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ABSTRACT
We study the complexity of finding the ground state energy density

of a local Hamiltonian on a lattice in the thermodynamic limit

of infinite lattice size. We formulate this rigorously as a function

problem, in whichwe request an estimate of the ground state energy

density to some specified precision; and as an equivalent promise

problem, GSED, in which we ask whether the ground state energy

density is above or below specified thresholds.

The ground state energy density problem is unusual, in that it

concerns a single, fixed Hamiltonian in the thermodynamic limit,

whose ground state energy density is just some fixed, real num-

ber. The only input to the computational problem is the precision

to which to estimate this fixed real number, corresponding to the

ground state energy density. Hardness of this problem for a com-

plexity class therefore implies that the solutions to all problems in

the class are encoded in this single number (analogous to Chaitin’s

constant in computability theory).

This captures computationally the type of question most com-

monly encountered in condensed matter physics, which is typically

concerned with the physical properties of a single Hamiltonian

in the thermodynamic limit. We show that for classical, transla-

tionally invariant, nearest neighbour Hamiltonians on a 2D square

lattice, PNEEXP ⊆ EXPGSED ⊆ EXPNEXP, and for quantum Hamil-

tonians PNEEXP ⊆ EXPGSED ⊆ EXPQMAEXP
. With some technical

caveats on the oracle definitions, the EXP in some of these results

can be strengthened to PSPACE. We also give analogous complexity

bounds for the function version of GSED.

CCS CONCEPTS
• Theory of computation→ Problems, reductions and com-
pleteness; Complexity classes; Quantum complexity theory.
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1 INTRODUCTION
The connection between computational complexity theory and

many-body physics dates back over 40 years. Barahona’s [4] proof

of NP-completeness of the ground state energy problem for classical

many-body models with local interactions
1
— or “local Hamiltoni-

ans” for short — on a finite number of particles (spins), established

the ground state energy as one of the canonical physical quantities

for which computational complexity yields insight.

The Hamiltonian is the function mapping a state of the particles

to its corresponding energy. The ground state is then the minimum-

energy state of the system, and the ground state energy the associate

minimum-energy. The problem of estimating the ground state en-

ergy is often formulated as an equivalent (up to polynomial-time

computation) decision problem known as the Local Hamiltonian

problem: given a Hamiltonian and an energy threshold, decide

whether the ground state energy is above or below that threshold.

Nearly 20 years later, Kitaev [25] provedQMA-completeness (the

quantum analogue of NP-completeness) for quantum local Hamil-

tonians on a finite number of quantum particles. There has been a

plethora of papers following — too many to comprehensively list

here — building on Barahona and Kitaev’s seminal results. These

have extended hardness of the ground state energy problem to ever

more restrictive classes of Hamiltonian, with specific, physically-

motivated types of local interaction, and with restricted patterns

of local interaction. In particular, amongst many other related re-

sults, we now know that the classical and quantum ground state

energy problems remain NP- and QMA-complete when restricted

to nearest-neighbour interactions on a finite 2D square lattice and

a finite 1D chain, respectively [1, 4]. Properties beyond the ground

state energy have been studied, including density of states [9], ex-

pectation values on low energy subspaces [3], the energy of excited

states [23], detecting energy barriers [18], determining whether a

system is frustrated, and many others [16].

The input to all of the above problems is a description of a local

Hamiltonian on a finite number of particles, and the complexity-

theoretic hardness is a function of varying the Hamiltonian. How-

ever, many-body and condensed matter physicists are more often

1
Namely, the 2D Ising model with fields.
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interested in properties of a many-body system in the thermody-
namic limit of infinitely many particles. Most many-body physics

properties, such as phase transitions, phase diagrams, spectral gaps,

etc., are only well-defined theoretically in this limit. Moreover,

in experimental physics, these models often arise as idealisations

of physical materials, where a typical sample will contain such

a large number of atoms that the properties of the material are

well-approximated by the infinite limit.

Furthermore, they are typically interested in computing the phys-

ical properties of a single Hamiltonian – or a family of Hamiltonians

parametrised by a small, constant number of parameters. Often, the

local interactions have some regular structure, such as translational

invariance where all the local interactions take the same form. The

standard formulation of the ground state energy problem does not

capture this type of question.

1.1 Related Work
There are a small number of results proving hardness of estimating

the ground state energy for a translationally invariant Hamilton-

ian where the local interaction is fixed, and the only input to the

problem is the lattice size. Here, since a lattice of size 𝐿 can be

specified in ⌈log(𝐿)⌉ bits, the natural complexity class is NEXP (or

QMAEXP in the quantum case), rather than NP. The Wang tiling

completion problem is known to be NEXP-complete [20, 30], which

can trivially be translated to the ground state energy problem for a

single, fixed, translationally invariant, nearest-neighbour, classical

Hamiltonian on a 2D square lattice, where the state at some of the

boundaries is fixed (fixed boundary conditions). As the interaction

is fixed, the only remaining problem input is the size of the lattice.

Remarkably, this provides a degree of freedom in which one can

encode computational problems, and so suffices for the hardness

result. Gottesman and Irani [20] also extended these results to more

natural types of boundary condition. They went on to prove the

analogousQMAEXP-completeness result for quantumHamiltonians

on a 1D chain. However, these results still concern Hamiltonians on

finite numbers of particles; indeed, the problem input is the number

of particles the Hamiltonian acts on.

In the thermodynamic limit, the ground state energy is no longer

a meaningful quantity; it typically has infinite magnitude, and

is not physically measurable. In this setting, the more relevant

quantity is the ground state energy density: the minimum energy

per particle. Just as the ground state energy is a key starting point

for studying the physics of finite many-body systems, the ground

state energy density (GSED) is a key starting point for physics in

the thermodynamic limit. Methods of approximating the ground

state energy density in condensed matter systems have been the

subject of much study in the physics literature [22, 31].

Less is known about the computational complexity of the ground

state energy density problem, than for the ground state energy.

Gottesman and Irani [20] proved that the ground state energy den-

sity problem for translationally invariant, nearest-neighbour, quan-

tum Hamiltonians on a 1D chain with a Ω(1/2𝑛) promise-gap is

NEXP-complete. Here, the input is a description of the local inter-

actions of the system, and the complexity is a function of varying

the Hamiltonian. Meanwhile, as a stepping stone to their unde-

cidability result for the spectral gap, [12, 13] proved that deciding

whether the ground state energy density is 0 or strictly positive,

with no promise gap, is undecidable. Their result holds for quantum,

translationally invariant, nearest neighbour Hamiltonians on a 2D

square lattice with a fixed local dimension. [5] later extended this

undecidability result to 1D chains (again as a stepping stone to the

spectral gap problem) and [7] extends to 2D systems for which the

local interactions are analytic in the input parameter.

However, as with most ground state energy complexity results,

these results still have as input the description of the Hamiltonian,

and the hardness is a result of varying the Hamiltonian.

1.2 The Ground State Energy Density Problem
If we restrict to a single, fixed Hamiltonian in the thermodynamic

limit, it may seem that there are no input parameters left, and

complexity theory can have nothing to say! However, this is not

quite the case. We can still ask about the complexity of estimating

the ground state energy density to a given precision, where the only

input is the precision required. (See section 2 for precise problem

definitions.) Arguably, this is the problem formulation closest to

that often encountered in condensed matter physics.

If we learn the ground state energy density to precision 2
−𝑛

, then

we can hope to learn the first 𝑛 bits of its binary representation. An

𝑛 bit string can encode the solutions to at most 𝑛 different decision

problems. But an index into this bit string, specifying the index

of the decision problem we are interested in, requires only log𝑛

bits. Therefore, the natural complexity class for GSED is NEEXP,
or related doubly-exponential time complexity classes. (At least for

hardness results.)

In this work, drawing on techniques developed in [13], we prove

upper and lower bounds on the complexity of this Ground State

Energy Density (GSED) problem: we show that GSED is NEEXP-
hard under exponential-time Turing reductions, and contained in

EXPNEXP. In fact, we prove the following slightly stronger results

for the natural promise-problem formulation of GSED, for a fixed,
classical, translationally invariant, nearest-neighbour Hamiltonian

on a 2D square lattice:

PNEEXP ⊆ EXPGSED ⊆ EXPNEXP

The natural promise-problem formulation of GSED takes as input

two energy density thresholds 𝛼 and 𝛽 with 𝛽 − 𝛼 = Ω(2−𝑛), and
outputs whether the ground state energy density is above 𝛽 or

below 𝛼 .

The analogous complexity bounds for the function problem for-

mulation of GSED readily follow from this. For the function prob-

lem formulation, the input is the precision 𝜖 , and the output is an

estimate of the ground state energy density to precision 𝜖 .

For quantum Hamiltonians, a very similar argument to the clas-

sical case establishes the analogous upper bound of EXPQMAEXP
for

the quantum GSED problem. The same lower bound as above fol-

lows trivially from the fact that classical Hamiltonians are a special

case of quantum. However, we are not able to prove QMAEEXP-

hardness of the quantum problem. (We comment on this briefly in

section 6.)

The ground state energy density of the specific Hamiltonian we

construct is a single, real number E𝜌 . Our hardness results imply

the solutions to all instances of NEEXP-complete problem are en-

coded in the digits of this single number, with successive digits
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of E𝜌 giving the solution to successive instances of a canonical

NEEXP-complete problem. In this sense, the ground state energy

density of this Hamiltonian is somewhat reminiscent of Chaitin’s

constant [11], but encoding solutions to problems in a certain com-

plexity class, rather than the Halting problem.

In a similar vein to our result, [14] considered the complexity

of computing the 𝑛𝑡ℎ bit of an algebraic number and determined

some containment results, but non-trivial bounds are not currently

known. Finally we note that similar but complimentary results were

shown simultaneously with this work by [2].

2 MAIN RESULTS
Define the energy density of the finite lattice as

Definition 2.1 (Ground State Energy Density). Consider a trans-
lationally invariant Hamiltonian defined on a rectangular lattice

with length 𝐿, width𝑊 . We denote this Hamiltonian as 𝐻Λ(𝐿×𝑊 )
.

The ground state energy density is defined as

E𝜌 (𝐿,𝑊 ) := 𝜆0 (𝐻Λ(𝐿×𝑊 ) )
𝐿𝑊

. (1)

The thermodynamic limit of the ground state energy density is

defined as the limiting value as the lattice width and height are

taken to infinity:

E𝜌 := lim

𝐿,𝑊→∞
E𝜌 (𝐿,𝑊 ). (2)

If the ground state energy density is referred to without qualifica-

tion, then it is referring to the thermodynamic limit case.

This limit is well defined [13]. We now consider some useful

definitions for the computational problems. For all these definitions

we will be referring to the infinite lattice case.

We can cast the problem of findingE𝜌 as a computational promise

problem similar in spirit to the local Hamiltonian problem:

Definition 2.2 (Ground State Energy Density (GSED) promise prob-
lem).
Problem Parameters: A fixed, translationally invariant, nearest-

neighbourHamiltonian on a 2𝐷 infinite square lattice of𝑑-dimensional

spins.

Input: Two real numbers 𝛽 and 𝛼 , such that 𝛽 − 𝛼 = Ω(2−𝑝 (𝑛) ),
for some integer 𝑛 and polynomial 𝑝 (𝑛).
Output: Determine whether E𝜌 > 𝛽 (No instance) or E𝜌 < 𝛼 (YES

instance).

Promise: The ground state energy density does not lie between in

the interval [𝛼, 𝛽].

This is perhaps more naturally thought of in terms of the corre-

sponding function problem:

Definition 2.3 (Ground State Energy Density (FGSED) function
problem).
Problem Parameters: A fixed, translationally invariant, nearest-

neighbour Hamiltonian acting on a 2𝐷 infinite lattice of 𝑑-level

spins.

Input: An error bound 𝜖 , specified in binary.

Output: An approximation to the ground state energy density,
˜E𝜌

such that | E𝜌 − ˜E𝜌 | ≤ 𝜖 .

The promise and function problems are equivalent up to log-space

computation, by standard binary search arguments.

We will often restrict GSED in definition 2.2 to classical Hamilto-

nians, rather than general (quantum) Hamiltonians. When we wish

to highlight this distinction, we refer to these as classical GSED and

quantum GSED, respectively.
The main results of this work are as follows:

Theorem 2.4. PNEEXP ⊆ EXPGSED ⊆ EXPNEXP for classical
GSED.

Here NEEXP is defined analogously with NP, but the verifying
TM is allowed doubly exponential time to run and the witness

can be doubly exponentially long. We expect that the EXPNEXP

upper bound presented here is tight and there is potentially room

to improve the lower bound. The above theorem implies:

Corollary 2.5. GSED is NEEXP-hard under exponential time
Turing reductions, for a classical, translationally invariant, nearest-
neighbour Hamiltonian.

We also prove:

Theorem 2.6. Classical GSED ∈ NEXP.

Corollary 2.5 and theorem 2.6 are not in conflict with each other.

Allowing exponential-time Turing reductions (as opposed to the

polytime Turing reductions usually considered) allows exponen-

tially harder problems to be solved.

The fact we are considering EXPGSED rather than GSED with

polytime reductions is fundamental to the problem being about

estimating the ground state energy density for a particular Hamil-
tonian, where the problem instances differ only in the precision to

which that same ground state energy density should be computed

(rather than each problem instance corresponding to a different

Hamiltonian). We show that, using our hardness construction, one

should not expect NP ⊆ PGSED unless the polynomial hierarchy

collapses to Σ
𝑝

2
.

We can also consider the case of quantum Hamiltonians:

Theorem 2.7. PNEEXP⊆EXPGSED⊆EXPQMAEXP for quantumGSED.

For the function problem, one readily obtains the corresponding

complexity bounds:

Theorem 2.8. FGSED ∈ FPNEXP for classical FGSED.

We also get the bound

Lemma 2.9. FPNEEXP ⊆ FEXPFGSED ⊆ FEXPNEXP, for FGSED for
a fixed classical, translationally invariant, nearest neighbour Hamil-
tonian.

3 PRELIMINARIES
Let B(H) be the space of bounded linear operators on a complex

Hilbert spaceH . Define Λ(𝐿 ×𝑊 ) := {1, . . . , 𝐿} × {1, . . . ,𝑊 } to be

the rectangular lattice of length 𝐿, width𝑊 , with 𝐿,𝑊 ∈ N. We

attach to each site 𝑖 ∈ Λ(𝐿 ×𝑊 ) in the lattice a Hilbert spaceH𝑖 �

C𝑑
. Given a string 𝑥 ∈ {0, 1}𝑛 , then |𝑥 | = 𝑛 will denote the binary

length of the string. For a given Hamiltonian 𝐻 , we will denote its

eigenvalues as 𝜆𝑖 (𝐻 ), such that 𝜆0 (𝐻 ) ≤ 𝜆1 (𝐻 ) ≤ 𝜆2 (𝐻 ) ≤ . . . .

Given a lattice Λ(𝐿 ×𝑊 ), a Hamiltonian 𝐻 =
∑
𝑖 ℎ𝑖 is nearest-

neighbour if ℎ𝑖 ∈ B(C𝑑 ⊗ C𝑑 ) such that each ℎ𝑖 acts non-trivially
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only on neighbouring pairs of lattice sites. We write the interac-

tion between neighbouring sites as ℎ⟨𝑖, 𝑗 ⟩ . Furthermore, transla-
tional invariance implies ℎ⟨𝑖, 𝑗 ⟩ = ℎ ∈ B(H) for any 𝑖, 𝑗 . We allow

the vertical and horizontal interactions of translationally invariant

Hamiltonians to be different, and this is needed for our construc-

tion. By a classical Hamiltonian, we mean a Hamiltonian which is

diagonal in the standard basis. To distinguish general Hamiltoni-

ans from classical Hamiltonians we will often call them quantum
Hamiltonians.

We now define the relevant complexity classes:

Definition 3.1. NEXP or NEXPTIME
A language 𝐿 is in NEXP if there exists a positive constant 𝑘 and

a deterministic Turing Machine 𝑀 such that for each instance 𝑥

and a classical witness𝑤 such that |𝑤 | = 𝑂 (2 |𝑥 |𝑘 ), on input (𝑥,𝑤),
𝑀 halts in 𝑂 (2 |𝑥 |𝑘 ) steps and

• if 𝑥 ∈ 𝐿, ∃𝑤 such that𝑀 accepts (𝑥,𝑤) with probability 1.

• if 𝑥 ∉ 𝐿 then ∀𝑤 ,𝑀 accepts (𝑥,𝑤) with probability 0.

We will also be concerned with the doubly exponential version of

NEXP, defined as:

Definition 3.2. NEEXP or N2EXP
A language 𝐿 is in NEEXP if there exists a positive constant 𝑘

and a deterministic Turing Machine𝑀 such that for each instance 𝑥

and a classical witness𝑤 such that |𝑤 | = 𝑂 (22|𝑥 |
𝑘

), on input (𝑥,𝑤),
𝑀 halts in 𝑂 (22|𝑥 |

𝑘

) steps and
• if 𝑥 ∈ 𝐿, ∃𝑤 such that𝑀 accepts (𝑥,𝑤) with probability 1.

• if 𝑥 ∉ 𝐿 then ∀𝑤 ,𝑀 accepts (𝑥,𝑤) with probability 0.

We also defineQMAEXP andQMAEEXP the same way as the class

QMA, but allowing for an exponentially and doubly-exponentially

long witness and circuit runtime respectively.

4 TILING PRELIMINARIES
Wang tilings will play a central role in this work.

Definition 4.1 (Wang Tiles). Wang tiles are unit length square tiles
with markings on each of the four edges. For a given set of Wang

tiles {𝑡𝑖 }𝑛𝑖=1, the markings define horizontal matching rules R𝐻𝑜𝑟𝑧

(respectively, vertical matching rules R𝑉𝑒𝑟𝑡 ) such that two tiles

𝑡𝑖 , 𝑡 𝑗 can only be placed next to each other horizontally (vertically)

if (𝑡𝑖 , 𝑡 𝑗 ) ∈ R𝐻𝑜𝑟𝑧 ((𝑡𝑖 , 𝑡 𝑗 ) ∈ R𝑉𝑒𝑟𝑡 ).

We now consider specific sets of Wang tiles that we will employ

throughout this work.

4.1 Robinson Tiles
Robinson’s tiling [32] is based on a set of tiles with the rule that

one tile can be placed next to another only if the arrow heads on

the first tile correctly join with the arrow tails on the adjacent tile.

I.e. the tiling rules enforce the condition that arrow heads on one
tile must meet arrow tails of the same type on its neighbour in the
appropriate direction. We will use a set of tiles augmented with

certain additional markings, described in [13, 32], and which are

shown in figure 1.

The lefter-most tile in figure 1 has arrows on all sides of the tile

and is known as a cross and in this depiction is said to face up and to

Figure 1: The modified Robinson tiles we will use.

the right. The other 6 tiles are known as arms. Each of the arms has

a principal arrow across the centre of the tile and which indicates

its direction (all the tiles depicted in figure 1 are facing downwards).

Arrow markings can be either red or green. On a given arm the

horizontal and vertical arrows must have different colours and on

cross tiles we force all arrow markings to have the same colour.

The Robinson tile set includes all rotations and reflections of these

basic tiles.

When these tiles are used to tile a grid, the tiling rules force a

pattern of interlocking, nested squares to form in any valid tiling of

the plane (see figure 2(c)). The series of squares have side lengths

3, 5, 9, 17, 33, . . . , 2𝑛 + 1, for 𝑛 ∈ N (see figure 3). Robinson adds

additional coloured markings to the tiles, such that for odd 𝑛 the

borders formed by the double-arrow tile markings running along

the edges of the squares are green, and for even 𝑛 they are red. We

direct the reader to [32] and [13] for more detailed discussions of

the tiling pattern and how it is formed.

Figure 2: Various configurations of Robinson tiles: the dashed
markings seen in figure 1 have been removed for clarity. (a)
shows a possible tiling arrangement to create the lowest level
of green squares in the Robinson tiling. (b) shows the same
square once the coloured arrows have been introduced. (c)
shows only the coloured markings which form a 1-square.
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Figure 3: A Robinson tiling pattern showing only markings
associated with red borders.

For our purposes we will focus on red borders, and refer to these

as just borders. The interior of the border is referred to as a square.
We refer to a red border of side length 4

𝑛 + 1 as an 𝑛-border, and an
𝑛-border plus its interior as an 𝑛-square.

4.2 Encoding Turing Machines with Tiles
It is well known that the evolution of a classical Turing Machine

can be encoded as a set of Wang tiles [8, 32]. To see this, consider

a particular TM. The TM tape at a particular time step is a set of

tape cells with symbols written in them, where one particular cell

has the TM head over it. The TM will then evolve deterministically

according to its transition rules.

Now consider an 𝐿 × 𝐿 tiling grid. It is possible to construct a

set of Wang tiles such that the tiling pattern simulates the TM’s

evolution for 𝐿 steps. The tile set is chosen to be tiles with all

possible combinations of Turing Machine tape cell markings, plus

TM head and state markings. The evolution of the TM can then be

encoded as a tiling of a square lattice, where rows of tiles represent

the configuration of the TM tape, together with the head location

and current internal state, at a particular time step. Adjacent rows

encode the TM configuration at successive time steps. The correct

TM evolution is then enforced by tiling rules. (See figure 4 for an

example of such an encoding, and see [6, 8, 13, 20, 32] for some

further detailed discussions on this topic.)

4.3 Encoding Turing Machines in the Robinson
Tiling

In this section we review how the tiling-encoding of TMs can be

combined with the Robinson tiling to create a new set of tiles which,

when the plane is tiled according to the tiling rules, encodes the

evolution of a separate TM within each 𝑛-square in the Robinson

Figure 4: The evolution of a classical TM can be represented
by Wang tiles, where colours of adjacent tiles have to match,
and arrow heads have to meet arrow tails. Here the evolution
runs from the bottom of the square to the top. Blue labels
represent the entry to the corresponding cell on the TM tape.
The red labels between adjacent rows represent the position
and state of the TM head in addition to the cell’s entry, and
the red labels between adjacent columns representmovement
of the TM head after it has acted on the cell.

tiling pattern. This construction was introduced in [32] to prove

undecidability of the tiling of a 2D plane.

Encoding the evolution of a TM directly within the interior of

a 𝑛-border is not possible as the Robinson tiling pattern is com-

posed of𝑚-squares nested within other 𝑛-squares,𝑚 < 𝑛. Thus

TMs associated the𝑚-squares and 𝑛-square would overlap with

each other. [32] circumvents this problem by identifying a sub-grid

within each Robinson 𝑛-border which allows a TM to be encoded

without overlapping with the smaller 𝑚-squares, 𝑚 < 𝑛, nested

within.

Definition 4.2 (Free Rows/Columns and Free Squares, [32]). A free
row/column of square is a row/column in a Robinson 𝑛-border that

stretches across the border’s interior uninterrupted by any of the

𝑚-borders with𝑚 < 𝑛.

A free square or tile is a square in the grid that is both in a free

row and a free column (see figure 5 for an example). Within an

𝑛-square there are exactly 2
𝑛 + 1 free rows/columns.

Lemma 4.3 (Encoding TM in Robinson Tiling, [32]). Consider
any classical Turing Machine which can have its evolution be encoded
in a (2𝑛 + 1) × (2𝑛 + 1) grid of Wang tiles. Then the evolution of this
TM can be encoded in the free rows and columns of an 𝑛-square in a
Robinson Tiling.

Following [32], to demarcate where the free tiles are within

an Robinson 𝑛-square, so that we can encode a Turing Machine

in them, a new kind of marking called an ‘obstruction signal’ is

introduced. These signals are designed so they are emitted and
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absorbed from the outside of a red border and while also being

absorbed by the inside of a border, as seen in figure 5. In terms

of tiles, these markings are formed by adding an additional set of

markings such that Robinson borders “emit” the obstruction signals

from one side and “absorb” them on both sides. Tiles that do not

emit or absorb obstruction signals force them to propagate in the

same direction. A free tile is one which does not have an obstruction
signal going across it in either direction. In our new tile set, we

only encode the Turing Machine tape, head and state symbols in

the free tiles.

Figure 5: The obstruction signals for a red 2-square are shown
in blue and its free tiles are highlighted in green. Each of the
tiles within the 1-squares emits a signal outwards. The free
rows are the rows in which there are no obstruction signals
running horizontally (for example the central row). The free
columns are the columns in which there are no obstruction
signals running vertically (for example the central column).
The free tiles have no obstruction signals on them in either
direction.

Transmitting Signals between Free Tiles. Thus we are able to en-

code the evolution of a TuringMachine in these free tiles, effectively

creating a (2𝑛+1)×(2𝑛+1) square for it to run in. There is a problem
in that the free tiles are not spatially close to each other. To solve

this, [32] implicitly introduces a new set of tile markings: Turing

Machine signals. These signals can be emitted and absorbed by

free tiles and run along free rows and columns. Otherwise they are

absorbed by tiles with double arrowed red markings. Tiles which

are not free tiles, and do not absorb the TM signals, force the TM

signals to propagate across them. These signal markings allow the

tiling to transmit the necessary conditions between spatially distant

free tiles. A similar set of markings can be used to ensure the correct

initialisation of the encoded Turing Machine.

5 PROOF OUTLINE
5.1 Classical Hardness for PNEEXP

In this section we set out to outline the proof the following theorem:

Theorem 5.1. PNEEXP ⊆ EXPGSED, for GSED as defined in defi-
nition 2.2, for a classical, nearest-neighbour, translationally invariant
Hamiltonian.

To prove this result, we will show that it is possible to encode

the outputs of a doubly-exponential time nondeterministic TM

in the ground state energy density of a particular, fixed, classical

Hamiltonian.

To start, we want to enumerate over all input strings for a TM

deciding some language, encode these using tiles, and arrange for

the TMs running on different inputs to be encoded within Robinson

borders of different sizes.

As per lemma 4.3, we are able to encode the evolution of a TM in

the (2𝑛+1)×(2𝑛+1) grid of free tiles of Robinson𝑛-squares.We then

choose the encoded TMs to first run a counter TM which computes

the square size it is encoded in (similar to the constructions in

[20, 30]). The counter works by outputting all binary strings in

lexicographic order, such that at one end of the grid it outputs

the number of free rows/columns within the 𝑛-square in binary:

𝐿 = 2
𝑛 + 1. We then follow this counter TM with second TM which

takes 𝐿 as input and computes log
2
(𝐿 − 1) − 𝑛0 in binary, where

because it is guaranteed that 𝐿 = 2
𝑛 + 1 for 𝑛 ∈ N, the output is a

binary string expressing the (𝑛 − 𝑛0)𝑡ℎ integer. Here 𝑛0 is defined

as the smallest integer such that the above Turing Machine can run

correctly within a Robinson 𝑛0-square
2
. We label the output of the

above TMs when within an 𝑛-square as 𝑥𝑛 .

We then run a fixed non-deterministic Turing Machine𝑀 which

takes as input 𝑥𝑛 and runs for time 2
2
𝑐 |𝑥𝑛 |

, 𝑐 ≥ 1. To allow for

non-deterministic TMs, we slightly modify the construction seen

in section 4 so that the tiling rules allow for multiple possible

transitions at a given point by having multiple tiling rules which

are permissible. Thus a valid tiling corresponds to one possible

path that the non-deterministic TM takes. This gives the following

lemma:

Lemma 5.2 (TMs in Robinson Sqares). Let 𝑥𝑛 ∈ {0, 1}∗ be the
(𝑛 − 𝑛0)𝑡ℎ string in lexicographic order where 𝑛0 is a fixed integer,
and let𝑀 be a non-deterministic TM. It is possible to construct a tile
set such that all valid tilings of an 𝐿 × 𝐿 lattice consist of the pattern
of nested squares formed by the Robinson tiling, such that within each
complete 𝑛-border, ∀𝑛 ≥ 𝑛0, the tiles encode a valid computational
evolution of𝑀 (𝑥𝑛) for time 22

𝑐 |𝑥𝑛 |
, 𝑐 ≥ 1.

Note that, at this point, the tiling here can encode any compu-

tational path (even those which reject when there is an accepting

path) of the nondeterministic TM 𝑀 as we have not constrained

the output in any way.

5.1.1 Mapping Tiles to Hamiltonians. So far we have presented

the problem in terms of a tiling problem and need to map this to a

classical Local Hamiltonian problem. This is a standard technique

(see [20, Section 3] or the appendix of [6] for a summary). Consider

a set of Wang tiles T rules with horizontal constraints R𝐻𝑜𝑟𝑧 ⊆
2
The output of these TMs for 𝑛-squares 𝑛 < 𝑛0 will be irrelevant for our purposes.
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T × T such that if 𝑡𝑖 is placed to the left of 𝑡 𝑗 , then it must be the

case that (𝑡𝑖 , 𝑡 𝑗 ) ∈ R𝐻𝑜𝑟𝑧 and likewise for the vertical tiling rules

R𝑉𝑒𝑟𝑡 .

Map every tile type 𝑡𝑖 ∈ T to a spin state of a classical particle

|𝑡𝑖 ⟩. We then impose a Hamiltonian over the lattice such that if the

tiling pair (𝑡𝑖 , 𝑡 𝑗 ) ∉ R𝐻𝑜𝑟𝑧 (or (𝑡𝑖 , 𝑡 𝑗 ) ∉ R𝑉𝑒𝑟𝑡 depending on the

orientation), thenwe introduce the term

��𝑡𝑖𝑡 𝑗 〉 〈
𝑡𝑖𝑡 𝑗

��
for all forbidden

pairings (𝑡𝑖 , 𝑡 𝑗 ) over all points in the lattice. Adding this term to the

Hamiltonian applies an energy penalty if the states |𝑡𝑖 ⟩
��𝑡 𝑗 〉 appear

directly adjacent to each other in the lattice.

Thus we end up with a Hamiltonian composed of local interac-

tions of the form

ℎ𝑐𝑜𝑙
𝑘,𝑘+1 =

∑︁
(𝑡𝑖 ,𝑡 𝑗 )∉R𝐻𝑜𝑟𝑧

��𝑡𝑖𝑡 𝑗 〉 〈
𝑡𝑖𝑡 𝑗

��
𝑘,𝑘+1 (3)

ℎ𝑟𝑜𝑤
𝑘,𝑘+1 =

∑︁
(𝑡𝑖 ,𝑡 𝑗 )∉R𝑉𝑒𝑟𝑡

��𝑡𝑖𝑡 𝑗 〉 〈
𝑡𝑖𝑡 𝑗

��
𝑘,𝑘+1 , (4)

We now map the tiling rules produced by lemma 5.2 to a Hamil-

tonian to get a nearest-neighbour, translationally invariant Hamil-

tonian. We further add a term penalising rejecting instances of

the verification computation; Π𝑁𝑂 is an additional term which

assigns an energy penalty of 1 to Robinson squares which contain

No problem instances.

We encapsulate the definition of the Hamiltonian in the follow-

ing:

Definition 5.3 (Robinson + Computation Hamiltonian).
Let ℎ𝑐𝑜𝑙,𝑅𝑜𝑏 , ℎ𝑟𝑜𝑤,𝑅𝑜𝑏 ∈ B(C𝑅 ⊗ C𝑅) be the local terms which

encode the local matching rules for the Robinson tiling, obstruction

rules and TM rules from lemma 5.2. Let (Π𝑁𝑂 ) 𝑗, 𝑗+1 be a projector
onto the reject state of the encoded TM,𝑀 , on a site in row 𝑗 , and

a Robinson border tile on the adjacent site in row 𝑗 + 1. Then the

overall local terms are:

ℎ𝑟𝑜𝑤𝑖,𝑖+1 = Λℎ𝑟𝑜𝑤,𝑅𝑜𝑏
𝑖,𝑖+1 (5)

ℎ𝑐𝑜𝑙𝑗, 𝑗+1 = Λℎ𝑐𝑜𝑙,𝑅𝑜𝑏
𝑗, 𝑗+1 + (Π𝑁𝑂 ) 𝑗, 𝑗+1 (6)

where Λ ∈ N is a parameter that we will fix later.

Π𝑁𝑂 is constructed such that the energy penalty is only applied

at the edge of a Robinson border where a TM has halted in the No

state (i.e. once the TM has stopped running). Λ characterises the

energy penalty for breaking the Robinson tiling, the obstruction

signals, or the TM signals. We will need to choose Λ to be a suf-

ficiently large constant to make it energetically unfavourable to

break the Robinson tiling in the ground state.

If we take this Hamiltonian and restrict to the subspace corre-

sponding to a correctly tiled 𝑛-border, we will see it is possible to

encode the outcome of a doubly exponential time TM in the energy

of this region. By lemma 5.2 valid tilings encode the evolution of

a non-deterministic TM𝑀 (𝑥), where 𝑥 is the (𝑛 − 𝑛0)𝑡ℎ string in

lexicographic order.

If 𝑥 is a Yes instance, then 𝑀 (𝑥) must have an accepting com-

putational path, and so there must be a set of states that encode

the correct evolution which finishes in an accepting state. Hence

there is no energy penalty and the ground state is 0. If 𝑥 is a No

instance, then there is no accepting path. Any correct evolution of

𝑀 (𝑥) therefore enters the rejecting state, and the tile marking the

rejecting state of the TM picks up an energy penalty of 1 from the

term (Π𝑁𝑂 )𝑘,𝑘+1. Provided Λ > 1, then the ground state encodes

one of these rejecting paths. This gives the following lemma:

Lemma 5.4. Define 𝐻 (4𝑛) |𝑃 to be the Hamiltonian on a (4𝑛 +
1) × (4𝑛 + 1) region described by the local terms given in equations 5
6, restricted to the subspace 𝑃 corresponding to correct tilings of the
region that contain a correctly tiled Robinson 𝑛-border. Let 𝑥 ∈ {0, 1}∗
be the (𝑛 − 𝑛0)𝑡ℎ string in lexicographic order and let 𝑀 be a non-
deterministic Turing Machine running for time 22

𝑐𝑚
on inputs of

length𝑚, 𝑐 ≥ 1.
Then for 𝑛 ≥ 𝑛0, the ground state energy of 𝐻 (4𝑛) |𝑃 is

𝜆0 (𝐻 (4𝑛) |𝑃 ) = 𝑖𝑛 :=

{
0 𝑀 (𝑥)outputs Yes
1 𝑀 (𝑥)outputs No.

(7)

5.1.2 Robustness of the Ground State. We now want to find the

ground state energy density of the lattice with the Hamiltonian

from definition 5.3. For the purposes of proving the main theorem,

we wish to show that the ground state is composed of the Robinson

squares + Turing Machines encoded within. However, it may in

fact be the case that it is energetically favourable to introduce tiling

defects — points at which the tiling rules are not obeyed — to disrupt

the encoded Turing Machines which pick up an energy penalty. We

note [13, 28] proved similar bounds, but are not strong enough for

our purposes.

Consider a set of defects on a tiling grid, which we label 𝐷 . If

these defects are able to disrupt the tiling such that the number of

Robinson squares disrupted relative to a Robinson tiling without

defects is ≥ |𝐷 |1+𝜖 for any 𝜖 > 0, it will be energetically favourable

to introduce defects into the tiling. The result is that the ground

state will not be the Turing Machine + tiling construction we wish.

Hence, to prove the ground state is the TM + tiling construction

we desire, we need to show that a defect disrupting the tiling can

disrupt at most𝑂 ( |𝐷 |) Robinson squares. We give an outline of the

argument here. For full mathematical details, see [34].

To start we will consider the number of Robinson 𝑛-borders

which can be destroyed by allowing tiling defects (points where

the tiling rules are not satisfied) at a fixed set of points relative to a

tiling grid where the tiling rules are correct everywhere.

Definition 5.5 (Border deficit). The total border deficit, deficit(𝑇 ),
of a tile configuration 𝑇 is the difference between the total number

of complete borders in 𝑇 and the number of complete borders in

a Robinson tiling of the same region, maximised over Robinson

tilings.

To consider where the tiling is forced to be correct, we take the

points at which defects occur and use them as vertices to form a

complete graph, which we call the defect graph 𝐺 = (𝐷, 𝐸). To
bound the border deficit, we split the lattice into regions known as

𝑛-domains and 𝑛-undomains: where an 𝑛-undomain is a maximal

connected region of the lattice such that any𝑚-border with𝑚 ≥ 𝑛

that overlaps 𝑈 necessarily either intersects a defect, or intersects

an edge in of length ≤ 4
𝑛
. An 𝑛-domain to be a maximal connected

region of the lattice that does not overlap any 𝑛-undomain.

It can then be shown that a lattice cell contained in an𝑛-undomain

has an edge from 𝐸 of length ≤ 4
𝑛
within distance ≤ 4

𝑛
. Using
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these definitions, it is possible to show that within 𝑛-domains, the

Robinson tiling is “correct” up to a certain level:

Proposition 5.6. Consider a tile configuration, a set of defects 𝐷 ,
and 𝐺 = (𝐷, 𝐸) its defect graph. Within any 𝑛-domain D, the tile
configuration contains the same periodic pattern of𝑚-borders for all
𝑚 ≤ 𝑛 as a normal Robinson tiling of D, except where an𝑚-border
would intersect a point in 𝐷 .

Roughly, one can show that, relative to some perfect reference

Robinson tiling, a 𝑛-border is guaranteed to be intact (i.e. not de-

stroyed) if there is no edge in the defect graph which intersects

one of its edges in the reference tiling. This fact is not quite strong

enough to prove the necessary bound; the defect graph has ∝ |𝐷 |2
edges, and so we only get an upper bound ≤ |𝐷 |2 on the number

of borders destroyed.

To improve on this, we take the Delaunay triangulation of all

the defects; a Delaunay triangulation is planar graph such that

no vertex is inside the circumcircle of any triangle the graph [27].

Importantly, we are able to show that if an 𝑛-border is intersected

by an edge of length ≤ 4
𝑛
in the defect graph 𝐺 , then there is an

extended region around the 𝑛-border which must be cut by an edge

in the Delaunay triangulation. We call this area the 𝑛-frame.

Since the Delaunay graph is planar, by Euler’s formula for graphs

it must have ≤ 3|𝐷 | − 6 edges, where |𝐷 | is the number of vertices.

By carefully counting across domains and undomains, it can be

shown that an edge in the Delaunay triangulation cuts at most a

constant number 𝑛-frames. This allows us to prove:

Theorem 5.7. Let 𝑇 be a tile configuration of grid with perimeter
of length 𝐿. Let 𝐷 denote its defect set. The border deficit of 𝑇 is
bounded by

deficit(𝑇 ) ≤ 399|𝐷 | + 𝐿. (8)

This isn’t quite sufficient for our purposes; it needs to be proven

that the number of borders which are prevented from being able to

encode Turing Machines in their interiors. There are several ways

this can happen: (a) the smaller Robinson squares nested within an

𝑛-border are destroyed by defects or otherwise misaligned (b) the

obstruction signals along free rows or columns are disrupted (c) the

Turing Machine signals along free rows and columns are disrupted.

However, it can be shown that if an 𝑛-border is intact, then its

interior tiling must be correct unless one of the smaller𝑚-borders,

𝑚 < 𝑛, which are not contained in any 𝑘-borders,𝑚 < 𝑘 < 𝑛, is

destroyed. Or alternatively if there is a defect in its interior which

is not contained in any smaller𝑚-border.

Using these facts gives:

Lemma 5.8. Let 𝑇 be a tile configuration of a finite subregion of
Z2 with perimeter of length 𝐿, 𝐷 its defect set.

Define the total deficit of 𝑇 , total_deficit(𝑇 ), to be the difference
between the total number of complete Robinson squares in 𝑇 with a
correct internal Turing Machine tiling, and the number of these in a
Robinson tiling of the same region, maximised over Robinson tilings.

The total deficit of 𝑇 is bounded by

total_deficit(𝑇 ) ≤ 801|𝐷 | + 2𝐿. (9)

With this in hand, we will use this to find the ground state energy

density of the Robinson tiles + TM construction.

5.1.3 Applying the Defect Bounds. In the following, we use the

square deficit bounds established in section 5.1.2 to show that it is

energetically unfavourable to have too many tiling defects, regard-

less of how many No instances might be encoded in 𝑛-squares.

To do this we must calculate the energy of different tiling con-

figurations. We first realise from geometry that the number of

Robinson squares of size 4
𝑛 + 1 on an 𝐿 ×𝐿 lattice must be in the in-

terval

[ ( ⌊
𝐿

2
2𝑛+1

⌋
− 1

)
2

,

( ⌊
𝐿

2
2𝑛+1

⌋
+ 1

)
2 ]

. Then applying lemma 5.8,

we see that one can destroy at most ≤ 801|𝐷 | + 2𝐿 squares contain-

ing Turing Machines with the corresponding defect set 𝐷 . Since

each of these Robinson squares has maximum energy 1, this reduces

the energy by at most an amount 𝑂 ( |𝐷 |) + 𝑂 (𝐿). However, each
tiling defect will incur an energy penalty Λ due to the mismatched

tiling rules. Thus, if 𝐷 is the set of defects, then the total energy

change due to the defects will be Λ|𝐷 | −𝑘1 |𝐷 | −𝑘2𝐿. Thus by setting
Λ to be a sufficiently large constant we can make it energetically

unfavourable for |𝐷 | to increase (i.e. for defects to occur).

Accounting for the fact that all intact Robinson borders will oth-

erwise contribute a certain energy 𝜆0 (𝐻 (4𝑛) |𝑃 ) ∈ {0, 1} depending
on whether their internal nondeterministic Turing Machine accepts

or rejects, we get the following expression for the grounds state

energy on an 𝐿 × 𝐿 lattice.

Lemma 5.9. Let ℎ𝑟𝑜𝑤 , ℎ𝑐𝑜𝑙 ∈ B(C𝑅 ⊗C𝑅) be the local interactions
that encode the tiling rules given by equations 5 and 6. Let 𝐻Λ(𝐿×𝐿)

be the Hamiltonian with these local interactions on Λ(𝐿 × 𝐿).
Then for sufficiently large 𝐿, the ground state energy 𝜆0 (𝐻Λ(𝐿×𝐿) )

is contained in the interval[ ⌊log
4
(𝐿/2) ⌋∑︁

𝑛=𝑛0

(⌊
𝐿

2
2𝑛+1

⌋
− 1

)
2

𝜆0 (𝐻 (4𝑛) |𝑃 ) + Λ|𝐷 | − 𝑘1 |𝐷 | − 𝑘2𝐿,

⌊log
4
(𝐿/2) ⌋∑︁

𝑛=𝑛0

(⌊
𝐿

2
2𝑛+1

⌋
+ 1

)
2

𝜆0 (𝐻 (4𝑛) |𝑃 ) + Λ|𝐷 | − 𝑘1 |𝐷 | − 𝑘2𝐿

]
(10)

for some constants Λ, 𝑘1 and 𝑘2 such that Λ ≫ 𝑘1 + 𝑘2, and |𝐷 | =
𝑂 (𝐿).

To calculate the ground state energy density, we simply need to

divide by 𝐿2 take the limit as 𝐿 → ∞ to get the following:

Lemma 5.10. Consider an 𝐿 × 𝐿 lattice with a local Hamiltonian
interactions given by equations 5 and 6, and let 𝐻 (4𝑛) |𝑃 and 𝑖𝑛 be
defined as in lemma 5.4. In the limit of 𝐿 → ∞, the ground state
energy density is

E𝜌 =
1

4

∞∑︁
𝑛=𝑛0

𝜆0 (𝐻 (4𝑛) |𝑃 )
16

𝑛
=

1

4

∞∑︁
𝑛=𝑛0

𝑖𝑛

16
𝑛
. (11)

We now prove part of the main theorem, which we restate here

for convenience.

Theorem 5.11 (PNEEXP⊆EXPGSED). PNEEXP⊆EXPGSED, for GSED
as defined in definition 2.2, for a classical, translationally invariant,
nearest-neighbour Hamiltonian.

Proof. Consider any polytime bounded TM𝑀1. We will show

we can simulate𝑀NEEXP
1

with𝑀GSED
2

where𝑀2 is another exptime

TM. If 𝑀NEEXP
1

takes an 𝑛-bit input, it can then make 𝑂 (poly(𝑛))
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adaptive queries. Denote these queries by {𝑞𝑖 }𝑂 (poly(𝑛) )
𝑖=1

. Each indi-

vidual query must have length |𝑞𝑖 | = 𝑂 (poly(𝑛)). The𝑀1 machine

then runs for an 𝑂 (poly(𝑛)) time and produces some output.

To simulate this,𝑀2 will take the 𝑛-bit input and calculate the

first query 𝑞1 that 𝑀1 makes to the NEEXP oracle. 𝑀2 takes the

query 𝑞1 and reduces it to an instance of determining the output

of a doubly-exponentially time non-deterministic TM, 𝑀 , on in-

put 𝑦1. This reduction can be computed in polynomial time, as

the problem of determining the output of double-exponential-time

non-deterministic TMs is manifestly NEEXP-hard. (Note by us-

ing padding arguments we can reduce any language in NEEXP to

NTIME(22𝑐𝑛 ) for some 𝑐 > 1 [30]). For now we assume that 𝑀2

can query the GSED oracle using a subroutine to obtain the oracle

answer — we show this in the second part of the proof. The 𝑀2

machine then uses the output of the query to compute the next

query that𝑀1 makes, and computes 𝑞2.

The process then repeats: assuming𝑀2 has calculated the first

{𝑞𝑖 }𝑘−1𝑖=1
, it then uses the output from these simulated queries to

calculate 𝑞𝑘 . As before, it reduces this to an instance of determining

the output of a doubly-exponentially time non-deterministic TM,

𝑀 , on input 𝑦𝑘 . It then uses the GSED subroutine to extract the

corresponding answer from the oracle.𝑀2 does this for all queries

𝑀1 makes, {𝑞𝑖 }𝑂 (poly(𝑛) )
𝑖=1

, and obtains the answer to the queries

from the GSED oracle.

Determining Queries using a GSED Oracle. We will use the GSED
oracle for the Hamiltonian of definition 5.3 to perform a binary

search in order to obtain a sufficiently precise approximation to the

ground state energy density E𝜌 , such that we can extract the result

of computing𝑀 on all inputs up to 𝑦 𝑗 . To do this, we need to query

theGSED oracle on all the instances before it in lexicographic order,

of which there are 𝑘 = 𝑂 (2poly(𝑛) ) many.

By lemma 5.10, outputs 𝑖𝑛 to the queries {𝑦𝑖 }𝑖 are encoded as

E𝜌 =
1

4

∞∑︁
𝑛=𝑛0

𝑖𝑛

16
𝑛
. (12)

We extract the 𝑖𝑘 iteratively as follows. Assume for simplicity that

𝑛0 = 1. (If this is not the case, 𝑛 can straightforwardly be adjusted

appropriately.) To determine the 𝑖1, note that if 𝑖1 = 0, then the

maximum E𝜌 can be is

E𝜌 =
1

4

∞∑︁
𝑛=2

1

16
𝑛
=

1

960

(13)

and otherwise the minimum it can be is 1/64. Hence𝑀2 asks the

GSED oracle whether E𝜌 ≥ 𝛽1 = 1/64 or E𝜌 ≤ 𝛼1 = 1/960. Thus

𝑖1 =

{
0 if E𝜌 < 1/960
1 if E𝜌 > 1/64.

𝑀2 then performs a similar process for all 𝑖𝑚 , 1 ≤ 𝑚 < 𝑘 , assum-

ing it has previously extracted 𝑖1, 𝑖2, . . . , 𝑖𝑚−1. When extracting the

𝑚𝑡ℎ
instance, we have that either E𝜌 ≤ 𝛼𝑚 or E𝜌 ≥ 𝛽𝑚 , where

𝛽𝑚 =
1

4

(
1

16
𝑚

+
𝑚−1∑︁
𝑛=1

𝑖𝑛

16
𝑛

)
𝛼𝑚 =

1

4

(𝑚−1∑︁
𝑛=1

𝑖𝑛

16
𝑛
+

∞∑︁
𝑛=𝑚+1

1

16
𝑛

)
. (14)

Since 𝑦 𝑗 is the 𝑘
𝑡ℎ

string in lexicographic order, 𝑘 = 𝑂 (2poly(𝑛) ),
the maximum precision we need to go to is Ω(2−2poly(𝑛) ), which
is possible provided 𝛼𝑚, 𝛽𝑚 can have binary length |𝛼𝑚 |, |𝛽𝑚 | =
𝑂 (2poly(𝑛) ). Since𝑀2 is an exponential time machine, it has time

and space to write these strings to the oracle tape. Furthermore,𝑀2

only needs to make𝑂 (2poly(𝑛) ) queries. Thus𝑀GSED
2

is able extract

all the answers to the queries made by 𝑀NEEXP
1

, and hence after

making these queries and performing the relevant post-processing,

output the solution. □

5.2 Classical Containment in EXPNEXP

We now need to show that for classical GSED, as defined in defi-

nition 2.2, EXPGSED⊆ EXPNEXP. The first step is to show that the

ground state energy density of a finite 𝐿 × 𝐿 part of the lattice is a

good estimate for the energy density of the full lattice [13]:

Lemma 5.12. Consider a translationally invariant, nearest-
neighbour Hamiltonian on Λ(𝐿 × 𝐿) lattice defined by local terms
ℎ𝑟𝑜𝑤
𝑖,𝑖+1, ℎ

𝑐𝑜𝑙
𝑗, 𝑗+1. Let E𝜌 (𝐿) be the energy density of the Hamiltonian on

this lattice, and let E𝜌 be the energy density in the 𝐿 → ∞ limit. Then

| E𝜌 (𝐿) − E𝜌 | =
4max

{


ℎ𝑟𝑜𝑤𝑖,𝑖+1




, 


ℎ𝑐𝑜𝑙𝑖,𝑖+1




}
𝐿

. (15)

Proof. Let 𝐻 (𝐿) be the Hamiltonian defined on Λ(𝐿 × 𝐿) and
let 𝑡 ∈ N. Let 𝐻𝑔𝑟𝑖𝑑 (𝐿, 𝑡) be the Hamiltonian with the same local

terms, but with the terms ℎ𝑟𝑜𝑤
𝑖,𝑖+1, ℎ

𝑐𝑜𝑙
𝑗, 𝑗+1 removed for 𝑖, 𝑗 ∈ 𝑡N. Then:

𝐻𝑔𝑟𝑖𝑑 (𝐿, 𝑡) = 𝐻 (𝑡𝐿) −
∑︁

𝑖 mod 𝑡=0

ℎ𝑟𝑜𝑤𝑖,𝑖+1 −
∑︁

𝑗 mod 𝑡=0

ℎ𝑟𝑜𝑤𝑗,𝑗+1 . (16)

The interaction graph of 𝐻𝑔𝑟𝑖𝑑 (𝐿, 𝑡) is a set of 𝑡2 squares of size

𝐿 × 𝐿. Hence equation 16 gives

𝐻𝑔𝑟𝑖𝑑 (𝐿, 𝑡) − 𝐻 (𝑡𝐿)


 ≤ 4𝑡2𝐿max

{


ℎ𝑟𝑜𝑤𝑖,𝑖+1




, 


ℎ𝑐𝑜𝑙𝑖,𝑖+1




} .
It is straightforward to see that 𝜆0 (𝐻𝑔𝑟𝑖𝑑 (𝐿, 𝑡)) = 𝑡2𝜆0 (𝐻 (𝐿)). Com-

bining these gives

|𝑡2𝜆0 (𝐻 (𝐿)) − 𝜆0 (𝐻 (𝑡𝐿)) | ≤ 4𝐿𝑡2max

{


ℎ𝑟𝑜𝑤𝑖,𝑖+1




, 


ℎ𝑐𝑜𝑙𝑖,𝑖+1




} .
Dividing through by 𝑡2𝐿2 to get energy densities gives

| E𝜌 (𝐿) − E𝜌 | ≤
4max

{


ℎ𝑟𝑜𝑤𝑖,𝑖+1




, 


ℎ𝑐𝑜𝑙𝑖,𝑖+1




}
𝐿

. (17)

□

Lemma 5.13. GSED ∈ NEXP for any classical, nearest-neighbour,
translationally invariant Hamiltonian, for GSED as defined in defi-
nition 2.2.
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Proof. (𝛼, 𝛽) is the input of the problem, 𝛽 − 𝛼 = Ω(2−𝑞 (𝑛) ).
We show an EXP machine will be able calculate E𝜌 (𝐿) (using the
notation of lemma 5.12) using a classical witness for 𝐿 = 2

𝑝 (𝑛)
, for

a polynomial 𝑝 .

First compute the ground state energy of an 𝐿 × 𝐿 square of the

lattice. Take as the witness the ground state of the Hamiltonian

restricted to an 𝐿×𝐿 region of the lattice: |𝜓 ⟩ = |𝜙1⟩⊗|𝜙2⟩⊗ . . .
��𝜙𝐿2 〉,

where |𝜙𝑖 ⟩ ∈ C |S |
is the state of the spin at lattice site 𝑖 . Now,

E𝜌 (𝐿) =
1

𝐿2

∑︁
⟨𝑖, 𝑗 ⟩

⟨𝜙𝑖 |
〈
𝜙 𝑗

��ℎ𝑖, 𝑗 |𝜙𝑖 ⟩ ��𝜙 𝑗

〉
,

where ⟨𝑖, 𝑗⟩ denotes pairs of nearest-neighbours. ⟨𝜙𝑖 |
〈
𝜙 𝑗

��ℎ𝑖, 𝑗 |𝜙𝑖 ⟩ ��𝜙 𝑗

〉
can be computed in 𝑂 (1) time, and there are 𝑂 (𝐿2) such terms.

Since 𝐿 = 2
𝑝 (𝑛)

, the estimate E𝜌 (𝐿) can be computed in 𝑂 (𝐿2) =
𝑂 (22𝑝 (𝑛) ) time. By lemma 5.12, | E𝜌 (𝐿) − E𝜌 | = 𝑂 (𝐿−1), hence
provided we choose 𝑝 (𝑛) to be sufficiently large relative to 𝑞(𝑛),
the approximation E𝜌 (𝐿) allows us to determine E𝜌 > 𝛽 or E𝜌 < 𝛼

for 𝛽 − 𝛼 = Ω(2−𝑞 (𝑛) ). □

An immediate corollary of this is:

Corollary 5.14 (EXPNEXP Containment). EXPGSED⊆ EXPNEXP,
for GSED as defined in definition 2.2, for a fixed, classical Hamilton-
ian.

Why not Polytime Turing Reductions, PGSED? Naturally a ques-

tion arises as to why we consider EXPGSED here, rather than PGSED.
Here we show that using our hardness construction, one cannot

even hope to prove NP ⊆ PGSED unless the polynomial hierarchy

collapses to Σ𝑃
2
.

Theorem 5.15. Let PGSEDℎ be the class of languages decided by
a polynomial time oracle machine with access to a GSED oracle for
the Hamiltonian of definition 5.3 only. If NP ⊆ PGSEDℎ , then the
polynomial hierarchy collapses to Σ𝑃

2
.

Proof. We will first show that PGSEDℎ ⊆ 𝑃/poly. Let 𝑀GSEDℎ

1

be a polytime TM with oracle access to a GSED oracle for the

Hamiltonian defined in definition 5.3 only. 𝑀
GSEDℎ

1
can make at

most𝑂 (poly(𝑛)) length queries to the oracle, corresponding to 𝛼, 𝛽

queries such that 𝛽 − 𝛼 = Ω(2−𝑝 (𝑛) ) for some polynomial 𝑝 . After

making at most poly(𝑛) queries, it performs some post-processing

and finally outputs an answer.

However, we note that a polytime TM 𝑀2 with access to an

advice string of
˜E𝜌 , such that

˜E𝜌 has 𝑂 (poly(𝑛)) bits and satisfies

| ˜E𝜌 − E𝜌 | ≤ 2
−𝑞 (𝑛)

, where 𝑞 is a polynomial 𝑞 ≫ 𝑝 . Thus 𝑀2 is

able to replicate any queries that 𝑀1 makes to the GSED oracle

as it has been given the relevant ground state energy density to

sufficient precision to replicate the queries for all 𝛼, 𝛽 satisfying

𝛽 − 𝛼 = Ω(2−𝑝 (𝑛) ).
Thus it is the case that PGSEDℎ ⊆ 𝑃/poly. However, it is known

that if NP ⊆ 𝑃/poly, then the polynomial hierarchy collapses to

Σ𝑃
2
[24].

□

This provides strong evidence that our hardness construction is

not NP-hard under polytime Turing reductions.

5.2.1 Improving the Hardness Result. We can improve our con-

tainment and hardness results by using a PSPACE oracle machine.

There is, however, some controversy as to how a PSPACE oracle

machine should have access to its oracle; in particular whether

the input tape to the oracle has a polynomial space bound or not

[10, 15, 21]. Here we consider both of these definitions and show

how they can be used to tighten our complexity bounds on GSED.

Definition 5.16 (1𝑠𝑡 PSPACE Oracle Machine Definition).
A PSPACE𝑂 oracle machine is a PSPACE machine with access

to an oracle input tape, for which it can make polynomial length
queries to the oracle.

For this definition we get:

Theorem 5.17. PSPACENEEXP ⊆ EXPGSED.

Proof. Identical to the proof for theorem 5.11 except𝑀1 is now

a PSPACE machine which needs to be simulated by the EXPGSED

oracle machine. □

A potentially more interesting result occurs when we use the

following definition:

Definition 5.18 (2𝑛𝑑 PSPACE Oracle Machine Definition).
A PSPACE𝑂 oracle machine is a PSPACE machine with access to

a write only oracle input tape, for which it can make exponential
length queries to the oracle.

This is the preferred definition of several authors [15, 26]. For

this definition of oracle machine, we realise that one can do the

binary search protocol used in the proof of theorem 5.11 to get:

Theorem 5.19. PNEEXP ⊆ PSPACEGSED.

Proof. The proof will be similar to the proof for theorem 5.11,

except now the PSPACE machine will have to make exponentially

long oracle calls to the GSED oracle to extract the query results

while using only polynomial space everywhere else.

Let 𝑀GSED
be a PSPACE machine with (for convenience) two

work tapes
3
(bounded by polynomial space) and one unbounded

oracle tape which is read only. Let the GSED oracle be the one for

the Hamiltonian of definition 5.3. Let 𝑀GSED
have made (𝑘 − 1)

queries to the oracle machine with outputs 𝑖1, 𝑖2 . . . 𝑖𝑘−1, for 𝑖 𝑗 as
defined in lemma 5.4, such that it now needs to make a 𝑘𝑡ℎ query.

To do so, it needs to calculate a pair (𝛼𝑘 , 𝛽𝑘 ) which will allow it to

extract 𝑖𝑘 . Assume 𝑀 has the string 𝑖1𝑖2 . . . 𝑖𝑘−1 stored on one of

the two work tapes. We need to write out the numbers 𝛼𝑘 , 𝛽𝑘 in

binary as given in equation 14.

Without loss of generality, assume the oracle input tape is ini-

tially in the all 0 state. To write out 𝛽𝑘 on the input tape, 𝑀 take

a query outcome 𝑖 𝑗 , then moves 4 𝑗 + 2 down the tape and places

𝑖 𝑗 in the (4 𝑗 + 2)𝑡ℎ cell (corresponding to value
1

4

𝑖 𝑗

16
𝑗 ). Finally in

the (4𝑘 + 2)𝑡ℎ cell it places a 1. To determine where the head is on

the oracle input tape, we let𝑀 have a binary counter on its second

work tape. 𝑀 can determine where the head is on the input tape

by increment/decrementing the binary counter whenever the head

moves right/left.

3
This can be reduced to a single work tape by standard arguments.
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𝑀 cannot write out 𝛼𝑘 exactly, as it does not have a finite binary

expansion. Instead, upper bound it by a number 𝑎𝑘 > 𝛼𝑘 , 𝛽 − 𝑎𝑘 =

Ω(2− poly(𝑘 ) ) which does have a finite expansion

𝑎𝑘 =
1

4

(
𝑘−1∑︁
𝑛=1

𝑖𝑛

16
𝑛
+ 2

16
𝑘+1

)
> 𝛼𝑘 . (18)

To write this out,𝑀 also places 𝑖 𝑗 in the (4 𝑗 +2)𝑡ℎ cell, for 𝑗 ≤ 𝑘 −1.

We then place a 1 in the (4𝑘 + 3)𝑡ℎ cell (which is the contribution

from the 2 × 16
−𝑘−1

term). Hence querying the oracle for (𝑎𝑘 , 𝛽𝑘 )
gives the same answer as querying with (𝛼𝑘 , 𝛽𝑘 ).

𝑀 then continues with the computation until all the necessary

queries have been extracted. Since only poly(𝑛) many queries are

made, the PSPACE machine is capable of storing them all on its

work tape. It can then post-process the queries and output the

answer to the relevant PNEEXP computation.

Since𝑀 only needs to record the number of queries𝑘 = 𝑂 (poly(𝑛))
and the binary counter it uses to keep track of the TM head on the

input string — which counts up to 16
𝑂 (poly(𝑘 ) )

— can be expressed

in poly(𝑘) = poly(𝑛) bits, we have that𝑀 only uses poly(𝑛) space
on its two work tapes, as required. □

The results from this section immediately give:

Corollary 5.20. PNEEXP ⊆ PSPACEGSED ⊆ PSPACENEXP

5.2.2 Complexity Results for FGSED. We show containment of the

function problem version FGSED:

Theorem 5.21. FGSED ∈ FPGSED ⊆ FPNEXP for classical FGSED.

Proof. Let 𝜖 be the input to FGSED, such that |𝜖 | = 𝑛. Let𝑀GSED

be a polytime TM with oracle access to GSED. Then using poly(𝑛)
many (𝛼, 𝛽) queries to GSED, for 𝛽 −𝛼 = Ω(2− poly(𝑛) ), we can use

a binary search procedure to find an estimate
˜E𝜌 such that | ˜E𝜌 −

E𝜌 | = 𝑂 (2− poly(𝑛) ) < 𝜖 . Thus a 𝑀GSED
machine can compute

FGSED. Since GSED ∈ NEXP, this implies FGSED ∈ FPGSED ⊆
FPNEXP. □

Lemma 5.22. FPNEEXP ⊆ FEXPFGSED ⊆ FEXPNEXP for classical
FGSED.

Proof. To show FEXPFGSED ⊆ FEXPNEXP, consider two expo-

nential time oracle machines 𝑀FGSED
1

and 𝑀NEXP
2

. Let 𝑀1 make

𝑂 (exp(𝑛)) oracle calls to FGSED, and then do some exponential

time post-processing.𝑀2 can simulate these oracle calls by, for each

oracle call 𝑀1 makes, estimating using the NEXP oracle exp(𝑛)
to estimate the ground state energy density produced by FGSED.
Since 𝑀1 makes exp(𝑛) queries, 𝑀2 needs to make 𝑂 (exp(𝑛)) ×
𝑂 (exp(𝑛)) = 𝑂 (exp(𝑛)) queries. It can then perform the same

post-processing as𝑀1. Thus FEXPFGSED ⊆ FEXPNEXP.
To show FPNEEXP ⊆ FEXPFGSED, consider a polytime oracle ma-

chine 𝑀NEEXP
3

and an exptime oracle machine 𝑀FGSED
4

. 𝑀3 can

make at most 𝑂 (poly(𝑛)) queries to the NEEXP oracle of at most

𝑂 (poly(𝑛)) length, and then do post-processing to output the rele-

vant function. 𝑀4 can simulate all of these queries by asking the

FGSED oracle for an estimate for 𝜖 such that |𝜖 | = 𝑂 (exp(𝑛)),
from which it can extract all the NEEXP queries. It can then do the

relevant post-processing and output the same function as𝑀3.

□

5.3 Quantum Containment in EXPQMAEXP

In this section we show containment of GSED for quantum Hamil-

tonians.

Lemma 5.23. GSED ∈QMAEXP for any quantum, nearest-neighbour,
translationally invariant Hamiltonian, for GSED as defined in defi-
nition 2.2.

Proof. (𝛼, 𝛽) is the input of the problem for 𝛽 −𝛼 = Ω(2−𝑝 (𝑛) ).
Let |𝜓 ⟩ be the ground state an 𝐿 × 𝐿 section of the lattice, for 𝐿 =

2
𝑞 (𝑛)

, which our QMAEXP machine will take as a witness. Perform

quantum phase estimation of 𝑒𝑖𝐻
Λ(𝐿)

to𝑞(𝑛) bits of precision, which
gives an estimate

˜𝜆0 of 𝜆0 (𝐻Λ(𝐿) ) such that | ˜𝜆0 − 𝜆0 (𝐻Λ(𝐿) ) | ≤
2
−𝑝 (𝑛)

, and takes time 𝑂 (2𝑞 (𝑛) ) [29].
Since E𝜌 (𝐿) = ˜𝜆0, and by lemma 5.12 that | E𝜌 (𝐿) − E𝜌 | =

𝑂 (2−𝑝 (𝑛) ), choosing 𝑞(𝑛) to be sufficiently larger than 𝑝 (𝑛) allows
us to verify whether E𝜌 > 𝛽 or E𝜌 < 𝛼 . □

This immediately gives:

Corollary 5.24. EXPGSED ⊆ EXPQMAEXP for a fixed, nearest-
neighbour, translationally invariant quantum Hamiltonian.

Since classical Hamiltonians are a subset of quantum Hamiltoni-

ans, then PNEEXP⊆EXPGSED is an immediate corollary of theorem

5.11 for quantum GSED.

6 DISCUSSION AND CONCLUSIONS
Quantum GSED. A natural question to ask is if tighter results

can be found for GSED for quantum Hamiltonians. As we have

seen, it follows straightforwardly that EXPGSED⊆EXPQMAEXP
, but a

tighter quantum lower bound does not follow easily.

Our proof of a PNEEXP lower bound works as we can enumerate

over NEEXP-complete problems. Attempting to prove a similar

quantum lower bound (e.g. PQMAEXP
) runs into the problem that,

since QMAEXP is a promise class, for a given QMAEXP-complete

problem there may be instances which do not satisfy the promise

(so called “invalid queries”). This makes it impossible to enumerate

over all instances of a given QMAEXP-complete problem without

potentially including instances which do not satisfy the promise. It

is not currently known how to avoid these instances from occurring,

although some techniques exist, such as [17, 19, 33].

Closing the Classical Upper and Lower Bounds. So far we have

separate lower and upper bounds PNEEXPand EXPNEXP. The con-
tainment protocol given here works via a natural binary search

algorithm to determine E𝜌 , and as such we believe it is optimal.

While it is not immediately clear how the lower bound might be

improved, it is not clear whether the construction presented here

should give a tight lower bound.

Other Precision Problems. As far as the authors know, this is the
first complexity hardness result about a theorem in which the only

input parameter which is varied is the precision, but where the

object of study is fixed. Furthermore, GSED can be viewed as a

precision version of the Local Hamiltonian problem; can similar

“precision based” problems be developed for other decision/promise

problems? Is there a natural situation in which they occur?
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We comment that one can introduce a similar problem to GSED,
but for a density of local observables. One can think of this as a

precision generalisation of the APX-SIM problem introduced by

Ambainis in [3] and studied in [17, 19, 33], in the same way that

GSED is a precision version of the local Hamiltonian problem. For

example if a 1-local observable𝐴𝑖 , ∥𝐴𝑖 ∥ = 1 which has an associated

density, consider the following density:

𝐴𝜌 = lim

𝐿→∞
1

𝐿2

∑︁
𝑖∈Λ(𝐿×𝐿)

𝐴𝑖 .

Although one can prove identical hardness results to EXPGSED

about the expectation of 𝐴𝜌 on the ground state, containment does

not follow in the same way as for GSED. In particular, [13] demon-

strate that determining whether a particular local density expecta-

tion is 0 or 1 is undecidable.
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