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SUMMARY
The hippocampus occupies a central role in mammalian navigation andmemory. Yet an understanding of the
rules that govern the statistics and granularity of the spatial code, as well as its interactions with perceptual
stimuli, is lacking. We analyzed CA1 place cell activity recorded while rats foraged in different large-scale en-
vironments. We found that place cell activity was subject to an unexpected but precise homeostasis—the
distribution of activity in the population as a whole being constant at all locations within and between envi-
ronments. Using a virtual reconstruction of the largest environment, we showed that the rate of transition
through this statistically stable population matches the rate of change in the animals’ visual scene. Thus,
place fields near boundaries were small but numerous, while in the environment’s interior, they were larger
but more dispersed. These results indicate that hippocampal spatial activity is governed by a small number
of simple laws and, in particular, suggest the presence of an information-theoretic bound imposed by
perception on the fidelity of the spatial memory system.
INTRODUCTION

Hippocampal place cells, pyramidal neurons in regions CA1 and

CA3, are distinguished by their spatially constrained firing fields.1

The activity of these cells, as a population, provides a sparse

representation of self-location that is relatively independent of

other variables—such as head direction and velocity2,3—and is

believed to provide the neural basis of a cognitive map.4 Fifty

years of research have contributed extensively to our knowledge

of this system, and today, place cells are understood to be

common to mammals,5,6 have been shown to be engaged as a

temporal and abstract code,7,8 and are known to be reactivated

during periods of quiescence.9,10

Despite these achievements, our understanding of the dy-

namics that control the statistics and distribution of place cell

representations has been slower to advance. In part, this is

due to technical barriers that make it difficult to collect long-

duration, high-yield recordings in animals as they explore large

spaces. Despite these constraints, a small number of groups

have conducted work in extended environments, showing

that individual place cells can develop multiple fields11 and

exhibit distinct propensities to be recruited on long linear

tracks.12,13 Similarly, investigations along the hippocampal

axis identified a gradient of spatial scales, with ventral cells

having considerably larger place fields than dorsal cells.14

Nevertheless, an understanding of the hippocampal population

code on the implementational level, in Marr’s terms,15 is lack-

ing. Effectively, we know little about the rules that govern activ-

ity in the place cell population, how it evolves across space,
Current Biology 32, 1–10, A
This is an open access article und
and how it is influenced by sensory information. Put simply,

we do not know how place field size and density interact with

each other and the environment. So, for example, although

place fields are known to be smaller and more numerous in

visually rich environments,16 it is not clear whether these

changes are linked and how they affect activity at the level of

the entire population and, thus, the implication for information

transfer to downstream structures.

One practical outcome of this situation is that we do not have

sufficient empirical data to arbitrate between classes of compu-

tational models. For example, geometric cue-based models

describe place field locations by integrating distance and direc-

tion from environmental features such as boundaries.17,18 These

models predict that the place fields near to boundaries are

generally smaller, specifically being more compact perpendic-

ular to the adjacent boundary, while more distant fields are

expected to be diffuse. Notably, if fields simply became larger

at locations more distant from boundaries, without some form

of compensation, we would expect to observe a net increase

in population firing rate toward the interior of environments. To

offset this, the boundary-tuned precursors to place cells—

boundary vector cells—are typically assumed to be more

densely distributed adjacent to walls than at longer dis-

tances.17,19 In contrast, models based on attractor dynamics,

presumed to be instantiated in region CA3, tend to ignore

any systematic variance in place field size and density across en-

vironments, emphasizing even coverage and carefully balanced

activity.20,21 These two classes of model, as well as others,22–24

provide competing but not incompatible explanations of
ugust 22, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://twitter.com/caswellcaswell
mailto:caswell.barry@ucl.ac.uk
https://doi.org/10.1016/j.cub.2022.06.046
http://creativecommons.org/licenses/by/4.0/


ll
OPEN ACCESS

Please cite this article in press as: Tanni et al., State transitions in the statistically stable place cell population correspond to rate of perceptual change,
Current Biology (2022), https://doi.org/10.1016/j.cub.2022.06.046

Article
hippocampal dynamics, yet the evidence needed to generate a

synthesis is lacking.

Here we analyze large populations of place cells recorded

while rats foraged in different-sized, equally proportioned envi-

ronments of up to 8.75m2.We find that place fields and cells are

recruited in proportion to environmental area but with a strong

influence of location on field frequency and size—fields are

smaller and more numerous near boundaries, whereas being

larger and less numerous toward the environment’s center. Sur-

prisingly, these two effects counter each other exactly, resulting

in stable population-level firing within and between environ-

ments. Thus, the proportion of co-active cells, mean firing

rate, and distribution of activity across the population were

preserved at all locations, suggesting the presence of a strong

homeostatic mechanism governing place cell firing. Using a vir-

tual reality (VR) replica of the recording environment, we show

that the rate of change in the activity of the place cell population

is strongly correlated with the rate of change in the animals’

visual scenes. Thus, although the statistics describing the distri-

bution of place cell activity were stable across time and space,

the rate at which the components of this distribution varied cor-

responded with the amount of perceivable change experienced

by the animal. Taken together, these results suggest that the

size and extent of individual place fields are well described by

geometric cue-based models, whereas the population as a

whole conforms to the expectations of attractor-based models.

More generally, as predicted by theory,25,26 it appears that the

effective scale of representations within the spatial memory

system are limited by the perceptible information afforded by

the environment.

RESULTS

Using extracellular electrodes (128 channels per animal), we re-

corded 629 CA1 place cells (89–172 cells/rat) from five rats while

they foraged for randomly dispensed rewards (20 mg pellets)

in four familiar, differently sized environments. The environ-

ments—designated A–D—were identically proportioned, with

each being double the area of the previous one to a maximum

of 8.75 m2 (Figures 1A and S1A). The order of environments B,

C, andDwas randomized for each animal, with the smallest envi-

ronment, A, being used at the beginning and end of the recording

session. Recording duration was scaled proportional to environ-

ment area—15 to 120 min—and a single recording session con-

sisting of 5 trials was analyzed from each animal (Figure 1B).

Place cells were isolated based on their waveforms (Figure 1C)

and temporal firing rate statistics (Figure 1D), with many cells be-

ing active in multiple environments (Figure 1E). The spatial rate

maps of these cells were stable in all environments, with high

intra-trial (1st versus 2nd half) spatial correlation across place

cells (mean correlation by environment, range 0.58–0.65; Fig-

ure S1C; Data S1A). Individual place fields were detected itera-

tively as contiguous regions of stable firing rates continuously

increasing toward a peak (STAR Methods) (Figure S1B). There

was no correlation between the number of place fields detected

in the largest environment and the intra-trial (1st and 2nd half)

spatial correlation (r = �0.071, p = 0.100, n = 537), indicating

that the observed multiple fields were not caused by intra-trial

remapping.
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As is typical of the hippocampal system, the spatially modu-

lated activity of neurons in environment A was stable both within

and between recordings (Figure S2A; intra-trial [A ½ versus ½]

spatial correlation, 0.61; inter-trial [A versus A0], 0.51; inter-trial
with shuffle [A versus shuffled A0], �0.03), while activity in the

four different environments was highly separable, being suffi-

cient to assign 94.5% of activity vectors (1 s duration) to the

correct environment (STAR Methods) (Figure S2B).

In all animals, the number of active place cells—neurons with

at least one spatial field—was greater in larger environments

(Figures 2A and 2D), as was the total number of place fields (Fig-

ure 2B). The number of fields per cell was not correlated with the

cells’ clustering quality, and only one animal exhibited a correla-

tion between the L-ratio and field count (Table S1), indicating that

the observed place cells with multiple fields were not a result of

multiple single-field cells being assigned to the same cluster.

Place field recruitment increased more rapidly than the number

of active cells, such that the average number of fields per cell

was higher in larger environments (1.28 fields/cell in A to 2.28

fields/cell in D; Figure 2C). The same place cells were recorded

in all environments, allowing for the consideration of the total

spatial representation of the place cell population. When all

recording environments were considered collectively (total

area 16.4 m2), an approach used previously in the context of hip-

pocampal spatial memory capacity,13 it was more common for

cells to have 2 fields than 1, and 84.8% of all cells had multiple

fields either within (Data S1B) or across environments (Fig-

ure 2C). Furthermore, consistent with previous studies,12,13 we

found that individual cells had different propensities to form

place fields, and that this proclivity was maintained across envi-

ronments (Figure S3C), meaning that cells with numerous fields

in one environment were more likely to have numerous fields in

another. Thus, the number of fields per cells were better fit

with a gamma-Poisson model—which allows for cells to have

different rates of field formation—than an equal-Poisson

model13—which assumes the same frequency of field formation

for all place cells (log-likelihoods, �1,538 versus �1,679;

Bayesian information criterion, 3,089 versus 3,365). If all cells

formed fields at the same rate, then the number of fields per

cell would follow a Poisson distribution, with its mean deter-

mined by the environment area and field formation rate.12,13

In our data, this simpler equal-Poisson model consistently

overestimates the proportion of cells with 4–6 fields across the

collective environment (Figures S2D–S2F). In contrast, the

gamma-Poisson model accurately fits the rate at which place

cells were recruited (R1 field) as a function of environment

area (Figure 2D), predicting that 99% of CA1 place cells will

have at least one place field in environments greater than 51.8

m2 (Figure 2D, inset).

To quantify the relationship between the number of place

fields and environment size, we examined how field recruitment

varied with area—normalizing place field counts by total number

of fields detected in each animal. We found a remarkably robust

linear regression with a positive intercept (r = 0.983, p = 10�14,

slope = 0.038, intercept = 0.093, n = 20; Figure 2E). The r value

for the fitted line can be viewed as being particularly high

because each datapoint—the proportion of place fields detected

per animal, per environment—is the average of a large number of

samples (each animal has several hundred place fields) and
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Figure 1. Place cell recordings in multiple large environments

(A) Schematic of the four environments (A, B, C, and D), illustrating their relative sizes (cm) and positions in the experimental room. Each environment was

distinguished by a set of unique cues (Figure S1A).

(B) Rats foraged in all environments during the recording session— environment A twice, at the start and end of the session, interleaved with the other three in

random order. Recording duration scaled linearly with environment area.

(C–E) Waveforms (scale bars, 0.5 ms and 100 mV), auto-correlogram (maximum lag 500 ms), and rate maps for a typical place cell with activity in all environments

(bin size 4 cm). Distinct place fields are delineated with lines of different color (see Figure S1B for details on field detection). The color map for each plot scales

from 0 Hz to the peak rate above each map. Unvisited bins are white.

See also Data S1.
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therefore is less susceptible to fluctuations. Notably, this linear fit

indicates that the proportion of place fields per unit area is lower

in larger spaces (Figure 2E, inset; Kruskal-Wallis: H = 17.9, p =

4.71 3 10�4, n = 5).

Next, to understand why place fields were less numerous per

unit area in large environments, we examined how fields were

distributed within environments. To this end, we segmented

the space into concentric bands according to distance to the

nearest boundary (each band 25 cm wide). In environments

B–D, for which at least two bands could be defined, we calcu-

lated the density of place field peaks and found that it was

greater near to the walls, reducing toward the environment cen-

ter (Kruskal-Wallis tests: env. B, H = 4.81, p = 0.028; env. C, H =

12.5, p = 0.002; env. D, H = 16.1, p = 0.001; n = 5; Figure 3A).

Equally, considering only the band closest to the wall (<25 cm),

field peak density was generally higher in smaller environments

(Figure 3A; Kruskal-Wallis: H = 12.4, p = 6.02 3 10�3, n = 5).

These effects could not be explained by the difference in dwell

time between locations (Figure S3A). In direct contrast, the
average size of place fields increased with distance from the

wall (Kruskal-Wallis tests: env. B, H = 6.82, p = 0.009; env. C,

H = 10.2, p = 0.006; env. D, H = 10.5, p = 0.015; n = 5; Figure 3B)

and were smaller in environment A (Kruskal-Wallis: H = 15.9, p =

0.001, n = 5; Figure 3B). In particular, it appeared that the pre-

dominant factor contributing to this effect was that the field width

in a given axis was proportional to the nearest wall distance

along that axis (Figure S3B) and not to wall distance orthogonal

to that axis (Figures 3C and 3D; Kruskal-Wallis: H = 12.1, p =

0.007, n = 5; H = 0.39, p = 0.94, n = 5, respectively). The average

field size of a cell also did not correlate with its clustering quality

(Table S1). Therefore, compared with locations near the walls of

an enclosure, there were on average fewer individual place fields

further from the walls, but those fields that were present tended

to be larger.

Considered alone, the observed decrease in the density of

field peaks away from the boundary would be expected to

result in fewer active place cells, yielding a lower mean firing

rate. Conversely, the increase in field size would lead to a
Current Biology 32, 1–10, August 22, 2022 3
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Figure 2. Place cells are more likely to be active and have more fields in large environments

(A and B) Number of active place cells (A) and place fields (for normalized values, see D) (B) by environment area (for normalized values, see E).

(C) Distribution of place field counts per cell by environment. Only cells with at least one field in any environment are included. Variance in field count was not

determined by clustering quality (Table S1).

(D) The proportion of active place cells (at least one field in one or more environments) in each animal that had a field in a given environment increased with area

(Kruskal-Wallis: H = 14.1, p = 0.003, n = 5) and was closely matched by a gamma-Poisson model fit to field numbers in a combined environment (Figure S2D),

adjusted by the relative field densities from inset in (E) (STAR Methods) (mean squared error 0.0099). Inset shows the same gamma-Poisson model extrapolated

to predict CA1 place cell recruitment in very large environments.

(E) Larger environments had more place fields, here shown as a proportion of all fields detected in each animal across the four environments (Kruskal-Wallis: H =

17.6, p = 5.363 10�4, n = 5), scaling linearly with environment area (dashed line, linear regression fit, r = 0.982, p = 10�14, n = 20). Inset shows place field count by

environment area, regression line shown with same parameters as main plot (Kruskal-Wallis: H = 17.9, p = 4.713 10�4, n = 5). Animal colors same as (B); points

jittered to facilitate visualization.
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greater overlap between place fields, resulting in the opposite

outcome. Remarkably, we found that these two effects were

exactly balanced, meaning that neither the proportion of co-

active place cells (firing rate > 1 Hz) nor the mean firing rate

of the population varied with distance from the wall

(Figures 4A and 4B; Kruskal-Wallis: H = 1.2, p = 0.77 n = 5;

H = 0.61, p = 0.89, n = 5, respectively). This was the case

within and across all environments (Figures S4A and S4B).

Similarly, interneuron firing rates were also constant at

different distances to the bounding walls (Figure S4C; Krus-

kal-Wallis: H = 0.23, p = 0.97, n = 5). Furthermore, the

distribution of firing rates in the place cell population was

also stable across different distances to the wall, as there

was no difference in how variable the firing rate distributions

were in different recording halves at the same location or at

different locations (see STAR Methods for more details;

comparison of distribution divergence within and between lo-

cations with Mann-Whitney: U = 45, p = 0.43, n = 4 and 18;
4 Current Biology 32, 1–10, August 22, 2022
Figure 4C). These results are underlined by a very high

correlation between the environment size and the total place

field area in that environment, expressed as a proportion of

the total area of all fields recorded from an animal (linear

regression: r = 0.996, p = 10�20, slope = 0.06, intercept =

0.006, n = 20) (Figure 4D). The r value for this correlation can

be viewed as being particularly high because each datapoint

is aggregating across a large number of place fields (between

50 and 300) and so is less susceptible to fluctuations.

Thus, taken together, there appear to be several consistent

and related features of the place cell code for space. First, the

total area of place fields active in an environment is a near perfect

linear function of the environment’s area. Second, population

activity is homeostatically balanced, maintaining a constant pro-

portion of active cells (15%) and mean firing rate (0.52 Hz/place

cell)—despite field size growing with distance to walls. Finally,

and more generally, the distribution of activity in the place cell

population is also stable across space.
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Figure 3. Density of place field peaks and the size of fields change

with distance from the environmental boundary

(A) Place field peak density per unit area (field peak/m2) is lower near the wall in

large environments compared with small environments (left) and decreased

with distance from the wall (right). Cartoon above each plot indicates wall

distances in shades of green. Pairwise post hoc tests for this and subsequent

panels adjusted for multiple comparisons using Benjamini-Hochberg (non-

negative) correction. *p = 0.05; **p = 0.01; ns, not significant.

(B) The average area of place fields increased with distance from the wall and

were larger in bigger environments when the wall distance was controlled for.

Variance in field area was not determined by clustering quality (Table S1).

(C) The average width of place fields measured orthogonal to the nearest wall

(Figure S3B) in environment D increased with distance from the wall. The

cartoon above the plot indicates the wall distances and includes locations in

the environment in green bands, and the arrow indicates the axis of mea-

surement.

(D) The average width of place fields measured parallel to the short wall was

the same in all distance bins. The same observation was made in recordings

from all environments (Figures S3C and S3D).
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The distribution of firing rates in the place cell population is

constant, but the size of place fields and the density of their

peaks varies systematically; this implies that hippocampal activ-

ity must change at different rates depending on the location of

the animal and the direction in which it is moving (Figures S5E–

S5J). Specifically, because place field width in a given axis is

strongly determined by distance to the nearest wall orthogonal

to that axis, the activity vector (see STARMethods on population

activity change) should change fastest when the animal is near a

wall and moving directly toward or away from it. Thus, analyzing

only trajectories running orthogonal to the short wall of the

largest environment (D), we found that the Euclidean distance

between activity vectors (1-cm intervals) was the greatest

when animals were close to the wall (Kruskal-Wallis: H = 12.2,

p = 0.007, n = 5; Figure 5A), an effect that was not found for par-

allel runs (Kruskal-Wallis: H = 3.78, p = 0.29, n = 5; difference be-

tween orthogonal and parallel, Mann-Whitney: U = 2, p = 0.018,

n = 5; Figure 5B). Similar effects were confirmed in the other en-

vironments (Figures S5A and S5B). There was no correlation be-

tween this measure and theta frequency, while accounting for

running speed in partial correlation analysis (Figure S5C), despite

prior work having shown that theta oscillations organize place

cell firing and field sizes.27 Note that by analyzing the instanta-

neous rate of change in the population as a whole, we avoid

the difficulty of estimating field size adjacent to boundaries,

where it is difficult to determine how much of a field would exist

outside the walls of the environment. This same analysis also

eliminates the need to derive measures from individual rate

maps, which represent average spatial firing over time and can

be distorted when neural activity is modulated by factors such

as heading direction.28 By replicating the analysis of Keinath

et al.,28 we did not observe a systematic offset in the cross-cor-

relograms between opposing boundary-tethered rate maps

(t(99) = 1.1, p = 0.27), which may be of concern given the imper-

fect overlap of fields between runs (Data S1A); however, using

instantaneous rate of change further maximizes the fidelity of

our analysis against such errors.

Finally, to investigate whether visual information contributed to

this effect, we developed a VR replica of environment D (Fig-

ure S5D). A 300� field of view was used to reconstruct each an-

imals’ visual scene at 1-cm increments along its trajectory (Fig-

ure 5C), and the visual change between consecutive frames

was calculated during motion (speed >10 cm/s; STARMethods).

We found a tight coupling between the change in visual scene

and change in place cell population activity (Figures 5D and

5G; time series correlation collapsed across all animals: Pear-

son’s r = 0.60, p < 0.001, n = 510,871), which is a stronger rela-

tionship than that was found for other behavioral variables (Fig-

ure 5G) and which persisted when they were accounted for

(partial correlation collapsed across all animals: r = 0.51,

p < 0.001, n = 510,871). As expected, when mapped out in

space, both the activity vector change and visual change

showed a general increase with proximity to the walls, corners,

and the two wall-mounted cues (Figures 5E and 5F; no smooth-

ing applied), as well as a strong correlation between both maps

(correlation between maps collapsed across all animals: Pear-

son’s r = 0.72, p < 0.001, n = 5,524). Importantly, filtering the

behavior by heading direction (Figure 5H) emphasizes how this

variation depends not only on position but also on movement
Current Biology 32, 1–10, August 22, 2022 5
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Figure 4. Distribution of activity within the place cell population re-

mains constant despite changes in place field properties

(A and B) The proportion of active place cells (>1Hz) (A) was constant at different

distances to the wall in environment D, as was the mean firing rate of all place

cells (B), as well as all other environments (Figure S4). ns, not significant.

(C) The distributions of firing rates, combining spikes across animals, at

different distances to the wall in environment D, and split temporally between

the first and second recording halves (top). Jensen-Shannon divergence

measured between temporal recording halves and different distances to wall

(bottom).

(D) The proportion of total place field area accounted for by place fields in each

environment, computed separately for each animal, is highly correlated with

the size of the environment (dashed line). Inset shows the values of the main

plot divided by the size of each environment—the proportion of total place field

area per square meter of each environment.
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direction, with walls and cues orthogonal to the direction of

motion being key factors in driving the visual change—a pattern

that closely mirrored the direction-filtered activity vector change

(direction-filtered map correlations collapsed across all animals:

Pearson’s r > 0.66, all p < 0.001, N > 5,306 for all 4 cardinal head-

ing directions).

DISCUSSION

Using high-yield recordings from rodents foraging in large envi-

ronments, we have shown that although the distribution and

extent of individual place fields are governed by proximity to

environmental boundaries, the statistics of the population activ-

ity as a whole are effectively constant. Specifically, the widths of

place fields displayed a Weber’s law-like29 increase with dis-

tance to the orthogonal wall, which was exactly opposed by a

commensurate decrease in field count. Thus, on average, small

place fields were densely distributed near the boundaries of the

environments, while broader fields were found more sparsely to-

ward the middle. Practically, this means that the combined field

area of all active place cells scales linearly with environment area

because the reduced size of place fields in small environments is

offset by their increased number and vice versa. Therefore, while

the instantaneous activity in the population was stable, the rate

of change through the population depends on both boundary

proximity and movement direction, in a manner that correlates

strongly with the rate of change in the animals’ reconstructed vi-

sual scenes.

Place cells have often been conceptualized as pure allocen-

tric representations of space fully abstracted from sensory stim-

uli,4 and at first glance, this seems difficult to reconcile with the

results reported here. However, our findings encapsulate a

large body of prior work, suggesting that perceptual experience

plays a larger than expected role in the formation of spatial rep-

resentations. Thus, results showing that individual cells have

more and larger fields in bigger spaces11,13 can be understood

in terms of a balance between homeostasis at the population

level and the amount of perceptual change, which is naturally

elevated near boundaries and cues, as well as other locations

where the visual scene changes rapidly as the animal moves.

Equally, this same relationship accounts for the clustering of

place fields near visual cues in a 1D VR,16 as well as a similar

clustering of fields close to the walls,30 doorways,31 and other

environmental features19 of physical spaces. It is also consis-

tent with the observation that place cell firing in a virtual environ-

ment predominantly reflects visual inputs following a manipula-

tion of the relationship between motion inputs and visual gain32

and can be sustained solely on the basis of visual cues when an

animal is moved passively.33,34 However, given that place cell

responses can be oriented by sounds and smells35,36 and

persist in darkness,37 as well as in congenitally blind rodents,38

it seems highly likely that information from other modalities also

contributes to the fidelity of spatial representations. Hence,

more generally, we propose that the resolution of the hippo-

campal code for space is determined by the rate of change in

the cross-modal perceptual environment. Recent observations

that rodent place fields concentrate at the interfaces between

different textures,39 points where the tactile milieu changes

rapidly, support this view.
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Figure 5. The rate of change in the place cell population mirrors the rate of change in the visual scene

Trajectories were split into 1-cm intervals, and the Euclidean distance between adjacent activity vectors was calculated for the largest environment (see STAR

Methods on population activity change).

(A and B) For trajectories orthogonal to the wall (A), the rate of change in the place cell population was greater when animals were close to the wall—an effect that

is not observed for trajectories running parallel to the wall (B). Pairwise post hoc tests adjusted for multiple comparisons using Benjamini-Hochberg (non-

negative) correction. The cartoon above each plot indicates thewall distances and includes locations in the environment in green bands, and the green sectors on

the circles indicate the sampled movement directions. The legend above indicates spatial bins (left) and movement directions (right) used to plot data. The same

observations were made in the other large environments (Figures S5A and S5B). *p = 0.05; ns, not significant.

(C) An example 8-m trajectory in the largest environment from animal 5.

(D) Time series data for the trajectory in (C) showing a tight coupling between Z scored rate of change in the hippocampal population and reconstructed visual

scene (Figure S5D).

(E and F) Spatially averaged rates of change for place cell population and visual scenes (data from all rats, no smoothing) are similar, both being accentuated

toward walls, corners, and cues. Note the local increase at cue boundaries observed for both visual and population change (black lines in C indicate location of

wall-mounted cues).

(G) Population activity change correlates more strongly (bars indicate correlation across all animals, points indicate correlations per animal) with visual change (r =

0.60) than speed (r =�0.30), turning rate (r = 0.27), distance to the nearest walls orthogonal (r =�0.17) or parallel (r = 0.05) to the rats’ motion, and path integration

since the rat last touched a wall (r = �0.06).

(H) Filtering by heading direction reveals how the change in both the visual scene and population activity depends on proximity to walls and their orientation

relative to the direction of travel.
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Our work resonates with early geometric cue-basedmodels of

place cell activity that sought to describe place fields as the

threshold sum of putative boundary responsive neurons, evi-

dence for which has been found in the subiculum and entorhinal

cortex.17–19 Notably, these models focused on the description
of individual fields but were agnostic of population-level

interactions.20,21 Even so, geometric models generally assumed

that boundary responseswould bemore diffuse for cells tuned to

distant walls and that long-range boundary responses would be

less common than short-range tuning.17,19 Interestingly, early
Current Biology 32, 1–10, August 22, 2022 7
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formulations of these geometric models explicitly linked the tun-

ing width of boundary responses to rate of change in the visual

scene—specifically rate of change in the angle subtended to

the top of boundary40—foreshadowing our results. Although

these components yield spatial responses that broadly match

our observations, it is unclear whether preconfigured boundary

responses alone would be sufficient to generate a precise

homeostasis. Thus, our current results likely indicate that a syn-

thesis of both cell-level and population-level approaches is

important for understanding how the hippocampus represents

large-scale spaces—yoking the evolution of statistically stable

population-level activity to movement through visual states.24,41

The precise mechanism that maintains the observed popula-

tion-level statistics is unclear but might plausibly result from

metabolic homeostasis imposed by limitations on blood flow,

or the energetic limitations of the neurons themselves,42 and

could be modeled as competitive learning between hippocam-

pal inputs for these limited resources.43 Equally, it may well be

a natural limitation of the highly recurrent CA3 network and the

need to balance excitation with inhibition to avoid a runaway

increase in activity.44

Recent publications have investigated the hippocampal map

in larger environments,45,46 with a focus on describing the vari-

ability of place field size.11–13,47,48 A notable exception from

these was a study describing how and why this distribution

changes between locations, even claiming that there is no vari-

ability in place field size for small environments (i.e., no multi-

scale representation).45 By recording across more than two

differently sized environments, our results corroborate another

study,46 showing that there is a broad distribution of place field

sizes in all environments and that larger environments allow for

the mean of this distribution to increase, making the variability

more prominent. Importantly, we extend this prior work, showing

that it is precisely this change in the field size that can be ex-

plained by a simple mechanism—the rate of perceptual change

afforded by the environment. We also corroborate findings from

previous work that compared gamma-Poisson and equal-Pois-

son models in describing place cell field formation propensities

on linear track and VR environments,12,13 extending their find-

ings to an open field environment.

Importantly, the relationship between visual change and place

cell fidelity can be understood in terms of information theory. The

rate of change of perceptual states is tightly linked to the amount

of Fisher information they transmit about an unknown param-

eter49—in this case, position. Regions where the visual scene

changes rapidly with respect to position—near the walls, for

example—convey more information about self-location than re-

gions where visual stimuli change more slowly. Indeed, previous

work has shown that the spatial information conveyed by place

cell activity is higher in the presence of cues,30 with place fields

closest to visual cues being the most informative.50 In turn, for

simple neural codes in one and two dimensions, the tuning width

of a given neuron is inversely proportional to the Fisher informa-

tion it carries.25,26 If wemake the reasonable assumption that the

place code maximizes information transmitted up to the limit

imposed by vision, then this directly predicts that place field

width will be inversely proportional to the rate of change in the vi-

sual scene. Alternatively stated, the rate of change in place cell

population activity is expected to be proportional to visual
8 Current Biology 32, 1–10, August 22, 2022
change—the result we observe. Notably, this relationship is not

necessarily specific to vision or place cells. Thus, it seems plau-

sible that the scale and fidelity of other neural representations of

self-location must be subject to the same information-theoretic

limits. Indeed, the increase in entorhinal grid cell scale noted to-

ward the center of large environments,51 and potentially other

spatial distortions,52,53 can be seen through the same lens.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals and tetrode implantation
Five male Lister Hooded rats were used for this study. All procedures were approved by the UK Home Office, subject to the restric-

tions and provisions contained in the Animals Scientific Procedures Act of 1986. All rats (333-386 g/13-17 weeks old at implantation)

were implanted with two microdrives targeted to the right and left CA1 (ML: 2.5 mm, AP: 3.8 mm posterior to bregma, DV: 1.6 mm

from dura) following a standard surgery and recovery procedure.54 After surgery, rats were housed individually in Perspex cages

(70 cm long x 45 cm wide x 30 cm high) on a 12 hr light/dark cycle. Screening and experiments took place during the dark phase

of the cycle. After one week of recovery, rats were maintained at 90-95% of free-feeding weight with ad libitum access to water.

The hair around the incision site was removed, and the skin was sterilized with Betadine. The animal was placed on a heating pad

for the duration of the surgery to maintain body temperature. Viscotears Liquid Gel was used to protect the animal’s eyes. General

anesthesia during the operation wasmaintained with an isoflurane-oxygenmix of 1.5-3% at 3 l/min. Carprieve (1:10) and Baytril were

injected subcutaneously (0.1ml/100 g) before the surgery for analgesia and tominimize chances of infection, respectively. Baytril was

also included in post-operative treatment in their water for one week. An analgesic, Metacam Oral Suspension suspended in jelly,

was administered for three days post-surgery. The tetrodes were implanted through �1 mm trephine craniotomies over target sites,

and they were fixed to the exposed skull with dental cement (Super-Bond C&B) and six bone screws. A gold pin used as ground and

reference was soldered to one of the orbital bone screws before its implantation. The craniotomies and elements of the microdrives

were protected from dental cement using Vaseline.

METHOD DETAILS

Electrophysiological and behavioral recordings
Each single-screw microdrive (Axona) was assembled with two 32 channel Omnetics connectors (A79026-001), 16 tetrodes of

twisted wires (either 17 mm H HL coated platinum-iridium, 90% and 10% respectively, or 12.7 mm HM-L coated Stablohm 650;

California Fine Wire), and platinum-plated to reduce impedance to below 150 kU at 1 kHz (NanoZ).

Electrophysiological recordings were acquired using Open Ephys recording system55 and a 64-channel amplifier board per drive

(Intan RHD2164). The recorded signal was referenced to an orbital bone screw - also the ground for the amplifier boards. The Open

Ephys Acquisition Board was grounded to an aluminum foil sheet positioned underneath the vinyl flooring throughout the entire

extent of the experimental room. Electrophysiological signals were recorded from 128 channels at 30 kHz. Spikes were detected

as negative threshold crossings of more than 50 mV in the 30 kHz signal after bandpass filtering between 600 and 6000 Hz. For

each spike, waveforms were stored at 30 kHz for the 1.2 ms window surrounding the threshold crossing. The waveforms are

displayed and discussed in their inverted form, where the largest deflection from baseline is a positive peak.

Positional tracking was performed with an open-source multi-camera tracking system SpatialAutoDACQ.56 The output position

data from SpatialAutoDACQ was the spatial coordinate of an infra-red LED positioned above the animal’s ears, sampled at 30 Hz.

Histology
Anatomical locations of recordings were verified using histology. Rats were anesthetized with isoflurane and given intraperitoneal

injection of Euthatal (sodium pentobarbital) overdose (0.5 ml / 100 g) after which they were transcardially perfused with saline, fol-

lowed by a 10% Formalin solution. Brains were removed and stored in 10% Formalin and 30% sucrose solution for 3-4 days before

sectioning. Subsequently, 50 mm frozen coronal sections were cut using a cryostat, mounted on gelatin coated or positively charged

glass slides, stained with cresyl violet and cleared with clearing agent (Histo-Clear II), before covering with DPX and coverslips.

Sections were then inspected using an Olympusmicroscope, and tetrode tracks reaching into CA1 pyramidal cell layer were verified.

Experimental paradigm
Screenings for a suitable place cell yield were performed from one week after surgery in a 1.4 x 1.4 m environment, different from

those used in any of the experiments. Tetrodes were gradually advanced in 62.5 mm steps until ripple oscillations could be observed,

and pyramidal cells with stable firing fields could be identified.

Screenings, training, and experiments all took place in the same experimental room, using environments constructed of the same

materials. Environments had black vinyl flooring; were constructed of 60 cm high modular boundaries (MDF) colored matt black, sur-

rounded by black curtains on the sides and above. Each environment was illuminated by an elevated (2 m) diffuse daylight lamp from

each corner of the environment that was adjacent to a corner of the experimental room (multiple lights in larger environments), with

each lamp producing between 30-50 Lux/m. All experiments involved scattered 20mg chocolate-flavored pellets (Dustless Precision

Pellets Rodent, Purified, Bio-Serv, USA) dropped into the environment by an automated system in SpatialAutoDACQ to encourage

foraging. The automated system scattered the pellets randomly with greater preference for areas least visited by the animal.

Place cells were recorded as each animal foraged in four environments of different size (Figures 1A and S1A). The environment

sizes were 87.5 x 125 cm (environment A), 175 x 125 cm (environment B), 175 x 250 cm (environment C) and 350 x 250 cm (environ-

ment D). All environments were rectangles with close to identical shape (axes ratio 1.40). Environment A was the smallest, and the

other sequentially larger environments – B, C and D – each doubled in size by doubling the length of the shortest axis (Figure 1A).

There were two sets of cues in the environments. The most prominent cue elevated above the wall of the enclosure was different
e2 Current Biology 32, 1–10.e1–e7, August 22, 2022
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in all environments, varying in size and the type of pattern, but always black and white. Two different secondary smaller cues were

used, an A4 sheet (113 16 cm) with a dot pattern and a set of three adjacent A4 pages, placed on the wall at a height the animal could

not reach. The number of secondary cues and the size of the primary cues varied slightly between environments to scale with their

size (Figure 1A).

During a single session consisting of 5 trials, the place cells of an animal were recorded in all four environments and twice in envi-

ronment A (Figure 1B). The second recording in environment A is referred to as a recording in environment A’. The duration of the

recording in the smallest environment (A) was 15 minutes. The recording duration doubled along with the size of each environment,

reaching 120 minutes in the largest environment (D). Each animal was recorded on three or four sessions, the data analyzed here

comes from the first session in which an animal achieved good spatial sampling in all environments (sessions 3, 2, 2, 3, and 4, for

the 5 animals).

After a recording in each environment, the flooring waswipedwith an unscented soap solution to clear any potential olfactory cues.

The animal was kept in a familiar rest box (with water provided) between each recording for 15 to 30minutes, while the preceding and

following environments were disassembled and reassembled, respectively.

Cell identification
Spikes were assigned unit identities with automated clustering software (KlustaKwik)57 based on spike waveforms. The results from

the automated clusteringwere curated using an offline data analysis suite (Tint, Axona, St. Albans, UK) to further separate under-clus-

tered units and merge over-clustered units.

All recordings from a given animal that were performed on the same session were clustered simultaneously, concatenating the

spike waveform data. Therefore, the same set of units were identified across all such recordings. This approach made it possible

to analyze the properties of the same place cell population in multiple conditions.

L-ratio58 and Isolation Distance59 were calculated through Mahalanobis distance to verify that sorting quality has not affected the

results. The features used for this analysis were the same as those used for automated and manual clustering: amplitude, time-to-

peak, time-to-trough, peak-to-trough, half-width, trough-ratio, and the first three PCA components of waveforms. These measures

were computed on waveforms combining all clusters, including noise, and pooling across all recordings – the sameway as was done

for spike sorting.

Place cells were identified computationally after the clustering procedure. The following criteria were used to identify place cells:

d Waveform peak-to-trough duration of over 0.45 ms.

d Waveform peak half-width of over 0.1 ms.

d The ratio between amplitude and trough voltage values (trough-ratio) of over 0.175.

d Spatial correlation of odd and even minute ratemaps of over 0.5 in at least one recording.

d Spatial correlation of first and last half ratemaps of over 0.25 in at least one recording.

d At least one field in one of the recordings (field detection method described below).

d Mean firing rate across all recordings lower than 4 Hz.

Place cells were further filtered for duplicates recorded on separate tetrodes. Duplicate units were considered to be unit pairs that

passed the following criteria mostly based on cross-correlograms with 2 ms bins and a maximum lag of 25 ms:

d At least 200 spikes at 0-lag.

d Lower than 0.5 ms sigma of a gaussian fitted to the cross-correlogram.

d Mean spatial correlation of ratemaps higher than 0.5 across recordings where both units have at least 200 spikes.

If duplicate units were detected, the one with more total spikes was set as noise, to maximize signal to noise ratio. This approach

was based on the observation that the unit in the duplicated pair that had more spikes was usually less well isolated from noise or

other units.

Interneurons were identified based on the following criteria:

d Minimum mean firing rate of 4 Hz across all recordings.

d Maximum waveform half-width of 150 ms.

d Maximum trough-ratio of 0.4.

d Maximum spatial correlation of 0.75 in any environment.
Computing ratemaps
To calculate a ratemap for each unit, the position data was binned into 4 cm square bins, and the number of position samples in each

bin was divided by the sampling rate, producing the dwell time for each spatial bin. Spike timestamps were paired with simultaneous

position samples and assigned to corresponding spatial bins, thereby producing spike counts for each spatial bin. Only the position

samples and spike timestamps from periods where the animal was moving at more than 10 cm/s were used to produce these dwell

time and spike count maps. Both dwell times and spike counts were smoothedwith a Gaussian kernel (standard deviation of 2 spatial
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bins) while setting unsampled bin values and those outside the environment to 0. The resulting smoothed spike counts were divided

by smoothed dwell times, producing spatial ratemaps.

Place field detection
Place fields were detected in spatial ratemaps to analyze place cell properties at the level of individual place fields. Here, a place field

is defined as a contiguous area in a ratemap, where the firing rate decays continuously from a single prominent peak, and the

observed firing rates are well correlated across multiple visits to the same location. Often individual place fields are so close to

each other that the firing rate threshold traditionally used for place field detection (1 Hz) would not be able to detect them as separate

place fields. This effect is exacerbated by the spatial smoothing step in computing spatial ratemaps. However, based on the defini-

tion above, these areas should be considered as separate place fields.

An iterative thresholding method was used to find spatial bins that constituted a single place field in a ratemap (Figure S1B). As a

first step, the ratemap was thresholded at 1 Hz, and contiguous groups of bins (ignoring diagonal connections) were identified as

candidate fields. The regions including at least 10 spatial bins and a peak value of at least 2 Hz were considered as valid candidate

fields. The ratemap of each valid candidate field was then thresholded again with a 0.05 Hz higher threshold (1.05 Hz), and the same

method of finding contiguous regions and their validation was applied. This was done iteratively, resulting in continuously smaller

regions, each with a higher threshold and associated with their parent field candidates with a lower threshold, some having more

than one child field candidate.

The resulting lists were then parsed in reverse order, starting with the smallest candidate fields with highest thresholds. Candidate

fields that were too large (greater than half the bins of the ratemap) or not sufficiently stable over repeated visits to the region (spatial

correlation of odd and even minute ratemaps below 0.25) were ignored. As the increasingly lower threshold candidate fields over-

lapping with each other were assessed, the lowest threshold valid candidate field in a sequence of overlapping candidate fields

was detected as a place field. The overlapping candidate fields with a higher threshold were ignored. If more than one child candidate

field of a lower threshold candidate field was valid, the large single candidate field was ignored, and the smaller valid candidate fields

were detected as separate place fields. In this manner, multiple place fields were detected in individual ratemaps of single units, as

illustrated in Figure S1B.

Position decoding
Position decoding was used to estimate the location encoded in the activity of a place cell population at specific timepoints. The

probability of the animal being at each location in the environment is computed based on the similarity between the ongoing firing

rates of place cells in a time-window (e.g. 1 second) and their spatial ratemaps. The decoded location is then identified as the

one with the highest likelihood. The spatial ratemaps for this purpose were computed using periods where the animal was moving

faster than 10 cm/s, excluding the time-point that was being decoded – cross-validation with a 3-minute window. The method of

matching the ongoing population activity to spatial ratemaps has been used previously60,61 and is based on the original formulation

by Zhang et al.62

Specifically, the population activity of N units K = ðk1; ::::; kNÞwas computed, where ki is the spike rate of the i-th unit in a temporal

bin (e.g. 1 second). Expected population activity a at location x, belonging to the set of all spatial ratemap bin centres X, was based on

the values of all units in the spatial ratemap corresponding to that location bin aðxÞ = ðfi;:::;fMÞ, such that aiðxÞ = fi, refers to the value

in the spatial ratemap of unit i at location x. These representations of neural activity were used to compute the conditional probability

of observing K, at location x as:

PðKjxÞ =
YN
i

aiðxÞki
ki!

e� aiðxÞ (Equation 1)

Thismethod allows assessing the probability of any spatial bin being decoded independently of the number of bins considered and

their spatial arrangement. It is agnostic to the animal’s real location and past decoded locations, as it considers all locations to have

equal prior probability – it has a flat prior. The location encoded in the population activity bxðKÞwas then computed as the centre of the

spatial bin with the highest conditional probability:

bxðKÞ = max
x˛X

PðKjxÞ (Equation 2)

To decode the environment from the place cell population activity (Figure S2B), the posterior probability distribution (Equation 1)

was calculated over all visited bins in all environments. The environment pertaining to the most probable spatial bin (Equation 2) was

then identified as the decoded environment.

Spatial correlation
Spatial correlation was used to quantify the similarity between spatial ratemaps of pairs of cells or spatial ratemaps of the same cell

that were constructed using data from different parts of the same recording. Spatial correlation was the Pearson correlation coeffi-

cient for pairs of values from spatial bins with matching locations in two ratemaps. For a spatial bin to be included, it must have had a

firing rate above 0.01 Hz in at least one of the ratemaps to avoid high correlations between 0 Hz bins. Unvisited bins were ignored. At

least 6 such valid spatial bins were required for spatial correlation to be computed, which was always the case for place cells.
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Field formation models
Two models were used to estimate place field count per cell as a function of environment size: equal-Poisson and gamma-Poisson

models. The equal-Poissonmodel has one parameter, the average field formation propensity t, which is constant for all cells, and the

model predicts the field counts per cell X as a function of t and environment area in m2 A

X � PoisðtAÞ (Equation 3)

The gamma-Poisson model estimates the field formation propensities T in the place cell population based on a shape a and scale

qAparameters

T � Gammaða; qAÞ (Equation 4)

These field formation propensities T are then used to estimate the place field counts X

X � PoisðTÞ (Equation 5)

Gamma-Poisson can then be defined using a negative binomial

X � negbin

�
a;

1

1+ qA

�
(Equation 6)

Using the change of variables r=a, p = 1
1+ qA

X � negbinðr;pÞ (Equation 7)

giving the gamma-Poisson probability mass function

PðX = xÞ =
Gðr + xÞ

GðrÞGðx + 1Þp
rð1 � pÞx (Equation 8)

The parameters for both models were optimized using maximum likelihood estimation using the field counts of all place cells (N =

627) in the combined environment - counting fields per cell across all four environments. The parameter optimization was performed

with L-BFGS-B solver implemented in the Scipy Python package.63 The two models were compared using the Bayesian information

criterion.

The gamma-Poisson model was fit as described above, and then evaluated on prediction of proportion of cell recruitment with the

physical environment size values and alsowith environment sizes adjusted based on field density. The latter always performed better,

therefore, all the reported results were computed using environment sizes adjusted based on field density. The proportion of fields in

each environment wasmodeled with linear regression y = bA+ c, whereA is the area of an environment (Figure 2E). Therefore, using

the same parameters b and c the field density r in an environment of size A can be computed as

r =
bA+ c

A
(Equation 9)

The field density adjusted environment size A0 for computing the gamma-Poisson probability mass function in an environment with

size A was computed as

A0 = A
r

b
(Equation 10)

Proportion of place cells recruited to form at least one field in the four environments (A, B, C and D) based on the gamma-Poisson

model was computed bymodelling a population of 100,000 cells. Each cell had a field formation propensity t (drawn from the gamma

distribution defined by a and q fit already previously to field formation propensities) that was used to compute the number of fields

using a Poisson process with rate tA or tA0. Modelled cells with no field in any of the environments were ignored to match the con-

ditions applied to the experimental data.

Field size measures
The place field areas were computed by summing the area of all spatial bins (16 cm2) covered by each detected field. The place field

widths in the two axes were computed as the length of the field’s projection onto a given axis (Figure S3B). These values were used to

calculate themean field area and width in each animal at every spatial bin by averaging the values of all fields overlapping a particular

spatial bin. To estimate the average field area and width at different distances to the wall, the values for spatial bins in a particular

range of distance from the wall (e.g. 0-25 cm) were averaged separately for each animal. Where further spatial selection is indicated

in the cartoons above figures (e.g. only including data from the middle third of the environment), the averaged spatial bins were

selected in such manner to minimize the effects from orthogonal walls.

Population activity statistics
The proportion of co-active place cells and the mean firing rate of place cells at different distances to the wall were computed by

averaging the spatial ratemap values in all spatial bins that were in that range of distances from the wall. The proportion of co-active
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cells (firing rateR1 Hz) and themean firing rate was computed using the spatial ratemap values at a given location, including all place

cells detected in a given animal.

The population firing rate distributions were computed by aggregating the Gaussian smoothed (1 second sigma) firing rates

aligned to position samples (30 Hz), across animals, where the animals’ location was within a particular range of distance from

the wall. At each timepoint, only the activity of neurons with firing rate R1 Hz were included to facilitate measuring firing rate dis-

tributions. Only samples when the animal was moving faster than 10 cm/s were included. The samples assigned to each range of

distances from the wall were further split temporally into the first and second half. The Jensen-Shannon divergence, a measure of

similarity between two distributions, was then computed between each pair of temporal halves, to quantify inherent variation, and

also between all halves at different distances to the wall, to quantify variation in the firing rate distributions arising from difference

in the animals’ position.

Population activity change
Position data smoothed with Savitzky–Golay filter (166 ms window and polynomial order 5) and place cell firing rates computed at

33 ms bins and smoothed with a Gaussian (166 ms sigma) were used to construct population activity vectors for computing the pop-

ulation activity change. The position data was reduced to one dimension by computing the Euclidean distance cumulatively over

consecutive samples. It was then used to linearly interpolate cell firing rates to position samples 1 cm apart. The population activity

change was then computed as the Euclidean distance between consecutive samples of place cell firing rates - population activity

vectors measured at 1 cm intervals. All place cells detected in an animal were included and periods where the animal was moving

slower than 10 cm/s were excluded.

Population activity change was used in place of a direct rate map analysis as it is less susceptible to issues caused by ‘cut-off’

place fields at boundaries (Data S1B) and intra-trial remapping (Data S1A). To explain why we performed a series of simulations.

First, we simulated N=1271 equal-sized Gaussian place fields distributed to evenly span the largest space used in the study. Thus

the centers of some place fields lay outside of the walls, and so were not accessible to the ‘rat’, giving rise to ‘cut off’ place fields

(Figure S5E). In these cases the effective peak of the field lay against the wall. Despite this, and in accordance with our results, the

total population activity of the simulated place cells is the same at every measurable position in the environment (Figure S5F, top).

This also means that the measurable rate map peaks, confined by the enclosure, are more densely distributed at the boundaries.

Most importantly, however, the rate of change in the place cell population vector is constant everywhere (Figure S5F, bottom) due

to the uniform level of overlap between fields in the measurable space - a result that holds true irrespective of heading direction

(Figure S5G). Conversely, if instead of using population measures we were to just examine the size of individual place fields, then

these would necessarily appear to be smaller near to the walls because of the cut off portions. For these reasons we prefer the

population-level measures.

Next, we adapted our simulation to capture the main elements of our experimental findings (Figure S5H): 1) Place field centers are

more densely distributed closer to boundaries (here we use a 1/x2 scaling for field density, abstracted from the derivative of the angle

to the top of a boundary wall that is distance x away) 2) Field width orthogonal to the boundary follows the inverse scaling (i.e. scales

with x2) such that 3) The total population firing is the same everywhere (Figure S5I, top). Here we see that now the rate of change in the

population vector is greater near the boundaries of the environment (Figure S5I, bottom), and in particular this ismainly the case when

travelling orthogonally to those boundaries (Figure S5J). Note, the predictions of this model are directly in line with our main results

(Figure 5) - although this modelling does not take into account the position of the visual cues in the environment which can be seen to

also have a strong effect on the rate of change in the population vector (Figures 5G and 5H - high rate of change is visible at the edges

of the visual cue on the North wall).

Visual change
The virtual environment was created in Unity3D with the same proportions as the physical environment. Animal trajectories were

speed filtered (>10 cm/s) and interpolated so that consecutive samples were 1 cm apart (equivalent to method in population

activity change). The visual scene from each sample point was then captured by three greyscale cameras, raised the equivalent

of 5 cm from the floor and angled 35� above the horizontal axis. These cameras were oriented 100� apart in the horizontal plane,

and each rendered a 64x64 pixel image with a field of view of 100� to give a total field of view of 300�. The absolute difference

between consecutively sampled greyscale images was used to yield the pixel-by-pixel change at each sampling point. This

pixel-by-pixel change was then z-scored per pixel and averaged across pixels to generate a single value for visual change at

each sample point.

Visual change and population activity changemaps represent the average value of samples across the environment using a 4x4 cm

bin size and no smoothing applied. For illustration purposes, the time series presented in Figure 5D was smoothed with a 1D boxcar

filter of width 3, but no smoothing was applied when calculating the reported correlations between time series.

Path Integration
Points of contact with a particular wall were determined as the animal being within 12cm of it.64 The path integration variable for a

given sampling point in the trajectory was then taken as the cumulative distance travelled along the trajectory since the last point

of contact with a wall.
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QUANTIFICATION AND STATISTICAL ANALYSIS

The details of statistical analysis - test statistics, p value, and sample size (N) - can be found in figure legends or the relevant parts of

the results section. Any exclusion of data is detailed in the results section and figures.

In most cases Kruskal-Wallis test was used to test for differences between groups due to small sample sizes. Positive

Kruskal-Wallis tests of more than two samples were followed by two-sidedMann-Whitney U test for individual pairwise comparisons,

and Benjamini/Hochberg (non-negative) correction65 for multiple comparisons. Benjamini/Hochberg (non-negative) correction was

implemented in Statsmodels Python package66 and Kruskal-Wallis, Mann-Whitney U, Linear regression, Pearson coefficients,

Poisson and Gamma distributions were computed using Python statistics package Scipy.63
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Figure S1. Experimental paradigm description and validation. Related to main Figure 1. (A) Photographs of
experimental environments (from left: A, B, C and D). (B) Field detection method based on iterative
thresholding identifies multiple place fields in a single ratemap. The spatial ratemap of a place cell is shown
on the left. With the threshold at 1 Hz, only one place field (green) is detected. While increasing the threshold
at 0.05 Hz increments, two place fields (brown and orange) are identified with 1.25 Hz threshold. These both
pass the place field criteria. By increasing the threshold further, two smaller place fields (red and pink) are
detected with a 4.75 Hz threshold, both overlapping with the larger orange place field. At least one of the
smaller place fields (red and pink) did not pass the place field criteria. Therefore, both of them (red and pink)
were ignored because a larger place field, detected with a lower threshold and overlapping with them, did
pass the place field criteria. (C) Spatial correlation between first and second half of the recording in each
environment for every active place cell. The box shows quartiles of the dataset, and whiskers indicate the 5th
and 95th percentile of the data distribution.



Figure S2. Details of recorded place cell and place field counts. Related to main Figure 2. (A) Place cells
formed stable representations. Spatial correlations (bin-wise Pearson correlation) between ratemaps from the
first and second half of environment A (A ½ v ½) and between repeated trials (A v A’) were high (mean spatial
correlation of 0.61 and 0.51, respectively), significantly exceeding the values obtained by randomly repairing
cells (A v shuffled A’) (-0.04). Kruskal-Wallis test: H = 644, p = 1.64 x 10-140; Mann-Whitney for A ½ v ½ and A v
A’, U = 1.8 x 105, p = 3.2 x 10-6, for A ½ v ½ and A v shuffled A’, U = 2.8 x 105, p = 10-92, for A v A’ and A v
shuffled A’, U = 2.9 x 105, p = 10-114. The box shows quartiles of the dataset, and whiskers indicate the 5th and
95th percentile of the data distribution. P-value markers: ***, 0.001. The kernel-density estimate is bounded
between the 5th and 95th percentile. (B) Place cells formed distinct representations for each environment.
Population activity vectors were reliably decoded to the environment from which they were drawn -
Bayesian-framework with 1s window used for decoding. Error bars show 95% confidence intervals of the
mean based on bootstrapping. (C) Place cell field formation propensity is conserved across environments. The
standard deviation of place cells’ field formation propensity (place fields / m2, accounting for field density in



Figure 2E inset) across environments was lower than for a shuffled distribution (Mann-Whitney: U = 2.7 x 107;
p = 6 x 10-8; n = 258). Only cells with at least 1 field in each environment were used in this analysis. Shuffle
was obtained by permuting cell identities within each animal and environment 1000 times. (D) Distribution of
field counts per place cell after grouping all environments together and predictions of the two models fit to
this data. (E) Probability density function (pdf) of gamma with fitted parameters, defining the field propensity
distribution as a function of environment size. (F) Distribution of field counts per place cell for cells in each
environment that have at least one place field, and predictions of the two models fit to data in D.



Figure S3. Variability in place field density and size. Related to main Figure 3. (A) Change in field density with
distance to wall is not explained by the difference in dwell time. Field density (proportion of fields / m2) and
dwell time were computed for 25 x 25 cm non-overlapping regions of the largest environment chosen to be at
a range of distances to the nearest wall. For each animal, we grouped regions according to distance to the
wall and for each of these groups found the mean field density in the region with the highest and lowest
dwell time. Field density did not vary with dwell time (Mann-Whitney for all comparisons: U ≥ 6, p ≥ 0.11) but
was different between regions at different distances to the wall (Kruskal-Wallis for both high and low dwell: H
≥ 13.1, p ≤ 0.004). P-value markers: *, 0.05; **, 0.01; ns, not significant. (B) The width of each place field was
measured along two orthogonal axes. The distance of the place field from nearest walls in the two axes was
measured from the location of peak firing rate. (C) The average place field size per animal measured
orthogonal to the short wall increases with distance from the wall and is also greater near the wall in the
larger environments. Pair-wise post hoc tests adjusted for multiple comparisons using Benjamini/Hochberg
(non-negative) correction. The cartoon above the plot indicates the wall distances and included locations in
the environment in green, and the arrow indicates the axis of measurement. (D) The average place field size
per animal measured parallel to the short wall is constant at all distances to the short wall in all
environments.



Figure S4. Homeostasis of place cell population activity. Related to main Figure 4. (A) The proportion of
place cells recorded in each animal that were firing at greater than 1 Hz was constant at different distances to
the wall in all environments and same across environments. P-value markers: ns, not significant. (B) The mean
firing rate of all place cells recorded in each animal was constant at different distances to the wall in all
environments and across environments. (C) Interneuron firing rate is constant at all distances to walls. Mean
spike rate of all interneurons detected in each animal at different distances to wall in environment D.





Figure S5. Analysis of population activity change rate. Related to main Figure 5. (A&B) Population activity
change was higher in runs orthogonal and close to walls in all environments. (A) Euclidean distance between
vectors representing population activity at different distances to the short walls of each environment, only
including runs orthogonal to the short wall. Pair-wise post hoc tests adjusted for multiple comparisons using
Benjamini/Hochberg (non-negative) correction. The cartoon above each plot indicates the wall distances and
included locations in the environment in green, and the green sectors on the circles indicate the sampled
movement directions. P-value markers: *, 0.05; **, 0.01; ns, not significant. (B) Same as A, but runs parallel to
the short wall. (C) Running speed (z-scored) was positively correlated with theta frequency (z-scored) (r =
0.558, p = 0.0002) in partial correlation while accounting for population activity change rate (z-scored) in the
largest environment, however, theta oscillation frequency was not correlated with population activity change
rate, while running speed was accounted for in the partial correlation analysis (r = -0.009, p = 0.96). (D) The
virtual environment used to calculate visual change. Recording environment D (left) was replicated in a virtual
environment (right) in order to estimate each rodent’s change in visual scene during its movement through
the experimental environment. (E) Simulating 1271 equal-sized Gaussian place fields (two examples shown)
that evenly span the largest recording environment such that ‘true’ field peaks can lay outside the
environmental boundaries means that (F top) the total firing of the place cell population and (F bottom) the
rate of change in the place cell population are the same at every measurable location, independent of
heading direction (G). If instead (H) the place fields are distributed more densely at boundaries with field
widths that increase the further the distance to an orthogonal boundary (two examples shown), we see (I
top) the total population firing is still the same everywhere but now (I bottom) the rate of change in the
population activity is increased at the boundaries. In particular, (J) this increase at the boundaries is primarily
driven when travelling orthogonally to them, as seen in our main results (Fig 5). The simulations can be
reproduced using our code shared on GitHub
(https://github.com/Barry-lab/Publication_TanniDeCothiBarry2022/tree/main).



Animal N
cells

Mahalanobis distance
VS field count

L-ratio VS field count Mahalanobis distance
VS field area

L-ratio VS field area

1 55 r =  0.066, p = 0.630 r =  -0.087, p = 0.525 r =  -0.079, p = 0.566 r =  -0.250, p = 0.065

2 90 r =  0.124, p = 0.245 r =  -0.106, p = 0.322 r =  -0.002, p = 0.981 r =  -0.038, p = 0.722

3 92 r =  -0.038, p = 0.719 r =  -0.160, p = 0.127 r =  -0.026, p = 0.809 r =  -0.024, p = 0.822

4 132 r =  0.100, p = 0.254 r =  -0.201, p = 0.021 r =  -0.080, p = 0.361 r =  -0.006, p = 0.943

5 132 r =  -0.072, p = 0.409 r =  -0.050, p = 0.566 r =  0.132, p = 0.130 r =  -0.030, p = 0.733

Table S1. Clustering quality does not account for differences in field size and field number between cells.
Related to main Figures 2 and 3. Place fields were counted and their average field areas measured for each
cell in the largest environment (D), these values were correlated with two measures of cluster goodness -
Mahalanobis distance and L-ratio. A single significant correlation was found (in bold), indicating for Animal 4
that better separated cells (L-ratio) tended to have more fields. Since no adjustment for multiple comparisons
was applied we believe this single result does not imply a systematic relationship between cluster goodness
and field measures.
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