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A Consensus-based Distributed Temperature
Priority Control of Air Conditioner Clusters for

Voltage Regulation in Distribution Networks
Zhuang Zheng, member, IEEE, Shengwei Wang, Wenzhuo Li, Xiaowei Luo

Abstract—High penetration of Photovoltaic (PV) to the dis-
tribution network may bring under-voltage and over-voltage
issues, limiting the PV hosting capacity. Air conditioners (AC)
in grid-interactive buildings can support voltage regulation by
manipulating flexible energy consumption. This paper developed
a novel voltage control strategy to regulate the AC clusters’
on/off states for distribution network voltage regulation under
high PV penetrations. The novelty lies in the distributed formu-
lation of temperature priority-based on/off control (TPC) of AC
clusters and the strategic selection and permutation of demand
response technologies, including the real-time optimal demand
response resources dispatch, distributed sensing of ACs based
on average consensus algorithm, and the local implementation
of TPC strategy and trial calculation scheme for flexibility
capacity estimation. Finally, the distributed TPC is validated to
be effective for system rebalancing with no comfort violations
and an acceptable ON/OFF switching frequency. The theoretical
and numerical analysis also proves its scalability and robustness
to communication delays and link failures. It is then incorporated
into a novel hierarchical control framework for smart grid
voltage control in a four-bus three-phase test grid, considering
the voltage sensitivities to power injections in different locations
and phases.

Index Terms—average consensus, distributed, temperature
priority control, hierarchical voltage control, air conditioners,
distribution network.

I. INTRODUCTION

THE growing use of rooftop PVs connected to the low
voltage distribution networks (LVDN) may induce tech-

nical issues [1], [2]. One of the main challenges is the voltage
rise/drop problems due to the mismatch between variable
PV generations and local demands. Various solutions have
been proposed for voltage regulation of distribution networks.
The simplest way is grid reinforcement, such as installing
shunt capacitors, on-load tap changing (OLTC) transform-
ers, and voltage regulators, which is effective but expensive.
Furthermore, they were initially designed for the traditional
grid without an extensive penetration of distributed generators
(DGs). With the increasing of low-inertia DGs like PV panels,
the voltage regulators and OLTCs may face time delay issues.
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The shunt capacitor bank may induce excessive line losses due
to the increased flowing reactive powers.

Though reactive power management [3] is often used for
transmission network voltage regulation, the active power
management has gained growing popularity in distribution
network voltage regulation due to the high ratios of line
resistance to reactance (R≫X) [4], [5]. In this context, demand
response (DR) is a promising way to regulate grid voltage
by manipulating flexible energy consumptions, especially the
building air conditioners (ACs). Seng and Taylor [6] validated
the effectiveness of DR for mitigating voltage rise problems
by simulating a distribution network and two wind turbines.
Xie et al. [7] found that using the elastic demand for voltage
regulation can reduce the operation times of OLTC trans-
formers. Elizabeth et al. [8] proposed distributed and adaptive
receding horizon optimization-based approaches to manage
the supply voltages and power flows in a distribution grid
with residential PV-battery systems. Jiang et al. [9] proposed
a smoothing control of ACs to mitigate the net demand
fluctuations induced by volatile PV generations and eliminate
the tap operations of voltage regulators. Chandran et al. [10]
presented a coordinated load curtailment method for voltage
regulation in LVDN. Dong [11] also indicated that the building
thermal load could reduce voltage drops by predictive controls.

Different control strategies of ACs for voltage regulation
can be divided into local, centralized, and distributed methods.
Local control strategies calculate control actions only using
locally measured information, such as the droop control and
on/off thermostat control. Because it is cheap and easy to
implement, the local control strategies are the most practical
methods for voltage control. Klem et al. [12] demonstrated
how the droop control of flexible loads and the generation
could stabilize the system effectively. Though fast and naı̈ve,
they are criticized for the short-sight and sub-optimal solutions
in long-term energy management. For example, the predictive
local PV outputs and demands can be leveraged for proac-
tive voltage management. The heterogeneous and dispersed
distributed generators and voltage control measures should be
coordinated to produce cooperative actions.

The centralized methods calculate control actions with all
the relevant information about the networks and components
and send back individual control commends through a star
communication network. The most common centralized meth-
ods in the literature are the optimization-centric methods.
Fontenot et al. [11] proposed a centralized model predictive
control for coordinated voltage regulation and energy man-
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agement by integrating buildings, PV inverters, and batteries
into the power distribution network and jointly optimizing all
components. Jiang et al. [13] also developed an integrated
building-to-grid (B2G) optimization model to reduce the grid
loss and increase the voltage magnitude by the flexible op-
eration of ACs. Though the optimization-centric methods are
optimal, they may be impractical due to the high computation
and communication burden and high data requirement.

Alternatively, the temperature priority control (TPC) of AC
clusters is a rule-based centralized control strategy with lower
complexity. The central coordinator of TPC collects the state
information of each AC in the network and selects ACs to
be turned on/off based on the requested DR amount and the
ON/OFF priority lists generated by the difference between
indoor temperatures and setpoints. Lu et al. [14] applied TPC
to control thermal loads for continuous regulation reserves.
Wu [15] adopted the TPC of AC clusters for fast primary
frequency regulation. Hu et al. [16] extended the TPC by
incorporating a novel swapping mechanism and the up/down
reserve bounds to improve thermal comfort and guarantee
tacking capability. The modified TPC was further used in the
AC systems of commercial buildings for peak load reduction
and load shaping [17]. However, the above TPCs all require
central coordinators to collect the state information of each
AC and send the individual controls, which is impractical due
to the high communication cost and privacy concerns.

Recently, consensus-based distributed controls, relying on
no central coordinator but only sparse communication links
among neighboring agents, have gained popularity for the
fair task/resource allocation of voltage or energy management
[18]–[20]. Zeraati et al. [5] combined the local voltage droop
control and the consensus control of batteries for fast and fair
utilization of storage flexibility in LVDN voltage control under
high PV penetrations. They further applied the consensus
algorithms to other applications in distribution networks, such
as the cooperative voltage control of electric vehicle battery
and PV active power curtailment [21] and voltage quality
improvement using reactive power capability of PV inverters
[22]. The above works focused on the fair allocation of voltage
control efforts but neglected the efficiency of task allocations.
For example, different buses and phases have different voltage
sensitivities to power variations. The electric battery is also
less economic and environmental-friendly than the inherent
thermal storage of buildings. Zhang et al. [23] proposed a
consensus control strategy of inverter AC clusters to share
the adjusted temperature interval ratios for renewable energy
integration. Chen et al. [24] utilized the average consensus
algorithm to allocate the portions of the desired aggregated de-
mand profile to each building energy controller in a distributed
way. Since the control variables of both Zhang and Chen’s
methods are continuous ratio values, the control performance
is sensitive to stochastic communication delays due to the
deviated consensus values of consensus algorithms [25].

Although the hierarchical control of AC clusters for smart
grid has been widely explored, they have some limitations. For
example, Wu et al. [15] proposed a hierarchical control for
primary frequency regulation using residential HVAC loads,
consisting of a load aggregator, a central controller, and

a group of local controllers. Nevertheless, the coordination
among multiple HVAC units in a single group relied on an
expensive and unscalable star communication network. The
central controller dispatches the multiple HVAC loads by
sending the triggering frequency to each HVAC unit. The
local controller determines the ON/OFF status of HVAC units
autonomously based on the triggering frequencies. It is also
challenging to determine the trigger frequency setting. Wang
et al. [26] adopted a two-level consensus-driven distributed
control strategy to share the required active power adjustment
among ACs for voltage regulation and overloading manage-
ment. A star communication network among the aggregator
and its group members is also needed, which is not scalable
and practical. The lower-level AC units are responsible for
sending maximum controllable power and receiving ON/OFF
control commands to/from the upper-level aggregator. Only
a few AC aggregators are coordinated through distributed
consensus algorithms, ignoring the scalability to large network
sizes.

Zeraati et al. [5] proposed a two-layer consensus-driven
distributed control of batteries for distribution network voltage
regulation under high PV penetration. The upper level uses a
local droop control to determine the required power changes
at each bus. Then, the battery chargers in the lower level
are coordinated through consensus algorithms to make further
adjustments based on their capacities and dynamics. However,
the local droop controller neglected the location-dependent and
phase-coupled effects of load variations on voltage profile. A
few batteries are coordinated through consensus algorithms
while ignoring the scalability to large network sizes.

Aiming at these shortcomings, this paper proposes a novel
and practical tri-level hierarchical control framework of AC
clusters for smart grid voltage control. The novelty lies in the
distributed formulation of temperature priority-based on/off
control (TPC) of AC clusters and the strategic selection
and permutation of demand response technologies, including
the real-time optimal DR resources dispatch among a few
aggregators for multi-bus and multi-phase voltage regulation,
distributed states sensing of multiple ACs and the local temper-
ature priority-based on/off control and trial calculation scheme
for flexibility capacity estimation. Compared to prior studies,
the major contributions are listed as follows:

1) A distributed temperature priority-based control (TPC)
method of AC clusters is developed for the first time
to provide continuous regulation reserves for the smart
grid. The local TPC controller makes on/off decisions
based on the local priority lists of each AC generated by
the average consensus algorithm with Mean Metropolis
weights. Novel trial calculation schemes of ACs are
proposed to derive bounds for the regulation signal
within which the users’ thermal comfort is guaranteed.

2) We proved that the distributed TPC scheme with Mean
Metropolis weights is stable under time-varying com-
munication graphs with stochastic link failures and is
insensitive to the communication delays due to the bi-
nary control output. The scalability to thousands of ACs
is also validated for high connectivity communication
graphs, such as rectangular and cubic grids.
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3) A novel and practical hierarchical control framework is
proposed for efficient and effective smart grid voltage
regulation through strategic selection and permutation of
demand response technologies. It captures the location-
dependent and phase-coupled effects of load variations
on voltage profile and produces optimal solutions with
limited computational burden due to the existence of
AC aggregators. The proposed distributed TPC method
is also superior to centralized TPC-based methods due to
the robustness to communication delays and link failures
and the scalability to large network sizes. The local TPC
controller has straightforward functions and operates in
real-time discrete intervals, which is fast and easy to
implement.

II. PROBLEM DESCRIPTION
A. Voltage regulation with high penetration of PV sources

The impact of PV sources on distribution network voltage
can be analyzed by the equivalent circuits in Fig. 1. First,
consider the single phase network in Fig. 1a. It can be proved
[5] that the voltage magnitude at the point of common coupling
(PCC) can be approximated as

|Vn| = |Vg|+
R · P +X ·Q

|Vg|
(1)

where |Vg| is the voltage magnitude at the source node, R and
X are the line resistance and reactance, P and Q are the total
active and reactive powers produced by PV and load (negative
source), P=Ppv-PL,Q=Qpv-QL. Equation (1) indicates that if
P is positive (Ppv > PL), the PCC voltage increases and
conversely, if P is negative (Ppv < PL), |Vn| decreases.

When PVs are unevenly installed, the three-phase distri-
bution system may become unbalanced, and there is current
flowing through the neutral conductor in the residential four-
wire network, as shown in Fig. 1b. This current flow causes
voltage drop over the neutral conductor and shifts the neutral
voltages at all PCCs. As a result, active power changes in
one phase can affect the voltages of the two other phases.
Therefore, voltage regulation in the distribution network is
challenging.

B. Thermodynamic and Electrical Modeling of AC
This study leverages the thermal flexibility of buildings for

voltage regulation by regulating the ACs’ power consumption.
The thermodynamic and electrical models of buildings and
ACs are described as follows. The equivalent thermal parame-
ter (ETP) model in [27] described by (2) is a common model to
approximate the thermal dynamics of a simplified AC system.

Ṫ t
a = 1

Ca
(Ua[T

t
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a] +Qt
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Ṫ t
m = 1

Cm
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where the wall and indoor air temperatures (Tm,Ta) are func-
tions of internal and external heat transfers, such as internal
heat gains (Qi), solar gains (Qs) and heat injected/removed
by ACs (QAC) (3), where fAC , fs, and fi are fractional
coefficients.
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Fig. 1: Equivalent circuits of (a) a single-phase network with
PV sources and (b) uneven PV installations on three-phase
systems.

As for the electrical model of the AC system, the relation-
ships among AC electrical power (PAC), the cooling capacity
of AC (QAC), and the ON/OFF states of the compressor (uAC)
can be expressed as (4), where µAC is the Coefficient of
Performance for the AC system. Assuming the ACs work at
cooling mode in this study, there is a minus sign before the
symbols.

Qt
AC = −µt

ACP
t
ACu

t
AC , u

t
AC ∈ {0, 1} (4)

III. PROPOSED VOLTAGE CONTROL SCHEME

Fig. 2 shows the overall diagram of the proposed con-
trol method of AC clusters for distribution network voltage
regulation. The proposed method integrates central real-time
optimal DR resources dispatch, distributed sensing of AC
states based on average consensus algorithm, and local tem-
perature priority-based ON/OFF control, each used for specific
objectives.

We consider the three-phase four-wire electricity grid with
multiple buses, each bus populated with AC-equipped grid-
responsive houses and distributed PV sources. In case the
voltage of a particular bus deviates from the pre-defined
limits, the central real-time optimal controller in the first level
determines the optimal DR amount at each phase of each bus.
The required DR amounts are then sent to the aggregators
for the second-level control. In the second level, the ACs of
each aggregator share their state information through sparse
communication links. The priority lists are locally generated
for each AC by a distributed information discovery process
based on the average consensus algorithm. In the third level,
the local TPC controller decides its ON/OFF actions based on
the required DR amount and the local priority list, similar to
the centralized TPC.

A. Central Real-Time Optimal Dispatch of DR Resources

First, a voltage sensitivity-based linear programming model
is developed to determine the real-time optimal DR resources
dispatch among AC aggregators of different buses and phases,
considering their different voltage sensitivities to the power
injections. The optimal DR amount for each AC aggregator
is obtained by solving the linear programming problem in
(5) at each timestep t when DR is activated. The objective
function includes the DR costs and the penalty of voltage
deviations (ϵ) to the required voltage regulation amount (∆U).
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Fig. 2: Tri-level control framework for distribution network
voltage regulation.

The optimized control variables are the required DR active and
reactive powers ∆P/∆Q.

min [∆P,∆Q]W[∆P,∆Q]T+εTRε

∆U = [SUP ,SUQ] · [∆P,∆Q]T + ε
∆P ∈ [∆Pmin,∆Pmax],∆Q ∈ [∆Qmin,∆Qmax]
∆Q = ∆P ∗ tan(acos(PFAC))

(5)

where SUP and SUP are voltage sensitivity matrices that
can be estimated from historical measurement data using
methods like multiple linear regression [28], ϵ is the slack
vector to avoid problem infeasibility, R and W are the
weighting matrices for trading off between the voltage control
performance and the DR cost. Since the AC units consume
both active and reactive powers, we relate the DR reactive
power support with the active power by constant power factors
of AC units PFAC .

B. Distributed sensing of ACs

This subsection develops a distributed TPC method based
on the average consensus algorithm for DR implementation
within single aggregators. The key idea is to let each AC
obtain temperature priority lists of all ACs in the network
through iterative information exchanges among its neighbors.
Then each AC determines its switching actions according to a
common rule the same as the centralized TPC, as illustrated
in Fig. 3. It is essentially a distributed information discovery
process based on average consensus algorithms.

According to the average consensus algorithm, every agent
can obtain the global network information through iterative
information exchanges with neighbor agents in a multi-agent
network. The information exchange law is defined as

xi[k + 1] = xi[k] +
∑
j∈Ni

aij(xj [k]− xi[k]) (6)

where i,j ∈ {1, . . . , r} are the indices of r AC units, xi[k] and
xi[k+ 1] are the discovered information by the agent i at the

AC 1 …AC 2 AC r

Priority 

lists

Central TPC

(a)

AC 1 …AC 2 AC r-1 AC r

Priority 

lists

Central TPC

(b)

Fig. 3: Diagrams of (a) centralized TPC, (b) distributed TPC.

k and k + 1 iteration, respectively. aij is the communication
coefficient between the neighbor agents i and j and Ni is the
set of neighbor agents connected to agent i. The information
exchange law for the whole system can be written in vector
form as

X[k + 1] = DX[k] (7)

where X[k]=[x1[k],. . . ,xn[k],. . . ,xr[k]]T and X[k+1] are the
information vector at the k and k + 1 iteration, respectively,
and D is a weight matrix that has the sparsity pattern specified
by the communication graph G.

D =



1 −
∑

j∈N1

a1j · · · a1i · · · a1r

· · · · · · · · · · · · · · ·
ai1 · · · 1 −

∑
j∈Ni

aij · · · air

· · · · · · · · · · · · · · ·
ar1 · · · ari · · · 1 −

∑
j∈Nr

arj


(8)

If the sums of D’s rows and columns are equal to one
and the eigenvalues of D satisfy |λn| ≤ 1, then we have
(9) based on the Perron–Frobenius Lemma [21] with 1T =
{1,1, ...,1}T

J = lim
k→∞

Dk =
1 · 1T

r
(9)

This property of the D matrix implies that the system
will reach average consensus (10) as the iteration number k
approaches infinity. The average of dispersed network states
information (X[0]) can be obtained by each agent in a dis-
tributed and iterative manner.

lim
k→∞

X[k] = lim
k→∞

DkX[0] =
1 · 1T

r
X[0] (10)

This study adopted the D-matrix by the Mean Metropolis
method [29] with the following law (11) due to the properties
of stability, adaptivity, and faster convergence speed.

aij =


2/(gi + gj + 1)

1−
∑

j∈Ni

2/(gi + gj + 1)

0

j ∈ Ni

i = j
otherwise

(11)

where gi and gj are the number of agents connected to agent
i and j, respectively. Since it may take a long time for the
average consensus algorithm to achieve the exact equilibrium,
it is necessary to define a termination criterion. The required
number of iterations for convergence can be approximately
determined by (12) when a pre-defined error tolerance (E) is
used to reach a consensus [21].

K =
logE

log ∥D − J∥
=

logE

log ∥λ2∥
(12)
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where E =
∥XK−X∞∥
∥X0−X∞∥ is the error tolerance (taken as 1e−6),

and λ2 is the second-largest eigenvalue of D and the largest
eigenvalue of D − J , K is the number of iterations for
convergence. The derivation process of (12) is given in the
appendix B.

In practice, the communication graphs are viewed as time-
varying due to the stochastic link failures. For a network of r
nodes, there are a total of m possible communication graphs.
We denote the set of all possible graphs by G1, . . . , Gm,
and the set of corresponding weight matrices by D1, . . . , Dm,
which is determined by the Mean Metropolis method. Then,
the iterative distributed information discovery process can be
written as

X[k + 1] = D[i(k)]X[k] (13)

where the indices i(k) are integers and satisfy 1 ≤ i(k) ≤
m for all k. The sequence i(k)∞k=0 can be deterministic or
stochastic. Then, we have the following convergence theorem
for a subset of the graphs that occur infinitely in the sequence.
Please see appendix A for the proof of Theorem 1.

Theorem 1: if the collection of communication graphs that
occur infinitely often are jointly connected, then the iterative
process converges with the Mean Metropolis weights, and

lim
k→∞

X[k] = lim
k→∞

(
∏
k

D[i(k)])X[0] =
1 · 1T

r
X[0] (14)

This theorem only requires the long-term connectivity of
the communication graph. It does not require each link to be
active for an infinite amount of time. The only requirement is
that the surviving links make a connected graph in the long-
term run. In this sense, the distributed average consensus is
robust to temporary and permanent link failures.

In our context, the average consensus algorithm is utilized
for collecting the state information of ACs that is required
for the conventional TPC control, such as the ON/OFF states,
indoor temperatures, and electrical powers. To obtain this
information, each agent is initialized with an An×3 matrix. In
matrix A, only the rows corresponding to the agents’ number
can have nonzero elements. A(i, 1) can be equal to either 1 or
0 to represent whether the AC is turned on or off. A(i, 2) is
equal to its normalized indoor temperature by (15), and A(i, 3)
is equal to its electrical powers. For example, if the ith AC
consumes 5kW, the ith row of its A matrix is initialized with
[1 Tnorm

i 5] and the remaining elements are all equal to zeros.

Tnorm
i =

Ti − T lower
i

Tupper
i − T lower

i

(15)

By applying the average consensus law (10) to each initial
matrix, all the information matrices will converge to the
same matrix. Each element is the average summation of
the corresponding elements in the initial matrices. The state
information of all ACs in the network can be discovered by
reorganizing and rescaling the converged information matrix.

Based on the converged A matrix of each AC, we can
divide the ACs into ON/OFF groups by counting the non-
zero elements in the first column of the converged matrix.
Then the priority lists can be generated for both groups by
sorting the elements ascending and descending,respectively, in

the second column of the converged matrix. The third column
can reveal the ACs’ electrical powers by multiplying them
by the total number of ACs. The final discovered information
is then used for local TPC control, including the ON/OFF
temperature priority lists and ACs’ electrical powers. For easy
explanation, an example with five ACs is presented in Fig. 4.

C. Local temperature priority-based control and trial calcu-
lation schemes

Then, each AC can decide its switching actions by ex-
ecuting the conventional TPC method locally based on the
local priority lists. The local TPC control is demonstrated in
Fig. 5. The x-axis denotes the number of DR-participating AC
units, and the double y-axes represents the available flexibility
resources (left) and the accumulated power adjustments (right),
respectively. The numbers in the square blocks are priority
values, and the smaller values represent higher priorities for
DR participation. p is the number of ACs in ON/OFF priority
lists. The threshold value i for selecting the DR-participating
units is determined by the requested DR amount indicated by a
dashed line. The red blocks denote the AC units that should be
switched for demand response. All DR-participating AC units
follow the common rule: All ACs belonging to the set of red
blocks should be switched immediately for demand response.
Here, we assume each AC knows the total number of agents
and the required DR amounts of belonging aggregators. Such
information could be obtained in a similar distributed way, but
they are not discussed here.
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Fig. 4: Illustration of the distributed sensing algorithm for a
network of five ACs with ring graph.

Finally, this study proposed trial calculation schemes to 1)
filter out unstable control actions that may induce simulation
oscillations and users’ comfort violations, and 2) calculate
the maximum up/downregulation reserve capacity in real-time,
as shown in Fig. 6. The trial calculations are implemented
twice. In Fig. 6a, the actual control output by a local TPC
controller is sent to the house thermal forecaster along with
other inputs such as weather data and internal load to predict
the indoor temperature of the next timestep. Any controls
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Fig. 5: An illustration of the
local TPC controller.
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Fig. 6: Trial calculation
schemes of ACs.

expected to violate user comfort limits at the next timestep
will be overwritten. In Fig. 6b, the virtual ‘ALL ON’ and ‘ALL
OFF’ controls are sent to house thermal forecasters to check
the feasibility and calculate the maximum up/downregulation
reserve capacities. The maximum regulation capacity will be
uploaded to the upper levels for constraints update (5). Such
information could be obtained by the aggregator in a similar
distributed way, but they are not discussed here.

IV. SIMULATION SETUPS
Two case studies are simulated for two purposes: 1) valida-

tion and analysis of proposed distributed TPC strategy, and 2)
application of distributed TPC strategy to smart grid voltage
control.

First, one hundred AC units are modeled in MATLAB
by ETP models in (2) with heterogeneous parameters and
shifted and scaled solar and internal heat gains. Then, they
are coordinated by the distributed TPC to respond to load
following (LF) signals [14] established by (16).

∆Ppv −∆PL = 0

∆Ppv = P real
pv − P exp ected

pv

∆PL = PLF − P base
L

 ⇒ PLF = P base
L + α ·∆Ppv (16)

where ∆Ppv is the PV output deviations from the forecasted
values, calculated by P real

pv minus P expected
pv , ∆PL is the

load adjustment for system rebalance. P base
L is the expected

aggregated load of uncoordinated ACs by using the perfect
next-day input forecasts, PLF is the load following signal
for real-time system balance. Here, the ‘virtual’ PV variations
∆Ppv are known and are used to emulate the system balancing
signals, and α is a coefficient to adjust the degree of PV
deviations. Fig. 7 shows the profiles of P real

pv , P expected
pv , and

different LF signals with α=0,1,6.
Second, a Gridlab-d/MATLAB co-simulation testbed is es-

tablished as Fig. 8 to leverage the distributed TPC control
strategy for smart grid voltage control. We build a four-
bus three-phase electricity distribution feeder in Gridlab-d, an
electrical distribution network simulator, to calculate power
flows. The feeder is connected with an ideally large grid
through the slack bus and consists of four load buses. Each
phase at each bus is populated with 30 residential houses
equipped with heterogeneous DR-engaged ACs and distributed
PV panels. The PVs are sized to induce under-voltage and
over-voltage issues in the remote node. Then, the tri-level
voltage control framework in Fig. 2 is adopted for voltage
regulation.

Without specification, all simulations used ring topology for
distributed TPC in this study. All ACs operate in the cooling

(a)

(b)

Fig. 7: (a) Deviations be-
tween actual and forecasted
PV outputs and (b) emu-
lated load following signals
(α=0,1,6).

(a)

(b)

Slack node

Bus1 Bus2 Bus3

2400V

Bus4

···

Residential transformer

120/240V2400V

1 2 30

Fig. 8: A test distribution net-
work model with (a) four-bus
three-phase feeder and (b) an
aggregator at each phase of
each load bus.

mode with the same indoor temperature settings of 70 (F )
and the same upper and lower temperature limits of 76 (F )
and 64 (F ). To model the thermal heterogeneity of different
buildings, the authors make random samples of the initial
indoor temperatures, initial ON/OFF states, and the thermal
parameters of each AC model from Uniform(U) distributions,
as summarized in Table I.

TABLE I: A random sampling of main parameters for the
modeling of heterogenous ACs

Parameters Descriptions Range Unit

Ua
Heat transfer coefficient between

indoor and outdoor air U [400, 600] Btu/F.h

Ca Heat capacity of the indoor air U [600, 3000] Btu/F

Um
Heat transfer coefficient between

indoor air and building mass U [1e4, 1.2e4]Btu/F.h

Cm Heat capacity of building mass U [3250, 500] Btu/F

µAC
Coefficient of performance for air

conditioners in cooling mode U [2.8, 3.4] −
PAC Electrical power U [5, 6] kW

V. RESULTS AND DISCUSSIONS

A. Validation and analysis of distributed TPC strategy

In the case of the light LF signals (α=1), it is observed
in Fig. 9a that one hundred of ACs can effectively track the
load balancing signals. Fig. 9b shows the indoor temperatures
always lie between the users’ comfort limits during the load
following process. The average temperature varies near the
value of 70 due to the large temperature diversity of the AC
cluster and the insignificant LF signals. It is also observed that
the thermal diversities of DR-controlled ACs slightly reduced
than that of no DR controls.

However, this is not the case for severe LF signals (i.e.,
α = 6). Fig. 10a shows that the severe LF signals were not
well tracked in time intervals of 12:00-13:00, 14:00-15:00, and
18:00-20:00. This is attributed to the clipping of maximum
available up/down regulation reserve and the override of
control actions by the trial calculation schemes in Fig. 6. As a
result, the temperature profiles always lie between the user’s
thermal comfort limits. Fig. 11 shows the clipping effect of
maximum available up/downregulation reserves calculated by
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(a) (b)

Fig. 9: System balancing results for the light case (α=1).

the trial calculation scheme. Since the outdoor temperatures
are high and most ACs are in ‘ON’ states to cool indoor air
during the daytime, the maximum up-regulation reserve (red
curve) is low, and the down-regulation reserve (blue curve) is
high. As the degree of PV deviations increases, the issued DR
amount (green curve) also increases and hits the reserve limits
during noontime.

(a) (b)

Fig. 10: System balancing results for the severe case (α=6).

(a) (b)

Fig. 11: Provided load adjustments and the up/down reserve
bounds under (a) light DR signal with α=1 and (b) severe DR
signal with α=6.

Fig. 12a shows the average indoor temperatures of all
ACs under different LF signals (α=0,1,2,3,4,5,6), respectively.
They share similar fluctuating patterns with that of the power
errors between baseload and different LF signals (−∆PL =
P base
L − PLF ) in Fig. 12b. It validates the effectiveness of

distributed TPC for system rebalancing. The average indoor
temperatures are always higher than the base scenario—the
higher degree of PV variations, the higher the average indoor

temperatures. This is because the actual energy consumptions
of all ACs are always less than the energy consumptions of the
base scenario (see Fig.7b). Fig. 13 shows the statistics of total
ACs’ switching times under different degrees of LF signals. It
is seen that the average switching frequency of ACs increases
with the degree of PV forecast errors. However, the increased
switching frequency is still acceptable.

(a) (b)

Fig. 12: System balancing under different LF signals: (a)
verage indoor temperatures of 100 ACs, and (b) power errors
between base load and LF signals.

Fig. 13: Statistics of ON/OFF switching times for each AC
under different degrees of LF signals.

B. Robustness to communication delays and link failures

If stochastic communication delays are present, the average
consensus algorithm can be expressed as

xi[k + 1] = xi[k] +
∑

j∈Ni

aij(xj [k − s]− xi[k])∑τ
s=0 fs = 0, s = 0, 1, ..., τ

(17)

where s is the realized time delays following the distribution
of fs, τ is the upper bound of considered time delays. It is
proved that a consensus can still be achieved regardless of
the presence of the delays, provided that the network has a
spanning tree. Nevertheless, the non-zero communication de-
lays will result in deviated consensus value, and the deviations
depend on the distribution of s and the dynamics of x.

Fig. 14 demonstrated through a network of five ACs that
the distributed TPC with delays has evolutional stability and
deviated consensus equilibrium. We assume each AC at each
timestep received the lagged information from its neighbors
with a probability of 0.2, independent of other nodes and all
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previous steps. The number of iteration delays is randomly
sampled from a uniform distribution [1, τ ] with an upper
bound of τ = 5 iterations. It is observed that the system
could achieve convergence very quickly under stochastic com-
munication delays. Nevertheless, the consensus values have
apparent deviations from the actual average values (blue lines).
Though the consensus deviations of temperatures and powers
cause errors to the local priority lists, the delays have no
impact on the ON/OFF state estimation of ACs due to the
binary output. Thus, one possible way to reduce delay impacts
is to transmit all the information through binary codes.

(a) (b) (c)

Fig. 14: Evolutional stability and deviated consensus equilib-
rium for the AC3 state information in Fig. 4 when stochastic
communication delays are present: (a) ON state consensus;
(b) normalized indoor temperature consensus; (c) power con-
sumption consensus.

Fig. 15 compared the ON-group priority lists generated
by a consensus network of 50 ACs with and without de-
lays..When there are no communication delays, the red blocks
in Fig. 15a represent the ON units that should be switched
off to provide down-regulation of 100kW among 50 ACs.
Then, we remapped the local TPC results of ON groups
without delays to that of considering delays in Fig. 15b. It
is observed a large proportion of ACs can still act correctly
under stochastic delays. This is because the binary control
outputs made the distributed TPC insensitive to the deviated
consensus equilibrium.
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Fig. 15: Local TPC results for a consensus network of 50 ACs,
(a) ON group without delays, and (b) ON group with delays.

As for link failures, we have proved in Theorem 1 that the
distributed average consensus with Mean Metropolis weights
is robust to temporary and permanent link failures. We demon-
strated it by simulating the iterative process with five and fifty
ACs, respectively, under static and dynamically changing com-
munication graphs. We assume that each edge in the original

Fig. 16: Norm-1 consensus
errors for networks of five
and fifty ACs with static and
dynamic graphs.

Fig. 17: Iterations for conver-
gence dramatically increase
with network sizes for ring
graphs.

static graph is not available with a probability of 1/5 at each
timestep independent of other edges and previous steps. The
errors between iteratively updated consensus values and the
true average values are plotted against the number of iterations
in Fig. 16. It is observed that the errors always converge
to a nearly-zero value after a certain number of iterations,
whether for static or dynamic communication graphs. It is
reasonable that the convergence rates with dynamic graphs
are slightly slower than that of static graphs, considering the
lack of information updates.

C. Scalability to a large number of ACs

We plot the relationship between the required number of
iterations and the number of ACs in Fig. 17. It is seen the
required number of iterations dramatically increases when the
number of agents exceeds 100. It can be explained mathe-
matically. According to (12), the increasing rate of required
iteration numbers depends on the changing rate of |λ2|. Since
we know |λ1| is 1, we can express |λ2| by the spectral gap
∆|λ| (defined as the difference between the moduli of the
two largest eigenvalues of the D matrix): |λ2| = 1 − ∆ |λ|.
According to the Cheeger inequalities [30], the moduli of the
second largest eigenvalue satisfy the following:

1− 2h(G) ≤ |λ2| ≤ 1− h2(G)

2∆(G)
(18)

where h(G) is the Cheeger constant of the communication
graph and ∆(G) is the maximum degree of the graphs. For
graphs with ring shape topology, the Cheeger constant is
h(G) = 2

⌊r/2⌋ . Then, we plot |λ2| and its upper and lower
bounds in Fig. 18. It is observed that the |λ2| (red curve) and
its lower bounds (dotted blue curve) quickly approaches one
as the network size increases. Thus, the required number of
iterations by (12) quickly increases.

We compare the required iteration numbers of one consen-
sus for different communication graphs (i.e., path, ring, rectan-
gular, and cube grid graphs in Fig. 19) with increasing network
sizes in Table II. It is seen the required iterations of path
and ring graphs quadratically increase with the network sizes.
Due to the poor connectivity of the path graph, the required
iteration number is quite large, even for small networks (i.e.,
8 ACs). In contrast, the graphs with rectangle and cube grid
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Fig. 18: The moduli of the
second largest eigenvalue ap-
proach to one quickly with
the number of iterations for
ring graphs.

(a) (b)

(c) (d)

Fig. 19: Examples of com-
munication graphs: (a) path;
(b) ring; (c) rectangle grid;(d)
cube grid;

topologies have relatively small iteration numbers, increasing
linearly with the network sizes. We conclude that the graphs
with good connectivity, such as rectangle and cube grid graphs,
are scalable to large systems of 4000 ACs, and the ring and
path graphs are only applicable to small networks with a few
hundred of ACs. Fortunately, the buildings are 3-dimensional
cubes, and it is convenient to connect multiple dispersed ACs
by 3D grid graphs.

TABLE II: required iteration numbers of one consensus for
different graphs with increasing network sizes.

Network sizes 8 64 125 1000 4000

required
number of
iterations

path 2170 1.4E+4 5.5E+4 3.5E+6 5.6E+7
ring 52 3580 1.4E+4 8.7E+5 1.4E+7

rectangle grid 70 372 3531 1.5E+4 4.0E+4
cube grid 17 116 192 845 3447

D. Voltage regulation performance of proposed control
Fig. 20 and Fig. 21 show the voltage profiles of the fourth

load bus in three cases (before DR control, after centralized
TPC, after distributed TPC) for under-voltage and over-voltage
regulation, respectively. Fig. 20 shows that centralized and dis-
tributed control can improve the voltage values to the allowed
range during under-voltage periods between 08:00-09:00. In
Fig. 21, the voltage regulation performance of distributed TPC
is comparable with the centralized one, though there is still a
slight over-voltage during 12:30-13:00 by the distributed TPC.
It is attributed to the depletion of up-regulation reserve under
the proposed trial calculation algorithm.

Fig. 22 plots the time-varying numbers of DR-responding
AC units in each bus phase for over-voltage regulation using
proposed tri-level voltage control. The positive number of ACs
indicates the AC units are being turned on. It is seen the
number of DR-responding AC units is always highest in phase
A among the three phases. This is due to the more severe
voltage violations in phase A. As expected, the total number
of DR-responding AC units increases as the target bus moves
away from the source bus, validating the necessity of voltage
sensitivity-based optimal DR resource dispatch.

VI. CONCLUSION

This study developed a distributed temperature priority-
based ON/OFF control of AC clusters to provide continuous

(a) (b) (c)

Fig. 20: Under-voltage issue of the fourth load bus (a) before
DR control, (b) after centralized TPC, (c) after distributed TPC

(a) (b) (c)

Fig. 21: Over-voltage issue of the fourth load bus (a) before
DR control, (b) after centralized TPC, (c) after distributed TPC

system balancing reserves for the smart grid. A novel and
practical hierarchical control framework is also proposed for
efficient and effective smart grid voltage regulation through
strategic selection and permutation of demand response tech-
nologies. Numerical simulations validated the effectiveness of
distributed TPC and the tri-level hierarchical control frame-
work for system rebalancing and voltage regulation under high
PV penetrations.

Through theoretical and numerical analysis, we proved that
the distributed TPC scheme with Mean Metropolis weights is
stable under time-varying communication graphs with stochas-
tic link failures and insensitive to the communication delays
due to the ON/OFF binary control outputs. We found that the
average consensus algorithm is not scalable to large systems
for graphs with bad connectivities (i.e., path, ring shapes). The
required number of iterations for convergence dramatically
increases after the number of agents exceeds a threshold value.
In contrast, graphs with good connectivity (i.e., rectangle and
cube grid graphs) could increase the network size to 4000
ACs with an acceptable number of necessary iterations. Future
extensions may include the experimental design and test of
proposed algorithms in both laboratory and practice scenarios
and the development of delay-tolerant consensus algorithms
for accurate distributed sensing.

APPENDIX A
PROOF OF THEOREM 1

The Theorem 1 has been proved [31] for average consen-
sus algorithms with Uniform and Metropolis weights. Both
Uniform and Metropolis weight matrices are doubly stochas-
tic matrices. However, the D matrix with Mean Metropolis
weights is not doubly stochastic because the diagonal elements
may become negative. Thus, the authors proved here that the
Theorem 1 is applicable for average consensus algorithm with
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(a) (b)

(c) (d)

Fig. 22: Numbers of DR-participating ACs at each phase of
each bus for over-voltage regulation using distributed TPC

Mean Metropolis weights. The proof of Theorem 1 is based on
a convergence result of nonhomogeneous infinite products of
paracontracting matrices in Theorem 2 (Please see reference
[32], [33] for details).

Theorem 2: Suppose that a finite set of square matrices
{D1, . . . , Dm} are paracontracting. Let i(k)∞k=0, 1 ≤ i(k) ≤
m, be a sequence of integers, and denote I the set of all inte-
gers that appear infinitely in the sequence. Then for all X[0] ∈
Rn the sequence of vectors X[k + 1] = D[i(k)]X[k],k ≥ 0,
has a limit of X∞ ∈

⋂
i∈M H(D[i]) where H(D) denote

the fixed-point subspace of a paracontracting matrix D, i.e.,
its eigenspace associated with the eigenvalue 1, H(D) =
{x |x ∈ Rn, Dx = x} To use the result of Theorem 2, we need
to use the following two lemmas.

Lemmas 1: For any graph, the matrix D with Mean
Metropolis weights is paracontracting with respect to the
Euclidean norm.

Lemmas 2: If a collection of graphs G1, . . . , Gm are
jointly connected, their corresponding Mean Metropolis weight

matrices satisfy
m⋂
i

H(D[i]) = span{1}.

According to Lin [31], when D matrix satisfies the above
two Lemmas, the Theorem 1 can be proved. Thus, in the
following, the authors proved that the two lemmas apply to
the Mean Metropolis matrix.

Proof of lemma 1: According to the concept of paracon-
tracting matrices, a symmetric matrix is paracontracting with
respect to the Euclidean norm if and only if all its eigenvalues
lie in the interval (−1, 1]. Since the D matrix is apparently
a symmetric matrix, there is no complex eigenvalues and we
only need to prove the eigenvalues of D matrix lie in the
interval (−1, 1]. The D weight matrix can write as D = E−A,
where E is the identity matrix, and A can write as

A =



∑
j∈N1

a1j · · · −a1i · · · −a1r

· · · · · · · · · · · · · · ·
−ai1 · · ·

∑
j∈Ni

aij · · · −air

· · · · · · · · · · · · · · ·
−ar1 · · · −ari · · ·

∑
j∈Nr

arj


(19)

Let µ,λ be the eigenvalues of D and A matrices, we
have µ=1-λ. Since that the absolute values of non-diagonal
elements all lie in [0, 1), all eigenvalues of A are in the disks
|λ−∆| ≤ ∆,with ∆ =

∑
j∈Ni

aij , i ∈ {1, ..., r}, according
to the Gershgorin disk theorem. As the eigenvalues of a real
symmetric matrix are real, we have λ ≥ 0.

Let v be an eigenvector of the eigenvalue λ of A matrix,
and vk is the element of v with largest absolute value (|vk| ≥
|vi|, i ∈ {1, . . . , r}, i ̸= k). Then

Av = λv ⇒
∑
j
Akjvj = λvk

|λvk| = |λ| |vk| =

∣∣∣∣∣∑j Aijvj

∣∣∣∣∣ ≤ ∑
j
|Aij | |vk| ≤ (

∑
j
|Aij |) |vk|

⇒ |λ| ≤
∑
j
|Aij | ⇒ λ ≤

∑
j
|Aij |

(20)

Let n be the number of connected agents for ith node in
the consensus graph, so there are n non-zero non-diagonal
elements of ith row of A matrix and the degree of ith node
is gi = n. Then, we have

|Aij | = 2
gi+gj+1

= 2
n+gj+1

≤ 2
n+2

⇒
∑
j
|Aij | ≤ 2n

n+2
< 2

λ ≤
∑
j
|Aij | < 2

(21)

The feasible zone of D’s eigenvalues is determined as

λ ∈ [0, 2), µ = 1− λ ⇒ µ ∈ (−1, 1] (22)

Therefore, the matrix D with Mean Metropolis weights is
paracontracting with respect to the Euclidean norm.

Proof of lemma 2: By definition (11), the sum of rows of
Mean Metropolis weight matrices always equal to one, so we
have 1=[1, . . . , 1]T ∈ H(D[i]) for i = 1, . . . ,m. Therefore,

span{1} ⊂
m⋂
i

H(D[i]) (23)

Since D[i]x = x for i = 1, . . . ,m, then we have(
1
m

∑m
i=1 D[i]

)
x = x. Therefore
m⋂
i

H(D[i]) ⊂ H(
1

m

∑m

i=1
D[i]) (24)

Since the collection of graphs G1, . . . , Gm are jointly con-
nected, the matrix 1

m

∑m
i=1 D[i] has a trivial eigenvector 1

associated with an eigenvalue 1. Next, we show 1 is the only
eigenvector associated with the eigenvalue of 1. Since E −D
is a weighted Laplacian matrix and the collection of graphs
are jointly connected, the matrix E−D has the rank of n−1.
Let x be any eigenvector associated with the eigenvalue 1,
the null space of λx − Dx = (E − D)x = 0 only has one
basis vector. Thus, 1 is the only eigenvector of 1

m

∑m
i=1 D[i]

associated with the eigenvalue of 1. Therefore,

H

(
1

m

∑m

i=1
D[i]

)
= span{1} (25)

Putting the equations (23)-(25) together, we get the Lemma
2 result.

APPENDIX B
DERIVATION OF EQUATION (12)

Given the properties of D matrix: D1 = 1,1TD = 1T and

the projection matrix [34]: I− 11T

r =
(
I − 11T

r

)K

, we have:

DK − J = (D − J)K

(DK − J) ·X∞ = 0
(26)
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The error at iteration K is defined as:∥∥XK −X∞∥∥ =
∥∥(DK − J)X0

∥∥
=

∥∥(DK − J)(X0 −X∞)
∥∥ ≤ ∥D − J∥K

∥∥X0 −X∞∥∥ (27)

Let define the error tolerance E =
∥XK−X∞∥
∥X0−X∞∥ , the required

number of iterations can be obtained as

K =
logE

log ∥(D − J)∥
(28)

According to the Gelfand’s formula: ρ(D − J) =

lim
k→∞

∥∥∥(D − J)
k
∥∥∥ 1

k

= |λmax|, we can express the required
number of iterations in terms of the spectral radius of D − J
matrix:

K =
logE

log |λmax|
(29)

where λmax is the largest eigenvalue of D − J matrix.
Let arrange the n eigenvalues of D as 1, λ2, ..., λn, with the

decrease of their magnitudes. 1 is the largest eigenvalue of D
and 1 is the corresponding eigenvector. Since the eigenvectors
of a symmetrical matrix are orthogonal, i.e.1Tej = 0 for j ≥
1 where ej is the corresponding eigenvector of λj , we have
(D−J)ej = Dej − 11T

r ej = Dej = λjej . Since (D−J)1 =

D1 − 11T

r 1 = 0, the eigenvalues of D − J are λ2, ..., λn,0
with the decrease of their magnitudes. Now λ2 becomes the
eigenvalue of D − J with the largest magnitude. We have

K =
logE

log |λ2|
(30)
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