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Abstract: Using machine learning (ML) to automate camera trap (CT) image processing is advanta-
geous for time-sensitive applications. However, little is currently known about the factors influencing
such processing. Here, we evaluate the influence of occlusion, distance, vegetation type, size class,
height, subject orientation towards the CT, species, time-of-day, colour, and analyst performance on
wildlife/human detection and classification in CT images from western Tanzania. Additionally, we
compared the detection and classification performance of analyst and ML approaches. We obtained
wildlife data through pre-existing CT images and human data using voluntary participants for CT
experiments. We evaluated the analyst and ML approaches at the detection and classification level.
Factors such as distance and occlusion, coupled with increased vegetation density, present the most
significant effect on DP and CC. Overall, the results indicate a significantly higher detection probabil-
ity (DP), 81.1%, and correct classification (CC) of 76.6% for the analyst approach when compared to
ML which detected 41.1% and classified 47.5% of wildlife within CT images. However, both methods
presented similar probabilities for daylight CT images, 69.4% (ML) and 71.8% (analysts), and dusk
CT images, 17.6% (ML) and 16.2% (analysts), when detecting humans. Given that users carefully
follow provided recommendations, we expect DP and CC to increase. In turn, the ML approach to
CT image processing would be an excellent provision to support time-sensitive threat monitoring for
biodiversity conservation.

Keywords: citizen scientists; poacher; wildlife; biodiversity conservation; automation

1. Introduction

Monitoring biodiversity and its potential threats are prerequisites for successful biodi-
versity conservation. Such monitoring allows for documenting threats facing biodiversity
and enables the evaluation of the impact of threats to biodiversity and the assessment of
conservation strategies [1]. There are numerous and diverse methods to monitor biodiver-
sity and the threats facing it. These have ranged from ground-truth data collection by field
teams, to remotely sensed data collected from satellites, camera traps (CTs), autonomous
acoustic recording units, and drones [2–10]. However, the ease of use, endurance capa-
bilities, and low-cost maintenance of camera traps, as well as the easy to interpret data
that they provide, make this a prevalent technology for wildlife monitoring and associated
threats, including poaching, human-wildlife conflict, and the effects of habitat degrada-
tion [3,7–9]. For example, the average CT battery life enables continuous target monitoring,
and even at high-sensitivity rates with increased CT image captures, batteries can last, on
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average, two to four weeks [10]. This is a considerable advantage compared to similar
surveillance and monitoring tools, including UAVs with an average of 20–30 minutes
flight time. Except for more advanced UAVs, including solar powered, reaching 25 days,
this is not a widely utilised approach due to their current payload capacities and fragile
components [11]. In addition, the advancement in automated networked CTs for image
communications allows for more efficient data collection and transmission [9], without the
need for full-time human operation as with UAV applications. Such advancements in CT
image transmissions, coupled with long-term battery life, enable continuous, near-real-time
data transmission. However, even with CT advancements, the vast number of images that
often result from deployments pose a challenge to users. This hinders the application of
CTs as a full near-real-time tool, as image analysts, who are usually experts but increasingly
also citizen scientists (trained volunteers) [12], must assess images manually to detect,
identify, and count targets, which is a time-consuming process [12–15]. This prevents the
effective application of CTs in time-sensitive situations, such as monitoring threats includ-
ing poachers, as it is unrealistic to expect analysts to be on standby for image evaluation,
regardless of image transmission platforms, e.g., satellites or GSM links [16].

With the intention to increase CT image processing speeds for time-sensitive applica-
tions, some research groups have integrated machine learning (ML) with citizen scientists
to automatically detect and identify humans/animals (targets) within CT images [16–18].
Several groups have taken a further step towards automation and predominantly or solely
used ML for such tasks [19–23]. These studies have indicated overall detection accura-
cies ranging from 68–93% [20,22], illustrating the capacity for ML to detect targets within
previously tested conditions.

Ideally, we would independently apply ML for object detection in CT images irrespec-
tive of potential influences on detection probability (DP) and correct classification (CC).
However, many of these studies have used images of whole animals to reduce occlusion
or used single-species images and simplified conditions, likely leading to increased ac-
curacy biases. This includes Norouzzadeh et al. [19] using single-species images, likely
contributing to accuracies of 96.6% on a 3.2 million-image Snapshot Serengeti dataset from
Tanzania. Additionally, Norouzzadeh et al. [22] further investigated ML applications using
the Snapshot Serengeti dataset to reduce overall manual processing and ML model training.
This time they manually cropped and segmented images containing whole animal bodies
to increase animal identification. This likely led to their ML performance matching state-of-
the-art citizen scientist accuracies for the 3.2 million image dataset with only 14,100 manual
classification labels, reducing manual labelling effort by over 99.5%. Similarly, Yu et al. [21]
cropped over 7000 camera trap images from Barro Colorado Island, Panama and Hoge
Veluwe National Park, Netherlands. This resulted in an 82% accuracy of detection and
classification of 18 mammalian species using ML methods.

Although in some cases, combining citizen scientist and ML methods may be beneficial,
such methods have not been practiced for target detection and classification within CT
images [17,18]. However, Willi et al. [17] combined analyst and ML methods, using
citizen scientists to pre-process images. They then tested CNN performance on empty
image identification accuracy (91–98%) and species identification accuracies (88–92%) of
all CT images, reducing analyst image processing time by 43%. Nevertheless, the need
for researchers to simplify conditions or combine analyst and ML processing methods for
sufficient accuracies underlines the importance of mitigating external influences on target
DP and CC in CT images.

There is, however, increasing promise in ML methods as an independent approach
to CT image processing, as studies focus on improving ML performance in comparison
with analysts [22]. An example of this includes Thangarasu and Kaliappan [23], compar-
ing machine-learning and deep-learning model accuracies for species identification and
finding >95% accuracy when detecting and classifying 19 mammalian species. Nonethe-
less, such performance testing has not yet incorporated an extensive amount of external
influential factors.
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Certain factors’ influence, including effective detection distance and species size on
the effect of CT trigger probability, are well documented [24–26]. However, there is no
published study focusing on their influence on the ability to detect targets within CT
images, although distance and species size class have both been identified as reliable
predictors of wildlife DP due to their influence on CT trigger probability [25,26]. The
influence of wildlife occlusion on the DP of targets in CT images, particularly coupled with
increasing distance, has been of interest. Willi et al. [17], for example, found that increased
distance from the CT increased the occlusion probability of the animal due to vegetation
between the animal and the CT. Similarly, studies have found that occluded species-specific
characteristics significantly influenced wildlife CC negatively. For example, Yu et al. [21]
found negative influences of occluded species-specific characteristics, including coloured
patches, stripes, spots, and overall body composition, on the CC of ungulates. Moreover,
Gomez Villa et al. [16] found negative influences of partially occluded species-specific
characteristics, including spots and antler shape, on the CC of red brocket and white-tailed
deer species.

Some studies have highlighted differences in light illumination and their influence
on wildlife DP and CC in CT images, including Yu et al. [21] finding that dark lighting
(dusk) presented a negative effect on DP. This also caused classification biases of diurnal
species due to the appearance of dense foliage covering the CT, commonly leading to
grayscale images. They also found biases of some cathemeral species frequently active
during daylight. This is because, as expected, the authors did not train the ML algorithm
to detect and classify diurnal species in grayscale images, and cathemeral species that
are commonly active during daylight naturally lack grayscale images for model training.
The biases caused such species to be commonly classified as cathemeral species, including
Crocuta crocuta. Nonetheless, this study still resulted in 88.9% accuracy, using deep regions
with convolutional neural networks (R-CNNs) to detect and correctly classify species in CT
images from the Snapshot Serengeti dataset.

No known study has focused on the influences of human-related factors and their
effect on human DP and CC in CT images. That said, Hambrecht et al. [2] used thermal
infrared (TIR) and red, green, and blue (RGB) drone imagery. They found human occlusion
due to canopy density, increasing distance from the centreline—the centre of an experiment
created by the investigator, and analyst performance were the main influences of human
DP within TIR drone imagery. The authors also assessed clothing colour contrast relative
to the background and its influence on human detection, finding that red and blue were
the most influential colours for detecting humans using RGB drone imagery.

Although many studies focus on varying factors and their influence on wildlife de-
tection and classification in CT images, no study has focused explicitly on the potential
influence of external factors on the DP and CC of wildlife and humans in CT images.
Therefore, in this study, we assessed the potential influence of the following factors: species
(characteristics), analyst performance, vegetation type, degree of occlusion, distance from
the CT, time-of-day, human/wildlife (target) height (metres), colour contrasts of clothing,
and orientation towards the CT on the DP and CC of targets within CT images (see Figure 1
for a visual overview of the tested factors within CT images). Additionally, we investigated
multi-factor influences on ML performance compared with analyst performance for true-
positive detection and classifications. We collected the data during the standard operating
of the cameras within western Tanzania. Afterwards, we collated the training and testing
data to assess the influence of the tested factors on target DP and CC within CT images,
using ML and analyst methods. We then compared the performance of these methods for
true-positive detections and classifications.
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Illustration of Camera Trap (CT) Image Scenarios Incorporating Tested Factors

Figure 1. Examples illustrating different CT image scenarios, incorporating the factors measured in
this study. Human images include (a) vegetation type (miombo woodland), time-of-day (daylight),
distance (<5 m), the colour of clothing (green), orientation towards the CT (yes), height (1.9 m),
and occlusion (68–100%); (b) Vegetation type (miombo woodland), time-of-day (dusk), distance
(15–30 m), height (variations) and occlusion (68–100%); (c) Vegetation type (riverine forest), time-
of-day (daylight), distance (10 m), the colour of clothing (green), orientation towards the CT (no),
height (1.7 m), and occlusion (68–100%). Wildlife image examples include (d) Species (Philantomba
monticola), vegetation type (miombo woodland), time-of-day (daylight), distance (0–4.9 m), orientation
towards the CT (no), and occlusion (68–100%); (e) Species (Crocuta crocuta), vegetation type (miombo
woodland), time-of-day (dusk), distance (5–9.9 m), orientation towards the CT (no), and occlusion
(34–67%); (f) Species (Tragelaphus sylvaticus), vegetation type (riverine forest), time-of-day (daylight),
distance (>10 m), orientation towards the CT (no), and occlusion (68–100%).

We initially proposed an alternative hypothesis for each factor tested. This includes:

• A human or animal’s increase in distance and occlusion simultaneously from the
CT would negatively influence at least one experiment, and denser vegetation cover
would further contribute to this influence for one or more models.

• A darker (green) colour contrast in comparison to the background would negatively
influence human DP.

• Decreases in the size of humans or wildlife would decrease their probability of detec-
tion, respectively, and darker times of day (dusk) would negatively affect human or
wildlife DP and CC.

• Occluded or partially occluded characteristic traits for similar species would decrease
wildlife CC.

• DP and CC would increase with increased human or animal orientation towards
the CT.

• There would be a significant positive difference in analyst performance on target DP
and CC.

• Lastly, the ML method would present higher or equivalent true-positive detections
and classifications than the analyst method for one or more experimental models.
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To test our hypotheses and meet the study’s aims, we have structured this article as
follows: in Section 2, we provide a detailed description of the experimental setup and
analytical processes. Section 3 provides quantitative data results, presenting the degree of
influence of the analysed factors and comparing the performance of both ML and analyst
methods. This finally leads to Section 4, which reviews the impact of the tested factors,
concluding with several recommendations and discussing the potential of ML to detect
and correctly classify targets within CT images irrespective of such influencing factors.

2. Materials and Methods
2.1. Study Site

We collected data at the Issa Valley research station in the Tongwe West Forest Reserve
in western Tanzania. The site is located approximately 1500 m above sea level. The
dominating vegetation within the surrounding area is miombo woodland (Brachystegia
and Julbernardia), interspersed with a mixture of open (rocky outcrops and grasslands) and
closed (riverine forest) vegetation [27].

2.2. Experimental Design for Human CT Images

We conducted the human CT experiments between 13–19 March 2020 (see Institutional
Review Board Statement). We used two Bushnell Trophy Cam HD Aggressor 2017 (model
number: 119877, Bushnell, Overland Park, KS, USA) CTs to collect data. We also varied the
following factors during the experiments: clothing colour, time-of-day, the distance between
the human and CT, occlusion, the orientation of the human relative to the CT, and human
height, with naturally varying tree density. A total of 15 human participants were involved,
a mixture of LJMU students and local staff, who provided prior and informed consent. Each
experiment varied in participant count, between two and six, depending on availability.
Both green and blue coats and trousers were used interchangeably by each participant
during the experiment, resulting in a completely blue and green set of clothing for each
participant for each time-of-day, condition, and distance. There was a total of 11 daylight
experiments (between 7:15–8:00) and 11 dusk experiments (between 19:15–20:00) within the
miombo woodland (low tree density). The riverine forest (high tree density) experiments
were conducted consecutively on 19 March 2020 (between 10:00–15:00), resulting in six
daylight experiments.

For the daylight experiments, participants walked from right-left horizontally (relative
to the CT) across the 5-m marker. Once participants reached the end, they walked up the
side of the experiment field (out of the CTs field of view) to the left-hand side of the 10-m
marker and walked left-right across the 10-m distance. They continued this pattern across
each set distance, starting at 5 m up to 30 m; once completed, participants returned to the
centre of the 30-m distance marker and walked through the centre, directly towards the
CT (see Appendix A Figure A1 for a visual representation). For the dusk experiments, we
randomly allocated participants a specific distance to walk across to the end and return to
their starting position (see Appendix A Figure A2 for a visual representation).

We used a 5-m tape measure to measure the distance from the CT using 5-m intervals
(<5, 5, 10, 15, 20, 25, and 30 m) and marked each distance using a fallen branch (central to
the CT). The <5 m class included all images taken of participants, between the CT and 5-m
distance marker, excluding dusk CT experiments. Next, we measured the CTs field of view
by using a live feed video and having an individual walk across each set distance marker
and stop once their body left the side of the CTs field of view; the individual then placed a
stick on the ground as the perimeter marker. We did this at both ends of each set distance
marker. Afterwards, we measured the distance between the left and right markers for each
distance class and used these measurements as reference points for additional experiments.
Proceeding this, we replaced the fallen branch marking each distance class with yarn, tying
it to the left and right perimeter markers, repeating for each distance class, enabling the
participants to follow the yarn to the end of the marker. We then tested participant height
variations, ranging between 1.5–1.9 m, using a 5-m tape measure.
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Once we captured the footage, we first measured target occlusion from the CT in
classes (0–33%, 34–67%, and 68–100%). We used the following rule to identify occlusion—
target occlusion occurs if any part of the body is not visible in the image, either due to
obstruction of an object or the CTs field of view. We proceeded to measure the factor
orientation towards the CT by selecting footage of the target moving or facing in the CTs
direction. We then selected and organised the footage of humans orientated towards the
CT into each set distance marker category. This included selecting footage captured at
the following distance markers (<5, 5, 10, 15, 20, 25, and 30 m). We also associated all
measured factors with their appropriate classification labels (see Table 1 for classification
label overview). Using Microsoft Excel Office 365 version 1.0.1, Microsoft Corporation,
Washington, DC, USA, we allocated a column for each factor classification label. Each row
was identified as a factor combination captured within a CT image, as explained previously.
Finally, we numerically labelled all individual experiments (experiment number) to account
for potential influences between experiments within each model.

Table 1. The tested variables within both human and wildlife experiments, showing each variable
name, their type of effect on the experimental outcome, their associated classification (dummy data)
label, and each variable type.

Variable Effect Classification Labels Variable Type

Outcome Variable
Detection 1 Target False-negative = 1/True-positive = 2 Binary

Correct Classification 1 Target False-negative = 1/True-positive = 2 Binary
Predictor Variables

Occlusion 1 Fixed 0–33% = 1, 34–67% = 2, and 68–100% = 3 Nominal

Distance 1 Fixed <5, 5, 10, 15, 20, 25, and 30 m/0–4.9 = 1,
5–9.9 = 2, and ≥10 = 3 Nominal

Orientation Towards the CT 1 Fixed Yes = 1/No = 2 Binary
Analyst Performance 1 Fixed Analyst 1, 2, 3 Nominal

Vegetation Type 2 Fixed Miombo Woodland = 1/Riverine Forest = 2 Binary
Colour 2 Fixed Blue = 1/Green = 2 Binary
Height 2 Fixed Participant height in metres Continuous

Species 3 Fixed Species scientific name identified
numerically (1–11) Nominal

Size Classes 3 Fixed Small = 1, Medium = 2, and Large = 3 Nominal
Hierarchical Variables
Experiment Number 2 Random Identification number of the experiment Nominal

Tree Tag Number 3 Random Identification number of the tree tag
location Nominal

Notes: 1 both wildlife and human factors; 2 human factors; 3 wildlife factors.

2.3. Wildlife Image CT Data

GMERC Ltd. (Busongola, Tanzania) researchers previously obtained the wildlife CT
data at the Issa research station between 2016–2020 from Bushnell fixed-focal-length CTs. We
initially selected 15 species, 4 of which were removed during the model training, resulting
in 11 species for testing. We selected the following species C. crocuta, Philantomba monticola,
Potamochoerus larvatus, Tragelaphus sylvaticus, Genetta tigrina, Pan troglodytes schweinfurthii,
Sylvicapra grimmia, Hystrix cristata, Panthera pardus, Cercopithecus ascanius, and Papio cyno-
cephalus. Following this, we selected the factors measured depending on their frequency
within the species-specific CT footage and based on previous findings [16,17,19–23].

The chosen factors include each species’ height (shoulder height), species differences
(species-specific visual traits), time-of-day (for cathemeral species), the distance of the
animal to the CT, occlusion of an animal from the CT, and animal orientation relative to the
CT, as explained below. We identified each species’ shoulder heights, previously assessed
using the perpendicular distance between the base of the heel and the shoulder blade
as according to Kingdon [28] and categorised these measurements into three categories
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(small 0–4 m, medium 4.1–7 m, and large 7.1–10 m). We used the factor species to represent
species ID and general species-specific characteristics, including colour, body shape, and
antlers/horns. Proceeding this, we identified each species’ circadian cycles, including
cathemeral (daylight/dusk), nocturnal (dusk), and diurnal (daylight) [29–37]. This en-
abled us to ensure adequate footage was obtained of cathemeral species at both daylight
(7:00–18:00) and dusk (18:01–5:00) for measuring the time-of-day factor. We measured the
distance factor in classes (0–5, 5–10, and >10 m) at five different tree tag locations (4800,
3219, 4817, 4816, and 4815), selected based on the level of species abundant at each site.
Once we had set the distance classes, we recorded the distance and position (relative to
the CT) of the most predominant trees within each class in a forward-facing direction to
use as reference points for measuring species distances within pre-captured CT images.
GMERC Ltd. researchers captured all CT footage with a fixed focal length lens, using con-
sistent video resolution (1900 × 1080). This allowed us to apply the distance measurements
(explained above) to all CT footage. We measured the factor’s occlusion and orientation
towards the CT identical to the human experiments (as described above). However, for
wildlife experiments, we selected and organised all the footage containing wildlife ori-
entating towards the CT into categories depending on their distance (0–5, 5–10, >10 m).
As in the human experiment, we classified and organised the factors into their associated
classification labels (see Table 1 for classification label overview). Each column represented
a factor, and each row represented a factor combination captured within the CT image.
Finally, we used the recorded tree tag number associated with each CT video sequence to
account for potential differences between experimental locations.

2.4. Data Analysis
2.4.1. CT Data Preparation

We filtered all video footage to remove unnecessary repeats, blanks (without target),
and blurred footage. We determined the removal of footage by the following rules: remove
consecutive frames of repeated scenes, keeping a maximum of four per sequence, and
remove all empty footage/frames (without targets). We then converted the footage into a
raw.jpg image sequences through a video conversion software VLC media player https:
//www.videolan.org/ (accessed on 3 May 2020), extracting one–four frames per second
(fps) using the scene filter preference, with a consistent 1900 × 1080 image resolution.

2.4.2. Training and Testing ML and Analyst Methods

We used the ConservationAI website www.conservationai.co.uk (accessed on
5 December 2019) for ML training and testing using a Faster R-CNN Residual Neural
Network (ResNet) 101 Common Objects in Context (COCO) model. We also used transfer
learning to reduce the required training datasets. This was performed through the frozen
weights of the ResNet101 model and we retrained the fully connected multilayer percep-
tron (MLP)—a multi-layer neural network connecting each layer in a one-way directed
graph. We used the MLP supervised learning technique as it increases model fine-tuning
through backpropagation. We trained the model (using the Visual Object Tagging Tool
(VoTT) version 1.7.0, Microsoft Corporation, Washington, DC, USA), with a threshold of
1000 images per class to balance all classes, preventing classification bias within the model.

Firstly, we extracted the human training dataset from the experimental footage and
collated the wildlife training dataset using images from the extracted CT footage, iNatural-
ist, and the Endangered Wildlife Trust (EWT). Secondly, we used between 100–200 images
for each factor combination for both human and wildlife training datasets. Lastly, we
sorted the wildlife (16,333 images) and human (11,781 images) testing datasets into four
copies, one for the ML model and three for the analysts (citizen scientists) (see Appendix B
Table A1 for training and testing dataset counts per class).

Once we trained the automated model on the training dataset, we uploaded the testing
dataset to the ConservationAI website. The algorithm then processed all images for wildlife
and human detection and classification instances. For analyst (citizen scientist) training,

https://www.videolan.org/
https://www.videolan.org/
www.conservationai.co.uk
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we obtained three images per species from iNaturalist. We then distributed them to the
three analysts for two days to memorise their features and associated classification labels.
Following this, we provided the testing datasets in a random order to prevent pattern
recognition and inference of the target location within the image based on a previous
location. We used the Google images app, version 5.7.0.327437691, Microsoft Corporation,
Washington, DC, USA, for the analyst detection and classification counts. The process
involved drawing a bounding box over the target’s parameters—the outer edge of the
object’s body, and typing the proposed classification name within the attached comments
box, as explained below.

After analyst and ML detection, we processed the images, resulting in the following
potential options: (1) false-negative detection and no classification, (2) true-positive detec-
tion and false-negative classification, or (3) true-positive detection and classification (see
Tables 2 and 3 for detection and classification performance results). The definition of such
options is as follows—a bounding box surrounding the target’s parameters would be a
true-positive detection; the correct labelling/classification of the detected target would
be a true-positive detection and classification; if there is no bounding box or it is not sur-
rounding the target’s parameters, it is a false-negative detection and no classification; if the
target is detected but mislabelled as another class, it is a true-positive detection and false-
negative classification.

Table 2. The percentage of true-positive detections and classifications compared to true-positive
detections, false-negative classifications, and false-negative detections and no classifications for
machine learning (ML) (3697, 3340, 9457) and analyst (30,436, 9279, 9281) methods.

Model
True-Positive
Detection and

Classification %

True-Positive Detection
and False-Negative

Classification %

False-Negative
Detection and No
Classification %

Machine Learning 22.4 20.3 57.3
Analyst 62.1 18.9 19.0

Table 3. The percentage of true-positive detections and classifications vs. false-negative detections
and no classifications for ML daylight (8474 vs. 2590), ML dusk (19,842 vs. 16,343), analyst daylight
(18,250 vs. 7172), and analyst dusk (9634 vs. 49,893) for all human models. We found no false-negative
classification outcomes for human models.

Model True-Positive Detection and
Classification %

False-Negative Detection
and No Classification %

ML daylight 76.5 23.4
ML dusk 54.8 45.1

Analyst daylight 71.7 28.2
Analyst dusk 16.1 83.8

We proceeded to categorise datasets in Microsoft Excel Office 365 version 1.0.1 into
combinations of the variables included within the image and sorted them into their specific
models. We gave the CC variable a not applicable (na) value in the event of a false-
negative detection response, and we stacked the analyst data with corresponding number
labels to analyse the three analyst response results simultaneously, assessing between
analyst differences.

2.4.3. Wildlife and Human Experimental Factor Analysis

We used a linear mixed model (glmm) with a logit link function, using the glmer
function within the lme4 package in Rstudio version 3.6.3, as Winter [38] recommended.
We first converted all categorical variables to factors with associated levels (see Table 1
for factor classes and their levels) using the “as.factor” function, version 3.6.2. We then
excluded data entries with missing values using the “na.omit” function, version 0.10.6.
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For the CC analysis, this included 16,343 of 19,842 ML-dusk entries and 2590 of 8474 ML-
daylight entries from the human datasets as well as 9272 of 39,708 analyst entries and
3341 of 7037 ML entries from the wildlife datasets. We then mean-centred all continuous
variables and used the “all_fit” function from the “afex” package, version 0.27–2 [39], to
mitigate convergence issues.

2.4.4. Tested Variables within the Human and Wildlife Experiments

We produced a baseline model of all fixed effects and the associated random effect for
the human and wildlife experiments for all detection and classification models. An example
of the wildlife DP model baseline formula is: (DP outcome ~ distance + occlusion + time-
of-day + species + orientation towards the CT + size class + analyst performance + (tree tag
number|1)). To ensure the accuracy of the model, we tested all model assumptions using
the package “performance”, function “check_model”, version 0.4.8 [40]. The performance
test showed high multicollinearity between the size class and species variable. Therefore,
we removed the size class variable to use the most explanatory variable (species), as
Kim [41] recommended.

We created models for each category and ranked them using the “performance” pack-
age based on their Akaike Information Criterion (AIC) (lower AIC illustrates a better model
fit), as advised by Winter [38]. The best-fit models of each category in Sections 3.1 and 3.2,
composed of forest plots, contained exponentiated odds ratios as effect sizes and corre-
sponding 95 percent (%) confidence intervals as error bars. We also included the standard
deviation (SD) for the random effect to illustrate the variance between groups (experi-
ment locations/data collection locations). Additionally, we used the baseline variable as a
comparison for each corresponding variable as defined in Sections 3.1 and 3.2.

2.4.5. Outlier Sensitivity Analysis

We conducted a sensitivity analysis on the outliers from the human models, as men-
tioned below, to test their influence on their corresponding models and determine whether
to remove them. We reanalysed the same data identical to the previous analysis after
extracting the outliers and presented pre-outlier and post-outlier models for each in-
stance. Firstly, we removed the 5-m distance variables from the analyst-daylight-DP
model (see Supplementary Tables S1 and S2) and the ML-daylight-DP model (see
Supplementary Tables S3 and S4). Secondly, we removed the distance variables 25 and 30 m
from the ML-dusk-DP model (see Supplementary Tables S5 and S6). Lastly, we removed the
10-m distance variable from the ML-dusk-CC model (see Supplementary Tables S7 and S8).
Upon completion of the sensitivity analysis, we chose the original data, including outliers,
as we were confident that the outliers occurred due to natural conditions within the ex-
periments. We determined this due to the following outcomes: the ML approach did not
detect any humans at 25 and 30 m in dusk CT images, and both approaches detected and
classified all humans correctly at a 5 m distance in daylight CT images.

2.4.6. ML and Analyst Performance Analysis

We extracted overall percentages for the three potential outcomes (1) true-positive
detection and classification, (2) true-positive detection and false-negative classification,
and (3) false-negative detection and no classification, for both ML and analyst methods.
Moreover, we used a two-tailed z-test to determine the overall significant difference in
the percentage of detection probabilities and CCs between the ML and analyst meth-
ods for both experiments (see Table 2 for the wildlife experiment and Table 3 for the
human experiment).

The ML model performance was further tested using the multi-class confusion matrix
classification method (see Appendix C Table A2 for a full overview of all tested classes), as
advised by Mohajon [42]. We also derived the primary performance measures of the ML
model for each tested class (see Appendix C Table A3 for an overview of ML performance
per class).
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3. Results
3.1. Assessing External Factor Influences on Wildlife DP and CC in CT Images

The glmm analysis showed that increasing distance (>10 m) and occlusion (68–100%)
levels showed significant (p < 0.001) substantial adverse effects on wildlife DP (see
Figure 2a,b), except for 5–9.9 m which significantly (p < 0.001) positively affected wildlife
CC using ML methods (see Figure 2c), indicating that increasing distance and occlusion led
to decreases in wildlife DP within CT images.

Figure 2. The best-fit models for the wildlife experiments presented as forest plots. All forest plots
are composed of effect sizes and error bars containing 95% confidence intervals. Moreover, each
factor class is compared to a baseline class as follows, distance: 0–4.9 m, occlusion: 0–33%, species:
Papio cynocephalus, orientation towards the CT: no, analyst performance: Analyst 1, and time-of-
day: daylight. The plots are illustrated as follows: (a) analyst detection probability (DP) model;
(b) machine learning (ML) DP model; (c) ML correct classification (CC) model; (d) analyst-CC model.

P. larvatus, S. grimmia, H. cristata, T. sylvaticus, and C. crocuta species significantly
(p < 0.001) positively influenced analyst-DP (see Figure 2a). Except for H. cristata, all species
were within the medium-large class, indicating that increasing size increased wildlife DP
within CT images using analyst methods. However, P. monticola and P. pardus illustrated a
non-significant (p = 0.710, 0.903) influence on wildlife DP in CT images using analysts (see
Figure 2a). Additionally, all species classes significantly (p < 0.001) positively influenced
ML-DP (see Figure 2b).

On the other hand, most species classes at increasing distance and occlusion influenced
CC. P. monticola, T. sylvaticus, S. grimmia (p < 0.001), G. tigrine (p = 0.001), and C. crocuta
(p = 0.002) illustrated a significant positive influence on ML-CC. Yet, C. ascanius significantly
negatively impacted wildlife CC in CT images using both ML (p = 0.007) and analyst
(p < 0.001) approaches. However, P. larvatus (p = 0.018), P. schweinfurthii (p = 0.739), H.
cristata (p = 0.687), and P. pardus (p = 0.224) illustrated a non-significant influence on ML-CC
(see Figure 2c,d). The negative influence of occlusion coupled with species characteristics
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on CC is anticipated when including increasing distance and occlusion levels between
34–100%, resulting in the partial or complete occlusion of visible species-specific traits.

The analyst performance factor showed that Analyst 1 presented the most significant
(p < 0.001) negative influence on wildlife CC compared to Analyst 2 (p = 0.252), illustrating
a non-significant influence. This indicates that individual abilities to recall visual features
and their associated classification labels caused fluctuations in wildlife CC (see Figure 2c).

Furthermore, the time-of-day factor (dusk) significantly (p < 0.001) negatively affected
the DP and CC of wildlife in CT images through the analyst approach and DP through
the ML approach (see Figure 2a,b,d). This result has highlighted the influence of darker
conditions on decreased DP and CC of wildlife. In addition, time-of-day presented a
non-significant (p = 0.039) influence on wildlife CC using ML methods (see Figure 2c).

Nevertheless, the orientation toward the CT factor illustrated a highly significant
(p < 0.001) positive effect on the DP of wildlife in CT images using both analyst and ML
methods (see Figure 2a,b). This factor presented the most significant favourable influence
on DP for both analyst and ML methods.

In addition, the random factor representing variance between CT image locations
showed the highest SD for the analyst-DP model (SD 2.529), followed by ML-CC (SD 2.519),
ML-DP (SD 1.237), and the analyst-CC (SD 0.849) models.

3.2. Comparison of Analyst and ML Model Performance for Wildlife DP and CC

The three analysts detected 81.1% and correctly classified 76.6% of wildlife within CT
images, whereas the ML method detected 41.1% and correctly classified 47.5% of all wildlife
within CT images. A two-sample z-test showed a significant difference in the percent-
age of detections (p < 0.001), 95% confidence interval (0.381 and 0.397) and classifications
(p < 0.001), 95% confidence interval (0.279 and 0.304) between the two approaches. More-
over, the ML and analyst methods illustrated higher false-negative detections and classifi-
cations than true-positive detections and classifications (see Table 2 for a comparison of ML
and analyst detections and classifications).

3.3. Analysing External Factor Influences on Human DP and CC

Human detection within daylight CT images was highly significant (p < 0.001) between
10–30 m with a negative influence on DP and CC, increasing as distance increased (see
Figure 3a,b). Such positive influences of shorter distances on DP and CC decreased for
dusk experiments using both ML and analyst methods and ML-CC (see Figure 3d,e).
This highlights the difficulty of detecting and classifying humans in CT images under
such conditions.

Occlusion of 34–67% showed a highly significant (p < 0.001) positive influence on
human DP in dusk CT images using analysts (see Figure 3c), potentially due to open
vegetation, increasing the DP of humans in CT images even at medium occlusion levels
in dusk lighting conditions. However, increases in distance and occlusion significantly
decreased human DPs in daylight CT images using ML methods and dusk CT images using
analyst methods (see Figure 3a,d). This was increasingly true when combined with dense
vegetation (riverine forest), causing a steep decline of human DP in daylight CT images at
shorter distances (15 m) for both ML and analyst methods (see Figure 3a,d). Moreover, the
model shows that detecting and classifying humans at dusk in open vegetation (miombo
woodland) from the same distance caused more positive effects than detecting them in
daylight within denser vegetation (riverine forest) (see Figure 3b,e). That said, vegetation
type (p = 0.981) and occlusion 34–67% and 68–100% (p = 0.933, 0.673), colour and distance
5–30 m (p = 0.034, 0.038, 0.027, 0.094, 0.164, and 0.387) presented non-significant effects on
the ML-daylight-CC model (see Figure 3e). Moreover, 5 m distance presents non-significant
effects on the ML (p = 0.308) and analyst-daylight-DP (p = 0.096) models (see Figure 3a,d).
Occlusion of 34–67% and 68–100% also had a non-significant influence on the analyst-
daylight-DP (p = 0.155, 0.095) and ML-dusk-CC models (p = 0.704, 0.995). Targets at a 10-m
distance had a non-significant (p = 0.923) effect on the ML-dusk-CC model (see Figure 3a,f).
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Furthermore, the ample amount of non-significant influential factors on human DP is
likely due to the influence of naturally occurring outliers and the high rate of detections
in daylight CT images. Additionally, the overall abundance of CCs for humans in both
daylight and dusk CT images likely influenced the degree of non-significant influential
factors for the CC models.

Figure 3. The best-fit models for the human experiments presented as forest plots. All plots are
composed of effect estimates and error bars containing 95% confidence intervals. Additionally, all
factor categories are compared with a reference category which are as follows: distance (daylight
experiments): <5 m, distance (dusk experiments): 5 m, occlusion: 0–33%, vegetation type: miombo
woodland, colour: blue, and orientation towards the CT: no. The plots are illustrated as follows:
(a) analyst-daylight-DP model; (b) ML-daylight-DP model; (c) analyst-dusk-DP model; (d) ML-dusk-
DP model; (e) ML-daylight-CC model; (f) ML-dusk-CC model.

On the other hand, darker contrast colours (green) significantly (p < 0.001) negatively
affected human DP in daylight CT images, using analyst methods (see Figure 3a), and
presented insignificant effects on human CC in dusk CT images using ML methods (see
Figure 3c). This result leads to the assumption that clothing colour contrast against the
background mostly influenced the analyst’s ability to detect humans within daylight
CT images.

However, human orientation towards the CT presented a significant (p < 0.001) but
weak positive influence on the DP of humans within daylight CT images, using analyst
methods (see Figure 3a). This indicates that increased surface area relative to the CT was a
significant predictor of human DP in daylight CT images.

The models displayed significant variations between experimental locations, with
the ML-dusk-CC model (SD 2.683) displaying the highest variation. This is followed
by the analyst-dusk-DP model (SD 1.038), ML-daylight-DP model (SD 0.806), analyst-
daylight-DP model (SD 0.799), ML-dusk-DP model (SD 0.714), and ML-daylight-CC model
(SD 0.326), respectively.

3.4. Comparison of Analyst and ML Model Performance on Human DP and CC

The analyst method detected 71.8% of humans within daylight CT images and 16.2%
of humans within dusk CT images. Similarly, the ML method detected 69.4% of humans
in daylight CT images and 17.6% of humans in dusk CT images. A two-sample z-test
showed a significant difference in the percentage of detections for daylight (p < 0.001),
95% confidence interval (0.012, 0.034), but a non-significant difference for dusk (p = 0.149),
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95% confidence interval (−0.010, 0.001) models. The ML-daylight models presented higher
true-positive detection and classification rates than the other models, with the analyst-dusk
model illustrating the highest false-negative detection rate (see Table 3 for a comparison of
detection and classification responses for both methods).

4. Discussion

This study aimed to identify factors influencing target DP and CC in CT images and
develop recommendations to mitigate such influences. We achieved this by using both ML
and human analyst approaches, alongside performance comparisons of ML and analysts
for target DP and CC under variable conditions.

Given the results of the experiments, our theory is that specific factors do indeed
significantly influence the detection and classification of targets using both ML and ana-
lysts. More specifically, factors of distance and occlusion, particularly when coupled with
increased vegetation density, presented the most significant effect on DP and CC. There are
various studies that have highlighted different influences on the detection or classification
of targets within CT images using ML approaches [16,17,19–23]. However, none have
explicitly evaluated all factors within this paper and their interacting effects on DP and CC
within natural experimental conditions. Given that users consider the following recommen-
dations and exercise the correct setup and design methods, the knowledge provided should
facilitate increased DPs and CCs of wildlife and humans within CT images using both ML
and analyst approaches. Therefore, this paper contributes toward the successful application
of ML methods as a tool for target DP and CC within CT images, for the time-sensitive
monitoring of threats facing biodiversity, regardless of external influences.

As an equation, the main theory would be as follows:

A = Distance + Occlusion + Vegetation Type,

B = Analyst Performance + Orientation Towards the CT

where A is significantly reduced detection and classification of targets for most tested
models and B is the most significant increase in DP and CC of targets.

4.1. Important Factors to Consider for Improving Target DP and CC

The reduction in effective detection and classification distance of targets in CT images
with increased distances (10–30 m) is comparable with previous studies. This includes
Norouzzadeh et al. [22] who found reduced effective detection distance when assessing
the DP of species with varying body mass on CT trigger probability. This is consistent
with Findlay et al. [43] who noted that close (1 m) and far passes towards the peripheral
viewpoint of the CT decreased trigger probability. Similarly, Hambrecht et al. [2] reported a
significant influence of distance from the centreline on the DP of ‘poachers’ using drones
and human analysts. Additionally, Marin et al. [44] reported the complexities of ML
detection and classification of ‘poachers’ in partially occluded images. Likewise, the impact
of increased occlusion levels on detection and classification within most experimental
conditions agrees with previous findings [16,21].

When combined with further distances and occlusion, closed vegetation (riverine for-
est) led to increased adverse effects of distance and occlusion on human DP in all daylight
models. The closed vegetation presented a more significant negative influence on detecting
and classifying humans in daylight CT images than within dusk CT images captured
in open vegetation (miombo woodland) at the same distance and occlusion. Similarly,
Bukombe et al. [26] reported that although seasonal differences alone presented no influ-
ence, they adversely reduced the DP of ungulates in CT images when coupled with species
size and increased distance. However, we only compared vegetation type differences for
human daylight CT experiments. Therefore, we could not rule out denser vegetation as an
influence on target DP and CC within dusk CT images. Similarly, vegetation type was not
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included in the wildlife experiments as only images containing riverine forest vegetation
were used due to a lack of wildlife images captured in open woodland.

Three main factors contribute to the magnitude of non-significant effects on human
CC and DP models: (1) the natural outlier conditions found at a 5 m distance for daylight
DP models and 25–30 m distance for the ML-dusk-DP model, (2) the high probability that
colour presents no influence on the CC of humans, and (3) the high true-positive detection
and classification responses increase the likelihood that most factors presented a positive
influence or no influence at all on DP or CC rates. This is because analysts presented no
false-negative responses, and they reached 71.7% for daylight true-positive DPs, similar to
ML with 76.5%.

Dusk experiments presented a significant adverse effect on wildlife DP and CC for
cathemeral species. This strongly supports the conclusions of Gomez Villa et al. [16] who
found that greyscale CT images likely caused diurnal and cathemeral species classification
biases towards commonly nocturnal species, including C. crocuta. Similarly, dusk light-
ing conditions significantly affected the DP of humans, particularly at further distances
(20–30 m). However, Hambrecht et al. [2] found the time-of-day factor to be an insignificant
predictor of human DP in drone imagery.

Most of the species’ classes influenced DP and CC, with all but C. ascanius significantly
negatively impacting wildlife CC in CT images using both ML and analyst approaches.
This was particularly the case when correctly classifying species of similar characteristics,
including T. sylvaticus, S. grimmia, and P. monticola. These findings indicate that physi-
cal similarities, including the general morphological size and shape of T. sylvaticus and
S. grimmia, contributed to the probability of correctly classifying them. Similarly, the female
bushbuck class and both duiker species, coupled with occlusion led to reduced CCs, partic-
ularly for ML methods which may have been due to similar face shapes and markers of
both species. This is consistent with previous findings [16,21].

Species size seemed to be a particularly influential characteristic for analysts and
ML-DP. The reasoning for this conclusion is that all the species that significantly positively
influenced DP were medium-large, except H. cristata. However, we removed the size class
factor from the analysis due to its high multicollinearity with the factor species. Therefore,
although we found a significant correlation between the species and size class factors, we
cannot be certain that size was an influencing variable. Yet, there is previous evidence of
increasing size positively influencing the DP and CC of wildlife in CT images [26]. Large
sizes led to higher DP at greater distances than smaller sizes. Nevertheless, as Gomez
Villa et al. [16] reported, species characteristic similarities adversely affect species-specific
recognition of similar ungulates when using ML methods. However, human height variance
presented no influence on human detection and classification within CT images. Although,
as previously stated, much has been studied on wildlife body mass size influences on DP
and CC [26], to the best of our knowledge, no study has focused on human height variances
and their impact on human DP and CC within CT images.

The analyst performance factor significantly increased the probability of wildlife CCs.
Controversially, Katrak-Adefowora et al. [45] reported low levels of citizen scientist CCs
(51.8%) in comparison to professional biologists (77.6%). Significant variation between
analyst responses may have been partially due to training methods used prior to analyst-DP
and CC testing.

Darker contrast colours (green) against the background negatively influenced the
DP of humans in daylight CT images using the analyst method and CCs using the ML
method as opposed to a lighter blue. This is consistent with Hambrecht et al. [2] who found
darker contrast colours (green) reduced DP of humans within aerial drone RBG imagery
in comparison to lighter colours (red and blue). Additionally, poachers are frequently
recorded wearing green and brown camouflage to mix with the background surroundings
and reduce being seen [6]. Although much is known about the use of camouflage to
disguise oneself, little effort has been focused on the degree of influence colour contrasts
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have on DP and CC. This study strongly supports that green presents a significantly high
degree of influence towards reducing human DP in CT images compared to lighter colours.

The targets orientating in the CTs direction positively influenced human and wildlife
DP using the analyst approach and the DP of wildlife using the ML approach. Controver-
sially, Hofmeester et al. [46] found anterior or posterior poses relative to the CT reduced
CT trigger probability due to passive infrared (PIR) sensor detection difficulties. However,
their study focuses on the influence of target proportions on CT sensor triggers rather than
potential influencing target features on target DP in CT images.

In conclusion, distance and occlusion illustrated the most significant influence on both
DP and CC, particularly when integrated with dense vegetation for human experiments;
vegetation type was not assessed for wildlife experiments. Wildlife CC was particularly
influenced by partial or complete occlusion of species, likely caused by occluded visual
characteristics. Darker contrast colours significantly reduced human DP. Targets orientating
towards the CT illustrated a positive influence on target DP and CC. There was a significant
positive variation between analyst performances. Human height presented no influence,
and darker lighting conditions significantly negatively influenced human DP and all
wildlife models. Additionally, although the analysts performed better overall for the
wildlife models, the ML method outperformed analysts for the human experiments (see
Tables 2 and 3). This leads to concluding the proposed hypothesis’ (see Table 4).

Table 4. The tested hypothesis summary for all factors.

Alternative Hypothesis Outcome

Targets orientating towards the CT would positively influence target DP in CT images. Accepted
Targets orientating towards the CT would positively influence target CC in CT images. Rejected

Partially occluded species-specific characteristics would negatively affect CC of similar species. Accepted
The time-of-day factor (dusk) would negatively influence wildlife DP and CC. Accepted
The time-of-day factor (dusk) would negatively influence human DP and CC. Rejected

Colour contrast (green), in comparison to the background, would negatively impact human DP. Accepted
Increasing distance and occlusion would significantly decrease target DP and CC for all wildlife models. Accepted
Increasing distance and occlusion would significantly decrease target DP and CC for all human models. Rejected

Dense vegetation would contribute to the significant decrease of one or more models. Accepted
ML methods could perform at a statistically significant increased rate than analyst methods for at least one model. Accepted

There would be a significant positive difference in analyst performance on target DP and CC. Accepted
Decreases in size would decrease DP and CC, respectively, for wildlife and humans. Rejected

4.2. Recommendations to Mitigate Influential Factors

The influence of multiple factors on target detection and classification within CT
images raises cause for concern if users do not consider these during CT study design and
implementation. However, some precautions and actions could be applied, reducing, and
potentially mitigating, such influences.

Many factors should be considered for wildlife monitoring, particularly the monitoring
of illegal activity using CTs, including the CT’s structure and appearance (camouflage,
robustness, etc.), its setup, and its software capabilities. However, we instead aim to
focus on the following CT features, with the aim of directing users towards the most
optimal CT type for effective near-real-time use: trigger speed, battery life, field of view,
resolution quality, and network capabilities. Additionally, we overview CT distribution
and abundance, ML model type and training, analyst training, and Random Subspace
Methods (RSM) for managing target occlusions within CT images.

There are various commercial camera traps available, in addition, most conservation
organisations are making strides in advancing CTs, including the PoacherCams Panthera CT
(Panthera, New York, NY, USA) [47] and the Trailguard AI camera by RESOLVE (Washing-
ton, DC, USA) [48]. Therefore, simply recommending a CT Type will not be of much use due
to their ever-evolving technology and the vast range of CTs. Instead, we aim to highlight
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the factors which we find important for effective near-real-time threat monitoring based on
the observations within this study and previous research recommendations [10,49].

The suitability of CTs for various conservation studies is widely acknowledged [50–53].
However, we focus on CT features that are most important for optimum target detection
and classification within CT images. One particularly important feature is trigger speed.
This has had a significant influence on target detection rates and has been one of the
most evolved aspects of CT features, with trigger speeds now reaching approximately
0.5 seconds [49]. Reliable and long battery life are essential for effective threat monitoring.
As previously mentioned most CTs on high sensitivity settings can last, on average, two to
four weeks [10]. Additionally, new CT advancements, including Trailguard AI [48], have
enhanced rechargeable batteries and can now reach up to 1.5 years on a single battery.
More advanced CTs using network power tend to consume more battery, due to the WiFi
SD cards drawing power, but advancements in rechargeable batteries and solar energy
usage should see improvements with future models [50]. A wide FOV is essential for
optimal target detection and classification [54]. The average CT FOV ranges between
40–60◦ wide and from 5 m up to 30 m depending on the camera height positioning and
vegetation density. We also focus on optimal resolution quality, a novel yet important factor
for increasing the detection and classification of targets in CT images. Most networked
CTs are of high-resolution quality, as standard with 4K video resolution and an average
of 30-megapixel images, we recommend such high quality, providing optimum clarity for
target detection and classification probabilities. However, one of the most important factors
to consider when recommending a CT for near-real-time threat monitoring is the CT’s
network capabilities. Commonly, CTs with remote network capabilities rely on cellular
connections or WiFi connectivity to send images. However, more recent developments
are integrating AI into the CT system to send pre-processed near-real-time information
from anywhere to end users [51]. Whytock [53] tested this using a commercial Bushnell
Core 24MP Low Glow 119936C CT and customised open-source hardware. The main
frame hardware consists of a smart-bridge controller with a custom circuit board, LoRa
STM32L0 ultra-low-power microcontroller, and RockBLOCK satellite modem, connecting
to a Raspberry Pi 4 Compute module. The system is designed to only consume power when
necessary, so it only activates the Raspberry Pi to download and classify images using AI
when it receives a message from LoRa (the microcontroller within the smart bridge). After
classification of the images, the Raspberry Pi sends the results via satellite and powers
down to save battery. This type of open-source method is a reasonably cost-effective option.
Users and developers would need to understand the mechanics of integrating and altering
open-source hardware, including utilising Raspberry Pi’s for scripting and ML connectivity.
However, if users could overcome this issue, this type of CT approach would be highly
effective for real-time threat monitoring.

CT distribution and abundance will vary depending on many conditions, including
individual objectives, CT detection range, target range, funding availability, and envi-
ronmental conditions. However, we simply provide guideline recommendations of CT
placement methods for optimum resource use and increased detection probability.

Based on this paper’s findings we determine that CTs should ideally be placed within
30 m of one another throughout the intended site for optimum detection and classification
probability of both humans and wildlife. However, this is not likely feasible for real-world
applications. Furthermore, in most cases, this is not required when users apply methods to
optimise CT placement. Therefore, we instead offer recommendations for CT placement
and distribution methods to increase detection and classification probability. Opportunistic
CT placement is the most common approach for long-term wildlife monitoring [55]. The
primary focus of CT sites would ideally be within the following landmark areas: feeding
and drinking sites, game trails, downed logs, and other minor landmark points, all of which
have been found to increase trigger probabilities [55]. However, an alternative method for
optimising CT placement methods would be to utilise the spatial monitoring and reporting
tool (SMART) as an additional measure to complement optimal CT placement [56]. This
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tool allows rangers and other users to collaborate and share data including recording
wildlife tracking, illegal activity monitoring, poaching camps, traps, and patrol routes,
along with current CT and alternative sensor placements. The data can be used to create
maps and reports and perform analysis to assess threats effectively and plan for optimal
monitoring within specific target areas to prioritise funding and staffing resources. With
such implementations, CT sites could be situated at typical hotspots as mentioned above,
with a grouping of CTs in each location (depending on the desired area covered) with
15–30 m spacing between them.

For ML applications, we do not go into extensive detail on ML performances and
comparisons but instead focus on the most prevalent architectures for target detection and
classification as recommended by [57]. Hui [57] compares the Faster R-CNN ResNet101 and
Inception ResNet Version 2 (V2), the Region-Based Fully Convolutional Network (R-FCN)
ResNet 101, and Single Shot Detector (SSD) with both MobileNet and Inception V2. The
R-FCN and SSD architectures are faster overall, with the SSD on MobileNet presenting
the highest mAP (19.3) for real-time processing. However, the Faster R-CNN using the
Inception ResNet provides the highest accuracy at one FPS for all tested classes. The
R-FCN architecture using the Residual Network presents a better balance between speed
and accuracy. However, the Faster R-CNN with ResNet 101 can achieve a similar overall
performance. Given the overall balance of speed and accuracy, we recommend the Faster
R-CNN with ResNet 101 architecture based on performance testing [57] and its tested
application within our study.

The primary recommendation for increasing analyst performance is to apply on-
demand resources commonly defined as “just-in-time” training. For example, Katrak-
Adefowora et al. [45], who utilised such methods by training 94 citizen scientists (analysts)
on wildlife species with CT images, found increased detection rates from 51.8–81.9%.
Moreover, after training, analysts reported better confidence in species classifications.

Applying a random subspace method (RSM)—a strategic learning method where the
features of a target image are randomly sampled for ML training, has proven successful in
managing partial human occlusions. Several studies have successfully detected humans
within partially occluded still images, resulting in true-positive detection accuracies of
75.6% [44,58]. Such an application improves target detection performance within partially
occluded images without compromising detection accuracy for non-occluded images [44].
This method not only accounts for increased robustness to occlusion but, in turn, potentially
reduces the influence of occluded species-specific characteristics on wildlife CC.

4.3. Comparison of ML and Analyst Methods for DP and CC Performance

In this study, the overall wildlife classification and detection rates using the ML
approach were low compared to similar studies, including detection and classification
estimates of up to 93% probability [22]. Such low rates are potentially due to a low
(1000 count) threshold of training images per class. Similar studies report dataset counts
ranging from 22,000 [16] to 189,000 [19]. Moreover, Gomez Villa et al. [16] report that model
training influences wildlife DP. However, the ML approach demonstrated increased DPs
within daylight and dusk human DP models. Moreover, for the dusk DP experiments,
the ML approach performed better than the analyst approach. However, low analyst-CC
results may be partially contributed to by analyst experience.

5. Conclusions

This study demonstrated that the ML method displayed significantly better detection
probabilities for human daylight and dusk models compared to the analyst method. How-
ever, the ML method illustrated less effective detection and classification probabilities for
wildlife models than the analyst method. On the other hand, the analyst method performed
well with high detection probabilities of wildlife and humans within CT images, with
negligible significance on wildlife CC. Overall the ML method showed great promise for
future applications. Therefore, despite such performances for wildlife models, we highly
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recommend the ML method for target detection and classification within CT images if
users carefully consider model training and preparation. Regarding analyst approaches,
the developed knowledge of citizen scientist-based factors and influences on wildlife DP
and CC could increase the accuracy of ecological monitoring evaluations. Potential im-
provements to increase DPs and CCs include increased training datasets per class, with
a minimum of 2000 per class, considering characteristically similar species. Moreover,
future considerations include categorising wildlife into size classes by body mass measure-
ments rather than average height at shoulder length. This includes additional measures for
with and without partially occluded species characteristics and directly comparing similar
species. Additionally, we recommend providing further training to citizen scientists using
“just-in-time” methods prior to image analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22145386/s1, Table S1: Analyst-daylight-DP Pre-Outlier Model;
Table S2: Analyst-daylight-DP Post-Outlier Model; Table S3: ML-dusk-DP Pre-Outlier Model;
Table S4: ML-dusk-DP Post-Outlier Model; Table S5: Sensitivity Analysis 3a; Table S6: Sensitivity
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Appendix A. Experimental Design

Appendix A.1. Human Daylight Experimental Pattern

Figure A1. A visual illustration of the human daylight experimental setup where participants walked
each set distance marker from 5–30 m; upon reaching the end of the 30-m marker, they returned to
the centre of the 30-m marker and walked directly through the middle to the camera trap (CT).

Appendix A.2. Human Dusk Experimental Pattern

Figure A2. A visual illustration of the human dusk experimental setup where participants were
randomly given a set distance marker from 5–30 m to walk across to the end and return to their
starting position.
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Appendix B. Training and Testing Dataset Counts

Table A1. The ML training dataset counts and the ML and analyst testing dataset counts per class for
the human and wildlife experiments.

Class Label
CT Image Count for ML
Training Dataset (1000

Threshold Cap)

CT Image Count for ML and
Analyst Testing Datasets

Person 5196 11,781
Panthera pardus 1227 1014

Potamochoerus larvatus 1642 1812
Sylvicapra grimmia 1560 1443

Philantomba monticola 1502 2783
Cercopithecus ascanius 1194 1102

Genetta tigrina 1181 901
Pan troglodytes schweinfurthii 1114 1176

Papio Cynocephalus 1009 1812
Hystrix cristata 1008 932

Tragelaphus sylvaticus 1001 2107
Crocuta crocuta 1000 1281
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Appendix C. Machine Learning Model Confusion Matrix

Table A2. The multi-class classification confusion matrix for ML model evaluation.

Person Panthera
pardus

Potamochoerus
larvatus

Sylvicapra
grimmia

Philantomba
monticola

Cercopithecus
ascanius

Genetta
tigrina

Pan
troglodytes

schweinfurthii

Papio Cyno-
cephalus

Hystrix
cristata

Tragelaphus
sylvaticus

Crocuta
crocuta

Person 9101 0 0 0 0 0 0 82 0 0 0 0

Panthera pardus 0 621 1 0 1 0 0 0 0 0 34 58

Potamochoerus
larvatus 0 100 307 0 0 0 2 0 0 0 0 452

Sylvicapra grimmia 0 0 3 0 498 0 1 0 0 2 59 0

Philantomba
monticola 0 0 5 219 3 0 0 0 0 0 41 0

Cercopithecus
ascanius 0 0 0 0 0 0 0 108 195 0 0 0

Genetta tigrina 0 0 0 0 4 0 157 0 0 82 0 0

Pan troglodytes
schweinfurthii 17 0 0 0 0 41 0 803 99 0 0 0

Papio Cynocephalus 0 2 0 0 0 241 0 51 952 0 0 0

Hystrix cristata 0 0 0 0 2 0 19 0 0 496 0 0

Tragelaphus sylvaticus 0 0 18 483 387 0 0 0 0 0 0 3

Crocuta crocuta 0 392 43 0 12 0 4 0 0 2 0 0

The left-hand side represents the actual class within each CT image (which species is within the tested image) and the top section represents the ML model’s predictions of the class
within each CT image. The highlighted section illustrates the true-positive classifications, the unhighlighted cells in each row represent the false-positives and the unhighlighted cells in
each column represent the false-negatives. True-negative classifications are all instances other than that which fall within the class of interest.
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Table A3. The primary performance measures of the ML model for each tested class.

Class F1 Score Precision Recall FNR FPR TNR

Person 99.5 99.8 99.1 0.8 0.2 99.7
Panthera pardus 67.9 55.7 86.8 13.1 7.7 92.2

Potamochoerus larvatus 49.6 81.4 35.7 64.3 0.4 99.5
Sylvicapra grimmia N/A 0 0 100 4.4 95.5

Philantomba monticola 0.5 0.3 1.1 98.8 5.6 94.3
Cercopithecus ascanius N/A 0 0 100 1.7 98.2

Genetta tigrina 73.7 85.8 64.6 35.3 0.1 99.8
Pan troglodytes
schweinfurthii 80.1 76.9 83.6 16.3 1.5 98.4

Papio Cynocephalus 76.4 76.4 76.4 23.5 1.9 98.0
Hystrix cristata 90.2 85.2 95.9 4.0 0.5 99.4

Tragelaphus sylvaticus N/A 0 0 100 0.8 99.1
Crocuta crocuta N/A 0 0 100 3.2 96.7

All numbers are represented as percentages (%). Abbreviations include the following: N/A = not applicable,
FNR = false-negative rate, FPR = false-positive rate, and TNR = true-negative rate. The F1 score is the mean
between precision and recall; precision is the positive predictive value for determining the correct class and recall
is how frequently the ML model recalls the correct class (also known as the true-positive rate).
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