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Stochastic thermodynamics in a non-Markovian dynamical system
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The developing field of stochastic thermodynamics extends concepts of macroscopic thermodynamics such as
entropy production and work to the microscopic level of individual trajectories taken by a system through phase
space. The scheme involves coupling the system to an environment—typically a source of Markovian noise that
affects the dynamics of the system. Here we extend this framework to consider a non-Markovian environment,
one whose dynamics have memory and which create additional correlations with the system variables, and
illustrate this with a selection of simple examples. Such an environment produces a rich variety of behavior.
In particular, for a case of thermal relaxation, the distributions of entropy produced under the non-Markovian
dynamics differ from the equivalent case of Markovian dynamics only by a delay time. When a time-dependent
external work protocol is turned on, the system’s correlations with the environment can either assist or hinder its
approach to equilibrium, and affect its production of entropy, depending on the coupling strength between the
system and environment.
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I. INTRODUCTION

The framework of thermodynamics derives immense
power from its universality, though initially this was lim-
ited only to macroscopic systems. Naturally there has been
much work to extend the framework to smaller systems
where fluctuations are non-negligible and where the power of
universality would be desirable. Nanoscale thermodynamics
is a particularly important area to explore because of the
proximity to length and time scales where reversible dynam-
ical laws might more obviously apply; those from which
irreversibility is supposed to emerge. Various issues in this
regard were raised by Loschmidt and Zermelo over a century
ago and are still discussed today. Significant progress has
been made in recent years towards resolving these problems,
starting with the work of Evans et al. [1–4] in determinis-
tic thermostatted dynamics. The culmination of these efforts
to describe irreversibility is stochastic thermodynamics or
stochastic energetics [5–8]. The treatment of “fast” environ-
mental variables [9,10] provides Markovian (memoryless)
stochastic forces which are the source of irreversibility in
stochastic thermodynamics. In this view, the entropy pro-
duction is a stochastic, path-dependent property, based on
the relative probability of path reversal under the imposed
stochastic and dissipative dynamics. Stochastic entropy pro-
duction has statistical properties which match the properties
of thermodynamic entropy, in particular that its expectation
value monotonically increases with time.

Here we consider a situation where we cannot regard an
environment as a set of fast variables in which we are not
interested. Without this stratification, the environment’s relax-
ation time can be large enough to generate significant memory
effects such that the system’s evolution becomes governed by

a generalized Langevin equation (GLE) [9]. We investigate
this extension using the introduction of an auxiliary system
lying between the system of interest and a Markovian bath, the
source of white noise. The auxiliary system can be interpreted
a mathematical device to generate the memory effects aris-
ing from environments that do not relax sufficiently quickly.
There are numerous advantages to this approach: the memory
effects can be encoded into simple evolution equations of
the auxiliary system, which avoids the complications of an-
alyzing or simulating colored or non-Markovian noise; and
since the system and auxiliary system combined constitute
a single dynamical entity that couples to a Markovian bath,
the total entropy production, heat transfer, and work all obey
the established fluctuation theorems of standard Markovian
stochastic thermodynamics. It’s important to note that, so long
as it can generate the desired memory effects, this “glob-
ally” Markovian setup is a perfectly valid representation of
a non-Markovian environment. We define a non-Markovian
environment as one which causes the appearance of mem-
ory kernels (and colored noise) in the evolution equations of
system variables.

The use of white noise to represent the dynamical influ-
ence of an environment on the system is predicated on two
assumptions. The first is that the environment relaxes much
more quickly than the system. The second is that the environ-
ment contains some mechanism, typically a very large number
of degrees of freedom, which prevents it from meaning-
fully correlating with system or departing from equilibrium
as the system itself equilibrates. In small or strongly corre-
lated nonequilibrium systems, these assumptions are easily
violated. This is a natural extension of the purview of stochas-
tic thermodynamics, and therefore non-Markovian dynamics
and GLEs have received much attention in nonequilibrium
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molecular dynamics and solid state physics [11–14],
nanoscale quantum thermodynamics [15–19], biophysics
[20,21], active matter [22,23], and from a general theoretical
point of view [24–31]. The usage of auxiliary systems (or
reaction coordinates) as an efficient algorithm to generate
non-Markovian dynamics has been independently developed
and implemented multiple times for both classical and quan-
tum systems [11,16,21,32–34]. In particular, the work of
Strasberg [16] contains observations similar to ours, though
in the context of quantum rather than classical systems, and
with an emphasis on work and efficiency rather than entropy
production and stochastic thermodynamics.

In Sec. II we introduce the approach using a simple elab-
oration of the Ornstein-Uhlenbeck process. We discuss the
interpretation of the auxiliary system in Sec. III. We identify
how to approach the Markovian limit of a non-Markovian
environment in Sec. IV. Then we present a series of examples,
starting in Sec. V with a harmonically tethered Brownian
particle undergoing thermal relaxation when coupled to a
non-Markovian environment. We find that non-Markovian
environments cause the production of the same amount of
entropy, only more spread out in time. The next example in
Sec. VI involves a time-dependent external protocol of work
performed on the Brownian particle, and we find there can be
either an increase or reduction in the entropy production and
heat flows, depending on the relative time scales of change
in the protocol and the auxiliary system. Our last example, in
Sec. VII, concerns an untethered particle subjected to periodic
driving, while coupled to an environment, to demonstrate fur-
ther features of thermodynamic response for non-Markovian
noise. Our conclusions are given in Sec. VIII.

II. GENERATION OF COLORED NOISE
FROM WHITE NOISE

The use of white noise makes it simple to derive an
expression for the entropy production, so we are therefore
strongly incentivized to represent non-Markovian dynamics
using white noise. To illustrate such a procedure, we con-
sider a one-dimensional Ornstein-Uhlenbeck process with
unit mass:

dv(t )

dt
= −γ v(t ) +

√
2γ T ξ (t ), (1)

with velocity v, friction coefficient γ , and ξ (t ) the usual Gaus-
sian white noise provided by a heat bath. We have absorbed
the Boltzmann constant kB into the heat bath temperature T
for convenience. This system is called Markovian because
the noise source from the bath has no memory: 〈ξ (t )ξ (τ )〉 =
δ(t − τ ), where 〈·〉 is an average over realizations of the noise
and δ is the Dirac delta. This lack of memory means that the
incremental Itô form of the Ornstein-Uhlenbeck process is

dv = −γ v dt +
√

2γ T dW, (2)

where dW is an increment of the Wiener process. This equa-
tion describes a Markov chain where the evolution depends
only on the current state. Equation (1) is a special case of
what might be a physically more realistic GLE, as derived by
Kubo [10] and others, that includes a retarded friction term

FIG. 1. Schematic diagram of a system that receives the dissipa-
tive and stochastic influence of the Markovian bath via the auxiliary
system interposed between them. Note the discrimination between
the term environment (generic term for those degrees of freedom of
the world that we choose not to perceive) and bath (an entity consist-
ing of a large number of degrees of freedom with an “infinitely fast”
relaxation time). ρ is a time-dependent probability density function
over the dynamical variables of the system and auxiliary system, and
g and γ are coupling constants.

and colored noise. For example:

dv(t )

dt
= −�

∫ 0

−∞
dτ v(τ ) exp[−γ (t − τ )] +

√
2�T η(t ), (3)

where

〈η(t )η(τ )〉 = exp[−γ (t − τ )]. (4)

In this case both the deterministic friction term and the
noise term depend on previous states and the process is non-
Markovian. These equations satisfy the fluctuation-dissipation
theorem of generalized Langevin dynamics [10]. Note that in
the limit γ → ∞, which corresponds to very rapid dissipa-
tion of memory, Eq. (3) reduces to Eq. (1). Non-Markovian
stochastic system evolution is ubiquitous, since environments
do not typically provide memory-free forces to drive the sys-
tem, but Markovian baths are a useful idealization.

We now introduce revised dynamics featuring a new vari-
able, s(t ) (describing the auxiliary system), lying dynamically
“between” the system and the bath:

dv(t )

dt
= gs(t ), (5)

ds(t )

dt
= −γ s(t ) − gv(t ) +

√
2γ T ξ (t ), (6)

where g is a coupling constant. The situation is illustrated in
Fig. 1, for a system with a position coordinate x as well as a
velocity. We can solve Eq. (6) using the integrating factor eγ t ,

s(t ) =
∫ t

−∞
dt ′(−gv(t ′) +

√
2γ T ξ (t ′))e−γ (t−t ′ ), (7)

and substitute this into Eq. (5), giving

dv(t )

dt
= − g2

∫ t

−∞
dt ′ v(t ′) e−γ (t−t ′ )

+ g
√

2γ T
∫ t

−∞
dt ′ ξ (t ′) e−γ (t−t ′ ).

(8)
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Equation (8) takes the same form as (3) if we define the second
integral over the noise as a new colored noise term, η(t ). In
this sense we have used the auxiliary system to modify the
system’s dynamics such that they match Eq. (3), the non-
Markovian equivalent of the Markovian Ornstein-Uhlenbeck
process in Eq. (1).

The situation is as follows: v is a measurable system pa-
rameter (a velocity), and the auxiliary system variable, s, is
part of the environment, which in this case consists of the aux-
iliary system and the heat bath which supplies the white noise.
We postulate that the variable s has even time-reversal symme-
try. The constant g specifies the coupling strength between the
particle’s velocity and the environment, and we note that the
particle only “sees” the bath indirectly through the auxiliary
system. Because v appears in the evolution equation (6) of s,
the dynamics of the environment are correlated with those of
the system. This feature is responsible for the colored noise
and memory kernels in Eq. (8), which is a GLE [9]. When we
call a system non-Markovian, we are referring to those with
dynamical equations of this GLE form, as written down by
Kubo [10], describing dependence of the system coordinate
v on all prior states of itself and the noise ξ . Generating
non-Markovian evolution using the auxiliary system, itself a
microscopic degree of freedom, requires careful consideration
of what is meant by a system and by its environment, as we
shall explore later.

III. INTERPRETATION OF THE AUXILIARY SYSTEM

The degree of freedom s has been designated to be part of
the environment, which suggests that it should be considered
unmeasurable, much like the huge number of degrees of free-
dom which make up the heat bath to which it is connected. The
utility of baths is that their entropy production can be quanti-
fied without needing to measure their microscopic degrees of
freedom.

But for a non-Markovian environment this is not true; its
correlations with the system mean its behavior cannot be
characterized just by its temperature. This is what makes it
more challenging to consider within stochastic thermodynam-
ics, and, of course, all physical environments are to some
degree non-Markovian. But we are not obliged to treat the
auxiliary system as a physical element of the environment:
we can instead simply regard it as a tool that is used in
conjunction with the white noise in order to generate a desired
memory effect in our system [i.e. Eqs. (3) or (8)]. By careful
use of auxiliary systems, one can imagine the construction
of intricate memory kernels while still having a world that,
as a whole, is represented by a Markovian bath (or baths)
connected to some observable degrees of freedom and thus
open to analysis by stochastic thermodynamics.

Some reflection confirms that we are not working at a dif-
ferent level of coarse graining when we introduce an auxiliary
system. Varying the level of coarse graining can change the
degree of production of entropy in a given process since en-
tropy is dependent on uncertainty, and reduces when we better
monitor the evolution of the world. We are merely reformulat-
ing the non-Markovian stochastic equations of motion of the
system in a fashion that allows standard thermodynamic anal-

ysis. The auxiliary system coordinate is a function of system
dynamical variables and a noise, as illustrated in Eq. (7). It is
not an unobservable parameter of a physical bath. The entropy
production arising from the reformulated dynamics is equiv-
alent to the desired entropy production associated with the
non-Markovian stochastic dynamics. For this reason, the tools
of stochastic thermodynamics and in particular the fluctuation
theorems for work and entropy production all automatically
apply to the dynamical quantities of our non-Markovian
systems.

IV. THE MARKOVIAN LIMIT

The superficial similarities between Eqs. (1) and (8) led us
to regard Eq. (8) as the non-Markovian equivalent of Eq. (1).
We now establish their detailed relationship. We will use the
(non-)Markovian case as a shorthand to refer to a system
connected to a (non-)Markovian environment.

Setting the coupling constant, γ , between the auxiliary sys-
tem and the bath very large allows the integrals in Eq. (8) to be
approximated, but the relationship between the fluctuation and
dissipation coefficients in Eq. (8) does not quite match that in
(1). To formulate how the coupling constants should behave
in order to maintain this relationship, we consider what must
happen to the auxiliary system in order for the environment
to be considered Markovian. We assert that, in the Markovian
limit of our models, ds/dt must vanish. The best justification
for this behavior is that if γ becomes very large, the coupling
between the auxiliary system and the bath becomes strong
enough that any disturbance in s brought about by the system
is immediately dissipated.

However, the equivalent Markovian case would not be
recovered in the limit γ → ∞ alone, even though this limit
offers Markovian dynamics of some sort. The reason for this
is as follows. As γ increases, the auxiliary system effectively
loses its dynamical freedom and never appreciably departs
from equilibrium with the bath, no matter the state of the
system. However, the system is not coupled directly to the
bath but just to an auxiliary system that is in a very rigid
equilibrium. In a sense the system is attached to a microscopic
Markovian bath which consists of one degree of freedom, s.

We explore this in Fig. 2 where we study the dynamics of
relaxation of the system velocity v in response to an increase
of the temperature T of the bath for a variety of coupling
strengths g and γ . A microscopic bath at large γ but finite
g would not relax the system to equilibrium as quickly as a
“genuine” (macroscopic) bath in the absence of an auxiliary
system, which is exactly the behavior seen in Fig. 2(a). How-
ever, the dynamics do still become Markovian, as evidenced
by the vanishing correlation between v and s in Fig. 2(c).
By increasing the coupling between the system and auxiliary
system with the heat bath, g, while adopting a large γ to
preserve the auxiliary system’s equilibrium, we can allow the
auxiliary system to transfer enough heat to or from the system
in a way that resembles a macroscopic Markovian bath with
coupling γ̃ . The relationship between these parameters turns
out to be g2 = γ̃ /γ [see Fig. 2(b)].

We can motivate this ratio using Eq. (6). The dissipation
from the bath should instantaneously disperse any fluctuations
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FIG. 2. Evolution of 〈v2〉 according to Eq. (8) for an instan-
taneous change in temperature from 1 to 2 at t = 0, starting at
equilibrium, with various auxiliary system-bath coupling strengths
with (a) the system-auxiliary system coupling g kept constant, (b) the
ratio g2/γ maintained at unity; and with the Markovian evolution of
〈v2〉 according to Eq. (1) at γ = 1 for reference. (c) Evolution of
the system-auxiliary system correlation 〈vs〉 for a range of auxiliary
system-bath coupling strength γ with the system-auxiliary system
coupling g kept constant.

in the auxiliary system coordinate:

ds

dt
= −γ s − gv +

√
2γ T ξ ≈ 0. (9)

We multiply through by g/γ and rearrange:

gs = −g2

γ
v +

√
2g2T

γ
ξ, (10)

and substitute into Eq. (5) to give

dv

dt
= −γ̃ v +

√
2γ̃ T ξ, (11)

with γ̃ = g2/γ . A non-Markovian environment can therefore
be tuned smoothly to behave like a Markovian bath. We refer
to limit of g, γ → ∞ while holding g2/γ constant as the
Markovian limit of the non-Markovian dynamics. We note that
since this limit reduces the relaxation time of s to that of the
bath, the constants γ and g are implicitly a measure of the
auxiliary system’s relaxation time.

V. RELAXATION OF A TETHERED PARTICLE

We now consider a tethered harmonic oscillator of unit
mass coupled to a non-Markovian environment. The spring
constant κ is time independent. The Hamiltonian for this
system is

H (x, v) = 1
2κx2 + 1

2v2, (12)

where x is the displacement, and the mass m has again been
assumed to be unity. This allows us to specify the equilibrium
statistics of the microscopic variables (irrespective of coupling
strengths):

1
2κ〈x2〉 = 1

2 T, (13)

and similarly for v. We postulate that s shares this equilibrium
relationship, i.e.,

1
2 〈s2〉 = 1

2 T . (14)

This gives the equilibrium probability density function (pdf)
of the system plus auxiliary system a Gaussian form,

ρNM
eq (x, v, s, T ) =

√
κ

(2πT )
3
2

exp

(
−κx2

2T
− v2

2T
− s2

2T

)
. (15)

We employ the ansatz that the nonequilibrium probability
density maintains the Gaussian form, and write

ρNM(t, x, v, s) = exp(N − Ax2 − Bv2 − Cs2

− Dxv − Exs − Fvs), (16)

where the coefficients N and A through F are all functions of
time t .

The stochastic entropy production then has incremental
contributions from the system, auxiliary system, and the bath
[5]:

d�stot = −d ln ρNM(t, x, v, s) + d�sbath

= −d ln ρNM(t, x, v, s) − dQ

T
, (17)

where dQ is the incremental heat transferred to the system.
We write the equations of motion in Itô form allow-
ing us to use the expression for d�sbath from Ref. [35].
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We find

dx = v dt, (18)

dv = −κx dt + gs dt, (19)

ds = −γ s dt − gv dt +
√

2γ T dW, (20)

with dW an increment of the Wiener process. The total en-
tropy production (see the Appendix for derivation) is then

d�sNM
tot = −dt

[
2γ − 4γ TC + γ T E2x2 + γ T F 2v2

+
(

4γ TC2 − γ

T

)
s2 + 2γ T EFxv + 4γ TCFvs

]

+ dW
√

2γ T

[
Ex + Fv +

(
2C − 1

T

)
s

]
, (21)

where N and A to F are found by manipulating the Fokker-
Planck equation

∂ρNM

∂t
= −∂vρNM

∂x
− ∂ (−κx + gs)ρNM

∂v

− ∂ (−γ s − gv)ρNM

∂s
+ γ T

∂2ρNM

∂s2
, (22)

as shown in the Appendix.
Similarly, the pdf for the Markovian dynamics is assumed

to take the form

ρM(t, x, v) = exp(Ñ − Ãx2 − B̃v2 − C̃xv). (23)

The Itô equations of motion in the Markovian case are

dx = v dt, (24)

dv = −κx dt − γ̃ v dt +
√

2γ̃ T dW, (25)

and the increment in total entropy production is

d�sM
tot = −dt

[
2γ̃ − 4γ̃ T B̃ + γ̃ TC̃2x2 +

(
4γ̃ T B̃2 − γ̃

T

)
v2

+ 4γ̃ TC̃xv

]
+ dW

√
2γ̃ T

[
C̃x +

(
2B̃ − 1

T

)
v

]
,

(26)

with time-dependent functions Ñ , Ã, B̃ and C̃ as shown in the
Appendix.

The total entropy production along a given trajectory for
both cases with an isothermal bath is given by integrating
Eq. (17):

�stot = −
(
� ln ρ + Q

T

)
. (27)

We consider in this case an instantaneous change in the tem-
perature of the environment (i.e., the auxiliary system plus
the bath) from T0 to T . The system in equilibrium at tem-
perature T0 is brought into contact with the environment in
equilibrium at temperature T , for both the Markovian and
non-Markovian environments. Because the auxiliary system
is part of the environment, the process begins and ends with it
in thermal equilibrium at temperature T , it contributes nothing
to the term � ln ρ once it has regained equilibrium. The term

Markovian
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FIG. 3. (a) Evolution of 〈�stot〉 (in units such that kB = 1) for an
instantaneous change in environment temperature from 1 to 2 and
various coupling strengths, with the mean entropy production of the
Markovian case plotted for reference. (b) The delay time between
the Markovian (γ̃ = 1) and non-Markovian (γ = 1, g = 1) cases that
produce a given amount of entropy [see Eq. (28)].

Q/T therefore determines the difference between the equilib-
rium to equilibrium entropy productions for the Markovian
and non-Markovian cases. The system plus auxiliary system
is closed apart from its thermal contact with the bath and
therefore the heat transfer exactly equals its energy change.
Again, since the auxiliary system starts in thermal equilib-
rium with the bath, the mean system energy change in the
non-Markovian case is the same as that in the Markovian
case. Differences in mean entropy production between the
Markovian and non-Markovian cases can therefore appear
only during nonequilibrium behavior.

The correlations between the non-Markovian environment
and the system mean that the uncertainty in the state of the
environment is lower than that of the equivalent Markovian
environment; we can salvage some information about it from
our knowledge of the system’s evolution. Consequently the
mean entropy production in the non-Markovian case will be
lower than that of the Markovian case for as long as these
nonequilibrium correlations exist. Dynamically speaking, this
means the non-Markovian mean entropy production should
lag behind the Markovian mean entropy production, reaching
the same asymptotic limit but at a later time. Plots of the
mean entropy production 〈�stot〉 during the process are shown
in Fig. 3(a). We can quantify this delay by comparing the
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Markovian mean entropy production, 〈�sM
tot〉, with the non-

Markovian mean entropy production 〈�sNM
tot 〉, as follows:〈

�sM
tot

〉
(t ) = 〈

�sNM
tot

〉
[t + τ (t )]. (28)

The delay time, τ (t ), illustrated in Fig. 3(b), describes how
much later the non-Markovian case will produce the same
amount of entropy, on average, as the Markovian case has
produced at time t . The utility of this quantity will become
clear once we discuss the probability density function (pdf) of
the entropy production.

The pdf of entropy production was calculated by simulat-
ing 100 000 realizations of Eqs. (18)–(20) and constructing
histograms of �stot as a function of time. This probability
density P(�stot ) satisfies the detailed fluctuation theorem [36]
in the non-Markovian case automatically because the system
and auxiliary system combined are attached to a Markovian
source of noise. The equilibrium to equilibrium probability
density of the entropy production is determined by the change
in ρ, which is deterministic, and the probability density of the
heat transfer [see Eq. (27)]. As discussed, the term � ln ρ is
the same between equilibrium states for both the Markovian
and non-Markovian cases. The distribution of heat flow after
equilibrium has been reached is also the same because the
distributions of the variables x and v in the initial and final
equilibrium states are identical. For this reason, the equi-
librium to equilibrium probability densities for the entropy
production should be identical as well. As can be seen in Fig. 4
this is indeed the case. Notice that the entropy production pdfs
have a prominent tail into the negative values. At earlier times,
because of the correlations with the auxiliary system (absent
in the Markovian case), the pdfs necessarily differ.

The nonequilibrium pdfs of the dynamical variables of the
Markovian and non-Markovian cases are not directly compa-
rable because of the correlations between s and x and between
s and v. However consideration of Fig. 5 reveals that, during
relaxation, the pdfs of Markovian and non-Markovian entropy
production adopt the same shapes, albeit at different times.
The difference between these times is exactly the delay time
defined in Eq. (28) and plotted in Fig. 3(b). Therefore the
Markovian and non-Markovian distributions visit the same
sequence of shapes, just at different times.

In summary, the thermodynamics of this type of non-
Markovian behavior suffer a time delay compared to Marko-
vian thermodynamics. We now discuss how non-Markovian
environments can affect the thermodynamics when there is a
time-dependent Hamiltonian.

VI. A DYNAMICALLY TETHERED PARTICLE

The situation we discuss next is a time-dependent spring
constant κ in the tethered system. The Hamiltonian and equa-
tions of motion take the same form as before except with
time-dependent κ (t ). The Fokker-Planck equation accommo-
dates κ (t ) and therefore our generalised Gaussian form for the
non-equilibrium pdf of coordinates given by Eq. (16) remains
employable. The work done on the system by changing the
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FIG. 4. Evolution of the pdfs of the entropy production (in
units such that kB = 1) for an instantaneous change in environment
temperature from 1 to 2, for g = γ = 1, with the pdfs of the cor-
responding entropy production for the Markovian case plotted for
reference.
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FIG. 5. Comparison of the pdfs of the entropy production of the
Markovian and non-Markovian cases (from Fig. 4), offset by the
delay time shown in Fig. 3(b).

spring constant is given by

W =
∫ t1

t0

dt
1

2

dκ (t )

dt
x(t )2. (29)

FIG. 6. 〈�stot〉 for an instantaneous change in κ from 1 to 2
and environmental temperature T = 1. The non-Markovian case has
coupling constants γ = g = 1 and the Markovian case has coupling
constant γ̃ = 1. The asymptotic mean entropy production is given by
Eq. (32).

We consider a linear change in κ between κ0 and κ1 over a
time period �t :

κ (t ) =
⎧⎨
⎩

κ0, t � 0,

κ0 + (κ1 − κ0) t
�t , 0 � t � �t,

κ1, t � �t,
(30)

such that the work done becomes

W =
∫ �t

0
dt

1

2

(κ1 − κ0)

�t
x(t )2. (31)

In the limiting case �t → 0 the work done is 1
2 (κ1 − κ0)x(0)2

and the Markovian and non-Markovian cases will have iden-
tical distributions of work and entropy production for reasons
discussed earlier. The asymptotic mean entropy production in
this case is [36]

〈�stot〉 = 1

2

[κ1

κ0
− 1 − ln

(κ1

κ0

)]
. (32)

The time evolution of the mean entropy production for this
protocol is plotted in Fig. 6. The opposite limit �t → ∞ is
the quasistatic limit. The system and auxiliary system would
in this case never depart from equilibrium with the Markovian
bath, and the entropy production vanishes.

If the spring constant is altered more slowly the mean work
done on the system is smaller. The reason for this is as follows:
the mean increment in work is given by 〈dW 〉 = 1

2 〈x2〉dκ . If
dκ is positive the effect of coupling to the environment is for
〈x2〉 to decrease to match the increased spring constant. There-
fore evolving κ more slowly will reduce the overall mean
work done. The argument for the case when dκ is negative
follows in much the same way. The minimum mean work is
therefore performed in the �t → ∞ limit. Because of this, we
expect the non-Markovian case to see more work performed
on average than the Markovian case when κ is continuously
changed since the effects of the bath on the system are delayed
[making the integrand in Eq. (29) larger for longer as a result].
A higher mean performance of work implies a greater mean
entropy production due to a greater mean transfer of heat into
the bath.
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FIG. 7. 〈�stot〉 for a uniform rate of change of κ from 1 to 2
over different time periods �t , with temperature T = 1. In each case
the non-Markovian case has coupling constants γ = g = 1 and the
Markovian case has coupling constant γ̃ = 1.

The mean entropy production for Markovian and non-
Markovian cases with two protocols of evolution of the spring
constant are shown in Fig. 7. Frame (c) is in accord with
the prediction just described, but in frame (a) the mean
non-Markovian entropy production is lower than that of the
Markovian case. Under the logic just proposed this would
mean that the variable x evolves more quickly towards equi-
librium while the work is being done in the non-Markovian
case. Figure 8 reveals that this is indeed the case: 〈x2〉 drops
more quickly to begin with, though equilibrium is still reached
more slowly. A Markovian bath will always behave the same
way for a given system—it supplies heat according to its
temperature and does not depend on transient correlations
with the system—but depending on the nature of the protocol
it’s clear that an auxiliary system can either delay or quicken
a bath’s influence.

FIG. 8. Evolution of 〈x2〉 for g = γ = 1 in the non-Markovian
case and γ̃ = 1 in the Markovian case, T = 1, and for two differ-
ent values of �t , the duration over which the spring constant κ is
changed from 1 to 2.

VII. A DRIVEN PARTICLE

For our final example we consider an untethered particle
subject to a nonconservative oscillatory driving force. With
this setup we expect to be able to produce a non-equilibrium
oscillatory steady state accompanied by a periodic mean en-
tropy production. The Itô processes defining the dynamics of
the non-Markovian case are as follows:

dv = gs dt − F0 cos(ωt )dt, (33)

ds = −γ s dt − gv dt +
√

2γ T dW. (34)

Here F0 is a force amplitude, ω the angular frequency, and
the driving force performs work on the system given by

dW = −F0 cos(ωt )v dt . (35)

The Markovian equivalent case has equation of motion

dv = −γ̃ v dt − F0 cos(ωt )dt +
√

2γ̃ T dW. (36)

We assume the following form for the non-Markovian
nonequilibrium pdf:

ρNM(t, v, s) = exp[N (t ) − A(t )v2 − B(t )vs

− C(t )s2 − D(t )v − E (t )s], (37)

which in contrast to the previous form contains linear terms in
the exponent. In the Markovian case we use

ρM(t, v) = exp(Ñ (t ) − Ã(t )v2 − B̃(t )v). (38)
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FIG. 9. Evolution of 〈�stot〉 in the periodically driven system
(a) as a function of time in the non-Markovian case with g = γ = 1
and T = 1 for different driving frequencies; (b) as a function of
driving frequency at t = 100 for different coupling constants, T = 1,
and with the Markovian case at γ = 1 for reference. (c) Evolution
of 〈vmax〉, the amplitude of oscillation, as a function of driving fre-
quency at a given time for different coupling constants, with the
Markovian case at γ = 1 for reference.

The increments in total entropy production are

d�sNM
tot = −dt

[
2γ − 4γ TC + γ T E2 + 2γ T BEv

+ 4γ TCEs + γ T B2v2 + 4γ T BCvs

+
(

4γ TC2 − γ

T

)
s2

]
+ dW

√
2γ T

[
E + Bv +

(
2C − 1

T

)
s

]
, (39)

and

d�sM
tot = −dt

[
2γ̃ − 4γ̃ T Ã + γ̃ T zB̃2

+ 4γ̃ T ÃB̃v +
(

4γ̃ T Ã2 − γ̃

T

)
v2

]

+ dW
√

2γ̃ T
[
B̃ +

(
2Ã − v

T

)
v
]
. (40)

After an initial period a nonequilibrium periodic steady
state emerges. Figure 9(a) shows that the time derivative of
the mean total entropy production goes to zero but never
becomes negative, in accordance with the second law of ther-
modynamics. The mean total entropy production oscillates
in the steady state with frequency equal to twice the driving
frequency because the dissipative term in Eq. (34) produces a
positive mean entropy production upon both the acceleration
and deceleration of s. Because this dissipative term −γ s (or
−γ v in the Markovian case) increases as the amplitude s (or
v) becomes larger in magnitude, increasing the driving fre-
quency without also increasing the force will simply decrease
the amplitude and therefore decrease the heat dissipated into
the environment.

Figure 9(b) shows 〈�stot〉 at a given time (t = 100, which
is well within the steady-state regime) as a function of
the driving frequency. The Markovian case agrees with the
prediction just made. However, in the non-Markovian case
the entropy production first increases with frequency before
dropping off as expected. As before, this is a consequence of
the correlations between the auxiliary system that cause the
external protocol (in this case a nonconservative driving force
rather than a change of spring constant) to have heightened
effects [see the amplitude of oscillation in 〈v〉 as a function of
driving frequency in Fig. 9(c)].

VIII. CONCLUSIONS

In summary, we have performed an extension of stochastic
thermodynamics to environments which can correlate with a
system of interest. This was done by interposing an auxiliary
system between the system of interest and a heat bath. The
system thereby feels the influence of non-Markovian noise
while the results of stochastic thermodynamics automatically
apply due to the fact that the system plus auxiliary system are
still coupled to a Markovian bath.

The presence of memory can heighten or dampen the
influence of the environment, depending on the time scales
involved. When there is no time-dependent external work pro-
tocol and the system merely relaxes, the presence of memory
simply serves to delay the equilibration: all distributions of
stochastic entropy production lie on the same continuum of
distributions exhibited by the equivalent Markovian system.
When the external protocol is time dependent, the combina-
tion of non-Markovian thermal coupling and the mechanical
coupling can allow the work and entropy production to either
exceed or be exceeded by those of the equivalent Markovian
system. Because the Markovian approximation is an idealized
limit, these observations shed light into how the thermody-
namics might differ from this idealization in systems where
time scales are not so easily stratified.
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The implementation of unphysical degrees of freedom to
reproduce the desired memory effects circumvents the diffi-
culty in both the theoretical and computational analysis of
memory kernels. The results shown in this work serve as a
stimulus for future studies of non-Markovian stochastic ther-
modynamics using the auxiliary system framework.

APPENDIX: SOLUTION TO FOKKER-PLANCK
EQUATIONS AND DERIVATION OF ENTROPY

PRODUCTION

The Fokker-Planck equation for the harmonically tethered
system coupled to a non-Markovian environment, described
in Eqs. (18)–(20), is

∂ρNM

∂t
= −∂ (vρNM)

∂x
− ∂ ((−κx + gs)ρNM)

∂v

+ ∂ ((γ s + gv)ρNM)
∂s

+ γ T
∂2ρNM

∂t2
. (A1)

Evaluating each of these terms using the trial solution in
Eq. (16), we get

∂ρNM

∂t
= (Ṅ − Ȧx2 − Ḃv2 − Ċs2 − Ḋxv − Ėxs − Ḟvs)ρNM,

(A2)

−∂ (vρNM)

∂x
= −v(−2Ax − Dv − Es)ρNM, (A3)

∂ (κxρNM)

∂v
= κx(−2Bv − Dx − Fs)ρNM, (A4)

−∂ (gsρNM)

∂v
= −gs(−2Bv − Dx − Fs)ρNM, (A5)

∂ (γ sρNM)

∂s
= γ ρNM + γ s(−2Cs − Ex − Fv)ρNM, (A6)

∂ (gvρNM)

∂s
= gv(−2Cs − Ex − Fv)ρNM, (A7)

γ T
∂2ρNM

∂s2
= γ T (−2Cs − Ex − Fv)2ρNM + γ T (−2C)ρNM.

(A8)

From here we can read off the coefficients to ρNM, x2ρNM,
xvρNM etc to write down the evolution equations for N and
A − F :

Ṅ = γ − 2γ TC, (A9)

−Ȧ = −κD + γ T E2, (A10)

−Ḃ = D − gF + γ T F 2, (A11)

−Ċ = gF − 2γC + 4γ TC2, (A12)

−Ḋ = 2A − 2κB − gE + 2γ T EF, (A13)

−Ė = −κF + gD − γ E + 4γ TCE , (A14)

−Ḟ = E + 2gB − gE − γ F − 2gC + 4γ TCF. (A15)

The total entropy production is written d�sNM
tot = d�sNM

sys +
d�sNM

bath. We compute the first contribution from the pdf over

dynamical variables:

d�sNM
sys = −d ln ρNM

= −∂ ln ρNM

∂t
dt − ∂ ln ρNM

∂x
dx − ∂ ln ρNM

∂v
dv

− ∂ ln ρNM

∂s
ds − γ T

∂2 ln ρNM

∂s2
dt, (A16)

where we have used Itô’s lemma. Again, we compute each
term:

−∂ ln ρNM

∂t
dt = −Ṅ + Ȧx2 + Ḃv2 + Ċs2 + Ḋxv

+ Ėxs + Ḟvs, (A17)

−∂ ln ρNM

∂x
dx = (2Ax + Dv + Es)(v dt ), (A18)

−∂ ln ρNM

∂v
dv = (2Bv + Dx + Fs)(−κx dt + +gs dt ),

(A19)

−∂ ln ρNM

∂s
ds = (2Cs + Ex + Fs)(−γ s dt − gv dt

+
√

2γ T dW ), (A20)

−γ T
∂2 ln ρNM

∂s2
= 2γ TC dt . (A21)

The entropy production in the bath is given by dQ/T , where
Q is the heat flow into the bath from the auxiliary system. The
energy of the auxiliary system can change either by this heat
flow or by doing work on the system. To identify these com-
ponents, we examine the energy differential of the auxiliary
system (using Itô’s lemma):

1
2 d

(
s2

) = 1
2 (2s ds + 2γ T dt )

= 1
2 (−2γ s2dt − 2gvs dt + 2s

√
2γ T dW

+ 2γ T dt )

= (−γ s2 − gvs + γ T )dt + s
√

2γ T dW. (A22)

By inspection of the system’s kinetic energy, we can identify
the gvs dt as the differential of the work done by the coupling
between the system and auxiliary system:

1
2 d (v2) =2v dv = −κxv dt + gvs dt . (A23)

The remaining part of Eq. (A22) is therefore the heat flow to
the bath, which allows us to identify the entropy production in
the bath:

d�sNM
bath = −dQ

T

= −d (s2)

T
− 1

T
gvs dt

= dt

(
γ s2

T
− γ

)
+ dW

(
s

T

√
2γ T

)
, (A24)

again using Itô’s lemma. The same expression can be de-
rived using considerations laid out in [35]. Then we substitute
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Eqs. (A17)–(A21) into Eq. (A16), add that to (A24), and then
compare coefficients of terms in dW , dt , x2dt , xv dt etc. Most
of the terms in Eqs. (A9)–(A15) cancel, and the final result is
Eq. (21).

The Fokker-Planck equation for the Markovian dynamical
system described in Eqs. (24) and (25) is

∂ρM

∂t
= −∂ (vρM)

∂x
− ∂ ((−κx − γ̃ v)ρM)

∂v

+ γ̃ T
∂2ρM

∂t2
, (A25)

and as for the non-Markovian case we write

∂ρM

∂t
= ( ˙̃N − ˙̃Ax2 − ˙̃Bv2 − ˙̃Cxv)ρM (A26)

−∂ (vρM)

∂x
= −v(−2Ãx − C̃v)ρM, (A27)

∂ (κxρM)

∂v
= κx(−2B̃v − C̃x)ρM, (A28)

∂ (γ̃ vρM)

∂v
= γ̃ ρM + γ̃ v(−2B̃v − C̃x)ρM, (A29)

γ̃ T
∂2ρM

∂v2
= γ̃ T (−2B̃v − C̃x)2ρM + γ̃ T (−2B̃)ρM. (A30)

Again we read off the coefficients to write down the evolution
equations:

˙̃N = γ̃ − 2γ̃ T B̃, (A31)

− ˙̃A = −κC̃ + γ̃ TC̃2, (A32)

− ˙̃B = C̃ − 2γ̃ B̃ + 4γ̃ T B̃2, (A33)

− ˙̃C = 2Ã − 2κB̃ − γ̃ C̃ + 4γ̃ T B̃C̃. (A34)

We substitute these into the system entropy production:

d�sM
sys = −d ln ρM

= −∂ ln ρM

∂t
dt − ∂ ln ρM

∂x
dx − ∂ ln ρM

∂v
dv

− γ̃ T
∂2 ln ρM

∂v2
dt,

(A35)

where we’ve used Itô’s lemma. Again, we decompose each
term:

−∂ ln ρM

∂t
dt = − ˙̃N + ˙̃Ax2 + ˙̃Bv2 + ˙̃Cxv, (A36)

−∂ ln ρM

∂x
dx = (2Ãx + C̃v)(v dt ), (A37)

−∂ ln ρM

∂v
dv = (2B̃v + C̃x)(−κx dt − γ̃ v dt +

√
2γ̃ T dW ),

(A38)

−γ̃ T
∂2 ln ρM

∂s2
= 2γ̃ TC dt . (A39)

The bath term is

d�sM
bath = −dQ

T

= −d (v2)

T
− κxv

1

T
dt

= −2v dv

T
− γ̃ dt

= dt

(
γ̃ v2

T
− γ̃

)
+ dW

(
v

T

√
2γ̃ T

)
. (A40)

Proceeding in the same way as the non-Markovian case, sub-
stitution and cancellation results in Eq. (26).

Similar procedures are followed to solve the appropriate
Fokker-Planck equations and derive entropy productions in
the other example cases.
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