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ABSTRACT
End-to-end scene text spotting has recently gained great attention
in the research community. The majority of existing methods rely
heavily on the location annotations of text instances (e.g., word-
level boxes, word-level masks, and char-level boxes). We demon-
strate that scene text spotting can be accomplished solely via text
transcription, significantly reducing the need for costly location
annotations. We propose a query-based paradigm to learn implicit
location features via the interaction of text queries and image em-
beddings. These features are then made explicit during the text
recognition stage via an attention activation map. Due to the dif-
ficulty of training the weakly-supervised model from scratch, we
address the issue of model convergence via a circular curriculum
learning strategy. Additionally, we propose a coarse-to-fine cross-
attention localization mechanism for more precisely locating text
instances. Notably, we provide a solution for text spotting via audio
annotation, which further reduces the time required for annota-
tion. Moreover, it establishes a link between audio, text, and image
modalities in scene text spotting. Using only transcription anno-
tations as supervision on both real and synthetic data, we achieve
competitive results on several popular scene text benchmarks. The
proposed method offers a reasonable trade-off between model ac-
curacy and annotation time, allowing simplification of large-scale
text spotting applications.

CCS CONCEPTS
•Applied computing→ Optical character recognition; • Com-
putingmethodologies→ Scene understanding; •Human-centered
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Figure 1: Different annotation styles for text spotting. The
blue point and lines are the position annotation for the text.
The transcription annotation “Hills” is displayed in the top
left corner of each image.

1 INTRODUCTION
For a long time, scene text spotting has been an active research
field due to its broad practical applications, e.g., text translation
in images, text information extraction from videos and images for
multi-modal content understanding, and subtitle recognition in
TV shows and music videos. The focus of research in the Optical
Character Recognition (OCR) community has recently moved on
from horizontal and multi-oriented text to arbitrary-shaped text,
as well as from annotation formats based on horizontal rectangles
and quadrilaterals to polygons (see Fig. 1).

Classical arbitrary-shaped text spotting approaches [22, 26, 52]
in the deep learning era leap forward toward a unified end-to-end
architecture by sharing a convolutional feature backbone and em-
ploying a feature cropping mechanism to extract the relevant area
of interest for the recognition branch. These architectures have
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achieved noticeable improvements in scene text spotting, particu-
larly for arbitrarily-shaped text. Apart from themutual optimization
of the backbone, text detection and recognition are distinct tasks
that require transcription annotations for recognition, as well as
polygon or bounding box annotations for detection, as shown in
Fig. 1(a-d). Relying heavily on the text location as the supervision
information to train the network is costly and consumes a large
amount of annotation manpower and resources. More sophisti-
cated methods have recently been proposed to directly locate and
classify characters in text [2, 32, 49]. Although, those require ad-
ditional character-level annotations and thus higher annotation
costs, as shown in Fig. 1(c). Time-consuming character-level or
word-level text annotation leads to difficulties in the study of super
large-scale text spotting on real data. Since the location annotation
of text is expensive, some work started investigating how to alle-
viate the reliance on text annotation. An example is SPTS [31]’s
proposal for single-point annotation, which uses a single point to
represent the text position. It is a promising and leading attempt,
but there is still room for improvement. As illustrated in Fig. 2, a
large proportion of the annotation time is spent on labelling the
detection-related ground truth. The transcription annotation alone
requires less than half the time compared to the commonly used
polygon annotation style. Compared to the single-point annotation
style, the transcription-only annotation style reduces annotation
time by 25%. The audio annotation style requires minimal time, i.e.,
55% less than the single-point annotation.

Transformers have shown great potential formany vision tasks [4,
23, 24, 38, 40, 47]. In the field of image captioning, it is possible to
automatically learn which caption corresponds to which portion of
an image, only with the supervision of a text description. Inspired
by the rapid development of weakly-supervised image caption-
ing [6, 9], we figure out that it is sufficient to identify text instances
and approximate their location by visual attention without the su-
pervision of text position information. Here, we rethink scene text
spotting as an image captioning problem, i.e., reading the textual
content of a rough text region of interest directly, without text loca-
tion supervision. Specifically, our Transcription-only-Supervised
Text Spotter (TOSS) approach consists of a backbone for feature
extraction, an interaction module between text queries and im-
age features for learning implicit features of text location, and a
coarse-to-fine cross attention localizationmechanism for improving
text localization accuracy. Additionally, we propose an audio-based
method for annotating scene text that increases annotation speed
and does not require the use of hands, enabling people with hand
disabilities to work on scene text annotation. It can be achieved
by simply converting audio annotation to text annotation using an
Automatic Speech Recognition (ASR) model and then applying it
in conjunction with our proposed TOSS model.

The main contributions of this work are summarized as follows:

• We introduce an effective paradigm based on the interaction
of text queries and image embeddings for scene text spotting,
requiring only text transcription annotations to be trained
from scratch on both synthetic and real data. To our knowl-
edge, it is the first successful attempt without any location
information as supervision.
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Figure 2: The effect of annotation styles on labelling time.
The X-axis represents the different annotation styles, while
the Y-axis represents the average annotation time they con-
sume. The annotation time is experimentally derived from
the average time spent on ICDAR2013 dataset by ten annota-
tors. Audio annotation styles consume the least time.

• To train such a weakly-supervised model, we propose a cir-
cular curriculum learning strategy for fast convergence.

• Wepropose a coarse-to-fine cross-attention localizationmech-
anism to obtain approximate locations of text instances in
the absence of text location annotation.

• An audio annotation solution for text spotting is offered,
which reduces annotation time by 40% with only about a
1.0% loss of accuracy compared to transcription annotation.

2 RELATEDWORK
2.1 Fully-Supervised Text Spotting
Many early studies of scene text spotting followed the mainstream
generic object detection approaches using a two-stage framework.
They build a detector to locate text and then extract the region of
interest (RoI) features for text recognition and location refinement.
For example, Li et al. [20] proposed an end-to-end text spotting
framework that includes a CNN-based detector and an RNN-based
recognition branch. The method applies RoI pooling to crop text
regions and then recognizes them by a sequence-to-sequence head.
However, this method is only capable of horizontal text spotting. To
accommodate multi-oriented instances, He et al. [13] proposed an
extended RoIAlign method to extract quadrilateral region features
of arbitrary orientation, while Sun et al. [39] introduced a perspec-
tive RoI transform layer, which can align quadrangle proposals into
small feature maps. Liu et al. [25] proposed the RoIRotate module
to obtain axis-aligned feature maps, which works well for straight
text but fails when dealing with curved text.

Recently, methods that can handle curved text have attracted
much academic attention. Liao et al. [22] proposed Mask TextSpot-
ter, which performs character-level semantic segmentation for text
recognition. The method can detect text of arbitrary shapes. How-
ever, it requires character location for training, which leads to a high
annotation cost. Another option, in addition to methods based on
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Figure 3: Overview of the proposed TOSS model architecture. The visual and contextual embeddings are first extracted by a
backbone network. The embeddings are then decoded to focus on the relevant text regions using a query-based cross attention
module. Next, the refine-stage text query, the mask generated by the attention activation map, and image embeddings are
decoded together to obtain a refined text position.

segmentation networks, is to parameterize the text polygons. One
of the representative works, ABCNet [26], fits arbitrarily-shaped
text with a parameterized Bezier curve. However, in order to gen-
erate annotations, not only the polygons but also the distinction
between the upper and lower edges of the text need to be annotated.

High annotation cost limits the prospect of scene text spotting.
Our proposed TOSS adaptively learns text representations with
the help of an attention mechanism and can roughly locate text
with only transcription annotation, which significantly reduces the
annotation cost.

2.2 Weakly-Supervised Text Spotting
Currently, weakly-supervised text spotting has not been extensively
studied, with most research focusing on text detection tasks. Wu et
al. [48] simplified text polygons into line segments and proposed
a text detection method based on a fully supervised pre-trained
semantic segmentation network. Tian et al. [41] used a pre-trained
character detector to generate annotations for the training of the
final model. Qin et al. [35] proposed a weakly-supervised curved
text detection framework, which uses a large number of pseudo
mask annotations generated by a pre-trained text detector. The
aforementioned methods reduce the cost of annotation for text
detection tasks to a certain extent, but still rely on a pre-trained
model obtained by fully supervised training. In contrast to this,
Rong et al. [36] used a class activation map to approximate text
localization. The method only needs to annotate whether the image
contains text or not, but it does not achieve satisfactory results.

In terms of weakly-supervised text spotting, there are few works
in the published literature. However, some intriguing work can
be found on arXiv. For instance, SPTS [31] demonstrated the high
data annotation cost of fully-supervised methods and proposed
a single point representation of text location. Xue et al. [50] pro-
posed a weakly supervised pre-training approach for text spotting.
They employ a contrastive learning-based approach to assist image

encoders in perceiving text, but lack the ability to perform end-to-
end text spotting. Kittenplon et al. [17] proposed an end-to-end
method for weakly-supervised text spotting based on the modified
DETR [5]. They train the model in a fully supervised manner on
synthetic data and then fine-tune it in a weakly supervised man-
ner on real data (i.e., not a completely weakly-supervised method).
Thus, we propose a fully transcription-based supervised approach,
both on synthetic data and real data.

3 METHODOLOGY
The overall architecture consists of a hybrid encoder-decoder, fol-
lowed by a recognition branch and a classification branch. There are
two critical components in this framework, which we will describe
in detail below: a query-based attention module for generating
text embeddings; and a coarse-to-fine cross-attention localization
module based on the query-based attention module for improving
the accuracy of text localization. In the training phase, the recogni-
tion branch generates text sequences, and a text-based Hungarian
Matching algorithm is employed to match the prediction results
with the ground truth in order to minimize the overall loss. Sub-
sequently, the “text” or “non-text” label is assigned to each query
according to the matching results. The entire training process fol-
lows a circular curriculum learning strategy. Lastly, we present how
to use audio annotation to supervise text spotting.

3.1 Query-based Cross Attention
The Query-based Cross Attention module follows the standard
transformer decoder block [42], consisting of stacked multiple lay-
ers of self-attention and cross-attention modules. Starting from
the randomly initialized text queries 𝑄 ∈ R𝑁𝑞×𝑑 , the self-attention
module generates𝑁𝑞 query-based embeddingsℎ of size𝑑 , where𝑁𝑞

and 𝑑 denote the number of queries and the representation dimen-
sionality, respectively. Next, the cross attention module decodes
these embeddings in parallel. Specifically, the input of this module
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consists of ℎ and the image embeddings 𝑓 ∈ R𝐿×𝑑 generated by
the backbone, where 𝐿 denotes the length of the flattened feature
map. Using the cross attention mechanism between the ℎ and 𝑓 ,
the model can extract the corresponding local features of each text
instance from the global image embedding. These local features
are then fed into a classification branch and a recognition branch
for classification and recognition, respectively. During model opti-
mization, the text queries gradually learn to perceive the area of
interest, i.e., where the text is located.

3.2 Coarse-to-Fine Cross Attention Localization
Mechanism

The Coarse-to-Fine Cross Attention Localization Mechanism con-
sists of a two-stage decoder that achieves coarse-to-fine text localiza-
tion. The first stage utilizes the query-based cross attention module
mentioned in Sec. 3.1 for text localization and performs filtering of
irrelevant features. The second stage utilizes a parameter-sharing
text query to filter irrelevant text areas further and fine-tune the
text regions. Specifically, by using the query-based cross attention
module, we can compute the attention activation map as follows:

𝐴𝐴𝑀 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑊𝑞 (𝑄 + ℎ)𝑊𝑘 (𝑓 )𝑇√

𝑑
), (1)

where 𝑄 ∈ R𝑁𝑞×𝑑 denotes the learnable coarse text queries, ℎ ∈
R𝑁𝑞×𝑑 denotes the query-based embeddings generated by the pre-
vious module (initialized from 0) and 𝑓 ∈ R𝐿×𝑑 denotes the image
embeddings generated by the backbone. Equation 1 calculates the
correlation between the coarse text queries and the image embed-
dings. By analyzing the attention activation map, we can acquire
where the text query is capturing the feature and thus the text lo-
cation, as illustrated in Fig. 3. According to the attention activation
map, irrelevant tokens are filtered out of image embeddings for
each query before proceeding to the second stage. By passing the
relevant tokens through the cross-attention mechanism once, a
rough text region can be formed.

Next, the filtered tokens are fed into the mask transformer de-
coder. Thismodule is trained to learn a refined text query𝑄𝑟 ∈ R1×𝑑
to apply query-based cross attention to obtain a more precise region
of interest:

𝑅𝑒 𝑓 𝑖𝑛𝑒𝑑𝑀𝑎𝑝 =

(
𝑀1, 𝑀2 . . . , 𝑀𝑁𝑞

)
, (2)

where𝑀𝑖 denotes the refined attention map of the 𝑖th coarse text
query, as shown in Equation 3,

𝑀𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑊𝑞 (𝑄𝑟 + ℎ𝑖 )𝑊𝑘 (𝑓𝑖 )𝑇√

𝑑
), (3)

where 𝑓𝑖 denotes the filtered tokens generated by the 𝑖th coarse
text query. In contrast to the first stage text queries, the second
stage text query does not require the extraction of local text-related
features from global features. Instead, it is used to refine the text
region by further filtering text-independent information.

3.3 Text-based Hungarian Matching Loss
The Text-based Hungarian Matching loss implicitly supervises the
text localization by matching predicted text to the corresponding
ground truth, enabling transcription-only supervision. Specifically,
the Text-based Hungarian Matching loss consists of two compo-
nents: the loss of the text recognition branch, which is based on
the Hungarian algorithm, and the loss of the classification branch,
which is based on the text matching results.

The loss for text recognition starts from the text embeddings
𝑥 ∈ R𝑁𝑞×𝑑 generated by the decoder block, where 𝑥 is decoded
by the recognition branch as 𝑁𝑞 text sequences. The Hungarian
algorithm [18] is employed to find a one-to-one matching function
𝜎 between the text annotation and predicted text sequences:

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛
b ∈𝑁𝑔𝑡

𝑁𝑞∑︁
𝑖=1

𝐻 (𝑡𝑖 , 𝑡𝜎 (𝑖) ), (4)

where 𝐻 denotes the criteria used to perform the matching, 𝑡 de-
notes the text annotation, 𝑡 denotes the predicted text sequences,
𝑁𝑞 denotes the number of predictions or object queries, and 𝑁𝑔𝑡

denotes the number of the text annotations. The text recognition
𝐿𝑡𝑒𝑥𝑡 (𝑡, 𝑡) loss is formulated based on the matching function �̂� :

𝐿𝑡𝑒𝑥𝑡 (𝑡, 𝑡) =
𝑁∑︁
𝑖=1

𝐿(𝑡𝑖 , 𝑡𝜎 (𝑖) ). (5)

The loss of the classification branch is calculated based on the
results of text matching. As mentioned before, the matching process
is done by the Hungarian algorithm. If there is matching ground
truth for the predicted text, we assign a “text” label to the corre-
sponding prediction, otherwise, a “non-text” label is assigned. Then,
the loss of the classification branch is calculated from the assigned
labels:

L𝑐𝑙𝑠 (𝑝𝑖 , 𝑡𝜎 (𝑖) ) =
{
−𝛼 log𝑝𝑖 if 𝑡𝜎 (𝑖) ≠ ∅
−(1 − 𝛼) log(1 − 𝑝𝑖 ) otherwise,

(6)

where 𝑝𝑖 denotes the confidence scores generated by the classi-
fication branch, and 𝛼 denotes class weights for addressing class
imbalance.

3.4 Circular Curriculum Learning Strategy
For the tasks with transcription-only supervision, training from
scratch with complex data could cause model convergence issues.
We design a circular curriculum learning paradigm in which the
model is trained in three stages: easy, semi-hard, and hard, with
gradually increasing data complexity, followed by multiple rounds
of circular training.

During the easy stage of training, the model is fed with simple
data to help it learn simple scenes quickly. Easy samples are those
that contain legible text in a straightforward context, as shown
in Fig. 4 (Easy). During the semi-hard stage of training, as the
model can already perceive the approximate text area and identify
simple text, the model can progress to more difficult samples. Semi-
hard samples are those synthesized on complex backgrounds, as
shown in Fig. 4 (Semi-hard). Due to the limited number of fixed
backgrounds, some learning difficulties are alleviated. During the
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Figure 4: Illustration of circular curriculum learning strategy.
“Easy”, “Semi-hard”, and “Hard” denote the training datasets
of different difficulty levels.

hard stage of training, we use scene text in the wild for training, as
shown in Fig. 4 (Hard). The model gradually acquires the ability to
transfer knowledge from the first two stages to real-world scenes,
completing transcription-only-supervised text spotting.

In addition, we incorporate a circular mechanism that is distinct
from the original curriculum learning strategy [21]. Many studies
have demonstrated that deep learning algorithms are susceptible to
catastrophic forgetting [11, 19, 37]: when the network acquires new
knowledge, it may forget what it previously learned. Therefore, we
extend the curriculum learning framework and propose a circular
curriculum learning strategy. As illustrated in Fig. 4, the model is
trained cyclically on data of varying difficulty, which accelerates
convergence and improves generalizability.

3.5 Audio Annotation
Apart from text annotation, we provide a solution to annotate text
with voice. Audio annotation is more convenient than text anno-
tation, which frees up one’s hands and accelerates the annotation
process. In practice, as shown in Fig. 5, we use an ASR model [1, 3]
to convert annotations from audio modal to text modal. Two forms
of annotation are available: character-by-character and word-by-
word. Both of these forms are accomplished through a long pause
or a specific word to create a division of words. Clearly, the former
is more accurate, as individual characters’ pronunciations are more
easily recognized. While annotating word-by-word is faster and
easier, recognizing the pronunciations of words is more likely to be
influenced by the annotator’s pronunciation, making recognition
more difficult for the ASR model.

3.6 Inference
We use the intermediate results of cross attention to generate text
location. The text content is decoded by the recognition branch,
and the corresponding confidence score for each text is obtained by
the classification branch. Specifically, the processes of inference are

as follows: first, the hybrid-backbone generates a lower-resolution
feature map of the initial image. The feature map is flattened as a
sequence and then fed into the transformer decoder. By performing
the query-based cross attention, we can obtain a coarse text region
for each query. Based on those regions, the useless tokens are
filtered, and the remaining ones are fed into the mask transformer
decoder for further refinement. Finally, we locate the text using
the method described in Section 3.2. Simultaneously, this module
generates embeddings for each text region, which are then fed into
the recognition and classification branches for the final prediction.

4 EXPERIMENTS
4.1 Datasets
Extensive experiments are conducted on several popular bench-
marks, i.e., ICDAR-2013 [16], ICDAR-2015 [15], Total-Text [7], and
SCUT-CTW1500 [51], to demonstrate the effectiveness of ourmethod.
Following ABCNet [26], SynthText 150k [26], COCO-Text [43], and
ICDAR-MLT 2019 [30] are invovled in training. A detailed descrip-
tion of the datasets can be found in the supplementary material.

4.2 Evaluation Protocol
Polygon Metric. Due to the reliance on text transcription for
training and the absence of location information, our model can
only provide approximate positions. For polygon-based evaluation,
we follow the same evaluation metric as Mango [32], using an IoU
threshold of 0.1 for a successful match. Many previous algorithms
under this metric would exhibit lower precision.
Single-pointMetric. SPTS [31] encounters a similar issue in which
it is unable to generate precise text bounding boxes and proposes an
evaluation metric based on single-point positions, which we adopt
for single-point evaluation. In practice, our method produces the
center of gravity of each text instance. The formula for the center
of gravity is given by the equation:

𝑋 =

∑
𝑖∈A𝑤𝑖𝑋𝑖∑
𝑖∈A𝑤𝑖

, (7)

where A denotes the positive area of the mask, 𝑤𝑖 denotes the
confidence score of each token, and 𝑋 denotes the centre of gravity.
The matching method is identical to that proposed in SPTS, and it
contributes to accuracy only when the predicted text is identical to
the text annotation.

4.3 Implementation Details
Network Architecture. The network described in this paper con-
sists of a backbone, a two-stage decoder, a recognition branch, a
classification branch, and two sets of text queries. Resnet50 [12],
followed by two DCN [8] blocks, is used as the backbone. The
query-based decoder section is divided into two stages, from coarse
to fine. The first stage of the decoder consists of 4 layers of stacked
8-head transformers, while the second stage consists of 2 layers
with 8 heads. The first stage contains 80 text queries, and the second
stage shares one query. All the queries are randomly initialized and
then optimized during training. The recognition branch consists
of a 2-layer Bi-LSTM [14] and produces 512-dimensional features
for text decoding. The classification branch employs an MLP layer
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Figure 5: Illustration of the workflow for audio annotation. We provide two types of annotations for English, word-by-word
pronunciation and character-by-character pronunciation, respectively. Audio annotation can only handle case-insensitive text
spotting tasks.

Figure 6: Qualitative results. Images are selected from ICDAR 2013 (first col.), SCUT-CTW1500 (second col.), Total-Text (third
col.), and ICDAR 2015 (fourth col.). The first row contains visualizations of single-point, while the second row contains
visualizations of masks. As shown in the figure, our method is robust against various text types, including long text, large text,
small text, curved text, perspective text, and fuzzy text.

directly for binary classification to distinguish whether it is text or
not.
Training details. All experiments are implemented with 32x40 GB
Tesla-A40 GPUs. Following ABCNet [26], the training data is col-
lected from publicly available English datasets, including SynthText-
150k [26], 15k images filtered from the original COCO-Text [43],
and 7k MLT19 data [30]. First, the data is divided into three parts:
easy, semi-hard, and hard. Easy represents 10k simple data, filtered
from SynthText-150k, semi-hard represents the remaining 140k,
and hard represents all the real data. The training procedure is then
performed according to the strategy described in Sec. 3.3, which
involves training ten epochs each on the easy, semi-hard, and hard
datasets as a single cycle, for a total of ten cycles. In the training
phase, the short side of the input images is randomly resized from
672 to 1280. Random contrast, brightness, and rotating are employed
for data augmentation. We utilize AdamW [28] as the optimizer,
with an initial learning rate of 1𝑒−4 and a decaying learning rate
of 1𝑒−5 after the 8th cycle. The batch size on each GPU is set to 4,
resulting in a total batch size of 128. The entire training process
lasts 4 days.

Inference details. In the inference phase, the short side of the
images is set to 768, 1280, 960, and 960 on ICDAR-2013, ICDAR-
2015, Total-Text, and SCUT-CTW-1500, respectively, while keeping
the long side shorter than 2048 pixels. The inference FPS is 5.06,
2.31, 6.30, and 7.90 on ICDAR-2013, ICDAR-2015, Total-Text, and
SCUT-CTW-1500, respectively. Furthermore, in order to preserve
as many positive text features as possible in the first stage of the
coarse-to-fine cross-attention module, we set the threshold of the
attention activation map to 0.1.

4.4 Ablation Study
Number of the coarse-to-fine cross attention localization
mechanism. To explore the effect of the number of refinement
stages in the coarse-to-fine cross attention localization mechanism
on the model’s accuracy, we conduct experiments to compare the
number of refinement stages from 0 to 2. As illustrated in Tab. 1,
omitting the refinement stage results in a significant loss of accu-
racy (65.1 vs 58.5). When the refinement stage is employed twice,
the improvement in accuracy is not remarkable (65.1 vs 66.3). Con-
sidering the memory and speed of the model, we choose to employ
the refinement stage once.
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Ablation Study on Circular Curriculum Learning strategy. To
demonstrate the effectiveness of the proposed Circular Curriculum
Learning strategy (CCL), we compare three different training strate-
gies for our TOSS model: the commonly used pretrain-finetune (PF),
curriculum learning (CL), and ours, respectively. For PF, we simply
pretrain on SynthText-150k and then finetune on Total-Text. For
CL, we first train on simple data (10k filtered from SynthText-150k),
followed by semi-hard data (the remaining 140k SynthText-150k
data), and finally hard data (Total-Text), in an acyclic manner. For
CCL, we follow the training process described in Sec. 4.2. As shown
in Tab. 2, our proposed CCL strategy outperforms PF and CL in
terms of accuracy while maintaining a significantly higher rate of
convergence (3 times more than PF and 1.5 times more than CL).

4.5 Experiment Results on Scene Text
Benchmarks

Horizontal text. Tab. 3 compares the performance of the pro-
posed TOSS with state-of-the-art methods on ICDAR-2013. It’s
worth noting that our method is trained without using any loca-
tion information, whereas SPTS uses single-point positions and the
other methods use more expensive bounding boxes. In terms of
the polygon-based evaluation metric, the weakly-supervised TOSS
gives competitive results compared to the fully-supervised state-of-
the-art methods, with a slight loss of accuracy. In comparison to
SPTS, the proposed method achieves comparable results with all
three lexicons, e.g., 82.2 vs. 82.9 with “Generic” lexicon.
Multi-oriented text.The quantitative results of ICDAR-2015 dataset
are shown in Tab. 4. There is a performance gap between the pro-
posed method and fully-supervised methods. Specifically, since
almost all text instances are small, it is difficult to locate small text
by text queries alone without location supervision. In addition,

Number of Total-Text End-to-End
Coarse-to-Fine Attention None Full

0 58.5 67.4
1 65.1 74.8
2 66.3 75.2

Table 1: End-to-end recognition results on Total-Text w.r.t
number of times of coarse-to-fine cross attention localization
mechanism. “None” denotes lexicon-free. “Full” denotes that
we use all the words appearing in the test set. All the results
are obtained under the single-point metric.

Training Strategy Total-Text End-to-End Convergence
None Full Epochs

PF 60.3 68.5 300
CL 64.4 73.6 150
CCL 65.1 74.8 100

Table 2: End-to-end recognition results on Total-Text w.r.t.
training strategy. “PF”, “CL”, and “CCL” denote pretrain-
finetune, curriculum learning, and circular curriculum learn-
ing, respectively. All the results are obtained under the single-
point metric.

many text instances are ambiguous and arranged in more varied
directions. All of these bring major challenges to weakly-supervised
methods. Compared to SPTS, our method performs slightly bet-
ter with “Strong” and “Weak” lexicons, which demonstrates the
potential of our approach for small text.
Arbitrary-shaped text. Experiments are conducted on Total-Text
and SCUT-CTW-1500 to demonstrate the robustness of our method
in spotting arbitrary-shaped text. As shown in Tab. 5, the proposed
method achieves comparable results to SPTS, demonstrating our
method’s effectiveness for curved text. Additionally, the gap be-
tween TOSS and fully-supervised methods is still visible, and the
proposed method’s limitation is its inability to locate text accurately.
Similar conclusions can be drawn from Tab. 6 on SCUT-CTW1500.

In summary, our transcription-only-supervised approach(TOSS)
offers an excellent trade-off between annotation time and recogni-
tion accuracy. It can produce a single point of text or a polygon of
text as a result. On all four benchmarks, TOSS achieves comparable

Method IC13 End-to-End
S W G

Fully-supervised methods
FOTS [25] 88.8 87.1 80.8

TextNet [39] 89.8 88.9 83.0
Mask TextSpotter [29] 93.3 91.3 88.2

Boundary [44] 88.2 87.7 84.1
Text Perceptron [33] 91.4 90.7 85.8

Point-based methods
SPTS (Single-Point) [31] 87.6 85.6 82.9

Transcription-only methods
TOSS (Single-Point) (Ours) 86.4 85.1 82.2

TOSS (Polygon) (Ours) 77.7 76.8 73.3
Table 3: End-to-end recognition results on ICDAR 2013. “S”,
“W”, and “G” denote recognition with “Strong”, “Weak”, and
“Generic” lexicon, respectively. “Single Point” and “Polygon”
denote the two metrics mentioned in Sec. 4.1.

Method IC15 End-to-End
S W G

Fully-Supervised methods
FOTS [25] 81.1 75.9 60.8

Mask TextSpotter [29] 83.0 77.7 73.5
CharNet [49] 83.1 79.2 69.1

TextDragon [10] 82.5 78.3 65.2
Mask TextSpotter v3 [22] 83.3 78.1 74.2

MANGO [32] 81.8 78.9 67.3
ABCNetV2 [27] 82.7 78.5 73.0

PAN++ [46] 82.7 78.2 69.2
Point-based methods

SPTS (Single-Point) [31] 64.6 58.8 54.9
Transcription-only methods

TOSS (Single-Point) (Ours) 65.9 59.6 52.4
TOSS (Polygon) (Ours) 60.2 54.5 47.1

Table 4: End-to-end recognition results on ICDAR 2015.
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results to SPTS in the absence of single-point supervision of text.
The proposed method even outperforms several fully-supervised al-
gorithms with bounding boxes, indicating the superior text spotting
performance of our method. On the polygon metric, the proposed
method still falls short of the fully-supervised algorithm, highlight-
ing the method’s limitations in that it can only approximate text
position. Numerous factors contribute to our method’s exceptional
performance when supervised exclusively by text: (1) Text queries
can extract local features associated with text instances from the
global image using a cross attention mechanism. Local features
eliminate the interference of redundant backgrounds, ensuring text
recognition performance. (2) The proposed method employs a text-
based Hungarian Matching algorithm to supervise the position
of text queries in an implicit manner, compensating for the ab-
sence of text position annotations. Further, the circular curriculum
learning strategy enables the model to rapidly converge on such a
difficult task. (3) The coarse-to-fine two-stage attention mechanism
improves the accuracy of text location by acting as a refinement

Method Total-Text End-to-End
None Full

Fully-Supervised methods
CharNet [49] 66.2 -
ABCNet [26] 64.2 75.7
PGNet [45] 63.1 -

Mask TextSpotter [29] 65.3 77.4
Qin et al [34] 67.8 -

Mask TextSpotter v3 [22] 71.2 78.4
MANGO [32] 72.9 83.6
PAN++ [46] 68.6 78.6

ABCNet v2 [27] 70.4 78.1
Point-based methods

SPTS (Single-Point) [31] 67.9 74.1
Transcription-only methods

TOSS (Single-Point) (Ours) 65.1 74.8
TOSS (Polygon) (Ours) 61.5 73.0

Table 5: End-to-end recognition results on Total-Text. “None”
denotes lexicon-free. “Full” denotes that we use all the words
appearing in the test set.

Method SCUT-CTW1500 End-to-End
None Full

Fully-Supervised methods
TextDragon [10] 39.7 72.4

ABCNet [26] 45.2 74.1
MANGO [32] 58.9 78.7

ABCNet v2 [27] 57.5 77.2
Point-based methods

SPTS (Single-Point) [31] 56.3 67.2
Transcription-only methods

TOSS (Single-Point) (Ours) 54.2 65.3
TOSS (Polygon) (Ours) 51.4 61.7

Table 6: End-to-end recognition results on SCUT-CTW1500.

for coarse masks. Thus, we can obtain text masks, but they are still
inferior to state-of-the-art fully-supervised methods.

4.6 Experiments on Audio Annotation
To verify the feasibility of using audio to annotate scene text, we
conduct experiments on Total-Text. First, since there is no ready-
made audio annotation on Total-Text, we use a TTS (Text To Speech)
model in DeepSpeech [1] to convert the original text annotation
to audio annotation. Then, an ASR model [1] is used to convert
audio to text according to Fig. 5. The converted text transcription
annotations are utilized for training our TOSS model. Finally, the
model trained using the audio-converted annotations is applied
for inference to validate the performance. As shown in Tab. 7, text
spotting with word-by-word audio annotation performs slightly
worse on Total-Text (64.3 vs. 65.1), owing to a decrease in the anno-
tation accuracy during the audio-to-text conversion process. The
character-by-character annotation has no significant loss of ac-
curacy but is slower than the word-by-word annotation. Overall,
audio annotation achieves a favourable trade-off between annota-
tion time and model accuracy, saving 40% of annotation time while
maintaining model accuracy within a 1% loss.

Annotation Style Total-Text End-to-End
None Full

Text Transcription 65.1 74.8
Audio (Word) 64.3 73.9

Audio (Character) 64.9 74.5
Table 7: End-to-end recognition results w.r.t annotation styles
on Total-Text. “Word” and “Character” denote word-by-word
and character-by-character pronunciation, respectively.

5 CONCLUSION
In this paper, we present a scene text spotting framework, termed
TOSS, that can be trained in a transcription-only supervisedmanner.
By using the interaction between text queries and image embed-
dings to learn a joint representation of recognition and detection
tasks, we can forego the expensive annotations required by other
approaches and achieve a reasonable trade-off between model accu-
racy and annotation time. To enable training from scratchwithweak
supervision, a circular curriculum learning method is proposed that
enables the model to converge rapidly. In addition, to mitigate
the inaccuracy of weakly-supervised localization, we propose a
coarse-to-fine cross-attention mechanism to locate text instances
and attempt to obtain coarse text masks. Remarkably, we provide
a solution for annotating scene text with voice, which requires
minimal annotation time and builds a bridge between the three
modes of speech, text, and image in text spotting. In comparison
to fully-supervised approaches, our approach achieves competitive
results on several benchmarks with minimal supervision. Without
the need for costly text location annotations, we believe there is a
good opportunity to build a much larger dataset that will advance
the state of the art in text spotting. We hope this work will lead
to new research directions in scene text spotting and provide new
insights into what annotations are truly necessary for this task.
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