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1. Introduction

This paper investigates the crucial question of whether real-time equity index return

forecasts can help investors to improve their portfolio allocation internationally across coun-

tries. Generally, the return forecasting literature examines whether it is possible to beat a

benchmark within that country and whether the forecast can help improve portfolio allo-

cation between the domestic risk-free rate and the domestic equity index (e.g. Welch and

Goyal (2008); Campbell and Thompson (2008); Ferreira and Santa-Clara (2011); Jordan

et al. (2017), Jordan et al. (2014)). A separate important literature focuses on the issue

of portfolio allocation internationally; this body of work tends to conduct portfolio alloca-

tion in-sample and using historical mean and variance as inputs into the decision-making

problem (Solnik (1974); Solnik and Noetzlin (1982); Solnik (1993); Errunza et al. (1999)).

However, an important under-researched question is how valuable is predictability to a real-

time investor who can allocate funds globally? To our knowledge this question is yet to be

fully addressed. The goal of this paper is to quantify the extent to which predictability can

enhance the economic value to international investors.

In contrast, our approach is to conduct out-of-sample analysis using forecasted returns

in the international portfolio allocation problem. We build on the work of Ferreira and

Santa-Clara (2011), who demonstrate that decomposing the equity return into separate

components and then forecasting each one separately can lead to substantial improvements

in forecast performance in the US. We extend their framework to a global allocation setting

by introducing the change in exchange rates as an additional component; thus, all equity

returns can be quoted in the same currency. This allows for cross-country portfolio allocation

where returns are in the reference currency of the investor (e.g. the US dollar for a US-based

investor). This enables us to address our key research question: how valuable are return

forecasts to an agent with a global investment mandate?

We produce Sum-of-Parts forecasts with two different methods. The first relies on the

original paper (Ferreira and Santa-Clara (2011)) and involves a combination of predictive

regressions and historical averages. The second relies on frequency decomposition of the

different SoP components via wavelets (Faria and Verona (2018)) which we replace with

Ensemble Mode Decomposition (EMD) based on Wu and Huang (2009). We opt for EMD
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compared to EEMD because mode mixing does not appear for our low frequency dataset

and therefore implementing EEMD is unnecessary. We then use these real-time forecasts as

expected returns in the mean-variance optimisation of an international portfolio where the

investor allocates wealth to the indices of 44 countries, and compare portfolio performance

with the standard case where the forecast is the historical average.

Overall, we find that model forecasts are considerably more accurate than the (historical

average) benchmark forecast for the large majority of countries. Encompassing tests reveal

that, when these three forecasts are considered, the optimal weight on the historical average

forecast is never statistically different from 0 for any country but in some cases the optimal

weight on the model forecast is statistically different from 0. Furthermore, we find that

using the model forecasts for international portfolio allocation in real time increases portfolio

performance relative to using the benchmark forecasts. We demonstrate this is the case using

a range of different specifications.

2. Literature review

We build on the important work of Ferreira and Santa-Clara (2011) who demonstrate

that decomposing the equity return into three components (price multiple growth, earnings

growth and dividend-price ratio) and then forecasting each part can lead to better forecast

accuracy than a historical average benchmark. They apply shrinkage to the estimates which

help to reduce estimation error. Overall, they find substantial gains could be made by a US

investor who applied this approach in a (domestic) two-asset portfolio allocation exercise.

Sum-of-Parts leads to significant economic and statistical gains out-of-sample over the his-

torical mean that range between 1.3% on a monthly and 13.4% on an annual basis. On a

monthly basis, the gains can be increased to 2.6% if the forecast relies on the sum of parts

obtained via a wavelet frequency decomposition of the returns time series (Faria and Verona

(2018)).

In domestic settings there is no need to model the exchange rate; however, in an inter-

national setting the currency component will need to be incorporated. Conventionally, it is

thought that exchange rates follow random walks (Meese and Rogoff (1983)) and therefore

the numeraire might not matter for forecasting the mean; however it could still affect the
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standard error of the coefficient estimate potentially due to noise (Jordan et al., 2015). The

random walk of exchange rates has been challenged in recent times by studies reporting some

predictive power for currency returns (Lustig and Verdelhan (2007), Ang and Chen (2010),

Burnside et al. (2011), Barroso and Santa-Clara (2015), Menkhoff et al. (2012)). If this is

the case, then forecasting the currency return could improve forecast power overall.

3. Data and Methodology

3.1. Expansion of the Sum-of-Parts methodology

We begin this section by outlining the Sum-of-Parts methodology of Ferreira and Santa-

Clara (2011) and demonstrating how it can be extended to be utilised by an investor looking

to invest in multiple countries. We expand the scope from a single asset representing a stock,

a portfolio or an index, to an international portfolio, with the aim to conduct a cross-country

portfolio optimisation exercise and examine if Sum-of-Parts provides an advantage in such

an environment. Technically, we introduce exchange rates as an additional factor and use the

forecast of each country as its expected return in the optimisation of a portfolio that allocates

wealth across different countries. We then examine whether Sum-of-Parts provides material

gains to international investors which are exposed to currency exchange risk. The original

Sum-of-Parts approach is based on aggregating the separate forecasts of three components of

stock market returns into a single return forecast. The three components are the dividend-

price ratio, earnings growth and the growth of the price-earnings ratio. The total (gross)

return of the stock market index consists of capital gains and the dividend yield. For return

R, dividend D and earnings per share E

1 +Rt+1 =
Pt+1

Pt

+
Dt+1

Pt

=
Pt+1/Et+1

Pt/Et

× Et+1

Et

+
Dt+1

Pt+1

× Pt+1

Pt

(1)

”The fraction of the price-earnings ratio at t and t + 1, Pt+1/Et+1

Pt/Et
, can be written as

1 + GMt+1 where GM is the growth rate of the PE ratio. Similarly, the earnings fraction

Et+1/Et can be written as 1+GEt+1 where GE is the earnings growth rate. This allows the

first term to be written as (1 + GMt+1)(1 + GEt+1). The second term, using the dividend-

price ratio DP and similar rewriting, allows the dividend yield to be expressed as DPt+1(1+

GMt+1)(1 +GEt+1). Equation (1) then becomes

4



1 +Rt+1 = (1 +DPt+1)(1 +GMt+1)(1 +GEt+1)

rt+1 = gmt+1 + get+1 + dpt+1

(2)

The bottom row is the expression in the top row in logs, where dp is the log of the dividend-

price ratio, ge the log of the earnings growth rate and gm the log of the price-earnings growth

rate. Sum-of-Parts is markedly superior to historical mean forecasts, providing out-of-sample

R2 of 1.3% with monthly data and 13.4% with annual data.

We expand the model to an international setup by introducing a currency return com-

ponent, since a change in the exchange rate of a country where portfolio wealth has been

allocated with the reference currency of the investor would affect total returns. We thus

include the domestic currency-to-US dollar exchange rate as a fourth component of returns.

For an international investor who uses a currency different than the domestic one, the change

of the spot exchange rate S between t and t+1 generates further returns and the price ratio

can be written as Pt+1St+1/PtSt. Since the capital gains need to be measured in the investor’s

home currency (or reference currency, such as US dollars), the stock price is multiplied by

the spot exchange rate. Following similar formulations, Equation (1) becomes

1 +Rt+1 =
Pt+1St+1/Et+1

PtSt/Et

× Et+1

Et

+DPt+1 ×
Pt+1St+1

PtSt

= (1 +GMt+1)(1 +GEt+1)(1 + FXt+1) +DPt+1(1 +GMt+1)(1 +GEt+1)(1 + FXt+1) ⇔

1 +Rt+1 = (1 +GMt+1)(1 +GEt+1)(1 + FXt+1)(1 +DPt+1)

rt+1 = fxt+1 + gmt+1 + get+1 + dpt+1

(3)

where FX (fx)is the growth rate, or return, of the (log) exchange rate of the domestic

currency with the US dollar, equivalently to Equation (2).

3.2. Data

The data frequency is quarterly and the sample period ranges from June 1973 to Novem-

ber 2018 containing end-of-quarter values. Due to differences in data availability between

countries, we consider two different approaches. In the first case (all countries present),

we limit our sample based on the country with the shortest time series (Poland) and use a
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5-year (20 observations) window for the predictive regression. This creates a sample of 44

countries and quarterly time series of 99 observations, starting on April 1994. In the second

case (sequential), new countries are introduced to the portfolio as sufficient data becomes

available with a 10-year (40 observations) window for the predictive regression. There are 16

countries with fully available data on June 19731, which amounts to 183 observations. Nor-

way is introduced in January 1980, Sweden in January 1982, Italy and Malaysia in January

1986, and after that a new country is introduced generally every six months until Poland,

where all are available. Descriptive statistics and the order of country introduction follow

Table 1. All data comes from Datastream apart from the risk-free rate, which is proxied by

the US 3-month Treasury bill available on FRED.

Table 2 presents two arithmetic examples where decomposing the return to its four con-

stituents yields almost identical results to calculating the return directly. The first example

uses artificial values and demonstrates perfect equality between total returns and the sum

of the decomposed constituents. For a domestic investor, total return is exactly equal to

the sum of ge, gp and dp. For an international investor, total return in USD is equal to the

sum of ge, gp, dp and fx, and the difference between the two returns is exactly equal to the

percentage change of the exchange rate. In the second example, UK values on January and

February 1973 are used. There is a marginal difference of 0.0003 between total return and

the sum of the three parts, but the difference between returns is again exactly equal to the

return on FX. This demonstrates that measuring the constituents of returns separately and

the returns themselves is virtually the same in terms of accuracy.

3.3. Optimisation of the international portfolio

The international investor allocates portfolio wealth to each country index i and a risk-free

asset according to mean-standard deviation optimisation. The vector of stock market Sum-

of-Parts forecasts is used as the expected returns in a typical Markowitz mean – standard

deviation minimization exercise with a risk-free asset where optimal weights are can be

1These countries are Australia, Austria, Belgium, Canada, Denmark, France, Germany, Hong Kong,

Ireland, Japan, the Netherlands, Singapore, Switzerland, the UK, the USA and South Africa. Brazil and

Russia are not included in the sample due to lack of data.
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restricted between zero and one or unrestricted. For a vector of optimal portfolio weights

w, a vector of forecasted (expected) returns rfc,i ,a risk-free rate rf , risk aversion γ = 2,

covariance matrix Σ and portfolio return rp, the investor seeks to minimise portfolio variance,

min
w

1

γ
w′Σpw subject to the following constraints, depending on whether short-selling is

allowed or not:

w′1+ (1−w′1) = 1 (all weights, risky and risk-free, sum to 1)

E(rp) = (1−w′1)rf +w′rfc,i where w′1 is the sum of all elements in w

0 ≤ wi ≤ 1 (short-selling is forbidden, restriction omitted if allowed)

Solving this problem for each period leads to a vector of optimal weights w based on the

Sum-of-Parts forecasts, which the investor uses in the allocation of portfolio wealth over the

next period. When the next period arrives, the realised portfolio returns are observed. We

compare the performance of the Sum-of-Parts approach with the standard CAPM case where

the forecast is the historical average. The introduction of the third constraint changes the

quadratic programming optimisation problem from allowing negative weights and thus short-

selling, which has a known closed-form solution available in Pennacchi (2008), to prohibiting

short-selling. In that case the problem can only be solved using numerical methods. We

provide results on both cases with and without a risk-free asset. The covariance matrix

is calculated on the same rolling window as the predictive regression (i.e. 20 or 40 last

observations).

Since the solution for the optimal portfolio weights under a linear constraint without

short-selling can only be found using numerical methods, we apply the direct and the itera-

tive methods to maximise the Sharpe ratio. The direct method relies on turning the function

of the Sharpe ratio into a quadratic expression and using a numerical algorithm to approx-

imate the solution. Two possible candidates are the interior-point-convex and trust-region-

reflective algorithms. The interior-point-convex algorithm proposes predictor-corrector steps

that fall strictly within the constrains, after simplifying the problem if possible, and stops

when an optimal solution has been found. The trust-region-reflective algorithm relies on

the interior-reflective Newton method, which uses proposed consecutive neighbourhood re-

gions of a function (trust regions) to gradually lower its value after a number of iterations.

A similar alternative is the active-set algorithm. The iterative method relies on producing
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iterations of the efficient frontier in order to find the portfolio that maximises the Sharpe

ratio. The consecutive interpolations gradually lead to an optimal solution, but the method

is able to produce only local solutions and is relatively slower.

A point of note is the fact that for the sequential case the covariance matrix for each step

is not guaranteed to be positive semi-definite. Although there are no missing observations in

the sample, the length of each return series is different. To construct the covariance matrix

for series of unequal lengths, the correct statistical process is to calculate each pairwise

covariance based on the data length of the shortest series. This may create numerical or

precision errors and may lead to the first eigenvalue of the covariance matrix to be almost

equal to zero but negative. When that issue appears, the nearest symmetric positive semi-

definite covariance matrix in the Frobenius norm to an arbitrary real matrix A is shown to be

(B +H)/2, where H is the symmetric polar factor of B = (A+A′)/2 (Higham and Higham

(1998)). In our case, the resulting differences in both the eigenvalues and the elements of

the approximate matrix are miniscule. In practice, the results under the direct case are left

unchanged if the issue is not treated but the results for the iterated method, which produces

local solutions and can still function numerically with a non-positive semi-definite matrix, are

very slightly altered. We consider this point to be of use to the interested reader, although

it does not lead to a material change in our results or statistical approach.

4. Performance tests

We use Theil’s U to measure whether the Sum-of-Parts forecasted returns are an im-

provement compared to forecasts based on the historical average (HA) of all past returns.

The statistic for country i is defined as

Ui,T =

√√√√√√√√√
T∑
t=1

(Rit −Rit,SoP )
2

T∑
t=1

(Rit −Rit,HA)
2

(4)

Where R is realised returns, RSoP the Sum-of-Parts forecast and RHA the historical

average forecast. A Theil’s U lower than 1 means that the Sum-of-Parts method performs

better than the historical average, while the opposite means that HA provides a better
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forecast. The difference between Theil’s U and 1 represents an improvement in percentage

terms.

To determine independence of information we use the Harvey, Leybourne and Newbold

HLN forecast encompassing test (Harvey et al. (1998).

Unlike the Clark andWest (2007) test, which has equal forecasting accuracy, the HLN test

can be used to compare forecasts from non-nested models as well. It examines two competing

non-nested models and gives the optimal weight on the forecast (lambda) as well as enabling

the testing the null hypothesis that the optimal weight is 0. HLN is also preferable to the

Diebold and Mariano (DM) test due to our relatively small sample, although both tests

produce a statistic compared to a t-statistic. The test examines whether one of the forecasts

encompasses all relevant information from the other. The idea is that the forecast with the

worse performance may contain some information that is not fully incorporated in the better

performing forecast, then a combination is preferable. However, if no such information is

contained, the better performing forecast “encompasses” the worse performing one and can

be used independently. The HLN encompassing test (Harvey et al. (1998)) is an evolution

of the DM test (Diebold and Mariano (2002)). The DM statistic is defined as

DM =
d̄√

V ar(d̄)

Where dt = L(ei,t)–L(ej,t), t = 1,. . . , T is a loss differential series, L(.) a loss function (e.g.

mean square error) and ei,t, ej,t are two forecast error series. Some common definitions for

the loss differential dt are dt = e2i,t − e2j,t and dt = |ei,t| − |ej,t|. The HLN statistic modifies dt

to dt = (ei,t–ej,t)ei,t and the DM statistic as

HLN = T−1/2
(
T + 1− 2k + T−1k(k − 1)

)1/2
DM (5)

for k-step ahead forecasts and dependence between them up to lag k-1. The null hypoth-

esis E(dt) = 0 (equiv. MDM=0) is that the forecast of model i encompasses the forecast of

model j. Rejecting H0 implies that forecast j stays in the forecast set.

We apply the HLN test on the collected portfolio weights for each country during the

forecast period under Sum-of-Parts and Historical Average (HA). In our context, we use

the test to assess country specific performance and the importance and contribution of a
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country to portfolio returns. The null hypothesis is that a country’s portfolio weight is zero,

i.e. nothing is invested in that country’s stock index by examining whether a country’s

portfolio weight is statistically different than zero. The alternative hypothesis is that it is

positive, i.e. this country generates a fraction of the portfolio’s return. Specifically, the

null hypothesis of the HLN test is for the left section that the SoP forecast has a weight of

zero when combined with the historical average forecast. The alternative hypothesis in the

left section is that the SoP forecast is not encompassed by the historical average forecast,

i.e., the SoP forecast contains information above and beyond that in the historical average

forecast. l1 gives the optimal estimated weight on SoP and p1 is the p-value associated with

the HLN test. A p-value of less than 0.10 indicates that the weight on SoP is statistically

different from 0 at the 10% significance level or better when this forecast is added as a second

explanatory variable to a single regression model of the historical average return.

4.1. Forecasting methodologies

Sum-of-Parts decompositions allow separate forecasting methodologies for each part based

on their individual characteristics and empirical facts. The base case SoP method uses a

combination of predictive regressions and historical averages. We opt for using the last ob-

served value of dp as the forecast for t+1, fx and ge are forecasted as the historical average

of all past available observations at time t and gm is forecasted by a predictive regression on

the log of the price-earnings ratio specified as gmt+1 = α + β × log(PEt) + ϵt+1. However,

the forecasting accuracy of Sum-of-Parts can be improved by decomposing the individual

components. Specifically, the predictive power of the price-earnings growth rate, one of the

most important components, is low (Dai and Zhu (2020)). Faria and Verona (2018) apply

wavelet decomposition and sum only some of the frequency decomposed parts, achieving

significant statistical and economical gains over historical mean forecasts and a monthly

out-of-sample R2 of 2.60%. Further out-of-sample improvement can be achieved by Empir-

ical Mode Decomposition (EMD), first introduced by Huang et al. (1998), and Ensemble

Empirical Mode Decomposition (EEMD), which analyse the original time series (signal) to

a small number of independent (locally orthogonal), zero-mean amplitude and frequency

modulated components called intrinsic mode functions (IMFs), plus any residuals. The two
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methods are designed to extract signals from non-stationary and non-linear data, rely on

the local timescale and extrema and are thus adaptive and highly efficient. The basic idea

is that such data can be analysed to different intrinsic mode functions (IMFs), which are

in essence oscillators. These intrinsic oscillatory modes can be identified according to their

distinct features over time (time stamps) and decomposed. The key property is whether an

oscillator crosses zero between two extrema, which allows for its separation from the main

signal. The algorithm treats each IMF as a sub-signal at a local level and separates them into

locally non-overlapping scale components. It breaks down a signal x(t) into its component

IMFs obeying two properties: 1) and IMF has only one extremum between two subsequent

zero crossings 2) a mean value of zero. , which implies stationarity but does not prevent

amplitude modulation or changing frequency. In more detail,

• assume a time series (signal) x(t) which needs to be decomposed to n IMFs xn(t) and

a residual r(t). Define an input signal h(t) to be analysed. Initialise h(t) = x(t), n = 1

and the sifting step k = 1.

• for h(t) identify local minima/ maxima, create the upper envelopes su(t), sd(t) and

subtract their mean m(t) = (su(t)− sd(t))/2 from h(t).

• if h(t)−m(t) does not fulfil the requirements of an IMF, then set h(t)−m(t) as input

signal and repeat the process (increase k by 1). This process is often called “sifting”.

• if h(t) − m(t) fulfils the requirements of an IMF then store it as xn(t) and calculate

r(t) = h(t) − xn(t). If r(t) is not a residual then set h(t) − xn(t) as input and repeat

from (ii), increasing n by 1. If r(t) is a residual then the process ends. The original

signal can be reconstructed as x(t) =
∑

xn(t) + r(t)

The stoppage criteria for sifting and for identifying residuals may vary. A residual typi-

cally contains only one extremum, is a constant or a monotonic slope. Sifting is calibrated

to stop at a threshold, e.g. if the input signal variance falls below a level, or according to

the signal’s energy ratio (the ratio of the energy of the signal at the beginning of sifting and

the average envelope energy). A concise discussion of EMD and its practical features can be

found in Zeiler et al (2010).
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Dai and Zhu (2020) combine SoP and EEMD to find a monthly out-of-sample R2 above

20%. However, they use the frequency-decomposed parts that improve the stock return

forecast and leave out those that reduce predictability. To avoid look-ahead bias, we combine

SoP with EMD without removing any components. We select EMD over EEMD because,

when EMD is applied to our low frequency dataset, mode mixing does not appear and

therefore EEMD is not particularly advantageous. We apply EMD on each component series

and get between 3 and 5 IMFs, plus the residuals. We then sum IMF2 with IMF3 and IMF4

with IMF5, and conduct (AR) predictive regressions on IMF1 and the two sums over a rolling

window of 40 observations. We then aggregate the results of the predictive regressions with

the last known residual for the corresponding time stamp of the original time series2. This

produces a set of forecasts for that component, and the process is applied to all four parts.

The regression windows for EMD forecasts are 20 observations when all countries are present

and 40 when they are introduced sequentially.

5. Empirical results

5.1. Forecast accuracy and performance

Thus far, the forecast accuracy of Sum-of-the-Parts (SoP) and EMD methods have pri-

marily focused on the US market. An open question is how well does these methods perform

for other equity markets? In particular, firstly which method performs best internationally

and secondly how well do these methods perform in emerging markets?

Consequently, our empirical analysis begins by examining the forecast accuracy of the

SoP method for each country in our sample denominated in US dollars. We comprehensively

cover this by examining two datasets and two estimation methods. The results are affirma-

tive. Table 1 reports Theil’s U, out-of-sample R2 and mean squared errors for logged returns.

We find that for quarterly data the SoP method performs better than the historical average

for the majority of the countries. However, the most striking result is that EMD produces

2The IMF and residual series have the same length (T) as the component series. For a regression window

of 40 observations, the residuals between 41 and T are used, since the series produced by the AR estimation

has length T-40.
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much better forecasts than either the original SoP approach of predictive regressions or the

historical average. In the sequential case, EMD- based Sum-of-Parts outperforms the his-

torical average in 38 countries, while the original SoP outperforms the historical average in

33 out of 44 countries (Table 1 (a)). The greatest improvements can be found in Pakistan

(28.95%) for EMD Sum-of-Parts and Greece for the original approach (2.64%), while the

average improvements are 12.46% for EMD Sum-of-Parts and 0.96% for original SoP respec-

tively. When all countries are present, EMD Sum-of-Parts performs better for 40 countries,

with Pakistan improving the most in both cases (32.65% for EMD Sum-of-Parts, 6.25% for

original SoP) (Table 1 (b)).

Out-of-sample (OOS) R2 is vastly in favour of EMD Sum-of-Parts, with Pakistan re-

porting the highest OOS R2 (54.46%) and 7 countries being above 30%, compared to a

maximum OOS R2 of 5.72% (UK) and 5 countries above 3% for original Sum-of-Parts in

the sequential case. When all countries are present, the results improve further. The max-

imum OOS R2 for EMD Sum-of-Parts is 56.60% (Pakistan) with 6 countries having values

above 40%, while for original Sum-of-Parts the maximum is 10.66% (Pakistan) with three

countries above 10%. This implies substantial gains for both forecasting methods which are,

however, vastly greater when EMD is used. In the sequential case, EMD Sum-of-Parts leads

to 38 countries with positive OOS R2 compared to 25 for the original case, demonstrating

an improvement in forecasting performance for the vast majority, while with all countries

present the respective numbers are 40 and 35.

Forecast accuracy is tested via a one-sided t-test for mean squared errors (MSE-t test),

similar to the MSE-F tests used in Vivian et al (2013). The test assesses whether the forecast

error from Sum-of-Parts is smaller than the historical average for each country in the sample.

In terms of statistical significance, the MSE-t tests reveals that for EMD (original) Sum-

of-Parts there is statistical outperformance in 26 (5) countries at the 10% significance level

for the sequential case and 30 (12) for all countries present. However, this, at least partly

reflects the well-known lack of power for this test which is unfortunately an issue that has

not yet been resolved in the context of non-nested models. Differences in development or

geographical location do not seem to play a role.

Table 2, panels (a) and (b) contain the results for the HLN encompassing tests. The
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results for the portfolio weights under SoP forecasts are designated by (l1/λ1, p1), and for the

portfolio weights under the historical average benchmark by (l2/λ2, p2). For the sequential

case under EMD Sum-of-Parts (Panel a), the optimal weight λ1 is positive for all countries.

Further, the optimal weight is greater than 0.5 in 38 of the 44 countries, which signifies

more weight on the SoP forecast than the benchmark. The encompassing test results report

that the weight on the SoP forecast is statistically different from 0 at the 10% level for all

44 countries (p1). By contrast, for the historical average forecast, the optimal weight λ2 is

statistically significant only for 20 countries (p2 < 0.1) and greater than 0.5 for 6. Three

countries report negative weights, indicating that for those countries there is no value to

following the historical average forecast at all. Original Sum-of-Parts for the sequential case

still performs better than the historical average. 17 countries report statistically significant

weights at the 10% level and 25 report weights above 0.5, while for the historical average

there are 19 countries with weights above 0.5, 8 with statistically significant and 9 with

negative weights.

The results are stronger in the all countries present case (Panel b), where the improvement

for original Sum-of-Parts is considerable. 35 countries now report weights above 0.5, 20 are

statistically significant and only 2 have negative weights, while for the historical average 9

countries are above 0.5, 7 are statistically significant and 22 have negative weights. Thus,

overall, our results suggest that the SoP forecasts are greatly preferred to the historical

average forecasts when EMD is used. However, for many countries the difference is not

statistically significant. Consequently, how well these models perform in portfolio allocation

tests will be of great interest to see how these competing approaches compare from the

perspective of a real-world investor looking to allocate their portfolio across countries.

5.2. Portfolio performance for a US-based investor

We now begin to answer to the key question of this paper how valuable are return forecasts

to an investor looking to allocate funds globally. The empirical results are presented in in

Table 3, Panels a, b and c, which present the economic value to an investor based in the US

(base case) and a selection of developed and emerging economies, based on Sharpe ratios

and certainty equivalents. The constrained (no short-selling) case is reported in Panel a, the
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unconstrained (short-selling allowed) case in Panel b and the all equity case (no risk-free

asset) in Panel c. Panel c reports constrained (C) and unconstrained (UC) portfolia jointly

Each panel contains 9 countries (US, UK, Germany, Japan, Switzerland, South Africa, India,

China, Chile) and for each country annualised Certainty Equivalents (CE), Sharpe ratios

(SR), portfolio returns (R) and standard deviations (SD) are reported for the forecasts being

the historical average (HA), the original Sum-of-parts method (OR SoP) and EMD Sum-of-

Parts (EMD SoP) over the 73-18 (sequential) and 93-18 (all countries present) periods as

well as the direct and iterative methods for calculating optimal portfolio weights.

For the US (Panel a), it is clear that the SoP method leads to increases in the Sharpe

ratio over the full sample period. The Sharpe ratios from the EMD SoP method are huge

in comparison to the other approaches; for EMD SoP using iterative weights the Sharpe

ratio is 1.24 which is much higher than the original SoP, 0.49, and the historical average

benchmark, 0.29. For the unconstrained portfolio (Panel b), the results are again greatly in

favour of EMD SoP. Both the iterative and the direct portfolios are slightly higher but the

direct method now produces a higher Sharpe ratio of 1.56 compared to 0.22 for the original

SoP and a negative ratio of -0.07 for HA. When the allocation is purely amongst risk assets,

i.e. the country equity indices (Panel c), we have a similar picture. The Constrained results

for the Sharpe Ratios are 1.24 for EMD SoP, which is still considerably higher than 0.49

for original SoP and 0.39 for HA, while the Unconstrained portfolia produce a substantially

increased Sharpe ratio of 2.15 compared to 0.6 and 0.31 respectively.

On certainty equivalents, there are modest gains from implementing the original SoP

method of about 2.0% p.a. whereas for the sequential EMD approach the gains are 8.80%

using the iterative approach for the constrained portfolio (Panel a) and 23.20% for the all-

equity approach (Panel c); the magnitude of the gains for the fully approach reflect the high

returns and Sharpe Ratios generated. The unconstrained portfolio shows even an greater

improvement of almost 3% for OR Sop and 25% for EMD SoP (Panel b), while the all-equity

unconstrained case the gains are almost 7% and 76% (Panel c). The results for the 93-18

period are qualitatively similar. Specifically, the EMD SoP maintains Sharpe ratios above

1.2 for the iterative (Panel a) and the all-equity approach (Panel b). The original SoP has

slightly higher Sharpe ratio at around 0.57. The HA increase to 0.4 but the HA fully remains
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about the same. The economic gains are also of similar magnitude for the EMD SoP method

at 8.57% for the iterative approach and 21.45% for the fully approach. The gains for the

original SoP method remain positive and for the fully approach increase to 4.0%.

The Sum-of-Part forecasts lead to a vast increase in portfolio performance compared to

historical average in almost all cases for both SoP methods. The increase is most pronounced

when a risk-free asset is not used (Panel C) and when short-selling is allowed. However, the

portfolia that use EMD rather than the original approach for Sum-of-Parts forecasts report

Sharpe ratios that are often twice as high, or higher, reaching values of 2.91 (Panel b 93-18)

and 3.1 (Panel c UC). When compared to the Sharpe ratios generated by portfolia using

historical averages, the difference can be more than four times higher. Certainty Equivalents

follow the same pattern as the Sharpe ratios across all panels, with EMD SoP often reporting

gains of 20-25%. The increased performance is attributed to the forecast improvement of

the FX and GE components under EMD SoP. The parts forecasted by predictive regressions

or using the last known value performe quite worse by comparison, leading to a worse SoP

forecast.

Although there is not a definite pattern on whether the direct or iterative method for

calculating optimal portfolio weights is preferable, the iterative method appears to have an

advantage in the absence of short-selling. Across the entire Panel a (constrained portfolia) the

iterative method produces higher Sharpe Ratios, some times substantial, for both EMD SoP

and OR SoP forecasts. In Panel b (unconstrained portfolia), the direct method outperforms

the iterative method for EMD but there is no clear pattern for OR SoP. On the other

hand, a comparison between including a risk-free asset and having an all-equity portfolio

is revealing. For constrained portfolia, investing in a risk-free asset or not does not affect

the Sharpe Ratio in the US - the respective values for the iterative case in Panels a and

c are very similar for both samples. On the other hand, if short-selling is allowed, the

differences between Panels b and c are much more pronounced. For sequential EMD SoP,

the Sharpe ratios are 1.56 (direct), 1.33 (iterative) and 2.14 (all equity) while in the 93-18

sample the values are 2.91 (direct), 2.13 (iter) and 3.12 (all equity). The same holds for

OR SoP, although with considerably lower Sharpe Ratios. This demonstrates that the more

aggressive the allocation of a portfolio the more important forecast accuracy becomes, as
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it leads to considerably increased performance. A better performing method can lead to

exponential financial and economic gains.

5.3. Portfolio performance for different home countries

To control for country bias in our results and our data, we conduct the same estimations

using 8 alternative home countries. The results show that the method performs comparably

regardless of the domicile of the investor. Broadly, the results are qualitatively similar,

although there is moderate variation in some of the magnitudes. Firstly, in terms of the

HA there is substantial variation in performance depending on the domicile of the investor.

In Panel a, for both sample periods EMD SoP Sharpe Ratios are typically between 1 and

1.3 (iterative), OR SoP values range between 0.3 to 0.65 and HA values range between

0.2 and 0.4. The respective Certainty Equivalents range between 10 and 12% with some

upwards exceptions, 0.5 to 2.5% (OR SoP) and close to zero, if not negative (HA). This

is a markedly homogeneous pattern that does not change in Panel b, but more variation

and higher values appear. EMD Certainty equivalents are around 25% while OR SoP CE

are 5-10%. However, in the 93-18 sample, the original Sum-of-Parts method is sometimes

outperformed by the historical average. Us, UK, Germany, Japan, South Africa, India and

Chile report negative Certainty Equivalents and Sharpe Ratios that are below those of the

Historical Average. Notably, EMD vastly outperforms both, with many Sharpe Ratios being

close to 3. Panel c reports the greatest divergence between EMD SoP and OR SoP. While,

as noted earlier, the Constrained results are very similar to Panel a, the Unconstrained

case reports staggering differences in Certainty Equivalents. All sequential EMD Certainty

Equivalents range between 50 and 75%, and Sharpe Ratios of 1.5 to 2, while OR SoP

reports CE of 4-8% and SR around 0.5. The 93-18 sample reports even higher respective

values. EMD Certainty Equivalents are now between 75-100%, with China having a 282%

value, while Sharpe ratios are often 2.5-3. OR SoP results are also increased but remain

incomparable.

Apart from acting as a successful robustness test, our results show that the Sum-of-

Parts method is applicable to countries outside the US. Although investors located in both

developed and developing economies experience economic and performance gains, it is no-
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table that non-Western home countries perform comparably, if not better, to their Western

counterparts. This observation becomes more apparent in Panels b and c, where CE and

SR values are quite similar and often outperform the US, the UK, Germany, Japan and

Switzerland.

5.4. The effect of data frequency

Ferreira and Santa-Clara (2011) report an out-of-sample R2 improvement of 13.4% with

quarterly data and 1.3% with monthly data. Although this is to be expected, it is natural

to check the robustness of our results with monthly data and see if the qualitative patterns

we identify change. Table A.7 in Appendix A contains the collected results on the US

for Theil’s U, Sharpe Ratios and Certainty Equivalents for monthly data. There is not a

significant difference for EMD Sum-of-Parts. 37 countries beat the historical average, with

a maximum improvement of 17.6% and a mean improvement of 8, 91%. The CE and SR

values are also comparable to the earlier quarterly results for both the sequential and the

all countries present portfolia. Thus, data frequency does not materially affect forecasting

accuracy and performance. The results are weaker for original Sum-of-Parts, where only 15

countries perform better than the historical average in the 73-18 period. However, Sharpe

ratios and Certainty Equivalents are quite higher than those under HA forecasts, implying

that an improvement even in a small cluster of countries can be beneficial. As earlier, the

all-equity (fully) portfolio performs best.

6. Conclusion

This paper primarily investigates whether forecasting of international stock returns is

beneficial to an investor with a global mandate. Firstly, we demonstrate the sum of the parts

method can be (easily) augmented to suit an international investment setting. Specifically

returns are decomposed into four components rather than three with the foreign exchange

rate return added (to earnings growth, the dividend yield and the change in price-earnings

ratio). Secondly, we examine whether stock returns can be forecast in each of the 44 countries

in our sample. We find in general that the sum of the parts method can lead to improved

forecasts especially when empirical mode decomposition (EMD) is used. Thirdly, we examine
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our key question of whether return forecasts can be used in real-time portfolio allocation

by an investor with a global remit and whether this improves performance over using the

historical average benchmark. We demonstrate that substantial gains are possible both in

terms of the economic value and in terms of portfolio performance metrics and the individual

forecasting of each component provides a substantial improvement in the performance of an

international portfolio under mean-variance optimisation. Specifically, EMD Sum-of-Parts

forecasting performs much better than the historical average forecast. Our main finding is

that by using a Sum-of-Parts approach that substantial gains are feasible to a global investor

regardless of which country they are domiciled in.

Tables and Figures
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Table 1a: US Theil U, Out-of-sample R2 and MSE tests for Original and EMD Sum-of-Parts, 73 – 18
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Table 1b: US Theil U, Out-of-sample R2 and MSE tests for Original and EMD Sum-of-Parts, 93 – 18
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Table 2a: US HLN Encompassing tests for Original and EMD Sum-of-Parts forecasts, 73–18
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Table 2b: US HLN Encompassing tests for Original and EMD Sum-of-Parts forecasts, 93–18
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Table 3: Theil’s U statistics for different home countries
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Table 4a: Constrained portfolio metrics: annualised certainty equivalents (CE), returns (R), standard 

devi-ations (SD), Sharpe Ratios for US, UK, Switzerland, Japan, Germany, S.Africa, India, China, Chile
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Table 4a continued
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Table 4b: Unconstrained portfolio metrics: annualised certainty equivalents (CE), returns (R), standard 

deviations (SD), Sharpe Ratios for US, UK, Switzerland, Japan, Germany, S.Africa, India, China, Chile
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Table 4b continued
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Table 4c: All-equity portfolio metrics: annualised certainty equivalents (CE), returns (R), standard devia-

tions (SD), Sharpe Ratios for US, UK, Switzerland, Japan, Germany, S.Africa, India, China, Chile
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Table 4c continued
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Appendix A. Additional Graphs
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Figure A.5: Descriptive statistics and Datastream codes
Note: All values are reported in logs with quarterly frequency between June 1973 and November 2018 (where available). 

Country observations range between 183 for the whole period and 99 for Poland, which has the shortest sample. The codes 

refer to the price index in local currency. For other series adapt as in the example for Australia: TOTMAU$(RI)∼U$ for the 

price index in USD, TOTMKAU(DY) for the dividend yield, TOTMKAU(PE) for the price-earnings ratio.

33



Figure A.6: Sum-of-Parts examples

Note: The index in the numerical example does not include dividends. In the real data example, the index is the total return 

index which includes dividends, and the dividend value is the annualized value.
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Figure A.7: Country Theil’s U, Sharpe Ratios (SR) and Certainty Equivalents (CE) for the US, monthly 

data
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