
2QAN: A quantum compiler for 2-local qubit Hamiltonian
simulation algorithms

Lingling Lao∗
Department of Physics and Astronomy, University College

London
London, United Kingdom

Dan E. Browne
Department of Physics and Astronomy, University College

London
London, United Kingdom

ABSTRACT
Simulating quantum systems is one of the most important potential
applications of quantum computers. The high-level circuit defining
the simulation needs to be compiled into one that complies with
hardware limitations such as qubit architecture (connectivity) and
instruction (gate) set. General-purpose quantum compilers work
at the gate level and have little knowledge of the mathematical
properties of quantum applications, missing further optimization
opportunities. Existing application-specific compilers only apply
advanced optimizations in the scheduling procedure and are re-
stricted to the CNOT or CZ gate set. In this work, we develop a
compiler, named 2QAN, to optimize quantum circuits for 2-local
qubit Hamiltonian simulation problems, a framework which in-
cludes the important quantum approximate optimization algorithm
(QAOA). In particular, we exploit the flexibility of permuting differ-
ent operators in theHamiltonian (nomatter whether they commute)
and propose permutation-aware techniques for qubit routing, gate
optimization and scheduling to minimize compilation overhead.
2QAN can target different architectures and different instruction
sets. Compilation results on four applications (up to 50 qubits) and
three quantum computers (namely, Google Sycamore, IBMQ Mon-
treal and Rigetti Aspen) show that 2QAN outperforms state-of-the-
art general-purpose compilers and application-specific compilers.
Specifically, 2QAN can reduce the number of inserted SWAP gates
by 11.5X, reduce overhead in hardware gate count by 68.5X, and
reduce overhead in circuit depth by 21X. Experimental results on
the Montreal device demonstrate that benchmarks compiled by
2QAN achieve the highest fidelity.

CCS CONCEPTS
• Hardware → Quantum computation; • Software and its
engineering→ Compilers.

KEYWORDS
Quantum computing, quantum simulation, quantum compilation

∗Corresponding author: laolinglingrolls@gmail.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8610-4/22/06. . . $15.00
https://doi.org/10.1145/3470496.3527394

ACM Reference Format:
Lingling Lao and Dan E. Browne. 2022. 2QAN: A quantum compiler for
2-local qubit Hamiltonian simulation algorithms . In The 49th Annual Inter-
national Symposium on Computer Architecture (ISCA ’22), June 18–22, 2022,
New York, NY, USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3470496.3527394

1 INTRODUCTION
Near-term quantum computers have a small number of qubits (tens
to thousands) and non-negligible gate errors, making it impracti-
cal to implement conventional quantum algorithms such as Shor’s
factoring algorithm [1] which requires millions of qubits for a fault-
tolerant implementation [2]. Quantum simulation (or Hamiltonian
simulation) as first proposed by Richard Feynman [3] may require
fewer qubits and be one of the first practical applications of quan-
tum computers. Quantum simulation has broad applications in
understanding the behaviour of physical systems in areas such as
condensed-matter physics [4], high-energy physics [5], cosmology
[6], quantum chemistry [7], and quantum field theory [8] and has
been demonstrated in different quantum technologies [9, 10] (see
[11] for a detailed review). Additionally, quantum simulation has
been used to design new algorithms for solving linear systems [12],
semidefinite programs [13], quantum walks [14], etc. Its main chal-
lenge is to find an efficient circuit that asymptotically approximates
the time evolution of a Hamiltonian. The product formula approach
has a straightforward implementation [15–17] and good perfor-
mance in practice [18, 19]. Given a Hamiltonian that is decomposed
as a sum of Hermitian terms (𝐻 =

∑𝐿
𝑗=1 ℎ 𝑗𝐻 𝑗), the product formula

approximates the exponential of this Hamiltonian as a product
of exponentials of individual terms and each exponential can be
efficiently realized by a quantum circuit.

This high-level circuit representation is typically hardware ag-
nostic and needs to be decomposed into the instruction set sup-
ported by the underlying quantum hardware. In noisy intermediate-
scale quantum (NISQ) computers [20], the universal instruction set
is normally composed of arbitrary single-qubit rotations plus one
or a few two-qubit gates (e.g., the SYC, CNOT, iSWAP gates from
Google, IBM, Rigetti respectively in Figure 1). Furthermore, these
quantum computers only allow two-qubit gates between specific
qubit pairs, i.e., there is limited qubit connectivity. Compilation
techniques are required to map circuit qubits onto hardware qubits
and insert SWAP gates to move qubits into neighbouring positions,
increasing circuit size in terms of gate count and circuit depth.
Two-qubit gates have much higher error rates than single-qubit
rotations and qubits have short coherence time [21]. Therefore, it is
critical to minimize compilation overhead for high-fidelity circuit
implementation.

https://doi.org/10.1145/3470496.3527394
https://doi.org/10.1145/3470496.3527394
https://doi.org/10.1145/3470496.3527394

ISCA ’22, June 18–22, 2022, New York, NY, USA Lingling Lao and Dan E. Browne

SYC =

1 0 0 0

0 1/
√
2 −i/

√
2 0

0 −i/
√
2 1/

√
2 0

0 0 0 e−iπ/6

(a) Google Sycamore (54 qubits) [21]

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

(b) IBM Montreal (27 qubits) [22]

iSWAP =

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

(c) Rigetti Aspen (16 qubits) [23]

Figure 1: Device topologies and hardware two-qubit gates of different quantum computers. Nodes represent qubits and edges
represent the connectivity between qubit pairs. All three devices allow arbitrary single-qubit rotations.

1

Permutation-aware
routing

Gate decomposition
and optimization

Device topology

Device gate set

2QAN Compiler

Input

Hardware-
compatible circuit

Gate count & circuit depth

Permutation-aware
scheduling

Quantum computer

Application fidelity

Evaluation

Hamiltonian and
parameters

SWAP unitary
unifying

Qubit mapping

Figure 2: Overview of the 2QAN compiler. The highlighted
compilation passes (Section 3) exploit the application-level
semantics and cannot be replaced by general-purpose compi-
lation techniques.

Many approaches have been proposed for compiling quantum
circuits onto NISQ computers [24–31]. These compilers operate
at the gate level and are designed for general circuits with little
knowledge of the mathematical properties of the target applica-
tions. Exploiting the synergy between applications and compilation
techniques can provide more optimizations of the implementation
circuit, which will further improve application performance. For
quantum simulation problems, the ordering of different terms in
the Hamiltonian is arbitrary and one could permute the exponen-
tials of these terms without losing computational accuracy. This is,
however, difficult or even impossible for a compiler to recognize
at gate level, especially when many of these operators do not com-
mute with each other (changing the order of non-commuting gates
violates program semantics). Several application-specific compilers
have also been developed [32–40], but their optimization techniques
are performed on one particular compilation pass and are limited
to the CNOT or CZ gate set.

In this work, we identify the flexibility in the Hamiltonian op-
erator permutation and exploit it in the compilation procedure.
In particular, we propose permutation-aware qubit routing, gate

scheduling, and gate optimization techniques to efficiently com-
pile circuits for 2-local qubit Hamiltonian simulation problems. The
quantum approximate optimization algorithm (QAOA) [41] also has
Hamiltonians in this form. The developed compiler, named 2QAN1,
can target different qubit architecture (topologies) and different
gate sets. Evaluation results on three quantum computers show
that 2QAN can significantly reduce gate count and circuit depth
compared to state-of-the-art quantum compilers. Furthermore, we
experimentally demonstrate the advantages of 2QAN on the IBMQ
Montreal device. The evaluation toolflow is presented in Figure 2.

The main contributions of this work are:
• We discover an optimization opportunity for compiling quan-
tum simulation problems on NISQ computers, i.e., the order
of Hamiltonian terms is flexible and a quantum compiler
can permute their exponentials (operators in the product
formula) to minimize compilation overhead.
• We exploit this flexibility and develop 2QAN, a quantum com-
piler for efficiently compiling 2-local qubit Hamiltonian sim-
ulation problems on NISQ computers. We first propose a
permutation-aware qubit routing heuristic to minimize the
number of inserted SWAP gates. Then we implement a uni-
tary unifying pass that combines a SWAP gate with a circuit
gate to further reduce gate overhead. Moreover, we design a
permutation-aware gate scheduling technique to minimize
circuit depth. The routing and scheduling algorithms have
quadratic time complexity in the number of gates and are
scalable for large systems.
• We perform all the proposed permutation-aware compila-
tion passes prior to the gate decomposition pass as shown in
Figure 2. That is, these optimization algorithms are indepen-
dent of the underlying hardware two-qubit gates, allowing
2QAN to target different instruction sets.
• We evaluate the proposed compiler by compiling the Heisen-
berg model, XY model, Ising model, and the QAOA circuits
onto three industrial quantum computers, Google Sycamore
[21], IBMQ Montreal [22], Rigetti Aspen [23]. Across all

1Pronounced "toucan". We propose the name 2QAN since this compiler targets 2-local
Qubit Hamiltonian simulation, is hardware Adapted and designed for NISQ quantum
devices. https://github.com/lllingoo/2QAN

https://github.com/lllingoo/2QAN

2QAN: A quantum compiler for 2-local qubit Hamiltonian simulation algorithms ISCA ’22, June 18–22, 2022, New York, NY, USA

benchmarks and quantum computers, the 2QAN compiler
outperforms state-of-the-art quantum compilers, including
the general-purpose compilers t|ket⟩ [30] and Qiskit [31],
and the application-specific compilers, Paulihedral [40] and
the QAOA compiler [36–38]. For example, 2QAN can reduce
the SWAP count, two-qubit gate overhead, and depth over-
head by on average 3.6x (9.1x), 4x (10.4x), and 2.1x (3.4x),
respectively compared to t|ket⟩ (Qiskit).
• We perform experiments for the QAOA benchmarks on the
IBMQ Montreal device and demonstrate that the substantial
compilation overhead reduction by using the 2QAN compiler
provides a significant improvement in application perfor-
mance. 2QAN achieves the highest fidelity for all problem
sizes, and can increase the number of QAOA layers while
the other compilers cannot.

2 BACKGROUND
2.1 Quantum simulation
Circuit construction: Consider a system Hamiltonian that is
decomposed into a sum of polynomially many Hermitian terms,
𝐻 =

∑𝐿
𝑗=1 ℎ 𝑗𝐻 𝑗 , its time evolution can be described by the uni-

tary 𝑈 (𝑡) = exp(𝑖𝑡𝐻)2. The goal is to find an efficient circuit
construction for 𝑈 (𝑡). It is hard to decompose this unitary di-
rectly when some terms anti-commute (which is typically the
case in physical systems of interest), i.e., if 𝐻𝑖𝐻 𝑗 ≠ 𝐻 𝑗𝐻𝑖 then
exp(𝑖𝑡𝐻) ≠ ∏𝐿

𝑗=1 exp(𝑡ℎ 𝑗𝐻 𝑗). Alternatively, one can use the prod-

uct formula approach [𝑉 (Δ𝑡)]
𝑡
Δ𝑡 to asymptotically approximate

exp(𝑖𝑡𝐻) [15–17], where

𝑉 (Δ𝑡) =
𝐿∏
𝑗=1

exp(𝑖Δ𝑡ℎ 𝑗𝐻 𝑗). (1)

𝑉 (Δ𝑡) is called one Trotterization step in which each exponential
operator exp(𝑖Δ𝑡ℎ 𝑗𝐻 𝑗) can be more easily decomposed into a hard-
ware gate set. 𝑉 (Δ𝑡) is repeated 𝑡

Δ𝑡 times to construct the entire
circuit and choosing small Δ𝑡 will suppress approximation errors.
Operator permutation:We note that the order of the 𝐿 individual
operators in each Trotter step (Equation 1) is arbitrary and can be
chosen from any of the 𝐿! permutations at the application level [42,
43]. This permutation flexibility allows one to perform optimized
compilation for the Hamiltonian simulation circuit. In contrast,
general-purpose quantum compilers assume a specific order and
will not allow such rearrangement when operators do not commute.

Our work focuses on developing a permutation-aware compiler
for optimizing each Trotter step, which will improve the overall
circuit construction of quantum simulation since a large number
(𝑡
Δ𝑡) of such repetitions need to be performed. This compiler can
also be applied to the QAOA benchmarks [41] and the problem-
inspired variational quantum eigensolver (VQE) ansatz [44] which
have similar circuit constructions to Equation 1 except that Δ𝑡 is
replaced by adjustable parameters. Other versatile VQE ansatzes

2Strictly speaking, the evolution operator 𝑈 (𝑡) representing the solution of the
Schrödinger equation has the form𝑈 (𝑡) = exp(−𝑖𝑡𝐻/ℏ) . To simplify notation here,
and without loss of generality, we set ℏ = 1 and consider negative time evolution
𝑡 → −𝑡 .

such as the hardware-efficient ansatz [45] need to be compiled by
generic techniques.
2-local qubit Hamiltonian: In this work we consider 2-local qubit
Hamiltonians that originate in many physical systems,

𝐻 =
∑︁
(𝑢,𝑣) ∈𝐸

𝐻𝑢𝑣 +
∑︁
𝑘∈𝑉

𝐻𝑘 . (2)

𝐻𝑢𝑣 are two-qubit Hamiltonian terms and 𝐻𝑘 are single-qubit
Hamiltonians. The interaction graph of this Hamiltonian is repre-
sented by 𝐺 (𝑉 , 𝐸), 𝑉 is the set of qubits and 𝐸 is the set of edges.
The transverse Ising model, XY model, and Heisenberg model all
have Hamiltonians in this form,

𝐻Ising =
∑︁
(𝑢,𝑣) ∈𝐸

𝛾𝑢𝑣𝑍𝑢𝑍𝑣 +
∑︁
𝑘∈𝑉

𝛽𝑘𝑋𝑘 , (3)

𝐻XY =
∑︁
(𝑢,𝑣) ∈𝐸

(𝛼𝑢𝑣𝑋𝑢𝑋𝑣 + 𝛽𝑢𝑣𝑌𝑢𝑌𝑣), (4)

𝐻Heisenberg =
∑︁
(𝑢,𝑣) ∈𝐸

(𝛼𝑢𝑣𝑋𝑢𝑋𝑣 + 𝛽𝑢𝑣𝑌𝑢𝑌𝑣 + 𝛾𝑢𝑣𝑍𝑢𝑍𝑣), (5)

where 𝑋,𝑌, 𝑍 are the Pauli operators. These are important mod-
els in the study of many-body physics and have been used for
solving various problems. For example, the Heisenberg model is
used to study magnetic systems in which the interacting particles
have opposing spins [46]. The Ising model can be exploited for
studying spontaneous magnetization in ferromagnetic film [47],
neuroscience [48], and spin glasses [49]. The famous QAOA for
solving combinatorial optimization problems also has the Ising
model Hamiltonian [41].

2.2 Circuit compilation
NISQ computers have hardware limitations such as their native
gate set and qubit connectivity, making general quantum circuits
not directly executable. A hardware gate set is typically composed
of arbitrary single-qubit rotations and a few two-qubit gates which
vary across QC vendors. For example, IBM devices currently have
the CNOT as the native two-qubit gate [22], Rigetti implement
both CZ and iSWAP gates [23, 50], and Google support CZ, SYC,√
iSWAP gates [21, 51]. High-level quantum circuits need to be de-

composed into the given gate set by using analytical algorithms
[52, 53] or numerical approaches [54, 55]. Furthermore, two-qubit
gates can only be executed on the connected (nearest neighbouring,
NN) qubits. Movement operations such as SWAP gates need to be
inserted for performing non-NN gates, increasing the number of
gates and circuit depth. NISQ computers have limited qubit coher-
ence time and high gate error rates. It is crucial to minimize circuit
sizes for the reliable implementation of quantum applications. To
this purpose, quantum compilation techniques, including qubit
mapping and routing, gate decomposition and scheduling, have
been developed to efficiently transform high-level quantum circuits
into hardware-compatible ones. For general quantum circuits, the
routing and scheduling algorithms assign dependencies between
gates to maintain the correctness of the program semantics [24–31].
These dependencies are typically generated based on the gate order
appearing in an input circuit. These general-purpose quantum com-
pilers work at the gate level and do not consider application-level

ISCA ’22, June 18–22, 2022, New York, NY, USA Lingling Lao and Dan E. Browne

q0

q1

q2

q3

q4

q5

R⊗6

= eiγHuv R = eiβHk

(a) Problem circuit

q0

q1

q2

q3

q4

q5

R⊗6

0 3 2

5 1 4

0 2 3

5 4 1

0 2 3

5 1 4

Map φ0 Map φ1 Map φ2
(b) Generic compiler

q0

q1

q2

q3

q4

q5

R⊗6

0 3 2

5 1 4

0 2 3

5 4 1

Map φ0 Map φ1
(c) 2QAN compiler

Figure 3: Examples of compiling a 6-qubit 2-local Hamiltonian (Equation 2) to a 2 × 3 grid architecture. (a) The circuit for one
Trotter step, where the two(single)-qubit operators implement the evolution of two(single)-qubit Hamiltonian s and two-qubit
operators do not commute. (b-c) Compilation procedure. Top figures show the compiled circuits and bottom figures show the
qubit mappings (nodes are qubits and edges represent their connectivity). Gates between dashed lines can be performed in
parallel. Qubits in (b-c) always correspond to the circuit qubits in (a) for better readability. (b) A generic compiler respects the
gate dependencies in (a). (c) The 2QAN compiler exploits the operator permutation flexibility and reduces the two-qubit gate
count from 12 to 9 and the circuit depth from 7 to 5 (Each of inserted SWAPs is merged with a circuit unitary in gray area).

semantics. Any application-specific optimizations that can improve
application performance are desirable for NISQ computing.
Compilation opportunities for Hamiltonian simulation: As
mentioned previously, when constructing a circuit for each Trotter
step, one is free to use any permutation of the operators in the prod-
uct formula (even when they do not commute). This application-
level property allows additional optimizations for Hamiltonian sim-
ulation problems but is not exploited by general-purpose quantum
compilers. Figure 3 shows an example of compiling a 6-qubit Hamil-
tonian circuit to a 2 × 3 grid architecture. The compiler, consider-
ing the flexibility in operator permutation, places all the nearest-
neighboring (NN) gates in the initial qubit map even though they
are placed in later timesteps in the input circuit, avoiding unnec-
essary SWAP gates (e.g., the orange gate on q1 and q2 is moved
to an earlier cycle in (c)). A generic compiler respects the gate de-
pendency in the input circuit and cannot reorder non-commuting
gates (e.g., the orange gate is scheduled in the last cycle in (b) and
requires a SWAP gate for NN implementation). Furthermore, this
permutation flexibility allows one to reschedule a circuit gate to the
timestep of a SWAP gate acting on the same qubits (e.g., the blue
gates are moved to the gray area in (c)) and then merge/unify these
two gates into one gate, further decreasing gate count. In this work,
we design such an application-specific compiler for 2-local qubit
Hamiltonian simulation problems to improve application fidelity.

3 COMPILATION TECHNIQUES
In this section, we introduce the proposed compilation techniques
underlying 2QAN. Figure 2 shows the overview of our 2QAN com-
piler.

3.1 Qubit mapping
The goal of qubit mapping is to find an optimal qubit initial place-
ment such that the number of qubit-moving operations required

for implementing all two-qubit gates is minimized. Similar to the
approaches in [56–58], the qubit mapping problem is formulated
as a quadratic assignment problem (QAP). That is, the problem
of allocating each qubit in the circuit (facility) to one qubit in the
device (location) with the cost defined by a function of the distance
and interaction times (flow) between circuit qubits. Let 𝑛 be the
number of circuit qubits or physical qubits and 𝑁 = {1, 2, · · · , 𝑛}
denotes the qubit set. The objective function is

min
𝜙 ∈S𝑛

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑓𝑖 𝑗𝑑𝜙 (𝑖)𝜙 (𝑗) (6)

where S𝑛 is the set of all permutations 𝜙 : 𝑁 → 𝑁 , 𝑓𝑖 𝑗 is the number
of two-qubit gates between circuit qubits 𝑖 and 𝑗 , 𝑑𝜙 (𝑖)𝜙 (𝑗) is the
distance between hardware qubits 𝜙 (𝑖) and 𝜙 (𝑗) and is calculated
by using the Floyd-Warshall algorithm.

QAP is an NP-hard problem [59] and we use the Tabu search
heuristic algorithm [60, 61] to efficiently find good qubit mappings
in this work. Other heuristics such as simulated annealing [62] and a
greedy randomized adaptive search [63] can be also used for solving
this problem. Prior works observed that the QAP formulation of
qubit mapping may not work well for general quantum circuits
[56–58]. This is because qubits need to interact in a specific order
(gate dependency) and the initial mapping benefits diminish after
insertion of SWAPs, e.g., some NN qubits may be moved further
apart but will interact later (see the orange gate in Figure 3(b)).
This is not the case for 2-local Hamiltonian simulation problems as
any operator that is NN in a qubit map can be scheduled directly
regardless of their order in the circuit (see the orange gate in Figure
3 (c)). Thus, at this stage, we are already exploiting the permutation
flexibility of this application.

2QAN: A quantum compiler for 2-local qubit Hamiltonian simulation algorithms ISCA ’22, June 18–22, 2022, New York, NY, USA

3.2 Qubit routing
Generally, not all two-qubit gates are nearest neighbouring in an
initial qubit map. Operations such as SWAP gates need to be inserted
to move non-NN qubits, causing overheads in gate count and circuit
depth. Efficient qubit routing techniques are required to minimize
the compilation overhead. Different from existing qubit routing
algorithms which respect the gate order in the input circuit [25,
28, 64, 65], the routing in 2QAN exploits the operator permutation
flexibility in a Hamiltonian. The pseudocode is in Algorithm 1
(permutation-aware steps are highlighted with *) and an example
is shown in Figure 3c.

Given an input circuit that implements one Trotter step of a
Hamiltonian, our routing algorithm starts by searching all the two-
qubit gates that are NN in an initial qubit layout (e.g., there are 7 NN
two-qubit gates in Figure 3c). These gates are directly mapped no
matter which timesteps they are scheduled in in the initial circuit
(permutation flexibility). SWAP gates are needed to perform the
remaining two-qubit gates (Lines 2-3), e.g., red gates on (q0, q3)
and (q4, q5) in Figure 3c. For these non-NN gates, 2QAN compares
their qubit distances in the hardware (Equation 6) and selects the
shortest-distance one to route first (Line 5). If there are multiple
shortest ones, it selects the first one in this set. Then the routing
algorithm finds all possible SWAP gates that act on one of the qubits
of the chosen gate 𝑔 (Line 6). It evaluates these SWAPs based on
a SWAP selection criteria (will be explained shortly) and selects
the best one and adds it to the circuit (Line 7). This new SWAP
gate updates the qubit map and NN gates are found for this map
and are removed from the un-routed gate set (Lines 8-10). This
procedure (Lines 5-10) is repeated until all two-qubit gates have
been performed. The time complexity of the routing algorithm is
𝑂 (𝑚2𝑛),𝑚 is the number of two-qubit gates and 𝑛 is the number
of qubits.

Algorithm 1 Permutation-aware routing
Input: Un-routed circuit, initial map 𝜙0, device topology
Output: Routed circuit, a set of qubit maps {𝜙𝑖 } and a set of NN

gates corresponding to each map {𝐺𝜙𝑖
}

1: Initialize the set of qubit maps Φ = {𝜙0}
2: *Initialize the set of NN gates for each map,𝐺 = {𝐺𝜙0 },𝐺𝜙0 ←

all NN two-qubit gates for map 𝜙0
3: Initialize 𝐺ur ← all un-routed (non-NN) two-qubit gates
4: while 𝐺ur ≠ ∅ do
5: *Select the gate 𝑔 ∈ 𝐺ur that has shortest distance in 𝜙𝑖
6: 𝑆𝑔 ← Find all SWAP gates on qubits in 𝑔
7: *Select the best SWAP from 𝑆𝑔 and add it to 𝐺𝜙𝑖

8: Update qubit map from 𝜙𝑖 to 𝜙𝑖+1
9: *𝐺𝜙𝑖+1 ←Find NN gates in 𝐺ur for map 𝜙𝑖+1
10: *Remove all gates in 𝐺𝜙𝑖+1 from 𝐺ur, add 𝐺𝜙𝑖+1 to 𝐺 , add

𝜙𝑖+1 to Φ
11: end while

SWAP selection criteria: The best SWAP gate is chosen based on
three criteria:

(1) Least SWAP count: It will lead to the minimal cost in Equation
6 (i.e., the minimal number of SWAP gates) for the remaining
non-NN gates.

(2) Shortest circuit depth: It can be most interleaved with previ-
ously mapped gates, introducing the least depth overhead.

(3) Best gate optimization: It can be merged with a circuit gate,
i.e., if there is a circuit gate applied on the same qubits as
this SWAP, the compiler will replace these two gates by a
single unitary representing their product (more details will
be introduced in the next section).

For our compiler configuration, we will evaluate the best SWAP
based on the three criteria in the above priority order. Evaluating
these criteria in a different order may further improve the compiler
but will not be explored here. When there are multiple best options,
a random one will be chosen. For example, both SWAP (0,3) and
SWAP (2,3) in map 𝜙0 of Figure 3c can be added for performing the
two-qubit gate on pair (0,2) and they have the same cost regard-
ing the first two criteria. SWAP (2,3) is selected because it can be
combined with a circuit gate that operate on the same qubits. For
implementing the circuit gate on (4,5), both SWAP (1,5) and SWAP
(1,4) are the best, and the compiler randomly selects one.

3.3 Unitary unifying

q0

q1

q2

⇒

Unified

Figure 4: Unitary unifying example. Theflexible operator per-
mutation allows the circuit gate on qubits (0,2) to be resched-
uled and combined with the SWAP gate.

SWAP unitary unifying: For each added SWAP gate, the compiler
searches over all circuit gates. If there is a circuit gate operating
on the same qubit pair as this SWAP, the compiler reschedules the
circuit gate to the SWAP gate cycle and unifies them into a single
unitary (see the example in Figure 4). Such rescheduling is allowed
because of the operator permutation flexibility in Hamiltonian sim-
ulation. The unified unitary (referred as a dressed SWAP) is the
product of the circuit gate unitary and the SWAP unitary. This
unitary unifying helps further reduce the compilation overhead.
Figure 5 shows the decomposition of a SWAP gate, a circuit gate
exp(𝑖\𝑍𝑍), and their unified unitary into CNOT gates and single-
qubit rotations. The unified unitary requires 3 CNOTs while the
implementation of these two gates with individual decompositions
(in the left circuit in Figure 4) would require 5 CNOTs in total.
Circuit unitary unifying: Similarly, we merge all circuit gates
that act on the same qubit pair into one single unitary. For example,
there are three two-qubit Pauli terms on one qubit pair in the
Heisenberg model (Equation 5). The exponential of a two-qubit
Pauli operator normally requires 2 CNOTs. Implementing each of
these three exponentials individually would use 6 CNOTs in total
and compilation based on this implementation (e.g. as used in the
Paulihedral compiler [40]) may be sub-optimal. In contrast, the
unified unitary only requires 3 CNOTs since any two-qubit gate
can be implemented by at most 3 CNOTs [66, 67]. To reduce gate
count, we preprocess all 2-local Hamiltonian simulation circuits

ISCA ’22, June 18–22, 2022, New York, NY, USA Lingling Lao and Dan E. Browne

= = exp(iθZZ) =
Rz

= SWAP · exp(iθZZ) =
R1

R2

R3

R4

R5

R6

R7

R8

Figure 5: Examples of decomposing the SWAP, the unitary exp(𝑖\𝑍𝑍), and their product into CNOTs and single-qubit rotations.

using circuit unitary unifying prior to other compilation passes
(not shown in Figure 2).

3.4 Gate scheduling
Scheduling without dependency:When connectivity limitations
are not considered, the individual operators in one Trotter step
(Equation 1) can be performed in any order. Graph coloring algo-
rithms [68] can be used to schedule such circuits. In the graph
construction, nodes represent operators (gates), and two nodes
are connected by an edge if they have common qubits and cannot
be scheduled in parallel. We use the default greedy algorithm in
NetworkX version 2.5 for our scheduling pass. The circuits with-
out taking into account topology constraints are scheduled by this
method and are baseline circuits used for calculating compilation
overhead.
Schedulingwith dependency: For connectivity-constrained quan-
tum computers, the routing pass in previous section will be applied.
The router outputs a list of qubit maps and a set of NN gates corre-
sponding to each map, including both circuit gates and (dressed)
SWAP gates. The order of a (dressed) SWAP gate and a circuit gate
cannot be exchanged if the SWAP is inserted to make the circuit
gate NN. One can generate a gate dependency graph based on the
gate order after qubit routing and apply conventional scheduling
algorithms [25, 26] to minimize circuit depth. This approach may
perform sufficiently well for some circuits such as the one in Fig-
ure 3c, but more optimizations can be achieved for other circuits by
considering the operator permutation in Hamiltonian simulation.
In this work, we apply such application-specific optimizations and
the pseudocode of the proposed gate scheduling algorithm is pre-
sented in Algorithm 2 (permutation-aware steps are highlighted
with *) and an example is shown in Figure 6.
Hybrid scheduling: Algorithm 2 is a hybrid of the above two
scheduling techniques. The flexible operator permutation property
implies that circuit gates can be scheduled in any qubit map where
they are NN. The NN circuit gates in the initial qubit map do not
have dependencies and are first scheduled using the graph coloring
algorithm (Line 1). For other qubit maps, dependencies between
SWAP and circuit gates need to be respected. The algorithm initial-
izes at the circuit cycle 𝑡 = 0. We implement an as-late-as-possible
(ALAP) schedule so the algorithm assigns the final qubit map to
cycle 0 (𝑀0, Line 2). For cycle 𝑡 , it first finds all circuit gates that
can be scheduled (Lines 6-8). A circuit gate can be scheduled at 𝑡
only if its qubits are NN in map 𝑀𝑡 and these qubits are not cur-
rently occupied by any other gates. For example, the gate on (1,3)
in Figure 6b is scheduled at cycle 0 while it needs to be scheduled at
a different cycle in Figure 6a because of the dependency constraint
when using a generic scheduler (which cannot schedule it until its
predecessor gate on (1,5) is performed). Afterwards, the scheduler
finds all SWAP gates that can be scheduled at this cycle (Lines 9-12).
Except the qubit NN and availability requirements, a SWAP gate
can be scheduled at 𝑡 only if the circuit gates that depends on it have

Algorithm 2 Permutation-aware scheduling

Input: The set of maps Φ = {𝜙𝑖 } and the set of NN gates corre-
sponding to each map 𝐺 = {𝐺𝜙𝑖

}
Output: Scheduled circuit
1: *Use graph coloring algorithm to schedule gates in 𝐺𝜙0
2: Initialize scheduling cycle 𝑡 = 0 and the set of scheduled gates

in this cycle 𝐶𝑡 = ∅
3: Initialize qubit map for cycle 𝑡 : 𝑀𝑡 ← last map in Φ (for an

ALAP scheduling)
4: 𝐺us ← All un-scheduled gates ∈ 𝐺
5: while 𝐺us ≠ ∅ do
6: for each circuit gate 𝑔 ∈ 𝐺us do
7: *Schedule 𝑔 in 𝐶𝑡 iff it is NN in 𝑀𝑡 and its qubits are

free
8: end for
9: for each SWAP gate ∈ 𝐺us do
10: Schedule it in 𝐶𝑡 iff it is NN in 𝑀𝑡 , its qubits are free,

and there is no dependency violation
11: 𝑀𝑡+1 ← the map after applying this SWAP on𝑀𝑡

12: end for
13: 𝑡 ← 𝑡 + 1 and update 𝐺us
14: end while
15: Reverse the gate sequence in {𝐶0, · · · ,𝐶𝑡 } (ALAP)

q0

q1

q2

q3

q4

q5

0 3 2

5 1 4

0 2 3

5 4 1

φ0 φ1 Map

3 2 1 0 Cycle

(a) Generic scheduler

q0

q1

q2

q3

q4

q5

0 3 2

5 1 4

0 2 3

5 4 1

φ0 φ1 Map

2 1 0 Cycle

(b) Hybrid scheduler

Figure 6: ALAP scheduling examples. (a) A generic scheduler
respects the gate order provided by the routing pass (takes
4 cycles). (b) The hybrid scheduler considers the flexibility
of permuting circuit gates and respects the dependency be-
tween a SWAP gate and its corresponding circuit gates (takes
3 cycles). For example, it schedules gate on pair (1,3) at cycle
0 because it is a NN circuit gate in map 𝜙1 while a generic
scheduler will not schedule it until its predecessor (gate on
(1,5)) is performed.

2QAN: A quantum compiler for 2-local qubit Hamiltonian simulation algorithms ISCA ’22, June 18–22, 2022, New York, NY, USA

been scheduled (e.g., red gates depend on the two SWAPs in Figure
6b). Once a SWAP is inserted, the qubit map for next cycle will
be updated. The procedure in Lines 6-13 is repeated until all gates
are scheduled. Finally, the algorithm reverses the scheduled gate
sequence (Line 15). The time complexity of this hybrid scheduling
algorithm scales quadratically with the number of gates.

All the permutation-aware compiler passes do not depend on the
native hardware gates and are performed prior to the gate decompo-
sition procedure (Figure 2), providing the flexibility that 2QAN can
target different instruction sets. Other application-specific com-
pilers such as the QAOA compiler [36–38] and the Paulihedral
compiler [40] are restricted to the CNOT/CZ gate set and lack
optimizations in the routing and unitary unifying procedure.

4 EXPERIMENTAL SETUP
Benchmarks:We consider Hamiltonians of a linear array of qubits
with nearest neighbouring (NN) and next nearest neighbouring
(NNN) interactions for the transverse Ising model, XY model, and
Heisenberg model. They are denoted NNN Ising, NNN XY, and
NNN Heisenberg. The time evolution of a Hamiltonian is imple-
mented using the product formula (∏𝐿

𝑗=1 exp(𝑖ℎ 𝑗𝐻 𝑗 𝑡/𝑟))𝑟 , where 𝑟
is the number of Trotter steps. The coefficients of 𝐻 𝑗 are randomly
sampled from (0, 𝜋). The number of two-qubit operators for NNN
Ising, NNN XY, and NNN Heisenberg models in each Trotter step
is 2𝑛 − 3, where 𝑛 is the number of qubits ranging from 6 to 50 in
our evaluation.

In addition, we also use QAOA [41] for solving the MAX-CUT
problems on 3-regular graphs (QAOA-REG-3) as our benchmark.
QAOA is a popular benchmark for testing the performance of quan-
tum computers and has been demonstrated in different quantum
processors [69, 70]. In particular, the connectivity differs for each
problem graph, which is well suited for evaluating compilation
techniques. QAOA has the same form as the Ising model, its prob-
lem Hamiltonian is 𝐶 =

∑
(𝑢,𝑣) ∈𝐸 𝑍𝑢𝑍𝑣 and drive Hamiltonian is

𝐵 =
∑
𝑘∈𝑉 𝑋𝑘 . The circuit implementation of one-layer QAOA is

𝑈 (𝛾, 𝛽) =
∏
(𝑢,𝑣) ∈𝐸

exp(𝑖𝛾𝑍𝑢𝑍𝑣)
∏
𝑘∈𝑉

exp(𝑖𝛽𝑋𝑘), (7)

Different from Hamiltonian simulation, these parameters (𝛾, 𝛽) dif-
fer in every layer. We randomly sample 10 graph instances for each
problem size. The operator parameters for each instance are chosen
at their theoretically optimal values and are calculated using the
tools provided in ReCirq [71]. The number of two-qubit operators
in one-layer of QAOA-REG-3 is 3𝑛/2, we consider qubit numbers 𝑛
from 4 to 22.
Quantum computers:We compile these benchmarks onto three
quantum computers, Google Sycamore [21], IBMQ Montreal
[22], Rigetti Aspen [23]. As shown in Figure 1, Sycamore has
a grid architecture with SYC as hardware two-qubit gate, Mon-
treal has a dodecagon lattice with CNOT as native gate, Aspen has
connected octagons and iSWAP as native gate. All three devices
support arbitrary single-qubit rotations. Experiments on Montreal
were performed on 29th October, 2021, the average CNOT error rate
was 1.241%, average read-out error rate was 1.832%, and average
T1=87.75 𝑢𝑠 and T2=72.65 𝑢𝑠 .
Quantum compilers: We first compare our 2QAN compiler with
two state-of-the-art general-purpose compilers, the t|ket⟩ compiler

version 0.11.0 with the recommended ‘FullPass’ [30] and the Qiskit
compiler version 0.26.2 with optimization level 3 [31]. We then
compare 2QAN with two application-specific compilers, the QAOA
compiler (IC-QAOA) with default settings [36–38] and the Pauli-
hedral compiler for quantum simulation [40]. For circuits with
larger number of qubits, the default mapping in t|ket⟩ may fail to
find a qubit initial placement and we use their ‘LinePlacement’ pass
instead. t|ket⟩ and Qiskit have advanced circuit optimizations for
the CNOT or CZ gates. For devices that have different hardware two-
qubit gates, we disable the gate decomposition pass in Qiskit and
t|ket⟩. The 2QAN compiler always performs permutation-aware
passes prior to gate decomposition. The mapped circuits that have
application-level unitaries will need to be decomposed into hard-
ware gate sets. We apply the ‘SynthesiseIBM’ decomposition pass in
t|ket⟩ to decompose the mapped circuits by 2QAN for the Montreal
device. We use the analytical method in Cirq [72] to decompose
QAOA and Ising unitaries into SYC gates. For other application
unitaries and hardware gates, we use the numerical approach devel-
oped in [55] for finding more efficient decomposition. Both Qiskit
and 2QAN involve randomization in the mapping procedure, we
run their mapping passes 5 times and choose the best results. We
also pro-process the input circuits for t|ket⟩ and Qiskit by applying
the circuit unitary unifying in Section 3.3 to reduce compilation
overhead.
Metrics: Similar to prior works, we use the number of inserted
SWAP gates (smaller is better), the number of hardware two-
qubit gates (smaller is better), the depth of two-qubit gates
(shorter is better), and the depth of all gates (shorter is better) as
metrics to compare the performance of different compilers. We also
calculate the increase in gate count and circuit depth (i.e., compi-
lation overhead, less is better) compared to the circuits without
considering connectivity constraints (i.e., the baseline implemen-
tation). Furthermore, we experimentally evaluate the application
performance of QAOA benchmarks on theMontreal device. The per-
formance is measured by the normalized cost function ⟨𝐶⟩ /𝐶min
(larger is better) [70]. 1 means the perfect result and 0 corresponds
to the random guessing result.
Implementation: We implement 2QAN in Python 3.8. All compi-
lation in our evaluation was performed on a laptop with an Intel
Core i7 processor (2.30GHz and 32GB RAM).

5 COMPILER EVALUATION
5.1 Reducing compilation overhead compared

to general-purpose compilers
In this section, we compare the compilation overhead of our 2QAN com-
piler with t|ket⟩ and Qiskit. Figures 7, 8, 9 show the compilation
results on Google Sycamore, Rigetti Aspen, and IBM Montreal,
respectively. Compared to t|ket⟩ and Qiskit, 2QAN has least compi-
lation overhead in terms of the number of inserted SWAP gates, the
number of hardware two-qubit gates, and the circuit depth. We sum-
marize the overhead reduction of 2QAN versus t|ket⟩ and Qiskit
in Tables 1 and 2 respectively. We define the overhead reduction
as the ratio of the overhead of t|ket⟩ or Qiskit and the overhead of
2QAN.

Across all benchmarks and quantum computers, 2QAN inserts
on average 3.6x fewer SWAPs than t|ket⟩ and 9.1x fewer SWAPs

ISCA ’22, June 18–22, 2022, New York, NY, USA Lingling Lao and Dan E. Browne

Sycamore Aspen Montreal
Benchmark SWAPs SYCs SYC Depth SWAPs iSWAPs iSWAP Depth SWAPs CNOTs CNOT Depth

avg max avg max avg max avg max avg max avg max avg max avg max avg max

NNN Heisenberg 1.7x 3.9x – – 1.2x 2.7x 1.1x 1.8x 3.2x 5x 1.5x 3.2x 2.2x 4.6x 6x 12.8x 2.4x 5.2x

NNN XY 1.7x 3.4x 6.2x 21.1x 1.2x 2.1x 1.1x 1.7x 1.9x 3.8x 1.3x 2.5x 2.8x 4.5x 5.3x 8.3x 2.7x 3.9x

NNN Ising 1.9x 3.9x 5.6x 10.7x 1.3x 2.9x 1.1x 1.8x 2x 3.2x 1.5x 3.4x 2.7x 4.1x 4.9x 7.8x 2.7x 4x

QAOA-REG-3 1.8x 2.5x 3.2x 4.4x 3.9x 9.5x 1.8x 2.4x 3x 4.5x 2.2x 3.8x 2x 2.4x 3x 4.3x 3x 4x

Table 1: The average (avg) and maximum (max) compilation overhead reduction when comparing 2QAN with t|ket⟩[30]. For
the cases with blank values ‘–’, the 2QAN compiler has negligible overhead.

Sycamore Aspen Montreal
Benchmark SWAPs SYCs SYC Depth SWAPs iSWAPs iSWAP Depth SWAPs CNOTs CNOT Depth

avg max avg max avg max avg max avg max avg max avg max avg max avg max

NNN Heisenberg 6x 9.7x – – 1.8x 2.6x 3.3x 4.3x 9.3x 13x 2.7x 3.4x 5.1x 10.1x 14x 27.8x 3.8x 7.6x

NNN XY 6.5x 11.1x 24.1x 68.5x 2.1x 3.5x 3.2x 4.1x 5.4x 8.4x 2.5x 3.4x 5.6x 8.3x 10.7x 16.1x 4x 6x

NNN Ising 6.7x 11.5x 19x 30.7x 2.4x 4.1x 3.3x 4.1x 5.6x 7.4x 3x 3.9x 5.3x 8.2x 9.7x 15x 4x 7.4x

QAOA-REG-3 4.7x 6.4x 8x 10.6x 6.9x 21x 3.1x 4x 5.2x 6.9x 3.5x 5x 3x 3.9x 4.4x 5.1x 3.7x 4.8x

Table 2: The average (avg) and maximum (max) compilation overhead reduction when comparing 2QAN with Qiskit [31]. For
the cases with blank values ‘–’, the 2QAN compiler almost has negligible overhead.

Benchmark
Paulihedral 2QAN

CNOTs Depth CNOTs Depth

Heisenberg-1D (30 qubits) 87 13 87 13

Heisenberg-2D (30 qubits) 216 43 147 25

Heisenberg-3D (30 qubits) 305 65 177 31

QAOA-REG-4 (20 qubits) 366 147 177(7) 71(4)

QAOA-REG-8 (20 qubits) 539 246 324(9) 160(16)

QAOA-REG-12 (20 qubits) 678 319 419(9) 222(22)

Table 3: Comparison with Paulihedral [40]. The numbers in
brackets show the standard deviation over 10 instances.

than Qiskit. This SWAP count reduction will lead to a significant
reduction in the hardware two-qubit gate count. Moreover, a large
percent of SWAPs are unified with circuit gates by the unitary
unifying pass in 2QAN (gray bars in (a), (d), (g) of Figures 7-9),
further reducing the gate count. For example, when compiling to
Sycamore, 2QAN almost has no SYC overhead compared to the
baseline ‘NoMap’ for the Heisenberg model. This is because most
of the SWAPs can be combined with circuit gates (Figure 7a) and
such an unified gate can be decomposed into a similar number
of SYCs as a circuit gate exp(𝑖𝑡 (𝛼𝑋𝑋 + 𝛽𝑌𝑌 + 𝛾𝑍𝑍)). In contrast,
t|ket⟩ and Qiskit have on average 24.5% and 92.3% SYC overhead.
2QAN reduces the two-qubit gate overhead by 4x and 10.4x com-
pared to t|ket⟩ and Qiskit on average over all benchmarks. This gate
count reduction helps reduce the circuit depth. The average depth
overhead reduction achieved by 2QAN is 2.1x and 3.4x relative to
t|ket⟩ and Qiskit.

5.2 Reducing compilation overhead compared
to application-specific compilers

We further compare 2QAN with the QAOA compiler in [36–38]
and the Paulihedral compiler in [40]. We will only evaluate the

compilations results on IBM quantum computers because these two
compilers are restricted to the CNOT or CZ gate set. Compared
to the QAOA compiler, 2QAN reduces SWAP count, CNOT count
overhead, and CNOT depth overhead by on average 2.6x, 4x, and
2.8x, respectively (Figure 9j-9l). The Paulihedral compiler is not
open-sourced yet and we directly use the compilation results from
[40] as shown in Table 3. The Heisenberg models were compiled
by assuming all-to-all connectivity and the QAOA-REG-m were
compiled to the IBMQ Manhattan device that has a dodecagon
lattice and uses the CNOT as its native two-qubit gate. We generate
10 random graphs for each QAOA problem and present the average
compilation results of 2QAN in Table 3. The CNOT count and
circuit depth achieved by Paulihedral are on average 1.59x and
1.64x as high as the circuits compiled by 2QAN. Therefore, by
employing the permutation-aware optimizations in the routing
and unitary unifying passes, 2QAN outperforms both application-
specific compilers in terms of compilation overhead.

5.3 Improving application performance
To study how the compilation overhead reduction impacts appli-
cation performance, we experimentally implemented the QAOA
benchmarks with different numbers of layers on the IBMQMontreal
device. For the multiple-layer QAOA circuits, the 2QAN compiler
only performs compilation for the first layer and obtains a circuit
𝑐1. For odd number layers, it directly uses the compiled circuit
structure in 𝑐1 and assigns corresponding parameters for each gate.
For even number layers, it simply reverses the two-qubit gate order
in 𝑐1. In contrast, t|ket⟩ and Qiskit compile a multiple-layer QAOA
circuit as a whole. For all four compilers, the compilation overhead
of a 𝑛-layer QAOA circuit is approximately 𝑛 times of the overhead
of a single-layer circuit. In NISQ computers, the implementation
of a quantum application that has fewer hardware gates (reduc-
ing gate errors) and shorter circuit depth (reducing decoherence

2QAN: A quantum compiler for 2-local qubit Hamiltonian simulation algorithms ISCA ’22, June 18–22, 2022, New York, NY, USA

6 8 10 12 14 16 18 20 22 24 26 32 40 50
Qubits

0

100

200

SW

AP
s Qiskit

t|ket>
2QAN
2QAN dressed

(a) SWAP count for NNN Heisenberg model

6 8 10 12 14 16 18 20 22 24 26 32 40 50
Qubits

0

500

1000

SY

Cs

Qiskit
t|ket>
2QAN
NoMap

(b) SYC count for NNN Heisenberg model

6 8 10 12 14 16 18 20 22 24 26 32 40 50
Qubits

0

50

100

SY
C

de
pt

h

(c) SYC depth for NNN Heisenberg model

6 8 10 12 14 16 18 20 22 24 26 32 40 50
Qubits

0

100

200

SW

AP
s

(d) SWAP count for NNN XY model

6 8 10 12 14 16 18 20 22 24 26 32 40 50
Qubits

0

500

1000

SY

Cs

(e) SYC count for NNN XY model

6 8 10 12 14 16 18 20 22 24 26 32 40 500

25

50

75

SY
C

de
pt

h

(f) SYC depth for NNN XY model

6 8 10 12 14 16 18 20 22 24 26 32 40
Qubits

0

50

100

150

SW

AP
s

(g) SWAP count for NNN Ising model

6 8 10 12 14 16 18 20 22 24 26 32 40
Qubits

0

250

500

SY

Cs

(h) SYC count for NNN Ising model

6 8 10 12 14 16 18 20 22 24 26 32 40
Qubits

0

25

50

SY
C

de
pt

h

(i) SYC depth for NNN Ising model

4 6 8 10 12 14 16 18 20 22
Qubits

0

25

50

SW

AP
s

(j) SWAP count for QAOA-REG-3

4 6 8 10 12 14 16 18 20 22
Qubits

0

100

200

SY

Cs

(k) SYC count for QAOA-REG-3

4 6 8 10 12 14 16 18 20 22
Qubits

0

20

40

SY
C

de
pt

h

(l) SYC depth for QAOA-REG-3

Figure 7: Compilation results of the one-layer NNN Heisenberg model, NNN XY, NNN Ising model, and QAOA-REG-3 on
the Google Sycamore device. Each QAOA problem size is averaged over 10 different instances (error bars show the standard
deviation) and operator parameters of QAOA circuits were chosen at their theoretically optimal values. ‘2QAN dressed’ shows
the number of SWAPs that were merged with circuit gates by 2QAN, which helps to reduce hardware gate count. ‘NoMap’ as
our baseline, represents the compilation results when assuming all-to-all qubit connectivity. The 2QAN compiler has least
compilation overhead (# SWAPs, # SYCs, and circuit depth) compared to t|ket⟩[30] and Qiskit [31].

errors) should have better performance (higher fidelity). This is
experimentally demonstrated in Figure 10, the circuits compiled
by 2QAN have the best application performance compared to the
results from using t|ket⟩, Qiskit, and IC-QAOA for all problem sizes
and all numbers of QAOA layers.

For example, as noise accumulates in QAOA circuits they will of-
ten converge to the value 0 corresponding to a random guess. Here
we see that the 3-layer QAOA benchmarks compiled by t|ket⟩ or
Qiskit or IC-QAOA already approach zero for problems with 8
qubits. In comparison, 2QAN only comes close to this value for
much larger problems (around 20 qubits). Ideally (without hard-
ware noise), the application performance should improve with the
number of QAOA layers. However, in practice there is a trade off,
with additional layers also increasing the overall error probabilities,

and hence decreasing application performance. Figure 10 shows
that the QAOA performance for all problem sizes decreases when
the number of layers increases for all compilers except the 4-qubit
QAOA compiled by 2QAN of which performance improves when
increasing the layer number from 1 to 2. This implies that efficient
compilation techniques can enhance device capacity and potentially
pave the way towards practical applications of quantum computing.

5.4 Scalability and runtime
We use the Tabu search algorithm for solving the qubit placement
problem. This algorithm is fast for solving small problems, e.g, it
takes around 1.6 seconds for the 10-qubit Ising model and 12.2 sec-
onds for the 20-qubit QAOA. However, it becomes slow for larger

ISCA ’22, June 18–22, 2022, New York, NY, USA Lingling Lao and Dan E. Browne

6 8 10 12 14 16
Qubits

0

20

40

SW

AP
s Qiskit

t|ket>
2QAN
2QAN dressed

(a) SWAP count for NNN Heisenberg model

6 8 10 12 14 16
Qubits

0

100

200

iS

W
AP

s Qiskit
t|ket>
2QAN
NoMap

(b) iSWAP count for NNN Heisenberg model

6 8 10 12 14 16
Qubits

0

20

40

iS
W

AP
 d

ep
th

(c) iSWAP depth for NNN Heisenberg model

6 8 10 12 14 16
Qubits

0

20

40

SW

AP
s

(d) SWAP count for NNN XY model

6 8 10 12 14 16
Qubits

0

100

200

iS

W
AP

s

(e) iSWAP count for NNN XY model

6 8 10 12 14 160

20

40

iS
W

AP
 d

ep
th

(f) iSWAP depth for NNN XY model

6 8 10 12 14 16
Qubits

0

20

40

SW

AP
s

(g) SWAP count for NNN Ising model

6 8 10 12 14 16
Qubits

0

100

200

iS

W
AP

s

(h) iSWAP count for NNN Ising model

6 8 10 12 14 16
Qubits

0

20

40

iS
W

AP
 d

ep
th

(i) iSWAP depth for NNN Ising model

4 6 8 10 12 14 16
Qubits

0

20

40

SW

AP
s

(j) SWAP count for QAOA-REG-3

4 6 8 10 12 14 16
Qubits

0

100

200

iS

W
AP

s

(k) iSWAP count for QAOA-REG-3

4 6 8 10 12 14 16
Qubits

0

20

40

iS
W

AP
 d

ep
th

(l) iSWAP depth for QAOA-REG-3

Figure 8: Compilation results of the one-layer NNN Heisenberg model, NNN XY, NNN Ising model, and QAOA-REG-3 on the
Rigetti Aspen device. 2QAN has least compilation overhead (# SWAPs, # iSWAPs, and circuit depth) compared to t|ket⟩[30] and
Qiskit [31].

problems and takes 330.2 (976.3) seconds for the 40(50)-qubit Heisen-
berg model. Qubit placement is not our main optimization goal in
this work. More efficient algorithms exist for solving QAP prob-
lems [73] and other qubit mapping techniques [30, 31] could also
be applied in future work. The proposed routing and scheduling
heuristics (Algorithm 1 and Algorithm 2) scale at most quadratically
with the number of gates in one Trotter step. For example, the com-
pilation time including routing, unitary unifying, and scheduling
for the 20(40)-qubit XY model in one Trotter step is around 0.007
(0.015) seconds. Moreover, we only perform the compilation for the
first Trotter step and simply use this circuit for odd-number steps
and reverse the two-qubit gate order for even-number steps. Such
an implementation saves compilation time and is similar to the
second-order Trotterization in [17]. This runtime evaluation and
scalability analysis give us confidence that the 2QAN compiler will
scale up to near-term quantum applications with a considerable
number of qubits and gates.

6 RELATEDWORK
The product formula is the most established approach to sim-
ulate the dynamics of quantum systems. Approximation errors
arise when there are anti-commuting terms in the Hamiltonian. To
achieve a desired precision, the time evolution is divided into many
small time steps. Assume a simulation circuit has 𝑟 Trotter steps
and the operator count for implementing each step is𝐺 . Minimizing
the circuit size 𝐺𝑟 while maintaining computational accuracy is
crucial for practical implementation. Besides the high-order approx-
imation approach [17], many randomization approaches have been
proposed to further reduce 𝐺𝑟 [42, 43, 74–76]. Afterwards, these
high-level circuits still need to be decomposed into native hardware
gates. One popular approach for optimizing low-level circuits for
Hamiltonian simulation is to first group Pauli terms into commuting
sets and then apply simultaneous diagonalization of Pauli expo-
nentials in each set [77, 78] or exploit gate cancellation between
consecutive Pauli exponentials [79, 80]. Other works present circuit

2QAN: A quantum compiler for 2-local qubit Hamiltonian simulation algorithms ISCA ’22, June 18–22, 2022, New York, NY, USA

6 8 10 12 14 16 18 20 22 24 26
Qubits

0

50

100

SW

AP
s

(a) SWAP count for NNN Heisenberg model

6 8 10 12 14 16 18 20 22 24 26
Qubits

0

250

500

CN

OT
s

(b) CNOT count for NNN Heisenberg model

6 8 10 12 14 16 18 20 22 24 26
Qubits

0

50

100

150

CN
OT

 d
ep

th

(c) CNOT depth for NNN Heisenberg model

6 8 10 12 14 16 18 20 22 24 26
Qubits

0

50

100

SW

AP
s

(d) SWAP count for NNN XY model

6 8 10 12 14 16 18 20 22 24 26
Qubits

0

200

400

CN

OT
s

(e) CNOT count for NNN XY model

6 8 10 12 14 16 18 20 22 24 260

50

100

CN
OT

 d
ep

th

(f) CNOT depth for NNN XY model

6 8 10 12 14 16 18 20 22 24 26
Qubits

0

50

100

SW

AP
s

(g) SWAP count for NNN Ising model

6 8 10 12 14 16 18 20 22 24 26
Qubits

0

200

400

CN

OT
s

(h) CNOT count for NNN Ising model

6 8 10 12 14 16 18 20 22 24 26
Qubits

0

50

100

150

CN
OT

 d
ep

th

(i) CNOT depth for NNN Ising model

4 6 8 10 12 14 16 18 20 22
Qubits

0

50

100

SW

AP
s

IC_QAOA
Qiskit
t|ket>
2QAN
2QAN dressed

(j) SWAP count for QAOA-REG-3

4 6 8 10 12 14 16 18 20 22
Qubits

0

200

400

CN

OT
s

IC_QAOA
Qiskit
t|ket>
2QAN
NoMap

(k) CNOT count for QAOA-REG-3

4 6 8 10 12 14 16 18 20 22
Qubits

0

50

100

CN
OT

 d
ep

th

(l) CNOT depth for QAOA-REG-3

Figure 9: Compilation results of the one-layer NNN Heisenberg model, NNN XY, NNN Ising model, and QAOA-REG-3 on the
IBMQ Montreal device. The 2QAN compiler has least compilation overhead (# SWAPs, # CNOTs, and circuit depth) compared to
t|ket⟩[30], Qiskit [31], and the QAOA compiler (IC-QAOA) [36–38].

synthesis method based on the ZX-calculus [81, 82]. However, these
low-level circuit optimization approaches are restricted to CNOT
or CZ-based circuits and most of them do not consider the qubit
connectivity constraint, requiring further compilation.

Many compilation techniques have been proposed to map quan-
tum circuits onto NISQ computers with limited qubit connectivity
and native gate sets. Some of them optimize gate count to reduce er-
rors from two-qubit gates or minimize circuit depth to mitigate the
effect of decoherence [24–27]. Others consider spatial and temporal
noise variations and develop noise-aware compilation algorithms to
minimize error rates [28, 29, 64, 83]. Industrial quantum compilers
such as t|ket⟩ [30] and Qiskit [31] incorporate multiple techniques
to achieve the best application performance. These general-purpose
compilers typically operate at the gate level and can work for gen-
eral quantum applications. Nevertheless, they have little knowledge
of the mathematical properties at the application level and therefore
lack fine-grained optimizations.

Application-specific compilation techniques will be advanta-
geous for NISQ computing. For example, optimized compilers have
been developed for variational quantum algorithms [32–39] and
quantum simulation with product formulas [40, 84]. The optimiza-
tion techniques in most specialized compilers (such as IC-QAOA
[36–38], Paulihedral [40]) are restricted to CNOT or CZ gates and
are not applicable to (or cause higher overhead in) quantum com-
puters with other hardware gates such as the SYC gate in Google
Sycamore [21] and the iSWAP gate in Rigetti Aspen [23]. Further-
more, most of them do not exploit the flexible operator permutation
property in the product formula approach to quantum simulation
(no matter whether these operators commute or not). For instance,
the compilers in [33–38] only check for commuting gates in the cir-
cuit mapping procedure butmany terms in theHamiltonianmay not
commute (e.g., the XY model and Heisenberg model) and changing
the order of anti-commuting gates will be prohibited. The Paulihe-
dral compiler in [40] considers this flexibility in the term scheduling

ISCA ’22, June 18–22, 2022, New York, NY, USA Lingling Lao and Dan E. Browne

4 6 8 10 12 14 16 18 20 22
Qubits

0.0

0.2

0.4

0.6

0.8

1.0

E(
C)

/C
m

in

(a) Experimental results of 1-layer QAOA

4 6 8 10 12 14 16 18 20 22
Qubits

0.0

0.2

0.4

0.6

0.8

1.0

E(
C)

/C
m

in

(b) Experimental results of 2-layer QAOA

4 6 8 10 12 14 16 18 20 22
Qubits

0.0

0.2

0.4

0.6

0.8

1.0

E(
C)

/C
m

in Noiseless
Qiskit
IC_QAOA
t|ket>
2QAN

(c) Experimental results of 3-layer QAOA

Figure 10: Experimental results of running QAOA-REG-3 on the IBMQ Montreal device. The y axis shows the application
performance, which is measured by the normalized cost function ⟨𝐶⟩ /𝐶min (larger is better). Each problem size is averaged over
10 different instances (error bars show the standard deviation). The operator parameters of QAOA circuits were chosen at their
theoretically optimal values. For the same layer QAOA, 2QAN always achieves better application performance compared to
other compilers. The ideal costs increase with the number of QAOA layers (noiseless results in (a-c)). However, in experimental
implementation increasing QAOA layers (increasing circuit sizes) increases the probabilities of hardware errors, which may
decrease QAOA performance. The application performance of the 4-qubit QAOA compiled by 2QAN improves when the number
of layers is increased from 1 to 2 while using the other compilers cannot.

procedure but lacks optimizations in qubit routing and unitary uni-
fying. Our 2QAN compiler can target different architectures and
provide efficient compilation for different gate sets.

7 CONCLUSIONS
Wehave developed an application-specific compiler for 2-local qubit
Hamiltonian simulation problems. The 2QAN compiler exploits the
flexibility of permuting operators in a Hamiltonian and performs
optimizations on the qubit routing, gate synthesis, and gate sched-
uling passes. Evaluation results show that 2QAN can significantly
reduce compilation overhead compared to two general-purpose
compilers and two application-specific compilers across three quan-
tum computers with different topologies and gate sets. For some
applications, 2QAN even has no gate overhead. Furthermore, ex-
perimental results demonstrate that 2QAN can achieve the highest
application fidelity in practice on hardware. We believe application-
specific compilation techniques will help enhance the performance
of quantum applications on NISQ devices and allow them to explore
their maximum capacities.

Future work will perform more optimizations and investigate
other research directions. First, the objective of 2QAN is to mini-
mize the number of SWAP gates and circuit depth. NISQ computers
have inhomogeneities and noise-aware compilation techniques can
be used to maximize application fidelity [28, 29, 64, 83]. Moreover,
error mitigation techniques can be applied to further reduce errors
[85–88]. In the experimental results reported here, we only com-
piled the first Trotter step in Hamiltonian simulation and simply
applied a reverse scheduling for the two-qubit gates in the even-
number steps. Prior works prove that randomizing the operator
order in each step can reduce the simulation costs [42, 43]. Future
work can adapt 2QAN to this randomization and analyze how ran-
domized compiling affects approximation errors and the efficiency
of quantum simulation algorithms. In addition, it is worthwhile

to investigate how to generalize these compilation techniques for
𝑘-local Hamiltonians and other quantum simulation algorithms.

ACKNOWLEDGMENTS
We thank Prakash Murali for valuable feedback on the manuscript.
We thank Silas Dilkes for help with the t|ket⟩ compiler. We thank
César A. Rodríguez Rosario for help with the experimental setup on
the IBMQ Montreal device via Strangeworks QC platform. We ac-
knowledge the use of the IBMQ platform for this work.We acknowl-
edge funding from the EPSRC Prosperity Partnership in Quantum
Software for Modelling and Simulation (Grant No. EP/S005021/1)
and support from the Unitary Fund to open source the 2QAN com-
piler.

REFERENCES
[1] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factor-

ing. In Proceedings 35th Annual Symposium on Foundations of Computer Science,
pages 124–134, 1994.

[2] Joe O’Gorman and Earl T. Campbell. Quantum computation with realistic magic-
state factories. Phys. Rev. A, 95:032338, Mar 2017.

[3] Richard P Feynman. Simulating physics with computers. International Journal of
Theoretical Physics, 21(6/7), 1982.

[4] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold bosonic atoms
in optical lattices. Phys. Rev. Lett., 81:3108–3111, Oct 1998.

[5] Tim Byrnes and Yoshihisa Yamamoto. Simulating lattice gauge theories on a
quantum computer. Phys. Rev. A, 73:022328, Feb 2006.

[6] P. D. Nation, M. P. Blencowe, A. J. Rimberg, and E. Buks. Analogue hawking
radiation in a dc-squid array transmission line. Phys. Rev. Lett., 103:087004, Aug
2009.

[7] David Poulin, Matthew B Hastings, Dave Wecker, Nathan Wiebe, Andrew C Do-
herty, and Matthias Troyer. The Trotter step size required for accurate quantum
simulation of quantum chemistry. arXiv preprint arXiv:1406.4920, 2014.

[8] Stephen P Jordan, Keith SM Lee, and John Preskill. Quantum algorithms for
quantum field theories. Science, 336(6085):1130–1133, 2012.

[9] Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas
Monz, Heng Shen, Petar Jurcevic, Ben P. Lanyon, Peter Love, Ryan Babbush,
Alán Aspuru-Guzik, Rainer Blatt, and Christian F. Roos. Quantum chemistry
calculations on a trapped-ion quantum simulator. Phys. Rev. X, 8:031022, Jul 2018.

[10] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami
Barends, Andreas Bengtsson, Sergio Boixo, Michael Broughton, Bob B Buckley,
David A Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Yu-An

2QAN: A quantum compiler for 2-local qubit Hamiltonian simulation algorithms ISCA ’22, June 18–22, 2022, New York, NY, USA

Chen, Ben Chiaro, Roberto Collins, Stephen J Cotton, William Courtney, Sean
Demura, Alan Derk, Andrew Dunsworth, Daniel Eppens, Thomas Eckl, Catherine
Erickson, Edward Farhi, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa
Giustina, Rob Graff, Jonathan AGross, Steve Habegger, Matthew PHarrigan, Alan
Ho, Sabrina Hong, Trent Huang, William Huggins, Lev B Ioffe, Sergei V Isakov,
Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian
Kelly, Seon Kim, Paul V Klimov, Alexander N Korotkov, Fedor Kostritsa, David
Landhuis, Pavel Laptev, Mike Lindmark, Erik Lucero, Michael Marthaler, Orion
Martin, John M Martinis, Anika Marusczyk, Sam McArdle, Jarrod R McClean,
Trevor McCourt, Matt McEwen, AnthonyMegrant, Carlos Mejuto-Zaera, XiaoMi,
Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew
Neeley, Charles Neill, Hartmut Neven, Michael Newman, Murphy Yuezhen Niu,
Thomas E O’Brien, Eric Ostby, Bálint Pató, Andre Petukhov, Harald Putterman,
Chris Quintana, Jan-Michael Reiner, Pedram Roushan, Nicholas C Rubin, Daniel
Sank, Kevin J Satzinger, Vadim Smelyanskiy, Doug Strain, Kevin J Sung, Peter
Schmitteckert, Marco Szalay, Norm M Tubman, Amit Vainsencher, Theodore
White, Nicolas Vogt, Z Jamie Yao, Ping Yeh, Adam Zalcman, and Sebastian Zanker.
Observation of separated dynamics of charge and spin in the Fermi-Hubbard
model. arXiv preprint arXiv:2010.07965, October 2020.

[11] I. M. Georgescu, S. Ashhab, and Franco Nori. Quantum simulation. Rev. Mod.
Phys., 86:153–185, Mar 2014.

[12] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for
linear systems of equations. Phys. Rev. Lett., 103:150502, Oct 2009.

[13] Fernando GSL Brandao and Krysta M Svore. Quantum speed-ups for solving
semidefinite programs. In 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), pages 415–426. IEEE, 2017.

[14] Andrew M Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann,
and Daniel A Spielman. Exponential algorithmic speedup by a quantum walk.
In Proceedings of the thirty-fifth annual ACM symposium on Theory of computing,
pages 59–68, 2003.

[15] Hale F Trotter. On the product of semi-groups of operators. Proceedings of the
American Mathematical Society, 10(4):545–551, 1959.

[16] Seth Lloyd. Universal quantum simulators. Science, pages 1073–1078, 1996.
[17] Masuo Suzuki. General theory of fractal path integrals with applications to

many-body theories and statistical physics. Journal of Mathematical Physics,
32(2):400–407, 1991.

[18] Ryan Babbush, Jarrod McClean, Dave Wecker, Alán Aspuru-Guzik, and Nathan
Wiebe. Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation.
Phys. Rev. A, 91:022311, Feb 2015.

[19] Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross, and Yuan Su.
Toward the first quantum simulation with quantum speedup. Proceedings of the
National Academy of Sciences, 115(38):9456–9461, 2018.

[20] John Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2:79,
2018.

[21] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell,
Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Court-
ney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gid-
ney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Har-
rigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S.
Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn
Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov,
Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh,
Salvatore Mandrà, Jarrod R. McClean, MatthewMcEwen, Anthony Megrant, Xiao
Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew
Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C.
Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin,
Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D.
Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie
Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quan-
tum supremacy using a programmable superconducting processor. Nature,
574(7779):505–510, 2019.

[22] IBM. IBM Quantum Experience Devices. https://quantum-computing.ibm.com/,
2020.

[23] Rigetti. Rigetti computing. https://www.rigetti.com/, 2020.
[24] Alwin Zulehner, Alexandru Paler, and Robert Wille. An efficient methodology

for mapping quantum circuits to the IBM QX architectures. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 38(7):1226–1236, 2018.

[25] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will
Simmons, and Seyon Sivarajah. On the qubit routing problem. arXiv preprint
arXiv:1902.08091, 2019.

[26] Lingling Lao, Hans van Someren, Imran Ashraf, and Carmen G. Almudever.
Timing and resource-aware mapping of quantum circuits to superconducting
processors. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, pages 1–1, 2021.

[27] Andrew M Childs, Eddie Schoute, and Cem M Unsal. Circuit transformations for
quantum architectures. arXiv preprint arXiv:1902.09102, 2019.

[28] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for
NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 1001–1014. ACM, 2019.

[29] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T Chong, and
Margaret Martonosi. Noise-Adaptive Compiler Mappings for Noisy Intermediate-
Scale Quantum Computers. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 1015–1029, 2019.

[30] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington,
and Ross Duncan. t |ket>: a retargetable compiler for NISQ devices. Quantum
Science and Technology, 6(1):014003, 2020.

[31] Héctor Abraham, AduOffei, Rochisha Agarwal, Ismail Yunus Akhalwaya, Gadi
Aleksandrowicz, Thomas Alexander, Eli Arbel, Abraham Asfaw, Carlos Azaustre,
AzizNgoueya, Aman Bansal, Panagiotis Barkoutsos, George Barron, Luciano Bello,
Yael Ben-Haim, Daniel Bevenius, Lev S. Bishop, Sorin Bolos, Samuel Bosch, Sergey
Bravyi, David Bucher, Artemiy Burov, Fran Cabrera, Padraic Calpin, Lauren Capel-
luto, Jorge Carballo, Ginés Carrascal, Adrian Chen, Chun-Fu Chen, Edward Chen,
Jielun (Chris) Chen, Richard Chen, Jerry M. Chow, Spencer Churchill, Christian
Claus, Christian Clauss, Romilly Cocking, Abigail J. Cross, Andrew W. Cross,
Simon Cross, Juan Cruz-Benito, Chris Culver, Antonio D. Córcoles-Gonzales,
Sean Dague, Tareq El Dandachi, Marcus Daniels, Matthieu Dartiailh, DavideFrr,
Abdón Rodríguez Davila, Anton Dekusar, Delton Ding, Jun Doi, Eric Drech-
sler, Drew, Eugene Dumitrescu, Karel Dumon, Ivan Duran, Kareem EL-Safty,
Eric Eastman, Pieter Eendebak, Daniel Egger, Mark Everitt, Paco Martín Fer-
nández, Axel Hernández Ferrera, Romain Fouilland, FranckChevallier, Albert
Frisch, Andreas Fuhrer, MELVIN GEORGE, Julien Gacon, Borja Godoy Gago,
Claudio Gambella, Jay M. Gambetta, Adhisha Gammanpila, Luis Garcia, Shelly
Garion, Austin Gilliam, Aditya Giridharan, Juan Gomez-Mosquera, Salvador
de la Puente González, Jesse Gorzinski, Ian Gould, Donny Greenberg, Dmitry
Grinko, Wen Guan, John A. Gunnels, Mikael Haglund, Isabel Haide, Ikko Hama-
mura, Omar Costa Hamido, Vojtech Havlicek, Joe Hellmers, Łukasz Herok, Stefan
Hillmich, Hiroshi Horii, Connor Howington, Shaohan Hu, Wei Hu, Rolf Huisman,
Haruki Imai, Takashi Imamichi, Kazuaki Ishizaki, Raban Iten, Toshinari Itoko,
JamesSeaward, Ali Javadi, Ali Javadi-Abhari, Jessica, Madhav Jivrajani, Kiran
Johns, Jonathan-Shoemaker, Tal Kachmann, Naoki Kanazawa, Kang-Bae, Anton
Karazeev, Paul Kassebaum, Spencer King, Knabberjoe, Yuri Kobayashi, Arseny
Kovyrshin, Rajiv Krishnakumar, Vivek Krishnan, Kevin Krsulich, Gawel Kus,
Ryan LaRose, Enrique Lacal, Raphaël Lambert, John Lapeyre, Joe Latone, Scott
Lawrence, Christina Lee, Gushu Li, Dennis Liu, Peng Liu, Yunho Maeng, Alek-
sei Malyshev, Joshua Manela, Jakub Marecek, Manoel Marques, Dmitri Maslov,
Dolph Mathews, Atsushi Matsuo, Douglas T. McClure, Cameron McGarry, David
McKay, Dan McPherson, Srujan Meesala, Thomas Metcalfe, Martin Mevissen,
Antonio Mezzacapo, Rohit Midha, Zlatko Minev, Abby Mitchell, Nikolaj Moll,
Michael Duane Mooring, Renier Morales, Niall Moran, MrF, Prakash Murali, Jan
Müggenburg, David Nadlinger, Ken Nakanishi, Giacomo Nannicini, Paul Nation,
Edwin Navarro, Yehuda Naveh, Scott Wyman Neagle, Patrick Neuweiler, Pradeep
Niroula, Hassi Norlen, Lee James O’Riordan, Oluwatobi Ogunbayo, Pauline Olli-
trault, Steven Oud, Dan Padilha, Hanhee Paik, Yuchen Pang, Simone Perriello,
Anna Phan, Francesco Piro, Marco Pistoia, Christophe Piveteau, Alejandro Pozas-
iKerstjens, Viktor Prutyanov, Daniel Puzzuoli, Jesús Pérez, Quintiii, Rafey Iqbal
Rahman, Arun Raja, Nipun Ramagiri, Anirudh Rao, Rudy Raymond, RafaelMartín-
Cuevas Redondo, Max Reuter, Julia Rice, Diego M. Rodríguez, RohithKarur, Max
Rossmannek, Mingi Ryu, Tharrmashastha SAPV, SamFerracin, Martin Sand-
berg, Ritvik Sapra, Hayk Sargsyan, Aniruddha Sarkar, Ninad Sathaye, Bruno
Schmitt, Chris Schnabel, Zachary Schoenfeld, Travis L. Scholten, Eddie Schoute,
Joachim Schwarm, Ismael Faro Sertage, Kanav Setia, Nathan Shammah, Yunong
Shi, Adenilton Silva, Andrea Simonetto, Nick Singstock, Yukio Siraichi, Iskandar
Sitdikov, Seyon Sivarajah, Magnus Berg Sletfjerding, John A. Smolin, Mathias
Soeken, Igor Olegovich Sokolov, SooluThomas, Starfish, Dominik Steenken, Matt
Stypulkoski, Shaojun Sun, Kevin J. Sung, Hitomi Takahashi, Ivano Tavernelli,
Charles Taylor, Pete Taylour, Soolu Thomas, Mathieu Tillet, Maddy Tod, Miroslav
Tomasik, Enrique de la Torre, Kenso Trabing, Matthew Treinish, TrishaPe, Wes
Turner, Yotam Vaknin, Carmen Recio Valcarce, Francois Varchon, Almudena Car-
rera Vazquez, Victor Villar, Desiree Vogt-Lee, Christophe Vuillot, James Weaver,
Rafal Wieczorek, Jonathan A. Wildstrom, Erick Winston, Jack J. Woehr, Stefan
Woerner, Ryan Woo, Christopher J. Wood, Ryan Wood, Stephen Wood, Steve
Wood, James Wootton, Daniyar Yeralin, David Yonge-Mallo, Richard Young,
Jessie Yu, Christopher Zachow, Laura Zdanski, Helena Zhang, Christa Zoufal,
and Zoufalc. Qiskit: An open-source framework for quantum computing, 2019.

[32] Pierre-Luc Dallaire-Demers and Frank K. Wilhelm. Quantum gates and archi-
tecture for the quantum simulation of the Fermi-Hubbard model. Phys. Rev. A,
94:062304, Dec 2016.

[33] Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. Compiling
quantum circuits to realistic hardware architectures using temporal planners.
Quantum Science and Technology, 3(2):025004, 2018.

https://quantum-computing.ibm.com/
https://www.rigetti.com/

ISCA ’22, June 18–22, 2022, New York, NY, USA Lingling Lao and Dan E. Browne

[34] Yunong Shi, Nelson Leung, Pranav Gokhale, Zane Rossi, David I Schuster, Henry
Hoffmann, and Frederic T Chong. Optimized compilation of aggregated in-
structions for realistic quantum computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 1031–1044, 2019.

[35] Pranav Gokhale, Yongshan Ding, Thomas Propson, Christopher Winkler, Nel-
son Leung, Yunong Shi, David I Schuster, Henry Hoffmann, and Frederic T
Chong. Partial compilation of variational algorithms for noisy intermediate-scale
quantum machines. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 266–278, 2019.

[36] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. Circuit compilation
methodologies for quantum approximate optimization algorithm. In 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
215–228. IEEE, 2020.

[37] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. An efficient circuit
compilation flow for quantum approximate optimization algorithm. In 2020 57th
ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2020.

[38] Mahabubul Alam, Abdullah Ash-Saki, Junde Li, Anupam Chattopadhyay, and
Swaroop Ghosh. Noise resilient compilation policies for quantum approximate
optimization algorithm. In Proceedings of the 39th International Conference on
Computer-Aided Design, pages 1–7, 2020.

[39] Gushu Li, Yunong Shi, and Ali Javadi-Abhari. Software-hardware co-optimization
for computational chemistry on superconducting quantum processors. arXiv
preprint arXiv:2105.07127, 2021.

[40] Gushu Li, Anbang Wu, Yunong Shi, Ali Javadi-Abhari, Yufei Ding, and Yuan
Xie. Paulihedral: A generalized block-wise compiler optimization framework for
quantum simulation kernels. arXiv preprint arXiv:2109.03371, 2021.

[41] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate
optimization algorithm. arXiv:1411.4028, 2014.

[42] Andrew M Childs, Aaron Ostrander, and Yuan Su. Faster quantum simulation by
randomization. Quantum, 3:182, 2019.

[43] Earl Campbell. Random compiler for fast hamiltonian simulation. Phys. Rev. Lett.,
123:070503, Aug 2019.

[44] Joonho Lee, William J Huggins, Martin Head-Gordon, and K Birgitta Whaley.
Generalized unitary coupled cluster wave functions for quantum computation.
Journal of chemical theory and computation, 15(1):311–324, 2018.

[45] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus
Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient variational
quantum eigensolver for small molecules and quantum magnets. Nature,
549(7671):242–246, 2017.

[46] Werner Heisenberg. Zur theorie des ferromagnetismus. In Original Scientific
Papers Wissenschaftliche Originalarbeiten, pages 580–597. Springer, 1985.

[47] RKManojkumar Singh, Nishith Kumar Pal, Mandira Banerjee, Soma Sarkar, and
Manideepa SenGupta. Surveillance on extended spectrum [beta]-lactamase
and ampc [beta]-lactamase producing gram negative isolates from nosocomial
infections. Archives of clinical microbiology, 3(3), 2012.

[48] John J Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79(8):2554–
2558, 1982.

[49] J-S Wang, W Selke, VI S Dotsenko, and VB Andreichenko. The critical behaviour
of the two-dimensional dilute ising magnet. Physica A: Statistical Mechanics and
its Applications, 164(2):221–239, 1990.

[50] Deanna M Abrams, Nicolas Didier, Blake R Johnson, Marcus P da Silva, and
Colm A Ryan. Implementation of the XY interaction family with calibration of a
single pulse. arXiv preprint arXiv:1912.04424, 2019.

[51] B. Foxen, C. Neill, A. Dunsworth, P. Roushan, B. Chiaro, A. Megrant, J. Kelly,
Zijun Chen, K. Satzinger, R. Barends, F. Arute, K. Arya, R. Babbush, D. Bacon,
J. C. Bardin, S. Boixo, D. Buell, B. Burkett, Yu Chen, R. Collins, E. Farhi, A. Fowler,
C. Gidney, M. Giustina, R. Graff, M. Harrigan, T. Huang, S. V. Isakov, E. Jeffrey,
Z. Jiang, D. Kafri, K. Kechedzhi, P. Klimov, A. Korotkov, F. Kostritsa, D. Landhuis,
E. Lucero, J. McClean, M. McEwen, X. Mi, M. Mohseni, J. Y. Mutus, O. Naaman,
M. Neeley, M. Niu, A. Petukhov, C. Quintana, N. Rubin, D. Sank, V. Smelyanskiy,
A. Vainsencher, T. C. White, Z. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M.
Martinis. Demonstrating a Continuous Set of Two-Qubit Gates for Near-Term
Quantum Algorithms. Phys. Rev. Lett., 125:120504, Sep 2020.

[52] B. Kraus and J. I. Cirac. Optimal creation of entanglement using a two-qubit gate.
Phys. Rev. A, 63:062309, May 2001.

[53] Navin Khaneja, Roger Brockett, and Steffen J. Glaser. Time optimal control in
spin systems. Phys. Rev. A, 63:032308, Feb 2001.

[54] Marc Grau Davis, Ethan Smith, Ana Tudor, Koushik Sen, Irfan Siddiqi, and Costin
Iancu. Heuristics for quantum compiling with a continuous gate set. arXiv
preprint arXiv:1912.02727, 2019.

[55] Lingling Lao, Prakash Murali, Margaret Martonosi, and Dan Browne. Designing
calibration and expressivity-efficient instruction sets for quantum computing. In
ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA),
pages 846–859, 2021.

[56] Mohammad Javad Dousti, Alireza Shafaei, and Massoud Pedram. Squash: a
scalable quantum mapper considering ancilla sharing. In Proceedings of the 24th

edition of the great lakes symposium on VLSI, pages 117–122, 2014.
[57] Tayebeh Bahreini and Naser Mohammadzadeh. An minlp model for scheduling

and placement of quantum circuits with a heuristic solution approach. ACM
Journal on Emerging Technologies in Computing Systems (JETC), 12(3):1–20, 2015.

[58] Lingling Lao, Bas van Wee, Imran Ashraf, J van Someren, Nader Khammassi,
Koen Bertels, and Carmen G Almudever. Mapping of lattice surgery-based
quantum circuits on surface code architectures. Quantum Science and Technology,
4(1):015005, 2018.

[59] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation problems. J. ACM,
23(3):555–565, July 1976.

[60] Fred Glover. Tabu search—part I. ORSA Journal on computing, 1(3):190–206, 1989.
[61] Fred Glover. Tabu search—part II. ORSA Journal on computing, 2(1):4–32, 1990.
[62] Rainer E Burkard and Franz Rendl. A thermodynamically motivated simula-

tion procedure for combinatorial optimization problems. European Journal of
Operational Research, 17(2):169–174, 1984.

[63] Yong Li, Panos M Pardalos, and Mauricio GC Resende. A greedy randomized
adaptive search procedure for the quadratic assignment problem. Quadratic
assignment and related problems, 16:237–261, 1993.

[64] Swamit S Tannu and Moinuddin K Qureshi. Not All Qubits Are Created Equal:
A Case for Variability-Aware Policies for NISQ-Era Quantum Computers. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 987–999. ACM, 2019.

[65] Yongshan Ding, Xin-Chuan Wu, Adam Holmes, Ash Wiseth, Diana Franklin,
Margaret Martonosi, and Frederic T Chong. SQUARE: strategic quantum ancilla
reuse for modular quantum programs via cost-effective uncomputation. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA),
pages 570–583. IEEE, 2020.

[66] Farrokh Vatan and Colin Williams. Optimal quantum circuits for general two-
qubit gates. Phys. Rev. A, 69:032315, Mar 2004.

[67] G. Vidal and C. M. Dawson. Universal quantum circuit for two-qubit transforma-
tions with three controlled-NOT gates. Phys. Rev. A, 69:010301, Jan 2004.

[68] Tommy R Jensen and Bjarne Toft. Graph coloring problems, volume 39. John
Wiley & Sons, 2011.

[69] Nathan Lacroix, Christoph Hellings, Christian Kraglund Andersen, Agustin
Di Paolo, Ants Remm, Stefania Lazar, Sebastian Krinner, Graham J. Norris, Mihai
Gabureac, Johannes Heinsoo, Alexandre Blais, Christopher Eichler, and Andreas
Wallraff. Improving the performance of deep quantum optimization algorithms
with continuous gate sets. PRX Quantum, 1(2):110304, 2020.

[70] Matthew P Harrigan, Kevin J Sung, Matthew Neeley, Kevin J Satzinger, Frank
Arute, Kunal Arya, Juan Atalaya, Joseph C Bardin, Rami Barends, Sergio Boixo,
Michael Broughton, Bob B Buckley, David A Buell, Brian Burkett, Nicholas
Bushnell, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney,
Sean Demura, Andrew Dunsworth, Daniel Eppens, Austin Fowler, Brooks Foxen,
Craig Gidney, Marissa Giustina, Rob Graff, Steve Habegger, Alan Ho, Sabrina
Hong, Trent Huang, L B Ioffe, Sergei V Isakov, Evan Jeffrey, Zhang Jiang, Cody
Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul V Klimov,
Alexander N Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Mike
Lindmark, Martin Leib, Orion Martin, John M Martinis, Jarrod R McClean, Matt
McEwen, Anthony Megrant, Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz,
Josh Mutus, Ofer Naaman, Charles Neill, Florian Neukart, Murphy Yuezhen
Niu, Thomas E O’Brien, Bryan O’Gorman, Eric Ostby, Andre Petukhov, Harald
Putterman, Chris Quintana, Pedram Roushan, Nicholas C Rubin, Daniel Sank,
Andrea Skolik, Vadim Smelyanskiy, Doug Strain, Michael Streif, Marco Szalay,
Amit Vainsencher, Theodore White, Z Jamie Yao, Ping Yeh, Adam Zalcman,
Leo Zhou, Hartmut Neven, Dave Bacon, Erik Lucero, Edward Farhi, and Ryan
Babbush. Quantum approximate optimization of non-planar graph problems
on a planar superconducting processor. Nature physics, 17(3):332–336, February
2021.

[71] Quantum AI team and collaborators. ReCirq, October 2020.
[72] Cirq Developers. Cirq, May 2021. See full list of authors on Github:

https://github.com/quantumlib/Cirq/graphs/contributors.
[73] Rainer E Burkard, Eranda Cela, Panos M Pardalos, and Leonidas S Pitsoulis. The

quadratic assignment problem. In Handbook of combinatorial optimization, pages
1713–1809. Springer, 1998.

[74] Chi-Fang Chen, Hsin-Yuan Huang, Richard Kueng, and Joel A Tropp. Quantum
simulation via randomized product formulas: Low gate complexity with accuracy
guarantees. arXiv preprint arXiv:2008.11751, 2020.

[75] Yingkai Ouyang, David R White, and Earl T Campbell. Compilation by stochastic
Hamiltonian sparsification. Quantum, 4:235, 2020.

[76] Paul K Faehrmann, Mark Steudtner, Richard Kueng, Maria Kieferova, and Jens Eis-
ert. Randomizing multi-product formulas for improved Hamiltonian simulation.
arXiv preprint arXiv:2101.07808, 2021.

[77] Ewout van den Berg and Kristan Temme. Circuit optimization of Hamiltonian
simulation by simultaneous diagonalization of Pauli clusters. Quantum, 4:322,
2020.

[78] Alexander Cowtan, Will Simmons, and Ross Duncan. A generic compilation
strategy for the unitary coupled cluster ansatz. arXiv preprint arXiv:2007.10515,
2020.

2QAN: A quantum compiler for 2-local qubit Hamiltonian simulation algorithms ISCA ’22, June 18–22, 2022, New York, NY, USA

[79] Matthew B Hastings, Dave Wecker, Bela Bauer, and Matthias Troyer. Improving
quantum algorithms for quantum chemistry. arXiv preprint arXiv:1403.1539, 2014.

[80] Kaiwen Gui, Teague Tomesh, Pranav Gokhale, Yunong Shi, Frederic T Chong,
Margaret Martonosi, and Martin Suchara. Term grouping and travelling sales-
person for digital quantum simulation. arXiv preprint arXiv:2001.05983, 2020.

[81] Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons, and Seyon Sivara-
jah. Phase gadget synthesis for shallow circuits. arXiv preprint arXiv:1906.01734,
2019.

[82] Arianne Meijer-van de Griend and Ross Duncan. Architecture-aware synthesis
of phase polynomials for NISQ devices. arXiv preprint arXiv:2004.06052, 2020.

[83] Prakash Murali, David C McKay, Margaret Martonosi, and Ali Javadi-Abhari.
Software Mitigation of Crosstalk on Noisy Intermediate-Scale Quantum Comput-
ers. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 1001–1016,
2020.

[84] Ian D. Kivlichan, Jarrod McClean, Nathan Wiebe, Craig Gidney, Alán Aspuru-
Guzik, Garnet Kin-Lic Chan, and Ryan Babbush. Quantum simulation of elec-
tronic structure with linear depth and connectivity. Phys. Rev. Lett., 120:110501,
Mar 2018.

[85] Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-
depth quantum circuits. Phys. Rev. Lett., 119:180509, Nov 2017.

[86] Ying Li and Simon C. Benjamin. Efficient variational quantum simulator incor-
porating active error minimization. Phys. Rev. X, 7:021050, Jun 2017.

[87] Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, David C. Mckay, and Jay M.
Gambetta. Mitigating measurement errors in multiqubit experiments. Phys. Rev.
A, 103:042605, Apr 2021.

[88] Swamit S Tannu and Moinuddin K Qureshi. Mitigating measurement errors
in quantum computers by exploiting state-dependent bias. In Proceedings of
the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, pages
279–290, 2019.

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum simulation
	2.2 Circuit compilation

	3 Compilation techniques
	3.1 Qubit mapping
	3.2 Qubit routing
	3.3 Unitary unifying
	3.4 Gate scheduling

	4 Experimental setup
	5 Compiler evaluation
	5.1 Reducing compilation overhead compared to general-purpose compilers
	5.2 Reducing compilation overhead compared to application-specific compilers
	5.3 Improving application performance
	5.4 Scalability and runtime

	6 Related work
	7 Conclusions
	Acknowledgments
	References

