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Adaptive autonomous navigation of multiple
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Abstract—The optoelectronic microrobot is an advanced light-
controlled micromanipulation technology which has particular
promise for collecting and transporting sensitive microscopic
objects such as biological cells. However, wider application of
the technology is currently limited by a reliance on manual
control and a lack of methods for simultaneous manipulation
of multiple microrobotic actuators. In this article, we present a
computational framework for autonomous navigation of multiple
optoelectronic microrobots in dynamic environments. Combining
closed-loop visual-servoing, SLAM, real-time visual detection of
microrobots and obstacles, dynamic path-finding and adaptive
motion behaviors, this approach allows microrobots to avoid
static and moving obstacles and perform a range of tasks in real-
world dynamic environments. The capabilities of the system are
demonstrated through micromanipulation experiments in simu-
lation and in real conditions using a custom built optoelectronic
tweezer system.

Index Terms—Micro/Nano Robots, Multi-Robot Systems, Au-
tonomous Agents, Visual Servoing, Motion and Path Planning.

I. INTRODUCTION

OF the variety of mobile microrobot technologies which
have been proposed [1], light-driven approaches are par-

ticularly attractive for many applications due to their flexibility
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and precision. The Optoelectronic Microrobot (OEM) [2] is
a recently proposed micromanipulation technology based on
the application of optoelectronic tweezers (OET) to control
microscopic actuators. OEMs offer several advantages over
alternative light-based micromanipulation techniques, such as
optical tweezers [3] and direct OET [4], particularly in the
range of forces which can be exerted on target objects and their
compatibility with sensitive biological samples such as live
cells. Recent work [5] has shown that multiple OEMs can be
combined to create microscopic motors and machines such as
gear trains and valves. OEMs are typically controlled by a hu-
man operator who manually positions individual actuators us-
ing visual feedback. This limits their application to sequential,
low throughput tasks. In this work, we describe a new adaptive
approach to OEM control which enables real-time, closed-loop
positioning of multiple actuators. Comprising a set of linked
asynchronous software modules for detection of OEMs and
obstacles, simultaneous localization and mapping (SLAM),
task allocation, path-finding and adaptive motion behaviors,
this system allows simultaneous autonomous manipulation
of multiple microscopic objects in dynamic environments.
The performance of the system for micromanipulation tasks
is tested in simulation and under controlled experimental
conditions using a custom-built OET system. We discuss the
potential for wider applications of OEMs enabled by our work.

II. RELATED WORK

OET [4] relies on the application of light-controlled di-
electrophoresis (DEP) to exert forces on microscopic objects
suspended in solution between a pair of transparent parallel
plate electrodes. When an external voltage is applied across the
electrodes the local electric field gradient between them can be
controlled by projecting light patterns onto a photoconductive
(PC) layer coated on top of the lower electrode. This in
turn allows DEP forces to be exerted on microscopic objects
suspended in the electrode gap, enabling micromanipulation
using irradiance levels (typically ∼ 1Wcm−2) which are
several orders of magnitude lower than conventional optical
tweezers. The OEM [2] builds on this concept by using OET
to control microrobotic actuators fabricated in bulk using
SU-8 photolithography (Fig. 1.a and 1.c). By decoupling
the magnitude of the DEP force from the size, shape, and
composition of the manipulation target, OEMs can be used
to exert larger forces (typically 100s of pN) on a wide
range of secondary microscopic objects. Highly consistent
OEM manufacture gives them a reproducible and predictable
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Fig. 1. System architecture. (a) Schematic of the OET system and software framework for OEM manipulation. (b) Reference frames for the sample positioning
stage (grey), camera (magenta), and projector (red). (c) Brightfield image of a cogwheel-shaped OEM.

response to DEP forces, simplifying control. Results also
suggest that the direct mechanical forces applied by OEMs
are less damaging to sensitive cargoes, such as biological
cells, than direct OET [2]. The wider application of OEM
technology depends critically on increasing the flexibility and
achievable throughput of micromanipulation tasks. To this
end, we previously demonstrated automated open-loop control
of multiple OEMs using computer vision and multi-agent
path-planning [6]. Using this approach OEMs were able to
perform automated collect, transport, and release operations
on microscopic particles within a lab-based OET microscope
system. However, this open-loop approach relied on OEMs
following fixed paths, identified during system initialization.
As a result, it was unable to correct for any deviation from
ideal OEM behavior or accommodate for moving obstacles
and targets, limiting its application to well-characterized static
environments. Here, we build on this previous work, pre-
senting a new adaptive closed-loop method for the execu-
tion of OEM micromanipulation tasks. Using visual-servoing,
dynamic path-finding and adaptive motion behaviors, this
approach enables autonomous navigation of OEMs in real-
world complex, dynamic environments.

III. METHODS

A. Overview

Our OEM control approach is designed to allow adaptive,
autonomous navigation of OEMs in dynamic environments
through the use of real-time, closed-loop visual-servoing.
It combines spatial calibration of system hardware, SLAM,
object detection and tracking, task assignment, path-finding,
and steering of physical and virtual objects. These methods
are realized using a set of discrete modules working together
within an asynchronous concurrent framework. Following off-
line system calibration, images acquired by the camera are

fed to a SLAM module along with the associated coordinates
of the motorized sample stage to produce an up-to-date map
of the observed device. An image processing module detects
objects present in the images (OEMs, static and moving
obstacles) and labels the map. This labeled map is then
used by a path-finding module which computes independent
OEM trajectories. A motion-planning module positions the
sample stage such that the sum of navigable trajectory path
lengths within the projector image field is maximized. Finally,
a kinematics module moves the detected OEMs along their
trajectories by computing an updated image for display on the
light projector.

B. Hardware characteristics of the system

To control OEMs, we developed an OET system (Fig. 1.a)
by modifying an upright light microscope with a 4x/0.16
microscope objective lens, as described in our previous work
[6]. A commercial digital light projector was coupled into
the illumination path to project light patterns onto the PC
layer of an OET device fabricated by coating glass microscope
slides with indium tin oxide (ITO). The electric field (30kHz,
30VPP) across the ∼ 150µm gap between the electrodes was
controlled using a function generator. Brightfield images were
captured under transmitted light illumination with a blue LED
using a scientific CMOS camera. A shortpass optical filter
in the emission path of the microscope removed the specular
reflection of the red light from the projector. The position
of the sample was controlled using a motorized translation
stage. Cogwheel-shaped OEMs (Fig. 1.c), fabricated from SU-
8 using photolithography were suspended in deionized water
and added on top of the (lower) electrode prior to attachment
of the upper electrode. The OET hardware has two particularly
important characteristics that have influenced the design of
our OEM control solution. Firstly, the camera and projector
share the same optical train within the microscope (tube and
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objective lens). This means that both the observable area of
the OET device substrate and the size of the image field from
the projector are limited to a small fraction of the total device
area. This field-of-view limitation is accommodated by jointly
performing SLAM following system calibration and efficiently
moving the stage using the computed map, to allow seamless
microrobotic control over large distances. Secondly, despite
their consistent manufacture, OEMs can exhibit inconsistent
behavior due to in situ contamination and variability of the
frictional forces with the PC substrate. A small axial (z)
component of the DEP force can also cause OEMs to hover
slightly above the PC layer, making them sensitive to the
microfluidic forces within the device. The positions of targets
and obstacles within the device can also be affected by fluid
flows or by the self-propelled motion of live objects. As a
result, closed-loop visual-servoing is employed for real-time
OEM control, allowing for failure detection and recovery.

C. System calibration

Spatial calibration of the camera, sample positioning stage
and projector are essential to ensure accurate SLAM over large
distances and allow precise light projection onto the computed
device map (Fig. 1.b). Firstly, the camera is calibrated to
correct image distortion and measure the image pixel size.
This is followed by a stage calibration procedure to determine
the transformation matrix expressing relative translations of
the stage in the camera reference frame. Finally, the projector
is calibrated to allow direct mapping from camera to projector
pixels.

1) Camera calibration: A large number of photogrammet-
ric and vision-based camera calibration techniques have been
developed over the years, most notably [7], [8]. Whilst similar,
microscope calibration presents some important differences
due to the shallow depth-of-field, such as the use of a specific
camera model, calibration patterns that are near parallel to the
image plane and the restriction to single plane calibration [9].
We used the method proposed by Amni et al. [10], which
is based on a modified version of Zhang’s algorithm [8]
for the parallel case, to correct geometric image distortion.
This approach retrieves both the intrinsic and extrinsic camera
parameters along with the distortion coefficients from a single
calibration image. In place of the virtual target constructed
in [10], a physical calibration target (R2L2S3P1, Thorlabs)
is used. The real size Sp of the image pixels, measured at
∼ 1.62µm, is computed by averaging the distance in pixels
between each undistorted image point over the known distance
between their corresponding 3-D points on the calibration
pattern plane.

2) Stage calibration: To describe the relationship between
translation of the sample positioning stage and the ob-
served translation in the calibrated camera image, let Rs =
(s;Xs,Ys) be the stage reference frame on the same plane as
the image reference frame Rc = (c;u,v). The transformation
from a stage translation vector ts = [TXs, TYs, 1]

T to the
translation vector between two undistorted image positions
ti = [Tu · Sp, Tv · Sp, 1]T is ti = A ts, where A is a 2-D
transformation in homogeneous form with scaling factor s and

rotation angle θ. To retrieve this transformation matrix, several
images are acquired following known translations of the stage
and visually correlated to determine the corresponding shifts in
the camera frame. This procedure is performed using ZNCC,
with sub-pixel accuracy achieved by fitting and retrieving
the maximum of a cubic 2-D polynomial over the square
region of correlation values centred on the coordinates of the
highest correlation. These N stage and image translations in
homogeneous form are then used to retrieve the orientation
and scaling parameters Ω = {s, θ} by solving the non-linear
least squares minimization J = minΩ

∑N
n=0[(A ts) − ti]

2.
Once A is estimated, the relative image coordinates following
a stage translation ts are retrieved with p1i = p0i + (A ts),
with p0i and p1i the image coordinates in µm before and after
the stage translation, respectively. Similarly, the transformation
matrix A is also used to retrieve the relative stage coordinates
following an image translation.

3) Projector calibration: The projector image frame is
mapped to the camera reference frame by sequentially pro-
jecting light from small groups of DMD elements onto a
sample and detecting them in the undistorted camera image.
Interpolating between these measured points creates a full
mapping of the projector image.

D. SLAM
Following hardware calibration, SLAM is performed using

the camera and stage calibration parameters on undistorted
camera images. While visual SLAM was considered to avoid
relying on the stage’s proprioceptive odometry, the high po-
tential of observing only moving objects and a lack of static
visual features on the devices made this approach unreliable.
Instead, direct localization and mapping are performed by
setting an origin point on the map, tied to the camera and stage
reference frames, and operating from relative translations of
either device. The displacement of the camera field-of-view
from the stage proprioceptive coordinates is computed using
p1i = p0i + (A ts) for direct stitching of the observed images,
with the resulting map expressed in the camera reference
frame.

E. Image processing
Static and moving structures, such as the edge of the OET

device, etched static structures, debris and OEMs are de-
tected and labeled using classical image processing techniques
mostly implemented in the OpenCV library [11]. The map
labeling procedure is used to detect obstacles in each bright-
field camera image and produce a binary map representing the
pixels occupied by each structure. A separate detector is used
to identify the 2-D position and 1-D orientation of each OEM.
The subsequent labeled map M, along with all OEM poses,
then acts as an abstraction layer for use by the other modules
of the system.

1) Image labeling: Brightfield images are smoothed using
a bilateral filter to preserve sharp contrast changes, before a
Laplacian filter is used to compute intensity gradients. The
gradient image is thresholded to create a binary image, before
a morphological opening is applied to discard small connected
components.
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2) OEM detection: We developed a new OEM detector,
which improves on our previous work [6] allowing robust real-
time detection of both touching and partially damaged OEMs
in brightfield images (Fig. 2.e). A pre-detection operation is
first performed to find the combinations of distinct connected
components satisfying several OEM shape characteristics. Raw
camera images (Fig. 2.a) are smoothed using a bilateral filter,
followed by adaptive thresholding with a Gaussian kernel.
The resulting binary image Tt (Fig. 2.b) is morphologically
opened to detach all loosely connected structures before all
connected components significantly smaller or larger than
the expected area of an OEM ma are removed to produce
an image of blobs B (Fig. 2.c). Each blob b ∈ B is then
assigned to a cluster C ⊆ B, in which all blobs have a
neighbor whose L2 intra-centroid distance is less than half the
expected diameter of an OEM ms, so that ∀ bx ⊊ C,∃ by ̸=
bx, by ⊊ C, d(bx, by) <

ms

2 . In the case of an isolated blob
b, C = {b}. All combinations Ci, i ∈ {1, . . . ,

∑n
k=1

(
n
k

)
} of

k ⩽ n blobs in each cluster C, with card(C) = n, are then
evaluated so that their combined area m−

a ⩽ area(Ci) ⩽ m+
a ,

and the maximum side length of their combined bounding
boxes satisfies m−

s ⩽ size(Ci) ⩽ m+
s , with m±

a and m±
s

arbitrary factored values of ma and ms, respectively (Fig.
2.g). Finally, the valid combinations with the same combined
bounding box are removed to eliminate duplicates. While this
approach becomes prohibitively expensive as clusters grow
larger, clusters rarely exceeded five connected components
during our experiments in real-world conditions. The detection
phase then uses a square template image Tm (Fig. 2.f) derived
from the CAD model of the OEMs, slightly modified to
resemble their appearance in the binary image Tt. A template
matching method using the APT image feature descriptor
proposed in [12] is used to identify OEMs in the image. APT
vectors are simple 1-D arrays of mean image intensity values
in concentric regions of circular annuli that have the same area.
Their rotational invariance and low computational complexity
make them particularly well-suited to real-time detection of
OEMs. A single APT vector APTm with maximum radius
r = size(Tm)

2 is computed on the square OEM template image
Tm. For each valid combination Ci of each cluster C, APT
vectors APTi of the same radius are computed following a
sliding-window approach on the region covering the centroid
of the combined bounding box of Ci in image Tt. APTi are then
compared to APTm by computing their mean-squared error,
and the coordinates of the minimal MSE value in the region
satisfying MSE(APTi, APTm) ⩽ tAPTd is considered as an OEM
candidate location, with tAPTd an arbitrary threshold value.
Finally, all OEM candidates are filtered by eliminating other
surrounding candidates with a larger MSE value. Next, the
orientation of each OEM candidate is measured by detecting
the location of its aperture, which is estimated as the highest
value of the distance transform computed on a pre-defined
circular region (Figs. 2.d and 2.h) of the OEM bounding box
in the image of blobs B.

3) OEM tracking: Each detected OEM is linked to its
observation in the previous image frame in order to update
its position and orientation on the device map. The Euclidean
distance between a newly detected OEM md and all the latest

(a) (b) (c) (d)

(e) (f) (h)(g)

Fig. 2. OEM detection ((a), (b), (c), (e), and (g) are crops of full-resolution
images). (a) Brightfield image of a cogwheel OEM. (b) Thresholded image
Tt of a). (c) Image of blobs B from b). (d) Distance transform of B. (e)
Detected OEM. (f) Predefined template image Tm. (g) Blobs bounding boxes
(in green) in cluster C and valid combination Ci (in blue). (h) Pre-defined
circular region corresponding to the circular chamber of the OEM.

known OEM observations mi is measured in increasing order.
If the nearest previous observation d(md,mi) ⩽ ms

2 , this
observation is updated with the newly detected OEM values.
If no close match is found, an image inset corresponding
to both observations is compared using APT descriptors in
increasing order of distance below a maximum radius. If
the minimal MSE value of their respective APT vectors
MSE(APTd, APTi) ⩽ tAPTr , with tAPTr an arbitrary threshold
value, the previous observation is updated. In the case where
no near or visually matched previous observation is found, a
new OEM is created.

F. OEM path-finding and target assignment

The path-finding module seeks the shortest navigable,
collision-free route between an OEM and its destination. A
task assignment module allocates OEMs to available targets
while minimizing the cumulative length of individual routes.

1) Path-finding: Finding navigable routes for multiple
OEMs can be posed as a multi-agent path-finding (MAPF)
problem [13] within the 2-D free-space Sf derived from the
labeled map M in which the binary structures represent the
obstacle-space So. Sf is computed for each OEM, allowing
for different OEM sizes, from the distance transform of the
obstacle-space So thresholded with a value equal to half the
maximum diameter occupied by the OEM and its associated
light pattern. Our previous open-loop OEM control system [6]
used a decentralized prioritized planner to compute the paths
of all agents in a static environment, which proved compu-
tationally expensive as the number of agents and map size
increased. Closed-loop system control of OEMs in a dynamic
environment requires both real-time and iterative computation
to accommodate unpredictable moving obstacles. Sampling-
based approaches [14], while generally sub-optimal, can scale
efficiently by reducing the dimension of the configuration
space. This lowers the computational cost, enabling real-time
execution in larger environments. To accommodate large map
sizes in a pixel-precise configuration space and an unrestricted
number of agents and obstacles, we chose to use the sampling-
based path-finding algorithm PRM* [14], as implemented in
the OMPL library [15]. While not strictly multi-agent, nor able
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to prevent deadlocks occurring when agents mutually obstruct
their paths in space-constrained use cases, this path-finding
approach, coupled with an adaptive obstacle-avoidance system
for all agents (section III-H) proved effective for closed-
loop OEM control (section IV-C) under typical experimental
conditions.

2) Target assignment: The process of harvesting multiple
targets using multiple capacity-constrained OEMs can be
considered as an example of the capacitated vehicle routing
problem (CVRP). However, due to the dynamic state of the
configuration space, OEMs, targets, and obstacles cannot be
assumed to remain in fixed positions during operation, which
can invalidate any pre-computed route. Incidentally, target
assignment is instead reduced to an assignment problem on
a bipartite graph, for which the costs of the existing edges
are the computed path lengths from each OEM to each target.
The problem is solved during the initialization phase using the
OR-Tool library [16]. After the initialization phase, OEMs are
assigned to their closest available target.

G. Stage motion-planning

The stage motion-planning module seeks to maximize the
total navigable path length of the OEMs within the projector
image field and the average speed of the agents. The navigable
length ni of an OEM trajectory Ti associated with OEM mi

is the portion of Ti located inside the projector operating
space Sp, which is determined by the stage coordinates ps,
such that ni = η(mi, Ti, ps). The total length of navigable
paths at stage coordinates ps is then computed following
L(ps) =

∑
i ni. The average speed of the agents, with s+t,i the

maximum linear speed of OEM mi, is computed following
S(ps) = L(ps)/maxi(ni/s

+
t,i). Finally, the length of navi-

gable paths for a newly evaluated stage position is corrected
to account for the stage motion time ∆t,s = d(p0s, p

1
s)/s

+
t,s,

with p0s, p1s and s+t,s the current stage position, evaluated stage
position and maximum stage speed, respectively. The corrected
length is given by L1 = L(ps) − 2S0∆t,s, where S0 is the
current average speed of all agents. Several new sampled stage
positions are evaluated iteratively in order to maximize either
the average agent speed or the total navigable path length over
the current position, with a priority given to the former in order
to favour the simultaneous control of multiple OEMs.

H. Kinematics and steering behaviors

The kinematics module computes and updates the poses of
the light patterns which control the OEMs and the poses of
the virtual objects, both in real and simulated conditions, using
specific dynamic behavioral modes. Several methods for path-
following and trajectory tracking have been proposed in the
literature, e.g., [17], [18]. For computational simplicity, the
motion of each simulated object is computed using a point
particle approximation and differential kinematic equations
integrated in real-time with the Euler method. This solution
is inspired by the framework originally proposed by Reynolds
[19], adapted to mass-less objects since inertia in microscopic
environments is negligible [20]. The effect of viscous drag is

addressed through parametrized linear and angular accelera-
tion values to ensure motion smoothness. Formally, a movable
object o is represented by ten elements: its centroid position on
the map po ∈ M, its orientation θo, its current acceleration and
velocity vectors at,o and st,o, its current angular acceleration
and velocity aθ,o and sθ,o, its maximal linear and angular
accelerations a+t,o, a+θ,o and velocities s+t,o, s+θ,o, and its last
time of update to. For linear motions, the new position of
an object is computed from an input acceleration vector at,d
following:

pt1o = pt0o +
[
st0t,o +

(
ŝt1t,o ·max

(
∥st1t,o∥, s+t,o

))]
·∆t (1)

, with st1t,o =
s
t0
t,o+(ât,d·max(∥at,d∥,a+t,o)·∆t)

2 and ∆t = t1 −
t0 = tcurrent−to the elapsed time. Similarly, angular motions
are computed from the angular difference ∆θ between the
normalized current orientation θo and a desired orientation θd
following:

θt1o = θt0o +
[
st0θ,o +max

(
st1θ,o, s

+
θ,o

)]
∆t (2)

, with st1θ,o =
s
t0
θ,o+(sgn(aθ,d)·max(|aθ,d|,a+θ,o)·∆t)

2 and aθ,d =

a+θ,o

[
sgn(∆θ) ·

√
2 · a+θ,o · |∆θ| − st0θ,o

]
. When an object is at

rest sl,o = 0, rotation to a desired orientation θd = atan2(at,d)
is performed before linear motion, with π added to the desired
orientation value in the case of reverse motion. Within this
kinematic framework, a set of discrete steering behavioral
modes is defined to allow OEMs and simulated objects to
perform a variety of operations.

1) Seek, arrival and stop: Seek moves an object at maxi-
mum acceleration to a destination pd in a straight line without
stopping, with an acceleration vector at,d =

(
st1t,o − st0t,o

)
·a+t,o

and desired velocity vector st1t,o = pd−po. Arrival is similar to
Seek, but gradually decelerates the object to a stop at the desti-
nation, by modifying the acceleration magnitude according to
the remaining distance to create an acceleration vector at,d =(
st1t,o − st0t,o

)
· a+t,o, with st1t,o = pd−po

∥pd−po∥ ·
√

2 · a+t,o · d(po, pd)
the desired velocity vector. Finally, Stop applies the maximum
deceleration to bring the object to a halt with an acceleration
vector at,d = −st0t,o · a+t,o.

2) Obstacle-avoidance: This behavior is somewhat differ-
ent from the other modes, as it checks for obstacles along
a desired acceleration vector at,d. Obstacle-avoidance de-
tects and avoids obstacles around the object within a radius

ro-a = st0t,o ·
s
t0
t,o

2·a+t,o
computed from the current object speed, and

works similarly to a 2-D LIDAR range-scanner [21]. Object
surroundings are scanned on the labeled map M following
lines in every direction at one-degree angle intervals, and the
position of the first collision in each direction is converted into
polar coordinates. Similarly, the 2-D rectangle representing the
minimal space for navigation along the object’s forward axis,
with a width equal to the object’s maximum dimension, is
also converted to polar coordinates. All directions for which
the scanned range is less than the minimal navigable range
are discarded. When there is no obstacle in the direction of
the acceleration vector at,d, Obstacle-avoidance returns the
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same vector. If an obstacle is detected, the previous vector
is cleared and the object either stops or chooses the closest
available direction θt1 by jointly calling Seek, with destination
pd = po + [ro-a · cos(θt1), ro-a · sin(θt1)]T , and Stop to avoid
a collision, until the path is clear.

3) Wander: Wander randomly changes the magnitude and
orientation of the object’s current acceleration vector at0t,o
to produce a new acceleration vector. A wander rate fac-
tor wr changes the orientation of the new vector θt1 =
atan2(at0t,o) + rand(−wr, wr) and the magnitude of the vector
mt1 = ∥at0t,o∥ + rand(−wr, wr). If the current acceleration
vector is null, a wander strength value ws is used to com-
pute the magnitude of a new acceleration vector mt1 =
ws+rand(−wr, wr), while the orientation is chosen randomly
θt1 = rand(−π

2 ,
π
2 ). The resulting acceleration vector is then

computed from the magnitude and orientation parameters
following at1t,o = [mt1 · cos(θt1),mt1 · sin(θt1)]T .

4) Path-following: Finally, Path-following follows the ob-
ject’s trajectory To within a radius rt. An object trajectory
is composed of several nodes n, with the current node n0

being the next closest node to the object on the trajectory. This
behavioral mode estimates the distance between the object’s
expected position ppo = po + (st0t,o ·∆t) at its current velocity
to the remaining nodes on the trajectory dni

o = d(ppo, ni). The
trajectory node ni for which the distance dni

o > rt is then
used as a destination point pd by Arrival.

Fig. 3. Frames from a time-lapse sequence showing adaptive motion and
trajectories of two OEMs in simulation. OEMs move using both Path-
following and Obstacle-avoidance behaviors, while dynamic obstacles (small
black objects) move using both Wander and Obstacle-avoidance. The black
vertical bar in the upper right is a static obstacle. The trajectory, instantaneous
linear acceleration and velocity of each OEM are represented by gray, blue
and black lines starting from their centroid, respectively. Note the updated
trajectories between each frame to avoid collisions. In the 6th frame, the
light patterns of the two OEMs overlap, which is by design, as overlapping
light patterns do not interfere in real-world conditions.

5) Combining steering behaviors: All the described be-
haviors can be combined using a steering accumulator,
i.e. by simple addition of the computed acceleration vec-
tors, to create more complex behaviors. Path-following can
for instance be combined with Obstacle-avoidance pt1o =
obstacle-avoidance(path-following(o)), which is the behavior

used by the light patterns for OEM manipulation. Virtual ob-
stacles use a combination of Wander and Obstacle-avoidance.
An example of OEM and obstacle motions in simulation are
shown Fig. 3.

I. Implementation in concurrent framework

The SLAM, image-processing, path-planning, stage motion-
planning, and kinematics modules are integrated into a con-
current C++ framework to enable simultaneous, real-time
operation following an off-line initialization stage.

1) Initialization: After a complete system calibration (sec-
tion III-C), the device map is created and labeled by capturing
and tiling camera images spanning the usable area of the OET
electrodes. All OEMs are simultaneously detected (virtual
ones are created during simulations) and virtual targets and
obstacles are created in the free-space region of the finalized
map. Each OEM is then assigned to a target (section III-F2)
and its trajectory is computed.

2) Asynchronous concurrent modules with multi-threading:
Following initialization, the system launches all modules
concurrently in separate asynchronous CPU threads, with
protected access to shared data. This allows all the modules to
run at different cycle speeds. Critical components, such as the
kinematics of the projected light patterns, which are essential
for smooth OEM control, can run at high cycle speeds, whilst
less sensitive tasks such as path-finding or target assignment
can run more slowly. The image grabber module acquires and
undistorts images from the camera using the pre-computed
calibration parameters. These images are used by the SLAM
and image processing modules to synchronously update the
labeled map and the current poses of OEMs within the camera
image, while virtual objects are updated by the kinematics
module. The updated map and objects are used by separate
modules to compute the paths for each OEM, assign them to
a destination, and position the stage to maximize the total
navigable path length or average agent speed. Finally, the
kinematics module updates the position of the light patterns
for projection onto the lower OET electrode to move OEMs
to their destinations. During stage motion, all other modules
are disabled and the external electric field is switched off to
minimize OEM drift. After the stage reaches its target position,
all modules resume their tasks.

IV. EXPERIMENTS AND RESULTS

The OEM control system was evaluated using a simple
harvesting task in which OEMs were asked to collect and
transport a virtual target object, release it in a predefined area
and dock in a separate parking area after task completion.
In the case where there were fewer OEMs than targets,
each OEM was allowed to collect several targets before the
release operation provided it had sufficient cargo capacity.
Experiments were conducted both in simulation (Fig. 3) and
on a real device (Fig. 4) to investigate the system’s ability
to complete the task, using virtual static targets and virtual
moving obstacles. Both types of experiments were repeated 8
times each in the same conditions using an AMD Ryzen™
Threadripper™ 3060X with 64GB of RAM. The cycle speeds
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(a)

(c)

(b)

Fig. 4. Screen capture from an OEM collect, transport, and release experiment
in real-world conditions as described in sections IV and IV-B (shown in full in
supplementary video). (a) Brightfield map of the device, containing 6 OEMs
(yellow arrows indicate the direction of their motion), 2 virtual targets (not
visible, the purple ellipses indicate their position), OEM trajectories to their
destination (black lines), virtual obstacles (red and white ellipses), drop-off
area (green box) and parking area (blue box). (b) Camera field-of-view inside
the map with virtual moving obstacles (red ellipses) and 3 OEMs. (c) Crop of
the labeled map M corresponding to the camera field-of-view shown in b). In
this example, two OEMs (top-right, bottom-right, above (c)) are in the process
of collecting their assigned virtual targets (purple ellipses), three OEMs are
moving to the drop-off area (green circle at the center of the green box) to
release their cargo and one is going to the parking zone (blue circle inside
the blue box) after releasing its target.

of the path-finding and stage motion-planning modules were
fixed at 2Hz and 0.2Hz, respectively to avoid incomplete or
varying trajectories and prevent the stage from moving too
frequently. Examples of simulated and on-device experiments
are shown in the supplementary video.

A. Simulation

A virtual environment was created as a binary map of
27.66mm × 15.13mm containing static obstacles, 10 OEMs,
10 targets, and 100 moving obstacles randomly placed in
the free-space region of the map. These targets and moving
obstacles were generated with morphologies and dimensions
corresponding to cells and debris using the simulated dis-
sociated tissue labels proposed in our previous work [6].
The virtual OEMs used a combination of Path-following and
Obstacle-avoidance steering behavioral modes, with maxi-
mum acceleration and velocity vectors of 0.4mms−2 and
0.4mms−1 and maximum angular acceleration and velocity
values of 4rads−2 and 4rads−1. The moving virtual obstacles
used a combination of the Wander and Obstacle-avoidance
modes, with maximum acceleration and velocity vectors of
0.1mms−2 and 0.1mms−1, maximum angular acceleration
and velocity values of 0.1rads−2 and 0.1rads−1 and wander
rate and strength values wr = 0.02 and ws = 0.1. The
stage maximum acceleration and velocity vectors were set at
5mms−2 and 5mms−1.

B. On-device

Real-world experiments were conducted on a smaller device
area measured at 3.30mm × 2.30mm, containing debris, 6
OEMs, 6 virtual targets, and 20 virtual moving obstacles,
again placed randomly in the free-space region of the labeled
map (Fig. 4). OEMs were trapped and positioned using light
patterns with maximum acceleration and velocity vectors of
0.1mms−2 and 0.05mms−1 and maximum angular acceler-
ation and velocity values of 0.2rads−2 and 0.5rads−1. The
characteristics and placement of virtual objects were the same
as in the simulation. The stage maximum acceleration and
velocity vectors were set at 200mms−2 and 2mms−1.

Avg. per experiment (×8) Simulation, 10 OEMs On-device, 6 OEMs

Task success rate (%) 95.00 ± 7.07 72.92 ± 21.95
Task failure rate (%) 5.00 27.08
OEM out of FOV (%) - 14.58
Unreachable destination (%) 1.25 8.33
Non-observable OEM (%) - 2.08
FOV blocked by OEM (%) 2.50 2.08
Unstable path-planning (%) 1.25 -
OEM tracking (%) - 92.39 ± 4.64
OEM path-finding (%) 93.00 ± 6.28 78.84 ± 11.08
OEM displacement (mm) 283.96 ± 32.63 46.32 ± 10.49
Time (s) 1700.88 ± 498.54 770.57 ± 200.75
Speed of OEMs (mms−1) 1.74e−1 ± 2.88e−2 6.15e−2 ± 9.31e−3

Speed per OEM (mms−1) 1.74e−2 ± 2.88e−3 9.29e−3 ± 1.68e−3

TABLE I
FRAMEWORK PERFORMANCE IN SIMULATED AND REAL CONDITIONS.

C. Performance assessment

The performance measures shown in Table I quantify
the effectiveness of our approach, with the task completion
success rates (the fraction of OEMs successfully executing
the harvesting, release, and parking operations) measured at
93.75% in simulation and 72.92% in real conditions. The cycle
speed of the joint SLAM and image processing modules was
measured at ≈ 8Hz when operating with full resolution images
(2048 × 2048 pixels). This allowed both the labeled map
(downscaled at 1/4 resolution) to be updated and for reliable
tracking of OEMs, with 92.39% accuracy, over several non-
adjacent camera fields-of-view. The path-planning success rate
(the ratio of successful OEM planning queries) was evaluated
at 78.84% and 93.00% for on-device and simulation experi-
ments, respectively. The cycle speed of the kinematics module
was measured at ≈ 500Hz, which allowed for smooth update
of the light patterns on the PC substrate and well-controlled
OEM positioning. While not an issue in simulation, where
the OEMs were directly positioned by the kinematics module,
the achievable linear and angular speeds of OEMs (measured
on average at 9.29µs−1 per OEM) proved dependent on the
cycle speed of the OEM detector in real experiments. This was
mainly due to maintain close proximity between each light
pattern and its corresponding OEM to ensure a sufficient DEP
force, and avoid loss of control when the two are significantly
offset. A further limitation encountered during on-device ex-
periments was due to untrapped OEMs drifting outside the
camera or projector image field, which accounted for 14.58%
of task execution failures. Another occasional cause of failure
both in simulation (1.25%) and on-device (8.33%) experiments
originated from the Obstacle-avoidance steering behavior and
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path-finding module blocking the progress of OEMs trying
to avoid obstacles very close to their destination (unreachable
destination). Finally, we observed three other minor causes of
task failures. Firstly, OEMs could become undetectable when
passing close to an imperfection or scratch on the device
substrate which scattered excess light towards the camera,
overexposing the sensor (2.08%). Secondly, unreachable des-
tinations could prevent the stage moving to continue shorter
trajectories in other locations of the map (2.50% and 2.08%).
Thirdly, unstable path-planning computations in complex areas
of the virtual device produced an endlessly oscillating OEM
trajectory (1.25%). Although these failure cases can affect
the ability of an individual OEM to complete a particular
operation, having control of multiple OEMs ensures the system
has sufficient redundancy to complete the overall task, albeit
in a longer execution time.

V. CONCLUSION

This article describes the first adaptive autonomous system
for multi-agent micromanipulation in dynamic environments
using optoelectronic microrobots. The physical constraints
imposed by the system hardware and changing environmental
conditions are addressed using SLAM, visual-servoing in
closed-loop, dynamic path-finding, and a custom kinematics
solution operating in a concurrent asynchronous framework.
The experimental results in simulated and real-world environ-
ments demonstrate the ability of this framework to simulta-
neously control multiple OEMs over relatively large distances
in challenging real-world conditions, by successfully avoiding
moving obstacles and re-planning their routes according to the
updated configuration space of the environment in real-time.
While presenting certain limitations in regard to multi-agent
path-finding optimality, this control framework is a robust
foundation that can be further developed and improved, partic-
ularly for multi-agent navigation and cooperation. Notably, the
ability of the system to operate in simulation offers the possi-
bility to apply deep-learning approaches such as reinforcement
learning for multi-agent path-finding, stage motion-planning,
kinematics, and task allocation. The new OEM control frame-
work overcomes many of the limitations of manual [2] and
open-loop approaches [6], increasing the potential application
of OEMs to various manipulation tasks. In particular, many
biological micromanipulation operations are time critical due
to the short period within which cells are viable within
a microfluidic environment. Harnessing multiple OEMs to
perform operations simultaneously greatly reduces overall task
execution time. With further modification to the OET system
hardware (including the use of a lower magnification objective
lens and a corresponding increase in light intensity from the
digital projector), our simulations indicate that the framework
can directly scale to allow simultaneous control of tens of
OEMs. Finally, we note that the framework can be easily
adapted to accommodate new developments in OEM design,
with small modifications to the OEM detector, and support
more complex micromanipulation tasks via the addition of new
steering behaviors. In summary, our work removes many of the
barriers preventing to the wider adoption of OEM technology,
providing a powerful new tool for micromanipulation.
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