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Abstract. One of the most common misconceptions made about the Kalman filter when
applied to linear systems is that it requires an assumption that all error and noise processes are
Gaussian. This misconception has frequently led to the Kalman filter being dismissed in favor
of complicated and/or purely heuristic approaches that are supposedly “more general” in that
they can be applied to problems involving non-Gaussian noise. The fact is that the Kalman
filter provides rigorous and optimal performance guarantees that do not rely on any distribution
assumptions beyond mean and error covariance information. These guarantees even apply to
use of the Kalman update formula when applied with nonlinear models, as long as its other
required assumptions are satisfied. Here we discuss misconceptions about its generality that are
often found and reinforced in the literature, especially outside the traditional fields of estimation
and control.
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Resumen. Uno de los conceptos erróneos más comunes sobre el filtro de Kalman cuando se
aplica a sistemas lineales es que requiere la suposición de que todos los procesos de error y
ruido son Gaussianos. Este concepto erróneo ha llevado con frecuencia a descartar el filtro de
Kalman en favor de enfoques complicados y/o puramente heuŕısticos que supuestamente son
”más generales” en el sentido de que pueden aplicarse a problemas que involucran ruido no
Gaussiano. El hecho es que el filtro de Kalman proporciona garant́ıas de rendimiento óptimas y
rigurosas que no se basan en suposiciones de distribución más allá de la información de covarianza
de error y media. Estas garant́ıas incluso se aplican al uso de la fórmula de actualización de
Kalman cuando se aplica con modelos no lineales, siempre que se cumplan sus otros supuestos
requisitos. Aqúı discutimos conceptos erróneos sobre su generalidad que a menudo se encuentran
y refuerzan en la literatura, especialmente fuera de los campos tradicionales de estimación y
control.
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1. Introduction
The Kalman filter [1] is among the most versatile and widely-used tools in engineering. More
than 50 years after Kalman published his original paper, his work still inspires hundreds of
papers each year. Some of these papers explore new applications of the algorithm in approaches
which range from industrial process control, to robotics, and even to meta-analysis of election
forecasts.

• “Since the Kalman framework requires Gaussian distributions, the model can only
be constructed if ... ” [2]

• “The Kalman filter which is used for integrated navigation requires Gaussian
variables ... a multimodal un-symmetric distribution has to be approximated with
a Gaussian distribution before being used in the Kalman filter.” [3]

• “...can be best reconciled with the KF (which requires Gaussian probability
distributions) by making the assumption that ... ” [4]

• “ [The] Kalman filter requires Gaussian prior f(x0) ... ” [5]

• “Notice that each of the distributions can be effectively approximated by a Gaussian.
This is a very important result for the operation for many systems, especially the
ones based on a Kalman filter since the filter explicitly requires Gaussian distributed
noise on measurements for proper operation.” [6]

• ...importance sampling ... relaxes the assumption of Gaussian observation errors
required by the basic Kalman filter. [7]

• “However, the KF requires Gaussian initial conditions, therefore ... ”[8]

• “Kalman filters are Bayes filters that represent posteriors with Gaussians... Kalman
filter mapping relies on three basic assumptions ... Gaussian noise... the initial
uncertainty must be Gaussian.” [9]

• “The Kalman filter is a very efficient optimal filter; however it has the precondition
that the noises of the process and of the measurement are Gaussian ... when the
measurement is not a Gaussian distribution, the Kalman filter cannot be used.” [10]

• “The Kalman filter assumes that the posterior density at every time step is Gaussian
and hence exactly and completely parameterized by two parameters, its mean and
covariance.”

• “Kalman filter cannot be used here for inference because the measurement does not
involve additive Gaussian noise.” [11]

• “The KF requires models defined by linear Gaussian probability density
functions.” [12]

• “The most attractive advantage of the Kalman filter lies in its optimal estimation in
the sense of minimum mean squared prediction errors. However, the optimality of
the Kalman filter requires two restrictive prerequisites, linear state-space models and
independent Gaussian white noise for both process and measurements.” [13]

Figure 1: Quotes in the literature that could be interpreted as suggesting that the Kalman filter
can only be applied when errors are Gaussian-distributed.
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Unfortunately, the full potential of the Kalman filter is often not appreciated and exploited
due to misconceptions which have persisted since the earliest days after its emergence as a
critical component in aeronautical and space applications in the 1960s. Among the most common
misconceptions is that the Kalman filter can only be rigorously derived and applied to linear
systems in which all the error and noise processes are strictly Gaussian. More specifically, it is
commonly believed — and frequently stated implicitly or explicitly — that the use of a Kalman
filter in the presence of non-Gaussian error processes is at the very least a sub-optimal heuristic
approach that may perform well in practice if errors are approximately Gaussian but that it is
mathematically non-rigorous and cannot be expected to perform well if the errors are strongly
non-Gaussian. Figure 1 gives evidence of this in form of a quotes sampled from the literature
across a range of fields including machine learning, estimation, systems engineering and end-user
applications. (These quotes should not be taken as undermining the integrity of the sources from
which they are taken but rather as examples of how someone new to the study of linear and
estimation might come to believe that the Kalman filter requires Gaussianity assumptions.)

An unfortunate consequence of such misconceptions is that it is common for the Kalman
filter to be dismissed from consideration for applications simply because the errors are known to
be non-Gaussian. In this paper, we discuss how the Kalman filter can be derived as the optimal
solution to the filtering problem under differing sets of assumptions, and we emphasize that the
assumptions required for a particular derivation are not necessarily required in general for the
optimality of the filter. In particular, we emphasize that linearity does not imply Gaussianity;
minimizing mean-squared error does not imply Gaussianity; and that the Kalman Filter is
MMSE-optimal without any assumptions of Gaussianity.

In the next section we briefly summarize the linear estimation/filtering problem and
historically how the same optimal solution has been derived from two very different perspectives
with very different assumptions.In particular, we emphasize that the Kalman filter can be applied
rigorously – and optimally – to systems with errors from any probability distribution with finite
first and second moments

2. The Estimation Problem: Kalman vs. Bayes
2.1. Estimation Problem
Consider a linear system of the form

xk = Fk−1xk−1 + vk−1, (1)

where xk is the state at timestep k, Fk−1 is the state transition matrix, and vk−1 is the additive
process noise. We assume that this noise is independent from timestep, is zero mean, and its
covariance is known. However, we do not assume that it is Gaussian-distributed.

The observation model for a sensor measurement of the state of the system has the same
linear form:

zk = Hkxk +wk, (2)

where where Hk is a linear transformation from system to observation coordinates and wk is
the observation noise. Similar to vk−1, it is assumed to be zero-mean, independent, but does
not have to be Gaussian.

The filter is initialized at time step 0 with an estimate x̂0|0. The error in this estimate is zero
mean and has a covariance P0|0. Again, this does not have to be Gaussian.

Given an initial condition and a sequence of measurements, the goal is to compute an estimate
x̂i|j at timestep i based on all observations up to timestep j, along with its associated error
covariance Pi|j . The relationship between the estimate and the state is given by

x̂i|j = xi + x̃i|j , (3)
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where x̃i|j is the error. The mean squared error in this estimate is

Pi|j = E
[
x̃i|jx̃

⊤
i|j

]
. (4)

Given that the covariance of any error distribution can never be determined exactly in
practice, the above equality can be relaxed to the more conservative and practically-achievable
requirement:

Pi|j ≥ E
[
x̃i|jx̃

⊤
i|j

]
, (5)

where the covariance matrix Pi|j can now be interpreted as representing the best available upper
bound on the expected squared error associated with x̂i|j . As we discuss later, the practical
question is whether an estimate which obeys this guarantee is sufficient for the problem at
hand.

In Kalman’s original paper he derived his now-eponymous filter from the perspective of
ℓ2-norm error minimization via othogonal projections. He also noted (his Corollary 1) that
if all errors are assumed Gaussian then the system mean-and-covariance estimate can be
interpreted as parameterizing a Gaussian distribution that represents the exact error distribution
conditioned on the sequence of observations. In more contemporary parlance, Kalman derived a
minimum-mean-squared error (MMSE) optimal filter. What is critical to note, however, is that
the MMSE optimality of the filter does not in any way depend on such an assumption.

While MMSE optimality can be obtained with broad generality, i.e., with relatively weak
assumptions, it does so at the expense of a strong probabilistic interpretation. For example,
the Kalman filter guarantees that the expected squared error of the system estimate decreases
at a certain rate, but it does not provide information necessary to answer a question about
the probability that, e.g., its mean position estimate is within one meter of the true position.
This motivated Ho and Lee [14] to re-derive the optimal filter from a Bayesian perspective by
replacing the mean-covariance pair with the full probability density of the state, fk|k(xk|z1:k).
The prediction is then determined by the Chapman-Kolmogorov Equation,

fk|k−1(xk|z1:k−1) =

∫
f(xk|x′)fk−1|k−1(x

′|z1:k)dx′ (6)

where f(xk|x′) is the state transition density which encodes the process model. The update is
then given from Bayes rule,

fk|k(xk|z1:k) =
f(zk|xk)fk|k−1(xk|z1:k−1)

f(z1:k)
, (7)

where f(zk|xk) is the measurement likelihood model. This incorporates the effects of the
observation model.

From this Ho and Lee provided an alternate proof of Kalman’s corollary that the Kalman filter
is Bayes-optimal with all mean and covariance estimates interpreted as parameters for Gaussian
densities corresponding to assumed-Gaussian error processes. Under these assumptions a mean
and covariance estimate from the Kalman filter does not just represent the first two moments
of an otherwise unknown probability distribution, it can be interpreted as the exact uncertainty
distribution for the state. Having access to the full error distribution is clearly more informative,
but it comes at the cost of assumptions that cannot be realistically satisfied in almost any
nontrivial real-world application. Even beyond Gaussianity, the Bayesian derivation strictly
requires exact and complete knowledge about the full statistics of all noises. The least-squares
derivation, by contrast, easily accommodates conservative covariance estimates and is thus much
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more consistent with the practical reality that the error covariance of a sensor can never be
ascertained with infinite precision.

While it is debatable whether or not the Bayesian interpretation is pedagogically more
accessible or intuitive than squared-error minimization, there is no question that it appears
more prominently in textbooks and introductory expositions of the Kalman filter. It should
not be surprising, therefore, that lingering concerns might exist (e.g., as suggested by the
quotes in Figure 1) that Gaussian-distributed noises are somehow more conducive to good filter
performance based on their special role in Bayesian derivations. It would seem that the MMSE
derivation should be sufficient to dispel such concerns, but its abstract mathematical guarantees
apparantly cannot break the intuitive link between covariances and Gaussians that is so firmly
ingrained by the Bayesian interpretation.

3. Conclusions
The Procrustean application of Bayes’ rule to derive the Kalman filter may be suitable as
a pedagogical exercise, but care must be taken to ensure that the assumptions required for
the method of derivation are not confused with assumptions that are required in general for
effective use of the filter. Linearity does not imply Gaussianity. Minimizing mean squared error
does not imply Gaussianity. The Kalman Filter is MMSE-optimal without any assumptions of
Gaussianity. In this note we have attempted to highlight this fact so that the generality and
optimality of the Kalman filter can be more fully appreciated.
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