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Abstract—In this paper, we consider the problem of sensing the
environment within a wireless cellular framework. Specifically,
multiple user equipments (UEs) send sounding signals to one
or multiple base stations (BSs) and then a centralized processor
retrieves the environmental information from all the channel in-
formation obtained at the BS(s). Taking into account the occlusion
effect that is common in the wireless context, we make full use of
the different views of the environment from different users and/or
BS(s), and propose an effective sensing algorithm called GAMP-
MVSVR (generalized-approximate-message-passing-based multi-
view sparse vector reconstruction). In the proposed algorithm, a
multi-layer factor graph is constructed to iteratively estimate the
scattering coefficients of the cloud points and their occlusion rela-
tionship. In each iteration, the occlusion relationship between the
cloud points of the sparse environment is recalculated according
to a simple occlusion detection rule, and in turn, used to estimate
the scattering coefficients of the cloud points. Our proposed
algorithm can achieve improved sensing performance with multi-
BS collaboration in addition to the multi-views from the UEs.
The simulation results verify its convergence and effectiveness.

Index Terms—Integrated sensing and communication (ISAC),
environment sensing, occlusion effect, multi-view sensing.

I. INTRODUCTION

A. Motivation

T
HE emergence of innovative wireless communication

technologies, such as ultra-massive multiple input multi-

ple output (MIMO) technology, intelligent reflective surface

(IRS), and wireless artificial intelligence (AI) [1]–[3], etc.,

provides more possibilities for the development of future wire-

less communication systems design. In the foreseeable future

wireless communication application scenarios, autonomous

driving [4], intelligent robot localization [5], and unmanned

aerial vehicle (UAV) control [6] require not only wireless

broadband connections, but also accurate environmental in-

formation, including the location, shape, and electromagnetic
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(EM) characteristics, etc. of objects in the environment. There-

fore, integrated sensing and communication (ISAC), as a re-

search hotspot for the next generation wireless communication

system, aims to use the wireless communication equipment

and infrastructure to achieve environment sensing.

Such kind of environment sensing has long been accom-

plished by traditional radar technology and its later evolution

of joint radar and communication [7]. The latter usually aims

to achieve the sharing of software and hardware equipment

and time-frequency resources between radar equipment and

communication equipment. Compared with traditional radar

or early joint radar and communication systems, efficient

use of communication signals in the existing communication

systems for environment sensing, and efficient exploitation of

the environment sensing results to enhance communication,

are two major design goals of the ISAC systems. For the

former goal, one straightforward realization is to fully exploit

the environmental information embedded in the received com-

munication data, due to the simple fact that the distribution

of environmental scatterers dramatically affects the wireless

multipath channels. For the latter, direct channel prediction

(reconstruction) can be conducted based on the sensed distri-

bution and characteristics of scatterers within the environment

thus to enhance the performance of communication [8]–[10].

In this paper, we mainly focus on the first part and study

how to perform efficient and accurate environment sensing

based on the uplink data received from multiple users, in a

way compatible with existing communication systems thus to

achieve a smooth integration of communication and sensing.

One major challenge to do this is the large number of

unknown variables embedded in the generally complicated

environment, including the unknown location and EM char-

acteristics of the environmental scatterers themselves, and the

very common occlusion effect within and between scatterers,

which blocks the propagation of EM waves and makes portions

of some scatterers or even all of them invisible to the receivers.

In such a case, it is hard for a single user or base station

(BS) to fully sense the entire environment and the different

views of the environment from different users and/or BS(s)

should be exploited. However, a challenge still remains since

in each separate sensing (transmitting and receiving), we

generally cannot know which scatterers or which part of them

participates in the final generation of the received signal in

an environment yet to know, and it differs from user to user

and BS to BS. This motivates us to develop a practical and

efficient multi-view sensing algorithm to deal with the above
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problem.

B. Related Works

So far, the design of ISAC system has raised extensive

research effort. In [11], the author comprehensively discussed

the novel applications, key performance requirements, chal-

lenges, and future research directions of ISAC system designs.

In [12], the author compared the difference between the radar

sensing scheme and the ISAC scheme. The author showcased

that a common signal wave should be jointly designed to

realize the integration of sensing and communication, and the

advantages and disadvantages of various design methodologies

are also discussed.

Rapid progresses have been witnessed in the practical ISAC

system and algorithm design recently. [13] designed an ISAC

system based on the wireless cellular networks. The author

jointly designed signal waveforms suitable for sensing and

communication based on 5G NR (New Radio) and its frame

structure. Also under the 5G framework, [14] proposed a

multi-beam based sensing and communication scheme. In

addition to the beams used for communication, some other

ones are used to sense the environment around the BS. Based

on the 4G and 5G frameworks, [15] studied the processing

principles, implementation challenges, and performance of

orthogonal frequency division multiplexing (OFDM)-based

radars, and achieved excellent sensing performance by using

high channel bandwidth and configurable sub-carriers. In a Wi-

Fi communication context, based on the Doppler frequency

shift embedded in the channel state information (CSI), [16]

achieved the sensing of human body posture. In the regime

of internet of vehicles, [17] designed a fast beam alignment

and tracking algorithm based on a hardware test platform to

achieve vehicle tracking while performing millimeter wave

communication with low latency and high data rate. As the

research interest on ISAC keeps on increasing, more and more

potential technologies are also introduced into this field, such

as channel modeling [18], joint beam optimization [19] and

machine learning [20], etc.

As for the environment sensing system design, some works

have made full use of the sparsity of environmental informa-

tion and achieved better and lower-complexity solutions based

on the compressed sensing (CS) [21], [22] framework. In the

field of microwave computational imaging, the utilization of

the intrinsic sparsity of scatterers within the environment is

key to their effective detection. This type of algorithm usually

treats the scatterer as a sparsely distributed point cloud, thereby

convert the imaging problem into a CS reconstruction prob-

lem, which is solved by orthogonal matching pursuit (OMP)

[23], approximate message passing (AMP) [24], generalized

approximate message passing (GAMP) [25] and other widely

used methods.

Recently, in [26] and [27], the authors innovatively used

BS to sense actively, and based on the block sparse Bayesian

learning (BSBL) algorithm, proposed an IRS-assisted mi-

crowave computing imaging method. Although the above-

mentioned methods effectively exploit the sparsity of the

environment but ignore the occlusion effect caused by the

scatterers. They ideally believe that EM signals can be freely

transmitted to any location in the environment, and there still

lacks sufficient consideration of the occlusion effect in the

ISAC system design.

C. Main Ideas and Contributions

In this paper, based on the existing wireless communica-

tion framework, we design a multi-view environment sensing

scheme taking into full consideration the occlusion effect in

an outdoor scenario.

Different from the above-mentioned application scenar-

ios, we have achieved ISAC by noninvasively making use

of the multi-user uplink communication data. At the same

time, we have designed an effective sensing algorithm called

GAMP-MVSVR which refers to the generalized-approximate-

message-passing-based multi-view sparse vector reconstruc-

tion. In the uplink communication scenario, we consider an

environment sensing scenario with single or multiple BSs,

where users and BSs perform multi-view and collaborative

sensing, and a centralized processor retrieving the environmen-

tal information from all the channel information obtained at

the BSs. As a special case of the multi-BS scheme, a single BS

itself can also complete all the sensing tasks, and we compare

the performance differences between the two schemes.

Our design is depicted as follows. In one or more time

slots, the BS estimates the multi-user uplink channel after

detecting user pilot symbols (sounding signals). We pro-

pose an occlusion detection model based on the geometric

location of the cloud points and convert the environment

sensing problem into a CS reconstruction problem with the

occlusion effect. Then we propose a probabilistic reasoning

model based on the factor graph by analyzing the relationship

among multipath channels, environmental information, and

occlusion effects. Based on the well-known AMP method,

the proposed GAMP-MVSVR algorithm achieves environment

sensing by iteratively estimating the scattering coefficients

of the cloud points and their occlusion relationship. In each

iteration, the occlusion relationship between the cloud points

of the sparse environment is recalculated according to the

proposed occlusion detection rule, and in turn, used to estimate

the scattering coefficients of the cloud points. Our proposed

algorithm achieves improved sensing performance with multi-

BS collaboration in addition to the multi-views from the users.

To the best of our knowledge, there has been little work on

the design of such an ISAC system in the literature.

The main contributions of this paper are summarized as

follows:

• We propose an ISAC scheme, which makes full use of the

different views of the environment from different users

and/or BS(s) to achieve improved sensing performance

with multi-BS collaboration in addition to the multi-views

from the UEs.

• We propose an effective environment sensing algorithm

called GAMP-MVSVR that considers the occlusion ef-

fect, where a multi-layer factor graph is constructed to

iteratively estimate the scattering coefficients of the cloud

points and derive their occlusion relationship based on a

simple occlusion detection rule.
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Figure 1: The environment sensing scenario with the occlusion effect.

• We analyze the impact of the multi-view schemes on

environment sensing range and system performance. Ex-

tensive simulation results verify the convergence and

effectiveness of the proposed algorithm.

The rest of this paper is organized as follows. Section II

presents the environment setting and system model in the

uplink communication scenario. Section III proposes the en-

vironment sensing problem formulation. Section IV proposes

the GAMP-MVSVR algorithm under the occlusion effect. In

section V, we analyze the impact of the multi-view schemes on

environment sensing range and system performance. Finally,

section VII presents the numerical results, and section VIII

concludes the paper.

Notations: Fonts a, a and A represent scalars, vectors

and matrices, respectively. Notations A
T and ‖A‖F denote

transpose and Frobenius norm of A, respectively. Ai,: and

A:,j represent the i-th row and j-th column of matrix A,

respectively. ⊙ represents the Hadamard product between

two matrices. Finally, notation diag(a) represents a diagonal

matrix with the entries of a on its main diagonal, and δ(·) is

the Dirac delta function.

II. ENVIRONMENT SETTING AND SYSTEM MODEL

A. Environment Setting

As shown in Fig. 1, we consider that in the outdoor wireless

communication scenario, multiple BSs are deployed and there

are multiple active user equipments (UEs). There are some

buildings (target objects, serve as scatterers) in the outdoor

environment that affect the wireless communication channel.

We assume w.l.o.g. that the channel is a quasi-static channel

where one block of transmission time Tb is much shorter

than the channel coherence time Tc, Tb << Tc, and the

UE is stationary within the coherence time of the multipath

channel estimation by UE pilots. In the uplink communication

scenario, multiple single-antenna UEs send uplink commu-

nication data to multi-antenna BSs. The transmitted signal

is scattered by the scatterer, and received by BSs through

multipath channel. Therefore, the received signal of the BS

contains environmental information.

We consider two schemes: a single-BS scheme and a multi-

BS joint scheme to achieve multi-view environment sensing.

The specific analysis is as follows.

• As shown in Fig. 1, the single-BS environment sensing

scheme is treated as a special case of the multi-BS joint

scheme. When multiple UEs send uplink data to BS 1, the

uplink communication channel is affected by the target

scatterer. In the scenario, due to the occlusion effect,

the multipath channel of UE 1 is only affected by the

scattering of target scatterers 4 and 5, and the multipath

channel of UE 2 is only affected by the scattering of

target scatterers 5. Therefore, not all scatterers in the

environment will affect the multipath channel of the same

user, and the occlusion effect makes it hard for a single

user to fully sensed the entire environment. The different

views of the environment from different users should be

exploited to deal with the occlusion effect.

• Fig. 1 shows the scenario where multiple BSs are used for

joint environment sensing, where the multi-BS scheme

is performed. Sensing by multiple BSs will effectively

expand the sensing range. In addition to the same user

multi-view method as in the single-BS scheme, the

different views of the environment from different BSs

should be exploited. For example, in Fig. 1, BS 2 cannot

receive the scattered signal from the target scatterer 3, and

BS 1 and 3 also have scatterers that cannot be observed.

Therefore, a multi-BS joint scheme should be designed

to achieve the sensing of the entire environment.

B. System Model

For the receiving antennas deployed on the BS, the single-

BS scheme and the multi-BS joint scheme have the same

system model. Let the number of users in the environment

be Nu, and the total number of receiving antennas of all BSs

is NR. In the uplink communication scenario, the channel

from the user to the BS is mainly composed of two parts: the
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Figure 2: The discretized targeted environment object.

line-of-sight channel HLOS from the user to the BS, and the

multipath channel HS caused by the scatterer. We discretize

environmental information and treat the environmental infor-

mation in the entire environment as point clouds. Each point

in the point cloud represents the environmental information

of the small cube with length ls, width ws, and height hs

around it, and these small cubes are called pixels. The inside

of each pixel may be empty, or there may be scatterers. The

length, width and height of the environment to be sensed are

Ls, Ws and Hs respectively, then the number of point clouds

is Ns = (Ls/ls) × (Ws/ws) × (Hs/hs). Fig. 2 shows the

method of discretizing environmental information into point

clouds. We use the scattering coefficient xns
to represent the

scattering coefficient of the small cube where the ns-th cloud

point is located. If the small cube is empty, then xns
= 0.

Otherwise, xns
> 0. Therefore, the environmental information

to be sensed is expressed as x = [x1, x2, · · · , xNs
]
T
.

Multiple users in the space share time-frequency resources.

On a single subcarrier, the antennas of all BSs are analyzed

independently. The signal received at the nR-th receiving

antenna can be expressed as

Y (nR) = S

(

H
S (nR) +H

LOS (nR)
)

+W, (1)

where S ∈ CNT×Nu represents codewords with the length

of NT sent by Nu users, Y (nR) ∈ CNT×1 represents the

received signal of the nR-th BS antenna, and W represents

noise. The term H
LOS (nR) ∈ CNu×1 represents the channel

coefficient of the line-of-sight path from the user to the

receiving antenna, where the free space channel is decomposed

into amplitude attenuation and phase shift, hLOS
nu

(nR) =

αLOS · ejϕ
LOS

, αLOS is the line-of-sight channel amplitude

attenuation, and ϕLOS is the line-of-sight channel phase shift.

The line-of-sight channel occlusion can be detected through

beam scanning, received power, etc. The term H
S (nR) ∈

C
Nu×1 represents the channel coefficient of the multipath

channel from the user to the receiving antenna.
As mentioned in Section I-B, we consider that in ISAC

system design, the utilization of the intrinsic sparsity of objects
or scatterers within an environment is key to the effective
detection. We separate the free space channel (microwave
background field) and scatterers in the multipath channel
model to obtain sparse environmental information. In this
way, the occlusion relationship between the scatterer and the

antenna can be modeled by the existence of the free space
channel between them. The multipath channel from the user
to the receiving antenna H

S (nR) is expressed as

H
S (nR) = H̃ (nR)x (2a)

= [H (nR)⊙V (nR)]x (2b)

=
(

H
U→s ⊙V

U→s
)

diag
(

H
s→B (nR)⊙V

s→B (nR)
)

x, (2c)

where the free space channel coefficient H̃ (nR) with oc-

clusion is expressed as the Hadamard product of the free

space channel coefficient H (nR) ∈ C
Nu×Ns and the occlu-

sion matrix V (nR) ∈ {0, 1}Nu×Ns . The element 0 in the

occlusion matrix V (nR) indicates that the path from nu-th

user to nR-th receiving antenna is blocked, and the element

1 indicates that the path from nu-th user to nR-th receiving

antenna is not blocked. H
U→s ∈ CNu×Ns represents the

channel coefficient from the user to the point cloud position,

where hU→s
nu,ns

= αU→s · ejϕ
U→s

, αU→s represents the channel

amplitude attenuation from the user to the point cloud position,

ϕU→s represents the channel phase shift from the user to

the point cloud position. Hs→B (nR) ∈ CNs×1 represents the

channel coefficient from the point cloud position to the BS

receiving antenna, where hs→B
ns

(nR) = αs→B · ejϕ
s→B

, αs→B

represents the channel amplitude attenuation from the point

cloud position to the BS receiving antenna, ϕs→B represents

the channel phase shift from the point cloud position to the

BS receiving antenna, H (nR) = H
U→sdiag

(

H
s→B (nR)

)

.

V
U→s ∈ {0, 1}Nu×Ns represents the occlusion matrix from

the user to the point cloud position, and its distribution reflects

the different views from different users. When V
U→s contains

an all-zero column, it means that all users cannot sense

the corresponding pixel, and the corresponding pixel is out

of the sensing range. V
s→B (nR) ∈ {0, 1}Ns×1

represents

the occlusion matrix from the point cloud position to the

receiving antenna, and its distribution reflects the different

views from different BSs. When V
s→B (nR) contains a zero

element, it means that the receiving antenna cannot sense the

corresponding pixel, and the corresponding pixel is also out

of the sensing range, V (nR) = V
U→sdiag

(

V
s→B (nR)

)

.

In (2), the model is derived as follows. First, in (2a),

we decompose the multipath channel H
S (nR) in (1) into

free space channel with occlusion H̃ (nR) and environmental

information x. Then, in (2b), we decompose free space chan-

nel with occlusion H̃ (nR) into free space channel H (nR)
and occlusion matrix V (nR). Finally, in (2c), we further

decompose the free space channel with occlusion H̃ (nR) into

the channels from the user, the base station to the point cloud

position H
U→s, Hs→B (nR) and their corresponding occlusion

matrices V
U→s, Vs→B (nR).

III. PROBLEM FORMULATION

In this section, we analyze the detection method of the

occlusion effect in environment sensing, and based on this,

we convert the environment sensing problem into a CS recon-

struction problem with occlusion effect.

A. Occlusion Detection Model

We detect the occlusion effect between scatterers based on

the geometric positions between pixels. As shown in Fig. 3,
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Figure 3: An illustration of the environmental scatterer occlu-

sion detection.

there is a pixel C with a scattering coefficient greater than the

threshold η between pixels A and B. We believe that pixel C

will cause an occlusion effect. Let the position of pixel A be

the origin of coordinates, then the position vectors of pixel B

and C are expressed as b and c respectively. According to the

following conditions, it is considered that pixel C blocks the

line-of-sight path between pixels A and B.

• The distance d between pixel C and the line-of-sight path

between pixels A and B is less than the threshold l,

d =
|c× b|
|b| < l, (3)

where the detection threshold l should be selected ac-

cording to the side length or diagonal length of the small

cube, that is, l ∈
[

min {ls, ws, hs} ,
(

l2s + w2
s + h2

s

)1/2
]

.

• The angle between vector b and vector c is an acute

angle, which means that pixel C is located in the same

direction of the line-of-sight path from pixel A to pixel

B, but not pixel A is located between the pixel B and the

pixel C. It is expressed as

b · c > 0. (4)

• Pixel C is located between pixel A and pixel B, which is

expressed as
|c · b| < |b|2 . (5)

According to the above occlusion detection method, we

design the environment sensing algorithm. However, the pro-

posed occlusion detection method is not the only method, and

the proposed environment sensing algorithm does not depend

on the uniqueness of the occlusion detection method.

B. Environment Compressed Sensing Model

As mentioned in Section I, since the distribution of scat-

terers in the environment is sparse, according to the CS

theory, the optimization problem of solving environmental

information is expressed as

x̂ = argmin
x

‖x‖1 s.t.
∥

∥

∥
Y − S

(

H
S +H

LOS
)∥

∥

∥

2
≤ ε, (6)

where ε is a slack variable. In the system model of Section
II-B, We can calculate the free space channel coefficients
H

LOS (nR) and H (nR) through the basic free space path
propagation model. In addition, some empirical models, sim-
plified models, or interpolation methods are also suitable, and
the appropriate model needs to be selected according to the
practical environment. The BS estimates the multipath channel
H

S (nR) by detecting the UE pilot and calculating the relation-
ship with the received signal Y (nR). Therefore, in general, in

order to achieve accurate channel estimation (e.g. least-squares
channel estimation), the pilot length should be greater than the
number of users, that is, NT > Nu. The proposed algorithm
does not rely much on the method of channel estimation.
Note that the channel estimation is only the first step of
the overall integrated sensing and communication process.
The subsequent environment sensing problem studied here is
always an underdetermined CS problem with given channel
matrix. Due to the large propagation range of wireless signals,
according to different precision requirements, the number of
pixels Ns will be greater than NuNR. At the same time,
based on the sparsity of the environmental information x, the
optimization problem (6) is expressed as the CS reconstruction
problem equation

















H
S (1)
..
.

H
S (nR)

.

..

H
S (NR)

















NuNR×1

=



















H̃ (1)
...

H̃ (nR)
...

H̃ (NR)



















NuNR×Ns

[x]Ns×1,

⇒ H
S = H̃x, (7)

where H̃ is formed by splicing the multipath channel matrix

H̃ (nR) between NR receiving antennas and Nu users. In

the multi-BS joint environment sensing scheme, NR receiving

antennas include the number of all antennas on multiple BSs.

IV. ENVIRONMENT SENSING ALGORITHM UNDER THE

OCCLUSION EFFECT

In this section, we propose an environment sensing algo-

rithm called GAMP-MVSVR under the occlusion effect to

solve the environment information x in the (7). According

to (2), (7) is expressed as

H
S = H̃x = (H⊙V)x, (8)

where channel matrix H is formed by splicing channel matrix

H (nR) of NR receiving antennas, and occlusion matrix V is

formed by splicing occlusion matrix V (nR) of NR receiving

antennas.

A. Overview of the Proposed GAMP-MVSVR Algorithm

Different from the traditional CS reconstruction problem,

solving the environment sensing problem with occlusion effect

requires not only solving the environment information x but

also needs to consider the unknown occlusion matrix V. Tradi-

tional CS reconstruction algorithms, such as GAMP algorithm

[25], can solve environmental information in an ideal (ignoring

occlusion, H̃ = H) situation. In this way, since the accurate

measurement matrix H̃ cannot be obtained, the environmental

information x cannot be accurately solved. Compared with

the GAMP algorithm, the Bilinear GAMP algorithm [28]

can solve the bilinear problem, that is, simultaneously solve

the occlusion matrix V and the environmental information

x. However, it does not consider the relationship between

the occlusion effect and the environmental information, the

Bilinear GAMP algorithm cannot constrain the uniqueness and

accuracy of the occlusion matrix V and the environmental

information x.
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Figure 4: A sketch of the proposed GAMP-MVSVR algorithm.
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Fig. 4 shows a sketch of the proposed GAMP-MVSVR

algorithm. In Section IV-B, we propose a factor graph based

on the decomposition result of the joint posterior probability.

Based on the sum-product algorithm (SPA) algorithm, we

calculate the message passed in the factor graph, and define

the prior probability and likelihood function. In Section IV-C,

we approximate the message from factor node to variable

node. Through the approximate process, we use the result in

the previous iteration to calculate its corresponding multipath

channel. We compare it with the channel Ĥ
S estimated by

the pilot and calculate the residual to guide this iteration. In

Section IV-D, we approximate the message from variable node

to factor node. Through the approximate process, according

to the occlusion effect, we estimate H̃ and x based on the

residual. In Section IV-E, We update the intermediate variables

in Section IV-C and IV-D, and achieve the iterative execution

of the estimation methods in Section IV-C and IV-D.

B. Factor Graph and Passed Messages

As mentioned in Section III-B, let Ĥ
S be the multipath

channel estimated by the pilot, then Ĥ
S = H

S +We, where

We represents the estimation error. The estimation error We

is caused by two main reasons, including the multipath channel

estimation error caused by pilot estimation and the free space

channel estimation error caused by modeling estimation. In

order to simplify the analysis, we assume that the noise We

obeys a Gaussian distribution. The joint posterior distribution

of the occluded multipath channel H̃ and the environmental

information x is expressed as

p
x,H̃|ĤS

(

x, H̃|ĤS
)

=p
ĤS|x,H̃

(

Ĥ
S|x, H̃

)

px (x) p
H̃|x

(

H̃|x
)

/p
ĤS

(

Ĥ
S
)

∝p
ĤS|H̃x

(

Ĥ
S|H̃x

)

px (x) p
H̃|x

(

H̃|x
)

=p
ĤS|HS

(

Ĥ
S|HS

)

px (x) p
H̃|x

(

H̃|x
)

,

(9)

where pHS

(

H
S
)

is a constant. To simplify the expression,

let NH = NuNR denote the length of the multipath channel

vector Ĥ
S. As shown in Fig. 5, according to the (9), the

posterior distribution is expressed in the form of a factor graph.

As shown in Fig. 5, the circles represent the variable

nodes H̃ and x, the squares represent the factor node

p
ĤS|HS(ĤS|HS), px (x) and p

H̃|x(H̃|x). The lines between

the nodes represent that the variables are included in the

function of the factor nodes. Specifically, the environmental

information prior probability function px (x) contains the en-

vironmental information variable x. The relationship between

the environmental information variable x and the channel with

occlusion H̃ conforms to the occlusion detection model func-

tion p
H̃|x(H̃|x). The multipath channel observation function

p
ĤS|HS(ĤS|HS) contains the environmental information vari-

able x and the free space channel H̃. The specific function is

expressed as follows: ĤS can be considered as the observation

of HS under the interference of additive white Gaussian noise,

i.e.,

pĥS
nH

|hS
nH

(

ĥS
nH

|hS
nH

)

= N
(

ĥS
nH

;hS
nH

, σw
)

, (10)

where σw is the variance of Gaussian white noise. Due to the

sparseness of environmental information x, we assume that

the x obeys a Bernoulli-Gaussian distribution,

px (x) = (1− λ) δ (x) + λN (x; θx, σx) , (11)

where λ is the sparsity of the environment, θx and σx represent

the mean and variance of the scattering coefficient of the
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environmental scatterer. p
H̃|x

(

H̃|x
)

represents the occlusion

effect of environmental information x on the channel, i.e.,

ph̃nH,ns
|x

(

h̃nH,ns
|x
)

=






δ
(

h̃nH,ns
− hnH,ns

)

vnH,ns
= focc (x) = 1

δ
(

h̃nH,ns

)

vnH,ns
= focc (x) = 0

,
(12)

where focc (·) represents the occlusion detection function, the

specific method is as described in the Section III-A, and the

occlusion detection threshold is set to η = θx/4.

Based on the sparse prior information and occlusion rela-

tionship of environmental information, we aim to obtain the

minimum mean square error (MMSE) estimate of environmen-

tal information

x̂MMSE
ns

= argmin
x̂ns

Ex

[

(xns
− x̂ns

)2
]

. (13)

According to the loopy belief propagation (LBP) theory

[29], based on the factor graph model, we calculate the MMSE

estimated value of the environment information through the

SPA [30]. As explained in Appendix A, the method of SPA

message passing is as follows. As shown in Fig. 5, the output

message of the variable node along the edge (solid line) is

obtained by calculating the product of all its input messages.

The output message of the factor node is calculated by

multiplying and integrating the function of the factor node and

its input message. The marginal distribution of the variable is

calculated from the product of all messages input to the node.

Since it is difficult to accurately calculate the passed message

, we approximate the message in the following sections.

C. Approximated Factor-to-Variable Messages

In this section, we approximate the message from the
factor node to the variable node according to the central limit
theorem (CLT) and Gaussian approximation based on the idea
of approximate message passing [24], [25], [28]. Based on
CLT, when Ns → ∞, NH/Ns remains constant, we drop some
high-order infinitesimal terms. In the t iteration, the sparsity λ
in the prior distribution of environmental information px (x)
remains constant. As mentioned in Section III-A and Section
V, the number of zero elements in the occlusion matrix V

in the variable H̃ remains fixed, and the position of the zero
elements is determined by x̂ns

. Therefore, we consider that

variable x̂ns
is independent of variable ĥnH,ns

in the t-th
iteration. As explained in Appendix B, the passed message
in (62) is approximated as

µĥS
nH

→xns

(t, xns
) = log

∫

hS
nH

pĥS
nH

|hS
nH

(

ĥS
nH

∣

∣

∣h
S
nH

)

×N
(

hS
nH

; h̄nHns,nH
(t) xns

+ p̄ns,nH
(t) ,

σh
nHns,nH

(t)x2
ns

+ σp
ns,nH

(t)
)

+ c

= FnH

(

h̄nHns,nH
(t)xns

+ p̄ns,nH
(t) ,

σh
nHns,nH

(t)x2
ns

+ σp
ns,nH

(t) ; ĥS
nH

)

+ c, (14)

where

FnH

(

p̄, σp; ĥS
)

= log

∫

hS

pĥS|hS

(

ĥS|hS
)

N
(

ĥS; p̄, σp
)

. (15)

Adding the ns-th term to the summation in p̄ns,nH
(t) in

(71), then p̄nH
(t) and σp

nH
(t) are considered as an estimate

of hS
nH

, i.e.,

p̄nH
(t) =

Ns
∑

k=1

h̄nHk,nH
(t) x̄k,nH

(t), (16)

σp
nH

(t) =

Ns
∑

k=1

(

h̄2
nHk,nH

(t) σx
k,nH

(t)

+σh
nHk,nH

(t) x̄2
k,nH

(t) + σh
nHk,nH

(t) σx
k,nH

(t)
)

.

(17)

We define a residual variable whose mean value is,

s̄nH
(t) = F ′

nH,1

(

p̄nH
(t) , σp

nH
(t) ; ĥS

nH

)

, (18)

due to the Gaussian property of FnH
, the variance of the

residual is expressed as,

σs
nH

(t) = −F ′′
nH,1

(

p̄nH
(t) , σp

nH
(t) ; ĥS

nH

)

. (19)

where F ′
nH,1 and F ′′

nH,1 represent the first and second deriva-

tives of the first argument of FnH
, and F ′

nH,2 represents the

first derivative of the second argument of FnH
.

As explained in Appendix C, we get the final approximation
result of the passed message µĥS

nH
→xns

(t, xns
) in (62)

µĥS
nH

→xns

(t, xns
)

≈
[

s̄nH
(t) h̄nHns,nH

(t) + σs
nH

(t) ĥ2
nH,ns

(t) x̂ns
(t)
]

xns

− 1

2

[

σs
nH

(t) ĥ2
nH,ns

(t)− σh
nH,ns

(t)

×
(

s̄2nH
(t)− σs

nH
(t)
)]

x2
ns

+ c, (20)

According to (16), p̄nH
is considered to be an estimate of

H
S, we can express the posterior probability of H

S as the

product of the prior probability N
(

hS
nH

; p̄nH
(t) , σp

nH
(t)

)

and

the likelihood pĥS
nH

|hS
nH

(ĥS
nH

|hS
nH

) as follows

phS
nH

|pnH

(

hS
nH

|p̄nH
(t) ;σp

nH
(t)
)

=
1

C
pĥS

nH
|hS

nH

(

ĥS
nH

|hS
nH

)

N
(

hS
nH

; p̄nH
(t) , σp

nH
(t)
)

,
(21)

where C =
∫

hS phS
nH

|pnH

(

hS|p̄ (t) ;σp (t)
)

is a normalization

constant. Then the mean and variance of (21) are the mean

and variance of calculated H
S as follows

h̄S
nH

(t) = E

{

hS
nH

|p̄nH
(t) ; σp

nH
(t)
}

, (22)

σHs
nH

(t) = D

{

hS
nH

|p̄nH
(t) ;σp

nH
(t)
}

, (23)

where E(X) =
∫

xf(x)dx represents the mean of x and

D(X) =
∫

[x− E(X)]
2
f(x)dx represents the variance of x.

Pluging (21), (22) and (23) into (18) and (19). Based on the

likelihood in (10), according to the derivation in [25], [28], the

mean and variance of the residual are expressed as

s̄nH
(t) =

ĥS
nH

− p̄nH
(t)

σp
nH

(t) + σw
, (24)

σs
nH

(t) =
1

σp
nH

(t) + σw
. (25)

As mentioned in this section, in the t-th iteration, we
consider that variable x is independent of variable H̃, so the
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same as the derivation of (20), we approximate the message

µĥS
nH

→h̃nH,ns

(t, h̃nH,ns
) in (64) as

µĥS
nH

→h̃nH,ns

(

t, h̃nH,ns

)

≈
[

s̄nH
(t) x̄ns,nH

(t) + σs
nH

(t) x̂2
ns

(t) ĥnH,ns
(t)
]

h̃nH,ns

− 1

2

[

σs
nH

(t) x̂2
ns

(t)− σx
ns

(t)

×
(

s̄2nH
(t)− σs

nH
(t)
)]

h̃2
nH,ns

+ c. (26)

In summary, in this section we approximate the message

from factor node to variable node as follows. We calculate

p̄nH
(t) (as shown in (16)) to obtain the calculated channel

h̄S
nH

(t) (as shown in (22)). Then we calculate the residual

s̄nH
(t) according to h̄S

nH
(t) and the channel estimation value

using the pilot ĥS
nH

(as shown in (24)). Finally, we use the

residual and the approximate mean and variance of the passed

message to represent the message from the factor node to the

variable node (as shown in (20) and (26)).

D. Approximated Variable-to-Factor Messages

In this section, we approximate the message from the factor

node to the variable node. We plug (20) in (63), the message

µxr→ĥS
nH

(t+ 1, xr) from variable node x to factor node

p
ĤS|HS(ĤS|HS) is approximated as

µxns
→ĥS

nH

(t+ 1, xns
)

= log px (xns
)− 1

2σr
ns,nH

(t)
(xns

− r̄ns,nH
(t))2 + c

= log
(

px (xns
)N

(

xns
; r̄ns,nH

(t) , σr
ns,nH

(t)
))

+ c,

(27)

where

r̄nH,ns
(t)

= x̂ns
(t)



1 + σr
ns,nH

(t)
∑

k 6=nH

σh
k,ns

(t)
[

s̄2k (t)− σs
k (t)

]





+ σr
ns,nH

(t)
∑

k 6=nH

ĥk,ns
(t) s̄k (t), (28)

σr
ns,nH

(t)

=





∑

k 6=nH

ĥk,ns
(t)σs

k (t)− σh
k,ns

(t)
(

s̄2k (t)− σs
k (t)

)





−1

.
(29)

Then the mean x̄ns,nH
(t+ 1) and variance σx

ns,nH
(t+ 1)

of the passed message in (27) are expressed as,

x̄ns,nH
(t+ 1)

=
1

C

∫

xns

xns
px (xns

)N
(

xns
; r̄nH,ns

(t) , σr
nH,ns

(t)
)

= Gx

(

r̄nH,ns
(t) , σr

nH,ns
(t)
)

,

(30)

σx
ns,nH

(t+ 1) = σr
nH,ns

(t)G′
x

(

r̄nH,ns
(t) , σr

nH,ns
(t)
)

, (31)

where C =
∫

xns

px (xns
)N

(

xns
; r̄nH,ns

(t) , σr
nH,ns

(t)
)

is a

normalization constant, and G′
x

represents the first derivative

of the first argument of the Gx. The specific derivation of the

relationship between (30) and (31) was shown in [25].

Adding the nH-th term to the summation in r̄nH,ns
(t), then

r̄ns
(t) and σr

ns
(t) are expressed as

r̄ns
(t) = x̂ns

(t)

(

1 + σr
ns

(t)

NH
∑

k=1

σh
k,ns

(t)
[

s̄2k (t)− σs
k (t)

]

)

+ σr
ns

(t)

NH
∑

k=1

ĥk,ns
(t) s̄k (t), (32)

σr
ns

(t) =

(

NH
∑

k=1

ĥk,ns
(t)σs

k (t) −σh
k,ns

(t)
(

s̄2k (t)− σs
k (t)

)

)−1

,

(33)

Based on AMP [24], [25], [28], r̄ns
(t) and σr

ns
(t) are

considered as an estimate of xns
as follows

x̂ns
(t+ 1) = Gx (r̄ns

(t) , σr
ns

(t)) , (34)

σx
ns

(t+ 1) = σr
ns

(t)G′
x
(r̄ns

(t) , σr
ns

(t)) , (35)

where G′
x

represent the first derivative of the first argument of

Gx. Finally, we calculate the relationship between the mean

of the passed message x̄ns,nH
(t+ 1) and the mean of the

marginal distribution x̂ns
(t+ 1) as follows

x̄ns,nH
(t+ 1)

≈ Gx

(

r̄ns
(t)− σr

ns
(t) ĥnH,ns

(t) s̄nH
(t) , σr

ns
(t)
)

≈ Gx (r̄ns
(t) , σr

ns
(t))

− σr
ns

(t) ĥnH,ns
(t) s̄nH

(t)G′
x (r̄ns

(t) , σr
ns

(t))

= x̂ns
(t+ 1)− ĥnH,ns

(t) s̄nH
(t)σx

n (t+ 1) ,

(36)

in which we drop infinitesimal terms such as σr
ns,nH

(t) −
σr
ns

(t) in the second step of approximation, and we perform

Taylor series expansion on the first argument of the function

at point r̄ns
(t) and drop the infinitesimal term in the second

step of approximation.

In the t-th iteration, we consider that variable x is indepen-

dent of variable H̃ and recalculate the relationship between

variables H̃ and x after each iteration. Therefore, we approxi-

mate the passed message from variable node H̃ to factor node

p
ĤS|HS(ĤS|HS) the same way as (27), and calculate the mean

ĥnH,ns
(t+ 1) and the variance σh

nH,ns
(t+ 1) of the marginal

distribution of variable H̃ the same way as (34) and (35), i.e.,

ĥnH,ns
(t+ 1) = GH

(

q̄nH,ns
(t) , σq

nH,ns
(t)
)

, (37)

σh
nH,ns

(t+ 1) = σq
nH,ns

(t)G′
H

(

q̄nH,ns
(t) , σq

nH,ns
(t)
)

, (38)

GH

(

q̄nH,ns
(t) , σq

nH,ns
(t)
)

=
1

C

∫

h̃

h̃nH,ns
ph̃nH,ns

|x

(

h̃nH,ns
|x
)

×N
(

h̃nH,ns
; q̄nH,ns

(t) , σq
nH,ns

(t)
)

,

(39)

where C =
∫

h̃ ph̃|x(h̃|x)N (h̃; q̄ (t) , σq (t)) is a normalization

constant, G′
H

represent the first derivative of the first argument
of GH, q̄nH,ns

(t) and σq
nH,ns

(t) are considered as an estimate

of h̃nH,ns
as follows

q̄nH,ns
(t) = ĥnH,ns

(t)
(

1 + σq
nH,ns

(t) σx
ns

(t)
(

s̄2nH
(t)− σs

nH
(t)
)

+ σq
nH,ns

(t) x̄ns,nH
(t) s̄nH

(t)
)

, (40)
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σq
nH,ns

(t) =
(

x̂2
ns

(t) σs
nH

(t)− σx
ns

(t)
(

s̄2nH
(t)− σs

nH
(t)
))−1

.
(41)

Similar to the approximation process of (36), we calculate

the relationship between the mean of the passed message

h̄nHns,nH
(t+ 1) and the mean of the marginal distribution

ĥnH,ns
(t+ 1) as follows

h̄nHns,nH
(t+ 1) = ĥnH,ns

(t+ 1)− x̂ns
(t) s̄nH

(t)σh
nH,ns

(t) .
(42)

Since the environmental information x is an unknown
variable, in the t + 1-th iteration, we use x̂ (t) instead of x

for occlusion detection, (39) is expressed as

GH

(

q̄nH,ns
(t) , σq

nH,ns
(t)
)

=
1

C

∫

h̃

h̃nH,ns

ph̃nH,ns
|x̂(t)

(

h̃nH,ns
|x̂ (t)

)

N
(

h̃nH,ns
; q̄nH,ns

(t) , σq
nH,ns

(t)
)

.

(43)

In summary, in this section we approximate the message

from variable node to factor node as follows. Firstly, we

calculate r̄ns
(t) and q̄nH,ns

(t) based on the residual s̄nH
(t)

(as shown in (32) and (40)), and calculate the new esti-

mated values x̂ns
(t+ 1) and ĥnH,ns

(t+ 1) (as shown in (34)

and (37)). Secondly, since the message from the variable

node to the factor node is similar to the posterior probabil-

ity, we approximate the relationship between the estimated

value x̂ns
(t+ 1), ĥnH,ns

(t+ 1) and the passed message

x̄ns,nH
(t+ 1), h̄nHns,nH

(t+ 1) (as shown in (36) and (42)).

E. Algorithm Iterative Execution

In Section IV-C and Section IV-D, we have ob-

tained the estimation methods for variables x̂ns
(t+ 1) and

ĥnH,ns
(t+ 1), but the intermediate variables p̄nH

(t), r̄ns
(t),

and q̄nH,ns
(t) contain the passed messages x̄ns,nH

(t+ 1) and

h̄nHns,nH
(t+ 1). We need to replace the passed message with

the current estimated variable x̂ns
(t+ 1) and ĥnH,ns

(t+ 1)
to calculate these intermediate variables again to achieve the

iteration of the algorithm.
Pluging (36) and (42) into (16), we can get

p̄nH
(t) ≈

Ns
∑

k=1

ĥnH,k (t) x̂k (t)− s̄nH
(t− 1)

×
Ns
∑

k=1

(

σh
nH,k (t) x̂

2
k (t) + ĥ2

nH,k (t)σ
x
k (t)

)

, (44)

where we replace x̂k (t)x̂k (t− 1) with x̂2
k (t), replace

ĥnH,k (t)ĥnH,k (t− 1) with ĥ2
nH,k (t), and drop the infinitesi-

mal term under the CLT condition. In most AMP algorithms
[25], [28], (44) can be interpreted as the Onsager correction

to ĥnH,k (t) x̂k (t), and (17) is expressed as

σp
nH

(t) ≈
Ns
∑

k=1

(

σh
nH,k (t) x̂

2
k (t)

+ĥ2
nH,k (t) σ

x
k (t) + σh

nH,k (t)σ
x
k (t)

)

. (45)

Algorithm 1 Proposed GAMP-MVSVR Algorithm

Input: Given the free space channel coefficient H and the estimated

value of the uplink multipath channel ĤS.
1: Initialization: For each nH and ns, set the prior probability

px (x) of environmental information x in (11), and choose

x̂ns
(1) and σx

ns
(1). Set the likelihood pĥS

nH
|hS

nH

(ĥS
nH

|hS
nH

) in

(10). Set s̄nH
(0) = 0.

2: For each nH and ns, plug x̂ns
(1) into (12),

calculate the free space channel coefficient distribution

ph̃nH,ns
|x(1)(h̃nH,ns

|x (1)) with occlusion, and choose

ĥnH,ns
(t) and σh

nH,ns
(t).

3: for t = 1, 2, . . . , Tmax do

4: For each nH, plug x̂ns
(t), σx

ns
(t), ĥnH,ns

(t), and σh
nH,ns

(t)
into (44) and (45) to obtain p̄nH

(t) and σp
nH

(t).

5: For each nH, plug p̄nH
(t), σp

nH
(t), and pĥS

nH
|hS

nH

(ĥS
nH

|hS
nH

)

into (22) and (23) to obtain h̄S
nH

(t) and σHs
nH

(t).

6: For each nH, plug ĥS
nH

, p̄nH
(t), and σp

nH
(t) into (24) and

(25) to obtain s̄nH
(t) and σs

nH
(t).

7: For each ns, plug x̂ns
(t), σx

ns
(t), ĥnH,ns

(t), σh
nH,ns

(t),
s̄nH

(t), and σs
nH

(t) into (46) and (47) to obtain r̄ns
(t) and

σr
ns

(t).
8: For each nH and ns, plug x̂ns

(t), σx
ns

(t), ĥnH,ns
(t),

σh
nH,ns

(t), s̄nH
(t), and σs

nH
(t) into (48) and (49) to obtain

q̄nH,ns
(t) and σq

nH,ns
(t).

9: For each ns, plug r̄ns
(t) and σr

ns
(t) into (34) and (35) to

obtain x̂ns
(t+ 1) and σx

ns
(t+ 1).

10: For each nH and ns, plug q̄nH,ns
(t), σq

nH,ns
(t), and

ph̃nH,ns
|x(t)(h̃nH,ns

|x (t)) into (37) and (38) to obtain

ĥnH,ns
(t+ 1) and σh

nH,ns
(t+ 1).

11: For each nH and ns, plug x̂ns
(t+ 1) into (12) to obtain

the free space channel coefficient distribution with occlusion

ph̃nH,ns
|x̂(t+1)(h̃nH,ns

|x̂ (t+ 1)).

12: If
∑

nH

∣

∣

∣
ĥS
nH

− h̄S
nH

(t)
∣

∣

∣
> εt, where εt is a given error

tolerance value, stop the iteration.
13: end for
Output: Estimated sparse vector x̂ns

(t) and σx
ns

(t).

Similar to the approximate method in the (44), pluging (36)
and (42) into (32) and (33), it yields

r̄ns
(t) ≈ x̂ns

(t)

(

1− σr
ns

(t)

NH
∑

k=1

σh
k,ns

(t)σs
k (t)

)

+ σr
ns

(t)

NH
∑

k=1

(

ĥk,ns
(t) s̄k (t)

)

, (46)

σr
ns

(t) ≈
(

NH
∑

k=1

ĥ2
k,ns

(t) σs
ns

(t)

)−1

. (47)

And similar to the approximate method in the (44), pluging
(36) and (42) into (40) and (41), it yields

q̄nH,ns
(t) ≈ ĥnH,ns

(t)
(

1− σq
nH,ns

(t)σx
ns

(t)σs
nH

(t)
)

+ σq
nH,ns

(t) x̂ns
(t) s̄nH

(t) , (48)

σq
nH,ns

(t) ≈
(

x̂2
ns

(t)σs
nH

(t)
)−1

. (49)

We summarize the proposed GAMP-MVSVR algorithm in

Algorithm 1. During the execution process of the GAMP-

MVSVR algorithm, the approximate message passing and the

occlusion detection method execute repeatedly and converge to



10

the estimated value of environmental information. The compu-

tational complexity of the GAMP-MVSVR algorithm consists

of two parts: approximate message passing and occlusion

detection method. The computational complexity is expressed

as O (NHNs +NHNs ‖x‖0), where ‖x‖0 is the number of

the environmental scatterers, the number of pixels Ns has a

major influence on the computational complexity. The setting

of Tmax is to stop the iteration in time when the system

performance is poor. Due to the small order of magnitude

of iterations, the number of algorithm iterations will hardly

reach Tmax, and we omit the term Tmax when calculating the

computational complexity.

V. SYSTEM PERFORMANCE ANALYSIS

In this section, we compare the performance of the single-

BS environment sensing scheme and the multi-BS joint en-

vironment sensing scheme from two aspects: environment

sensing range and environment sensing accuracy.

A. Environment Sensing Range

In this section, we analyze the impact of the CS measure-

ment matrix H̃ on the system performance. According to the

CS reconstruction model in Section III-B, the environment

sensing range is determined by the CS measurement matrix H̃.

Specifically, the number of 0 elements in the occlusion matrix

V, VU→s, and V
s→B is calculated to obtain the environment

sensing range.

As mentioned in Section II-B, the number of pixels is

Ns, and the position of ns-th pixel is a
s
ns

=
[

xs
ns
, ysns

, zsns

]

.

The number of users in the environment is Nu, and the

position of nu-th user is a
u
nu

=
[

xu
nu
, yunu

, zunu

]

. In the multi-

BS joint environment sensing scheme, the number of BSs

in the environment is NB, and the position of nB-th BS is

a
B
nB

=
[

xB
nB

, yBnB
, zBnB

]

. Under these definitions, the analysis

of the occlusion matrix V
U→s and V

s→B is summarized in

the following theorem.

Theorem 1: The probability that the element in the occlusion

matrix V
U→s is 0 can be expressed as

p
(

V
U→s
nu,ns

= 0
)

= 1−
∥

∥V
U→s

∥

∥

1

Nu ×Ns

=

∫

a
u
nu

,as
ns

pu (a
u
nu

)λl2‖au
nu

− a
s
ns
‖
2

(LsWsHs)
2

,

(50)

where pu
(

a
u
nu

)

is the distribution function of nu-th user in

the environment. For the receiving antenna deployed on the

nB-th BS, the probability that the element in the occlusion

matrix V
s→B (nR) is 0 can be expressed as

p
(

V
s→B
ns

(nR) = 0
)

= 1−
∥

∥V
s→B

∥

∥

1

Ns

=

∫

a
B
nB

,as
ns

pB
(

a
B
nB

)

λl2
∥

∥a
B
nB

− a
s
ns

∥

∥

2

(LsWsHs)
2 ,

(51)

where pB
(

a
B
nB

)

is the distribution function of nB-th BS in

the environment.

Proof: According to the occlusion detection model in Sec-

tion III-A, when there is a scatterer in the space of size

l2
∥

∥a
u
nu

− a
s
ns

∥

∥

2
between the nu-th user and the ns-th pixel,

the EM propagation path is blocked. The location distribution

function pu
(

a
u
nu

)

of each user is independent, and the division

of pixels is uniform. Therefore, in the space of size LsWsHs,

the probability of a scatterer between the nu-th user and the

ns-th pixel is denoted as (50). In the occlusion detection

model, the analysis methods of the BS and the user are the

same. Therefore, according to (50), replacing pu
(

a
u
nu

)

with

pB
(

a
B
nB

)

and replacing a
s
ns

with a
B
nB

, we obtain (51). �

The occlusion matrix V
U→s reflects the different views

from different users. In the single-BS environment sensing

scheme and the multi-BS joint environment sensing scheme,

the multi-views from users are the same. As mentioned in

Section II-B, when V
U→s contains an all-zero column, it

means that all users cannot sense the corresponding pixel,

and the pixel is out of the user sensing range. According to

Theorem 1, when the number of users is Nu, the probability

that the pixels in the environment are outside the user sensing

range is

p
(

V
U→s
:,ns

= 0

)

= pNu

(

V
U→s
nu,ns

= 0
)

. (52)

Let V
s→B =

[

V
s→B (1) ,Vs→B (2) , . . . ,Vs→B (NR)

]

∈

{0, 1}Ns×NR and the occlusion matrix V
s→B reflects the dif-

ferent views from different BSs. In the single-BS environment

sensing scheme, since the receiving antennas are deployed

close to each other, they have almost the same views to

the scatterers in the environment. Therefore, the probability

that a pixel is outside the sensing range of a single BS

is p
(

V
s→B
ns

(nR) = 0
)

. In the multi-BS joint environment

sensing scheme, when V
s→B contains an all-zero row, it

means that all BSs cannot sense the corresponding pixel, and

the pixel is out of the BS sensing range. According to Theorem

1, since the location distribution probability of each BS is

independent, the probability that a pixel in the environment is

outside the sensing range of the BS is

p
(

V
s→B
ns,: = 0

)

= pNB

(

V
s→B
ns

(nR) = 0
)

. (53)

According to (50), (51), (52), and (53), we calculate the
mean value N̄con of the number of pixels that cannot be sensed
in the single-BS environment sensing scheme and the mean
value N̄dis of the number of pixels that cannot be sensed in
the multi-BS joint environment sensing scheme as

N̄con = Ns

(

pNu

(

V
U→s
nu,ns

= 0
)

+ p
(

V
s→B
ns

(nR) = 0
)

−pNu

(

V
U→s
nu,ns

= 0
)

p
(

V
s→B
ns

(nR) = 0
))

, (54)

N̄dis = Ns

(

pNu

(

V
U→s
nu,ns

= 0
)

+ pNB

(

V
s→B
ns

(nR) = 0
)

−pNu

(

V
U→s
nu,ns

= 0
)

pNB

(

V
s→B
ns

(nR) = 0
))

. (55)

The multi-BS joint environment sensing has a larger sensing

range than single-BS environment sensing. In practical appli-

cations, a multi-BS scheme should be implemented according

to the BS location. When the multi-BS scheme is difficult to

implement, e.g., when the BSs are far away and users cannot

communicate with each BS, a single-BS scheme should be

used. In addition, if there is a failure of environment sensing
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for some pixels, a larger number of base stations and users or

users after moving locations should be used for joint sensing.

B. Environment Sensing Accuracy

In this section, we analyze the impact of environmental

information x on system performance. The mean square error

(MSE) between the estimated environmental information x̂

and the real environmental information x is used to describe

the accuracy of environment sensing, i.e.,

MSE =
1

Ns
‖x− x̂‖22 . (56)

According to the CS reconstruction model in Section III-B

(6), the reconstruction problem in (7) is expressed as

x̂ = argmin
x

‖x‖1 s.t.
∥

∥

∥
H

S − H̃x

∥

∥

∥

2
≤ ε, (57)

where ε is a slack variable. We consider that the performance

of environment sensing methods for solving the occlusion

problem should be as close as possible to the upper limit in

Theorem 2.

Theorem 2: The upper bound of the environment sensing

error when the CS measurement matrix H̃ = H under the ideal

(no occlusion, the occlusion detection is completely correct)

situation is

MSE ≤ m · R2 · logNs

Ns ·Nu ·NR
, (58)

where m is a normalized constant, and

R =











Rcon = ‖xcon‖1 = λθx(Ns − N̄con),
for single-BS scheme,

Rdis = ‖xdis‖1 = λθx(Ns − N̄dis),
for multi-BS scheme.

(59)

Proof: According to the CS theory [21],

‖x− x̂‖2 ≤ m ·R · (NH/ logNs)
1/2−1/ps , (60)

where, ‖x‖ps
≤ R. Pluging (56) and (57) into (60), we obtain

(58). According to (57), let ps = 1, we get the values of Rcon

and Rdis. �

Remark 1: When the number of BS antennas or the number

of users increases, the upper bound of environment sensing

error MSE decreases. When the environment sparsity λ and

other system parameters remain constant, the number of pixels

Ns increases (this means a wider sensing range or higher

sensing resolution), the upper bound of environment sensing

error MSE increases. Therefore, wider and more accurate

sensing results require more resource costs.

According to (54) and (55), under the condition that the

number of users is the same and the total number of antennas

of all BSs is the same, the number of environmental scatterers

sensed by multiple BSs is more than that of a single BS,

Rdis > Rcon. Therefore, according to (58), for the scatterers

in the sensing range, the upper bound of MSE of multi-BS

joint environment sensing is higher than that of the single-BS

scheme. However, in practical applications, the total number

of antennas deployed by multiple BSs is usually more than

that of a single BS. The increase in the number of antennas

NR will significantly improve system performance.

We analyze the probability distribution of the occlusion

matrix caused by the environmental scatterers as shown in

Corollary 1.
Corollary 1: The elements in the occlusion matrix V

conform to the Bernoulli distribution. The probability that
the element in the occlusion matrix Vnu,ns

(NR) is 0 can be
expressed as

p (Vnu,ns
(NR) = 0)

=p
(

V
U→s
nu,ns

= 0
)

+ p
(

V
s→B
ns

(nR) = 0
)

−p
(

V
U→s
nu,ns

= 0
)

p
(

V
s→B
ns

(nR) = 0
)

Ns
(61)

Proof: According to V (nR) = V
U→sdiag

(

V
s→B (nR)

)

,

as shown in Theorem 1, the probability that the element in

the occlusion matrix Vnu,ns
(NR) is 0 can be calculated by

V
U→s and V

s→B (nR). �

Therefore, the unknown occlusion matrix V is equivalent to

causing a multiplicative Bernoulli perturbation to the known

free space channel matrix H as shown in (8). At present,

some works [31], [32] have analyzed the compressed sensing

reconstruction performance under the condition that there is a

specific perturbation in the compressed sensing measurement

matrix. In this paper, the proposed algorithm iteratively elim-

inates the perturbation to the measurement matrix caused by

the occlusion effect according to the results of each iteration

and obtains accurate imaging results. The system performance

analysis of this iterative detection process will be future work,

and extensive simulation results have verified the effectiveness

and convergence of the proposed algorithm.

VI. NUMERICAL RESULTS

In this section, we simulate the performance of the algo-

rithm. In order to reduce the computational cost and reflect

the environment sensing accuracy, we set up a small-scale

simulation sensing region, the environmental scatterers are

distributed in the sensing region of 5m × 5m × 5m, and the

sensing region is evenly divided into 10 × 10 × 10 pixels.

Multiple BSs and users are randomly distributed in or around

the sensing region. The carrier frequency of the uplink signal

is set to 30GHz. The positions of scatterers distributed in

sensing region are random, and the scattering coefficient is set

to xns
∈ [0, 1]. As shown in the Fig. 6 and Fig. 7, small cubes

are used to represent the position and scattering coefficient

of pixels. The lower the transparency of the small cubes, the

higher the scattering coefficient of the pixel.

In this section, as mentioned in Section IV-A, we choose

GAMP and Bilinear GAMP algorithm as the baseline algo-

rithms to solve the environment sensing problem under the

occlusion effect. Compared with the two baseline algorithms,

in this paper, the proposed GAMP-MVSVR algorithm based

on the occlusion effect significantly improves the accuracy of

environment sensing.

Fig. 6 shows the results of the single-BS environment

sensing, where the gray cubes represent scatterers that are out

of the sensing range due to the occlusion effect. The system

parameters are set to the number of users Nu = 20, a single BS

is deployed with a 5×5 array antenna, and the signal-to-noise
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(a) The original environment scat-
terer distribution.

(b) The result of the GAMP algo-
rithm.

(c) The result of the Bilinear GAMP
algorithm.

(d) The result of the proposed
GAMP-MVSVR algorithm.

Figure 6: The original environment scatterer distribution and

single-BS environment sensing results.

(a) The original environment scat-
terer distribution.

(b) The result of the GAMP algo-
rithm.

(c) The result of the Bilinear GAMP
algorithm.

(d) The result of the proposed
GAMP-MVSVR algorithm.

Figure 7: The original environment scatterer distribution and

multi-BS joint environment sensing results.
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Figure 8: The relationship between the number of users and

the MSE within the sensing range of the single-BS scheme.

ratio (SNR) Eb/N0 = 20dB. Compared with the baseline

algorithms, it can be seen that the proposed algorithm clearly

and accurately obtains the shape of the original target.

Fig. 7 shows the results of the multi-BS joint environment

sensing. In order to make the total number of antennas

deployed in the environment the same, we reduce the number

of antennas on each BS. The system parameters are set to the

number of users Nu = 20, 5 BSs are deployed with 5 × 1
array antennas, and the SNR Eb/N0 = 20dB. Compared with

the single-BS scheme, as analyzed in (54) and (55), multi-

BS joint environment sensing scheme effectively increases the

2 4 6 8 10 12 14 16 18 20

1
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5

6
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8
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10
10-3

GAMP, sparsity = 2%

BiGAMP, sparsity = 2%

GAMP-MVSVR, sparsity = 2%

GAMP, sparsity = 5%

BiGAMP, sparsity = 5%

GAMP-MVSVR, sparsity = 5%

GAMP, sparsity = 10%

BiGAMP, sparsity = 10%

GAMP-MVSVR, sparsity = 10%

Figure 9: The relationship between the number of users and

the MSE within the sensing range of the multi-BS scheme.

environment sensing range. In Fig. 7, there is no scatterer that

cannot be sensed even though the occlusion effect is exist. It

can be seen that the sensing results of baseline algorithms are

more blurred than the results of the single-BS scheme. This is

because, as analyzed in Section V-B, when the total number

of receiving antennas is the same, multi-BS joint environment

sensing has a larger environment sensing range, which causes

a small decrease in the accuracy of environment sensing within

the sensing range.

Fig. 8 and Fig. 9 show the relationship between the single-

BS environment sensing performance, the multi-BS joint en-
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single-BS, sparsity = 10% multi-BS, sparsity = 10%

Figure 10: The relationship between the number of users and

the MSE within the full range of two sensing schemes.
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Figure 11: The relationship between the SNR and the MSE

within the sensing range of the single-BS scheme.

vironment sensing performance and the number of users Nu,

respectively. The MSE between the environmental information

within the sensing range and the environmental information

estimated by the algorithm reflects the accuracy of environ-

ment sensing within the sensing range. The system parameters

are set as follows: the single BS in the scenario in Fig. 8 is

deployed with a 5×5 array antenna, and 5 BSs in the scenario

in Fig. 9 are deployed with 5×1 array antennas, and the SNR

Eb/N0 = 20dB.

Remark 2: As analyzed in (58), as the number of users

increases or the number of environmental scatterers decreases,

the accuracy of environment sensing increases. Both the pro-

posed algorithm and the baseline algorithm perform poorly

when the number of users is small. But as the number of

users increases, the performance of the proposed algorithm

improves significantly.

Fig. 10 shows the relationship between the number of users

and the MSE within the full range of two sensing schemes.
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GAMP-MVSVR, sparsity = 5%

GAMP, sparsity = 10%

BiGAMP, sparsity = 10%

GAMP-MVSVR, sparsity = 10%

Figure 12: The relationship between the SNR and the MSE

within the sensing range of the multi-BS scheme.
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single-BS, sparsity = 10% multi-BS, sparsity = 10%

Figure 13: The relationship between the SNR and the MSE

within the full range of two sensing schemes.

The MSE between the environmental information within the

full range and the environmental information estimated by

the algorithm reflects the size of the environment sensing

range. The system parameter settings of the two environment

sensing schemes are the same as those in Fig. 8 and Fig. 9,

respectively.

Remark 3: As analyzed in (58), as the number of users

increases or the number of environmental scatterers decreases,

the accuracy of environment sensing increases. At the same

time, as analyzed in (54) and (55), for the full range of the

environment, the multi-BS scheme has a lower sensing error,

so it effectively increases the environment sensing range.

Fig. 11 and Fig. 12 show the relationship between the

single-BS environment sensing performance, the multi-BS

joint environment sensing performance and the SNR Eb/N0,

respectively. The system parameters are set as follows: the

single BS in the scenario in Fig. 11 is deployed with a

5 × 5 array antenna, and 5 BSs in the scenario in Fig. 12
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Figure 14: The convergence performance of proposed algo-

rithm.

are deployed with 5 × 1 array antennas, and the number of

users Nu = 10.

Remark 4: As the SNR increases, the estimated value Ĥ
S

of the multipath channel is more accurate, and the accuracy

of environment sensing increases. At the same time, the less

sparse the environmental scatterer distribution, the closer the

performance of the proposed algorithm and the baseline algo-

rithm are. This is because the more environmental scatterers

cause more occlusion, which reduces the performance of all

algorithms at the same time.

Fig. 13 shows the relationship between the SNR and the

MSE within the full range of two sensing schemes. The system

parameter settings of the two environment sensing schemes are

the same as those in Fig. 11 and Fig. 12, respectively.

Remark 5: As the SNR increases, the accuracy of environ-

ment sensing increases. At the same time, as analyzed in (54)

and (55), for the full range of the environment, the multi-BS

scheme has a lower sensing error, so it effectively increases

the environment sensing range.

As shown in Fig. 14, we provide performance curves under

various parameter settings to verify the convergence of the

proposed algorithm. The antenna settings of the multi-base

station scheme are the same as above.

Remark 6: As the number of iterations increases, the sensing

error MSE gradually decreases and converges. The sparser the

environmental information, the faster the algorithm converges

and the better the system performs. Meanwhile, the increase

in the number of users and the signal-to-noise ratio accelerates

algorithm convergence and improves system performance.

VII. CONCLUSION

In this paper, we have designed a multi-view environment

sensing scheme taking into full consideration the occlusion

effect in an outdoor scenario. Based on the occlusion effect,

we have proposed a probabilistic reasoning model based on

the factor graph. According to the AMP theory, the GAMP-

MVSVR algorithm is proposed to achieve multi-view envi-

ronment sensing. The proposed GAMP-MVSVR algorithm

achieves environment sensing by iteratively estimating the

scattering coefficients of the cloud points and their occlusion

relationship. In each iteration, the occlusion relationship be-

tween the cloud points of the sparse environment is recal-

culated according to the proposed occlusion detection rule,

and in turn, used to estimate the scattering coefficients of

the cloud points. Our proposed algorithm achieves improved

sensing performance with multi-BS collaboration in addition

to the multi-views from the users, which will provide ideas

for future ISAC system design.

APPENDIX A

According to the factor graph shown in Fig. 5, the logarith-
mic form of the passed message is calculated as follows. In
the t-th iteration, the message µĥS

nH
→xns

(t, xns
) passed from

the factor node p
ĤS|HS(ĤS|HS) to the variable node x is

µĥS
nH

→xns

(t, xns
)

= log

∫

{h̃nH,k}Ns

k=1
,{xr}r 6=ns

pĥS
nH

|hS
nH

(

ĥS
nH

∣

∣

∣

∣

∣

Ns
∑

k=1

h̃nH,kxk

)

×
∏

r 6=ns

exp
(

µxr→ĥS
nH

(t, xr)
)

×
Ns
∏

k=1

exp
(

µh̃nH,k→ĥS
nH

(

t, h̃nH,k

))

+ c, (62)

where the passed message µ is expressed in logarithmic

form. c is a normalization constant, so that the integral of

the exponential passed message exp(µĥS
nH

→xns

) is 1. In the

subsequent passed message and marginal distribution in this

section, the constant c has the same meaning. In the (t+ 1)-
th iteration, the message µxr→ĥS

nH

(t+ 1, xr) passed from the

variable node x to the factor node p
ĤS|HS(ĤS|HS) is

µxns
→ĥS

nH

(t+ 1, xns
)

= log px (xns
) +

∑

k 6=nH

µĥS

k
→xns

(t, xns
) + c. (63)

Let the mean and variance of the exponential form
of the message passed in (63) be x̄ns,nH

(t+ 1) and
σx
ns,nH

(t+ 1), respectively. In the t-th iteration, the mes-

sage µĥS
nH

→h̃nH,ns

(t, h̃nH,ns
) passed from the factor node

p
ĤS|HS(ĤS|HS) to the variable node H̃ is expressed as

µĥS
nH

→h̃nH,ns

(

t, h̃nH,ns

)

= log

∫

{h̃nH,r}
r 6=ns

,{xk}
Ns

k=1

pĥS
nH

|hS
nH

(

ĥS
nH

∣

∣

∣

∣

∣

Ns
∑

k=1

h̃nH,kxk

)

×
Ns
∏

k=1

exp
(

µxk→ĥS
nH

(t, xk)
)

×
∏

r 6=ns

exp
(

µh̃nH,r→ĥS
nH

(

t, h̃nH,r

))

+ c. (64)
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In the (t + 1)-th iteration, similar to (63), the message

µh̃nH,ns
→ĥS

nH

(t+ 1, h̃nH,ns
) passed from the variable node H̃

to the factor node p
ĤS|HS(ĤS|HS) is expressed as

µh̃nH,ns
→ĥS

nH

(

t+ 1, h̃nH,ns

)

= log ph̃nH,ns
|x

(

h̃nH,ns
|x
)

+
∑

k 6=nH

µĥS

k
→h̃nH,ns

(

t, h̃nH,ns

)

+ c. (65)

Let the mean and variance of the exponential form

of the message passed in (65) be h̄nHns,nH
(t+ 1) and

σh
nHns,nH

(t+ 1), respectively.

According to the factor graph in Fig. 5, the logarithmic

marginal distribution of the variable H̃ and x are calculated

as follows. With the iteration of the algorithm, the marginal

distributions of variables gradually converge to their MMSE

estimates. The marginal distribution of the variable x is

µxns
(t+ 1, xns

)

= log px (xns
) +

NH
∑

k=1

µĥS

k
→xns

(t, xns
) + c.

(66)

Let the mean and variance of the exponential form of the

marginal distribution in (66) be x̂ns
(t+ 1) and σx

ns
(t+ 1),

respectively. The marginal distribution of the variable H̃ is

µh̃nH,ns

(

t+ 1, h̃nH,ns

)

= log ph̃nH,ns
|x

(

h̃nH,ns
|x
)

+

NH
∑

k=1

µĥS

k
→h̃nH,ns

(

t, h̃nH,ns

)

+ c.
(67)

Let the mean and variance of the exponential form

of the marginal distribution in (67) be ĥnH,ns
(t+ 1) and

σh
nH,ns

(t+ 1), respectively.

APPENDIX B

Here we derive the approximate result (14). The Roman font

is used to represent the elements hSnH
, h̃nH,ns

, and xns
in the

matrix H
S, H̃, and x in the case of CLT. Let ∆hnHns,nH

=
h̃nH,ns

− h̄nHns,nH
(t) and ∆xns,nH

= xns
− x̄ns,nH

(t), then

the mean is 0, and the variance is σh
nHns,nH

(t) and σx
ns

(t).
In the t iteration, the sparsity λ in the prior distribution

of environmental information px (x) remains constant. As
mentioned in Section IV-C, we consider that variable x is
independent of variable H̃ in the t-th iteration. Therefore,

the mean ĥnH,ns
and the variance σh

nH,ns
of variable H̃ are

independent of variable x. HS is expressed as

hS
nH

=

N
∑

k=1

h̃nH,ns
xns

=
(

∆ĥnHns,nH
+ h̄nHns,nH

(t)
)

xns

+
∑

k 6=ns

(

h̄nHk,nH
(t) x̄k,nH

(t) + h̄nHk,nH
(t)∆xk,nH

+ ∆hnHk,nH
x̄k,nH

(t) + ∆hnHk,nH
∆xk,nH

) . (68)

Based on the CLT condition, xns
= xns

, the mean and

variance of hSnH
in (68) is written as

E

{

hS
nH

}

= h̄nHns,nH
(t)xns

+ p̄ns,nH
(t) , (69)

D

{

hS
nH

}

= σh
nHns,nH

(t)x2
ns

+ σp
ns,nH

(t) , (70)

where

p̄ns,nH
(t) =

∑

k 6=ns

h̄nHk,nH
(t) x̄k,nH

(t), (71)

σp
ns,nH

(t) =
∑

k 6=ns

(

h̄2
nHk,nH

(t) σx
k,nH

(t)

+σh
nHk,nH

(t) x̄2
k,nH

(t) + σh
nHk,nH

(t)σx
k,nH

(t)
)

.

(72)

Under CLT conditions, we approximate the last two product

terms of message µĥS
nH

→xns

(t, xns
) in (62) to the marginal

distribution of variable hSnH
in (68). Therefore, according to

the conditional Gaussian approximation, we obtain (14).

APPENDIX C

Here we derive the approximate result (20). Pluging (16)
and (17) into (14) we obtain

FnH

(

h̄nHns,nH
(t)xns

+ p̄ns,nH
(t) ,

σh
nHns,nH

(t)x2
ns

+ σp
ns,nH

(t) ; ĥS
nH

)

+ c

≈ FnH

(

h̄nHns,nH
(t) (xns

− x̂ns
(t)) + p̄nH

(t) ,

σh
nHns,nH

(t)
(

x2
ns

− x̂2
ns

(t)
)

+ σp
nH

(t) ; ĥS
nH

)

+ c, (73)

where, since Ns → ∞, we drop infinitesimal terms such as

h̄nHns,nH
(t) (x̂ns

(t)− x̄ns,nH
(t)) and so on.

As with most AMP algorithms [24], [25], [28], we make
the same derivation. We perform Taylor series expansion of
variable xns

in (73) at point x̂ns
(t), the passed message in

(14) is approximated as

µĥS
nH

→xns

(t, xns
) ≈ c+ FnH

(

p̄nH
(t) , σp

nH
(t) ; ĥS

nH

)

+ h̄nHns,nH
(t) (xns

− x̂ns
(t))

× F ′
nH,1

(

p̄nH
(t) , σp

nH
(t) ; ĥS

nH

)

+ 2σh
nHns,nH

(t) x̂ns
(t) (xns

− x̂ns
(t))

× F ′
nH,2

(

p̄nH
(t) , σp

nH
(t) ; ĥS

nH

)

+
1

2
h̄2
nHns,nH

(t) (xns
− x̂ns

(t))2

× F ′′
nH,1

(

p̄nH
(t) , σp

nH
(t) ; ĥS

nH

)

+ σh
nHns,nH

(t) (xns
− x̂ns

(t))2

× F ′
nH,2

(

p̄nH
(t) , σp

nH
(t) ; ĥS

nH

)

. (74)

where F ′
nH,1 and F ′′

nH,1 represent the first and second deriva-

tives of the first argument of FnH
, and F ′

nH,2 represents the

first derivative of the second argument of FnH
. We drop

infinitesimal terms such as the second derivative term of the

second argument of FnH
.

According to the derivation in Appendix D that

F ′
nH,2 =

1

2

[

(

F ′
nH,1

)2
+ F ′′

nH,1

]

. (75)

We plug (18), (19) and (75) into (74), and absorb the

constant term into the constant c, we obtain (20), where under

the CLT condition, we use ĥ2
nH,ns

(t) instead of h̄2
nHns,nH

(t),
and σh

ns,nH
(t) instead of σh

nHns,nH
(t).
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APPENDIX D

Here we derive the equation (75). According to (15), we

know the following

∂ exp (FnH
)

∂σp
= F ′

nH,2 exp (FnH
) , (76)

∂2 exp (FnH
)

∂p2
=
[

(

F ′
nH,1

)2
+ F ′′

nH,1

]

exp (FnH
) . (77)

According to (15), we obtain

∂ exp (FnH
)

∂σp

=

∫

hS

pĥS|hS

(

ĥS|hS
) 1√

2π

[

−1

2
(σp)−3/2

−(σp)−5/2

(

hS − p
)2

2

]

exp

(

(

hS − p
)2

2σp

)

=
1

2

∂2 exp (FnH
)

∂p2
. (78)

Plugging (76) and (77) into (78), we obtain (75).
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