
Long-Term Evolution Experiment
with Genetic Programming

Abstract We evolve floating point Sextic polynomial populations
of genetic programming binary trees for up to a million generations.
We observe continued innovation but this is limited by tree depth.
We suggest that deep expressions are resilient to learning as they
disperse information, impeding evolvability, and the adaptation of
highly nested organisms, and we argue instead for open complexity.
Programs with more than 2,000,000,000 instructions (depth 20,000)
are created by crossover. To support unbounded long-term
evolution experiments in genetic programming (GP), we use
incremental fitness evaluation and both SIMD parallel AVX 512-bit
instructions and 16 threads to yield performance equivalent to 1.1
trillion GP operations per second, 1.1 tera GPops, on an Intel Xeon
Gold 6136 CPU 3.00GHz server.

William B. Langdon*
University College London
Department of Computer Science
W.Langdon@cs.ucl.ac.uk

Wolfgang Banzhaf
Michigan State University
Department of Computer Science

and Engineering
banzhafw@msu.edu

Keywords
Genetic programming, information theory
limit on complexity, long-term evolution
experiment (LTEE), extended unlimited
evolution, open complexity, speed-up
technique

1 Introduction

In evolutionary biology there is discussion about the long-term innovative capabilities of evolution.
Some stress that evolution happens on a short timescale, and even a few hundred generations are
enough to produce completely different species (Owen et al., 1990; Palumbo, 2001). Others empha-
sise that natural evolution is an open-ended process that will continue to produce novelty, even if
many millions of generations pass (Evans et al., 2012).

Thus different aspects are considered when studying long-term evolution. One aspect is continu-
ity: If one wants to study evolution in the laboratory, one should strive to set up experiments similar
to Nature’s evolutionary “experiment” that go on unbroken for a long time. The other aspect is
duration: to attempt to evolve for many generations, trusting in the turnover of information during
the evolutionary process. How does evolution proceed after 100, 1,000, 10,000, etc. generations of
continued evolution? Does it stagnate? Does it continue to produce surprises?

Richard Lenski and his collaborators have used the evolution of E. coli bacterial strains in the
laboratory to examine these questions. Since 1988, the evolution of these bacterial strains continues,
with the experimental conditions being recorded and bacterial samples being frozen periodically to
conserve a time-slice of evolution of these strains (Lenski, 1988). This natural system is studied with
both aspects of long-term evolution in mind: The experiment has run uninterrupted since 1988, and

* Corresponding author.

© 2022 Massachusetts Institute of Technology Artificial Life 28: 173–204 (2022) https://doi.org/10.1162/artl_a_00360

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

mailto:W.Langdon@cs.ucl.ac.uk
mailto:banzhafw@msu.edu
https://doi.org/10.1162/artl_a_00360

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

the fast reproductive cycle of bacteria allows studying evolution over many generations (Lenski et al.,
2015). Already (September 2021) 75,459 generations have been reached, with no end to evolution
in sight.

We focus on one aspect of these long-term evolutionary experiments (LTEE): The number of
generations. The medium in which we consider this question, however, is computational. We started
to investigate what happens if we allow artificial evolution, specifically genetic programming (GP)
with only crossover (Banzhaf et al., 1998; Koza, 1992; Poli et al., 2008), to evolve for tens of thou-
sands, even hundreds of thousands of generations.

With the continuous progress in technology, new hardware has become available, so we built
a new GP engine based on Andy Singleton’s (1994) GPquick (see next section). This allowed us
to switch from the Boolean to the continuous domain and run experiments of up to a million
generations. At up to 1,103 billion GP operations per second (1.1 tera-GPops; see Table 3), this
appears to be the fastest single-computer GP system (Langdon, 2013, Table 3).

In the Boolean domain the population often quickly found the best possible answer and then re-
tained it exactly for thousands of generations (Langdon, 2017). Nonetheless under subtree crossover
we reported interesting population change with trees continuing to evolve. Indeed we were able to
report the first signs of an eventual end of bloat due to fitness convergence of the whole population.
We can now report that in the continuous domain we do see continual innovation and improvement
in fitness like in the bacteria experiments. (Note that in Lenski’s experiments (Lenski, 1988; Lenski
et al., 2015), the E. coli genome contains 4.6 million DNA base pairs.) Figure 1 shows that although
the rate of innovation falls (as in Lenski’s E. coli populations), typically better solutions are found
even towards the end of the runs. In these runs, there are several hundred or even a few thousand
generations where subtree crossover between evolved parents gave a better child.

We are going to run GP far longer than is normally done. Firstly in search of continual evolution
but also noting that it is sometimes not safe to extrapolate from the first hundred or so genera-
tions. For example, Freitag McPhee (Freitag McPhee & Poli, 2001, sec. 1.2) found that his earlier

Figure 1. Evolution of mean absolute error in ten runs of Sextic polynomial (Koza, 1992) with population of 4,000.
(Runs were aborted after the first crossover to hit the 15 million node limit.) The end of run label gives the number of
generations when fitness got better (five are shown at top right to avoid crowding).

174 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 2. 11 extended runs pop=48. Numbers on right indicate size of largest tree before the run stopped in millions
of nodes. One run (*) converged so that more than 90% of the trees contain just five nodes. Three of the other four
runs that reached 1 million generations (red) took between half a day and five days. In all but one run (*) we see
repeated substantial bloat (>64 million nodes) and subsequent tree size collapse. Seven runs, in black, terminated due
to running out of memory (on server with 46 GB). (See also Figure 3 below.)

studies which had reported only the first 100 generations could not safely be extrapolated to 3,000
generations.

It must be admitted that without size control we expect bloat,1 and so we need a GP system not
only able to run for a million generations2 but also able to process trees with well in excess of a
100 million nodes3. The new system we use is based on Singleton’s GPquick (Keith & Martin, 1994;
Langdon, 1998; Singleton, 1994), but enhanced to take advantage of both multi-core computing
using pthreads and Intel’s SIMD AVX parallel floating point operations. Keith and Martin (1994)
say GPquick’s linearisation of the GP tree will be hard to parallelise. Nevertheless, GPquick was
rewritten to use 16-fold Intel AVX-512 instructions to do all operations on each node in the GP tree
immediately—leading to a single eval pass and better cache locality but at the expense of keeping
a T = 48 wide stack of partial results per thread. In section 4.2 we deploy a series of speed-up
techniques4 which without changing the course of evolution dramatically speed up GP, and which
in turn allowed the evolution of trees five times as big (compare Langdon & Banzhaf, 2019, Table 3,
with Table 3) and reduced a run which took a week to one and a half days.

Although the populations never lose genetic diversity (Koza’s variety),5 with strong tournament
selection (see Table 1) even the larger populations tend to converge to have identical fitness values.

1 GP’s tendency to evolve nonparsimonious solutions has been known since the beginning of genetic programming (e.g., it is mentioned
in Jaws (Koza, 1992, p. 7). Walter Tackett (Tackett, 1994, p. 45) credits Andrew Singleton with the theory that GP bloat is due
to the cumulative increase in non-functional code, known as introns. The theory says these protect other parts of the same tree
by deflecting genetic operations from the functional code by simply offering more locations for genetic operations. The bigger the
introns, the more chance they will be hit by crossover and so the less chance crossover will disrupt the useful part of the tree. Hence
bigger trees tend to have children with higher fitness than smaller trees. See also Altenberg (1994) and Angeline (1994). Fernandez
de Vega et al. (2020) include a recent summary. In Langdon (2017) we showed that prolonged evolution can produce converged
populations of functionally identical but genetically different trees composed of the same central core of functional code next to the
root node plus a large amount of variable ineffective sacrificial code.

2 The median run shown in Figure 2 took 39 hr (mean 62 hr). Under ideal growing conditions, a million generations for E. coli
corresponds to about 38 yr.

3 Referring to column 4 in Table 3, we see that in two runs crossover creates highly evolved trees containing more than two billion
nodes. Note evolution has continued until the size of trees in the population starts to approach INT_MAX. These are by far the
largest programs yet evolved.

4 See Langdon (2019, 2020b, 2021a, b, 2022; Langdon & Petke, 2019).
5 Koza defines variety as the percentage of the population that has no genetically identical copy (Koza, 1992, p. 93).

Artificial Life Volume 28, Number 2 175

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 3. Convergence in last 20% of a typical extended run pop=48 (the first run “64” in Figure 2). Blue curve shows
almost all the time there are less than 2 trees without the maximum fitness (smoothed over 30 generations). In 88% of
generations plotted the whole population has the same fitness. In 9% all but one have the same fitness and in only 0.6%
are there more than two low-fitness children. In populations with huge trees (red line), there are many generations
where the whole population has identical fitness. Without a fitness differential, tree size may rise or fall.

Table 1. Long-term evolution of Sextic polynomial symbolic regression binary trees.

Terminal set: X, 250 constants between –0.995 and 0.997

Function set: MUL ADD DIV SUB

Fitness cases: 48 fixed input –0.97789 to 0.979541 (randomly selected from –1.0 to +1.0 input).

Target y = xx(x−1)(x−1)(x+1)(x +1)

Selection: Tournament size 7 with

fitness = 1
48

∑48
i=1 |GP(xi) − yi|

Population: Panmictic, non-elitist, generational.

Parameters: Initial population (4,000) ramped half and half (Koza, 1992) depth between 2 and 6.
100% unbiased subtree crossover. 100,000 generations (stop run if any tree reaches
limit 15 × 106).

Note. DIV is protected division (y!=0)? x/y: 1.0f

However 100% fitness convergence is only seen in long runs with smaller populations (500 or 48
trees). In contrast, in the Boolean domain (Langdon, 2017), even in the bigger populations (500) of
that study, there are many generations where the whole population has identical fitness (but again
variety is 100%).

176 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

The next section describes how GPquick was adapted to take advantage of Intel SIMD instruc-
tions able to process 16 floating point numbers in parallel and to use Posix threads to perform
crossover and fitness evaluation on 48 cores simultaneously. The Experiments section describes
the floating point benchmark (Table 1), whilst the Results section describes the evolution of fit-
ness and size and depth in populations of 4,000, 500, and 48 trees. It finds the earlier predictions
of sub-quadratic bloat (Langdon, 1999a) and Flajolet limit (depth ≈√

2π |size| (Langdon, 2000b))
to essentially hold. We finish with a short discussion about the continuous evolution permitted by
floating point benchmarks and our conclusion that even something as simple as digital evolution in
the Sextic polynomial genetic programming benchmark permits continuous innovation.

2 GPquick

First we describe how GPquick is used to do symbolic regression on a simple sixth order polynomial
(y = x2(x − 1)2(x + 1)2, known as the Sextic polynomial; Figure 8) and then how GPquick has
been modified to run in parallel.

2.1 Sextic and GPquick
Andy Singleton’s (1994) GPquick is a well-established fast and memory efficient C++ GP frame-
work. In steady state mode (Syswerda, 1990) it stores GP trees in just one byte per tree node. Using
separate parent and child populations doubles this (although Koza et al., 1999, and Langdon, 2020c,
shows doubling is not necessary).6 The 8 bit opcode per tree node allows GPquick to support a
number of different functions and inputs. Typically (as in these experiments) the remaining op-
codes are used to support about 250 fixed ephemeral random constants (Poli et al., 2008). In the
Sextic polynomial we have the traditional four binary floating point operations (+, −, × and pro-
tected division), an input (x), and 250 constants. The constants are chosen uniformly at random
from the 2001 floating point numbers which are multiples of 0.001 between −1 and 1. By chance
neither end point nor 0.000 were chosen (see Table 1).

The continuous test cases (x) are selected at random from the interval −1 to +1. At the same
time the target value y is calculated (Table 1). Since both x and y are stored in a text file, there may
be slight floating point rounding errors due to the standard float⇔string conversions.

Whereas the Sextic polynomial is usually solved with 50 test cases (Langdon et al., 1999), since
the AVX hardware naturally supports multiples of 16, in our experiments we change this to 48
(i.e., 3 × 16; Table 1). The multi-core servers we use each supports 48 threads, and in the longest
extended runs we reduce the population to 48 (whereas in Langdon, 2017, the smallest population
considered contained 50 trees).

2.2 AVX GPquick
GPquick stores the GP population by flattening each tree into a linear buffer, with the root node at
the start. To avoid heap fragmentation the buffers are all of the same size. The buffer is interpreted
once per test case by multiple recursive calls to EVAL, and the tree’s output is the return value of
the outermost EVAL. Each nested EVAL moves the instruction pointer one position forward in
the tree’s buffer, decodes the opcode there, and calls the corresponding function. In the case of
inputs x and constants, a value is returned via EVAL immediately, whereas ADD, SUB, MUL, and
DIV will each call EVAL twice to obtain their arguments before operating on them and returning
the result. For speed GPquick’s FASTEVAL does an initial pass through the buffer and replaces
all the opcodes by the address of the corresponding function that EVAL would have called. This

6 To allow the evolution of ultra-large trees, even on a 3 TB server, it was necessary to make the best use of the available memory.
Section 2.4 describes our implementation of Koza et al.’s (1999) generational genetic algorithm (GA) memory reduction scheme, but
for a multi-core computer.

Artificial Life Volume 28, Number 2 177

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

expands the buffer 16-fold, but the expanded buffer is only used during evaluation and can be
reused by every member of the population. Thus, originally, EVAL processed the tree T + 1 times
(for T = 48 test cases).

The Intel AVX instructions process up to 16 floating point data simultaneously. The AVX ver-
sion of EVAL was rewritten to take advantage of this. Indeed as we expect trees that are far bigger
than the CPU cache (≈16 million bytes, depending on model), EVAL was rewritten to process each
tree’s buffer only once. This is achieved by EVAL processing all of the test cases for each opcode,
instead of processing the whole of the tree on one test case before moving on to the next test case.
Whereas before each recursive call to EVAL returned a single floating point value, now it has to re-
turn 48 floating point values. This was sidestepped by requiring EVAL to maintain an external stack
where each stack level contains 48 floating point values. The AVX instructions operate directly on
the top of this stack, and EVAL keeps track of which instruction is being interpreted, where the
top of the stack is, and (with PTHREADS) which thread is running it. Small additional arrays are
used to allow fast translation from opcode to address of eval function, and constant values.7 AVX
instructions are used to speed loading each constant into the top stack frame. Similarly all 48 test
cases (x) are rapidly loaded on to the top of the stack. However, the true power of the implemen-
tation comes from being able to use AVX instructions to process the top of the stack and the
adjacent stack frame (holding a total of 96 floats) in essentially three instructions to give 48 floating
point results.

The depth of the evaluation stack is simply the depth of the GP tree. GPquick uses a fixed
buffer length for every individual in the GP population. This is fixed by the user at the start of
the GP run. Fixing the buffer size also sets the maximum tree size. Although in principle this
only places a very weak limit on GP tree depth, it has been repeatedly observed (Langdon, 2000b)
that evolved trees are roughly shaped like random trees. The mathematics of trees is well stud-
ied (Sedgewick & Flajolet, 1996). In particular the depth of large random binary trees tends to
a limit (2

√
π�treesize/2� + O(tree size1/4+ε); Sedgewick & Flajolet, 1996, p. 256; see the Flajolet

limit in Figures 10, 11, 16, 17, 18, and 26). Thus the user-specified tree size limit can be readily
converted into an expected maximum depth of evolved trees. The size of the AVX eval stack is set
to this plus a suitable allowance for random fluctuations and O(tree size1/4+ε). Note, with very large
trees, even allowing for the number of test cases and storing floats on the stack rather than byte-sized
opcodes, the evaluation stack is considerably smaller than the genome of the tree whose fitness it
is calculating.

Although AVX allows reduction operations across a stack frame, these are not needed until the
final conversion from output to fitness value. However, although faster, the reduction operations
manipulate the 48 numbers in a different order and so may (within floating point tolerances) produce
different answers. Since the reduction is a tiny part of the whole fitness evaluation we decided instead
to ensure the AVX version produces identical results to the original system and so the final fitness
evaluation is done with a conventional for loop.

2.3 PTHREADS GPquick
The second major change to GPquick was to delay fitness evaluation so that the whole new popu-
lation can have its fitness evaluated in parallel. (This means PTHREADS can only be applied when
GPquick is operating in generational mode.) If pthreads > 0, the population fitness evaluation is
spread across pthreads. As trees are of different sizes, each fitness evaluation will require a different
time. Therefore which tree is evaluated by which thread is decided dynamically. Due to timing vari-
ations, even in an otherwise identical run, which tree is evaluated by which thread may be different.
However great care is taken, including considerable regression testing, so that this cannot affect the
course of evolution. For example, everyone in the population has their correct fitness no matter
what order they were evaluated and pseudorandom numbers are only generated in sequential code.

7 In Langdon (2020a) evolution was used to investigate other opcode translation speed-ups.

178 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

(Although, for example, where trees have identical fitness, it can affect which is found first and
therefore which is reported to the user).

EVAL requires a few data arrays. These are all allocated at the start of the GP run. Those that
are read-only can be shared by the threads. Each thread requires its own instance of read-write data.
To avoid “false sharing” care is taken to align read-write data on cache line boundaries (64 bytes),
for example, with additional padding bytes and ((aligned)). This ensures each thread writes
to its own cache lines and therefore these cached data are not shared with other threads.

Initially surprisingly an almost doubling of speed was obtained by also moving crossover oper-
ations to these parallel threads. Since crossover involves random choices of parents and subtrees
these were unchanged, but instead of performing the crossover immediately a small amount of
additional information was retained to be read later by the threads. This allows the crossover to
be delayed and performed in one of up to 96 C++ pthreads. The results are identical but give an
additional ≈two-fold speed-up.

One gotcha we found during development of the multi-threaded code is that (in at least some ver-
sions of the GNU C++ runtime library), although heap management new and delete operations
are supported in threads, we experienced considerable slowdown when allocating and deleting large
buffers within the multi-threaded code. In the newer code, used with runs using the middle-sized
populations (500), and described in sections 2.4 to 2.8, large buffers are created at the start of the
run and reused. Similarly, all other (smaller) uses of the dynamic memory heap are done only in
sequential, non-threaded, code.

2.4 Reducing Memory
As previously mentioned in section 2.1, GPquick had long ago been updated to allow either steady
state populations or evolution via separate generations, and the separate generations mode effec-
tively doubled the memory required (from M to 2M buffers). Also, Koza et al. (1999) had described
an implementation in which a generational genetic algorithm (GA) uses the same memory as a
steady state one.8 (Koza et al. assume a single computer.) In Langdon (2020c) we described a sim-
plified scheme for use with t threads that, for 2 parent crossover, needs up to M + 2t buffers.
Using the tricks described in the following sections (2.5–2.8) we were able to reduce this to about
(1 − e−1)M + t (i.e., a generational GA using less memory than a traditional steady state GA).

Although details are given in Langdon (2020c), we next give the gist of our (multi-threaded)
implementation of Koza et al.’s (1999) idea. Before the new generation is created, the old population
is sorted into two queues according to the number of children they will have in the next generation.
(We optimise Koza et al. (1999) by immediately deleting those that have no children.) The first queue
contains parents with exactly one child. Unlike Koza et al. (1999), our 2 parent crossover creates
only one child at a time, and therefore we need only two queues. The second queue contains all the
parents with two or more children. The queues contain all the information about the crossovers, in
particular which child is to be created and who the other parent is.

The new generation is created in the order of the parents (not the order of the children). A
parent is selected from the first queue. If that is empty at any point, a parent is taken from the
second queue. The child is created using that parent and its mate (which may be in either queue).
The number of children belonging to both parents is decremented. When the child count goes to
zero on either parent, we are done with that parent. It can be deleted and its buffer used by the next
generation. If the child count is now one on either parent, that parent is transferred from the second
queue to the first queue. (Note self-crossover is allowed, so a parent’s child count may be reduced
by two as well as by one. Thus a parent can be removed from the second queue and deleted, without
passing through the first queue). This continues until both queues are empty, at which point the new
generation will have been created and the old one will have been deleted.

8 During 2 parent crossover both steady state GAs and Koza et al.’s (1999) generational GA need 2 spare buffers. So the number of
memory buffers required is M + 2.

Artificial Life Volume 28, Number 2 179

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

On a multi-core computer (with t threads), to allow crossover to create children in parallel, rather
than 2 spare buffers, we need (up to) 2t spare buffers. Locks are used to safely allow multiple threads
to update the two queues and to keep track of the buffers used to store the trees.

Sections 2.6–2.8 describe further refinements to reduce both crossover overhead and actual
memory usage.

2.5 Incremental Evaluation
The implementation of incremental evaluation is fully described in Langdon (2021b). Briefly we
exploit the fact that none of the components of the evolved trees have side effects. (They are pure
functions.) And thus the GP trees can be evaluated in any order. In particular they can be evaluated
from the crossover point towards the root node; see Figures 4 and 5. The evaluation on reaching the
root node is identical to the conventional top-down recursive evaluation starting at the root node.

In converged populations, not only does most of the population have the same fitness but many
children have the same evaluation as their parents. By evaluation from the change point (rather than
the root node), it is easy to spot when the child’s evaluation is the same as its parent; see Figure 5.
It turns out that enormous savings can be made because, even in simple floating point operations,
the runtime impact of even large changes is quickly dissipated (Langdon et al., 2021a) and so only
a tiny fraction of the child has to be evaluated before proving that its fitness is the same as that of
its parent; see Figure 21. Figure 23 shows that on average the number of steps up the tree before
the parent and the child evaluations synchronise, and thus the crossover change becomes invisible,

Figure 4. Incremental evaluation. The subtree to be inserted (black) is evaluated on all test cases and the values are
transferred to the evaluation of the child (left) at the location of the subtree to be removed (white). Differences
between original code (white subtree) and new are propagated upwards (blue nodes) until either all differences are
zero or we reach the root node.

Figure 5. Incremental evaluation begins by recursively evaluating the subtree to be removed from the mum (white)
and the subtree to be inserted (black). If they are the same, evaluation STOPs, the child’s evaluation is the same as
the mum’s, and so its fitness must be the same. If not, evaluation does the operation above the crossover point. To
do this it must find the evaluation of the other side tree (red). This is found by recursively evaluating it. Note the side
subtree is the same in both parent and child and so need be evaluated only once per test case. If evaluation in the mum
and child are now identical the evaluation STOPs. Otherwise evaluation proceeds up the mum’s tree until either the
evaluation in the mum and (unborn) child are the same or it reaches the root node (cf. blue nodes in Figure 4.)

180 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

is remarkably small compared to the distance from the change to the root node. We will discuss the
implications for complex systems of the resistance to change by large programs in section 6.

Having considerably sped up fitness evaluation, we found that in these huge trees, the cost of
crossover creating the children becomes dominant. The next three sections describe innovations to
reduce its cost, without changing the path of evolution, in a multi-threaded generational evolutionary
algorithm.

2.6 Fatherless Crossover
For ease we will refer to the two parents as mum and dad (father). Subtree crossover produces one
child tree at a time (Figure 6). The parent which donates its root node to the child is called the mum,
and the one which donates a subtree is the dad. As trees become very large, the size of the inserted
(dad’s) subtrees remains much the same size, so the vast majority of the child’s opcodes come from
the mum.

The trick in fatherless crossover is simply to copy all the subtrees to be donated in the next
generation before it starts.

As mentioned in section 2.4, before starting the next generation, the number of children each
tree will have is calculated. Each time a father subtree is copied, its child count is decremented—
effectively copying the subtree has started the process of creating its child. If a tree’s child count
reaches zero, its buffer can be freed.

We call this “fatherless” crossover since the dad tree takes no further part in the crossover, and
in many cases it can be deleted immediately.

In a multi-threaded generational GA (with t threads) using crossover, up to M + 2t buffers are
needed to store the population (size M) whilst it is created by crossover (section 2.3; Langdon,
2020b). Since the donated subtrees are so small compared to the trees they are drawn from, they
can be neglected; therefore with fatherless crossover only up to M + t buffers are needed.

In converged populations, there is no fitness differential, and so the allocation of children
to parents becomes random. In large converged populations, inplace crossover, fitness first (see
the following sections), and fatherless crossover together reduce memory consumption to about
(1 − e−1)M + t (Langdon, 2021a, sec. 8).

2.7 Inplace Crossover
In order to minimise memory consumption (section 2.4), a count of how many children each parent
has is kept. As each child is created, this count is decremented. When the count is one, crossover is
about to create the last child for a particular mum.

In the case of the last child, the mum’s buffer can be immediately reused for the child. On average
about half the child is identical to its mum and so reusing the buffer immediately avoids about half
of crossover’s work; see Figure 7.

Also it turns out that the shuffle operation, memmove (needed to repack the child’s buffer when
the removed and inserted subtrees are not the same size), is actually faster than memcpy (Langdon,
2021a, sec. 5). Note Figure 7 also shows fatherless crossover, in that it shows the inserted crossover

Figure 6. GPquick (Singleton, 1994) crossover. In GPquick, GP trees are flattened. Effectively the tree is stored by
recursive depth first traversal and each new tree node’s opcode is appended to a linear buffer. Thus subtrees are
contiguous bytes in the linear buffer. The maximum tree size is specified by the user before the GP is started. To avoid
heap fragmentation, all tree buffers are this maximum size. GPquick subtree crossover requires three memcpy buffer
copies: (1) root segment of the donating parent (mum, red/brown) is copied to the offspring buffer; (2) the subtree
from the second parent (dad, blue/black) is copied to the offspring; (3) the tail (brown) of the first parent copied
to child.

Artificial Life Volume 28, Number 2 181

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 7. Inplace subtree crossover can only be used if the offspring is the mum’s last child as it reuses her buffer.
(1) Copy of the dad’s subtree overwrites the mum’s buffer. (2) In 71% of children the subtree to be removed (white),
and to be inserted (black) are different sizes, and so memmove is used to shuffle the second part of the mum’s buffer
(brown) up or down.

fragment, black, being taken from the heap, rather than copied from the dad tree (as in the original
GPquick crossover; see Figure 6).

2.8 Evaluating Fitness Before Crossover
With diverse populations most of the children are allocated to the fittest parents. This means most
of the population do not have children. Apart from “stochastic universal sampling” (SUS; Baker,
1987), with commonly used stochastic selection schemes (e.g., tournament selection) parents are
chosen independently. Thus in large uniform populations with 2 parent crossover, on average e−2

of the population do not have children. With mutation only or fatherless crossover (section 2.6), this
rises to e−1 of the population. Notice that individuals in a GA population that do not have children
have no impact on the course of evolution. Since rapid fitness evaluation means creating large trees
becomes the dominant computational cost, speed-ups of about e−1 = 37% can be obtained by not
creating them.

To decide how many children will be allocated to each tree, we reverse the usual order of
crossover and fitness operations, and use incremental fitness evaluation to evaluate each child in
the next population before creating them. After fitness selection we know who in the next genera-
tion will have children and who will not. Those without children need not be created.

To evaluate fitness before crossover, only a small change is needed to incremental evaluation
(section 2.5). All we need do is evaluate using the mum’s tree rather than that of the (as yet unborn)
child. Referring to Figure 4, the unchanged code (red and blue nodes) is obviously identical in the
mum and the child and so evaluation can use the mum’s buffer and produce identical results to
those that would be obtained using the child’s buffer, if we waited for crossover to create the child
in the usual way.

3 Experiments

We use the well-known Sextic polynomial benchmark (Koza, 1994, Table 5.1). Briefly, the task given
to GP is to find an approximation to a sixth order polynomial, x6 − 2x4 + x2, given only a fixed
set of samples, i.e., a fixed number of test cases. For each test input x we know the anticipated
output f (x); see Figure 8 and Table 1. Of course the real point is to investigate how GP works and
how GP populations evolve over time. We ask ourselves whether it is possible for GP to continue
to find improvements, even for such a simple continuous problem as Lenski’s E. coli experiments
are showing, or, as in the Boolean case (Langdon, 2017), whether the GP population will get stuck
early on and from then on never make further progress. Note that we here make use of crossover
exclusively, so no random mutations are allowed to introduce any new genetic material during the
run. All the variation the algorithm can make use of must be present in the first generation.

We ran three sets of experiments. In the first the new GP system was set up like the original
Sextic polynomial runs which reported phenotypic convergence (Langdon et al., 1999, Figure 8.5).
The first set uses a population of 4,000, the second 500, and the last 48.

3.1 Crossover
Each generation is created entirely using Koza’s (1992) 2 parent subtree crossover. (GPquick
creates one offspring per crossover.) For simplicity and in the hope that this would make GP

182 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 8. 48 test cases for Sextic Polynomial Benchmark x2(x − 1)2(x + 1)2.

populations easier to analyse, both subtrees, the one to be removed and the one to be inserted,
are chosen uniformly at random. That is, we do not use Koza’s bias in favour of internal nodes
(functions) at the expense of external nodes (leafs or inputs). Instead, the root node of the sub-
tree (to be deleted or to be copied) is chosen uniformly at random from the whole of the parent
tree. This means there is more chance of subtree crossover simply moving leaf nodes and so many
children will differ from the root node-donating parent by just one leaf.

As mentioned above, once fitness evaluation has been sped up by parallel processing, for very
big trees producing the child is a surprisingly large part of the remaining run time and so it, too, can
be implemented in parallel. However, the choice of crossover points is done in sequential code and
remains unaffected by multithreading. This ensures the variability introduced by multiple parallel
threads does not change the course of evolution.

3.2 Fitness Function
The fitness of every member of every generation is calculated using the same fitness function as in
Koza (1994, Table 5.1). That is, barring rounding errors (section 2.1), fitness is given by the mean of
the absolute difference between the value returned by the GP tree on each test case and the Sextic
polynomial’s value for the same test input (see Table 1). We use tournament selection to choose
both parents.

Like Koza (1994, Table 5.1), we also keep track of the number of test cases where each tree is
close to the target (i.e., within 0.01, known as a hit). The number of hits is used for reporting the
success of a GP run. It is not used internally during a GP run. Also, our GP runs do not stop when
a solution is found (48 hits) but continue until either the user-specified number of generations is
reached or bloat means the GP runs out of memory.

Where needed, floating point calculations are done in a fixed order, to avoid parallelism creating
minor changes in calculated fitness, which could quickly cause otherwise identical runs to diverge
because of implementation differences in parallel calculations (also mentioned above in section 2.2).

Artificial Life Volume 28, Number 2 183

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

4 Results

4.1 Results Population 4,000 Trees
In the first set of experiments, we use the standard population of 4,000 trees. Table 2 summarises
the results of 10 runs. In all cases GP found a reasonable approximation to the target (the Sextic
polynomial). Indeed in all but one run (47 hits) the best trees score 48 out of 48 possible hits, i.e.,
they are within 0.01 on all 48 test cases. Indeed in most cases the average error was less than 10−4.
Figure 1 shows that GP tends to creep up on the best match to the training data. Typically after
several thousand generations, GP has progressively improved by more than a thousand increasingly
small steps (see Table 2 column 3 and Figure 1).

In all ten runs with a population of 4,000, we see enormous increases in size, and all are stopped
as they hit the size limit (15,000,000) before reaching 100,000 generations. Column 5 in Table 2
gives the size (in millions) of the largest evolved tree in each run. The log-log plot in Figure 9 shows
a typical pattern of subquadratic (Langdon, 2000a) increase in tree size. The straight line shows a
power law fit. In this run the best fit has an exponent of 1.2. Column 6 of Table 2 shows that the
best fit between generations ten and a thousand for all 10 runs varies between 1.1 and 1.9.

As expected not only do programs evolve to be bigger but also they increase in depth. As de-
scribed above (section 2.2), highly evolved trees tend to be randomly shaped and so as expected
tend to lie near the Flajolet limit, depth ≈√

2π |size| (see Figures 10 and 11). (This is also true in the
pop=500 and pop=48 runs; see the following sections.)

Figure 12 shows that over the 10 runs, most fitness improvements occur in trees of depth be-
tween 231 and 445, whilst most trees, regardless of fitness, are between depth 347 and 2,345. That
is, as the runs progress and deeper trees evolve, the rate of innovation falls, but nonetheless as
Figure 1 shows we still see fitness improvements later in the runs.

Table 2. 10 Sextic polynomial runs with population 4,000 (section 4.1).

Gens error ×10−9 impr hits size ×106 gensi conv GPop/sec ×109

6,370 64,487 2,139 48 14.329 1.200 3,981 58.2

8,298 145,796 2,040 48 14.102 1.916 3,982 57.4

2,323 642,006 389 47 13.441 1.387 3,995 51.6

7,119 507,600 608 48 13.668 1.589 3,997 55.0

11,750 1 3,583 48 13.854 1.364 3,989 49.8

3,412 65,561 1,277 48 14.348 1.625 3,986 45.4

5,106 71,288 1,615 48 14.233 1.146 3,988 53.6

6,112 728,757 1,871 48 14.500 1.254 3,983 52.9

6,679 28,853 1,741 48 14.022 1.396 3,998 43.4

4,454 67,817 790 48 14.900 1.227 3,997 54.9

Note. impr is the number of generations that are strictly better than anything previously evolved in the run (Figure
1 gives the number of generations that improve on their parents, hence slight differences). gensi is the power law fit
of tree size between generation 10 and 1,000. conv is the maximum number of trees in the population with identical
fitness. The last column is the GP (before enhancements in sections 2.4–2.8) speed on 48 core 2.60 GHz Intel Xeon
Gold 6126 CPU. Runs took between 2:18 and 15:15 hr (median just under 5 hr).

184 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 9. Evolution of tree size in first Sextic run (population 4,000). (This run aborted after 6,370 generations by first
crossover to hit 15 million node limit.) Straight line shows best RMS error power law fit between generation 10 and
1,000, y = 8.65x1.2001.

Figure 10. Evolution of depth and size in population of 4,000 trees in typical Sextic polynomial run. In this run, as
predicted (Langdon, 1999b), average trees lie within one or two standard deviations of random binary trees (Flajolet
limit, depth ≈ √

2π |size|; Sedgewick & Flajolet, 1996; dotted parabola). See also Figure 11.

Artificial Life Volume 28, Number 2 185

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 11. Plot of size and depth of the best individual in each generation for 10 Sextic polynomial runs with population
of 4,000. Binary trees must lie between short fat trees (lower curve “Full”) and “Tall” stringy trees. Most trees are
randomly shaped and lie near the Flajolet limit (depth ≈ √

2π |size|, solid line, note log-log scales). Figure 10 shows the
first run in more detail.

Figure 12. Plot of size and depth, as in Figure 11 but showing only trees which are better than those earlier in
each run.

186 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 13. Fitness convergence in first Sextic polynomial pop=4000 run. Perhaps because of the continual discovery
of better trees before generation 4,975 and the larger population size, although the number of trees without the best
fitness falls, unlike in the earlier Boolean problem (Langdon, 2017) and smaller populations, it never reaches zero.
Notice that a tiny fitness improvement in generation 4,961 resets the population for ten generations. Mean program
size (linear scale, dotted black) and best fitness (log, blue) are plotted in the background.

In all 10 runs we see some phenotypic convergence. The “conv” column in Table 2 shows the
peak fitness convergence, that is, out of 4,000, the number of trees having exactly the same fitness as
the best in the population. Typically at the start of the run (see Figure 13), the population contains
mostly trees with poorer fitness, but later in the run the population begins to converge, and towards
the end of the run we may see hundreds of generations where more than 90% of the population
have identical fitness. Under these circumstances, even with a tournament size as high as 7, many
tournaments include potential parents with identical fitness. These, and hence the parents of the
next generation, are decided entirely randomly. However, even in the most converged population
there are at least two individuals with worse fitness. (In Figure 13 it is at least 19.) As we saw with
the Boolean populations (Langdon, 2017), even this small number can be enough to drive bloat
(Langdon & Poli, 1997), albeit at a lower rate.

4.2 Results Population 500 Trees
We repeated the GP runs but allowed still larger trees to evolve by reducing the population from
4,000 to 500 and splitting the available memory between fewer trees. Table 3 summarises these ten
runs. Figure 14 shows the evolution of the best fitness with the reduced population size. Notice
three runs do not really solve the problem and at best are on average more than 0.01 from the test
cases. Nonetheless, in all cases evolution continues to make progress and each GP run finds several
hundred or more small improvements (third column in Table 3).

Since we have deliberately extended the space available to GP trees, it is no surprise that the trees
grow even bigger than before (column 4 in Table 3). Again bloat is approximately following a power
law. Although in one unsuccessful run we see a power law exponent greater than 2, mostly growth
is at a (sub-quadratic) rate similar to the bigger population runs (1.4–2.2 vs. 1.1–1.9, column 6 in

Artificial Life Volume 28, Number 2 187

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Table 3. Ten Sextic polynomial runs with population 500 (section 4.2).

Gens error ×10−6 impr size ×106 gensi conv GPop/sec ×109 threads

100,000 538 3,544 267.995 1.558 500 584.0 48

100,000 34,185 863 1,046.200 1.736 500 748.6 48

73,407 307 3,484 2,027.060 1.436 500 1,103.4 16

100,000 18,349 1,031 586.515 2.181 500 653.3 32

98,876 137 5,853 2,040.590 1.928 500 639.7 32

100,000 1,765 664 98.936 1.408 500 400.0 32

100,000 12,116 2,392 46.409 1.166 500 733.8 32

100,000 11 3,879 1,093.950 1.351 500 666.0 16

100,000 1,709 1,971 494.672 1.155 500 492.8 16

100,000 2 1,243 476.452 1.416 500 469.6 16

Note. impr is the number of generations that are strictly better than anything previously evolved in the run. gensi is the
power law fit of tree size between generation 10 and 1,000. The 7th column is the newer GP’s equivalent speed on a
3.00 GHz Intel Xeon Gold 6136 server. (Due to scheduling constraints the runs used 16, 32, or 48 of the 96 available
cores.) Runs took between 8 hr and 14 days (median 2 days 9 hr).

Figure 14. Evolution of mean absolute error in ten runs of Sextic polynomial (Koza, 1992) with population of 500. The
runs are to 100,000 generations (2 stopped early). Labels give number of generations when fitness got better.

188 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 15. Evolution of tree size in first Sextic run (population 500). (This run aborted after 111,582 generations by
first crossover to hit 400 million node limit.) Straight line shows best RMS (root mean squared) error power law fit
between generation 10 and 1,000, y = 1.3x1.56.

Table 2; pop 4,000). Figure 15 shows again as expected sub-quadratic growth in tree size between
generations 10 and 1,000. In fact the power law fit (<2.0), in the first GP run with a population of
500, seems to extrapolate well, even though the population starts to converge in later generations
(see Figure 19 and also Figure 20).

Again randomly shaped trees evolve. Figure 16 shows the relationship between depth and size.
As expected, in all runs the depth and size of the best trees in the population lie near the Flajolet
limit, depth ≈√

2π |size|, for large binary trees. Figure 17 shows the depth and size of the trees
which are better than their parents and that the distribution of such innovators is also similar to that
of random trees. Figure 18 shows the average tree similarly follows the best and the population as a
whole also lies close to the Flajolet limit. (In the first few generations there is more variation in tree
size than depth, so population mean sizes (Figure 18, bottom left), appear too big for the “full line.”

In contrast with Figure 16, Figure 17 shows only the points where evolution innovated. Most
improvements occurred in trees of depth between 244 and 575. (Over the eight runs, most trees
have depths between 3,871 and 15,336.) That is, as with the larger population (Figures 11 and 12),
there is more innovation in shallower trees. Nonetheless GP continues to find better programs,
even though the population depth continues to grow; see Figure 14.

Unlike with the large populations, all the runs with populations of 500 trees showed some cases
of complete fitness convergence (the “conv” column in Table 3 is 500). Figure 19 shows, unlike with
larger population (cf. Figure 13), in this run, the whole population has identical fitness 33,143 times
(30% of the run). If we concentrate upon the last fitness improvement in generation 108,763 (2,819
before the end of the run), this new improved Sextic polynomial performance takes over the whole
population in half a dozen generations (as shown in the plot for Figure 19 as the rightmost thin
vertical red line). However it fails to totally dominate the population in 861 (31%) of the remaining
generations. Even though the mean number of lower fitness children is less than one (0.38) it is not
zero, and this (given nearly three thousand generations) is still enough to double the average size of
the trees. Figure 20 shows similar convergence with ten runs with a population of 500 but only up
to generation 100,000. To avoid clutter, Figure 20 does not include size or fitness plots.

Artificial Life Volume 28, Number 2 189

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 16. Plot of size and depth of the best individual in each generation for eight Sextic polynomial runs with
population of 500 (depth data were not collected in two runs). Binary trees must lie between short fat trees (lower
curve “Full”) and “Tall” stringy trees. Most trees are randomly shaped and lie near the Flajolet limit (depth ≈ √

2π |size|,
solid line, note log-log scales). Same colours as in Figure 14.

Figure 17. Plot of size and depth of improved individuals in eight Sextic polynomial runs with population of 500. Same
as in Figure 16, but plots only improvements.

190 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 18. Plot of mean size and depth across population every 100 generations for eight Sextic polynomial runs with
population of 500 (depth data were not collected in two runs); cf. Figure 16. On average trees are randomly shaped
and lie near the Flajolet limit (depth ≈ √

2π |size|, solid line, note log-log scales). Same colours as Figure 14.

Figure 19. Fitness convergence in first Sextic polynomial pop=500 run. In 30% of this run, the whole population has
identical fitness (y = 0). Mean prog size (linear scale, black) and best fitness (log, blue) also plotted.

Artificial Life Volume 28, Number 2 191

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 20. Fitness convergence in ten Sextic polynomial pop=500 runs, up to 100,000 generations. (Smoothed by
plotting the running average over 100 generations, cf; Figure 19.) Across the whole of each run and across the ten
runs in almost half the generations, the whole population has identical fitness. (The means for each individual run are
between 25% and 63%.) The colours are the same as in Figure 14.

Figure 21 shows the speed-up given by incremental fitness evaluation (section 2.5) in terms of
the ratio of total opcodes to those actually evaluated. There is considerable variation between runs
but the speed-up on average is about 60-fold. We should also caution that removing the fitness
evaluation bottleneck means some other aspect of GP now becomes the limiting factor. Figure 22
suggests that crossover bandwidth is the next hurdle to be overcome.

Figure 22 shows the speed (in terms of bandwidth) of the 10 runs with a population of 500. Since
these were run on a heavily used cluster, there is considerable noise. Nevertheless (see also the last
two columns in Table 3), there is no clear relationship between the number of computational cores
used and speed. Of course the runs themselves are also highly variable (e.g., see also Figure 23).
However, Figure 22 suggests the GP is now, at least on the 3 TB cluster node, memory bandwidth
limited, rather than CPU bound.

Figure 23 plots the evolution of the mean number of nested function levels that totally conceal
the crossover change when tested on the 48 test cases. To emphasise the stability of this average,
although it is different for each run, rather than plotting against time, Figure 23 plots it against the
average depth of the trees.

The mean (as a single statistic) does not show that there is considerable variation between mem-
bers of the population. Occasionally a crossover will require the whole of the child to be evaluated,
so all the functions between the crossover point and the root node must be evaluated. However,
en bulk successive generations are similar. Surprisingly, despite considerable evolution in the tree
size and depth during the course of 100,000 generations, the distribution of the number of upward
moves in later generations is remarkably stable. This is reflected in the nearly horizontal lines for
much of the plots. Each of the eight runs where depth data were collected, has evolved a different
incremental fitness behaviour, which suggests that, although different between runs, the trees of a
given run have evolved common structures (Langdon & Banzhaf, 2008), which are stable over tens
of thousands of generations.

192 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 21. Impact of incremental evaluation (section 2.5) on ten Sextic polynomial pop=500 runs. (Smoothed by
plotting the running average over 100 generations). Fitness convergence and the huge trees later in the runs mean that
across the whole of each run on average only 1/60th of each tree needs be evaluated to give its fitness exactly. (In ten
runs: worst 1/30th cyan line, best 1/330th blue line.) The colours are the same as in Figure 14.

Figure 22. Bandwidth used by GP. To reduce noise inherent on multi-user servers, the mean over a 1,000 generations
is plotted. As is conventional in bandwidth calculations, each opcode (byte) of each GP tree is counted twice (once
for reading and once for writing). The effective speed in terms of instructions per second is linearly proportional to
bandwidth, since the number of test cases (48) is fixed. Colours are the same Figure 14.

Artificial Life Volume 28, Number 2 193

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 23. Mean number of moves up the tree taken by incremental evaluation (section 2.5) on eight Sextic polynomial
pop=500 runs. (Data were collected every 1,000 generations.) The colours are the same as in Figure 14.

It appears that some test cases are better than others at detecting errors shrouded by intermediate
computation. For example, 0.0 seems particularly poor at detecting differences. Also we would
expect more tests to be more informative, but it appears that the effectiveness of test suites at
detecting errors grows only slowly with the number of tests. In other work (Langdon et al., 2021a),
we show that often simple deeply nested continuous floating point functions are able to dissipate
changes. That is, they do not have to be produced by genetic programming.

We have been primarily concerned with the impact on evolution, particularly the magnitude and
rate of discovery of fitness improvements, and of information loss in highly nested functions. Nev-
ertheless we will discuss its stifling of innovation, particularly in terms of evolvability and complex
adaptive systems, in section 6.

4.3 Results Population 48 Trees
In the final experiments the population was reduced still further to allow even larger trees to be
evolved on the default 46 GB cluster server (Figure 2). These smallest population runs were run
with a population of 48, since this should readily map to the available Intel multi-core servers.

With the small population, none of the runs solve the problem. Indeed only three runs got close
on 40 or more test cases (see Figure 24 and Table 4). Of the remaining eight, only one finds a large
number of fitness improvements. Seven runs have only between 3 and 30 generations with fitness
improvements (column 3 in Table 4). Figures 3 and 25 show the enormous bloat in the first of
these. In three of these, the population gets trapped at trees with just three nodes which evaluate
to constants 0.0626506, 0.069169, and 0.0830508, although the population eventually escapes and
large trees evolve by the end of the run. Except for these three runs, all the other runs contain
populations where every member of the population has identical fitness. Therefore their maximum
convergence is 48 (see the “conv” column in Table 4). The final column is average speed, in giga
GP operations/second.

As expected, as with larger populations, the highly evolved binary trees are again approximately
the same shape as random trees. See Figure 26.

194 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 24. Evolution of mean absolute error in 11 runs of Sextic polynomial (Koza, 1992) with population of 48 (up to
a million generations or aborted on running out of memory, 500 million node limit). The end of run label gives number
of generations when fitness got better. (Seven are shown at the top right to avoid crowding.)

Table 4. 11 Sextic polynomial runs with population of 48 (section 4.3).

Gens error ×10−6 impr hits size ×106 gensi conv GPop/sec ×109

1,000,000 46,215 11 16 63.920 1.633 48 36.5

491,618 2,748 745 46 396.576 2.060 48 34.9

1,000,000 46,215 7 13 190.654 1.448 48 57.4

689,414 4,857 448 40 159.949 1.260 48 38.1

1,000,000 46,215 8 14 50.365 1.701 48 26.2

143,251 46,215 11 14 99.541 1.672 48 54.1

212,528 46,650 30 14 257.766 na 42 26.7

1,000,000 46,730 3 14 0.000 na 42 0.004

958,147 23,259 1,683 18 308.958 1.791 48 53.5

294,098 47,174 3 12 308.121 na 43 24.5

757,830 2,985 2,921 44 294.821 1.320 48 50.2

Note. impr is the number of generations that are strictly better than anything previously evolved in the run. gensi is the
power law fit of tree size between generation 10 and 1,000. conv is the maximum number of trees in the population
with identical fitness. The last column is the GP (before enhancements in sections 2.4–2.8) speed on 48 core 2.60 GHz
Intel Xeon Gold 6126 CPU. The runs took from 26 min to 8 days (median 39 hr).

Artificial Life Volume 28, Number 2 195

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 25. Evolution of tree size in first Sextic run with a population of 48. This run ran for a million generations.
Straight line shows best RMS error power law fit between generation 10 and 1,000, y = 0.75x1.63.

Figure 26. Plot of size and depth of the best individual in each generation for eleven Sextic polynomial runs with
population of 48.

196 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 27. Plot of size and depth, as in Figure 26, but plots only discovery of new the best in population fitness.

In contrast to Figure 26, Figure 27 shows only the points where evolution innovated. Figure 27
is dominated by the four runs that found most improvements (see Table 4 and plotted in black
in Figure 2). Most improvements occurred in trees of depth between 211 and 1,083 (median 465).
(Over the 11 runs, most trees have depths between 337 and 4,127, median 1,401.) That is, as with
the larger population (Figures 11 and 16), there is more innovation in shallower trees.

Figure 28 shows that for almost the whole of the first run with 48 trees, the best fitness in
the population is fixed, but once trees get big enough further size changes are essentially random
(Figures 2 and 3). (Figure 29 shows similar, albeit slightly less extreme, behaviour in the last popu-
lation 48 run.) Notice that fitness depends only on the sum of the absolute difference between the
value returned by the GP tree and the target value. In particular the hits are only used for reporting.
The best fitness found in the first run with a population of 48 is given by robust trees that always
return a midpoint value (cf. Figure 8) which only passes close to four test points. Trees which closely
matched more test points were discovered in the first 19 generations of this run. However, in terms
of fitness, they scored worse than a constant and so went extinct.

5 Is there a Limit to Evolution?

In the Sextic polynomial experiments with larger populations, there is no hint of either evolution
of fitness or bloat totally stopping. In the smaller populations, it is both possible to run evolution
for longer and to allow trees to be even larger. Four of the eleven pop=48 runs reached a million
generations, but in the remaining seven, bloat ran into memory limits and halted the run. Only in
one run did we see anti-bloat, in which the population converged in a few generations on a small
high fitness tree which crossover was able to replicate across a million generations. Interestingly
two other runs found similar solutions but after thousands of generations crossover found bloated
versions of them.

Artificial Life Volume 28, Number 2 197

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Figure 28. Fitness convergence in first Sextic polynomial run with population of 48 trees. After generation 19 the best
tree in every generation has a fitness of 0.0462157 (4 hits) (tree returns 0.0769947 regardless of test case; cf. Figure 8).
In 90% of this run, the whole population has identical fitness (y = 0). (Mean number of poor fitness children is 0.1315.)
Mean prog size (linear scale, black) and best fitness (log, blue).

Figure 29. Fitness convergence in the last Sextic polynomial run with a population of 48 trees (run 295 in Figure 2). In
this run in 67% of generations, all 48 trees have identical fitness. The last improvement is found in generation 752,071
(5,759 generations before the end of the run) in a tree of 13,196,331 nodes. It takes over the whole population in
4 generations. However, in 21% of the remaining generations it does not totally dominate (the mean number of trees
with lower fitness is 0.394 per generation). Mean prog size (the linear scale, black) and best fitness (log, blue).

198 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

In the binary 6-Mux Boolean problem (Langdon, 2017) there are only 65 different fitness values.
Therefore the number of fitness improvements is very limited. An end to bloat was found, by
which we mean it was possible for trees to grow so large that crossover was unable to disrupt the
important part of their calculation next to the root node and many generations were evolved where
everyone had identical fitness. This led to random selection and random fluctuations in tree size,
i.e., enormous trees but without a tendency for progressive endless growth.

This did not happen here (except in some of the unsuccessful population 48 runs). Even in some
of the smallest Sextic polynomials runs, we are still seeing innovation in the second half of the run,
with tiny fitness improvements being created by crossover between enormous parents (Table 4).
Also we are still slightly short of total fitness convergence.

However, there is a strong relationship between the size of the population and the success of the
runs. All runs of size 4,000 were successful, half of the runs of size 500 were successful, but none
of the runs of size 48 were successful.

Even with populations containing Sextic polynomial trees of hundreds of millions of nodes,
crossover can still be disruptive and frequently even tiny populations can contain a tree of lower
fitness. This is sufficient to provide some pressure (over thousands of generations) for tree size to
increase on average.

Can bloat continue forever? It is still difficult to be definitive in our answer. We have seen cases where
it does not and of course there are plenty of techniques to prevent bloat (Poli & McPhee, 2013). But
we see other cases where crossover over thousands of generations can create an innovative child
which allows bloat into a converged population of small trees. Perhaps more interestingly, we see
crossover finding fitness improvement in bloated trees after many thousand of generations.

It is still an open question in continuous domains if, given sufficient memory and computational
resources, bloat will always stifle innovation so completely that crossover will always only reproduce
children of exactly the same fitness for long enough that the lack of selection pressure (Langdon
& Poli, 1997) will in turn stifle bloat. However, the success of incremental evolution implies that
most of the time even large changes cannot percolate through many functions, even though they
are floating point functions which lose little entropy (Langdon et al., 2021a, b; Petke et al., 2021).
We next turn to the implications of the information dissipation caused by heavily nesting function
calls.

6 Evolution of Open Complexity

The success of incremental evaluation (section 2.5) has some profound implications for the evolu-
tion of complex programs.

While introduced as a speed-up mechanism which does not alter the course of evolution
(Langdon, 2021b), incremental evaluation shows the progressive concealing of, even large, effects by
long chains of computation (Langdon et al., 2021a). The inescapable loss of information (Shannon
& Weaver, 1964) in nested expressions is the underlying and unifying cause for several widespread
features in computing, such as in: testing (Androutsopoulos et al., 2014; Voas, 1992), failed disrup-
tion propagation (Petke et al., 2021), equivalent mutants (Langdon et al., 2010), neutral networks
(Harrand et al., 2019), mutational robustness (Schulte et al., 2014), coincidental correctness (Abou
Assi et al., 2019), correctness attraction (Danglot et al., 2018), robustness (Langdon & Petke, 2015),
and AntiFragile software (Monperrus, 2017), which currently occupy different research silos (Petke
et al., 2021).

Incremental evaluation finds the fitness of children starting from the changed code. Because it
keeps track of both the evaluation of the changed code and of the original, it is easy to find cases
where they are the same. Even for large syntactic or semantic changes, if they are sufficiently deeply
buried, incremental evaluation often shows that the run time evaluation of the modified code is
identical to that of the original code. That is, the (deep) crossover, mutation, run time perturbation,
glitch, error, and so forth have no impact.

Artificial Life Volume 28, Number 2 199

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

It appears that non-linear, coarse, and binary operations lose information faster, i.e., are more
dissipative, and so are better at concealing bugs, mutations, and training updates than linear or
smooth operators.

From the point of view of evolving complex systems, it is not sufficient for an organism to
be large. Indeed, instead of deep complexity, we shall need complex systems to be open, allow-
ing changes to percolate out to their environment. Perhaps biologically plausible but more directed
crossover or mutation operators, perhaps taking code utility or information throughput into ac-
count, could be used. However, if mutations are randomly scattered in a large system, there is a risk
that their influence will have to pass through many layers to reach the environment and thus impact
fitness. Instead we might want such a system to be “lung-like,” with many passageways, allowing
the run time impact of mutational changes ready access to the outside. Similarly we might view the
evolving organism as a “small world” network which permits the impact of code updates or train-
ing events to pass through only a small number of nodes before reaching an external viewpoint.
For instance, Hu et al. (2020) consider Boolean circuits with 256 phenotypes showing the statistical
properties of their genotype-phenotype maps. Unless there are short paths, the system risks becom-
ing onion-like, where perhaps inner layers once evolved but are now encased in newer outer layers
and now adaptation occurs only in the outermost layers. Indeed, the inner layers could congeal into
a static lifeless mass, like a planetary core, with learning only occurring on the outermost crust.

7 Conclusions

Evolving Sextic polynomial trees for up to a million generations, during which some programs grow
to two billion nodes, suggests that even a simple GP floating point benchmark allows long-term
fitness improvement over thousands of generations.

The availability of multi-core SIMD capable hardware has allowed us to push GP perfor-
mance on single computers with floating point problems to that previously only approached with
sub-machine code GP operating in discrete domains (Poli & Langdon, 1999; Poli & Page, 2000).
This in turn has allowed GP runs far longer than anything previously attempted whilst evolving far
bigger programs.

Without size or depth limits or biases crossover with brutal selection pressure tends to evolve
very large non-parsimonious programs, known in the GP community as bloat (Koza, 1992, p. 617.
See also footnote 1.) After a few initial generations, GP tree bloat typically follows a sub-quadratic
power law (Langdon, 2000a). But eventually effective selection pressure (Banzhaf et al., 1998, p. 187;
Langdon & Poli, 2002; Nordin, 1997, sec. 14.2; Stephens & Waelbroeck, 1999) within highly evolved
populations falls, leading to bloat at a reduced rate. However, in this continuous domain we only
see the chaotic lack of bloat found in long-running Boolean problems (Langdon, 2017) in a few
unsuccessful runs with tiny populations (red plots in Figure 2). Nevertheless in all cases bloated
binary trees evolve to be randomly shaped and lie close to Flajolet’s square root limit.

Information theory (particularly the inevitable entropy loss) and our experiments with huge
nested tree expressions, lead us to conclude that without shortcuts, highly nested routines are robust
and resistant to innermost changes. And so we suggest the opposite: Large evolvable organisms will
have to be open complex systems with many short paths rapidly connecting some of the learning,
adaptation, or mutation sites to the environment.

Acknowledgments
This work was inspired by conversations at Dagstuhl Seminar 18052 on Genetic Improvement of
Software (Petke et al., 2018).

Data Availability Statement
The new parallel GPquick code is available via http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp
-code/GPavx.tar.gz.

200 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPavx.tar.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/gp-code/GPavx.tar.gz

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

References
Abou Assi, R., Trad, C., Maalouf, M., & Masri, W. (2019). Coincidental correctness in the Defects4J

benchmark. Software: Testing, Verification and Reliability, 29(3), Article e1696. https://doi.org/10.1002/stvr
.1696

Altenberg, L. (1994). The evolution of evolvability in genetic programming. In K. E. Kinnear, Jr. (Ed.),
Advances in genetic programming (pp. 47–74). MIT Press. https://doi.org/10.7551/mitpress/1108.003.0008

Androutsopoulos, K., Clark, D., Dan, H., Hierons, R. M., & Harman, M. (2014). An analysis of the
relationship between conditional entropy and failed error propagation in software testing. In L. Briand &
A. van der Hoek (Eds.), ICSE 2014: Proceedings of the 36th international conference on software engineering
(pp. 573–583). ACM. https://doi.org/10.1145/2568225.2568314

Angeline, P. J. (1994). Genetic programming and emergent intelligence. In K. E. Kinnear, Jr. (Ed.), Advances in
genetic programming (pp. 75–98). MIT Press. https://doi.org/10.7551/mitpress/1108.003.0009

Baker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm. In J. J. Grefenstette (Ed.),
Proceedings of the second international conference on genetic algorithms and their application (pp. 14–21). Lawrence
Erlbaum Associates.

Banzhaf, W., Nordin, P., Keller, R. E., & Francone, F. D. (1998). Genetic programming—An introduction: On the
automatic evolution of computer programs and its applications. Morgan Kaufmann.

Danglot, B., Preux, P., Baudry, B., & Monperrus, M. (2018). Correctness attraction: A study of stability of
software behavior under runtime perturbation. Empirical Software Engineering, 23(4), 2086–2119. https://doi
.org/10.1007/s10664-017-9571-8

Evans, A. R., Jones, D., Boyer, A. G., Brown, J. H., Costa, D. P., Ernest, S. M., Fitzgerald, E. M., Fortelius,
M., Gittleman, J. L., Hamilton, M. J., Harding, L. E., Lintulaakso, K., Lyons, S. K., Okie, J. G., Saarinen, J.
J., Sibly, R. M., Smith, F. A., Stephens, P. R., Theodor, J. M., & Uhen, M. D. (2012). The maximum rate of
mammal evolution. Proceedings of the National Academy of Sciences, 109(11), 4187–4190. https://doi.org/10
.1073/pnas.1120774109, PubMed: 22308461

Fernandez de Vega, F., Olague, G., Lanza, D., Chavez de la O, F., Banzhaf, W., Goodman, E.,
Menendez-Clavijo, J., & Martinez, A. (2020). Time and individual duration in genetic programming. IEEE
Access, 8, 38692–38713. https://doi.org/10.1109/ACCESS.2020.2975753

Freitag McPhee, N., & Poli, R. (2001). A schema theory analysis of the evolution of size in genetic
programming with linear representations. In J. F. Miller, M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B.
Tettamanzi, & W. B. Langdon (Eds.), Genetic programming: Proceedings of EuroGP 2001 (pp. 108–125).
Springer. https://doi.org/10.1007/3-540-45355-5_10

Harrand, N., Allier, S., Rodriguez-Cancio, M., Monperrus, M., & Baudry, B. (2019). A journey among Java
neutral program variants. Genetic Programming and Evolvable Machines, 20(4), 531–580. https://doi.org/10
.1007/s10710-019-09355-3

Hu, T., Tomassini, M., & Banzhaf, W. (2020). A network perspective on genotype-phenotype mapping in
genetic programming. Genetic Programming and Evolvable Machines, 21(3), 375–397. [Special Issue: Highlights
of Genetic Programming 2019 Events.] https://doi.org/10.1007/s10710-020-09379-0

Keith, M. J., & Martin, M. C. (1994). Genetic programming in C++: Implementation issues. In K. E. Kinnear,
Jr. (Ed.), Advances in genetic programming (Vol. 1, pp. 285–310). MIT Press. https://doi.org/10.7551
/mitpress/1108.003.0018

Koza, J. R. (1992). Genetic programming: On the programming of computers by means of natural selection. MIT Press.
http://mitpress.mit.edu/books/genetic-programming

Koza, J. R. (1994). Genetic programming II: Automatic discovery of reusable programs. MIT Press. http://www.genetic
-programming.org/gpbook2toc.html

Koza, J. R., Bennett III, F. H., Andre, D., & Keane, M. (1999). Genetic programming III: Darwinian invention and
problem solving. Morgan Kaufmann. http://www.genetic-programming.org/gpbook3toc.html

Langdon, W. B. (1998). Genetic programming and data structures: Genetic programming + data structures = automatic
programming!. Kluwer. https://doi.org/10.1007/978-1-4615-5731-9

Langdon, W. B. (1999a). Linear increase in tree height leads to sub-quadratic bloat. In T. Haynes, W. B.
Langdon, U.-M. O’Reilly, R. Poli, & J. Rosca (Eds.), Foundations of genetic programming (pp. 55–56).
http://www.cs.ucl.ac.uk/staff/W.Langdon/fogp/WBL.fogp.ps.gz

Langdon, W. B. (1999b). Scaling of program fitness spaces. Evolutionary Computation, 7(4), 399–428. https://
doi.org/10.1162/evco.1999.7.4.399, PubMed: 10578029

Artificial Life Volume 28, Number 2 201

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

https://doi.org/10.1002/stvr.1696
https://doi.org/10.1002/stvr.1696
https://doi.org/10.7551/mitpress/1108.003.0008
https://doi.org/10.1145/2568225.2568314
https://doi.org/10.7551/mitpress/1108.003.0009
https://doi.org/10.1007/s10664-017-9571-8
https://doi.org/10.1007/s10664-017-9571-8
https://doi.org/10.1073/pnas.1120774109
https://doi.org/10.1073/pnas.1120774109
https://pubmed.ncbi.nlm.nih.gov/22308461
https://doi.org/10.1109/ACCESS.2020.2975753
https://doi.org/10.1007/3-540-45355-5_10
https://doi.org/10.1007/s10710-019-09355-3
https://doi.org/10.1007/s10710-019-09355-3
https://doi.org/10.1007/s10710-020-09379-0
https://doi.org/10.7551/mitpress/1108.003.0018
https://doi.org/10.7551/mitpress/1108.003.0018
http://mitpress.mit.edu/books/genetic-programming
http://www.genetic-programming.org/gpbook2toc.html
http://www.genetic-programming.org/gpbook2toc.html
http://www.genetic-programming.org/gpbook3toc.html
https://doi.org/10.1007/978-1-4615-5731-9
http://www.cs.ucl.ac.uk/staff/W.Langdon/fogp/WBL.fogp.ps.gz
https://doi.org/10.1162/evco.1999.7.4.399
https://doi.org/10.1162/evco.1999.7.4.399
https://pubmed.ncbi.nlm.nih.gov/10578029

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Langdon, W. B. (2000a). Quadratic bloat in genetic programming. In D. Whitley, D. Goldberg, E. Cantu-Paz,
L. Spector, I. Parmee, & H.-G. Beyer (Eds.), GECCO-2000: Proceedings of the Genetic and Evolutionary
Computation conference (pp. 451–458). Morgan Kaufmann. http://gpbib.cs.ucl.ac.uk/gecco2000/GA069.pdf

Langdon, W. B. (2000b). Size fair and homologous tree genetic programming crossovers. Genetic Programming
and Evolvable Machines, 1(1/2), 95–119. https://doi.org/10.1023/A:1010024515191

Langdon, W. B. (2013). Large scale bioinformatics data mining with parallel genetic programming on graphics
processing units. In S. Tsutsui, & P. Collet (Eds.), Massively parallel evolutionary computation on GPGPUs
(pp. 311–347). Springer. https://doi.org/10.1007/978-3-642-37959-8_15

Langdon, W. B. (2017). Long-term evolution of genetic programming populations. In GECCO ’17: Proceedings
of the genetic and evolutionary computation conference companion (pp. 235–236). ACM. https://doi.org/10.1145
/3067695.3075965

Langdon, W. B. (2019). Parallel GPQUICK. In C. Doerr (Ed.), GECCO ’19: Proceedings of the genetic and
evolutionary computation conference companion (pp. 63–64). ACM. https://doi.org/10.1145/3319619.3326770

Langdon, W. B. (2020a). Genetic improvement of genetic programming. In A. S. Brownlee, S. O. Haraldsson,
J. Petke, & J. R. Woodward (Eds.), CEC 2020: IEEE Congress on Evolutionary Computation (pp. 1–8). IEEE.
https://doi.org/10.1109/CEC48606.2020.9185771

Langdon, W. B. (2020b). Multi-threaded memory efficient crossover in C++ for generational genetic
programming. ACM SIGEVOlution, 13(3), 2–4. https://doi.org/10.1145/3430913.3430914

Langdon, W. B. (2020c). Multi-threaded memory efficient crossover in C++ for generational genetic programming. ArXiv.
http://arxiv.org/abs/2009.10460

Langdon, W. B. (2021a). Fitness first. In W. Banzhaf, L. Trujillo, S. Winkler, & B. Worzel (Eds.), Genetic
programming theory and practice XVIII: Genetic and evolutionary computation (pp. 143–164). Springer. https://doi
.org/10.1007/978-981-16-8113-4_8

Langdon, W. B. (2021b). Incremental evaluation in genetic programming. In T. Hu, N. Lourenço, & E.
Medvet (Eds.), Genetic Programming. EuroGP 2021 (pp. 229–246). Springer. https://doi.org/10.1007/978-3
-030-72812-0_15

Langdon, W. B. (2022). Genetic programming convergence. Genetic Programming and Evolvable Machines, 23(1),
71–104. https://doi.org/10.1007/s10710-021-09405-9

Langdon, W. B., & Banzhaf, W. (2008). Repeated patterns in genetic programming. Natural Computing, 7(4),
589–613. https://doi.org/10.1007/s11047-007-9038-8

Langdon, W. B., & Banzhaf, W. (2019). Continuous long-term evolution of genetic programming.
In H. Fellerman, J. Bacardit, Á. Goñi-Moreno, & R. Füchslin (Eds.), Proceedings of the ALIFE 2019: The
2019 conference on Artificial Life (pp. 388–395). MIT Press. https://doi.org/10.1162/isal_a_00191

Langdon, W. B., Harman, M., & Jia, Y. (2010). Efficient multi-objective higher order mutation testing with
genetic programming. Journal of Systems and Software, 83(12), 2416–2430. https://doi.org/10.1016/j.jss.2010
.07.027

Langdon, W. B., & Petke, J. (2015). Software is not fragile. In P. Bourgine, P. Collet, & P. Parrend (Eds.),
CS-DC’15: First complex systems digital campus world e-conference 2015 (pp. 203–211) [Invited talk]. Springer.
https://doi.org/10.1007/978-3-319-45901-1_24

Langdon, W. B., & Petke, J. (2019). Genetic improvement of data gives binary logarithm from sqrt.
In M. López-Ibáñez (Ed.), GECCO ’19: Proceedings of the genetic and evolutionary computation conference companion
(pp. 413–414). ACM. https://doi.org/10.1145/3319619.3321954

Langdon, W. B., Petke, J., & Clark, D. (2021a). Dissipative polynomials. In N. Veerapen, K. Malan,
A. Liefooghe, S. Verel, & G. Ochoa (Eds.), GECCO ’21: Proceedings of the genetic and evolutionary computation
conference companion (5th Workshop on Landscape-Aware Heuristic Search, pp. 1683–1691). https://doi.org
/10.1145/3319619.3321954

Langdon, W. B., Petke, J., & Clark, D. (2021b). Information loss leads to robustness. IEEE Software Blog.
http://blog.ieeesoftware.org/2021/09/information-loss-leads-to-robustness-w.html

Langdon, W. B., & Poli, R. (1997). Fitness causes bloat. In P. K. Chawdhry, R. Roy, & R. K. Pant (Eds.), Soft
computing in engineering design and manufacturing (pp. 13–22). Springer. https://doi.org/10.1007/978-1-4471
-0427-8_2

202 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

http://gpbib.cs.ucl.ac.uk/gecco2000/GA069.pdf
https://doi.org/10.1023/A:1010024515191
https://doi.org/10.1007/978-3-642-37959-8_15
https://doi.org/10.1145/3067695.3075965
https://doi.org/10.1145/3067695.3075965
https://doi.org/10.1145/3319619.3326770
https://doi.org/10.1109/CEC48606.2020.9185771
https://doi.org/10.1145/3430913.3430914
http://arxiv.org/abs/2009.10460
https://doi.org/10.1007/978-981-16-8113-4_8
https://doi.org/10.1007/978-981-16-8113-4_8
https://doi.org/10.1007/978-3-030-72812-0_15
https://doi.org/10.1007/978-3-030-72812-0_15
https://doi.org/10.1007/s10710-021-09405-9
https://doi.org/10.1007/s11047-007-9038-8
https://doi.org/10.1162/isal_a_00191
https://doi.org/10.1016/j.jss.2010.07.027
https://doi.org/10.1016/j.jss.2010.07.027
https://doi.org/10.1007/978-3-319-45901-1_24
https://doi.org/10.1145/3319619.3321954
https://doi.org/10.1145/3319619.3321954
https://doi.org/10.1145/3319619.3321954
http://blog.ieeesoftware.org/2021/09/information-loss-leads-to-robustness-w.html
https://doi.org/10.1007/978-1-4471-0427-8_2
https://doi.org/10.1007/978-1-4471-0427-8_2

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Langdon, W. B., & Poli, R. (2002). Foundations of genetic programming. Springer. https://doi.org/10.1007/978-3
-662-04726-2

Langdon, W. B., Soule, T., Poli, R., & Foster, J. A. (1999). The evolution of size and shape. In L. Spector,
W. B. Langdon, U.-M. O’Reilly, & P. J. Angeline (Eds.), Advances in genetic programming 3 (pp. 163–190).
MIT Press. http://www.cs.ucl.ac.uk/staff/W.Langdon/aigp3/ch08.pdf

Lenski, R. E. (1988). Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in
competitive fitness among mutants resistant to virus T4. Evolution, 42(3), 425–432. https://doi.org/10
.1111/j.1558-5646.1988.tb04149.x, PubMed: 28564005

Lenski, R. E., Wiser, M. J., Ribeck, N., Blount, Z. D., Nahum, J. R., Morris, J. J., Zaman, L., Turner, C. B.,
Wade, B. D., Maddamsetti, R., Burmeister, A. R., Baird, E. J., Bundy, J., Grant, N. A., Card, K. J., Rowles,
M., Weatherspoon, K., Papoulis, S. E., Sullivan, R., ... Hajela, N. (2015). Sustained fitness gains and
variability in fitness trajectories in the longterm evolution experiment with Escherichia coli. Proceedings of the
Royal Society B, 282(1821), Article 20152292. https://doi.org/10.1098/rspb.2015.2292, PubMed: 26674951

Monperrus, M. (2017). Principles of antifragile software. In Programming ’17: Companion to the first international
conference on the art, science and engineering of programming (Article 32, pp. 1–4). ACM. https://doi.org/10.1145
/3079368.3079412

Nordin, P. (1997). Evolutionary program induction of binary machine code and its applications [Doctoral dissertation,
University of Dortmund]. Krehl.

Owen, R. B., Crossley, R., Johnson, T. C., Tweddle, D., Kornfield, I., Davison, S., Eccles, D. H., & Engstrom,
D. E. (1990). Major low levels of Lake Malawi and their implications for speciation rates in cichlid fishes.
Proceedings of the Royal Society B, 240(1299), 519–553. https://doi.org/10.1098/rspb.1990.0052

Palumbo, S. R. (2001). The evolution explosion. Norton.

Petke, J., Clark, D., & Langdon, W. B. (2021). Software robustness: A survey, a theory, and some prospects.
In P. Avgeriou, & D. Zhang (Eds.), ESEC/FSE 2021: Proceedings of the 29th ACM joint meeting on European
software engineering conference and symposium on the foundations of software engineering (pp. 1475–1478). ACM.
https://doi.org/10.1145/3468264.3473133

Petke, J., Le Goues, C., Forrest, S., & Langdon, W. B. (2018). Genetic improvement of software: Report from
Dagstuhl Seminar 18052. Dagstuhl Reports, 8(1), 158–182. https://doi.org/10.4230/DagRep.8.1.158

Poli, R., & Langdon, W. B. (1999). Sub-machine-code genetic programming. In L. Spector, W. B. Langdon,
U.-M. O’Reilly, & P. J. Angeline (Eds.), Advances in genetic programming 3 (pp. 301–323). MIT Press.
http://www.cs.ucl.ac.uk/staff/W.Langdon/aigp3/ch13.pdf

Poli, R., Langdon, W. B., & McPhee, N. F. (with Koza, J. R.) (2008). A field guide to genetic programming. Lulu.
http://www.gp-field-guide.org.uk

Poli, R., & McPhee, N. F. (2013). Parsimony pressure made easy: Solving the problem of bloat in GP.
In Y. Borenstein, & A. Moraglio (Eds.), Theory and principled methods for the design of metaheuristics
(pp. 181–204). Springer. https://doi.org/10.1007/978-3-642-33206-7_9

Poli, R., & Page, J. (2000). Solving high-order Boolean parity problems with smooth uniform crossover,
sub-machine code GP and demes. Genetic Programming and Evolvable Machines, 1(1/2), 37–56. https://doi.org
/10.1023/A:1010068314282

Schulte, E., Fry, Z. P., Fast, E., Weimer, W., & Forrest, S. (2014). Software mutational robustness. Genetic
Programming and Evolvable Machines, 15(3), 281–312. https://doi.org/10.1007/s10710-013-9195-8

Sedgewick, R., & Flajolet, P. (1996). An introduction to the analysis of algorithms. Addison-Wesley.

Shannon, C. E., & Weaver, W. (1964). The mathematical theory of communication. The University of Illinois Press.

Singleton, A. (1994, February). Genetic programming with C++. BYTE Magazine, pp. 171–176. http://www
.assembla.com/wiki/show/andysgp/GPQuick_Article

Stephens, C., & Waelbroeck, H. (1999). Schemata evolution and building blocks. Evolutionary Computation, 7(2),
109–124. https://doi.org/10.1162/evco.1999.7.2.109

Syswerda, G. (1990). A study of reproduction in generational and steady state genetic algorithms. Foundations of
Genetic Algorithms, 1, 94–101. https://doi.org/10.1016/B978-0-08-050684-5.50009-4

Artificial Life Volume 28, Number 2 203

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

https://doi.org/10.1007/978-3-662-04726-2
https://doi.org/10.1007/978-3-662-04726-2
http://www.cs.ucl.ac.uk/staff/W.Langdon/aigp3/ch08.pdf
https://doi.org/10.1111/j.1558-5646.1988.tb04149.x
https://doi.org/10.1111/j.1558-5646.1988.tb04149.x
https://pubmed.ncbi.nlm.nih.gov/28564005
https://doi.org/10.1098/rspb.2015.2292
https://pubmed.ncbi.nlm.nih.gov/26674951
https://doi.org/10.1145/3079368.3079412
https://doi.org/10.1145/3079368.3079412
https://doi.org/10.1098/rspb.1990.0052
https://doi.org/10.1145/3468264.3473133
https://doi.org/10.4230/DagRep.8.1.158
http://www.cs.ucl.ac.uk/staff/W.Langdon/aigp3/ch13.pdf
http://www.gp-field-guide.org.uk
https://doi.org/10.1007/978-3-642-33206-7_9
https://doi.org/10.1023/A:1010068314282
https://doi.org/10.1023/A:1010068314282
https://doi.org/10.1007/s10710-013-9195-8
http://www.assembla.com/wiki/show/andysgp/GPQuick_Article
http://www.assembla.com/wiki/show/andysgp/GPQuick_Article
https://doi.org/10.1162/evco.1999.7.2.109
https://doi.org/10.1016/B978-0-08-050684-5.50009-4

W. B. Langdon and W. Banzhaf Long-Term Evolution Experiment with Genetic Programming

Tackett, W. A. (1994). Recombination, selection, and the genetic construction of computer programs [Unpublished doctoral
dissertation]. University of Southern California. http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io
.com/papers/WAT_PHD_DissFull_USC94_Recombination_etc_Genetic_Construction_of_Computer
_Programs.pdf

Voas, J. M. (1992). PIE: A dynamic failure-based technique. IEEE Transactions on Software Engineering, 18(8),
717–727. https://doi.org/10.1109/32.153381

204 Artificial Life Volume 28, Number 2

D
ow

nloaded from
 http://direct.m

it.edu/artl/article-pdf/28/2/173/2032805/artl_a_00360.pdf?casa_token=-jiEeG
bW

zAgAAAAA:JQ
m

M
pVvSU

-TR
Q

l8IjW
9VN

EzihnM
r7dG

FN
PeLXfk_45m

Q
qsuiG

xkM
kyN

ZuqqLD
tr27BrBbG

dX5w
 by U

N
IVER

SITY C
O

LLEG
E LO

N
D

O
N

 user on 28 July 2022

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/WAT_PHD_DissFull_USC94_Recombination_etc_Genetic_Construction_of_Computer_Programs.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/WAT_PHD_DissFull_USC94_Recombination_etc_Genetic_Construction_of_Computer_Programs.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/WAT_PHD_DissFull_USC94_Recombination_etc_Genetic_Construction_of_Computer_Programs.pdf
https://doi.org/10.1109/32.153381

	Introduction
	GPquick
	Sextic and GPquick
	AVX GPquick
	PTHREADS GPquick
	Reducing Memory
	Incremental Evaluation
	Fatherless Crossover
	Inplace Crossover
	Evaluating Fitness Before Crossover

	Experiments
	Crossover
	Fitness Function

	Results
	Results Population 4,000 Trees
	Results Population 500 Trees
	Results Population 48 Trees

	Is there a Limit to Evolution?
	Evolution of Open Complexity
	Conclusions

