
SQUAD: Combining Sketching and Sampling Is Better than
Either for Per-itemQuantile Estimation

Rana Shahout

Technion

ranas@cs.technion.ac.il

Roy Friedman

Technion

roy@cs.technion.ac.il

Ran Ben Basat

University College London

r.benbasat@cs.ucl.ac.uk

Abstract
Streammonitoring is fundamental inmany data stream applications,

such as financial data trackers, security, anomaly detection, and

load balancing. In that respect, quantiles are of particular interest,

as they often capture the user’s utility. For example, if a video

connection has high tail latency, the perceived quality will suffer,

even if the average and median latencies are low.

In this work, we consider the problem of approximating the

per-item quantiles. Elements in our stream are (ID, latency) tuples,

and we wish to track the latency quantiles for each ID. Existing

quantile sketches are designed for a single number stream (e.g.,

containing just the latency). While one could allocate a separate

sketch instance for each ID, this may require an infeasible amount

of memory. Instead, we consider tracking the quantiles for the

heavy hitters (most frequent items), which are often considered

particularly important, without knowing them beforehand.

We first present a simple sampling algorithm that serves as a

benchmark. Then, we design an algorithm that augments a quantile

sketch within each entry of a heavy hitter algorithm, resulting in

similar space complexity but with a deterministic error guarantee.

Finally, we present SQUAD, a method that combines sampling

and sketching while improving the asymptotic space complexity.

Intuitively, SQUAD uses a background sampling process to capture

the behaviour of the latencies of an item before it is allocated with

a sketch, thereby allowing us to use fewer samples and sketches.

Our solutions are rigorously analyzed, and we demonstrate the

superiority of our approach using extensive simulations.

1 Introduction
Maintaining statistics about network traffic is important for support-

ing various functionalities such as security and anomaly detection,

traffic engineering, and load balancing [20, 23, 29, 38]. Latency is an

important metric in assessing a network’s health and in debugging

various networking middle-boxes and smart data-planes [40].

In particular, latency distribution is a fundamental task of data

monitoring and analysis. Yet, latency distribution is often very

heavy tailed, implying that tail latency is usually more significant

than average latency. Generally, quantiles are the most commonly

used for data distribution representation. They are equivalent to the

cumulative distribution function (cdf), from which the probability

distribution function is derived (pdf). Thus, quantile computation

is undoubtedly one of the most basic data analysis challenges. For

example, consider a large e-commerce web site that offers short

average response times, but with a tail latency of several seconds,

beyond what Internet users are willing to tolerate. A customer is

likely to ditch this website due to a single long latency, so having a

short average response time is not enough here.

To support fast and efficient tail latency tracking, several quan-

tile sketches have been developed [3, 22, 25, 30, 33, 34, 43]. Other

research focuses on the problem’s variants and extensions, such as

calculating quantiles across sliding windows [7], over distributed

data [4, 26, 28, 43], quantile computations using GPUs [24], contin-

uous monitoring of quantiles [15, 47] and biased quantiles [18].

Such sketches return an approximation of a 𝑞-quantile’s latency

up to a Y error guarantee. Existing sketches of this type track the

tail latency of an entire stream.

Further, the ability to perform drill-down queries, in which we

examine the behavior of the system at finer and finer granularity,

may also be beneficial. One may distinguish between different item
identifiers (or simply items) in the stream of elements. For example,

in the case of datastores, an item identifier is typically the object’s

key, whereas in e-commerce sites, the item identifier might be a

username or an item’s SKU. In networking applications, an item

identifier may be a 5-tuple consisting of the corresponding packet’s

source IP, source port, destination IP, destination port, and protocol;

in this case, it is common to refer to items as flows.
Tracking tail latencies for all items can provide much richer

insight about the system than looking at the aggregated tail latency,

and is therefore desirable. In the e-commerce example, a user would

quit the website based on its own tail latency experience, regardless

of the overall tail latency, which might be much better. However,

tracking tail latencies for all items is often impractical, given that

the number of items can be extremely large and the fact that the

space overhead of known quantile sketches is non-trivial. Hence,

we may instead focus on tracking tail latencies for a subset of

significant items. In particular, we are interested in the subset of

heavy-hitters, which consists of all items whose associated elements

consume more than a threshold \ of the overall stream.

There are two complementary reasons why focusing on heavy-

hitters makes sense in the context of tail latency monitoring. First,

since each heavy-hitter accounts for a significant fraction of the

overall system load, it is important to ensure good quality of service

for them. Second, when there are only a few elements associated

with a given item, e.g., the item only appears in one or two transac-

tions, it is enough that a single transaction suffers from a longer

than usual delay in order for the tail-latency of that item to be very

large. Such one-time events can be caused by, e.g., caching initial-

ization, storage warm-up, route discovery overheads, and “bad luck”

in terms of temporal overloads on intermediate components and

devices. On the other hand, a large tail latency for a heavy hitter

points to a repetitive problem, which hopefully is easier to discover

and fix, and one that is also very important to resolve.

In this work, we focus on the problem of reporting the tail laten-

cies of heavy hitter items. Our goal is to figure out how to find all

ar
X

iv
:2

20
1.

01
95

8v
1

 [
cs

.D
S]

 6
 J

an
 2

02
2

Rana Shahout, Roy Friedman, and Ran Ben Basat

heavy hitters’ 𝑞-tail latencies with a maximum accuracy error of Y

for given parameters 𝑞, \ and Y.

Contributions:
Our first contribution is the formal definition of the heavy hitters

𝑞-tail latencies problem, nicknamed (\, 𝜖, 𝛿)-HH-latencies problem,

where given a stream of elements and parameters 𝑞, \ , and Y, we

report the 𝑞-tail latency of every item 𝑥 which is larger than \𝑁 ,

denoted by ℓ̂𝑥 , such that |ℓ̂𝑥 − ℓ𝑥 | < Y, where ℓ𝑥 is the true 𝑞-tail

latency of 𝑥 .

Our second contribution is a pure sampling based solution to the

heavy hitters 𝑞-tail latencies problem called SQUARE. This algo-

rithm is memory wasteful but it serves as a baseline for comparing

our more sophisticated solutions. We formally analyze this solution

and show that it takes 𝑂 (\−1𝜖−2 log 𝛿−1) space.
Our third contribution in a solution, nicknamed QUASI, for

the heavy hitters 𝑞-tail latencies problem ((\, 𝜖, 𝛿)-HH-latencies
problem) which is based on combining the space saving algorithm

for heavy hitters detection [37] with a 𝑞-quantile sketch. Space

saving [37] is considered the best approximate solution for the

heavy hitters problem, as it requires 𝑂 (Y−1) space for solving the
\Y heavy hitters problem. Formally, given user specified \ , where

0 ≤ \ ≤ 1, a heavy hitter element is one with a frequency greater

than \𝑁 in a stream of size 𝑁 . In QUASI, we take the space saving

data structure and add to each counter a 𝑞-quantile sketch, GK-

sketch [25]. We formally analyze this solution and show that it

takes 𝑂
(
\−1𝜖−2 · log(𝑁𝜖2\)

)
space which results in similar space

complexity as SQUARE but with a deterministic error guarantee

rather than probabilistic one.

Our fourth contribution is the SQUAD algorithm, which is a

combination of our first two solutions. Figure 1 illustrates the algo-

rithms presented in this paper. We formally analyze this solution

and show that it takes 𝑂
(
\−1𝜖−1.5 · log 𝜖−1

)
space.

We present formal correctness proofs as well as space analysis.

The asymptotic space requirements of our solutions are summarized

in Table 1. Following that, we discuss several enhancements that

help our algorithms process elements more efficiently.

Our next contribution is a performance evaluation study of the

above three solutions. To our knowledge, this is the first research

to solve quantiles on a per-element level. Thus, we compare our

algorithms along with (𝑖) GK-algorithm and Random [33], that serve

as a best case reference point since it solves a more straightforward

problem : tail latency of an entire stream (𝑖𝑖) the state-of-the-art

Space Saving (SS) [37], which solves the heavy hitters problem

which is a building block in QUASI and SQUAD. We evaluate our

algorithms using large-scale NS3 simulations [2] and a FatTree

topology. The traffic is produced using the flow size distribution in

web search from Microsoft [5] and Hadoop from Facebook [41].

The results show that given the same error guarantees Y, \ ,

SQUAD is the most space-efficient algorithm. While SQUARE is the

fastest algorithm in terms of update runtime, it has a large memory

cost for solving the (\, 𝜖, 𝛿)-HH-latencies problem. When SQUAD

is compared against QUASI’s update runtime, SQUAD performs

better. Yet, optimizing SQUAD enhances its update speed, making

it excellent for both the performance and memory consumption

Table 1: A comparison of the algorithms presented in this work, in
terms of their space complexity. The𝑂 notation hides polylogarith-
mic factors.

Algorithm Space Deterministic Reference

SQUARE 𝑂 (\−1𝜖−2) ✗ Section 4

QUASI 𝑂 (\−1𝜖−2) ✓ Section 5

SQUAD 𝑂 (\−1𝜖−1.5) ✗ Section 6

metrics. Last, we extend our results to support tail latencies for

traffic volume. All our code is open sourced [1].

Paper roadmap: We briefly survey related work in Section 2.

We state the formal model and problem statement in Section 3.

Our first algorithm SQUARE is described in Section 4. QUASI is de-

scribed and analyzed in Section 5. The improved algorithm, SQUAD

is then described in Section 6. We present the optimizations that

enable our algorithms to process elements faster in Section 7. The

performance evaluation of our algorithms and their comparison to

GK-algorithm, Random and SS is detailed in Section 8. Section 9

discusses extensions of our work. Finally, we conclude with a dis-

cussion in Section 10.

2 Related Work
To the best of our knowledge, this is the first work that deals with

the problem of per-element quantile estimation. Several earlier

studies on streaming quantiles consider queries to be ranks, where

the algorithm must associate an item 𝑦 in the stream with a rank

close to its true rank, defined as the number of stream elements

that are smaller than or equal to 𝑦. In contrast, in our study, we

focus on the quantile of individual elements in streams composed of

identifiers and latencies, as described in Section 3. Below, we discuss

prior work that has been done on solving streaming quantiles that

guarantee an additive error with a constant failure probability 𝛿 .

Munro and Paterson included a p-pass algorithm for obtaining

accurate quantiles in their classic study [39]. Although not explic-

itly studied, the method’s initial run results in a streaming approach

for producing approximate quantiles using𝑂 (𝜖−1 log2 (𝑁𝜖)) space.
Manku, Rajagopalan, and Lindsay [34] extended this work by propos-

ing a deterministic solution that stores no more than𝑂 (𝜖−1 log𝑁𝜖)
objects, assuming previous knowledge of 𝑁 . Though [35] has the

same worst-case space bound, the algorithm is empirically better. In

2001, Greenwald and Khanna [25] developed a complex determinis-

tic streaming algorithm, referred to as the GK-algorithm below, that

stores 𝑂 (𝜖−1 log(𝑁𝜖)) objects in the worst case. However, their

experimental work used a simplified approach for which it is not

clear if the𝑂 (𝜖−1 log(𝑁𝜖)) space limit still holds. Nonetheless, they

demonstrated that their method beats Manku et al [34]’s approach

practically. Each of these methods is deterministic and relies on

comparisons. The GK-algorithm is often considered the best in this

area, both theoretically and experimentally. Section 3.2 goes over it

in detail.

Shrivastava et al [43] created q-digest in 2004, which is a deter-

ministic, fixed universe method that consumes𝑂 (𝜖−1 logU) space,
whereU is the universe. This approach was developed to compute

quantiles in sensor networks and is a mergeable summary [3], a

more flexible model than streaming. However, no further efficient

SQUAD: Combining Sketching and Sampling Is Better than Either for Per-itemQuantile Estimation

𝑦, ℓ1 𝑧, ℓ2 𝑎, ℓ3 𝑥, ℓ4 𝑎, ℓ5 𝑏, ℓ6 𝑥, ℓ7 𝑐, ℓ8 𝑥, ℓ9Input:

𝑥, ℓ4
𝑏, ℓ6
𝑥, ℓ9

𝑎, ℓ3

𝑦, ℓ1

(a) SQUARE

ID Count Quantile Sketch

𝑥 4 ℓ4, ℓ9
𝑐 3 {ℓ8}

𝑎 2 {ℓ3, ℓ5}
(b) QUASI

ID Count Incr. Timestamp Quantile Sketch

𝑥 5 2 7 ℓ7, ℓ9
𝑐 4 1 8 {ℓ8}

𝑎, ℓ3, 3 𝑥, ℓ4, 4 𝑥, ℓ9, 9
(c) SQUAD

Figure 1: An illustration of our algorithms. SQUARE simply selects a uniform random element subset from the input stream and uses the
sample to infer frequencies and quantiles. QUASI uses a heavy hitters algorithm that has a quantile sketch embedded in each counter. SQUAD
combines the two approaches to asymptotically reduce the space complexity. Crucially, SQUAD adds timestamps to both samples and sketches
so that it can combine an item’s sketch only with the samples that were not inserted into it. It also adds an increments counter, which is the
increase in count since the item became monitored, thus reducing the frequency estimation error. SQUAD continues to sample elements of
monitored items ((𝑥, ℓ9, 9) in this example) as the item may stop being monitored, i.e., the sampling process is independent of the sketching.

fixed-universe method exists in the streaming model. Note that the

logU and log𝑁 terms are not theoretically equivalent, and [43]

omitted an experimental comparison with the GK-algorithm.

Randomized methods have also been considered in the past.

The seminal results of [44] show that a random sample of size

𝑂 (𝜖−2 log 𝜖−1) contains all quantiles with at least a constant prob-

ability within the 𝜖 error. This fact was shown in [34] and was used

to compute quantiles using a random sample fed to a deterministic

algorithm. However, since this method needs knowledge of 𝑁 in

advance, it is not a true streaming algorithm.

Manku et al. [35] developed a randomized approach that does

not require knowledge of 𝑁 and demonstrated that the space re-

quired is𝑂 (𝜖−1 log2 𝜖−1) factor, which may be greater or less than

GK’s log𝑁 factor, although neither of these algorithms has been

empirically tested.

Agarwal, Cormode, Huang, Phillips, Wei, and Yi [3] proposed

a mergeable sketch with the size 𝑂 (𝜖−1 log1.5 𝜖−1). For this new,
simpler approach, called Random, Luo et al [33] were able to provide

an improved𝑂 (𝜖−1 log1.5 𝜖−1) bound.We refer to this algorithm as

"Random" and overview it in detail below. Felber and Ostrovsky [22]

reduced the space complexity by using a combination of sampling

and the GK-algorithm to 𝑂 (𝜖−1 log 𝜖−1).
Finally, Karnin, Lang, and Liberty [30] solved the problem by

developing the KLL sketch, which is an optimal 𝑂 (𝜖−1)-space so-
lution. The KLL sketch achieves optimal accuracy in space. The

algorithm’s fundamental building component is a buffer called a

compactor, which accepts an input stream of 𝑁 items and gener-

ates a stream of no more than
𝑁
2 items that "approximates" the

input stream. The overall KLL sketch is constructed as a series of at

most log𝑁 such compactors, with each compactor’s output stream

acting as the input stream for the next compactor.

Several studies have attempted to provide more accurate quantile

estimates for low and high rankings. Only a few provide answers

to the relative error quantiles problem (also known as the biased

quantiles problem). Gupta and Zane [27] presented an approach

for computing relative error quantiles that saves 𝑂 (𝜖−3 log2 (𝑁𝜖))
items and uses this to estimate the number of inversions in a

list; their technique needs knowledge of the stream length, 𝑁 .

Zhang et al. [49] previously described an approach for storing

𝑂 (𝜖−2 log(𝑁𝜖2)) items. Cormode et al. [17] devised a determin-

istic sketch that stores 𝑂 (𝜖−1 log(𝑁𝜖 log(|U|)) elements and ne-

cessitates previous knowledge of the data universe U. Shrivas-

tava et al [43]’s work on additive error has influenced their ap-

proach. Zhang and Wang [48] proposed a deterministic merge-and-

prune method that stores 𝑂 (𝜖−1 log3 (𝑁𝜖)) items and is capable

of performing arbitrary merges with an upper constraint on n as

well as streaming updates for unknown 𝑁 . However, it does not

address the most general case of merging without prior knowl-

edge of 𝑁 . Cormode and Vesely [19] have shown that every de-

terministic comparison-based technique has a space constraint of

Ω(𝜖−1 log(𝑁𝜖)) items.

Cormode et al. [16] presented a relative error variation of the

KLL sketch. They achieve relative error 𝜖 in the randomized envi-

ronment using𝑂 (𝜖−1 log1.5 (𝑁𝜖)) with constant failure probability

by varying the sampling technique throughout the distribution and

employing a hierarchy modeled after [30].

3 Preliminaries

3.1 Model
Given a universe U, we consider a 2-tuple stream (sequence of ele-

ments) S = ⟨(𝑥1, ℓ1), (𝑥2, ℓ2) . . .⟩ ∈ (U × R)+. Here, each element

(𝑥𝑖 , ℓ𝑖) has an identifier 𝑥𝑖 ∈ U, and latency ℓ𝑖 ∈ R.
We denote by 𝑓𝑥 = | {(𝑥𝑖 , ℓ𝑖) ∈ S : 𝑥𝑖 = 𝑥} | the frequency (size)

of 𝑥 . Its (multi-) set of latencies is denoted by 𝐿𝑥 = {ℓ𝑖 : (𝑥, ℓ𝑖) ∈ S}.
Given a quantile 𝑞 ∈ [0, 1], let L𝑥,𝑞 represent the 𝑞𝑡ℎ quantile

(i.e., the ⌈𝑞 · 𝑓𝑥 ⌉𝑡ℎ largest value) of 𝐿𝑥 . The inverse operation is

normalized rank, denoted by rank𝑥 (ℓ), which returns the quantile

of ℓ in 𝐿𝑥 (that is, rank𝑥 (L𝑥,𝑞) = 𝑞).
Any item 𝑥 with frequency 𝑓𝑥 ≥ 𝑁\ is called a heavy hitter,

where 𝑁 = |S| is the overall number of elements, and \ ∈ [0, 1] is
a given threshold.

Let 𝜖, 𝛿 ∈ [0, 1) be additional error parameters: given the pa-

rameters \, 𝜖, 𝛿 , we consider the (\, 𝜖, 𝛿)-HH-latencies problem that

tracks the latency quantiles of heavy hitters. Specifically, we seek

algorithms that support the following operations:

• Insert(𝑥, ℓ) — process a new element (𝑥, ℓ).
• Query(𝑥, 𝑞) — return a tuple (𝑓𝑥 ,�L𝑥,𝑞) satisfying:

Rana Shahout, Roy Friedman, and Ran Ben Basat

Table 2: List of Symbols

Symbol Meaning

S The data stream

U The universe of elements

R The universe of latencies

𝑁 The number of elements in the stream

𝑞 The quantile q i.e. the 𝑞𝑡ℎ largest value

𝐿𝑥 The set of latencies of S with identifier 𝑥

L𝑥,𝑞 The 𝑞𝑡ℎ quantile of 𝐿𝑥�L𝑥,𝑞 an estimation of L𝑥,𝑞

rank𝑥 (ℓ) The quantile of ℓ in S𝑥
𝑓𝑥 The frequency of an element 𝑥 in S
𝑓𝑥 An estimate of 𝑓𝑥

𝜖 An estimate accuracy parameter

𝛿 A bound on the failure probability

\ The heavy hitters threshold

(1) Pr[|𝑓𝑥 − 𝑓𝑥 | > 𝑁𝜖] ≤ 𝛿 . As standard in heavy hitter

algorithms, we return an estimate of the item’s frequency.

(2) If 𝑓𝑥 ≥ \𝑁 , Pr[|rank(�L𝑥,𝑞) −𝑞 |) > 𝜖] ≤ 𝛿 . That is, if 𝑥 is

a heavy hitter the algorithm is likely to return an estimate

whose quantile is off by no more than 𝜖 .

We note that part (1) of our query response is designed to help the

user understand whether the quantile estimate is reliable and a simi-

lar guarantee can be obtained by running a separate heavy hitters al-

gorithm. Specifically, if 𝑓𝑥 > 𝑁\ (1+𝜖), then 𝑥 is likely to be a heavy
hitter and therefore �L𝑥,𝑞 is a credible approximation of L𝑥,𝑞 .

For ease of reference, Table 2 includes a summary of basic nota-

tions used in this work.

3.2 Useful Streaming Algorithms

In this work, we utilize the Reservoir Sampling (RS) algorithm [45]

in Section 4 as well as the Space Saving (SS) algorithm [37] and the

GK-algorithm [25] in Section 5. We overview them here.

Reservoir sampling (RS) [45]: is a randomized algorithm for

selecting a uniform random sample of a given size from an input

stream of an unknown size without replacement in a single pass

through the objects.

The algorithm keeps a 𝑘-sized reservoir, which initially holds the

first 𝑘 items of the input. On the arrival of the 𝑛’th item, RS selects

a uniform random integer 𝑖 ∈ {0, . . . , 𝑛 − 1}; the item overrides slot

𝑖 of the reservoir if 𝑖 < 𝑘 and is otherwise discarded.

Space Saving (SS) [37]: is a counter-base algorithm for (ap-

proximately) finding the most frequent items in a data stream, a.k.a.

heavy hitters. SS processes a stream of identifiers with the goal of

estimating the size (frequency) of each. SS maintains a set of 1/𝜖
integer counters, each with an associated ID. When an item arrives,

SS increments its counter if one exists. Otherwise, SS allocates the

item with a minimal-valued counter before incrementing it (disas-

sociating the previous ID). For example, assume that the smallest

counter was associated with ID 𝑥 and had a value of 4; if 𝑦 arrives

and has no counter, it will take over 𝑥 ’s counter and increment

its value to 5 (leaving 𝑥 without a counter). When queried for the

frequency of an item, we return the value of its counter if it has

one, or the minimal counter’s value otherwise.

If we denote the overall number of insertions processed by the

algorithm by 𝑍 , then we have that the sum of counters equals 𝑍 ,

and thus the minimal counter is at most 𝑍𝜖 . This ensures that the

error in the SS estimate is at most 𝑍𝜖 .

The GK-algorithm (GK) [25]: is a deterministic algorithm for

supporting single-pass quantile summaries of a data stream. A

quantile summary is a subset of the input data sequence that uses

quantile estimations to provide approximate answers to any arbi-

trary quantile query.

TheGK technique is based on the idea that if a sorted subset of the

input stream of size𝑁 can be kept so that the ranks of 𝑣𝑖 and 𝑣𝑖+1 are
within 2𝑁𝜖 of each other, then any quantile query can be answered

with an error no larger than 𝑁𝜖 . That is, given a quantile 𝑞, GK can

produce an estimate that satisfies 𝑞 ∈ [𝑞 − 𝜖, 𝑞 + 𝜖] by finding the

closest ranked element in the subset. GK allows maintaining such a

subset using𝑂 (1𝜖 log𝑁𝜖) elements, which has recently been shown

to be optimal for comparison-based deterministic algorithms [19].

The Random algorithm [33]: is an algorithm that reports all

quantiles within the specified error with constant probability.

Random separates the stream into fixed-size buffers, each of

which is assigned a level. Whenever there are two buffers at the

same level, Random merges them into a buffer at one level higher,

such that at any time, there is at most one buffer at any level.

Random aggregates the ranks of 𝑥 in all buffers to report the rank

of an element 𝑥 . Overall, it requires keeping𝑂 (1𝜖 log
1.5 1

𝜖) elements

to guarantee that for any 𝑞, its estimate would satisfy Pr
[
𝑞 ∈ [𝑞 −

𝜖, 𝑞 +𝜖]
]
≥ 2/3 (and this can be amplified to 1−𝛿 using the median

of 𝑂 (log 𝛿−1) independent repetitions). If we aim for a specific

quantile, then the space reduces to 𝑂 (1𝜖 log
1
𝜖) per repetition.

4 The SQUARE Algorithm
Here, we present the Sampled QUAntile REconstruction (SQUARE)

algorithm for solving the (\, 𝜖, 𝛿)-HH-latencies problem that em-

ploys RS (see section 3.2) as a blackbox.

Intuitively, sampling is a common technique that is useful for

many applications, including quantile estimation, and will serve as

a baseline for our more complex algorithms. It is long known that

for approximating a quantile from a uniformly selected subset of a

number stream to within an additive-𝜖 error with probability 1 − 𝛿 ,
one needs to sample \

(
𝜖−2 log 𝛿−1

)
elements [35].

As a result, any heavy hitter 𝑥 (an ID that appears at least 𝑁\

times) must be sampled Ω(𝜖−2 log 𝛿−1) times to solve the (\, 𝜖, 𝛿)-
HH-latencies problem using sampling.

Notice that there can be at most \−1 heavy hitters. As a result,

we employ RS to sample 𝑀 = Θ(\−1𝜖−2 log 𝛿−1) elements from

S. This way, a given heavy hitter is sampled Ω(𝜖−2 log 𝛿−1) times

with probability 1 − 𝛿/2, and its samples allow us to produce an

appropriate quantile estimate with probability 1 − 𝛿/2; using the
union bound, we get that the overall estimate is accurate with

probability 1 − 𝛿 .
Furthermore, by selecting 𝑓𝑥 to be 𝑁 /𝑀 times the number of

samples (e.g., see the analysis of [8]), we can estimate the frequency

of an item to within an 𝑁 · 𝜖
√
\ factor with probability 1 − 𝛿 .

The following theorem states the memory consumption of the

SQUARE algorithm.

SQUAD: Combining Sketching and Sampling Is Better than Either for Per-itemQuantile Estimation

Theorem 1. SQUARE solves the (\, 𝜖, 𝛿)-HH-latencies problem
while requiring 𝑂 (\−1𝜖−2 log 𝛿−1) space.

5 The QUASI Algorithm

Next, we offer a deterministic algorithm called QUAntile Sketches

for heavy Items (QUASI). Intuitively, QUASI allocates a separate GK

sketch [25] to track the latency quantiles of each potential heavy

hitter. Because we don’t know the IDs of the heavy hitters ahead of

time, QUASI uses a space-saving instance with 𝑘 = 2𝜖−1\−1 entries,
where each entry has a GK sketch instance configured for error

𝜖𝐺𝐾 = 𝜖/2 in addition to its counter and ID fields. This way, QUASI

can use the space saving counter value to estimate the frequency,

and use the GK sketch to approximate the latency quantile.

Whenever an item (𝑥, ℓ) arrives, if 𝑥 has an allocated counter,

QUASI increments 𝑥 ’s counter and inserts ℓ to the associated GK

instance. Otherwise, we replace the item that has the minimal

counter value with 𝑥 and reset its corresponding GK instance. Then,

we insert ℓ to this GK instance.

Using the SS variant mentioned above, we can compute any

Query(𝑥, 𝑞) as follows. If 𝑥 has an allocated SS entry, we estimate

its frequency using its counter value. Its GK instance is then queried

to estimate the 𝑞𝑡ℎ quantile of 𝐿𝑥 . Otherwise, if 𝑥 has no allocated

entry, we estimate the minimal SS counter value as (an upper bound

on) its frequency and do not report the latency. Since SS determinis-

tically guarantees that every element with a frequency larger than

𝑁 /𝑘 ≤ 𝑁\ (i.e., in particular, every heavy hitter) will have an entry,

we can satisfy the accuracy guarantees.

Algorithm 1 provides a high level pseudo code of QUASI using the

pseudo code of Space Saving as shown in [37] without implementa-

tion details. The additions tomanipulate the GK sketch instances are

highlighted in blue. Table 3 contains a list of the used variables.

Algorithm 1 QUASI

1: function Insert(𝑥, ℓ)

2: if 𝑥 is monitored then
3: Increment 𝑐𝑜𝑢𝑛𝑡𝑥 , the counter of 𝑥

4: Insert ℓ to 𝐺𝐾𝑥 , the GK sketch of 𝑥

5: else
6: if Less than 𝑘 items are monitored then
7: 𝑐𝑜𝑢𝑛𝑡𝑥 ← 1
8: Initialize a GK sketch for 𝑥

9: else
10: Let 𝑥 ′ be the element with smallest 𝑐𝑜𝑢𝑛𝑡𝑥 ′

11: Start monitoring 𝑥 instead of 𝑥 ′;
12: 𝑐𝑜𝑢𝑛𝑡𝑥 ← 𝑐𝑜𝑢𝑛𝑡𝑥 ′ + 1
13: Reset the GK sketch for 𝑥

14: Insert ℓ to the GK sketch of 𝑥

15: functionqery(𝑥, 𝑞)

16: if 𝑥 is monitored then
17: return (𝑐𝑜𝑢𝑛𝑡𝑥 ,𝐺𝐾𝑥 .𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (𝑞))
18: else
19: return (𝑐𝑜𝑢𝑛𝑡𝑚𝑖𝑛, 𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑)

Table 3: Variables used by QUASI (Algorithm 1)

𝑘 number of entries in the SS

𝑐𝑜𝑢𝑛𝑡𝑥 counter of 𝑥 in the SS

𝑐𝑜𝑢𝑛𝑡𝑚𝑖𝑛 minimal counter value in the SS

𝐺𝐾𝑥 the GK sketch instance of 𝑥

Accuracy Guarantees. Using the standard analysis for an SS

instance with k entries, we have every heavy hitter receive a space-

saving instance no later than its 𝑁 /𝑘 arrival (because the counters

sum to at most 𝑁 , the minimal cannot be greater than 𝑁 /𝑘).
Therefore, if the queried element has no counter, it cannot be

a heavy hitter. Otherwise, the GK sketch of the queried heavy

hitter 𝑥 processes all but at most 𝑁 /𝑘 = 𝑁\𝜖 latencies from 𝐿𝑥 .

Let 𝐿′𝑥 ⊆ 𝐿𝑥 denote the subset of latencies processed by 𝐺𝐾𝑥 . Due

to 𝐺𝐾𝑥 ’s guarantees, our output 𝑞 = 𝐺𝐾𝑥 .𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (𝑞) is within
𝜖 from the true quantile of 𝐿′𝑥 . That is, 𝑞 deviates from the true

quantile by at most |𝐿′𝑥 | · 𝜖𝐺𝐾 = |𝐿′𝑥 | · 𝜖/2 values. Together with

the missing latencies of 𝐿𝑥 \ 𝐿′𝑥 , we have that 𝑞 deviates by at most

|𝐿′𝑥 | ·𝜖/2+𝑁\𝜖/2. In terms of quantiles, this means that our error is

|𝐿′𝑥 | · 𝜖 + 𝑁\𝜖
|𝐿𝑥 |

≤ 𝜖 ·
(
1 + 𝑁\

|𝐿𝑥 |

)
≤ 𝜖.

Let us analyze the space next. We use 𝑘 = 𝑂 (𝜖−1\−1) entries,
each with a GK sketch configured for 𝜖𝐺𝐾 = 𝜖/2. Let 𝑎𝑖 be the

number of times the 𝑖’th 𝐺𝐾 instance was incremented; therefore,∑𝑘
𝑖=1 𝑎𝑖 ≤ 𝑁 . By the space complexity of the GK algorithm we have

that QUASI’s overall space requirement is

𝑘∑︁
𝑖=1

𝑂 (𝜖−1 (1 + log(𝑎𝑖𝜖))) = 𝑂
(
𝑘 · 𝜖−1 ·

(
1 + log 𝑁 · 𝜖

𝑘

))
= 𝑂

(
\−1𝜖−2 ·

(
1 + log(𝑁𝜖2\)

))
.

Here, we used Jansen’s inequality and the concaveness of the loga-

rithm function.We summarize the analysis in the following theorem.

Theorem 2. QUASI solves (\, 𝜖, 0)-HH-latencies problem (i.e., de-
terministically) while requiring𝑂

(
\−1𝜖−2 ·

(
1 + log(𝑁𝜖2\)

))
space.

6 The SQUAD Algorithm
The quadratic dependency on 1/𝜖 of the previous algorithms is

sometimes prohibitively costly. Interestingly, while both the sam-

pling (SQUARE) and sketching (QUASI) approaches require Ω̃(1/𝜖2)
space

1
, applying them in tandem we can significantly improve

the space complexity. Specifically, we present Sketching/sampling

QUAntiles Duo (SQUAD), a hybrid algorithm that requires only

𝑂 (𝜖−1.5) space1. Intuitively, the sampling helps us capture the

behavior of the latencies experienced by an item before it was

allocated with an SS entry and a quantile sketch.

SQUAD keeps 𝑧 = 𝑂 (𝜖−1.5\−1 log 𝛿−1) samples chosen by RS

(see section 3.2). Each sample is a triplet (𝐼𝐷, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝).
That is, when sampling an element (𝑥𝑖 , ℓ𝑖) we store the triplet

(𝑥𝑖 , ℓ𝑖 , 𝑖). Additionally, SQUAD employs an enhanced Space Sav-

ing [37] (SS) as described in QUASI (Section 5), but instead of using

1
The Ω̃, Θ̃ and𝑂 notations assume that the heavy hitters parameter \ is constant and

hide polylogarithmic factors.

Rana Shahout, Roy Friedman, and Ran Ben Basat

instances of the GK algorithm, it employs instances of the Random

algorithm (configured for 𝜖/2 error similarly to QUASI)
2

In contrast to QUASI, which requires 𝑘 = Θ(𝜖−1\−1) entries,
SQUAD only uses𝑚 = 4𝜖−0.5\−1. Intuitively, we can avoid sketch-

ing additional latencies from 𝐿𝑥 because the ones processed before

𝑥 is allocated to a sketch, are well approximated by the sample.

In addition to the counter and the Random instance, an entry for

ID 𝑥 in the SS structure has a timestamp (𝑡𝑥) that indicates when 𝑥

was last allocated with an entry.

If RS decides to consider the 𝑖’th element (𝑥𝑖 , ℓ𝑖), we store (𝑥𝑖 , ℓ𝑖 , 𝑖)
in the samples array. After that, we update the augmented SS as

follows: If 𝑥𝑖 has an allocated counter, SQUAD increments it and

inserts ℓ𝑖 into the associated random instance. Otherwise, we re-

allocate the counter with the lowest value for 𝑥 , flush its Random

instance, and set its 𝑡𝑥𝑖 to 𝑖 . After that, we add ℓ to this Random

instance. Notice that 𝑥 continues to participate in the RS process

regardless of whether it has a counter in SS or not. Intuitively, 𝑥 ’s
entry could become minimal and it could be evicted from the SS,

so we keep tracking it by sampling.

For answeringQuery(𝑥, 𝑞), we search for 𝑥 in the augmented

SS. If 𝑥 does not have an entry, our algorithms cannot promise

anything about its 𝑞𝑡ℎ quantile (similarly to QUASI, this means that

𝑥 is not a heavy hitter). To estimate the frequency of an item 𝑥 , we

use both the sample and the SS counter. Specifically, let 𝑡𝑥 denote the

timestamp of 𝑥 in the SS, and let 𝑆𝑥 denote the number of samples

that belong to 𝑥 with a timestamp smaller than 𝑡𝑥 . We estimate the

number of times that 𝑥 arrived before 𝑡𝑥 as 𝑁 /𝑧 · 𝑆𝑥 because the

probability that RS samples a specific element is 𝑧/𝑁 . As a result,

we estimate the frequency as 𝑓𝑥 = 𝑁 /𝑧 · 𝑆𝑥 + 𝐼𝑥 .
The latencies are estimated in a similar way: we take the samples

collected before 𝑡𝑥 as representing the latencies before 𝑡𝑥 and merge

them with the entries stored in 𝑅𝑎𝑛𝑑𝑜𝑚𝑥 (that represent entries

between 𝑡𝑥 and 𝑁).

To merge the samples and the sketch, we duplicate 𝑅𝑎𝑛𝑑𝑜𝑚𝑥 and

then insert the 𝑆𝑥 samples, each with a weight of 𝑁 /𝑧. Our approx-
imation of the 𝑞’th quantile is the quantile of the combined array.

An alternative approach is to merge the samples of 𝑥 , 𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑥 ,

with the buffers of the Random algorithm in side buffers in the func-

tionQuery(𝑥, 𝑞), and then report the rank of 𝑥 using the merged

buffers. This approach requires an additional modification in the

implementation of the Random Quantile(𝑞) function.
The variables of the SQUAD algorithm are described in Table 4

and its pseudocode appears in Algorithm 2.

Accuracy Guarantees. Intuitively, our analysis relies on the

observation that if the sample approximates 𝑥 ’s frequency before

𝑡𝑥 to within an 𝛼 additive error, and the space saving approximates

its frequency since 𝑡𝑥 to within 𝛽 elements, then the error of the

merging process cannot exceed 𝛼 + 𝛽 ; a similar logic applies to the

latency quantiles (e.g., see [26]).

Let us start by analyzing the sample. Let 𝑓𝑥,1 denote 𝑥 ’s fre-

quency before (not including) 𝑡𝑥 and let 𝑓𝑥,2 denote its frequency

starting with 𝑡𝑥 (i.e., 𝑓𝑥 = 𝑓𝑥,1 + 𝑓𝑥,2). As before, we denote by

2
We chose Random as it is the fastest algorithm we are aware of, and our guarantee is

random anyhow due to the sampling. One can replace it with a state-of-the-art sketch

such as KLL [30], slightly improving the accuracy at a potential loss of speed. In any

case, the complexity remains Θ̃(𝜖−1.5) .

Algorithm 2 SQUAD

1: function Insert(𝑥, ℓ)

2: 𝑛 ← 𝑛 + 1 ⊲ The current timestamp

3: RS .𝐴𝑑𝑑 (𝑥, ℓ, 𝑛)
4: if 𝑥 is monitored then
5: Increment 𝑐𝑜𝑢𝑛𝑡𝑥 , the counter of 𝑥

6: Increment 𝐼𝑥 , the count since 𝑥 became monitored

7: Insert ℓ to 𝑅𝑛𝑑𝑥 , the Random sketch of 𝑥

8: else
9: if Less than𝑚 items are monitored then
10: Initialize a Random sketch for 𝑥

11: 𝑐𝑜𝑢𝑛𝑡𝑥 ← 1
12: else
13: Let 𝑥 ′ be the element with smallest 𝑐𝑜𝑢𝑛𝑡𝑥 ′

14: Start monitoring 𝑥 instead of 𝑥 ′;
15: 𝑐𝑜𝑢𝑛𝑡𝑥 ← 𝑐𝑜𝑢𝑛𝑡𝑥 ′ + 1
16: Reset the Random sketch for 𝑥

17: 𝐼𝑥 ← 1
18: 𝑡𝑥 ← 𝑛

19: Insert ℓ to the Random sketch of 𝑥

20: functionqery(𝑥, 𝑞)

21: 𝑆𝑥 ← 0
22: 𝑆𝐿𝑖𝑠𝑡𝑥 ← empty list
23: for 𝑗 ∈ 0, 1, . . . , 𝑧 do
24: if RS [𝑗] .𝐼𝐷 = 𝑥 and RS [𝑗] .𝑡𝑠 < 𝑡𝑥 then
25: 𝑆𝑥 ← 𝑆𝑥 + 1
26: Insert RS [𝑗] .ℓ to 𝑆𝐿𝑖𝑠𝑡𝑥
27: sfx = 𝑛

𝑧 · 𝑆𝑥
28: if 𝑥 is monitored then
29: 𝑅𝑛𝑑𝑁𝑒𝑤𝑥 = 𝑅𝑛𝑑𝑥
30: Insert samples from 𝑆𝐿𝑖𝑠𝑡𝑥 withweight

𝑛
𝑧 to𝑅𝑎𝑛𝑑𝑁𝑒𝑤𝑥

31: return (sfx + 𝐼𝑥 , 𝑅𝑎𝑛𝑑𝑁𝑒𝑤𝑥 .𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒 (𝑞))
32: else
33: return (sfx , 𝑢𝑛𝑑𝑒 𝑓 𝑖𝑛𝑒𝑑)

Table 4: Variables used by SQUAD (Algorithm 2)

𝑛 number of arrived elements

𝑧 samples size used by RS

𝑅𝑆 a Reservoir Sampling instance with maximal 𝑧 sam-

ples.

𝑚 number of entries in the SS

𝑐𝑜𝑢𝑛𝑡𝑥 counter of 𝑥 in the SS

𝐼𝑥 the count since 𝑥 became monitored

𝑡𝑥 timestamp of 𝑥 in the SS

𝑆𝑥 number of samples that belongs to 𝑥

sfx estimation of 𝑥 ’s frequency before 𝑡𝑥

𝑅𝑎𝑛𝑑𝑥 the Random instance of 𝑥

𝑆𝑥 the number of 𝑥 ’s samples collected before 𝑡𝑥 (observe that

𝑆𝑥 ∼ Hypergeometric(𝑁, 𝑓𝑥,1, 𝑧)). Thus, we use the approximation

�̂�𝑥,1 = 𝑆𝑥 · 𝑁 /𝑧. Denoting 𝑝 = 𝑓𝑥,1/𝑁 , we can use standard concen-

tration bounds (e.g., [42]) on the hypergeometric distribution to

SQUAD: Combining Sketching and Sampling Is Better than Either for Per-itemQuantile Estimation

bound the sampling error as, for any Δ ∈ (0, 𝑧 · 𝑝]

Pr [|𝑆𝑥 − E[𝑆𝑥] | ≥ Δ] < 2𝑒
− Δ2

3𝑧·𝑝 . (1)

Notice that once an item that reaches a frequency of 𝑁 /𝑚 it

cannot have the minimum SS entry. Therefore, we have that 𝑓𝑥,1 ≤
𝑁 /𝑚. As the sampling error is monotonically increasing in 𝑓𝑥,1 (for

𝑓𝑥,1 < 𝑁 /2), we bound the error by analyzing the error of an item

with 𝑓𝑥,1 = 𝑁 /𝑚. In our context, we sample 𝑧 = 𝑂 (𝜖−1.5\−1 log 𝛿−1)
elements from the stream; that is, the probability for each of the 𝑧

samples to belong to the first 𝑓𝑥,1 insertions of 𝑥 is 𝑝 =
𝑓𝑥,1
𝑁

= 1/𝑚.

Next, let Δ =

√︃
3𝑧 log(2/𝛿)

𝑚 = Θ

(√︃
𝑧 log𝛿−1

𝑚

)
3
. Our goal in what

follows is to show that the error in estimating 𝑓𝑥,1 is likely to be

lower than 𝑁 ·
√︃

3 log(2/𝛿)
𝑧 ·𝑚 = Θ(𝑁 · 𝜖 · \).

Using (1), we have that:

Pr

[
| �̂�𝑥,1 − 𝑓𝑥,1 | ≥ 𝑁 ·

√︂
3 log(2/𝛿)
𝑧 ·𝑚

]
= Pr

[
|𝑆𝑥 · 𝑁 /𝑧 − E[𝑆𝑥] · 𝑁 /𝑧 | ≥

𝑁

𝑧
· Δ

]
= Pr [|𝑆𝑥 − E[𝑆𝑥] | ≥ Δ] ≤ 2𝑒

− Δ2

3𝑧·𝑝 = 𝛿.

Next, recall that 𝑓2,𝑥 is calculated accurately using 𝐼𝑥 , and there-

fore

���𝑓𝑥 − 𝑓𝑥 ��� =

��� �̂�𝑥,1 − 𝑓𝑥,1���. Therefore, we established that the

frequency estimation error is bounded by 𝑁 · 𝜖 · \ , with probability

1 − 𝛿 , using 𝑧 = 𝑐 · 𝜖−1.5\−1 log 𝛿−1 samples, for an appropriate

constant 𝑐 > 0.
To analyze the quantile estimation error, we consider the error

of the sampling phase (before 𝑡𝑥) separately from the error once 𝑥

is allocated with a sketch (starting with 𝑡𝑥). An analysis similar to

the above (with different constants) yields that the error in the sam-

pling phase is bounded by 𝜖/2 except with probability 𝛿/2. Specifi-
cally, we can get 𝑆𝑥 = Ω(𝑧 · 𝑓𝑥,1/𝑁) = Ω(𝜖−1 log 𝛿−1) samples ex-

cept with probability 𝛿/4, and have these approximate the quantile

within an additive Θ(
√
𝜖) error except with further 𝛿/4 error proba-

bility. This means that the rank of the latency is off by at mostΘ(
√
𝜖 ·

𝑓𝑥,1) = Θ(
√
𝜖 · 𝑁 /𝑚) = Θ(𝑁𝜖\) from the true quantile. Therefore,

by configuring the quantile sketch to have an 𝜖/2 error with proba-

bility 1 − 𝛿/2, we can get that the overall estimate error, which re-

sults from the combination of the sample and the sketch, is bounded

by 𝑓𝑥 · 𝜖 + Θ(𝑁𝜖\) = 𝑂 (𝑓𝑥𝜖), as 𝑓𝑥 ≥ 𝑁\ per our problem definition.

We summarize the analysis in the following theorem.

Theorem 3. SQUAD solves (\, 𝜖, 𝛿)-HH-latencies problem deter-

ministically while requiring 𝑂
(
\−1𝜖−1.5 · log 𝜖−1

)
space.

7 Optimizing the Processing Speed
We now detail several optimizations that enable our algorithms to

process elements faster. First, we use the Algorithm L [31], which

provides a fast simulation of RS. Intuitively, instead of drawing a

3
Observe that 𝑧 · 𝑝 = 𝑧/𝑚 = Θ(𝜖−1 log𝛿−1) , and therefore:

Δ = Θ

(√︂
𝑧 log𝛿−1

𝑚

)
= Θ

(√
𝜖−1 · log𝛿−1

)
= 𝑜 (𝑧 · 𝑝) .

random integer per item, it generates geometric random variables

that represent how many items to skip before the next one is admit-

ted into the reservoir. Once an item is chosen, it replaces a uniform

slot in {0, . . . , 𝑘 − 1}. As a result, the total number of updates falls

to𝑂 (𝑘 (1 + log(𝑁 /𝑘)), implying that it takes 𝑜 (1) computation per

element because the majority are skipped.

While we can use the above to optimize the RS process, QUASI’s

and SQUAD’s processing speed is limited as arrivals of elements not

tracked by the SS require initializing a new sketch. To speed up the

processing of both, we propose using an initial probabilistic filtering

stage. Intuitively, as both quantiles and frequencies can be accu-

rately estimated from sampled streams for heavy hitters, we can pro-

cess a small (e.g., 10%) of the input and obtain rather precise results.

Namely, consider a wrapper that with probability 𝔭 calls the Insert

function of SQUAD (or QUASI
4
) and otherwise ignores the packet.

This means that the algorithms look at a sampled stream S′ ⊂ S
such that each element in S appears with probability 𝔭 in S′ i.i.d.

Intuitively, for a constant error probability, the sampling error

would be of size Θ(
√︁
𝑁\/𝔭); if this is comparable or smaller than

the Θ(𝑁𝜖\) error of SQUAD, we can compensate for the error

resulting from analyzing S′ (rather than S) without asymptotically

increasing the space requirements.

There are several approaches to selecting 𝔭. One option is to dy-

namically change𝔭 as 𝑁 grows, inserting elements with a weight of

1/𝔭, e.g., as suggested by [11, 32]. For simplicity, here we consider

using a fixed probability, which means that the accuracy guarantees

of the algorithms only hold after a short convergence time (as com-

mon in some sampling algorithms [10, 13, 36]). Namely, consider

setting SQUAD to solve the (\, 𝛼 ·𝜖, 𝛼 ·𝛿)-HH-latencies problem for

some 𝛼 ∈ (0, 1) (e.g., 𝛼 = 0.9). Then, if the frequencies and latency

quantiles are maintained in S′ (the frequency, after scaling by 1/𝔭)
to within error (1 − 𝛼)𝜖 , except with probability (1 − 𝛼)𝛿 , then
the overall scheme solves (\, 𝜖, 𝛿)-HH-latencies problem. Here, 𝛼

is a tradeoff parameter: the larger 𝛼 is, the less space the algorithm

requires, but also the higher the sampling probability needs to be.

As analyzed above, a sample of size |S′ | = Ω(\−1𝜖−2𝑠 log 𝛿−1𝑠)
is enough for S′ to be an 𝜖𝑠 approximation of the quantiles and

frequency (the 𝑠 subscript represents sampling) of an element except

with probability 𝛿𝑠 . In our case, we have |S′ | = 𝑁𝔭, i.e., 𝑁𝔭 =

Ω(\−1𝜖−2𝑠 log 𝛿−1𝑠), and thus we need a convergence time of at

least 𝑁 = Ω(\−1 ((1−𝛼)𝜖)−2𝔭−1 log((1−𝛼)𝛿)−1) elements before

the algorithm solves the (\, 𝜖, 𝛿)-HH-latencies problem.

Intuitively, since in practical applications 𝑁 ≫ \−1𝜖−2 log 𝛿−1,
we can set a large 𝛼 value (e.g., 𝛼 = 0.9). We can then use an in-

termediate value for 𝔭 (e.g., 𝔭 ∈ [0.1, 0.01]) as this gives a large
speed boost and lowering the sampling probability further is not

as beneficial. This way, we do not require significantly more space

(about 20% increase for 𝛼 = 0.9) nor compromise the accuracy guar-

antees (following the short convergence time) while significantly

accelerating the solution.

4
Note that this makes the algorithm randomized.

Rana Shahout, Roy Friedman, and Ran Ben Basat

8 Evaluation

8.1 Setup
Wedeveloped a C++ prototype for each of the algorithmsmentioned

in this paper: SQUARE, QUASI and SQUAD. The QUASI and SQUAD

are implemented here using Quantile Sketch [46] as a building block.

Additionally, we compared our results to the GK-algorithm [25] and

the Random algorithm [33] as a general baseline, since these are

the state of the art for the more basic problem of quantiles across

whole data streams, rather than per-element quantiles. To to the

best of our knowledge, this is the first study that solves quantiles

on a per-element level. Furthermore, we compared to Space Saving

(SS) [37], since this is a building element in QUASI and SQUAD.

8.1.1 Dataset: Weevaluate our algorithms usingNS3 simulations [2]

for a FatTree topology comprised of 16 Core switches, 20 Agg

switches, 20 ToRs, and 320 servers (16 in each rack). Each server

has a single 100Gbps NIC and the default load is 60%. Each con-

nection between Core and Agg switches, as well as between Agg

switches and ToRs, has a capacity of 400Gbps. The switch buffer

size is 32MB. The traffic follows the flow size distribution in web

search from Microsoft [5] or Hadoop from Facebook [41].

The evaluation was performed on an Intel(R) 3.20GHz Xeon(R)

CPU E5-2667 v4 running Linux with kernel 4.4.0-71. Each data point

in all runtime measurements is shown as a 95% confidence interval

of 10 runs. Our evaluation includes only the web search trace as

the Hadoop trace exhibits very similar results.

8.2 Accuracy Comparison
Wemeasure accuracy in this experiment as a function of used mem-

ory. Specifically, given quantile 𝑞, we measure |rank(�L𝑥,𝑞) − 𝑞 |),
a.k.a percentage error, as a function of consumed memory for each

𝑥 that satisfies 𝑓𝑥 ≥ 𝑁\ . Additionally, we present the theoretical
error which demonstrates that the empirical error is constrained

by the theoretical error.

Figure 2 illustrates the percentage error in terms of quantiles:

50%, 90% and 95% for each algorithm: SQUARE, QUASI, and SQUAD

as a function of memory use with a constant value of \ = 0.01 using
NS3-simulated online search trace. Note that all graphs have the

same amount of points, but some of them overlap in several graphs.

Additionally, Figure 3 illustrates the percentage error for SQUAD

in terms of quantiles: 50%, 90% and 95% using an NS3-simulated

trace following the Hadoop flow size distribution.

Throughout, as memory use increases, our algorithms get more

precise, resulting in a decrease in empirical error. As can be seen,

SQUAD is the most compact algorithm among SQUARE and QUASI,

whereas SQUARE is the most resource-intensive. As previously

stated, SQUARE storesΘ(\−1𝜖−2 log 𝛿−1) elements from the stream.

To ensure a small error of 𝑒𝑝𝑠𝑖𝑙𝑜𝑛, SQUARE should keep a high

number of samples, which results in saving the whole stream size

in small values of 𝜖 and \ , as seen in Figure 3c.

For the QUASI algorithms, keeping the heavy hitters in the SS in-

stance together with their GK-algorithm sketch results in a smaller

footprint than SQUARE. SQUAD, on the other hand, is the most

efficient algorithm for solving the (\, 𝜖, 𝛿)-HH-latencies problem
due to its compact data structure, as seen in Table 1.

In general, a lower space consumption required for a specific

𝜖 and \ values translates into better empirical error. For example,

QUASI consumes more memory than SQUAD for the same 𝜖 and

\ . Thus, for a given memory budget, QUASI is more accurate than

SQUARE and SQUAD is more accurate than both.

8.3 Performance Comparison
Figures 4 and 5 compare the update speed. We explore the trade-off

of 𝜖 with a fixed \ = 0.01.

8.3.1 QUASI Update Time: Figure 4a illustrates the performance

of QUASI in terms of update time when compared to its building

blocks: Space Saving (SS) [37] and the GK-algorithm [25]. Bear

in mind that, although SS is the quickest, neither it nor the GK-

algorithm solve the (\, 𝜖, 𝛿)-HH-latencies problem and rather serve

as a best-case reference point.

As can be observed, QUASI’s update performance is comparable

to that of the GK algorithm. Recall that the QUASI update operation

is equivalent to an update operation in SS and an update operation

on the corresponding GK instance. Due to the high effectiveness of

SS updates, the run time of QUASI updates is limited by the run time

of GK. That is, while GK-algorithm solves the quantile problem for

the full stream, the QUASI algorithm solves per-element quantiles

without adding any extra update time cost.

Specifically, we may replace the GK instances in QUASI with

any sketch that solves quantiles, such as Random [33], which has a

higher update speed, as seen in Figure 4b. However, QUASI will no

longer be a deterministic solution in this case. As a result, there is

a trade-off between update speed and determinism. Additionally,

it was shown that the GK-algorithm is an optimal deterministic
comparison based algorithm.

8.3.2 SQUAD Update Time: Figure 4b compares SQUAD’s update

speed to that of its building blocks: Space Saving (SS) [37] and the

Random-algorithms [33].

Recall that the Random algorithm reports quantiles over the en-

tire stream, thus it does not solve the (\, 𝜖, 𝛿)-HH-latencies problem
and only serves as a best case reference point. SQUAD update op-

eration is translated to sampling operation, SS update and Random

update. As a result, the run time of its update is impacted by the run

time of all of them. 𝑆𝑄𝑈𝐴𝐷_𝑝 = 1 in the graph indicates that the

implementation excludes the optimizations detailed in Section 7.

8.3.3 Comparing SQUARE, QUASI and SQUAD Update Time: As
seen in Figure 5a, SQUARE is the fastest algorithm since each update

is converted to a sampling update. SQUAD, on the other hand,

performs better than QUASI in terms of update performance since

it is based on the Random algorithm, which has a faster update

time than the GK- algorithm, the building block of QUASI. While

SQUARE is the quickest, it solves the (\, 𝜖, 𝛿)-HH-latencies problem
with a high memory cost, as seen in Figure 2. When 𝜖 is small,

SQUARE keeps a significant number of samples more than the

stream size. In this scenario, SQUARE just saves all streams, which

results in superior performance than larger values of 𝜖 , which allows

items to override earlier samples.

Figure 5b shows how the filtering optimization discussed in Sec-

tion 7 improves the update performance of SQUAD. In this scenario,

SQUAD: Combining Sketching and Sampling Is Better than Either for Per-itemQuantile Estimation

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Memory [MB]

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r P
er

ce
nt

ile SQUARE_50
Theoretical Error

(a) SQUARE 50%

0 20 40 60 80 100 120 140
Memory [MB]

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Er
ro

r P
er

ce
nt

ile SQUARE_90
Theoretical Error

(b) SQUARE 90%

0 500 1000 1500 2000 2500 3000 3500
Memory [MB]

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

Er
ro

r P
er

ce
nt

ile SQUARE_99
Theoretical Error

(c) SQUARE 99%

0.0 0.5 1.0 1.5 2.0
Memory [MB]

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r P
er

ce
nt

ile QUASI_50
Theoretical Error

(d) QUASI 50%

0 20 40 60 80 100
Memory [MB]

0.00

0.01

0.02

0.03

0.04

0.05

Er
ro

r P
er

ce
nt

ile QUASI_90
Theoretical Error

(e) QUASI 90%

100 150 200 250
Memory [MB]

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

Er
ro

r P
er

ce
nt

ile QUASI_99
Theoretical Error

(f) QUASI 99%

0.05 0.10 0.15 0.20 0.25 0.30
Memory [MB]

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r P
er

ce
nt

ile SQUAD_50
Theoretical Error

(g) SQUAD 50%

0 10 20 30 40
Memory [MB]

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Er
ro

r P
er

ce
nt

ile SQUAD_90
Theoretical Error

(h) SQUAD 90%

25 50 75 100 125 150 175 200
Memory [MB]

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

Er
ro

r P
er

ce
nt

ile SQUAD_99
Theoretical Error

(i) SQUAD 99%

Figure 2: Accuracy as a function of used memory using NS3-simulated online search trace. Each marker corresponds with one heavy hitter;
i.e., we show the error (|rank(�L𝑥,𝑞) − 𝑞 |)) for each 𝑥 that satisfies 𝑓𝑥 ≥ 𝑁\ for a fixed value of \ = 0.01, as a function of memory consumed.
We examine the quantiles 50%, 90%, 99% of each algorithm: SQUARE, QUASI, and SQUAD. Notice the different x/y-axis ranges.

when the filter sampling probability𝔭 is 0.1, its performance compa-

rable or better than SQUARE, and with 𝔭 = 0.01, SQUAD becomes

the clear winner. We explore these optimizations further below.

8.3.4 Query Speed Comparison: For comparing the query speed,

we used the quantiles 50%, 90%, 99%. We investigated the effect of

the 𝜖 parameter using a fixed \ of 0.01, and the experiment includes

quantile queries for items 𝑥 that satisfy the condition 𝑓𝑥 ≥ 𝑁\ . For
decreasing 𝜖 values, more latencies access the quantile sketches.

Consequently, we got slower query operations in all algorithm.

As seen in Figure 6, QUASI performs better than SQUAD because

SQUAD relies on Random queries, which perform worst than the

GK. Additionally, SQUAD checks its samples part to figure out the

samples that were taken before the time the given identifier enters

the SS. This becomes extremely expensive when the sample size

is large, i.e. when the 𝜖 value is small.

Particularly, as seen in Figure 4b, we may replace the Random

instances in SQUAD with a GK sketch that has a faster query per-

formance. However, as seen in Figure 4, GK is slower in update

performance. Indeed, there is a trade-off between update and query

Rana Shahout, Roy Friedman, and Ran Ben Basat

0.05 0.10 0.15 0.20 0.25 0.30
Memory [MB]

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r P
er

ce
nt

ile SQUAD_50
Theoretical Error

(a) SQUAD 50%

0 5 10 15 20 25 30 35 40
Memory [MB]

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Er
ro

r P
er

ce
nt

ile SQUAD_90
Theoretical Error

(b) SQUAD 90%

20 40 60 80 100 120 140 160
Memory [MB]

0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

Er
ro

r P
er

ce
nt

ile SQUAD_99
Theoretical Error

(c) SQUAD 99%

Figure 3: Accuracy as a function of used memory using NS3-simulated trace following the flow size distribution in Hadoop. Each marker
corresponds with one heavy hitter; i.e., we show the percentage error (|rank(�L𝑥,𝑞) − 𝑞 |)) for each 𝑥 that satisfies 𝑓𝑥 ≥ 𝑁\ with fixed value of
\ = 0.01, as a function of memory consumed. We examine the quantile 50%, 90%, 99% of SQUAD.

0.002 0.004 0.006 0.008
Accuracy Guarantee ()

20

40

60

Up
da

te
/s

ec
on

d
[M

illi
on

s]

QUASI
SS
GK

(a) QUASI

0.002 0.004 0.006 0.008
Accuracy Guarantee ()

50

100

150

200

250

Up
da

te
/s

ec
on

d
[M

illi
on

s]
SQUAD_p=1
SS
RND

(b) SQUAD

Figure 4: Update runtime as function of the accuracy guarantee (𝜖) with fixed \ = 0.01 (a) QUASI update performance compared to its building
blocks: SS andGK (b) SQUADupdate performance compared to its building blocks: SS andRandom (RND in the graph). 𝑆𝑄𝑈𝐴𝐷_𝑝 = 1 indicates
that the implementation excludes the optimizations detailed in Section 7.

0.002 0.004 0.006 0.008
Accuracy Guarantee ()

20

40

60

Up
da

te
/s

ec
on

d
[M

illi
on

s] SQUAD_p=1
QUASI
SQUARE

(a) All algorithms

0.002 0.004 0.006 0.008
Accuracy Guarantee ()

20

40

60

80

100

Up
da

te
/s

ec
on

d
[M

illi
on

s] SQUAD_p=1
SQUAD_p=0.1
SQUAD_p=0.01

(b) Filtering

Figure 5: Update runtime as function of the accuracy guarantee (𝜖) with fixed \ = 0.01 (a) Comparing all three of our algorithms: SQUARE,
QUASI and SQUAD (b) The effect of the optimization on the performance of SQUAD update.

performance. However, since is most streaming applications up-

dates occur more often than query operations, Random would usu-

ally be the preferred choice.

8.4 Optimizations Comparison

In this section we evaluate the optimizations described in Section 7.

We examine the influence of the optimizations on the update run-

time, memory usage, and empirical error.

SQUAD: Combining Sketching and Sampling Is Better than Either for Per-itemQuantile Estimation

0.002 0.004 0.006 0.008
Accuracy Guarantee ()

0

10

20

30

40

Qu
er

y/
se

co
nd

 [T
ho

us
an

ds
]

QUASI
GK

(a) QUASI

0.002 0.004 0.006 0.008
Accuracy Guarantee ()

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Qu
er

y/
se

co
nd

 [T
ho

us
an

ds
]

SQUAD_p=1
RND

(b) SQUAD

Figure 6: Query runtime as function of the accuracy guarantee (𝜖) with fixed \ = 0.01 when asked for the 90% quantile (a) QUASI query
performance compared to GK (b) SQUAD query performance compared to Random (RND).

0.6 0.8 1.00
500

1000
1500
2000

M
em

or
y

[M
B] SQUAD

QUASI
SQUARE

(a) Memory

0 100000 200000 300000
Measurement Length

0.0

0.2

0.4

0.6

M
ea

n
Er

ro
r

SQUAD_p=0.01
SQUAD_p=0.001

(b) Error

0 2 4 6
Measurement Length 1e7

0.01

0.02

0.03

M
ea

n
Er

ro
r

SQUAD_p=0.01

(c) Error

Figure 7: (a) Memory consumption as function of 𝛼 with 𝜖 = 0.0025 and \ = 0.01 (b) Mean Accuracy as a function of the measurement length
size using an NS3-simulated trace that follows the Hadoop flow size distribution. Each marker represents the mean of the heavy hitters’
percentage error, with fixed values of \ = 0.01 and 𝜖 = 0.025. We examine the sampling probability 𝔭 = 0.01, 0.001 in SQUAD (c) Accuracy as a
function of the measurement length till the stream’s end when sampling with 𝔭 = 0.01 in SQUAD with \ = 0.01 and 𝜖 = 0.025.[Ran: TODO: add
𝑝 = 0.1, switch to log scale on the x-axis, merge (b) and (c), add a horizontal line for 𝜖 .]

8.4.1 Effect of Optimization on SQUAD Update Time: We imple-

ment the optimizations in SQUAD since it is the most space-efficient

algorithm. The update runtime is shown in Figure 5b as a function

of 𝜖 with a fixed \ = 0.01. The three SQUAD implementations

differ in the probability of the wrapper calling the Insert function

of SQUAD. We consider three probabilities: 𝔭 = 1 (indicating that

the implementation does not include optimizations), 𝔭 = 0.1, and
𝔭 = 0.01. That is, each element inS occurs with probability𝔭 in the

sampled stream i.i.d. As expected, decreasing the value of 𝔭 results

in improved update speed, as the algorithm invokes the SQUAD

Insert function infrequently. As can be observed, the optimizations

considerably improve the speed of the update.

8.4.2 Effect of 𝛼 on Memory Consumption: Figure 7a shows the
space consumed by our algorithms as function of𝛼 with fixed values

of 𝜖 = 0.025 and \ = 0.01. As seen in Figure 7a, the larger 𝛼 is the

less space the algorithm requires, but also the higher the sampling

probability needs to be. For 𝛼 = 0.9, with 𝜖 = 0.025 and \ = 0.01
we get an increase of 18% in the space requirement of SQUAD.

Parameter 𝛼 has less impact on the memory of SQUAD than its

impact on SQUARE and QUASI since SQUAD space complexity is

better than the others for the same values of 𝜖 and \ .

As seen in Figure 7a, the greater 𝛼 is, the less space is required

for the algorithm, but the sampling probability must be increased.

With 𝛼 = 0.9, 𝜖 = 0.025, and \ = 0.01, the space needed for

SQUAD increases by 18%. The parameter 𝛼 has a smaller effect on

the memory of SQUAD than it does on SQUARE and QUASI, since

SQUAD has a better space complexity than the others for the same

values of 𝜖 and \ .

8.4.3 The Effect of the Length of the Measurement on the Error:
We study the trade-off between geo-sampling rate 𝔭 and the con-

vergence time (in terms of the number of packets) and report the

results in Figure 7b. We use an NS3-simulated trace that follows

the Hadoop flow size distribution with fixed values of \ = 0.01 and

𝜖 = 0.025. Since SQUAD with optimizations uses sampling to select

packets, it requires a convergence time to produce a guaranteed

accurate result (analyzed in Section 7). As expected, larger 𝔭 value

leads to faster convergence time as we sample elements in higher

probability. In addition, we examine the mean error of SQUAD

during the whole trace and show it in Figure 7c.

Rana Shahout, Roy Friedman, and Ran Ben Basat

9 Extensions of Supporting Tail Latencies for
Traffic Volume Heavy-Hitters

It is often desirable to find the tail latencies for heavy hitters in terms

of traffic volume. That is, consider a stream in which each element

has a size and our goal is to find the tail latency for items that use the

majority of the bandwidth. Formally, we look at a weighted stream
S = ⟨(𝑤1, 𝑥1, ℓ1), (𝑤2, 𝑥2, ℓ2) . . .⟩ ∈ ({1, 2, . . . , 𝑀} × U × R)+ and
define item’s volume as the sum of sizes for elements that belong

to it. It is worth noting that the weight𝑤𝑖 refers to the element 𝑖 ,

which is composed of both 𝑥𝑖 and ℓ𝑖 .

Sampling may be performed on the basis of the number of ele-

ments or, more broadly, on the basis of some weight (e.g., the size

of the associated data). Weighted sampling provides a more precise

view of the underlying byte-traffic. This is desirable for applica-

tions such as traffic engineering and load balancing that aim to stay

within the bandwidth constraints of a network, as well as writes

to SSDs and corresponding write-amplification etc. Priority Sam-

pling [21] is a weighted sampling technique that is optimal. That is,

when compared to other sampling techniques, Priority Sampling

has a lower or equivalent variance. The goal is to produce a sample

of 𝑘 keys with a probability proportional to their weight. Priority

Sampling accomplishes this by assigning the value
𝑤𝑖

𝑟 to each key,

with 𝑟 randomly selected from the range [0, 1]. Priority sampling

includes the 𝑘 keys with the highest values.

The Space Saving algorithm [37] can find weighted heavy hit-

ters in a stream with an update time of 𝑂 (log 𝜖−1) [14]. Recent
advancements [6, 9, 12] reduce this runtime to a constant. Thus,

the tail latency problem for weighted heavy hitters may be solved

with the same asymptotic complexity as the unweighted versions

and with an error of up to𝑀𝜖 .

Intuitively, to address this problem, we can use Priority Sampling

instead of RS sampling and modify the Space Saving method to get

the weighted heavy hitters. Furthermore, because the weight 𝑤𝑖
corresponds to the latencies (ℓ𝑖), we must ensure that the reporting

quantile of weighted latencies is met. KLL sketch [30] can also

handle weighted items. Its size remains 𝑂 (𝜖−1
√︁
log 𝜖−1) but the

update time becomes 𝑂 (log 𝜖−1). That is, we need to replace the

quantile-sketch in QUASI and SQUADwith a KLL sketch to support

weighted items.

Putting it all together, in SQUARE we employ Priority Sampling

instead of RS sampling, and in QUASI we use the Space Saving

version for weighted streams with KLL sketch as quantile-sketch.

In SQUAD, we employ Priority Sampling for the sampling part, as

well as a Space Saving weighted variant with KLL sketch.

Thus, our algorithms are capable of solving the (\, 𝜖, 𝛿)-HH-
latencies problem for weighted streams with the same space com-

plexity as the unweighted version and with an error of at most𝑀𝜖 .

10 Discussion

In this paper, we studied the problem of reporting the tail latencies

of heavy hitter items. To our knowledge, this is the first research to

solve quantiles on a per-element level rather than reporting quan-

tiles of an entire stream. Such capabilities can be useful when one

wishes to assess a network’s health and to debug various network-

ing middle-boxes and smart data-planes.

We presented a formal definition of the generalized problem

and explored three solutions: a sample approach (SQUARE) and

more sophisticated solutions called QUASI and SQUAD. QUASI is a

deterministic solution that assigns a unique quantile-sketch (GK)

to each potential heavy hitter that is obtained from a Space Saving

instance. SQUAD combines the SQUARE and QUASI algorithms,

resulting in superior memory reduction.

SQUAD is the most memory-efficient algorithm. Both SQUAD

and SQUARE use about the same amount of memory. QUASI, on the

other hand, is deterministic, but SQUARE has an error probability.

This is true both asymptotically and in measurements through-

out a large-scale NS3 simulation, where we observed orders of

magnitude memory reductions for similar estimation errors in the

SQUAD algorithm.

While SQUARE has a faster update rate than QUASI and SQUAD,

it consumes a lot of memory. To that end, we suggested several

efficiency enhancements for the update operation of our algorithms

in Section 7. In fact, the update performance of QUASI is compara-

ble to that of the state-of-the-art method, which can only handle

quantiles throughout the whole stream, not per-element quantiles.

Our approach can be applied to the case of volume traffic, where

each element in the stream has a size and our algorithms deter-

mine the tail latency for the elements that use the majority of the

available bandwidth.

Code Availability: All code is available online [1].

Acknowledgements: This work was partially funded by the

Technion-HPI research school and the Israel Science Foundation

grant #3119/21.

SQUAD: Combining Sketching and Sampling Is Better than Either for Per-itemQuantile Estimation

References

[1] Open source code. https://github.com/r4n4sh/squad.git.

[2] The Network Simulator ns-3. https://www.nsnam.org/research/wns3/wns3-

2015/.

[3] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei, and K. Yi. Mergeable

summaries. ACM Transactions on Database Systems (TODS), 38(4):1–28, 2013.
[4] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei, and K. Yi. Mergeable

summaries. ACM Transactions on Database Systems (TODS), 38(4):26, 2013.
[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sen-

gupta, and M. Sridharan. Data center tcp (dctcp). In Proceedings of the ACM
SIGCOMM 2010 Conference, pages 63–74, 2010.

[6] D. Anderson, P. Bevan, K. Lang, E. Liberty, L. Rhodes, and J. Thaler. A high-

performance algorithm for identifying frequent items in data streams. In Pro-
ceedings of the 2017 Internet Measurement Conference, pages 268–282. ACM, 2017.

[7] A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding

windows. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 286–296, 2004.

[8] R. B. Basat, G. Einziger, S. L. Feibish, J. Moraney, and D. Raz. Network-wide

routing-oblivious heavy hitters. In Proceedings of the 2018 Symposium on Archi-
tectures for Networking and Communications Systems, pages 66–73, 2018.

[9] R. B. Basat, G. Einziger, and R. Friedman. Fast flow volume estimation. Pervasive
and Mobile Computing, 2018.

[10] R. B. Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard. Volumetric

hierarchical heavy hitters. In 2018 IEEE 26th International Symposium onModeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS),
pages 381–392. IEEE, 2018.

[11] R. B. Basat, G. Einziger, M. C. Luizelli, and E. Waisbard. A black-box method for

accelerating measurement algorithms with accuracy guarantees. In 2019 IFIP
Networking Conference (IFIP Networking), pages 1–9. IEEE, 2019.

[12] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner. Optimal elephant flow

detection. In IEEE INFOCOM, 2017.

[13] R. Ben Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard. Constant

time updates in hierarchical heavy hitters. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, pages 127–140, 2017.

[14] R. Berinde, P. Indyk, G. Cormode, and M. J. Strauss. Space-optimal heavy hitters

with strong error bounds. ACMTransactions on Database Systems (TODS), 35(4):26,
2010.

[15] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic aggre-

gates in a networked world: Distributed tracking of approximate quantiles. In

Proceedings of the 2005 ACM SIGMOD international conference on Management of
data, pages 25–36, 2005.

[16] G. Cormode, Z. Karnin, E. Liberty, J. Thaler, and P. Veselỳ. Relative error streaming

quantiles. In Proceedings of the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pages 96–108, 2021.

[17] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Diamond in the rough:

Finding hierarchical heavy hitters in multi-dimensional data. In Proceedings of
the 2004 ACM SIGMOD international conference on Management of data, pages
155–166, 2004.

[18] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Space-and time-

efficient deterministic algorithms for biased quantiles over data streams. In

Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 263–272, 2006.

[19] G. Cormode and P. Veselỳ. A tight lower bound for comparison-based quantile

summaries. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, pages 81–93, 2020.

[20] G. Dittmann and A. Herkersdorf. Network processor load balancing for high-

speed links. In Proceedings of the 2002 International Symposium on Performance
Evaluation of Computer and Telecommunication Systems, volume 735. Citeseer,

2002.

[21] N. Duffield, C. Lund, and M. Thorup. Priority sampling for estimation of arbitrary

subset sums. Journal of the ACM (JACM), 54(6):32–es, 2007.
[22] D. Felber and R. Ostrovsky. A randomized online quantile summary in

𝑜 (1
𝜖
log(1

𝜖
)) words. arXiv preprint arXiv:1503.01156, 2015.

[23] P. Garcia-Teodoro, J. Diaz-Verdejo, G.Maciá-Fernández, and E. Vázquez. Anomaly-

based network intrusion detection: Techniques, systems and challenges. comput-
ers & security, 28(1-2):18–28, 2009.

[24] N. K. Govindaraju, N. Raghuvanshi, andD.Manocha. Fast and approximate stream

mining of quantiles and frequencies using graphics processors. In Proceedings of
the 2005 ACM SIGMOD international conference on Management of data, pages
611–622, 2005.

[25] M. Greenwald and S. Khanna. Space-efficient online computation of quantile

summaries. ACM SIGMOD Record, 30(2):58–66, 2001.
[26] M. B. Greenwald and S. Khanna. Power-conserving computation of order-

statistics over sensor networks. In Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 275–285,
2004.

[27] A. Gupta and F. Zane. Counting inversions in lists. In SODA, volume 3, pages

253–254, 2003.

[28] Z. Huang, L. Wang, K. Yi, and Y. Liu. Sampling based algorithms for quan-

tile computation in sensor networks. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, pages 745–756, 2011.

[29] A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and B. Prabhakar. Af-qcn: Approx-

imate fairness with quantized congestion notification for multi-tenanted data

centers. In 2010 18th ieee symposium on high performance interconnects, pages
58–65. IEEE, 2010.

[30] Z. Karnin, K. Lang, and E. Liberty. Optimal quantile approximation in streams. In

2016 ieee 57th annual symposium on foundations of computer science (focs), pages
71–78. IEEE, 2016.

[31] K.-H. Li. Reservoir-sampling algorithms of time complexity o (n (1+ log (n/n))).

ACM Transactions on Mathematical Software (TOMS), 20(4):481–493, 1994.
[32] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Friedman, and

V. Sekar. Nitrosketch: Robust and general sketch-based monitoring in software

switches. In Proceedings of the ACM Special Interest Group on Data Communication,
pages 334–350. 2019.

[33] G. Luo, L. Wang, K. Yi, and G. Cormode. Quantiles over data streams: experimen-

tal comparisons, new analyses, and further improvements. The VLDB Journal,
25(4):449–472, 2016.

[34] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Approximate medians and

other quantiles in one pass and with limited memory. ACM SIGMOD Record,
27(2):426–435, 1998.

[35] G. S. Manku, S. Rajagopalan, and B. G. Lindsay. Random sampling techniques

for space efficient online computation of order statistics of large datasets. ACM
SIGMOD Record, 28(2):251–262, 1999.

[36] A. McGregor, A. Pavan, S. Tirthapura, and D. P. Woodruff. Space-efficient es-

timation of statistics over sub-sampled streams. Algorithmica, 74(2):787–811,
2016.

[37] A. Metwally, D. Agrawal, and A. El Abbadi. Efficient computation of frequent and

top-k elements in data streams. In International Conference on Database Theory,
pages 398–412. Springer, 2005.

[38] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network intrusion detection.

IEEE network, 8(3):26–41, 1994.
[39] J. I. Munro and M. S. Paterson. Selection and sorting with limited storage.

Theoretical computer science, 12(3):315–323, 1980.
[40] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal, V. Arun, M. Alizadeh, V. Jeyaku-

mar, and C. Kim. Language-directed hardware design for network performance

monitoring. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, pages 85–98, 2017.

[41] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the social network’s

(datacenter) network. In Proceedings of the 2015 ACMConference on Special Interest
Group on Data Communication, pages 123–137, 2015.

[42] R. J. Serfling. Probability inequalities for the sum in sampling without replace-

ment. The Annals of Statistics, pages 39–48, 1974.
[43] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond:

new aggregation techniques for sensor networks. In Proceedings of the 2nd
international conference on Embedded networked sensor systems, pages 239–249,
2004.

[44] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative

frequencies of events to their probabilities. In Measures of complexity, pages
11–30. Springer, 2015.

[45] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software (TOMS), 11(1):37–57, 1985.

[46] L. Wang, G. Luo, K. Yi, and G. Cormode. Quantiles over data streams: An experi-

mental study. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data, pages 737–748, 2013.

[47] K. Yi and Q. Zhang. Optimal tracking of distributed heavy hitters and quantiles.

Algorithmica, 65(1):206–223, 2013.
[48] Q. Zhang and W. Wang. An efficient algorithm for approximate biased quantile

computation in data streams. In Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management, pages 1023–1026, 2007.

[49] Y. Zhang, X. Lin, J. Xu, F. Korn, and W. Wang. Space-efficient relative error order

sketch over data streams. In 22nd International Conference on Data Engineering
(ICDE’06), pages 51–51. IEEE, 2006.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Model
	3.2 Useful Streaming Algorithms

	4 The SQUARE Algorithm
	5 The QUASI Algorithm
	6 The SQUAD Algorithm
	7 Optimizing the Processing Speed
	8 Evaluation
	8.1 Setup
	8.2 Accuracy Comparison
	8.3 Performance Comparison
	8.4 Optimizations Comparison

	9 Extensions of Supporting Tail Latencies for Traffic Volume Heavy-Hitters
	10 Discussion
	References

