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Abstract

Background Lateral flow immunoassays (LFIAs) are being used worldwide for COVID-19

mass testing and antibody prevalence studies. Relatively simple to use and low cost, these

tests can be self-administered at home, but rely on subjective interpretation of a test line by

eye, risking false positives and false negatives. Here, we report on the development of ALFA

(Automated Lateral Flow Analysis) to improve reported sensitivity and specificity.

Methods Our computational pipeline uses machine learning, computer vision techniques and

signal processing algorithms to analyse images of the Fortress LFIA SARS-CoV-2 antibody

self-test, and subsequently classify results as invalid, IgG negative and IgG positive. A large

image library of 595,339 participant-submitted test photographs was created as part of the

REACT-2 community SARS-CoV-2 antibody prevalence study in England, UK. Alongside

ALFA, we developed an analysis toolkit which could also detect device blood leakage issues.

Results Automated analysis showed substantial agreement with human experts (Cohen’s

kappa 0.90–0.97) and performed consistently better than study participants, particularly for

weak positive IgG results. Specificity (98.7–99.4%) and sensitivity (90.1–97.1%) were high

compared with visual interpretation by human experts (ranges due to the varying prevalence

of weak positive IgG tests in datasets).

Conclusions Given the potential for LFIAs to be used at scale in the COVID-19 response (for

both antibody and antigen testing), even a small improvement in the accuracy of the algo-

rithms could impact the lives of millions of people by reducing the risk of false-positive and

false-negative result read-outs by members of the public. Our findings support the use of

machine learning-enabled automated reading of at-home antibody lateral flow tests as a tool

for improved accuracy for population-level community surveillance.

https://doi.org/10.1038/s43856-022-00146-z OPEN

1 Department of Bioengineering, Imperial College London, London, UK. 2 London Centre for Nanotechnology, University College London, London, UK. 3 School
of Public Health, Imperial College London, London, UK. 4Department of Infectious Disease, Imperial College London, London, UK. 5 Imperial College
Healthcare NHS Trust, London, UK. 6 National Institute for Health Research Imperial Biomedical Research Centre, London, UK. 7 Institute of Global Health
Innovation, Imperial College London, London, UK. 8MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK.
9Division of Medicine, University College London, London, UK. ✉email: nathan.wong16@imperial.ac.uk; r.a.mckendry@ucl.ac.uk; christina.atchison11@
imperial.ac.uk; a.bharath@imperial.ac.uk

Plain language summary
During the COVID-19 pandemic,

antibody test kits, for use at home,

were used to estimate how many

people had COVID antibodies. These

estimations indicated how many

people have been exposed to the

virus or have antibodies due to vac-

cination. However, some positive test

results can be very faint, and be

mistaken as negative. In our work,

500,000 people reported their anti-

body test results and submitted a

photograph of their test. We designed

a computerised system—a highly

specialised artificial-intelligence (AI)

system—that has high agreement

with experts and can highlight

potential mistakes by the public in

reading the results of their home

tests. This AI system makes it possi-

ble to improve the accuracy of mon-

itoring COVID antibodies at the

population level (e.g. whole country),

which could inform decisions on

public health, such as when booster

vaccines should be administered.
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Most people infected with SARS-CoV-2, the virus that
causes coronavirus disease 2019 (COVID-19), mount
an Immunoglobin G (IgG) antibody response detect-

able after 14–21 days although levels may start to wane after
about 90 days1,2. As such, antibody data provide a long-lasting
measure of SARS-CoV-2 exposure, enabling analyses of the
recent epidemic. Indeed, many seroprevalence surveys for SARS-
CoV-2 have been reported3–8, including our own community-
based antibody prevalence study REACT-2 (REal-time Assess-
ment of Community Transmission-2)9. REACT-2 is a series of
cross-sectional national surveys using home-based unsupervised
self-administered lateral flow immunoassay (LFIA) tests for
SARS-CoV-2 IgG among random population samples of
100,000–200,000 adults over 18 years in England, UK9. While
LFIAs may not currently be accurate enough for individual-level
diagnosis of SARS-CoV-2 antibody status10, on a population
level, by adjusting for the sensitivity and specificity characteristics
of the LFIA used, it is possible to estimate the levels of past SARS-
CoV-2 infection in the community11. Therefore, self-conducted
LFIAs done at home offer a means to obtain community-wide
antibody prevalence estimates rapidly and at reasonable cost.

In general, LFIAs for SARS-CoV-2 antibody collect a small
drop of fingerprick blood in a sample well. A reagent buffer is
then added to enable the sample to flow up a paper strip. One or
two coloured lines (indicating positive, negative, or invalid
results) then appear and are read after 10–20 min. Depending on
the LFIA, either total antibodies or IgG and Immunoglobin M
(IgM) antibodies are detected. Although the LFIA used in
REACT-2, Fortress Diagnostics (Northern Ireland), had separate
indicator lines for IgG and IgM, only IgG lines were used to
estimate the cumulative community prevalence of IgG antibodies
for SARS-CoV-2 as part of the study. The initial laboratory
validation of the Fortress LFIA was conducted among healthcare
workers12. It was evaluated as having sensitivity 84.4% (95% CI:
70.5%, 93.5%) and specificity 98.6% (97.1%, 99.4%) compared to
“gold standard” ELISA detection of SARS-CoV-2 antibodies12.
Further usability and acceptability studies were conducted among
public-facing non-healthcare key workers13 and a random sample
of adults in the population14. These studies demonstrated high
acceptability and usability of self-test LFIAs, including submitting
a photograph of the test result to an online portal13,14. A review of
uploaded photographs of completed tests demonstrated sub-
stantial concordance between participants and clinician-
interpreted results13,14. For home-based self-testing by members
of the public there was 93.9% agreement for positive IgG test
results, 97.0% for negative, and 98.4% for invalid tests14.

However, it is not practical in large population-wide studies,
such as REACT-2, for a human expert to review LFIA results at
scale. There is a need for a more efficient approach to monitoring
for accuracy of responses, including error and subjectivity in
participants’ interpretation of test results and systematic defects
in batches of devices used. Machine learning models have been
shown to demonstrate at least equivalent human performance in
a range of diagnostic settings, including interpretation of clinical
imaging15–17 although there still remain challenges to applying
these models to these tasks18,19. Recent studies have applied deep
learning to the interpretation of human immunodeficiency virus
(HIV) field-based rapid diagnostic tests20 and SARS-CoV-2 rapid
antigen and antibody tests in the form of lateral flow devices21,22.
However, although these previous studies have demonstrated the
feasibility of using artificial intelligence (AI) to improve rapid
diagnostic test result interpretation, they were applied to much
smaller image libraries (range 334422 to 115,31621) vs over
500,000 in our study. In addition, these previous studies involved
image capture and test result interpretation by trained healthcare
workers or a limited number of “trained operatives”, whereas the

REACT-2 study is based on non-expert community testing by
members of the public using a variety of capture devices23.

Here, we describe the development of a machine learning
pipeline (ALFA - Automated Lateral Flow Analysis) to support
visual auditing of home-based LFIA self-test results for
population-level community SARS-CoV-2 antibody prevalence
studies. In applying ALFA to over half a million images, we found
excellent agreement between self-readings by members of the
public and ALFA’s outputs. When compared to human-expert
assessments, ALFA is, however, able to interpret lateral flow read-
outs to a level that is, on average, more accurate than untrained
members of the public. In the context of mass testing, ALFA, and
similar pipelines, have the potential to improve on the assessment
of population immunity status via public serological testing at
home. Perhaps more importantly, disagreements between ALFA
readings and self-read results can be used to flag images for
human expert review when used at scale. When millions of tests
are to be performed, this is the only practical approach to identify
sources of error, which can then inform improvements in user
instructions, guidelines, or LFIA device design and manufacture.

Methods
REACT-2 antibody prevalence study design and recruitment.
The REACT-2 study protocol has been published9,23. In sum-
mary, REACT-2 is a series of non-overlapping cross-sectional
population surveys of the prevalence of SARS-CoV-2 antibodies
in the community in England, UK. REACT-2 rounds 1 to 5 were
conducted at 1- to 2-month intervals between June 20th 2020 and
February 8th 2021 (Supplementary Notes 1, Table S1). At each
round, we contacted a random sample of the population by
sending a letter to named individuals aged 18 or over from the
National Health Service (NHS) patient list (almost the whole
population). We then sent respondents a test kit and instructions
by post, as well as a link to an online instructional video. The test
kits dispatched included 1 LFIA device (Fig. 1), 1 bottle of buffer
solution, 1 alcohol wipe, 2 pressure-activated 23 G lancets, and a
1 mL plastic pipette. We asked participants to perform the test at
home and complete a questionnaire, including reporting their test
results. They were also asked to take a photo of the LFIA on
completion of the test and submit a photograph of their com-
pleted test via an online portal using instructions and a provided
template. The instructions on how to capture the image were
designed by the study team and iterated following extensive
involvement of the REACT Public Advisory Group in order to
improve the quality and standardisation of image capturing by
participants. Survey instruments, including the instruction
booklet and images of the test kit components, are available on
the study website (https://www.imperial.ac.uk/medicine/research-
and-impact/groups/react-study/).

REACT-2 LFIA image library. Across Rounds 1–5, there were
740,356 participants of whom 81.7% (605,013) submitted images
available for this study. After stripping participants’ personal
identifiers, including geocoordinates, images were stored on a
secure server managed by Imperial College London. We were able
to use, and thus analyse, 98.4% (595,339) of these images (Sup-
plementary Notes 1, Table S1). Images could not be used if the
LFIA device or test result window were not present in the image,
or due to image corruption/error (<2%). Subsets of this image
library were used to train and improve the machine learning
algorithms for high concordance with visual interpretation by
human experts (clinical scientists with experience of reading
LFIAs) and for optimising sensitivity and specificity. The subsets
are detailed in Table 1. Some samples (from Round 5) of the
subsets were selected as they fulfilled a certain criterion (having
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Fig. 1 Key visual features of the Fortress SARS-CoV-2 Lateral Flow Immunoassay (LFIA) device. a Diagram illustrating the test result window and blood
sample well. This diagram shows a negative Immunoglobin G (IgG) test. b Example of a participant-submitted photographic image of a negative IgG test.
c The result window has an initially blue control line, which will remain if the test is unsuccessful (Invalid). d In a successful test, the control line turns red,
and if IgG antibodies are present in the blood sample, a secondary line will appear below the control. The tertiary line indicates the presence of
Immunoglobin M (IgM) antibodies, which were not used as part of the analysis in the REACT-2 study.

Table 1 A breakdown of the subsets used to develop ALFA.

Dataset 1 2 3 4

Experiment Segmentation Network Validity (Control-line
status)

IgG Status Classification 1 IgG Status Classification 2

Purpose Develop Test Test Develop Test Develop Test
No. of samples 415 83 187 864 294 1699 237
No. of IgG positives – – – 351 143 641 79
No. of invalids – – 12 – – – –
The subsets from REACT-2 Study-5 Rounds which were combined to form the datasets (“Included” indicates inclusion)
Round-1, Sample A Included – Included Included
Round-1, Sample B Included Included Included Included
Round-1, Sample C – – Included Included
Round-2 sample – – Included Included
Round-5 sample – – – Included

“Experiment” refers to which component of ALFA was being developed/tested. Most datasets were split into development and test subsets and indicated in the “purpose” row. The origins of the images
are also shown in the bottom half of the table. “Round” refers to the round of the REACT-2 Study-5 from which the data were collected. “Included” indicate whether the sample was included in the
dataset.
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been submitted by participants who were vaccinated 21+ days
prior, and self-reported as a negative result).

ALFA pipeline design and development. The methods and
pipeline are described in full in the Supplementary Methods
of Supplementary Notes 1 and 2. The ground truth used for the
developing and testing of our computational pipeline, ALFA, was
obtained from expert manual review and labelling of the LFIA
images. Two experts labelled the images to identify key regions of
the flow device, and to assess the validity and IgG status of the
LFIA result, with a third independent reviewer brought in for
cases of disagreement in the latter. Experts did not have access to
the original LFIA tests in the images and the LFIA did not have
an accompanying gold-standard test, for example, ELISA detec-
tion of SARS-CoV-2 antibodies. Human experts were also blin-
ded to the participants’ submitted interpretation of the LFIA
result.

Supplementary Notes 1, Fig. S1 illustrates the workflow of the
ALFA pipeline which takes participants’ images of LFIAs
captured at the time of reading the test result, and the
corresponding participants’ result interpretations as input. The
first pre-processing step (A) uses a deep convolutional neural
network (CNN) to identify candidate regions of interest (ROIs) in
the participant-submitted images. These regions are (i) the LFIA
itself, (ii) the test result (read-out) window, and (iii) the blood
sample well (Supplementary Notes 2, Supplementary Methods).
Using geometric priors, as detailed in Supplementary Notes 1,
Table S2, we report segmentation failures, including erroneous
and poor-quality images, and remove them before further
analysis as a form of quality control. The images are then rotated
so that the read-out windows are orientated in a consistent
manner, this step is shown in Supplementary Figure S2. The
second step (B) involves uses a combination of signal processing,
computer vision and machine learning to obtain an interpretation
of the LFIA result. Details of the algorithm chain are
in Supplementary Notes, Supplementary Methods (Figs. S3, S4,
and S5). To obtain informative samples24 for machine learning,
three phases of development were used to read the IgG status for
valid tests. Discrepancies between participant and early versions
of the algorithm (Phase 1) in early rounds of REACT 2 were used
to identify difficult cases for training small networks in Phase 2,
and these, in turn, used to identify difficult cases for training
larger networks in Phase 3. Finally, in the third step (C) a
comparison between the users and ALFA’s interpretation is
completed. Disagreements are reported and are reviewed for later
inspection. Details on the networks and training can be found
in Supplementary Notes 2.

Early development and testing of our Phase 2 1D CNN
(Architecture represented in Supplementary Table S5) and Phase 3
2D CNN (Based on MobileNetV225) were completed in Classifica-
tion Experiment 1 (CE1). The training and validation (development)
datasets consist of samples from Study-5’s R1 and the test set came
from Study-5’s R2, removing risk of data leakage. For CE1, we did
five-fold cross-validation on just the development set. After
preliminary cross-validation showed promising results with high
average sensitivity and specificity, we then retrained the models on
the whole development set and reported the performance of the final
model evaluated on the test set. The 2D CNNwas then deployed into
the ALFA pipeline for initial analysis of the full REACT-2 Study-5
dataset of 500,000 images.

A pattern emerged in the Round 5 samples, which consisted of
participants who reported seronegative results even after having a
vaccination 21 days prior to completing the LFIA. Experts
reviewed these cases and found “weak IgG positive” samples
which were being miss-classified by the CE1 networks. These

weakly positive samples were used to create a new dataset with a
larger proportion of weak positive samples, forming the basis of
Classification Experiment 2 (CE2). The aim of this was to
improve the sensitivity of the CNNs to weak positives.

For completeness, we included in CE1 and CE2 experiments
the results of an initial algorithm (Heuristic-C) based on peak-
detection techniques (See Supplementary Notes2’s Supplementary
Methods and Supplementary Notes 3) to classify the IgG status of
samples; these are used before sufficient data were manually
labelled to support the machine learning. A full comparison
detailing other 1D CNN architectures are also available in
Supplementary Tables S6 and S7.

After optimizing the algorithms to maximise the likelihood of
correctly classifying an LFIA test result, and having evidence of
high agreement between traditional visual inspection by human
experts and ALFA, we were able to deploy the pipeline to analyse
over 500,000 REACT-2 images to assess the performance of the
REACT-2 study participants as well as generating potential
estimates for the population’s SARS-CoV-2 antibody prevalence.
The use of two-dimensional Convolutional Neural Networks (2D
CNNs) for LFIAs and a new image capture protocol builds on
research by the McKendry group and the i-sense interdisciplinary
research collaboration (IRC) (www.i-sense.org.uk) at University
College London20.

Performance indicators. The four indicators of performance
were sensitivity, specificity, total accuracy (ALFA correctly clas-
sified LFIA test results against human expert review) and Cohen’s
kappa. The ground truth for comparison was the visual inter-
pretation of LFIA test result images by two human experts.

Sensitivity, specificity, and accuracy.

Specificity ¼ True negative
True negativeþ False positive

ð1Þ

Sensitivity ¼ True postive
True positiveþ False negative

ð2Þ

Accuracy ¼ True postiveþ True negative
Total no: of samples

ð3Þ

Cohen’s kappa.

κ ¼ ρo � ρe
1� ρe

ð4Þ

where ρo is the relative observed agreement between method (or
participants) and ground truth, and ρe is the hypothetical prob-
ability of chance agreement,

ρe¼
1
N2 ∑c

nc1nc2 ð5Þ

where nci is the number of times rater i (i=1,2) predicted category
c among N observations.

Interpretation of Cohen’s kappa values is as follows: <0 poor
agreement, 0.00–0.20 slight agreement, 0.21–0.40 fair agreement,
0.41–0.60 moderate agreement, 0.61–0.80 substantial agreement,
and >0.8 almost perfect agreement26.

Ethics. Ethical approval was granted by the South Central-
Berkshire B Research Ethics Committee (IRAS ID: 283787).
Participants provided informed consent when they registered for
the study (via electronic consent). Electronic consent was recor-
ded by a tick box. This method of consent was approved by the
ethics committee. All data were handled securely in accordance
with a detailed privacy statement.
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Results
Automated analysis showed “substantial agreement” with human
experts and the 2D CNNs performed consistently better than
study participants in terms of accuracy and Cohen’s kappa,
particularly for weak positive IgG results (Tables 2 and 3, CE1
and CE2 results, respectively). In experiments using two datasets
with substantially different proportions of weak positives (CE1,
CE2), Cohen’s kappa for machine read-outs of IgG status against
human experts ranged from 0.905 (95% CI: 0.847–0.962) for the
set with more weak positives (Table 3), to 0.966 (95% CI:
0.936–0.996) with fewer weak positives (Table 2). Specificity
ranged from 0.987 (95% CI: 0.968–0.999) to 0.994 (95% CI:
0.979–0.999), whilst sensitivity ranged from 0.901 (95% CI:
0.837–0.950) to 0.971 (95% CI: 0.940–0.991) for detecting IgG
status (Tables 2, 3). When the proportion of weak positives is
lower (Table 2), the participants have better sensitivity than the
2D CNN, but lower specificity. Once the proportion of weak
positives increases (Table 3), we can see that the 2D CNNs
sensitivity is now greater than the participants while maintaining
higher specificity.

These results highlight the necessity of providing difficult cases
in the training data. As the 2D CNN model trained in CE1
attained (jointly) the best sensitivity and specificity, we applied it
to the test set of CE2. The results show that CE1 version of the 2D
CNN performed poorly in detecting weak positives; however,
after retraining the model (CE2, retrained), we showed
improvement. The 2D CNN (CE2, retrained) was the overall best
performing model in a dataset that contains a larger number of
weak positive results. A Visual Transformer Network27 was later
trained for this task and achieved better sensitivity, accuracy and

Cohen’s kappa. However, it was decided further work was
required before implementing it into ALFA due to the lower
specificity than the 2D CNNs; we have made this network
available on https://github.com/TianhongDai/react2-code, given
its performance in our dataset.

Regarding detecting invalid tests, the current best performing
algorithm had a sensitivity of 0.917 (95% CI: 0.760–0.990), and a
specificity of 1.000. Potential sources of error are primarily due to
partially converted control lines (Fig. 2b).

We compared self-reported participant readings with ALFA
read-outs over all interpretable images of the REACT-2 study
rounds 1 to 5 (N = 595,339) using Cohen’s kappa to quantify the
participants’ ability to interpret LFIA results. We found a Cohen’s
kappa of 0.797 (95% CI: 0.794–0.799) between participants’ and
ALFA read-out of test validity and IgG status (Fig. 3a shows the
kappa values for individual rounds. Disagreements occurred
primarily when the algorithm reported an IgG positive test and
study participants submitted a negative result.

A hypothesis for the slightly fluctuating level of Cohen’s kappa
between rounds is the following: many discrepancies between
ALFA and the interpretation of a particular participant are due to
weak positive IgG lines being detected by ALFA, but missed by
the participant. The number of these weak positives will vary
depending on the background community antibody prevalence,
which we know varied over the course of the study. For example,

Table 2 Results of classification experiment 1 (CE1) (N =
294, dataset 3’s test dataset with fewer weak positive
results).

Model/
heuristic/
participants

Specificity Sensitivity Accuracy Cohen’s kappa

2D CNN 0.994 0.971 0.983 0.966
1D CNN 0.999 0.879 0.941 0.882
Heuristic-C 0.994 0.757 0.881 0.759
Study
participants

0.961 1.000 0.980 0.959

CNN Convolutional Neural Network.

Table 3 Results of classification experiment 2 (CE2),
including the performance of the 2D CNN trained in
experiment 1 (CE1), on dataset 4’s test set with more weak
positive results (N = 237).

Model/
heuristic/
participants

Specificity Sensitivity Accuracy Cohen’s kappa

2D CNN (CE1) 1.000 0.852 0.949 0.883
2D CNN (CE2,
retrained)

0.987 0.901 0.958 0.905

1D CNN 0.968 0.844 0.926 0.733
Heuristic-C 0.976 0.487 0.815 0.525
ViT Net 0.968 0.952 0.962 0.917
Study
Participants

0.974 0.679 0.873 0.699

CNN Convolutional Neural Network.

Control 
Line

IgG 
Lines

(a)

(b) (c)

Control 
Line

Blood
leakage

Partially
Converted
Control 

Line

Fig. 2 Examples of issues with the Lateral Flow Immunassay (LFIA)
device. a Examples of weak Immunoglobin G (IgG) positive LFIA results.
The control line is blue if the test has not been completed, turning red if the
sample and buffer have been correctly added. ‘Weak’ IgG positives were
highlighted as being a challenging scenario for the algorithms to classify
correctly. As seen in the examples, the line is faint, and with additional
issues of variable lighting. The solution was to introduce more of these
cases into the training data. b An invalid LFIA test with a partially converted
control line. The method for determining validity looked at the normalised
red and blue pixel intensity at the detected control line. A potential source
of misclassification is partial conversion of the control line from blue to red.
c Examples of blood leakage on the LFIA. The presence of blood leakage at
the sample and buffer end of the read-out window was found to be a
common source of misreading by participants. This led many participants
to report the test result as being Immunoglobin M (IgM) positive even
though the test was both IgG and IgM negative.
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Round 3, which returned the lowest Cohen’s kappa, and therefore
contained the largest proportion of discrepancies between the
ALFA pipeline and study participants in determining positive
results, coincided with increasing daily SARS-CoV-2 cases.

During this period, there is likely to have been a larger proportion
of participants who were recently infected (it takes 2–3 weeks to
develop IgG antibodies post-infection3) and will not have fully
developed the IgG antibody responses. Hence, a substantial
number of weak positives could be expected during the Round
3 study interval. Additionally, participants who possibly were
infected earlier in the pandemic could have waning antibodies,
adding another source of weak positives. For Rounds 4 and 5,
which coincided with the peak of the 2nd wave of the pandemic,
we saw that the value of Cohen’s kappa increased. Following our
hypothesis, this would be due to weak positives making up a
smaller proportion of the number of positive samples.

Alongside ALFA, we developed a toolkit which also detected
device blood leakage issues using projection signatures (signatures
are explained in Supplementary Notes 3, Supplementary Methods).
The toolkit analyses ensembles of participant LFIA responses
generated from their LFIA images, allowing identification of trends
in responses accumulated over thousands of participants in addi-
tion to the individual readings provided by participants. By using
this approach, it was possible to identify a consistent source of error
in participants’ interpretation of a specific assay component of the
LFIA device. Specifically, we identified a tendency to misread the
results when blood exhibited a particular form of leakage pattern
on the LFIA (Fig. 2c). The methods are described in full in Sup-
plementary Notes 4.

Discussion
We have developed a computational pipeline (ALFA) that can
accurately classify the results of the Fortress LFIA for SARS-CoV-
2 antibody detection based on test result images taken and sub-
mitted by over 500,000 participants as part of the REACT-2
community SARS-CoV-2 antibody prevalence study, the largest
study of its kind worldwide9. We demonstrated the potential of
the pipeline to accurately classify LFIA test result images, with an
overall performance comparable to that of a human expert and
slightly higher than that of a study participant, particularly for
weak positive IgG results. This suggests that the ALFA pipeline
can support the identification of mistakes in reading made by
study participants, and as such reduce the number of false posi-
tives and false negatives. At low population SARS-CoV-2 IgG
prevalence, as was seen in the UK prior to high vaccine coverage
but which is also the most likely scenario in countries at earlier
stages in their vaccination programmes, the observed higher
specificity of the pipeline compared to participants will produce
less false positives. This is important for surveillance in low-
prevalence settings so as not to produce overestimates, and as
such, false reassurance with regards to population antibody levels.
Reducing false positives is also beneficial in terms of how indi-
viduals may respond to knowing their antibody status, as an
individual who has an IgG positive test may feel less at risk of
severe disease, and change behaviour accordingly. Higher sensi-
tivity of the pipeline, particularly for weak positive IgG results, is
an advantage in high prevalence settings so as not to under-
estimate the impact of COVID-19 vaccination programmes on
population antibody levels, and therefore to better reflect their
success.

The use of the pipeline in REACT-2 has already played a
critical role in supporting the assessment of the accuracy of
visual interpretation of the self-test by study participants. Based
on ALFA’s ability, compared to REACT-2 participants, to better
detect weak positives, population seroprevalence estimates could
become more accurate, particularly during periods of low
exposure and waning immunity when the prevalence of
weak positives is likely to be greater. Additionally, analysis of
projection signatures generated from LFIA read-out windows

Fig. 3 Comparison between automated lateral flow analysis (ALFA)
pipeline and REACT-2 Study-5 participants. a Cohen’s kappa between the
two 2D Convolutional Neural Network (CNN) algorithms developed as part of
the ALFA pipeline and study participants for REACT-2 rounds 1 to 5
(Respectively for each round, N = 93252, N = 95508, N = 123614, N =
133225, N = 140240). 2D CNN (Classification Experiment 2 (CE2), Blue) and
2D CNN (Classification Experiment 1 (CE1), Orange) indicate strong Cohen’s
kappa, suggesting that participants are very good at reading their own results
throughout the series of surveys. 2D CNN (CE1) is likely to have higher
agreement than 2D CNN (CE2) because CE2 is picking up a greater proportion
of weak positives, some of which are being missed by participants. The ALFA
pipeline suggests substantial agreement between (0.70) participants’ readings
and the ALFA pipeline, providing confidence in the self-reading of fingerprick
blood home self-testing LFIA kits. Error bars represent a 95% confidence
interval. b Estimated prevalence of SARS-CoV-2 Immunoglobin G (IgG)
antibodies in adults in England in the REACT-2 study by i) participant-reported
results (Blue) and ii) ALFA (2D CNN CE2, Orange) automated read-out. Error
bars represent 95% confidence interval, respectively for each round, N =
88557, N = 94291, N = 122211, N = 131327, N = 138200. c ALFA (2D CNN
CE2, Orange bars) estimated antibody prevalence (Respectively for each
round, N = 88557, N = 94291, N = 122211, N = 131327, N = 138200)
overlaying daily new test positive COVID-19 cases (Blue line graph, Data
acquired from GOV.UK here: https://coronavirus.data.gov.uk/).
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(Supplementary Notes 4, Figs. S6, S7, S8) yielded a simple
mechanism to detect blood leakage (Supplementary Fig. S7) into
the read-out window, another potential source of mis-
interpretation by participants. On the face of it, LFIAs seem easy
to read. However, we have demonstrated that it is possible to
obtain seroprevalence read-outs that are more accurate than an
untrained lay member of the public in test result interpretation,
thus lower reading uncertainties, and in uncontrolled capture
conditions. This creates opportunities for patient self-testing for
community serological surveillance and determining antibody
status for SARS-CoV-2 without having to have human experts
manually interpret or check test results. So, in terms of time and
cost, the savings lie in the expert human resources required to
check results manually.

Our results support earlier acceptability and usability studies
undertaken as part of the REACT-2 programme which concluded
that participants’ ability to correctly read IgG status from the LFIA
device was very high but disagreements were most likely due to
weak positives being misread by participants as negative13,14. In
addition, other studies exploring the use of deep learning algorithms
for automated reading of LFIAs have demonstrated good perfor-
mance, including a reduced number of false positives and false
negatives20–22. Turbé et al.20 used deep learning algorithms to
classify images of LFIAs for the identification of HIV and
demonstrated high levels of accuracy (98.9%) compared with visual
interpretation by community health workers (92.1%) using a
human expert LFIA interpreter as the gold standard, in rural South
Africa20. Specifically, for COVID-19, a study exploring the perfor-
mance of a smartphone application that used machine learning to
classify SARS-CoV-2 serological results across 11 LFIA devices
showed high sensitivity (98.9%) and specificity (99.7%) compared to
reading by a human expert22. Although the Fortress LFIA was not
part of that study, it also found the same blood leakage issues with
other LFIA devices that we detected with the Fortress device.
Finally, a UK study on lateral flow devices for SARS-CoV-2 antigen
detection using visual interpretation by healthcare workers staffing
asymptomatic test sites in the community, and healthcare
workers undertaking at-home self-testing found that the use of an
AI algorithm based on machine learning outperformed the
participants21.

Like the studies reported by Beggs et al.21 and Mendels
et al.22, we used multiple networks that split the task of image
analysis. Indeed, our recommendation is that a single network
is not the right approach. One needs a combination of com-
puter vision and machine learning to achieve state-of-the-art
results without exorbitant degrees of manual labelling. Though
the number of images analysed in our study is unprecedented,
we note that a previous study of LFIAs for SARS-CoV-2 anti-
body detection also used another network to classify the device
type22. This is a good idea, and we would suggest that a good
global policy would be to establish a database of device images,
spanning multiple device types and manufacturers to enable
classification to be done. Pre-trained models for interpretation
of specific lateral flow tests can then be retrieved and applied as
appropriate.

Although previous studies demonstrate the feasibility of using
AI to improve rapid diagnostic test result interpretation, the
photographs of the devices were taken by healthcare workers or
technicians who had training20,22. For example, in the blood
serum study reported by Mendels et al.22, the lateral flow device
was mounted using a stand at a fixed distance from the capture
device with controlled lighting; in contrast, the REACT-2 study’s
database consists of images taken by over 500,000 participants
(selected at random from NHS GP lists) with only guidance
from an instruction booklet. Previous studies that have utilised
participant images20 had low population antibody prevalence in

their dataset, partly due to the timing of their data collection. In
contrast, REACT-2 was conducted over several months, yielding
500,000 images with varying population prevalence. At this
scale, we were able to observe a larger number of positive
samples, yielding an estimate of AI sensitivity that is more likely
to be realistic than prior studies. Additionally, previous work
identified “low-contrast” lines (weak positives) that were missed
by human readers. This issue was directly addressed in our study
through a training process for the read-out component of the
ALFA pipeline that incorporated training examples of weakly
positive LFIA results; these samples were identified by expert
review of discrepancies in LFIA reading between vaccinated
participants of REACT-2 and the results produced by an early
iteration of pipeline development. Once trained on these sam-
ples, the ALFA pipeline was better than participants at reading
weak positive results (detecting faint test lines), thus reducing
false negatives, and mirroring earlier findings21. Table 4 sum-
marises the differences between our study (Wong et al.) and
previous works. Alongside the differences in scale and image
acquisition, there were also marked differences in the devices
and biological samples used. For example, the AI LFD
Consortium21 developed the AI and analysed performance for
COVID-19 antigen tests, which use a clear biological sample
(nasal/throat fluid) and therefore the read-out does not have the
visual complexity of a LFIA associated with blood serum sam-
ples due to potential blood splatter and leakage (see Supple-
mentary Notes 4, Fig. S7).

Practically speaking, we believe that the framework of the ALFA
pipeline is translatable to other home testing scenarios. It will be
necessary to retrain segmentation networks for different lateral
flow test devices, but our experience has been that this is easily done
in a single round of home data collection, requiring only markup of
salient regions. Projecting from our results, the training of the read-
out algorithm to high sensitivity requires at least 3000 samples,
with a strong representation of expertly labeled weak-positive
examples. Flagging such samples at the start is therefore important.
Such cases can be identified through examining discrepancies in
early versions of deployment, and adding them to the training set as
“difficult” cases to create the next version of classifier: one should
expect and plan for such iteration to be part of the process. Periodic
retraining of the read-out network is also advisable; we suggest that
such periodic review and training may be triggered by detecting
changes in Cohen’s kappa between users and AI system results.
Other skillsets for teams seeking to implement similar systems
include AI systems architecture, but this should be achievable by IT
teams familiar with electronic public polling.

There are limitations to our study. We have developed the
algorithms to have high sensitivity for IgG positive samples and
achieved performance on par with human expert visual audits.
However, the current deployed version of ALFA does not speci-
fically handle potential sources of error such as slight blurring of
an image, LFIA having blood leakage, LFIA defects or lighting
issues. Given any network may produce unexpected outputs if the
data presented to it is out-of-distribution of its training data, this
is still a risk. Future work will look at utilising the signature
analysis toolkit to collate training examples of these “anomalies”
from the full REACT dataset and train a network which is more
comprehensive at interpreting specific anomalies in the submitted
images.

Since the key aim of this work was to acquire image data to
develop, fully characterise AI accuracy, and to analyse user-errors
in conducting tests, the ALFA functionality has not been engi-
neered into a mobile “App”. Being “App”-free reduces user-facing
support costs in deployment, since the only device functionality
that is required is image upload; this broadened the range of
participants, some of whom might be wary of downloading an
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App, or may not have smartphone access (the sociodemographic
characteristics of REACT-2 Study 5 are noted in Supplementary
Notes 1, Supplementary Discussion, Table S3 and S4). Indeed, we
noted that Webcams or tablets were used to acquire and upload
some results. Focusing on the back-end pipeline also provided the
opportunity to gather information on the types of errors that may
be encountered in acquiring images, which is useful at this stage
of development; outcomes of analysis of user vs algorithm
interpretation will provide insight into how to select upload
resolution, and provide on-device guidance for future App-based
image acquisition systems, and eventually robust App-based
readers.

To our knowledge, with over 500,000 test images in our
library, we have conducted the world’s largest study exploring
the potential of machine learning algorithms to read the results
of LFIAs performed at home by members of the public. The
primary use case for the pipeline is in reviewing the accuracy, at
the population level rather than the individual level, of
participant-reported LFIA test results for estimating SARS-CoV-
2 antibody prevalence. Its application could be to identify and
examine trends that may highlight sources of systematic error or
device failure. These can then inform improvements to study
processes or user instructions. Given the potential for LFIA
devices to be used at scale as part of the COVID-19 response,
even a small improvement in accuracy could reduce the risk of
false positive and false negative result read-outs by members of
the public. The benefits include more accurate estimates of
community prevalence of SARS-CoV-2 IgG antibody, which will
be critical for supporting policy decisions regarding future
COVID-19 vaccination campaigns. Indeed, we have already used
the pipeline in Round 6 of the REACT-2 study to produce more
accurate estimates of seroprevalence. Based on participant read-
outs, the estimated community IgG prevalence in England,
adjusted for the performance characteristics of the test and
weighted to the population, was 61.1%28. The equivalent estimate
using the ALFA read-out was 66.4%. In addition, if future vac-
cination policy is based on an individual’s antibody status, lower
reading uncertainties by providing individuals and clinicians
with more accurate automated readings of at-home self-testing
LFIAs will support better decision-making regarding whom and
when additional vaccine doses should be offered. In this regard,
we expect such a system for automated reading to enable support
of members of the public who are not confident in interpreting
test results from LFIA devices. The computational pipeline could
be adapted to support a similar function for LFIAs used for
SARS-CoV-2 antigen detection. The considerations in this par-
ticular work are specific to the Fortress device for SARS-CoV-2
antibody testing. However, the ALFA pipeline is modular, and
elements can be adapted and adjusted in sequence for new
devices, including LFIAs used in the diagnosis and surveillance
of other diseases.

Reporting summary. Further information on research design is
available in the Nature Research Reporting Summary linked to
this article.

Data availability
For the underlying data, access to this data is restricted due to ethical and security
considerations. To obtain ethics approval from the South Central Berkshire B Research
Ethics Committee (REC) and Health Regulator Authority (HRA), we agreed that we will
preserve the confidentiality of participants taking part in the study and fulfil transparency
requirements under the General Data Protection Regulation for health and care research.
We also agreed that all REACT study data is to be held securely and processed in a
Secure Enclave. This is an isolated environment within Imperial College for the
processing of health-related personal data. It provides a framework that satisfies
Information Governance requirements that come from several sources.T
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The Secure Enclaves are compliant with the requirements of major data providers (e.g.
ONS, NHS Digital and NHS Trusts), as well as flexible to incorporate additional
requirements a group may be subject to. The enclaves are ISO27001 certified.
These restrictions apply to all the study data, both qualitative and quantitative. We do

not allow any line list data to be taken from the secure enclave because of the risk of
cross-referencing and deductive disclosure. A researcher can request access to the data
held in the Secure Enclave by emailing react.access@imperial.ac.uk. Access would be
granted to researchers for the purposes of further research subject to approval by the data
access committee and after signing a data access agreement to ensure no disclosure of
potentially identifying details.
Source data for Fig. 3a, b, and c is available in Supplementary Data 1, 2, and 3

respectively. Figure 3c utilises data from Supplementary Data 2 and 3.

Code availability
Code and additional data to support the figures is freely available on this GitHub repo:
https://github.com/TianhongDai/react2-code. The DOI is provided by Zenodo29.
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