (c), ⟨|ϵB|⟩ = 0.95, CNϵ0.3 = 0.47, and

the error distribution is slightly asymmetric towards negative ϵB, showing that the

method overestimates |B| on average.

For the case of multiple magnetic flux-ropes, panel (d), ⟨|ϵB|⟩ = 1.13, CNϵ0.3 = 0.32,

and the error distribution presents small peaks for |ϵB|> 1, slightly skewed towards

positive ϵB. Thus, the method underestimates |B| on average for this configuration.

To estimate the goodness of the reconstruction method in terms of obtaining the

direction of B correctly, we define the point-wise relative direction between Borg
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(a) (b)

(c) (d)

Figure 8.10: Point-wise error distribution for (a) the magnetic dipole, (b) multiple mag-
netic dipoles, (c) the magnetic flux-rope, and (d) multiple magnetic flux-
ropes. The counts are normalised to the total number of counts Nc.

(a) (b)

(c) (d)

Figure 8.11: Point-wise relative direction distribution for (a) the magnetic dipole, (b)
multiple magnetic dipoles, (c) the magnetic flux-rope, and (d) multiple
magnetic flux-ropes.
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(a) (b)

Figure 8.12: (a) Point-wise error distribution for the turbulence simulation. (b) Point-
wise relative direction distribution for the turbulence simulation.

and Brec as

cosθOR = Borg ·Brec

|Borg||Brec|
. (8.18)

If cosθOR ≈ 1, the reconstruction method accurately estimates the direction of B

in that point. For comparison of the different configurations, we define the average

absolute relative direction

⟨|cosθOR|⟩ = 1
V

∑
|cosθOR|. (8.19)

Figure 8.10 depicts the point-wise relative direction (Eq. 8.18) distribution for the

synthetic data set. For the magnetic dipole, panel (a), the direction of Brec deviates

from the direction of Borg up to 45◦ (cosθOR = 0.707). Since ⟨|cosθOR|⟩ = 0.91,

the average deviation is θOR = 24.49◦. For the multiple magnetic dipoles, panel (b),

⟨|cosθOR|⟩ = 0.84. The average deviation in the relative direction is θOR = 32.86◦

which is greater than in the single dipole case. For the magnetic flux-rope, panel (c),

⟨|cosθOR|⟩ = 0.88, and the average deviation in the relative direction is θOR = 28.35◦.

In the case of multiple magnetic flux-ropes, panel (d), ⟨|cosθOR|⟩ = 0.77, and the

average deviation in the relative direction is θOR = 39.64◦.
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Magnetic structure ⟨|ϵB|⟩ CNϵ0.3 ⟨|cosθOR|⟩
Dipole 0.80 0.42 0.91
Multiple dipoles 0.78 0.77 0.84
Flux-rope 0.95 0.47 0.88
Multiple flux-ropes 1.13 0.32 0.77
Turbulent 0.18 0.64 0.84

Table 8.1: Parameters to estimate the goodness of the reconstruction method.

For the turbulent scenario, panel (a) in Figure 8.12 depicts the point-wise distri-

bution of errors ϵB. Compared to the previous cases, the average absolute error is

small, ⟨|ϵB|⟩ = 0.18. Moreover, since CNϵ = 0.64, the reconstructed magnetic field

differs less than 30% in 64% of the points. Panel (b) in Figure 8.12 shows the point-

wise distribution of relative directions cosθRO. Since ⟨|cosθOR|⟩ = 0.84, the average

deviation in the magnetic field direction is θOR = 32.86◦. This value is comparable

with the average deviation of the multiple magnetic dipoles case. We summarise the

values of the aforementioned parameters for each magnetic configuration in table

8.1.

8.4 Discussion and Conclusions
We study the three-dimensional geometric properties of magnetic structures in space

plasmas using multi-point measurement methods. To estimate spatial gradients

and volumetric tensors requires the use of at least four spacecraft (Harvey, 1998;

Shen et al., 2003, 2007). Linear approximation methods, such as trilinear methods

(Haynes and Parnell, 2007) and first-order Taylor expansion methods (Fu et al.,

2016; Chen et al., 2019; Broeren et al., 2021), are widely used due to their sim-

plicity. In this chapter, we present an alternative magnetic reconstruction method

designed for the mission concept MagneToRE (Maruca et al., 2021). The method is

based on an interpolation algorithm that uses a Gaussian interpolation kernel. The

method is tested against a set of synthetic data representing different characteristic

magnetic topologies. Moreover, four planar spacecraft configurations are tested to

assess the impact of the number of spacecraft and their relative orientation on the

reconstruction method.
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The magnetic reconstruction method accurately captures the magnetic topology for

simple magnetic structures, such as a single magnetic dipole. For more complex

configurations, our method captures the large-scale geometry of the magnetic field

even with simple spacecraft configurations such as C1 an C2, as long as the spa-

tial variation of the magnetic field is smooth. Conversely, the method does not

recover complex magnetic topologies that involve sharp spatial variations at scales

smaller than the spacecraft separation. This caveat is generally shared among multi-

spacecraft methods (Robert et al., 1998; Forsyth et al., 2011).

The use of spacecraft configurations with multiple spacecraft rings, e.g., C3 and C4,

allows the method to capture more complex structures. This is especially important

for turbulent environments like the solar wind in which the local magnetic field is

highly twisted.

In Section 8.3.6, we estimate the goodness of our reconstruction method. Although

our qualitative analysis for the magnetic dipole (Section 8.3.1) suggests an accurate

representation, the average absolute error ⟨|ϵB|⟩ = 0.8 is greater than in the turbulent

case where ⟨|ϵB|⟩ = 0.91. This is because our method does not capture the region of

most intense magnetic field (the centre of the dipole). Nevertheless, our method ac-

curately estimates the direction of the magnetic field for this case with a deviation of

about 24.49◦. The least accurate reconstructed magnetic field, both in terms of the

⟨|ϵB|⟩ = 1.13 and ⟨|cosθOR|⟩ = 0.77, is the multiple magnetic flux-rope configuration.

Our method underestimates the magnetic field strength and poorly estimates the

direction of B for this configuration. This is due to the orientation of the magnetic

structures relative to the direction of travel of the spacecraft configuration. This ge-

ometric effect also explain that, for this study, the reconstructed turbulent magnetic

field is more accurate with ⟨|ϵB|⟩ = 0.18 and ⟨|cosθOR|⟩ = 0.84. Thus, our recon-

struction method strongly depends on the relative orientation between the direction

of propagation of the spacecraft formation and the magnetic structures. However,

over a longer time interval, the solar wind will naturally provide the constellation

with different alignments and geometries.
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Although the work presented in this chapter is still in progress as the mission concept

MagneToRE is under development, it is an important contribution since it permits

to identify the limitations of reconstruction methods. For instance, the spacecraft

separation must be chosen according to the scales of interest. Moreover, magnetic

field reconstruction methods based on interpolation algorithms must be calibrated to

account for any underestimation of the magnetic field direction and of the magnetic

helicity.



Chapter 9

Conclusions and Future Work

In this thesis, I explore the links between turbulence and magnetic reconnection

in plasma conditions similar to the solar wind. Particularly, I develop an under-

standing of the geometric and energy transfer properties associated with the type of

reconnection events that occur self-consistently as part of an anisotropic turbulent

cascade.

In my first study, Chapter 6, we simulate plasma turbulence created by the collision

of counter-propagating Alfvén waves with a wavevector anisotropy consistent with

the GS95 theory of critical balance at the small-scale end of the inertial range. Our

initial waves have wavenumbers near the spectral breakpoint from the inertial to the

kinetic range of turbulence. This choice allows us to set up the system with Alfvén

waves and let the system develop kinetic and compressive fluctuations in the kinetic

range self-consistently and with an anisotropy reminiscent of the solar wind, with

the aim of developing reconnection features consistent with solar-wind turbulence.

The use of such a consistent anisotropy in the initial waves allows the system to

undergo nonlinear interactions and to create flux ropes during the first nonlinear

time, which is in agreement with earlier simulation work (Grošelj et al., 2018). Our

initial anisotropic setup reduces the simulation time that a full 3D PIC simulation

of turbulence without this imposed anisotropy would require in order to develop

reconnection as a product of anisotropic turbulence.
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We establish a set of indicators to find regions in which magnetic reconnection

takes place in 3D PIC simulations consistent with existing reconnection theories.

These indicators are based on the presence of current-sheet structures (C1), fast

particles (C2), heated particles (C3), diffusion regions marked by energy transfer

between fields and particles (C4), and non-zero parallel electric fields (C5). Since

our method is based on thresholds for the bulk quantities, the selected regions corre-

spond to high-intensity structures. Our method uses fast ions as an indicator (C2).

Thus, this method does not identify all reconnection events, especially not those re-

lated to electron-only reconnection (Phan et al., 2018; Sharma Pyakurel et al., 2019;

Mallet, 2020). In a follow-up study, it is worthwhile to investigate the role of the

threshold level for the identification of reconnection sites and the relaxation of ion-

based conditions to enable the identification of electron-only reconnection events.

Our method is a first approach in the exploration of reconnection events in large 3D

PIC simulations in which the handling of the kinetic particle information is com-

putationally expensive due to the large number of particles. In a future work it is

important to compare with novel methods (Scudder and Daughton, 2008; Liu and

Hesse, 2016; Li et al., 2021) that are possibly applicable to 3D geometries without

dimensional constrains.

Our data set possibly includes further reconnection sites that can be studied in

more detail in the future. In future work, it would be interesting to study the

changes in the particle distribution functions as a result of the identified small-scale

reconnection events. Such a more detailed study of the associated particle kinetics

will allow us to understand the energy exchange between fields and particles, and

the details of the energy dissipation through small-scale reconnection events in the

solar wind.

In my second study, Chapter 7, we derive a framework to quantify the collision-like

effects that lead to irreversible energy transfer and thus dissipation in PIC plas-

mas. We identify and locate magnetic reconnection as a key mechanism for heating,

damping, and dissipation in plasma turbulence in low-collisionality systems like the

solar wind. In previous studies, the transfer and transport of energy in plasmas
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with low collisionality has been investigated separately in simulations of reconnec-

tion (Hesse and Winske, 1998; Hesse et al., 2001a; Zenitani et al., 2011; Muñoz et al.,

2017; Pucci et al., 2018; Pezzi et al., 2019, 2021) and turbulence (Wan et al., 2012;

Yang et al., 2017; Li et al., 2019; Pezzi et al., 2021). The transfer and transport in

magnetic reconnection that forms from a turbulent cascade have been limited to 2D

geometries (Parashar et al., 2009; Fadanelli et al., 2021) and observations (Chasapis

et al., 2018; Bandyopadhyay et al., 2020), while the 3D case has received little atten-

tion. We study, for the first time, the energy transport associated with 3D magnetic

reconnection that occurs as a consequence of a turbulent cascade to a high level

of detail and including all power density terms resulting from the full Boltzmann

equation. We extend the analysis of similar studies (e.g., Fadanelli et al., 2021) by

exploring the transfer and transport of kinetic and thermal electron energy.

The energy transfer and transport in collisionesless plasmas is believed to be gov-

erned by non-thermal and kinetic mechanisms such as resonant (Marsch et al., 2003;

Kasper et al., 2008) and non-resonant heating processes (Chandran et al., 2010,

2013). However, the irreversible energy transport must ultimately be associated

with collisional effects (Schekochihin et al., 2009).

The agyrotropy signatures present in the reconnection diffusion region allow for agy-

rotropic energy transfer mechanisms such as agyrotropic-driven instabilities to take

place in the diffusion region (Ricci et al., 2004a; Roytershteyn et al., 2012; Graham

et al., 2017). Since similar signatures are also present in the reconnecting magnetic

structures, it is expected that agyrotropic energy transfer occurs within the magnetic

structures. A study of the instabilities that occur during a 3D turbulent reconnec-

tion event would be worthwhile to enhance our understanding of the collisionless

energy dissipation mechanisms.

We show that the contribution to the energy density transfer from collisions is not

negligible. To determine the exact source of this contribution, future work must use

larger numbers of particles while keeping the 3D geometry. In addition, the inclusion

of a controllable collision operator would allow for a detailed study of collisions in
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3D reconnection (Pezzi, 2017; Donnel et al., 2019; Boesl et al., 2020; Pezzi et al.,

2021).

The general framework that we introduce is suitable for estimating the reversible

and irreversible energy density transfer of the particle species in the solar wind. For

instance, Eqs. (7.5) and (7.8) can be applied to spacecraft data to study the radial

evolution of energy density as a function of heliospheric distance in the solar wind

(see Appendix C). This work would be of interest both for the energetics of the

solar-wind electrons (Scime et al., 1994; Innocenti et al., 2020) and the solar-wind

protons (Matteini et al., 2007; Hellinger et al., 2011; Adhikari et al., 2020a)

Regarding the solar wind, the literature on magnetic reconnection is biased to the use

of two-dimensional models due to their simplicity and their accurate description of

reconnection events especially at the heliospheric current sheet (Gosling et al., 2007;

Gosling, 2007; Phan et al., 2009, 2020, 2021). From the research that I present

in Chapters 6 and 7, three-dimensional reconnection between turbulent magnetic

structures presents more complex configurations of the diffusion region as well as of

the exhausts than in the 2D case. Therefore, my research clearly emphasises the

importance of 3D treatments to capture the physics of reconnection in turbulence

accurately.

In spite of the unprecedented high-cadence measurements in the solar wind from

Parker Solar Probe and Solar Orbiter, multi-spacecraft missions such as MMS and

Cluster are required to explore the solar wind plasma at close distance from the

Sun. The lack of simultaneous multi-scale measurements based on a large number

of measurements points in the solar wind precludes the scientific community from

forming a clear picture of three-dimensional reconnection. For this reason, new

multi-spacecraft missions are required.

In my third study, Chapter 8, I present part of my contributions to the multi-

spacecraft mission concept MagneToRE (Maruca et al., 2021). We propose a method

to reconstruct the magnetic field using simultaneous multi-spacecraft measurements.

The method uses a Gaussian interpolation kernel with a finite number of closest
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neighbours. We test four different planar configurations of spacecraft using a set of

synthetic magnetic field configurations with different degrees of topological complex-

ity. We also test our method against turbulent simulations. In qualitative terms,

our reconstruction method captures the magnetic field geometry at scales greater

than the separation between spacecraft. However, the performance of our method

depends on the relative direction between the direction of propagation of the space-

craft configuration and the orientation of the magnetic structures. Nevertheless, our

method accurately reconstructs the magnetic field strength and direction in turbu-

lent conditions which makes it suitable to be applied in the solar wind.

Future work requires the exploration of new multi-spacecraft methods to reconstruct

the magnetic field topology. Additionally, the effect of spacecraft drifting on the per-

formance of the different methods must be quantified to better assess the limitations

of these methods. Finally, it is important to define a benchmark set of magnetic

field configurations to evaluate all the available methods. My work sets a starting

point for these important studies to underpin our understanding of turbulence and

reconnection in the solar wind.



Appendix A

Second-order structure functions

Following Cho and Vishniac (2000), we define the local magnetic field between two

points r1 and r2 as

Bl = B(r2)+B(r1)
2 . (A.1)

We define the coordinate parallel to Bl as r∥ = ẑ · (r2 − r1) and the coordinate

perpendicular as r⊥ = |ẑ× (r2 − r1)|, where ẑ = Bl/|Bl|. With these definitions, we

calculate the second-order structure function of the magnetic fluctuations b(r1) =

Bl−B(r1) as

Fb2(r⊥, r∥) = ⟨|b(r2)−b(r1)|2⟩, (A.2)

where ⟨ ⟩ represents the average over the spatial domain. In order to discretize the

r⊥r∥-plane, we calculate the values of r⊥, r∥, and Fb2 for each pair of points r1,r2.

Then, for each pixel, we calculate the mean value as the sum of all Fb2 divided by

the number of combinations (r1,r2) in each pixel. We apply a filter to remove the

pixels with less than
√
N combinations, where N is the total number of combinations

in the r⊥, r∥ space.

Figure A.1 shows log(Fb2) in the r⊥, r∥-plane for the time steps t= 0, t= 12/ωpi, t=

120/ωpi, and t= 240/ωpi. At t= 12/ωpi, the structure function indicates a perpen-
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(a) t = 0 (b) t = 12/ωpi

(c) t = 120/ωpi (d) t = 240/ωpi

Figure A.1: Second-order structure functions of the magnetic fluctuation b in the r⊥, r∥-
plane as log2 F2b at t = 0/ωpi (a), t = 12/ωpi (b), t = tR (c), and t = 240/ωpi

(d). At t = 0, while the magnetic energy is distributed across multiple
perpendicular scales, it is mainly stored at large parallel scales. At t = tR,
the magnetic energy is distributed across multiple parallel scales.

dicular cascade of the magnetic energy. On the other hand, the structure function

does not give evidence of a strong parallel cascade and is, instead, still consistent

with our initial conditions in terms of the parallel extent of the magnetic-field fluc-

tuations. At t= 120/ωpi, the green horizontal structure suggests that the magnetic

energy has been redistributed and cascaded to smaller parallel scales. The analysis

of the structure functions is consistent with our analysis of the Fourier spectra in

Figure 6.5 in Section 6.3.2.



Appendix B

Detailed Derivation of the Energy

Equations

B.1 Derivation of the Equations for the Energy

Densities
To derive the nth moment of the Boltzmann equation (7.1), we take the dyadic

product of Eq. (7.1) with vn on the left and integrate over the entire velocity space.

The zeroth moment

∫ [∂fs
∂t

+v ·∇fs+ q

m
(E+v ×B) ·∇vfs

]
d3v =

∫ (∂fs
∂t

)
c

d3v, (B.1)

leads to

∂ns
∂t

+∇· (nsus) = Ξ0
s. (B.2)

If we assume the number of particles in velocity space to remain constant as collisions

proceed, Ξ0
s = 0, and we recover the continuity equation. For the first-moment,

∫
v
(
∂fs
∂t

+v ·∇fs+ q

m
(E+v ×B) ·∇vfs

)
d3v =

∫
v
(
∂fs
∂t

)
c

d3v, (B.3)
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we obtain

∂nsus
∂t

+ 1
ms

∇·Ps− qs
ms

ns(E+us×B) = Ξ1
s. (B.4)

where

Ps ≡ms

∫
fsvvd3v. (B.5)

Considering ∇ · Ps = ∇ · Ps + ∇ · (nsmsusus), where Ps has been defined in Eq.

(2.14) and using

∇· (nsmsusus) = (∇· (nsmsus))us+nsmsus ·∇us

= (∇·us)nsmsus+us ·∇(nsmsus)), (B.6)

Eq. (B.4) takes the form

∂nsmsus
∂t

+us∇· (nsmsus) =

−∇·Ps− (∇·us)nsmsus+ qsns(E+us×B)+msΞ1
s, (B.7)

which can be further reduced to the standard fluid momentum equation

dnsmsus
dt

= −∇·Ps− (∇·us)nsmsus+ qsns(E+us×B)+msΞ1
s, (B.8)

This equation describes the total change in time of the bulk momentum density for

species s. Since we are interested in the energy distribution, it is useful to derive

similar expressions for the kinetic and thermal energies. To do this, we derive the

second moment:

∫
vv
(
∂fs
∂t

+v ·∇fs+ qs
ms

(E+v ×B) ·∇vfs

)
d3v =

∫
vv
(
∂fs
∂t

)
c

d3v, (B.9)

which leads to the general energy equation

1
ms

∂Ps
∂t

+ 1
ms

∇·Qs− qs
ms

ns(Eus+usE)− qs
m2
s

(
Ps×B−B×Ps

)
= Ξ2

s. (B.10)
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where

Qs ≡ms

∫
fsvvvd3v (B.11)

We further consider

(v −us)(v −us)(v −us) =

vvv −vvus−vusv +vusus−usvv +usvus−ususv −ususus, (B.12)

and

Qs = Qs+2nsmsususus−
(
Psus+usPs

)
−
∫
fsvusvd3v. (B.13)

to express Eq. (B.10) in terms of Qs instead of Qs. The last term in Eq. (B.13)

does not present a simple form in terms of a dyadic product, we use an element-wise

notation for this term and for every term that corresponds to third-rank tensors.

Thus, recalling that Ps = Ps+nsmsusus, Eq. (B.13) becomes

Qijk,s =Qijk,s+ui,sPij,s+Pij,suk,s+uj,sPik,s+nsmsui,suj,suk,s, (B.14)

and Eq. (B.10) takes the form

1
ms

∂(Ps+nsmsusus)
∂t

+

1
ms

∇·
(
(Qijk,s+ui,sPij,s+Pij,suk,s+uj,sPik,s+nsmsui,suj,suk,s,)êi ⊗ êj ⊗ êk

)
− qs
ms

ns(Eus+usE)

− qs
m2
s

(
(Ps+nsmsusus)×B−B× (Ps+nsmsusus)

)
I = Ξ2

s, (B.15)
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which can be expressed as

∂Ps

∂t
+∇·

(
(Qijk,s+ui,sPij,s+Pij,suk,s+uj,sPik,s)êi ⊗ êj ⊗ êk

)
−

qs
ms

(
Ps×B−B×Ps

)
= −∇· (nsmsususus)− ∂nsmsusus

∂t

+ qsns

(
Eus+usE+ 1

ms
(usus×B−B×usus)

)
+msΞ

2
s. (B.16)

Although Eq. (B.8) and Eq. (B.16) are the exact first and second moments of

the Boltzmann equation, they are not very useful for our energy analysis (see Sec-

tion 7.2). Instead, we proceed by deriving direct expressions for the scalar energy

terms εks and εths . Thus, we take the scalar product of Eq. (B.8) with us, which

leads to the equation for the kinetic energy εks :

dεks
dt

+us · (∇·Ps)+(∇·us)εks − qsnsus ·E = Ξks , (B.17)

where Ξks = msus · Ξ1
s. On the other hand, to obtain an expression for the thermal

energy εths , we take half the trace of Eq. (B.16). The terms involving partial time

derivatives of the form

1
2Tr

(
∂Ps

∂t

)
= ∂εths

∂t
(B.18)

and

1
2Tr

(
∂nsmsusus

∂t

)
= ∂εks

∂t
. (B.19)
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Half the trace of the term ∇ ·
(
(Qijk,s+ui,sPij,s+Pij,suk,s+uj,sPik,s)êi ⊗ êj ⊗ êk

)
can be expressed as

1
2Tr

(
∇·Qs

)
+ 1

2Tr
(
∇· (ui,sPij,s+Pij,suk,s+uj,sPik,s)êi ⊗ êj ⊗ êk

)
=

1
2Tr

(
∇·Qs

)
+ 1

2
[
2(∇us : Ps)+(∇·us)Tr(Ps)+us ·∇(Tr(Ps))+2us · (∇·Ps)

]
=

1
2Tr

(
∇·Qs

)
+∇us : Ps+(∇·us)εths +us ·∇εths +us · (∇·Ps). (B.20)

Similarly,

1
2Tr (∇· (nsmsususus)) = 1

2 (us ·∇(msnsus ·us)+(∇·us)(nsmsus ·us)) ,

= us ·∇(εks)+(∇·us)εks , (B.21)

and the electric-field terms become

1
2Tr(Eus+usE) = E ·us. (B.22)

To calculate the trace of the cross-product terms in Eq. (B.16), we use an element-

wise approach. If A is a vector and M is a second-rank tensor, the cross product

is A × M = ϵlipAiMpqêl ⊗ êq. It can be shown that M × A = −
(

A×M
T
)T

, where

M
T represents the transposed of M, and Tr(A×M) = ϵijkAiMjk. Moreover, if M is a

symmetric tensor, then Tr(A×M) = 0. In addition, the trace of ∇·Qs corresponds

to 2∇ · hs, as defined in Eq. (7.2). Therefore the expression for the thermal energy

rate is

∂εths
∂t

+ ∂εks
∂t

+∇·hs+∇us : Ps+(∇·us)εths +us ·∇εths +us · (∇·Ps) =

−us ·∇εks − (∇·us)εks + qsnsE ·us+ 1
2Tr

(
msΞ

2
s

)
, (B.23)

which can be expressed as

dεths
dt

+ dεks
dt

+∇·hs+∇us : Ps+(∇·us)εths +us · (∇·Ps) =

−(∇·us)εks + qsnsE ·us+ 1
2Tr

(
msΞ

2
s

)
. (B.24)
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Substituting Eq. (B.17), this last expression can be further simplified to

dεths
dt

+∇·hs+∇us : Ps+(∇·us)εths = Ξths , (B.25)

where Ξths = −mu ·Ξ1 + 1
2Tr

(
mΞ2). The terms on the left-hand side of Eq. (B.17)

and Eq. (B.25) describe collisionless processes, whereas the terms on the right-hand

side describe collisional/dissipative processes in the plasma.



Appendix C

A Framework to Study the

Energy-density Transfer Using

Fitted Moments from In-situ Data.

In-situ observations show that plasma species s can be composed of more than one

population l, each of them presenting different thermodynamic properties. For in-

stance, solar-wind electrons often present three populations: core, halo and strahl

electrons (Feldman et al., 1975; Pilipp et al., 1987; Marsch, 2006; Štverák et al.,

2009), and solar-wind protons often present two main populations: core and beam

protons (Gazis and Lazarus, 1982; Marsch et al., 1982). Additionally, the plasma

properties are understood in terms of the particle distribution function. Therefore,

the study of the radial evolution of the plasma populations is often approached by fit-

ting their distributions (Maksimovic et al., 2005; Štverák et al., 2009; Perrone et al.,

2019). The fitted distributions provide a way to compute moments of the overall

particle distribution and to analyse its macroscopic properties. In this section, I

extend the analysis presented in Section B and derive expressions for Eqs. (B.17)

and (B.25) in terms of the different populations. This framework will build upon the

results from Section 7.3.2 and motivates the study of heat flux evolution and irre-

versible energy transfer dependence with heliospheric distance. Therefore, I derive a

framework to study the energy density transfer of the different species which can be
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applied to in-situ measurements as a way to evaluate these energy density transfer

terms. Let us consider that the distribution function fs of the plasma species s,

consisting of several populations l, can be expressed as

fs =
∑
l

fl (C.1)

where each fl represent the distribution function of the population l. For instance,

in the case of electrons l = core,halo,strahl. For each population, we define the

density

nl =
∫
fld

3v (C.2)

and bulk velocity

ul = 1
nl

∫
flvd3v. (C.3)

The second moment of fs, (pressure tensor, Eq. (2.14)) is

Ps =ms

∫
fs(v −us)(v −us)d3v

=ms

∫
(
∑
l

fl)(v −us)(v −us)d3v. (C.4)

Since

nsus =
∑
l

nlul, (C.5)

The second moment for each population around the species bulk velocity (us) is

Pus

l

ms
=
∫
fl(v −us)(v −us)d3v, (C.6)

and the total pressure tensor of the species s is the sum over all Pus

l , i.e.,

Ps =
∑

Pus

l . (C.7)
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The quantity Pus

l measures the contribution of the population l to the overall pres-

sure. On the other hand, considering the second moment around the population

bulk speed (ul) as

Pl

ms
=
∫
fl(v −ul)(v −ul)d3v, (C.8)

the pressure tensor of the total species Ps can be expressed as

Ps

ms
=
∑
l

∫
fl[(v −ul)− (us−ul)][(v −ul)− (us−ul)]d3v, (C.9)

which after some operations becomes

Ps =
∑
l

(
Pl+nlms(us−ul)(us−ul)

)
. (C.10)

For simplicity, we define the offset velocity

usl = ul−us, (C.11)

so that Ps can be expressed as

Ps =
∑
l

(
Pl+nlmsuslusl

)
. (C.12)

Accordingly, the third moment of the full species s (Qs) can be expressed in terms

of the third moments around the bulk speed of the population (Ql) as

Qs

ms
=
∑
l

∫
fl[(v −ul)− (us−ul)]3d3v, (C.13)
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where, [(v − ul) − (us− ul)]3 represents a triple dyadic product. After some opera-

tions, Eq. (C.13) becomes

Qs =
∑
l

(
Ql

)
−
∑
l

(
nlms(us−ul)3

)
−
∑
l

(
Pl(us−ul)+

∫
fl(v −ul)(us−ul)(v −ul)d3v+(us−ul)Pl

)
. (C.14)

If the distribution function of each population l is symmetric (even function) with

respect to ul, the terms Ql are zero. Therefore, in our particular case, Eq. (C.14)

becomes

Qs =
∑
l

(
nlmsusluslusl +Plusl +ms

∫
fl(v −ul)usl (v −ul)d3v+uslPl

)
. (C.15)

The heat tensor is not required in the calculation of Eq. (7.8). Instead, the di-

vergence of the electron heat flux vector ∇ · hs = Tr(∇ · Qs)/2 directly enters the

thermal-energy equation. We find

Tr(∇·Qs)
2 =

∑
l

1
2Tr(∇· [nlmsusluslusl ])

+
∑
l

1
2Tr

(
∇·

[
Plusl +ms

∫
fl(v −ul)usl (v −ul)d3v+uslPl

])
. (C.16)

For the first term, we find

1
2Tr (∇· [nlmsusluslusl ]) = usl ·∇

(1
2msnlusl ·usl

)
+(∇·usl )

1
2nlmsusl ·usl . (C.17)

We now define the offset kinetic energy density as

εk,sl = 1
2nlmsusl ·usl . (C.18)
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Thus, the first term in Eq.(C.16) can be expressed as

∑
l

1
2Tr (∇· [nlmsusluslusl ]) =

∑
l

(
usl ·∇εk,sl +(∇·usl )ε

k,s
l

)
. (C.19)

The second term in Eq.(C.16) becomes

∑
l

1
2Tr

(
∇·

[
Plusl +ms

∫
fl(v −ul)usl (v −ul)d3v+uslPl

])
=

∑
l

(
∇usl : Pl+(∇·usl )εthl +usl ·∇εthl +usl · (∇·Pl)

)
, (C.20)

where we have defined the thermal energy density of each population as

εthl = 1
2Tr(Pl). (C.21)

To obtain ∇ · hs in terms that correspond to each population, we substitute Eq.

(C.19) and Eq. (C.20) in Eq. (C.16) and obtain

∇·hs =
∑
l

(
usl · [∇(εk,sl + εthl )+∇·Pl]+ (∇·usl )(ε

k,s
l + εthl )+∇usl : Pl

)
. (C.22)

The thermal energy of the entire species s Eq. (7.9) is

εths =
∑
l

(
εthl +nlms

1
2 ||us−ul||2

)
=
∑
l

(
εthl + εk,sl

)
. (C.23)

Let us consider the term ∇us : Ps. Using Eq. (C.12), we find

∇us : Ps =
∑
l

(
∇us : Pl+nlms∇us : (uslusl )

)
. (C.24)

To simplify the comparison of the different terms, we use different colours that

represent each term in the thermal power density equation:

dεths
dt

+∇·hs+∇us : Ps+(∇·us)εths = Ξths . (C.25)
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The thermal-energy equation Eq. (C.25) for the species s in terms of the populations

is given by

d

dt

(
εths
)

+
∑
l

(
usl ·∇(εk,sl + εthl )+usl ·∇ ·Pl+(∇·usl )(ε

k,s
l + εthl )+∇usl : Pl

)
+∇us : Ps+(∇·us)εths = Ξths .

(C.26)

Eqs. (C.12,C.23,C.18) and (C.26) allow for the study of the irreversible thermal

energy density transfer using the distribution function of the populations. This can

be applied to electrons (Feldman et al., 1975; Pilipp et al., 1987; Marsch, 2006;

Štverák et al., 2009; Abraham et al., 2022) and positive ions (Gazis and Lazarus,

1982; Marsch et al., 1982; Perrone et al., 2019) in the solar wind. A similar approach

have been presented (Goldman et al., 2020) and applied to MMS observations (Gold-

man et al., 2021). As Goldman et al. (2020) point out, a multi-beam approach to

calculate the moments of the distribution function overcomes the limitations and

misleading interpretation of single-fluid moments. Moreover, the thermal energy

density εths of the entire species s may lack of meaning for multi-beam distributions.

On the contrary, the thermal energy density εthl of each population l is is clearly

defined.
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