Routing-Oblivious Network-Wide Measurements

Ran Ben-Basat, Gil Einziger, Shir Landau Feibish, Jalil Moraney, Bilal Tayh, Danny Raz

Abstract—The recent introduction of SDN allows deploying
new centralized network algorithms that dramatically improve
network operations. In such algorithms, the centralized controller
obtains a network-wide view by merging measurement data from
Network Measurement Points (NMPs). A fundamental challenge
is that several NMPs may count the same packet, reducing the
accuracy of the measurement. Existing solutions circumvent this
problem by assuming that each packet traverses a single NMP
or that the routing is fixed and known.

This work suggests novel algorithms for three fundamental
network-wide measurement problems without making any as-
sumptions on the topology and routing and without modifying
the underlying traffic. Specifically, this work introduces two
algorithms for estimating the number of (distinct) packets or
byte volume in the measurement, estimating per-flow packet
and byte counts, and finding the heavy hitter flows. Our work
includes formal accuracy guarantees and an extensive evaluation
consisting of the realistic fat-tree topology and three real network
traces. Our evaluation shows that our algorithms outperform
existing works and provide accurate measurements within rea-
sonable space parameters.

I. INTRODUCTION

Network algorithms such as routing, load balancing, qual-
ity of service enforcement, anomaly detection, and intrusion
detection require knowledge about specific properties of the
underlying network traffic [37], [41], [49], [21], [36], [29].
Furthermore, applications such as traffic engineering [21],
detecting packet loss [44], [55], and identifying traffic patterns
such as super-spreaders and port scans [53] require network-
wide measurements. In such measurements [6], [8], [9], [38],
[40], [28], [43], [26], [54], [14], [11], a centralized controller
collects measurement data from multiple Network Measure-
ment Points (NMPs) and merges that data into a coherent
network-wide view of the traffic as illustrated in Figure 1.

Monitoring is challenging in multiple levels. First, we need
to cope with the rapid line transmission rates within each
NMP, and thus many works are optimized toward performing
efficient single NMP measurements [46], [27], [33], [16], [17],
[32], [18], [23], [51], [13], [12]. Network-wide measurement
exposes new challenges such as the NMP placement problem.
Namely, when considering the richness of SDN routing algo-
rithms it is desirable to allow packets to (potentially) traverse
multiple NMPs without double counting. Other challenges
include optimizing the bandwidth between the control and the
NMPs [38].

The majority of existing solutions avoid the NMP placement
problem by assuming that packets are only monitored within
a single NMP [6], [38], or by assuming a restrictive routing
model [43]. Placing NMPs so that no packet traverses more
than a single NMP requires knowledge regarding the routing
and topology of the network. Furthermore, re-transmissions
due to packet-loss may cause a single NMP to encounter the
same packets twice. Worse yet, technologies such as multicast

Centralized
Collector

Fig. 1: An overview of Network-wide measurements. NMPs
are placed in some network devices, and the centralized con-
troller collects and merges their measurement into a network-
wide view. When packets traverse multiple NMPs, they appear
in the summaries of multiple NMPs, and the controller needs
to avoid double counting them.

may cause a large portion of the traffic to traverse multiple
NMPs. FlowRadar [43] assumes that each flow follows a single
(and fixed) routing path. Therefore, it is not compatible with
Multipath TCP that uses multiple paths to route a TCP flow.

The NMP placement problem was recently studied in [6].
In this work, the authors make use of unused bits in the IP
header to mark packets in the first NMP they encounter. Such
marking allows for other NMPs to avoid double counting
by ignoring marked packets. However, there are significant
limitations. First, an attacker can avoid detection by marking
the unused bits of its traffic. Further, other entities are free to
use the unused bits as they see fit, and thus some of the packets
may be transmitted with set unused bits, and be ignored by all
the NMPs. Therefore, a practical deployment requires actively
clearing the unused bits of all packets that enter the network.
Further, for good network citizenship, it is advised to clear the
unused bits prior to egressing the network. However, clearing
the unused bits once packets enter and leave the network
complicates the deployment. Thus, a passive measurement
solution that does not modify the network traffic is preferable.

A. Our Contribution

We suggest a novel network-wide algorithm for collecting a
uniform sample from a network without double counting, and
in a routing and topology oblivious manner. Based on this
sample, we present algorithms for there fundamental moni-
toring problems: (i) estimating the total traffic byte volume
or the number of (distinct) packets in the measurement. (ii)
estimating per-flow packet or byte count, and (iii) reporting
the heavy hitter flows (according to byte or packet count).

Within the more general context of count distinct algo-
rithms, our work improves the state of the art for weighted
count distinct algorithms. From another point of view, our

work is the first to offer network-wide and routing oblivious
algorithms for byte based measurements.

II. PRELIMINARIES AND BACKGROUND

This section aims to grant the reader a brief introduction
to the model, and problem definition in Section II-A. Then,
Section II-B positions our work within the context of prior
works in the field.

A. Model and Problem Definitions

Our data consists of a stream of packets S € (U x N x N)*,
where each packet (x, 4, w) is associated with a flow identifier
x € U, a packet identifier 1 € N, and a weight w € N. Flows
can be any partition of the traffic to non-overlapping groups
(e.g., they can refer to source or destination IP addresses,
source-destination IP pairs, or 5-tuples). Packet weight may be
the byte size (or the payload size) for byte volume measure-
ments, and can be unit weights for packet based measurements.

We assume that each flow, and each packet have unique
identifiers. For flows, 5-tuples are natural identifiers. However,
packets have no obvious identifiers. For the TCP protocol, we
can use the sequence number as a unique identifier, while for
other protocols we can use previously suggested methods [30],
[55]. We assume a bound n > max {|S|, ||} on the stream
size which is known in advance. We use a RAM machine with
6(logn)-sized words for the complexity analysis.

The network consists of z Network Measurement Points
(NMPs) Ry, ... R,, each observes a subsequence of the stream
S; C S such that U7_;S; = S. That is, packets may traverse
multiple NMPs, but we assume that each packet traverses at
least a single NMP. This is a more general model than the
one studied in previous works [38], [40], [52]. Specifically, in
such works no packet traverses multiple NMPs.

The frequency of a flow x € U is the total weight of all
packets with the same flow identifier: f, 2 Z(x,i.me sw.
The total weight of all packets in the stream is denoted by
|S|. Given a threshold 6, the heavy hitters are all the flows
whose frequency is larger than 6 - |S|. We summarize the
notations used in this paper in Table L.

1) Problem Definitions:
network-wide problems:

We consider the following

e (£,0)-DISTRIBUTED VOLUME ESTIMATION: Return an
estimator V' for the overall number of packets in the net-
work. With probability 1—4, V is a (1+¢) multiplicative
approximation for |S].

e (g,0)-DISTRIBUTED FREQUENCY ESTIMATION: given a
query for flow = € U, return an estimator fz that satisfies:
Pr||fo = f| > ISIe] <6

e (£,0)-DISTRIBUTED HEAVY HITTERS: Upon a query
with parameter 6, return a set S C U/ such that:

(D) Pr[3z | fo > |S|0 Az &S] <4, and
(2) for all y € U such that f, < |S|(6 —¢) we have that
Prly € S| < de.

Symbol | Meaning
S The packet stream
n An upper bound on the length of the stream (n > |S))

NMP Network Measurement Point

(z,1) A packet from flow x with sequence number ¢
Uu The universe of flow identifiers
fz The frequency of flow z € U
z The number of NMPs
R; Router number i (i € {1,...,2})
S; The sub-stream seen by router R; (Useq1,... 1S = S)
\% An estimate for |S]|
€ The goal error parameter
0 The goal error probability
fz An estimate for the frequency of flow =
% Heavy hitter threshold
A A Count Distinct algorithm with an (4,0,) guarantee

Se, .5 The space that A requires
K Fat-tree parameter.

The sample size required for an (e, §) approximation

X as in Lemma 2 (x = 3¢~ 2log 26— 1)

TABLE I: A list of symbols and notations

B. Background

Here, we provide the technical background necessary to
understand our work. In Section II-B1 we survey count
distinct algorithms which lay the theoretical foundations
to our work, then Section II-B2 surveys the Beta dis-
tribution that we use in order to extend our work for
byte measurements. Finally, Section II-B3 explains prior-
ity sampling which is a sampling method that we adopt
to network-wide byte measurements. Understanding how
priority sampling works,is necessary to understand our
Network-Wide Priority Sampling (NWPS) algorithm.

1) Counting Distinct Items: Our work adapts the K'"
Minimum Value (KMV) count distinct algorithm of Bar Yossef
et. al [10] to solve the (g,d)-DISTRIBUTED VOLUME ESTI-
MATION problem in distributed settings. The KMV algorithm
is originally suggested for counting the number of distinct
items in a stream. KMV assigns a hash value in the range of
[0,1] for each item and maintains the smallest y hash values.
Let p be the largest of the x smallest hash values. KMV
estimates the number of distinct items as x - p~ 1. Intuitively,
after 1,000 distinct items the tenth smallest hash value is
expected to be 0.01. In general, a count distinct algorithm A
provides a (1 + €4)-approximation of the number of distinct
items with probability > 1 — 4.

Count distinct algorithms support three functions; A.ADD(-)
that processes items, A.QUERY () that estimates the number of
distinct items, and MERGE(A1, A,) that merges two instances
A; and A, into a unified instance that monitors S; U S,
where S7, and Sy are the streams processed by A; and A,
respectively. This interface is satisfied by the KMV algorithm
as well as many other count distinct algorithms [7], [25], [34],
[35], [39], [42]. For example, recall that the KMV algorithm
calculates a hash value for each item, and maintains the
minimal k& hash values. A merge operation accepts 2 - k£ hash
values (k from each instance), and retains the k£ minimal hash
values (out of the 2k values). Notice that the same values are
obtained by a single KMV algorithm that processed S; U Sa,
which is a property that we later exploit to achieve unbiased

[Problem |

Space in Bits |

Update Time

DISTRIBUTED VOLUME ESTIMATION
DISTRIBUTED FREQUENCY ESTIMATION

0] (5_2 -logé—1 ~logn)

| Query Time | Theorem # |

o) :

O(1) amortized

DISTRIBUTED HEAVY HITTERS

O (=2 -log(e=16—1) - logn)

G 6

TABLE II: Summary of our results for the UWRA algorithm. n is an upper bound on the number of packets/bytes (n > |S|).
The amortized constant time of the weighted variants of the DISTRIBUTED FREQUENCY ESTIMATION and DISTRIBUTED
HEAVY HITTERS problem holds in expectation once the NMP sees enough packets, as explained in Theorem 3.

uniform samples.

2) The Beta Distribution: Our work also utilizes the Beta
distribution to perform weighted (byte count based) network-
wide measurements. The Beta distribution is a continuous
probability distribution over the real interval [0, 1], that al-
lows us to calculate the minimum of r uniform variables
directly without randomizing w variables. Specifically, the
minimum of X1,... X, ~ UJ[0, 1] is distributed as Beta(1,r).
Fortunately, Beta(1,r) can be efficiently calculated for any
r > 1. Specifically, if U is a uniform variable [0, 1], then
UY" ~ Beta(1,r) [25].

3) Priority Sampling: Priority Sampling (PS) [31] is a
known method for sampling weighted items. Our work adapts
and extends PS to network-wide measurements. Hence, we
survey the method for completeness.

Given a packet (z, 4, w) of weight w, PS first randomizes a
uniform number o ~ UJ[0,1], and assigns the packet with
a priority of p £ <. PS maintains a table that stores for
each packet: (i) the flow id (z), (ii) the packet id (z) , (iii)
the priority (p), and (iv) the weight (w). PS maintains a list
of the x highest priority items. Denote by 7 the smallest
priority of any packet in the list (the y-largest priority in the
stream). The adjusted weight of a sampled packet (x,i,w)
is the maximum between 7 and w, and that of unsampled
packets is 0. The adjusted weight is an unbiased estimator to
the packets’ weight. Intuitively, we always sample packets with
weight w > 7 (and their adjusted weight does not increase),
the probability to sample packets whose weight (w) is smaller
than 7, is w/7 and their adjusted weight is 7.

III. NETWORK-WIDE ALGORITHMS

In this section we define the distributed uniform sampling
(DUS) algorithm for packet based measurements. Then Sec-
tion III-E suggests two extensions of DUS to byte based
measurements.

A. Distributed Measurement

We start by providing a sampling-based solution for packet
based measurements (w=1). In a gist, we map each packet
to a hashed value which is uniformly distributed in [0, 1], and
each NMP stores the y minimal-hash packets (or their headers)
using a heap data structure. Note that when a packet traverses
multiple NMPs it receives the same hashed value in each NMP.
We keep O(logn) bits for the hash and identifier, we have that
the overall memory at each NMP i: O (72 -log 6! - logn).
We name this algorithm the Distributed Uniform Sampling
(DUS) Algorithm [15].

B. Simple Controller Merge Algorithm

At the end of every epoch, each of the z NMPs sends its
x-sized sample to the centralized controller. The controller
merges all the samples, and retains the y globally minimal-
hash packets in the entire measurement. Note that the x
globally minimal-hash packets, are the same regardless of the
number of NMPs traversed by a single packet. Thus, since
hash values are uniformly distributed, the merged sample is
unbiased in the sense that each packet p € S has the same
probability to be sampled. Our preliminary work [15] utilizes
the Simple merge algorithm. However, the controller receives
up to z-x samples, and only retains x samples which implies
that it potentially discards useful information. In Section III-C
we introduce a better merge algorithm.

C. Improved Controller Merge Algorithm

We adapt the procedure of Cohen and Kaplan [24] for
efficient merging to our settings. Their procedure, produces
a sample of size x' > x as follows: For i € {1,...,k}, let
T; be the x’th smallest hash value measured in NMP i'. Let
T =min{T; | i€ {1,...,k}} be the minimum across all the
T;’s. Then, the controller selects all packets whose hash value
is smaller than 7. This process yields a merged sample which
is larger or equal to x as T is never smaller than the x’s
globally minimal hash value. However, there may be more than
x hash values, which are smaller than 7'. Thus, the controller
attains a larger and more accurate sample. Cohen and Kaplan
showed that this merge algorithm is unbiased, which implies
(in our case) that the obtained sample is unbiased. Specifically,
one can verify that if we denote the size of the collected sample
by x’ > x, then the result of Cohen and Kaplan’s algorithm
is the same as merging KMV instances of size x’ using the
simple merge algorithm.

D. Uniform Sample Analysis

1) Merge Complexity: In our suggestion, the samples are
read from all switches at the end of each measurement
epoch. As a result, the time for collecting the samples is
linear in the number of switches and sample size. The over-
all aggregation time, which includes the controller merging
is also linear in the number of samples received, using a
linear-time percentile algorithm [22].

2) Network-wide Volume Estimation: In network-wide set-
tings, it is not trivial to measure the total traffic volume as
each NMP observes a substream and require the cardinally of
the union of all streams without double counting packets that

I1f NMP i sees less than x packets, denote T; = 1.

appear in multiple streams. We provide a controller algorithm
to do just that by employing count distinct algorithms. Our
solution tracks the overall volume of all distinct packets
without assumptions on the network topology, routing, or the
packets’ order. Thus, we explicitly allow packets to be routed
through multiple NMPs.

Once the controller merges the samples (either from the
UWRA or from the NWPS algorithms) it can use the merged
sample to estimate the volume of the measurement. For the
UWRA, we observe that our merged sample can mimic the
KMYV count distinct algorithm [10] (that only requires the hash
values). In NWPS, we estimate the volume to be the sum of
the adjusted priority over all the sampled packets.

3) Network-wide Heavy Hitters: We find the heavy hit-
ters by calculating the portion of all sampled flows in the
measurement. In UWRA, we calculate their portion in the
sample, compare it to the threshold (f) and report flows
whose portion in the sample is at least § — . In NWPS, we
estimate measurement volume ('), and return the flows whose
frequency is above the threshold of V(0 — ¢).

4) Network-wide per flow Frequency Estimation: The
above sampling techniques allow one to estimate the frequency
of a flow if the effective sampling probability p = ﬁ is known
(see Lemma 2). Unfortunately, while y = 3¢ 2log26*
is known, |S| is not. Luckily, we can estimate |S|, using
the algorithm in Section III-D2. We need to carefully select
the error parameters to solve the formal problem. We do so
by setting the error parameters of the volume estimation to
ey =¢/3 and dy = §/2, and the parameters of the network-
wide sample to e, = £/2 and §; = 6/2 (i.e., each NMP tracks
X = 125’3 log 45:1 packets), we can solve the problem by
returning f, = f.V/x.

E. Byte Based Measurements

Byte volume measurements are often desired, and intuitively
we can use the DUS algorithm unmodified for byte volume
measurement by calculating a hash value for each byte rather
than for each packet. Such a method is correct but impractical.
Our Unit Weight Reduction Algorithm (UWRA) algorithm is
a practical implementation of the above intuition as it treats
a packet of weight w as if it is w distinct unit weight
packets. Here, we leverage the Beta distribution for an efficient
implementation of this concept. Alternatively, in Network-wide
Priority Sampling (NWPS), we extend the well-known PS
method to network-wide settings.

1) Unit Weight Reduction Algorithm (UWRA): The UWRA
algorithm treats a packet of weight w as w different packets
of weight 1. We need to calculate w hash values for every
single packet, which is very inefficient. Instead, we use the
Beta distribution to compute the minimum of the w hashes
directly and check if it is among the x smallest entries. If it
is among the x smallest entries, we admit it to the sample
and repeat the process by calculating the 2"¢ smallest hash.
Eventually, we discover that the i*" smallest hash value is
not among the x smallest and terminate. Intuitively, after
seeing enough network traffic, the smallest value is unlikely
to be sampled, and the amortized complexity becomes O(1).

However, during the start of the measurement, we may need to
calculate min {w, x} entries to the table resulting in a worst-
case per-packet complexity of O(min {w, x} log x).

UWRA maintains the same heap data structure as the DUS
algorithm, and each of the) entries contains: (i) Packet
identifier, (ii) flow identifier, and (iii) hash value. Our im-
plementation requires a Pseudo Random Number Generator
(PRNG) [50] to employ the Beta distribution. Intuitively,
a PRNG is a deterministic mapping {0, 1}5 — {0,1}",
for / < n, that computes an n-bit near random string
from an /-bit seed.

When processing packet (x,i,w), we initialize a PRNG
with seed (z,7) and generate pg ~ Beta(1l,w). As explained
in Section II-B2, the distribution of p is identical to that of
min {h({x,,1)), h({x,3,2)),...,h({x,i,w))}; using (z,7) as
a seed for the PRNG ensures consistency and that the same
po value is computed by all NMPs that process the packet.

The next step is to check if pg is smaller than
one of the yx stored elements. If not, then none of
{h({x,7, 1)), h({x,4,2)),...,h({x,i,w))} are among the
bytes with the minimal hash value and the processing termi-
nates. Otherwise, we add (x,4) into the x-sized heap with a
hash value of py. We continue the process as multiple bytes
from the packet may be among the minimal hash values. Next,
we generate p; = po+ (1 —pg) - Beta(1,w —1). As discussed
in Section IV, p; is distributed as the second smallest in
{h({z,i,1)),h({x,i,2)),..., h({z,i,w))}, conditioned on the
minimum being po. The algorithm checks whether p; should be
inserted to the heap and if so proceeds. Intuitively, we reduced
the packet processing time to O(Z log x), where Z is a random
variable that denotes how many updates were performed. This
result follows immediately as we generate Z+1 Beta variables,
each of which requires O(1) time (see Section II-B2), and
make O(Z) updates to the heap data structure. The pseudo-
code of UWRA appears in Algorithm 1. As the algorithm
simulates the unweighted algorithm precisely, we conclude its
correctness and accuracy guarantees.

Algorithm 1 The UWRA algorithm

Initialization, at each router 7: M, <— (x-sized max heap).init()

1: function ADD,(Item z, sequence number ¢, weight w)
> Runs at router R,
> Initialize a PRNG with seed (z, 7)

P + PRNG({z,1))
po < P.generateBeta(1,w)
1+ 0
while (p; < M,.max) A (¢ < min {w, x}) do
M, insert(p;, (x, 1)) > Insert the key p;, delete the max
i i+1
pi < pi—1+ (1 — pi—1) - P.generateBeta(1l,w — i)

A Al

Algorithm 2 The NWPS algorithm
Initialization, at each router 7: M, < (x-sized max heap).init()

1: function ADD, (Item z, sequence number i, weight w)
> Runs at router R,

2 o <+ h({z,1))

3: P+ w/o

4: if (p; < M,.max) then
S:

My insert(p, (z, i, w)) > Insert the key p, delete the max

Our analysis shows that after seeing enough traffic, the

NMP reaches a constant amortized per-packet update time.
Here, “enough” logarithmically depends on the average packet
size in the measurement. UWRA does not assume the av-
erage packet size, and its value is only needed to analyze
the complexity. In practice, packet sizes are bounded by
the communication protocols (e.g., TCP/UDP packets’ size
cannot exceed 64KB). Further, a recent analysis of backbone
and datacenter traces shows that the average packet size is
800 — 1500 bytes [16].

2) Network-wide Priority Sampling (NWPS): Our next
algorithm Network-wide Priority Sampling (NWPS) extends
Priority Sampling [31] to network-wide measurements. In
contrast to UWRA, we only require a single hash calculation
per packet. Specifically, we maintain a y sized table where
each entry stores the packet id, weight, and priority.

As before, we use the same randomization to determine
priority in all NMPs. That is, the same packet receives the
same priority in all NMPs. Note that each packet takes at
most a single place in the table and that the worst-case update
complexity of NWPS is O(log(x)) for maintaining a x sized
heap ordered according to priority. However, each entry in
NWPS is slightly larger than in UWRA, as we also store
weights in the table. Thus, for the same memory constraint, the
UWRA algorithm can have slightly more entries than NWPS.

IV. ANALYSIS

In this section, we provide the needed analysis and the
proofs for the correctness of our algorithms.

We now analyze NWPS (Algorithm 2), which runs in
constant worst case time per packet. Duffield et al. have
shown that Priority Sampling is unbiased, in the sense that the
expected corrected weight for each packet equals its original
weight [31]. Observe that by using hash functions, the sample
collected by the controller is (distributionally) equivalent to
one reached by running Priority Sampling on S, and therefore
we remain unbiased. Recall that a flow size is defined as the
sum of weights of its packets, and the overall stream volume
is the sum of all packets. We can then use the linearity of
expectation to conclude the following.

Theorem 1. NWPS provides unbiased estimators to flow sizes
and the overall volume.

A. Complexity Analysis for UWRA

We now analyze the amortized complexity of UWRA. Intu-
itively, as it samples fewer and fewer bytes as the measurement
progresses, its amortized processing time eventually becomes
constant. We start with examining the number of updates made
in UWRA for a given stream size |S|. Later, we show that this
allows us to prove a bound on the amortized processing time
per-packet of our distributed weight sampling technique.

Theorem 2. The expected number of updates made in UWRA
by NMP (R;) is bounded by O(xlog (|S-|/x))

Proof: Observe that the ¢’th item/byte (z;) is added with
a probability min {1, x/i}. We denote this event by E;. Thus,
the expected number of updates to our algorithm is bounded by

X |Srl
dOPrE]< Y min{lx/i} <Y 1+ x/i
i<|Sr| i<|Sr| =1 X
< x(1+In([S/x) +0O(1)) = O(xlog (IS+]/x)),
where the second equality follows from the fact that
H, £ Y7 .,1/i = In() + ©() is a known
bound for the ¢’th harmonic number. |

We now use the above lemma to show that if the number
of packets/bytes processed by an NMP is large enough then
its amortized update time drops to a constant.

Theorem 3. Once an NMP (R,.) processes

n. = Qxlogxmax{logx,log(A,/x)}) packets, where
A, =|S;|/n, is the average packet weight, then its expected
amortized processing time is O(1) per packet.

Proof: First, let us assume that

ny > cx log x max {log x, log (4/x)} ,

for some ¢ = €2(1). According to Theorem 2, the expected
number of bytes that are sampled from its |S,|-byte sub-stream
is O(xlog (|Sr]/x)). Each sampled byte incurs a O(log x)
time for updating the heap. This means that the expected
amortized processing time is:

xlog xlog (|S./x) _ xlogxlog (n,A,/x)

Ny Ny
_ xlogxlog (n,) , Xlogxlog (Ar/x)
Ny Ny
_ Xlogxlog (exlog®x) | xlogxlog (4r/x)
- cx 10g2x cx log x log (A, /x)
log (¢ex log? 11 log ¢ + log1
_ log(exlog™x) (11 () logetloglogx) _
clog x c c log x

B. Correctness analysis of UWRA

In this subsection, we show that the packets collected by
UWRA form a uniform sample. We start with a lemma, due
to Lurie and Hartley [45], that shows that our generation
of p values in Algorithm 1 has the same distribution as
h({z,i,1)),h({x,3,2)),...,h({z,i,w)), but they are gener-
ated in a descending order.

Lemma 1. ([45]) Let X4,...,X,, be independent uniform
variables. For i € {1,...,n}, let X(; be the i’th order
statistic — the i’'th smallest variable among Xi,...,X,.

Denote by By,...,B,_1 be independent Beta variables
such that B; ~ Beta(n — i,1). Let ¢; = [[;_,B;

for all i € {0,1,....n—1}. Then (to,... Vp_1) =
(X(n)s X1y - X(1))-

We can then use symmetry to reverse the process. That
is, By setting B! ~ Beta(l,n — i), po = B}, and
pi = pi1+ (1= pi1) - B we get that (po,...,pn1) =
<X(1),X(2), e ,X(n)>. An equivalent algorithm can use the
lemma directly by generating the v sequence instead of p and
keeping a min-heap instead of a max heap.

We now claim that UWRA is the same as an hypothetical
algorithm that adds w unit weight packets instead of each w-
sized packet.

Theorem 4. For any S and Sy, ...,S, such that U_,S; =
S, Algorithm 1 allows the controller to attain a (weighted)
uniform sample.

Proof: The proof is by induction on |S|. When § = ()
clearly no packet is sampled. Let S be a packet stream
and let (x,i,w) be a new packet that is processed at a
non-empty subset of Sip,...,S,. Then UWRA computes
h({z,i,1)), h({x,4,2)),...,h({x,i,w)) at all NMPs that pro-
cess the packet. Since for every packet all NMPs use a PRNG
with the same seed, the process is equivalent to that obtained
by using the unweighted algorithm and replacing each w-sized
packet with w bytes. Finally, as long as (p; > M,.min) and
1 < x' we generate that all packets ascending order of hash
value are sampled as in Lemma 1. [|

The remainder of the section deduces formal accuracy
guarantees given a uniform traffic sample. Therefore, it applies
to the UWRA algorithm but we were unable to prove this
property for the NWPS algorithm in weighted streams.

C. Volume Estimation Correctness

The correctness of our algorithm for volume estimation
follows immediately from the analysis of KMV [10].

D. Frequency Estimation Correctness

We start with the following lemma that determines the
required sample size to perform frequency estimation. For
simplicity, in this section we assume that the algorithm was
able to collect exactly x samples (which is the worst case for
our merging procedure).

Lemma 2. Denote x = 3¢ 21og20~ . Let S’ € (i) be a

random subset of size x of S and let p £ % be the probability
in which each packet is sampled. If we denote by f! the
frequency of a flow x € U in ', then

Pr(lp="f; = ful > ISle] < 6.

Proof: We wuse the Chernoff Bound [48] that
states that for all 0 < ¢,p° < 1 and n € N, a
binomial random variable X ~ Bin(n,p’) satisfies

Pr|X —np/| >t-np/] < 2ePT/3 Let X denote the
number of appearances of x in §’. Then X ~ Bin(f,,p) and
according to the inequality

Pr [[p™' fi = fal > |Sle] = Pr[|f; = pfal > pISle]
:PrW—mu>mf¥ﬂg%wMﬁWw

1.2
F L elsing . _(x'e \5|>
:2@_%f’”(fz‘) /5:26 (3w
|S|log2s—1 _
< 2e” B < Qe log 28 >

|
Theorem 5 utilizes Lemma 2 to solve the formal frequency
estimation problem.

Theorem 5. There exists an algorithm that requires:

0] (672 -logé—!-log n) bits at each NMP, processes packets
in O(1) amortized case time, and solves (g,)-DISTRIBUTED
FREQUENCY ESTIMATION.

Proof: Recall that our algorithm sets the error parameters
of the volume estimation to ey = ¢/3 and o0y = §/2
and the parameters of the distributed sampling to 5 = /2
and 0; = J/2. This means that by the correctness of the
DISTRIBUTED VOLUME ESTIMATION algorithm, we have that
V is a (1 + ey) multiplicative approximation of |S|, i.e.,
Pr {HA/ —|S]| > \S|<€V] < dy. Recall that we observe the
sampled frequency of the queried item f!, and that according
to Lemma 2:

Py Qi'f; — o > 1Sle] = Prlpfs — £l > 18l <
ds. Since dy + 05 = J, we have that with probability 1 —
‘%f; - fx‘ < |Sles and |V — S| < |S|ey. Recall that our
estimator is]?IA: 1V /x. Therefore, since 0 < f, < |S] and
e<l,weget: fo—fo=FiV/x—fo < (A4ev)fLIS|/x— [z
< (L +ev) (2ISI/x = fz) + [S|ev

< (1+ev)|Sles + |Slev = |S|(ev + &5 + eves) = |Sle.
Similarly:

f\z - fm = f;‘/}/X - fm > (1 75V)fr2‘8|/x - fx
> (L—ev) (£2IS1/x = fa) = |Slev
> —(1—¢ev)|Sles—|Slev = —|S|(ev+es—eves) > —[S|e.

We thus conclude that Pr Hfm — fm‘ > |S|£} < dy + 85 = 0.
Finally, since ey = 5 = O(e) and §y = §; = ©O(4), the
memory per NMP is O (72 - log 6! - logn). [

E. Heavy Hitters Correctness

The following theorem shows that our Heavy Hitters algo-
rithm is correct.

Lemma 3. Let £,6,0 > 0 and X' £ [9z2log(26'c™1)].
Let §' € (f,) be a random subset of size X' of S. If we
denote by f. the frequency of a flow ©x € U in S', then
S&{x eS| fl>(0—¢c/2)x'} solves (¢,5)-DISTRIBUTED
HEAVY HITTERS.

Proof: Denote by H 2 {x €U | f. > |S|0} be the set
of true heavy hitters, and let z € H. We apply Lemma 2 with
§' =de and &' =¢/2 to get

Pr(f, < (0 —¢/2)x'] =Pr[f; < (6 —<)x]

= Pr [@fé < ‘Sl(ﬁ*él):| = Pr {@fé —fu < |S|(07€/) ffz}
X X
SHP§ﬂ7h<wa&fBﬂ
=Pr [@f; — [z < —\S|€’] < Pr [E/‘f; — fu| > ‘S‘E/} <d.
X X

Thus, the probability of each x € H to not be reported is
at most ¢’. We then use the Union bound to conclude that
the probability all of H is successfully reported in H is at
least 1 — |[H|' > 1 -6 > 1—¢e71¢ > 1— 4. Next,

let NH £ {yeU| f, <|S|(0 —¢)} be the set of non-heavy

flows and let y € N H. Then, we use Lemma 2 for y to obtain
’ _ n— @ / — £

Pr [fy > (0 E/Q)X] =Pr v fy > |S1(0 =€)

S
P {‘X—,‘f;, R T fy}

S ! !
<pr ['X—'f R . \S|<efe>}
=Pr {‘j—/‘f; — fy> ‘S‘E/:| <Pr |: f—/‘f; — fy| > \S|6/:| <& =de.

We thus conclude that our method of examining just the
sampled set S’ solves DISTRIBUTED HEAVY HITTERS. [|
Theorem 6 is the main result of the heavy hitter problem.

Theorem 6. There exists a network-wide heavy hitter algo-
rithm that requires O (6_210g ((5‘16_1) log n) bits at each
NMP, processes packets in O(1) amortized time, answers
queries in O(0~1) time, and solves (e,5)-DISTRIBUTED
HEAVY HITTERS.

Based on the correctness of Lemma 3, the space requirement
stated in Theorem 6 follows immediately. For answering
queries in O(A~1!) time. To do so, the controller keeps the
sample S’ sorted by the observed frequencies {f.}.

V. EVALUATION

In this section, we evaluate UWRA and NWPS on real
network traces for packet and byte volume measurements.

Evaluated Algorithms: When applicable, we compare
UWRA with existing approaches. The notation DUS denotes
the earliest version of our algorithm [15] that does not support
weights and uses the simple controller merge algorithm from
Section III-B. DUS also uses the HyperLoglLog algorithm
(HLL) for volume estimation, so we compare directly with
HLL in that problem. In weighted volume estimation, we
compare our work with the CKY estimator that generalize
HLL to the weighted count distinct problem [25]. Since
there are no previously suggested algorithms for network-wide
and routing oblivious byte volume based per-flow frequency
estimation, and heavy hitters detection then we compare our
own UWRA and NWPS that utilize the advanced merge
algorithm from Section II-C, to UWRA simple, and NWPS
simple that use the simple merge algorithm from SectionIII-B.
We vary the number of samples stored per NMP y, which
affects the memory consumption. As a point of reference,
modern switches have 50-100MB of SRAM space [47] and
support 400Gbps ports for a total throughput of 12.8Tbps [5].
We note that the switch memory is shared across all of its func-
tionalities and thus it is important to check the performance
when only a fraction of it is allocated for the measurement.

Implementation: We used our C++ prototypes for UWRA
and NWPS [4], and for DUS [3], an open source project for
HLL [4], and our own implementation of CKY.

Datasets: We used the following datasets:

1) The CAIDA Internet Trace 2016 [1], from the Equinix-

Chicago high-speed monitor, denoted Chicago.
2) A data center trace [20], denoted by Univ.

-k
o 107 el
P
3
© 10°;
Q.
S .
3 10°; "
° UWRA
g 104/ -4- NWPS
= UWRA simple
1031 —+— NWPS simple

104 105 106
Samples Per NMP (x)
Fig. 2: Merged sample size for packet based measurements on

fat-tree topology with parameter K = 8.

103

3) The CAIDA Internet Trace 2018 from New York City,
denoted by New York [2].

We used the sequence number as a unique identifier for TCP
packets. For the few UDP packets, we artificially assigned
identifiers but in principle [30] shows a method to generate
identifiers to such packets.

Metrics: We consider the following performance metrics:

1) Mean Square Relative Error (MSRE): Measures the av-
erage of the squares of the relative errors, i.e., given the
estimations (a1, as, ..., a,) and true values t1,ts, ..
the MSRE is: + Y 7i=7 (24)?

2) Root Mean Square Error (RMSE): Measures the dif-
ferences between predicted values of an estimator to
actual values. fomally, for each flow x the estimated

frequency is f, and real frequency is f,. RMSE is

calculated as: \/ & 3 (fo — f.)2.

3) Fl-score: is a common way to estimate the quality of
heavy hitters, where higher values are better. It is the
harmonic mean of (1-FPR) and (1-FNR), where FPR
and FNR are the False Positive Ratio and False Negative

Ratio respectively. Form)a(lly, the)Fl score of an heavy
. . 1—FPR)-(1—FNR
hitter set is: 2 - —FPR)T(I—FNE)"

Network Topology Our evaluation uses a fat-tree topology
with parameter K = 8, consisting of 80 switches. Each
network flow is routed through of a single path from a leaf
node to one of the core switches, the paths are selected by
applying a hash function to the flow identifier. We use the fat-
tree topology because it is common in data-center networks.

Statistical Methodology We used the first 200 million
packets of each Caida trace (the Chicago trace contains
197.62GB, while the New-York trace contains 226GB), and
10 million packets from the (shorter) Univ trace (0.55 GB).
Each data point was run 10 times, and we used Student’s t-test
to calculate the 95% confidence interval.

'7tn9

A. Merged Sample size

We begin by evaluating our improved merge algorithm
compared to the simple merge algorithm [15]. Our results
for packet based measurements on the Chicago trace are in

0.09 0.09 0.09
0.08 UWRA 0.08 UWRA 0.08 UWRA
’ —+ NWPS ’ —#+. NWPS : —+ NWPS
, 007 —e— HLL , 007 —e— HLL , 0.07 —— HLL
2006{ T 2 0.06 2 0.06
w) w w
©0.05]* 0.05 0.05
Z 0.04 = 0.04 = 0.04
© © ©
T 0.03 T 0.03 T 0.03
0.02 _ 0.02 0.02 |
0.01 1\\\ [{\¥ 0.01 0.01 ’\g_l
0.00 +——— e S —— ; 0.00 - = = sl .00 e it :
103 104 10° 10° 103 104 10° 106 10° 106
Samples Per NMP (x) Samples Per NMP (y) Samples Per NMP (x)
(a) Chicago (b) Univ (c) New York
Fig. 3: Relative error in estimating the total number of packets in fat-tree with parameter K = 8.
0.40 0.40 UWRA 0.40 { UWRA
0.35 0.35 ::_ EEVYPS 0.351 ::_ g‘x’s
E 0.30 S 0.30 S 0301
'-;' 0.25 ﬁ 0.25 '-;' 0.25
2 0.20 2 0.20 Z 0.20
ﬁ 0.15 ﬁ 0.15 2 0.15]
0.10 0.10 0.10
0.05 0.05 0.05
0.00 : 0.00 = e 0.00 i
103 104 10° 109 103 104 10° 10 103 104 10° 106
Samples Per NMP (y) Samples Per NMP (y) Samples Per NMP (y)
(a) Chicago (b) Univ (c) New York
Fig. 4: Relative error in estimating the total byte volume in fat-tree with parameter K = 8.
UWRA UWRA
103 103 —+- NWPS 10°
i m i
E E —— DUS E
® 102 & 1024 Q 102
& & =
4 4 4
= 10! = 10 = 10! ‘N-.,,,..______,*
10° N3 N4 N5 N6 10° N3 n4 N 6 10% : 4 :
10 10 10 10 10 10 10 10 103 104 10 106

Samples Per NMP (x)
(a) Chicago

Samples Per NMP (x)
(b) Univ

Samples Per NMP (y)
(c) New York

Fig. 5: Root mean square error (RMSE), for per flow packet counting in a fat-tree topology with K = 8.

Figure 2. Observe that both UWRA and NWPS attain almost
the same sized merged sample and that such sample is ~10-
20 times bigger than the one obtained by the simple merge
algorithm. The increased sample size is the root cause for
the accuracy improvements, which we later show for various
measurement tasks. We note that repeating this experiment
for different traces as well as for byte counting yields almost
identical results.

B. Volume Estimation

We start with the volume estimation task, where the goal
is to estimate the total number of packets (or the total byte
volume) in the measurement. Figure 3 shows the results for
estimating the total number of packets in the measurement.
As can be observed, the relative error decreases as the num-
ber of samples per NMP increases, achieving very accurate

estimations for acceptable memory overheads. Also, in this
case, since UWRA and NWPS devolve to the same algorithm,
their accuracy is the same up to random noise. Finally, UWRA
and NWPS are more accurate than the HLL algorithm since
they support the advanced merge method from Section III-C.
It turns out that the KMV estimator (used by our approach) is
superior to the HLL estimator in network-wide measurements
as HLL only supports the simple merge procedure.

Figure 4 shows the results for estimating the total number
of bytes in the same topology and workloads. Surprisingly,
the difference between UWRA and NWPS is very small
and statistically insignificant. Therefore, the decision between
them boils down to the priorities of the user. Recall that
NWPS offers worst-case update complexity while UWRA
adheres to formal analysis. Also, observe that UWRA and
NWPS are more accurate than the CKY estimator [25] as it is

104 1044 104
8 10° 8 107 8 10°
> > >
@ =) =)
2 - 2] 2
G 1 UWRA e Qo 10 UWRA (o 10 UWRA
4 --%- NWPS x --+- NWPS x -~ NWPS
10t UWRA simple 10%4 UWRA simple 10t UWRA simple
—+— NWPS simple —+— NWPS simple —+— NWPS simple
10° 10° 10°
103 104 10° 10° 103 104 10° 10° 103 104 10° 10°
Samples Per NMP (x) Samples Per NMP (y) Samples Per NMP (x)
(a) Chicago (b) Univ (c) New York
Fig. 6: Root mean square erorr (RMSE), for per flow byte counting, in a fat-tree topology with K = 8.
1.0 - 1.0+
T I s & 09 I l -]
0.84 T g 0.8 ,'*--"- S — N
- 0.8]
I ' 1
voe| AL o v 061
o * o o
v} 1 o 0.7 v}
[} 0 T) |
— 0.4 — * —~ 0.4
[Ty L 96 ‘ [Ty
UWRA ES UWRA UWRA
0.2 -+~ NWPS 05 -+~ NWPS 0.2 -+~ NWPS
—— DUS ' —— DUS —— DUS
0.0 0.0
103 104 10° 10° 103 104 10° 10° 103 10¢ 10° 10°

Samples Per NMP (y)
(a) Chicago

Samples Per NMP (y)
(b) Univ

Samples Per NMP (y)
(c) New York

Fig. 7: Packet based heavy hitters on a fat-tree topology with parameter K = 8.

based on the HLL algorithm and only supports simple merge.
Therefore, our algorithms constitute a contribution even within
the broader context of weighted count distinct algorithms.

C. Frequency Estimation

Next, we evaluate the task of estimating per-flow frequency.
Figure 5 shows results for packet-based frequency estimation.
As usual, the topology is a fat-tree topology with K = 8. As
can be observed, UWRA and NWPS are identical for packet-
based measurements, and they improve the DUS algorithm.
In packet-based measurement, the only difference between
DUS and UWRA/NWPS is the controller merge procedure;
DUS utilizes the simple merge procedure (Section III-B) while
UWRA and NWPS utilize the improved merge procedure
(Section III-C). In general, our algorithms attain very low
RMSE within adequate space.

Figure 6 show results for estimating the number of bytes
per flow. In this case, observe that UWRA is slightly better
than NWPS on the Chicago workload, is slightly worse on the
Univ workload, and slightly better on the New York workload.
In general, the differences are very small, and UWRA/NWPS
offer similar empirical performance. Since we are unaware
of competing network-wide and routing oblivious algorithms
for this measurement, we compare UWRA and NWPS with
UWRA simple and NWPS simple that utilize the simple merge
procedure to demonstrate the effectiveness of the smarter
merge procedure. As can be observed, the procedure is very
effective, and the simple merger requires almost an order of
magnitude more memory for the same accuracy.

D. Heavy Hitters

We continue with the measurement task of finding the heavy
hitter flows using # = 0.001 2 (we continue with the fat-
tree topology with parameter K = 8). Figure 7 shows results
for packet-based heavy hitters identification in terms of the
F1 score of the returned list of heavy hitter flows (higher is
better). Please observe that UWRA and NWPS are identical
and that their F1 score is notably higher than DUS. Such
an improvement is due to the improved merge algorithm of
UWRA and NWPS.

Figure 8 repeats this experiment for finding the heavy hitter
flows according to byte counts. In this case, we are unaware
of competing network-wide and routing oblivious algorithms,
so we compare UWRA and NWPS with UWRA simple and
NWPS simple that utilize the simple merge procedure.

As can be observed, our UWRA and NWPS achieve
nearly identical F1 score (despite being different algorithms),
and their accuracy is comparable to that of packet-based
heavy hitters. They are considerably better than UWRA
simple, and NWPS simple sometimes by almost three or-
ders of magnitude. All in all, our algorithms demonstrate
the ability to identify the heavy hitters accurately flows
within acceptable memory constraints.

E. Updates Over Time

Figure 9 shows the number of updates over time for packet
counting, and Figure 10 for byte counting. As can be observed,

2We get similar results for a variety of § values.

1.0
x E et]
 messmit T
0.8 0.8 0.8 _ J .- |
&
o6 2 o6 Los6
o o o
) () ()
v wn (]
0.4 UWRA o 0.4 UWRA 0.4 UWRA
1 -+~ NWPS --+- NWPS -~ NWPS
0.2 UWRA simple 0.2 UWRA simple 0.2 UWRA simple
—+— NWPS simple —+— NWPS simple —+— NWPS simple
0.0 0.0 0.0
103 104 10° 106 103 104 10° 109 103 104 10° 106
Samples Per NMP (y) Samples Per NMP (y) Samples Per NMP (y)
(a) Chicago (b) Univ (c) New York
Fig. 8: Byte volume based heavy hitters on a fat-tree topology with parameter K = 8.
10% UWRA 10° UWRA 10° UWRA
> k - NWPS | 5 & - NWPS | > —%- NWPS
2 0n %o 2o
10714} 1)y 107141
8% §uod £y
o ‘S, o o
[] (] (]
= = +—
B 1072 3 T 1072
-2
g ERU S g
0 1 2 3 4 5 6 7 8 0o 1 2 3 4 5 6 71 8 0o 1 2 3 4 5 6 71 8
Number of Packets il Number of Packets 17 Number of Packets il
(a) Chicago (b) Univ (c) New York
Fig. 9: Update probability for packet based measurements on a fat-tree topology (K = 8 x=10000).
10% UWRA 10° UWRA 1094 UWRA
z T NWPS S § - NWPS | = -+~ NWPS
5 A g |
10°1 4! © 1t © -144
817 g7 s
o x a * a
* *
Q (] * ()
=) =
© © [Y
81072 8107 B 107
=) -] o)
o 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 71 8 o 1 2 3 4 5 6 71 8
Number of Packets 7 Number of Packets 17 Number of Packets 1e7
(a) Chicago (b) Univ (c) New York
Fig. 10: Update probability for byte based measurements on a fat-tree (K = 8 x=10000).
. S Observe that for packet counting (unit sized weights), UWRA
%14 %14 performs fewer updates than NWPS. However, for byte count-
% 12| e D R e S— © S erne . ing, UWRA performs more updates than NWPS since it
%10 WRA % 10 OWRA sometimes adds multiple entries for the same packet.
= 8 x- NwPs | = 8 k- NWPS
E 6 —&— DUS E 6 —&— DUS
g 4 24 FE. Throughput Evaluation
=3 * il — g bl * * A . .
g’ g ? Next, we implemented our algorithms on top of the new
IS 10° 10* 10° 10° £ 10° 10* 10° 10° . . .
Samples Per NMP (x) Samples Per NMP (x) g-max data-structure [19] that maintains the ¢ maximal (or

(a) Chicago (b) New York
Fig. 11: Throughput (million packets/sec) of various algo-
rithms for packet based measurement.

the rate of updates declines as the traces prolong. Our analysis
indicates this (see Theorem 2) that states that the asymp-
totic number of updates is logarithmic in the stream length.

minimal) items with a constant update complexity, at the
expense of increased memory. In our implementation, we
used a performance parameter of v = 0.25, which means
that the g-max requires 25% more memory than a heap. Our
previous implantation (DUS) utilizes a heap with logarithmic
complexity, which is slightly more space-efficient.

Figure 11 shows the results for packet counting, notice that
NWPS and UWRA process about =~ 10-12 million packets per

Samples Per NMP (y)
(a) Chicago

Samples Per NMP (x)
(b) Univ

3 T T
& & &
912 wee g TR NWPS L0, e e
1 e 1 e « = 1 E —— - *
% b e < =% 12 * # * o A © & A
o a o k|
= 104 - 10 - 101
2 o o
= 8 = 8 = 8
= . s Z
~ 4 ~ 61 ~ 4
: 2 :
c 4 2 4 &4
2 2 2,
5 7 3 °l o °l
< 3 4 5 6 3 4 5 6 3 4 5 6
= 10 10 10 10 'E 10 10 10 10 'E 10 10 10 10

Samples Per NMP (y)
(c) New York

Fig. 12: Throughput (million packets/sec) of various algorithms for byte based measurement.

second while DUS processes less than 3 million packets per
second. Further, NWPS is marginally faster than UWRA, es-
pecially at the beginning of the measurement. Thus, choosing
the new g-max structure [19] improves the processing speed by
more than x3, yielding over 10M packets per seconds, which is
sufficient for virtual switching as it not far from the maximal
possible packet rate on a 10G link. Further, the processing
speed increases as the measurement prolong as fewer packets
update the g-max. Figure 12 shows that we attain very similar
results for byte based measurements. That is, the optimizations
we suggest incur very low processing overheads in practice.

VI. CONCLUSION

Our work shows the feasibility of attaining network-wide
measurements without traffic manipulations, or assumptions
about routing protocols, and network topology. This routing
oblivious approach allows for flexible positioning on network
measurement points (NMPs) without worrying about double-
counting packets. In comparison, the prior work either makes
assumptions on the routing protocol or restrict the placement
of NMPs to avoid double counting. That is, our work is the first
to study network-wide measurement problems in this routing
oblivious model.

We suggested the UWRA and NWPS algorithms that attain
a network-wide sample of the traffic by cleverly leveraging
count distinct algorithms. We showed that this sample solves
three fundamental measurement tasks; (i) total volume within
a network, (ii) providing per-flow frequency estimations, and
(iii) finding the heavy hitters. For all these tasks, we show
formal correctness proofs, as well as an extensive evaluation.
The evaluation indicates that UWRA and NWPS attain high
accuracy within moderate space and that their performance is
good enough for virtual switch deployment. We open-sourced
our code [3], [4] to benefit the community.

Acknowledgements: This work is partially sponsored by
the Technion HPI research school, the Eric and Wendy
Schmidt Fund for Strategic Innovation, the Cyber Security
Research Center at and the Lynne and William Frankel Center
for Computing Science at Ben-Gurion University, by the
Zuckerman Institute, the Technion Hiroshi Fujiwara Cyber
Security Research Center, and the Israel Cyber Directorate.

REFERENCES

[1] The caida ucsd anonymized internet traces 2016 - june. 20st.

[2]
[3]

[4]
[5]
[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

The caida ucsd anonymized internet traces 2018 - march. 21st.
Network-wide routing-oblivious heavy hitters - available: https://github.
com/jalilm/TDHH.

Network-wide routing-oblivious measurements - available: https:/
github.com/Bilal-Tayh/RONWM.

Tofino V2.

Yehuda Afek, Anat Bremler-Barr, Shir Landau Feibish, and Liron Schiff.
Detecting heavy flows in the SDN match and action model. Computer
Networks, 2018.

Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips,
Zhewei Wei, and Ke Yi. Mergeable summaries. In ACM PODS, 2012.
Daniel Anderson, Pryce Bevan, Kevin Lang, Edo Liberty, Lee Rhodes,
and Justin Thaler. A high-performance algorithm for identifying frequent
items in data streams. In ACM IMC, 2017.

Mina Tahmasbi Arashloo, Yaron Koral, Michael Greenberg, Jennifer
Rexford, and David Walker. Snap: Stateful network-wide abstractions
for packet processing. In ACM SIGCOMM, 2016.

Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca
Trevisan. Counting distinct elements in a data stream. In RANDOM,
2002.

R. B. Basat, X. Chen, G. Einziger, S. L. Feibish, D. Raz, and M. Yu.
Routing oblivious measurement analytics. In 2020 IFIP Networking
Conference (Networking), 2020.

R. B. Basat, G. Einziger, M. C. Luizelli, and E. Waisbard. A black-
box method for accelerating measurement algorithms with accuracy
guarantees. In IFIP Networking, 2019.

R. B. Basat, G. Einziger, M. Mitzenmacher, and S. Vargaftik. Faster and
more accurate measurement through additive-error counters. In /EEE
INFOCOM, 2020.

R. B. Basat, G. Einziger, and B. Tayh. Cooperative network-wide flow
selection. In /IEEE ICNP, 2020.

Ran Ben Basat, Gil Einziger, Shir Landau Feibish, Jalil Moraney, and
Danny Raz. Network-wide routing-oblivious heavy hitters. In ACM
ANCS, 2018.

Ran Ben Basat, Gil Einziger, and Roy Friedman. Fast flow volume
estimation. Pervasive and Mobile Computing, 2018.

Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Optimal
elephant flow detection. In JEEE INFOCOM. 1EEE, 2017.

Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli,
and Erez Waisbard. Constant time updates in hierarchical heavy hitters.
ACM SIGCOMM, 2017.

Ran Ben Basat, Gil Einziger, Junzhi Gong, Jalil Moraney, and Danny
Raz. Q-max: A unified scheme for improving network measurement
throughput. In ACM IMC, 2019.

Theophilus Benson, Aditya Akella, and David A. Maltz. Network traffic
characteristics of data centers in the wild. In ACM IMC, 2010.
Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang.
Microte: Fine grained traffic engineering for data centers. In ACM
CoNEXT, 2011.

Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and
Robert E. Tarjan. Time bounds for selection. J. of Computer and System
Sciences, 1973.

Min Chen, Shigang Chen, and Zhiping Cai. Counter tree: A scalable
counter architecture for per-flow traffic measurement. JEEE/ACM TON,
2017.

Edith Cohen and Haim Kaplan. Leveraging discarded samples for tighter
estimation of multiple-set aggregates. In ACM SIGMETRICS, 2009.

[25]

[26]

[27]

(28]

(291

[30]
[31]

[32]

(33]
(34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

(48]

[49]
[50]

[51]

[52]

(53]

Reuven Cohen, Liran Katzir, and Aviv Yehezkel. A unified scheme
for generalizing cardinality estimators to sum aggregation. Inf. Process.
Lett., 2015.

Graham Cormode. Continuous distributed monitoring: A short survey.
In AIMoDEP, 2011.

Graham Cormode and Marios Hadjieleftheriou. Finding frequent
items in data streams. Proc. VLDB Endow., 2008. Code:
www.research.att.com/ marioh/frequent-items.html.

Xenofontas Dimitropoulos, Paul Hurley, and Andreas Kind. Probabilistic
lossy counting: An efficient algorithm for finding heavy hitters. SIG-
COMM CCR, 2008.

Gero Dittmann and Andreas Herkersdorf. Network processor load
balancing for high-speed links. In Proc. of the 2002 Int. Symp. on
Performance Evaluation of Computer and Telecommunication Systems.
N. G. Duffield and Matthias Grossglauser. Trajectory sampling for direct
traffic observation. IEEE/ACM Trans. Netw., 2001.

Nick Duffield, Carsten Lund, and Mikkel Thorup. Priority sampling for
estimation of arbitrary subset sums. J. ACM, 2007.

Gil Einziger, Marcelo Caggiani Luizelli, and Erez Waisbard. Constant
time weighted frequency estimation for virtual network functionalities.
In IEEE ICCCN, 2017.

Cristian Estan and George Varghese. New directions in traffic measure-
ment and accounting. SIGCOMM CCR, 2002.

Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms
for data base applications. J. Comput. Syst. Sci., 1985.

Philippe Flajolet, ric Fusy, Olivier Gandouet, and et al. Hyperloglog: The
analysis of a near-optimal cardinality estimation algorithm. In AOFA,
2007.

Pedro Garcia-Teodoro, Jess E. Daz-Verdejo, Gabriel Maci-Fernndez, and
E. Vzquez. Anomaly-based network intrusion detection: Techniques,
systems and challenges. Computers and Security, 2009.

Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. Sonata: Query-driven streaming network
telemetry. In ACM SIGCOMM, 2018.

Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. Network-
wide heavy hitter detection with commodity switches. In ACM SOSR,
2018.

Stefan Heule, Marc Nunkesser, and Alexander Hall. —Hyperloglog
in practice: Algorithmic engineering of a state of the art cardinality
estimation algorithm. In ACM EDBT, 2013.

Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-Chao
Chen, and Gong Zhang. Sketchvisor: Robust network measurement for
software packet processing. In ACM SIGCOMM, 2017.

Abdul Kabbani, Mohammad Alizadeh, Masato Yasuda, Rong Pan,
and Balaji Prabhakar. Af-qcn: Approximate fairness with quantized
congestion notification for multi-tenanted data centers. In IEEE HOTI,
2010.

Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal
algorithm for the distinct elements problem. In ACM PODS, 2010.
Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar: A
better netflow for data centers. In USENIX NSDI, 2016.

Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Lossradar: Fast
detection of lost packets in data center networks. In ACM CoNEXT,
2016.

D Lurie and HO Hartley. Machine-generation of order statistics for
monte carlo computations. The American Statistician, 1972.

Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient
computation of frequent and top-k elements in data streams. In ICDT,
2005.

Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. Silkroad: Making stateful layer-4 load balancing fast and cheap
using switching asics. In ACM SIGCOMM, 2017.

Michael Mitzenmacher and Eli Upfal. Probability and Computing: Ran-
domized Algorithms and Probabilistic Analysis. Cambridge University
Press, 2005.

B. Mukherjee, L.T. Heberlein, and K.N. Levitt.
detection. Network, IEEE, 1994.

N. Nisan. Psuedorandom generators for space-bounded computation. In
ACM STOC, 1990.

Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich,
S. Muthukrishnan, and Jennifer Rexford. Heavy-hitter detection entirely
in the data plane. In ACM SOSR, 2017.

Ke Yi and Qin Zhang. Optimal tracking of distributed heavy hitters and
quantiles. Algorithmica, 2013.

Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic
measurement with opensketch. In USENIX NSDI, 2013.

Network intrusion

[54] Haiquan Zhao, Ashwin Lall, Mitsunori Ogihara, and Jun Xu. Global

iceberg detection over distributed data streams. In IEEE ICDE, 2010.

[55] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul

Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao, and
Haitao Zheng. Packet-level telemetry in large datacenter networks. In
ACM SIGCOMM, 2015.

Ran Ben Basat is a Lecturer (Assistant Professor)
in the Computer Science department of University
College London. Previously, he was a postdoctoral
fellow at Harvard University. Ran received his B.Sc,
M.Sc, and Ph.D. from the CS department of Tech-
nion. He is primarily interested in algorithms for
networking systems and measurement.

Gil Einziger is an assistant professor at the depart-
ment of Computer Science of Ben Gurion University
of the Negev, Beer Sheva, Israel. He holds a B.Sc
and a Ph.D in computer science from the Technion.
Earlier, Gil worked as a researcher in Nokia Bell
Labs, and as a Postdoctoral Research Fellow in
the Polytechnic university of Turin, Italy. He is
interested in networked systems, algorithms, and
security.

Shir Landau Feibish is a Senior Lecturer (Assistant
Professor) at The Open University of Israel. Previ-
ously she was a postdoctoral researcher at Princeton
University. Shir holds a Ph.D. and B.Sc. in Computer
Science from Tel Aviv University, and an M.Sc.
in Computer Science from Bar-Ilan University. Her
main research interests are monitoring and manage-
ment of computer networks, programmable networks
and network security.

Jalil Moraney is a P.hD. Student at the Computer
Science department at Technion under the supervi-
sion of Prof. Danny Raz. His main research interests
are on the practicality of efficient monitoring and
resource-constrained monitoring. Jalil received his
B.Sc. and M.Sc.from the Computer Science depart-
ment at Technion.

Danny Raz is a professor and the Hewlett-Packard
Chair in Computer Engineering in the Computer
Science Department, Technion, Israel Institute of
Technology. Before joining the CS faculty, he was
a member of the Technical staff, at the Networking
Research Laboratory at Bel labs, Lucent Technolo-
gies. In 2008, he spent a year on a Sabbatical at
Google in Mountain View, CA. and on 2015-2016
He spent a Sabbatical as the director of the first Bell
Labs branch in Israel. His main research interests
include the theory and applications of efficient net-

work and system management, in particular, concentrating on cloud resource
management, NFV, SDN, TE, and network aware services.

