
Keeping Secrets: Multi-objective Genetic Improvement for
Detecting and Reducing Information Leakage

Ibrahim Mesecan

Iowa State University

Ames, Iowa, USA

imesecan@iastate.edu

Daniel Blackwell

London, UK

daniel.blackwell.14@ucl.ac.uk

David Clark

London, UK

david.clark@ucl.ac.uk

Myra B. Cohen

Iowa State University

Ames, Iowa, USA

mcohen@iastate.edu

Justyna Petke

London, UK

j.petke@ucl.ac.uk

ABSTRACT
Information leaks in software can unintentionally reveal private

data, yet they are hard to detect and fix. Although several methods

have been proposed to detect leakage, such as static verification-

based approaches, they require specialist knowledge, and are time-

consuming. Recently, HyperGI introduced a dynamic, hypertest-

based approach that detects and produces potential fixes for infor-

mation leakage. Its fitness function tries to balance information

leakage and program correctness, but as the authors of that work

point out, there may be a tradeoff between keeping program se-

mantics and reducing information leakage.

In this work we ask if it is possible to automatically detect and

repair information leakage in more realistic programs without re-

quiring specialist knowledge. Our approach, called LeakReducer ex-

plicitly encodes the tradeoff between program correctness and

information leakage as a multi-objective optimisation problem. We

apply LeakReducer to a set of leaky programs including the well

known Heartbleed bug. It is comparable with HyperGI on their toy

applications. In addition, we demonstrate it can find and reduce

leakage in real applications and we see diverse solutions on our

Pareto front. Upon investigation we find that having a Pareto front

helps with some types of information leakage, but not all.

CCS CONCEPTS
• Software and its engineering→ Search-based software en-
gineering; Search-based software engineering; • Security and
privacy→ Software security engineering.

KEYWORDS
Genetic Improvement, Information Leakage, Search-Based Software

Engineering, Automated Program Repair

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASE 2022, 10 - 14 October, 2022, Ann Arbor, MI
© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
IbrahimMesecan, Daniel Blackwell, David Clark,Myra B. Cohen, and Justyna

Petke. 2022. Keeping Secrets: Multi-objective Genetic Improvement for

Detecting and Reducing Information Leakage. In Proceedings of The 37th
IEEE/ACM International Conference on Automated Software Engineering (ASE
2022). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.

nnnnnnn

1 INTRODUCTION
Information leakage from programs has led to high profile security

bugs such as the Heartbleed bug.
1
Typically, information leaks from

a program when either it contains information flow control (IFC)

errors or when a data structure such as a buffer or stack can be

accessed in an unbounded manner. The Heartbleed bug was due to a

problem in the OpenSSL cryptographic library. When pinged with a

malformed query, it was possible to read past the buffer and return

unencrypted data from the server’s memory, hence providing a

backdoor for eavesdropping on network traffic. This bug existed for

several years in a library used by programs and servers worldwide.

While it represents a common type of information leakage, more

subtle IFC leaks can occur, and these may also lead to exposure of

private information.

Take, for instance, the program below which accepts an integer

variable var and returns 0, 1 or 2. It has two predicates, one which

compares var against a variable called magic_number and one that

uses the value of a secret variable (protected_var).
int leaking_secrets(int var){

...
if(var > magic_number}{

leak_info=2;
}
else if(var < protected_var){

leak_info=1;
}
else

leak_info=0;
...
return leak_info; }

An important part of information leakage is setting a security

policy (beyond the scope of this work). Based on a given security

policy, we can assume that 1) var and magic_number are publicly
known (a.k.a low security variables), and 2) protected_var is con-

sidered high security; it is a secret. Based on this policy, it is not

hard to see that repeated querying of this program with different

1
https://heartbleed.com/

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://heartbleed.com/

ASE 2022, 10 - 14 October, 2022, Ann Arbor, MI Trovato and Tobin, et al.

values of var can expose information about protected_var. Let’s
assume magic_var=6 and protected_var=5. If we run the pro-

gram repeatedly using the inputs 8, 3, 5, we get different return

values of 2, 1, 0. If we then evaluate this using numbers 0, 1, 2, we

get return values of 1, 1, 1. This gives us information about the

content of protected_var, i.e. information is leaking. As we can

see, the value of magic_number could impact the visibility of this

information. Even in this simple program the ability to discover the

leak dynamically depends on multiple variables (and control flows).

If, for instance, magic_number is set to a large negative value, then

for most inputs of var no information about protected_var will
be revealed. The program always returns 2.

Finding information leakage in programs is non-trivial, with

the most common approach being static analysis [23, 39]. There

have also been some combined static/dynamic techniques [34], but

these have not necessarily been applied to real-world programs

nor can they provide patch suggestions if the problem is found.

Moreover, as we show in our study, current techniques may be able

to detect information leakage related to memory overflows, but

they may still miss those related to a program’s control flow as is

exemplified in the example program leaking_secrets. Mechtaev

et al. [29] were able to use automated program repair to fix the

Heartbleed bug suggesting automated ways to handle these types

of faults. However, that work assumes the leakage would break

program functionality and requires failing test cases. Following

earlier work [31], we call such tests functional tests. Information

leakage can occur even if a program passes all functional tests,

making information leakage difficult to detect and fix.

More recently, Mesecan et al. [31] presented an approach called

HyperGI which uses hypertests and genetic improvement to first

detect and then repair information leakage in programs. While

this work makes some advances in reducing information leakage it

has several drawbacks. We contacted the authors for artifacts and

learned that: (1) HyperGI was applied only to small functions (less

than 40 lines of code) (2) and results obtained were not from a fully

automated setting, as user had to insert some domain knowledge

(i.e., extra variables with their types) to be used during search.

A key finding the authors of HyperGI point out in their paper, is

that the patches produced present a tradeoff between preserving

original functionality (as exposed by functional tests) and reducing

information leakage (as exposed by hypertests). Returning to our

example, the only way to reduce information leakage completely,

would be to change the predicate related to protected_var. How-
ever, that changes the initial intended program and some functional

tests are likely to fail. This suggests repairing information flow

leakage should be viewed as a multi-objective problem. We should

consider the option of balancing the leakage of secrets with the

need for particular program behavior.

In this paper, we present an automated multi-objective frame-

work for estimating and reducing information leakage. It requires

only a program and its security policy. We implement our approach

in LeakReducer. Moreover, we improve upon HyperGI by: (1) using

multiple functional test sets as input; (2) using automatically derived

repair ingredients; (3) including both single and multi-objective

search strategies; and (4) scaling to real programs. We have evalu-

ated LeakReducer on the prior subjects from HyperGI as well as

on three other programs, including two modules from the OpenSSL

library. We were able to both detect and reduce leakage in two files,

each around 1,000 lines of code, including the original Heartbleed

bug. One of our detected leaks in a real-world program turned out

to be a false positive (confirmed by developers), but it points to a

different use case and class of information leakage faults which we

aim to study as future work. Furthermore, we examine the qual-

ity of Pareto fronts for different multi-objective algorithms, and

explore a few interesting patches in depth.

In summary, the contributions of this work are:

1. An automated multi-objective approach, LeakReducer, for

finding and reducing information leakage;

2. An empirical study demonstrating the effectiveness of

LeakReducer; and

3. An evaluation of patch diversity produced by LeakReducer,

detailing tradeoffs between change in original semantics of

the given program and reduction in information leakage.

2 BACKGROUND AND RELATEDWORK
The information flow control problem of maintaining data confi-

dentiality across program executions has a long history, part of

which was surveyed in the early 2000s by Sabelfeld and Myers [38].

Software should be designed so that it obeys a security flow policy,

or noninterference policy: low security users should not be aware

of the actions of high security users [20]. As in this paper, security

policies are often expressed in terms of two classes of user, high

and low, although it is allowable that they be arbitrarily complex

as in Dorothy Denning’s lattice model [17].

We can partition data, e.g. a memory state in an imperative

program, using High/Low labels, then use the partition to formally

define the noninterference property for the program and security

policy pair. We say that a pair of states, 𝑠1, 𝑠2, are low equivalent,

𝑠1 ≡𝐿 𝑠2, if the parts of the states labelled Low are the same.

Definition 1 (Noninterference property). A program 𝑃 sat-
isfies the noninterference property for the High-Low security policy if
for every pair of initial states 𝑠1, 𝑠2, 𝑠1 ≡𝐿 𝑠2 ⇒ 𝑃 (𝑠1) ≡𝐿 𝑃 (𝑠2).

In this flow and termination insensitive definition, noninterfer-

ence means the program maps all low equivalent initial state pairs

to low equivalent final state pairs.

Noninterference is not a property of single executions but of

pairs of executions. Clarkson and Schneider generalised this idea,

calling such program properties hyperproperties as they are only

expressible using sets of sets of executions [14]. The “preservation of

low equivalence” property partitions all distinct pairs of executions

that begin in low equivalent states into the set of pairs that preserve

the low equivalence in the final states and the set of pairs that do not.

The noninterference property says that the latter set is empty. If it is

not, information leaks from the High labelled parts of initial states

to the Low labelled parts of final states. This last observation leads

to what Kinder called Hypertests [24], using pairs of low equivalent

inputs with differing high inputs with a “built in” oracle that fails

the hypertest if the outputs are not low equivalent. This is the

method we use to detect information leaks in this paper. To repair

information leaks, we need to estimate leak size.

2.1 Quantified Information Flow
Historically, much of the research focus on how to check that code

obeys its designated security policy has been heavily influenced by

Multi-objective GI for Detecting and Reducing Information Leakage ASE 2022, 10 - 14 October, 2022, Ann Arbor, MI

Volpano, Irvine, and Smith’s work on security type systems [48].

This has led to tools such as the Jif compiler and IDE [7]. One

difficulty lies not in the type system approach itself, but in the non-

interference property, recognised to be overly restrictive for real

programs – for example, a password checking program famously

will not satisfy the property for a security policy that protects

the correct password. Attempts to ameliorate this restrictiveness

include adding declassification to type systems [11] and Secure

Multi Execution of programs which guarantees that low users can-

not learn confidential information no matter whether the program

satisfies the security policy or not [37]. Relevant to this paper is

research in Quantified Information Flow (QIF) using information

theory which had the original aim that quantitative security policies

could allow information to leak, but only in a bounded way [4, 12].

While it was eventually realised that bounding QIF or exact calcu-

lation of QIF for programs is, in the worst case, computationally

feasible though intractable (see Terauchi and others [51]), the at-

tractiveness of the idea means research continues on approaches

to the bounding problem [10].

We, however, aim to detect the existence of a leak via hypertesting,
localize its cause in the code, then use Genetic Improvement (GI) to

eliminate or reduce the leak size. The localization and elimination

steps rely onQIF estimates but we do not need to provide guarantees

for the leak bound.While it is true that eliminating leaks completely

is provably equivalent to satisfying noninterference [13], as a test-

based methodology, we do not guarantee the absence of leaks, only

that we may find and fix them.

We follow Mesecan et al. [31] in using the conditional Shannon

entropy of Low outputs given Low inputs as the measure of leakage,

then estimating this using test sets that we assume are sampled

from a discrete uniform distribution. Ultimately, the fundamen-

tal definitions were provided by Shannon [16], and the leakage

definition by Clark, Hunt and Malacaria [13]. In what follows we

present two leakage definitions and comment on how they relate

to programs and security policies.

Definition 2 (Leakagemeasure for deterministic programs).

Let 𝐻 and 𝐻 ′ be the random variables in the high parts of the initial
and final states of program 𝑃 , respectively while 𝐿 and 𝐿′ are the
corresponding random variables in the low parts. Then if 𝑃 is deter-
ministic program and high and low parts partition each state, L(𝑃),
the leakage from 𝐻 into 𝐿′ for 𝑃 is given by L(𝑃) = H(𝐿′ |𝐿) where
H is the Shannon entropy of a random variable.

This measures the information that flows from a random variable

in the high part of the initial states to another random variable in

the low part of the final states, on the following assumptions: (1)

we account for all contributions to the initial states, (2) these are

partitioned between high and low, and (3) the program is deter-

ministic; once we account for the low part of the initial states any

remaining entropy in the low part of the final states must be due to

the high part of the initial states.

The advantage in this specialized definition is that you do not

need to know anything about the random variable in the high

part of the initial states. But its underlying assumptions break if

some other source of information correlates with the low part of

the final state during execution. In particular, use of the definition

in a test-based scenario can be sensitive to external and internal

nondeterminism during executions, e.g. changing configuration

parameters or race conditions in threads. In the presence of noise,

Clark et al. recommend using the more general definition, L(𝑃) =
I(𝐻 ;𝐿′ |𝐿), and show that the two definitions are equivalent under

the assumptions [13].

In ourmethod, because we don’t need a precise bound on leakage,

some flakiness in hypertests is tolerable. The tradeoffs inherent

in multi-objective solutions will not always include reducing the

leakage to zero. Also, using a definition that is agnostic about the

entropy in the high part of states allows us to perform experiments
where control and observation is partial as opposed to true testing

where control and observation is complete. A common security

policy for Unix utilities is to label inputs and outputs low and

designate data in the memory of the process as high [27].

While much software is open source, security policies tend to

be implicit at best and certainly not open source. We thus re-use

ones from previous work [31], outlining others in Section 4.1.

2.2 Related work
Mesecan et al. [31] were the first to use hyper-testing and genetic

improvement to detect and fix information leaks in software. They

demonstrated the initial promise of this approach on a small set

of programs. However, by using a single-objective approach, their

method necessarily folded tradeoff decisions between leakage and

functionality into their chosen fitness function. We believe that this

tradeoff should be available to developers and consequently that

leakage repair should be based on multi-objective search.

In order to achieve good repair results Mesecan et al. reported

user input was necessary. In particular, the user had to add ingredi-

ents (e.g., variables) to the search engine to help find a repair. We

have automated all the steps of that previous work. All the user is

required to provide is a program and its security policy to apply

our approach.

Some interest in hypertesting programs for information leaks

has been evident in the fuzzing research community though, rather

than focus on semantic leaks as we do, the interest has been in side

channel leaks. CT-fuzz [21] and QFuzz [35] are examples of recent

research in this area. Neither deals with automating repair. CT-

Fuzz looks for failing hypertests as evidence of leakage. Its oracle is

coarse, with an observation power limited to path divergence but in-

cluding timing differences. QFuzz uses a leakage measure based on

min entropy to analyse the size of leaks from timing channels. Our

work relates to that of the automated program repair community

but our methodology is very different. There does exist work on

automated program repair in the side channel leakage community,

for example Athanasiou et alia’s work [8]. This work ultimately

derives from Agat’s work on masking timing channels [3] but is

more sophisticated, exploiting creation of statistical independence

in the representation of secret data to do the masking.

3 LEAKREDUCER
We now present our framework for multi-objective information

leakage reduction, LeakReducer. Figure 1 shows an overview.

First, a user needs to provide a program and a security policy

(stage (a) in Figure 1). Next, LeakReducer requires two test sets:

(1) a hypertest set, described in Section 3.2, stage (b) in Figure 1;

and (2) a functional test set, described in Section 3.1, stage (c) in

ASE 2022, 10 - 14 October, 2022, Ann Arbor, MI Trovato and Tobin, et al.

(a) Security
Policy

(b) Generate HyperTests

(c) Generate Functional
Tests

Leak
Detection
Algorithms

Automated Test
Generation
Algorithms

(d) Genetic
Improvement

Single
Objective
Algorithms

Multi-
Objective
AlgorithmsOriginal

Program

Improved
Program(s)

Figure 1: Overview of LeakReducer. The starting point is a potentially leaky program. First a security policy is used to generate
hypertests for leak detection. Automated test generation is used for functional tests. Using these test suites the program is
improved using either a single or multi-objective algorithm. The result is either a single program or a Pareto front (PF) of
programs from which the developer can choose.

Figure 1. The functional test set is used to check whether current

functionality is preserved; and the hypertest set is used to quantify

information leakage. Assuming the hypertests discover a non-zero

information leak, then, the repair stage, stage (d) in Figure 1, can

start. This stage follows the usual genetic improvement process

(Section 3.3): localization of the most promising parts of program for

optimization (in our case leak reduction, described in Section 3.3.2);

generation of candidate patches, (Section 3.3.3); and search over

the generated patches guided by a fitness, (Section 3.3.4). Finally,

we discuss implementation details in Section 3.4.

3.1 Automated Functional Test Generation
We automatically generate test sets that capture the current func-

tionality of the given software. Any existing test suite could be

used, but such tests are not always available. For instance, no tests

covered the faulty function in OpenSSL before the Heartbleed bug

was discovered. We always assume a real-world scenario where

it’s simply unknown whether a bug exists or not and discover any

problems using hypertests, in contradiction to, say, Mechtaev et

al. [29] where their automatic repair of the HeartBleed bug was

reliant on test cases only added after the bug was discovered.

There is a plethora of automated test generation techniques to

choose from [6, 19, 49]. We decided to use fuzzers due to their

increasing popularity both in academia and in industry [32], effec-

tiveness at finding software vulnerabilities [28] and programming

language independence. We have, however, introduced two im-

provements described below.

Intuitively, normal use of a given program is unlikely to trigger

information leaks (assuming the developers did their due diligence).

It is the rare, perhaps malicious, inputs that are likely to reveal

such faults. Grey-box fuzzers generate inputs, driven by the goal

of maximizing code coverage, and might sometimes miss such

rare events. Therefore, we use a program transformation technique,

HashFuzz [30], in conjunction with a fuzzer to increase the diversity

of generated inputs for one of our test generation techniques. Given

the rare nature of leakage triggering paths, and inability to rely

on coverage feedback for discovering leaks, we felt that increased

input diversity could be key to automated discovery of future leaks.

Moreover, we noticed that even with HashFuzz certain branches

can be missed. As an example, Atalk [22] (one of our subject pro-

grams) has a branch that is only reachable by matching a 32-bit

variable with a specific constant: TCP_ ESTABLISHED. If the fuzzer
was only generating values for this particular 32-bit variable, then

the probability of discovering this branch for each generated input

would be just 1/232. To further increase code coverage we allow

for the user to provide input seeds as a basis to begin fuzzing.

3.2 Automated Hypertest Generation
As shown in previous work [31], traditional tests are not always

able to reveal information leaks. Therefore, hypertests are needed to
detect and measure the amount of leakage from the target program.

We use the same strategy as Mesecan et al. [31]. In particular, given

a security policy, LeakReducer conducts a binary search on the low

variable values. A random value is selected from each half of the

low value range in bits. To create hypertests, for each selected value

a similar search is conducted on the high value range. The process

is repeated until we reach a fixed number of low and high values. If

no leak is found, we repeat the process with a different budget. The

search spaces can be huge, hence we restrict the number of values

(and thus hypertests) we sample during this process.

3.3 Genetic Improvement
Once LeakReducer has generated functional (Section 3.1) and hyper-

test (Section 3.2) test sets, we can define the fitness functions which

will guide the search algorithms in the leak reduction stage (stage

(d) in Figure 1). This stage utilizes Genetic Improvement (GI) [36]

Multi-objective GI for Detecting and Reducing Information Leakage ASE 2022, 10 - 14 October, 2022, Ann Arbor, MI

to find improved program versions. The following subsections de-

scribe each of the steps of the process.

3.3.1 Fitness Function. The aim of LeakReducer is to find a patch

that will reduce information leakage, whilst preserving software

functionality. Since the two objectives can be in conflict with each

other (albeit not always), we need to quantify them separately.

The first objective is quantified by the pass rate of the functional

tests. These should all pass when run on the unmodified program,

as they are used as a proxy for the intended program behaviour.

The second objective is quantified by using a hypertest set to

estimate the leak size. We use the same calculation as HyperGI [31]

(see Definition 2 in Section 2), and henceforth use QIF to refer to

estimate for quantified information leakage.

3.3.2 Leak Localization. Before starting the search process, possi-

ble leak locations need to be identified. Similar to previouswork [31],

we use a lightweight form of dynamic analysis for this purpose,

albeit on the whole leaky file not just the function. Based on the

security policy, we first identify the file where leakage occurs. Next,

we remove each statement from the target, one-by-one, and observe

the impact on QIF when the hypertests are run. When a statement

is removed, if the program fails to compile or run, then QIF for that

statement is assumed to be zero. Otherwise, we calculate and store

the absolute change in QIF of this modified program from the orig-

inal. Finally, statement leakages are normalized with respect to the

highest absolute difference. The higher the absolute difference, the

greater the probability that the fault is coupled with that statement.

We use these probabilities during the search process to prioritize

statements that have higher impact on information leakage based

on this analysis. The assumption is that changes to those statements

should have highest impact on (and hopefully reduce) the leakage.

3.3.3 Patch Generation. Once we identified statements that have

influence on information leakage, we mutate them to create new

program variants. In genetic improvement the standard mutation

operators simply insert, delete and replace software fragments, e.g.,

code statements. We observe that information leakage problems

are caused by information flow between low and high variables in

a given program. Therefore, aside from traditional GI operators,

we use the NewIf and NewFor mutation operators, introduced in

Mesecan et al. [31]. In LeakReducer, we fully automate this step of

the process. In order to create a new statement, we need expressions

to populate the parentheses for for and if statements. To reduce the

search space, we construct comparison expressions using existing

identifiers and type match them, so that, e.g., a number is compared

with another number. In Mesecan et al. [31] the user was prompted

to provide such information. For both NewIf and NewFor, the body
statement to be executed is selected from existing code. The NewIf
comparison operator is selected at random.

3.3.4 Search Strategies. Another improvement we introduce over

HyperGI is the option to choose between multiple search strategies,

including multi-objective search. We aim to reduce both 1) the

number of failing test cases, i.e., fail_rate and 2) information flow

leakage, measured with𝑄𝐼𝐹 . The optimal solution will reduce both

of these quantities to 0.

3.3.5 Single Objective Optimization. The single-objective search
option uses the same fitness function as HyperGI [31].

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = (𝑓 𝑎𝑖𝑙_𝑟𝑎𝑡𝑒 + 𝑄𝐼𝐹𝑖

𝑄𝐼𝐹0
)/2 (1)

As can be seen from equation 1, this fitness function balances the

two objectives: fail_rate and normalized 𝑄𝐼𝐹 where 𝑄𝐼𝐹0 is the ini-

tial leakage (𝑄𝐼𝐹0 > 0), and 𝑄𝐼𝐹𝑖 is the leakage of current program

variant (𝑄𝐼𝐹𝑖 ≥ 0).

3.3.6 Multi-objective Optimization. In multi-objective optimiza-

tion, there are several objectives where maximizing (or minimizing)

one objective may have conflicting results with other objectives.

LeakReducer has two objectives: reducing the information leakage

and preserving intended functionality.

LeakReducer’s multi-objective [15] setting thus reports a list of

non-dominated Pareto front solutions, where every solution in the

list is better than the other solutions in at least one objective. This

provides the decision maker with more options to choose from.

3.4 Implementation Details
In order to implement LeakReducer, we extended an existing ge-

netic improvement framework, PyGGI [5] and integrated it with

the JMetalPy framework for multi-objective optimization [9]. This

integration was a non-trivial task, as it required integration of

frameworks with different architectures. PyGGI provides us with

the GI framework, while JMetalPy provides differentmulti-objective

algorithms and Pareto front quality metrics.

For functional test case generation, we investigated several state-

of-the-art fuzzing strategies (Section 3.1). We use AFL++ 3.12 [18]

which consistently ranks amongst the best fuzzers in terms of

program exploration ability [33]. The HashFuzz transformation was

also applied to the tested programs, and these were fuzzed using the

same setup as the untransformed programs. We also tested manual

seeds for both fuzzing variants, to increase path coverage (we refer

to this as Test Augmentation - abbreviated to TA). Thus we had

four set-ups: AFL, HashFuzz, AFL+TA, and HashFuzz+TA.

Lastly, we built an automated identifier extractor for patch gen-

eration (Section 3.3.3). We use Universal Ctags [47] (or ctags for
short) to extract an initial set of variables with their types from

the target files. To enrich ingredients, we exploit PyGGI’s internal

program representation (tagged XML) to extract expressions. We

then use a custom function that infers their type. For example, as-

sume we have the following statement: int len = 2 * y, dist;
ctags detects len and dist and deduces that these are both integers.
From this, we can infer that 2 * y returns an integer.

4 EVALUATION
Our aim is to provide an effective automated tool that can estimate

and reduce information leaks in real-world software. We therefore

ask three research questions to evaluate LeakReducer. Our first

question focuses on detection of information leakage:

RQ1: How effective is LeakReducer at detecting information
flow leakage in a given program?

We compare LeakReducer’s leak detection algorithm against a

state-of-the-art fuzzing tool, using different test seeding strategies.

Our next RQ focuses on comparison with HyperGI:

ASE 2022, 10 - 14 October, 2022, Ann Arbor, MI Trovato and Tobin, et al.

RQ2: How effective is LeakReducer at reducing information
flow leakage using a single-objective algorithm?

Even if LeakReducer is successful at reducing leakage using

single-objective search, we still need to answer our key hypothesis:

that we need to balance leakage and functionality. Thus we ask:

RQ3: How effective is LeakReducer at reducing information
flow leakage using a multi-objective algorithm?

We use multiple multi-objective algorithms and examine the re-

sults from a qualitative perspective, to see if several viable solutions

are found on the Pareto front.

4.1 Benchmarks
We use six programs for our study, with associated security policies.

We present these in Table 1. The first three programs are the same

that were used inMesecan et al. [31]. Two of these have been used in

prior research on information leakage [22] and have been reported

in the Common Vulnerabilities and Exposures (CVE) database [41].

The classify program is similar to the triangle program, in that it

outputs a class depending on the input parameters. In contrast to

the triangle program, however, the input space is further divided -

rather than 3 possible outputs (scalene, isosceles and equilateral)

in triangle, there are 11 in classify. We introduced this program to

specifically show tradeoffs between leakage and functionality loss.

The last two programs are real programs meant to show the scal-

ability and practicability of LeakReducer. Both are taken from the

OpenSSL library [42, 43]. The first is: dtls1_process_heartbeat
function from openssl-1.0.1f containing the Heartbleed bug.

For our second program, we chose another OpenSSL library,

but one that has no known leaks. We first examined functions

within the OpenSSL crypto directory, and then looked for functions

which possibly have interaction between low and high security

information where a security policy might be needed. We looked

for a function that had a similar signature to Hearbleed to ensure

we could create a realistic security policy. In the same version

of OpenSSL we found the BIGNUM *BN_bin2bn() function in the

𝑏𝑛_𝑙𝑖𝑏.𝑐 file of the BigNum library. This function is one of the data

entry functions to the library and has the possibility of facilitating

interaction between high and low privileged users’ information.

Given the similarity between Heartbleed and BigNum, security

policy creation was straightforward (see Table 1). Although, we

used openssl-1.1.1j [44] in our tests, the same function is still

in use in up-to-date OpenSSL versions.

4.2 Experimental Protocol
Next, we describe the methodology we use to answer our RQs.

4.2.1 Automated Test Generation. To answer RQ1 about LeakRe-
ducer’s effectiveness in finding information leaks, we automatically

generate two types of tests: functional (Section 3.1) and hyper-

tests (Section 3.2). Although we use functional tests primarily to

establish intended program behaviour, such tests might also reveal

information leakage. In particular, we use AFL fuzzer’s address san-

itizer [26] option, which allows detection of subtle memory access

issues (such as out-of-bounds or use-after-free).

We use four different Fuzzer-Test Setups (FTS): 1) AFL 2) AFL-TA

3) HashFuzz and 4) HashFuzz-TA, as discussed in Section 3.1. For

the Test Augmentation (TA) phases we use up to 2 manual seeds,

to reach the hard to find paths that fuzzing may miss. We first run

each fuzzer-test setup 5 times with the AFL_EXIT_WHEN_ DONE

option. With this option set, AFL automatically terminates when

all discovered paths have been fuzzed many times without any

new path being found [2]. From these first 5-runs, we identified

the max fuzz-time. Then, to maximize path coverage, we run each

fuzzer-test setup 5 times again for max fuzz-time seconds.
To generate hypertests we use the algorithm described in Sec-

tion 3.2. Initially we use a budget of 250 tests. If we do not find

leakage, we double the budget. Fortunately for our subjects we only

needed to increase the budget once, for the Triangle program.

For each of the test sets we report on the number of unique test

cases produced, generation time budgets, crashes found (whether

they reveal leaks or not), as well as QIF values for hypertests.

4.2.2 Parameter Tuning. Since genetic programming has been the

dominant search strategy in GI [36], we use it in LeakReducer’s

single-objective setting. However, it’s not obvious which parameter

settings would be optimal for our particular application domain.

Therefore, we conduct parameter tuning on the four smaller sub-

jects, (i.e., Triangle, Classify, Atalk and Underflow) before running

the information leakage reduction stage of LeakReducer. In particu-

lar, we vary: population size — between 20 and 100, in 20 increments,

as these are the min and max found in the GI literature — and mu-

tation and crossover rates — each tried with four values: 0.25, 0.5,

0.75 and 1. We use a budget of 2, 000 program variant evaluations

for each setting. Moreover, we repeat each setup 5 times, to ac-

count for the heuristic nature of GP. Overall, we test 5 ∗ 4 ∗ 4 = 80

configurations of single-objective LeakReducer for each of the 4

test-fuzzer setups for each of the 4 test subjects, repeated 5 times

each, resulting in a total of 6, 400 individual runs.

Recall that we use functional test fail rate and QIF from hyper-

testing to calculate the fitness value of each program variant. Thus,

in order to fairly compare runs which use different functional test

sets, we combine all 4 test sets for evaluation of the best individual

found in each run. This is not an issue for hypertests, which are

generated once per subject. We use the ANOVA test [45] on fitness

values to test whether there is a difference in means among all

configurations or not. We also test the difference in means for each

configuration using the Student’s t-test [46].

4.2.3 Leak Reduction. To answer RQ2 and RQ3 about LeakRe-

ducer’s effectiveness at leak reduction, we run LeakReducer’s GI

stage using two search strategies: single- and multi-objective. We

set the GI budget to 10, 000 evaluations.We repeat each repair run 20

times. As before, the fail rate in the reported final fitness calculation

is based on runs of the combined set of all functional tests.

Single-Objective Optimization We use the best parameter

settings from the tuning stage for each of the functional test sets

for each of our subject programs. We record the fitness values,

runtimes, as well as functional test fail rates and QIF values. We

also re-run evolved individuals from the HyperGI work (thanks to

the authors for releasing those to us).

Multi-ObjectiveOptimizationWe selected fourmulti-objective

optimization algorithms: NSGAII, NSGAIII, MoCell and SPEA2. We

selected the first three, as they showed good performance in recent

work [40]. We added SPAE2, since it proved successful in improve-

ment of non-functional properties of software using genetic im-

provement [50]. Based on Li et al. [25]’s guidance, we report the

Multi-objective GI for Detecting and Reducing Information Leakage ASE 2022, 10 - 14 October, 2022, Ann Arbor, MI

Table 1: Study subjects. For each we provide: a reference; the lines of code in the file containing the function of interest (which
LeakReducer targets); a CVE number if information leakage was reported for this function; and the security policy used, with
parameters from the function’s signature and function return values.

Security Policy
Subject Ref LoC CVE-# High input Low input Low Output

Triangle [31] 14 – secret side2 & side3 function return value
Atalk [22] 33 CVE-2009-3002 – sock & peer function return value & uaddr

Underflow [22] 18 CVE-2007-2875 h ppos function return value
Classify authors 18 – high low function return value
Heartbleed [42] 1,082 CVE-2014-0160 – payload_sent & payload_length payload_received

Bignum [43] 778 – – s, len & ret s & function return value

following quality indicators of the Pareto fronts generated by the se-

lected algorithms: Hyper-volume, Inverted Generational Distance,

Epsilon and Generational Distance.

4.3 Test Environment
Due to compatibility issues we ran the Heartbleed fuzzer exper-

iments on a single core of an Intel (R) Core(TM) i5-2500 CPU @

3.3GHz processor, with 8GB RAM and 500GB HDD with Ubuntu

20.04 and gcc & g++ 7.3.0. All other experiments were run on a

High Performance Computing (HPC) cluster using single cores of

an Intel(R) Xeon(R) Gold 6244 CPU @ 3.60GHz and 8GB of RAM,

in RedHat Enterprise Linux 7 with gcc & g++ 10.2.0.

4.4 Threats to Validity
We present the primary threats to validity of our study here. First,

with respect to generality, we experimented on a limited number

of programs, some with similar characteristics. However, (1) we

wanted to compare against the state-of-the-art and (2) security

policies, which are necessary for detecting information flow leakage

cannot be developed without extensive knowledge of a system.

Hence we focused on programs that have only two different classes

of policy. With respect to internal validity, we acknowledge there

could be faults in our programs, but we have manually validated our

patches, and are providing them on our online website along with

our other artifacts. We also contacted developers of the program

for which LeakReducer found a possibly new information leakage

fault. Last, with respect to construct validity we could have chosen

different metrics, but we have used the most common metrics for

evaluating multi-objective optimization and use the same measure

of leakage as prior authors.

5 RESULTS
In this section we answer each of our research questions. Artifacts

for the experiments are found on our anonymous website[1].

5.1 Parameter Tuning Results
Our parameter tuning showed that runs of single-objective LeakRe-

ducer that produced the fittest program variants had the follow-

ing configuration: population size = 100, mutation rate = 1, and

crossover rate = 0.5. We thus use these parameters in the following

experiments. All our data is available on our anonymous website.

5.2 RQ1: Leak Detection
To answer this research question, we examine the data in Table 2.

All of the fuzzing variants found crashes for Heartbleed and Bignum.

We examined the crashes, and indeed they were caused by memory

issues that lead to leakage. As the Bignum crash was not from a

confirmed bug, we reached out to the developers who confirmed

our suspicion that this particular function is typically not accessible

from outside of a program and in the case that it is, it would be the

responsibility of application developers to ensure proper use of the

function. However, the code has similarities to that found in many

other confirmed cases of information leakage in the wild. With an

appropriately constructed wrapper to read low input and output

the function result to low output, Bignum provided an interest-

ing demonstration of the trade-off between reducing information

leakage and retaining original functionality.

For the other four programs no crasheswere produced by fuzzing,

even though the time budget given for each program was signifi-

cantly higher than the time needed to generate hypertests. Further-

more, running LeakReducer’s hypertests revealed leakage in all 6

subjects, producing non-zero QIF values in all runs.

Answer to RQ1 (Leak Detection): LeakReducer is able
to detect and estimate leakage in all 6 subjects, where state-

of-the-art fuzzers only find leakage-related crashes in 2 of

the subjects.

5.3 RQ2: Single-objective Leak Reduction
To answer RQ2 we turn to Table 3. This table shows the post patch

(i.e., improved) QIF (QIF𝑖), Fail Rate (FR) and Fitness (F) for Hy-

perGI and single-objective LeakReducer with 4 different inputs

from fuzzing. To compare HyperGI and LeakReducer’s results we

ran each evolved program using our test cases (all 4 functional test

sets + hypertests), for fair comparison of fitness values. The best

fitness values are highlighted in bold. Although AFL-TA provides

slightly better median fitness for 5 out of 6 test subjects, ANOVA

and t-test on the means do not report this result as statistically

significant.

Interestingly, LeakReducer did not find the optimal solution for

Atalk, unlike HyperGI. Through a further communication with

Mesecan et al., we found out that during identifier detection stage

(see Section 3.3.3) they added an identifier declared in a header file.

ASE 2022, 10 - 14 October, 2022, Ann Arbor, MI Trovato and Tobin, et al.

Table 2: Leak detection and functional test case generation using four variants of fuzzing compared against LeakReducer’s
Hypertest set. For each of the fuzzing settings we show if the system crashed. For LeakReducer we show the original QIF0. We
also give the test suite size (TS), max fuzzing time budget and hypertest generation runtime in hours.

AFL AFL-TA HashFuzz HashFuzz-TA Hypertests

Subject Crashes TS Hours Crashes TS Hours Crashes TS Hours Crashes TS Hours QIF0 TS Hours

Atalk No 12 1.0 No 18 0.9 No 122 16.2 No 116 12.9 1.1 50 1.0

Bignum Yes 3 7.8 Yes 24 6.4 Yes 12 21.2 Yes 70 34.7 2.4 40 0.1

Classify No 107 2.6 No 122 5.7 No 178 8.5 No 176 8.1 2.4 125 0.2

Heartbleed Yes 47 27.8 Yes 60 76.1 Yes 84 266.1 Yes 109 145.4 2.3 40 0.4

Triangle No 60 3.1 No 54 1.7 No 66 58.3 No 78 69.2 0.8 194 0.1

Underflow No 20 0.4 No 40 0.5 No 234 13.4 No 252 16.2 5.4 100 1.3

Table 3: Fitness values for best evolved variants for HyperGI and single-objective LeakReducer, guided by 4 fuzzer test sets.
Medians of 20 runs are shown. In addition, we report the two fitness components: fail rates (FR) and leakage estimates (QIF𝑖).

LeakReducer
HyperGI AFL AFL-TA HashFuzz HashFuzz-TA

Subject QIF𝑖 FR Fitness QIF𝑖 FR Fitness QIF𝑖 FR Fitness QIF𝑖 FR Fitness QIF𝑖 FR Fitness

Atalk 0.00 0.00 0.00 1.00 0.00 0.50 0.94 0.24 0.50 1.00 0.00 0.50 1.00 0.00 0.50
Triangle 0.00 0.69 0.34 0.23 0.23 0.24 0.15 0.38 0.23 0.10 0.30 0.22 0.11 0.29 0.23

Underflow 0.00 0.62 0.31 0.11 0.57 0.35 0.11 0.56 0.31 0.64 0.01 0.37 1.00 0.00 0.50

Bignum - - - 0.00 0.78 0.39 0.00 0.60 0.30 0.00 0.78 0.39 0.33 0.47 0.39

Classify - - - 0.00 0.64 0.32 0.02 0.61 0.31 0.00 0.64 0.32 0.00 0.63 0.31
Heartbleed - - - 0.50 0.00 0.25 0.50 0.00 0.25 0.50 0.00 0.43 0.50 0.00 0.25

That identifier was not used in the file with the target function,

thus LeakReducer had no access to it. As a result a solution that

fully reduces leakage was not found. We argue, however, the au-

tomation of the process outweighs potentially missing such fixes.

LeakReducer still found some program variants that reduced leak-

age. These partial fixes could still be helpful for the developers

for understanding and fixing such leaks. Moreover, the ingredient

space can be enlarged in the future.

Answer to RQ2 (Single-objective Leak Reduction):
Single-objective LeakReducer achieves results competitive

with HyperGI, but without the need for human interaction

during the repair process. Search for repairs guided by

tests from AFL with seeded inputs did produce marginally

better results than other settings, but the result was not

statistically significant.

5.4 RQ3: Multi-objective Leak Reduction
To compare different multi-objective variants we used 4 quality

indicators, as previously discussed. Since we did not see a clear

winner for the functional test sets and to ensure high coverage,

we simply use all functional tests generated from the previous

steps, and use those during search to evaluate correctness of the

evolved program variants. To compare Pareto fronts from different

runs, we first prepared the global Pareto front, i.e., Pareto front that

combines all generated fronts. Next, we calculated the hypervolume

and distance from the global Pareto front to individual fronts. Table

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Le
ak

ag
e

Atalk

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Bignum

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Classify

PF Solution

0.0 0.5 1.0
Fail rate

0.0

0.2

0.4

0.6

0.8

1.0

Le
ak

ag
e

Heartbleed

0.0 0.5 1.0
Fail rate

0.0

0.2

0.4

0.6

0.8

1.0
Triangle

0.0 0.5 1.0
Fail rate

0.0

0.2

0.4

0.6

0.8

1.0
Underflow

Figure 2: Sample Pareto fronts from LeakReducer with the
SPEA2 setting. Each dot represents a solution on the front.
4 reports median distances and hypervolume for each subject and

algorithm. Counting the number of times each algorithm produces

the best result (largest Hypervolume or Minimum Median Distance

to the global Pareto front for the other metrics), we get: (1) SPEA2:

19; (2) NSGA-III: 15; (3) NSGA-II: 11; and (4) MOCell: 8. These

results indicate that the SPEA2 option performs best in this problem

domain. Consequently wewill lookmore closely at the Pareto fronts

generated by LeakReducer using SPEA2.

Figures 2 and 3 show results of individual and all runs of LeakRe-

ducer with the SPEA2 setting, with the best solution from single-

objective LeakReducer marked. Interestingly, the single-objective

Multi-objective GI for Detecting and Reducing Information Leakage ASE 2022, 10 - 14 October, 2022, Ann Arbor, MI

Table 4: Pareto front quality indicators per subject & multi-objective algorithm. Median of 20 runs reported. A larger hypervol-
ume indicates a better result. For other indicators smaller numbers are closer to the global front, hence better.

Inv. Generational Distance Generational Distance Hyper Volume Epsilon

MOCell NSGAII NSGAIII SPEA2 MOCell NSGAII NSGAIII SPEA2 MOCell NSGAII NSGAIII SPEA2 MOCell NSGAII NSGAIII SPEA2

Atalk 0.15 0.43 0.15 0.14 0.04 0.03 0.12 0.11 0.67 0.23 0.71 0.72 0.24 0.73 0.22 0.20
Bignum 0.38 0.38 0.38 0.38 0.33 0.37 0.38 0.35 0.46 0.43 0.43 0.49 0.40 0.40 0.40 0.40
Classify 0.08 0.08 0.07 0.07 0.08 0.08 0.07 0.07 0.68 0.67 0.69 0.69 0.13 0.12 0.13 0.12
Heartbleed 0.02 0.02 0.02 0.02 0.50 0.50 0.50 0.49 0.97 0.97 0.97 0.97 0.03 0.03 0.03 0.03
Triangle 0.04 0.03 0.03 0.03 0.03 0.02 0.02 0.01 0.75 0.76 0.76 0.76 0.09 0.05 0.05 0.05
Underflow 0.20 0.30 0.20 0.58 0.24 0.00 0.00 0.00 0.66 0.54 0.67 0.00 0.28 0.43 0.28 1.00

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Le
ak

ag
e

Atalk

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Bignum

0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Classify

PF solution
PF of PFs
Single objective

0.0 0.5 1.0
Fail rate

0.0

0.2

0.4

0.6

0.8

1.0

Le
ak

ag
e

Heartbleed

0.0 0.5 1.0
Fail rate

0.0

0.2

0.4

0.6

0.8

1.0
Triangle

0.0 0.5 1.0
Fail rate

0.0

0.2

0.4

0.6

0.8

1.0
Underflow

Figure 3: Pareto fronts from all 20 LeakReducer runs with the
SPEA2 setting (blue), and Pareto front of all those 20 fronts
(red). The green square shows the best solutions found by
single-objective LeakReducer.
Table 5: Means and standard deviations of the numbers of
solutions in Pareto fronts of multi-objective LeakReducer.

MOCell NSGAII NSGAIII SPEA2

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Atalk 5.4 1.4 5.9 1.4 5.5 1.5 6.7 2.2

Bignum 3.0 0.0 3.0 0.3 3.0 0.2 3.0 0.0

Classify 35.8 4.3 33.8 3.7 31.9 4.1 31.7 5.1

Heartbleed 2.1 0.2 2.1 0.2 2.0 0.0 2.0 0.0

Triangle 6.9 1.8 7.3 1.5 7.5 1.5 7.4 1.6

Underflow 3.5 1.1 3.5 1.2 3.5 1.2 4.1 1.3

Average 9.42 - 9.24 - 8.88 - 9.13 -

variant produces results that are on or close to multi-objective

LeakReducer’s Pareto fronts. However, the latter option provides

more variants to choose from, leveraging leakage vs fail rate.

We are also interested in the diversity of solutions found. Table 5

presents the average number of solutions found and the standard

deviations out of 20 runs for each algorithm and subject pair. Firstly,

the average number of solutions in Pareto fronts is quite close; rang-

ing from 8.9 for NSGAIII to 9.4 for MOCell. Secondly, MOCell and

SPEA2 generated the largest number of solutions for 3 subjects,

while NSGAII and NSGAIII generated the largest number of solu-

tions for 2 subjects. We will discuss the quality of solutions in the

next section. Taking all results into account, however, we would

recommend the use of SPEA2 with LeakReducer, as it is likely to

produce a diverse set of solutions, close to the optimal Pareto front.

Answer to RQ3 (Multi-Objective LeakReducer): Both
single- and multi-objective settings produced effective

fixes, with single-objective LeakReducer producing solu-

tions close to the multi-objective LeakReducer’s Pareto

fronts, while the latter provided a diverse set of solutions

balancing leakage and fail rate. Moreover, we recommend

the use of SPEA2 with LeakReducer, as we showed with

multiple indicators that it generally outperforms other

multi-objective algorithms.

5.5 Discussion
Atalk is the real-world program that showed the most evenly spread

Pareto front in Figure 2. The original leaky function is:

s t ruc t a t a l k _ s o c k {

unsigned char dst_node , s rc_node , d s t _po r t , s r c _ p o r t ;

in t s k _ s t a t e ;

char r e s [1 6] ;

} ;

1 in t a t a l k_ge tname (a t a l k _ s o c k ∗ sock , a t a l k _ s o c k ∗ uaddr , in t peer) {

2 s t ruc t a t a l k _ s o c k s a t ;

3 in t e r r = −ENOBUF ;

4 i f (s o c k _ f l a g (sock))

5 goto out ;

6

7 i f (pee r) {

8 e r r = −ENOTCON;

9 i f (sock −> s k _ s t a t e != TCP_ESTABLISHED)

10 goto out ;

11 s a t . s r c_node = sock −>ds t_node ;

12 s a t . s r c _ p o r t = sock −> d s t _ p o r t ;

13 s a t . d s t_node = sock −> src_node ;

14 s a t . d s t _ p o r t = sock −> s r c _ p o r t ;

15 } e l se {

16 s a t . s r c_node = sock −> src_node ;

17 s a t . s r c _ p o r t = sock −> s r c _ p o r t ;

18 s a t . d s t_node = sock −>ds t_node ;

19 s a t . d s t _ p o r t = sock −> d s t _ p o r t ;

20 }

21

22 s a t . s k _ s t a t e = sock −> s k _ s t a t e ;

23 memcpy (uaddr , &sa t , s i z eo f (s a t)) ;
24 e r r = s i z eo f (a t a l k _ s o c k) ;

25

26 out :

27 return e r r ;

28 }

ASE 2022, 10 - 14 October, 2022, Ann Arbor, MI Trovato and Tobin, et al.

This particular program leaks values from internal memory due

to the struct sat defined on line 2 being uninitialised. There are 6

struct members, but only 5 are assigned to in the code in lines 3-22.

The entire memory contents of the struct are then copied to the

function parameter uaddr, including the value of the uninitialised
6th struct member ‘res’. As sat is a local variable, this uninitialised
memory contains stack data, which could, depending on previous

function call stacks, contain sensitive data. For the sake of brevity,

we show 2 of the best patches generated by SPEA2:

Patch 2; Leakage: 0.000, Functional: 0.341

10 a11

> s a t . s r c _ p o r t = sock −> s r c _ p o r t ;

18 a20 , 2 2

> i f (sock −> s r c _ p o r t < sock −> src_node) {

> sock −> src_node = sock −> s r c _ p o r t ;

> }

20 a25 , 2 7

> i f (sock −> d s t _ p o r t != sock −> src_node) {

> return 1 ;

> }

23 a31 , 3 3

> for (in t l c v 1 4 7 6 = 0 ; l c v 1 4 7 6 < peer ; l c v 1 4 7 6 ++) {

> e r r = −ENOTCON;

> }

Patch 5; Leakage: 0.778, Functional: 0.116

6 a7

> e r r = −ENOTCON;

10 a12 , 1 4

> for (in t l c v 9 4 3 = 0 ; l c v 9 4 3 < TCP_ESTABLISHED ; l c v 9 4 3 ++) {

> s a t . s r c _ p o r t = sock −> s r c _ p o r t ;

> }

21 a26 , 2 8

> i f (s i z eo f (s a t) > sock −> s r c _ p o r t) {

> return 0 ;

> }

There is variation in these patches, and they are both returning

a fixed value before the leak occurs (in line 23) depending on a

comparison between structs sat and sock. The variations in leak-

age and functional test performance can be attributed to different

comparisons between the two structs. These comparisons cause an

early return before the leakage occurs in differing proportions of

the test inputs, hence differing functional results and leakage rates.

An ideal patch would initialize the sat.res struct member to a

fixed value. As this variable is in fact an array, this would require

a for loop, or a call to memset. As an alternative, using the short

form compound literal initialiser struct atalk_sock sat = {0};
will initialize all struct members (including all array members) to

all zeroes. Neither of these are used in the existing code, so the GI

would require additional mutation operators to produce these.

The 3 other real-world programs (Heartbleed, Bignum and Un-

derflow) all contain developer bugs, which leads to a less diverse

range of solutions. This is because they can in theory all be ‘fixed’

in a way that retains all original functionality, whilst completely

eliminating the leakage. Both Classify and Triangle have leakage

that is caused by intentionally poor information flow control design,

as such these produce a broad, dense Pareto front showcasing a

variety of potential solutions.

The best single-objective patch found for Heartbleed was as

follows (red code was removed in the patch, and green code was

added by the patch):

in t d t l s 1 _ p r o c e s s _ h e a r t b e a t (SSL ∗ s) {

. . .

unsigned int payload , padding = 1 6 ;

n2s (p , pay load) ; / ∗ Read pay l oad l e n g t h ∗ /
. . .

unsigned char ∗ b u f f e r = OPENSSL_malloc (1 + 2 + pay load + padding) ;

unsigned char ∗ bp = b u f f e r ;

∗ bp++ = TLS1_HB_RESPONSE ; / ∗ Copy r e s p o n s e t y p e i n t o b u f f e r ∗ /
s2n (payload , bp) ; / ∗ Copy pay l oad l e n g t h i n t o b u f f e r ∗ /
memcpy (bp , pl , pay load) ; / ∗ Copy pay l oad i n t o b u f f e r ∗ /
bp += pay load ; / ∗ Update b u f f e r p o i n t e r ∗ /
if (SSL_F_DTLS1_PREPROCESS_FRAGMENT < 1 + 2 + payload + padding) {

return 0;

}

RAND_pseudo_bytes(bp, padding);

/ ∗ Send c a l l b a c k ∗ /
r = d t l s 1 _w r i t e _ b y t e s (s , TLS1_RT_HEARTBEAT , bu f f e r , 3 + pay load + padding) ;

. . .

The added if-statement fixes many leaks because of the way that

Heartbleed is exploitable. Essentially the payload length in the

malformed packet is set to some value larger than the length of

the actual message sent to be echoed back. padding is always 16.
The best multi-objective search results are semantically equivalent

patches to this. The payload length is read in by a function-like

macro s2n, which reads an unsigned 2-byte (16-bit) integer (be-

tween 0-65535) from the transmitted heartbeat buffer. The leak

occurs when payload bytes are copied into the callback message

and sent back to the other client; thus in order to maximise leakage,

an attacker should set this value to 65535 (the maximum) which

will result in 65535 - 19 - ACTUAL_PAYLOAD_LENGTH bytes of inter-
nal program memory being returned to them in the corresponding

heartbeat response. The -19 comes from the 16 bytes of padding
and an extra 3 bytes for indicating message type and payload length.

The constant SSL_F_DTLS1_PREPROCESS_FRAGMENT is defined as

288 in a header file. This patch is therefore discarding any hearbeat

request where payload is larger than 269 (288− 19), which reduces

the leakage from a potential 65516 bytes down to 269 bytes. As

described above, an attacker looking to maximise leakage would be

setting payload to very large values, and this patch would silently

discard these. The fuzzer however is not using any malicious heuris-

tics when generating malformed packets, but instead generates the

buffer (containing the payload length) pseudo-randomly, and with

the leaking search space shrinking down to 0.41% (269/65535) of
what it originally was, the leak is seemingly repaired. It is worth not-

ing that the patch will also discard any properly formed heartbeat

packets with an actual payload of length 270 or greater.

The developer patch is quite close to this, in fact, the only thing

different is that the comparison value SSL_F_DTLS1_PREPROCES-
S_FRAGMENT is replaced with the actual length of the received buffer.
This eliminates the leakage for requests with indicated payloads <=

269 bytes, whilst accepting properly formed packets with an actual

payload length > 269 bytes. An improved test set would expose the

remaining (much smaller) leak, and is a target for future research.

The evaluation criteria does well to guide the repair process, as

is evidenced by the proposed patch being very close to the actual

developer patch. An acclimatised OpenSSL developer would see

that comparing the variable payload length with a constant value

would create issues for properly formed long heartbeat requests,

but learn that the leakage is strongly correlated to large payload

values. It is not a leap to suggest that a developer could come to the

correct conclusion that the solution is to discard requests where

the actual buffer length does not match the indicated buffer length.

In the case of Atalk, we already discussed the issues with the

generated patches. Bignum leaks information via a buffer-overflow,

and does not have a single ‘fix’, however we do see patches that

Multi-objective GI for Detecting and Reducing Information Leakage ASE 2022, 10 - 14 October, 2022, Ann Arbor, MI

manage to greatly reduce the quantity of leakage while not resulting

in a large functionality testcase fail rate increase. The best patches

generated through multi-objective LeakReducer for Underflow re-

duce leakage to a greater extent than the best single objective patch,

whilst simultaneously retaining greater functionality.

6 CONCLUSIONS AND FUTUREWORK
We have presented LeakReducer, a multi-objective framework to

detect, localize and repair information leakage in real-world pro-

grams. We have evaluated LeakReducer on a set of programs and

were able to find leaks in all of them. We demonstrated our ability

to repair the leaks against repairs from the state-of-the-art tool,

HyperGI. For those programs whose leakage and functionality are

competing, the multi-objective setting provided a diverse Pareto

front which can be used to balance leakage and functionality. We

plan to add additional repair ingredients, more specialised mutation

operators, refined identifier resolution, and apply LeakReducer to a

larger set of programs and different security policies.

ACKNOWLEDGMENTS
This work is supported in part by NSF grants CCF-1909688, CCF-

1901543 and by EPSRC grant no. EP/P023991/1.

REFERENCES
[1] 2022. https://github.com/anonymous183459/LeakReducer/.

[2] AFL 2022. American Fuzzy Lop plus plus (AFL++).

https://github.com/AFLplusplus/AFLplusplus. Accessed: 2022-05-22.

[3] Johan Agat. 2020. Transforming Out Timing Leaks. In POPL 2000, Proceedings
of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Boston, Massachusetts, USA, January 19-21, 2000, Mark N. Wegman

and Thomas W. Reps (Eds.). ACM.

[4] M. S. Alvim, K. Chatzikokolakis, A. McIver, C. Morgan, C. Palamidessi, and G.

Smith. 2020. The Science of Quantitative Information Flow. Springer.
[5] Gabin An, Aymeric Blot, Justyna Petke, and Shin Yoo. 2019. PyGGI 2.0: Language

Independent Genetic Improvement Framework. In Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE). 1100–1104.

[6] Andrea Arcuri. 2019. RESTful API automated test case generation with EvoMaster.

ACM Transactions on Software Engineering and Methodology (TOSEM) 28, 1 (2019),
1–37.

[7] Owen Arden, Jed Liu, Tom Magrino, and Andrew Myers. 2016. Jif: Java with

Information Flow. https://www.cs.cornell.edu/jif/. Accessed: 2022-05-02.

[8] Konstantinos Athanasiou, Thomas Wahl, A. Adam Ding, and Yunsi Fei. 2020.

Automatic Detection and Repair of Transition- Based Leakage in Software Bina-

ries. In Software Verification - 12th International Conference, VSTTE 2020, and 13th
International Workshop, NSV 2020, July 20-21, 2020, Revised Selected Papers (Lec-
ture Notes in Computer Science, Vol. 12549), Maria Christakis, Nadia Polikarpova,

Parasara Sridhar Duggirala, and Peter Schrammel (Eds.). Springer, 50–67.

[9] Antonio Benitez-Hidalgo, Antonio J Nebro, Jose Garcia-Nieto, Izaskun Oregi,

and Javier Del Ser. 2019. jMetalPy: A Python framework for multi-objective

optimization with metaheuristics. Swarm and Evolutionary Computation 51

(2019), 100598.

[10] Fabrizio Biondi, Michael A. Enescu, Annelie Heuser, Axel Legay, Kuldeep S. Meel,

and Jean Quilbeuf. 2018. Scalable Approximation of Quantitative Information

Flow in Programs. In Verification, Model Checking, and Abstract Interpretation -
19th International Conference, VMCAI, Isil Dillig and Jens Palsberg (Eds.). Springer.

[11] Niklas Broberg, Bart van Delft, and David Sands. 2017. Paragon - Practical

programming with information flow control. Journal of Computer Security 25,

4-5 (2017), 323–365.

[12] David Clark, Sebastian Hunt, and Pasquale Malacaria. 2001. Quantitative Analysis

of the Leakage of Confidential Data. Electronic Notes in Theoretical Computer
Science 59, 3 (2001), 238–251.

[13] David Clark, Sebastian Hunt, and Pasquale Malacaria. 2007. A static analysis

for quantifying information flow in a simple imperative language. Journal of
Computer Security 15, 3 (2007), 321–371.

[14] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. Journal of
Computer Security 18, 6 (2010), 1157–1210.

[15] Jared L Cohon. 2004. Multiobjective programming and planning. Vol. 140. Courier
Corporation.

[16] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory
(Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience.

[17] Dorothy E. Denning. 1976. A Lattice Model of Secure Information Flow. Commun.
ACM 19, 5 (1976), 236–243.

[18] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:

Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on
Offensive Technologies (WOOT 20). USENIX Association.

[19] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation

for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

[20] Joseph A. Goguen and José Meseguer. 1982. Security Policies and Security Models.

In 1982 IEEE Symposium on Security and Privacy. 11–20.
[21] S. He, M. Emmi, and G. Ciocarlie. 2020. ct-fuzz: Fuzzing for Timing Leaks. In 2020

IEEE 13th International Conference on Software Testing, Validation and Verification
(ICST). IEEE Computer Society.

[22] Jonathan Heusser and Pasquale Malacaria. 2010. Quantifying information leaks

in software. In Twenty-Sixth Annual Computer Security Applications Conference,
ACSAC. 261–269.

[23] Pieter Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim

Purbrick, and Dulma Rodriguez. 2015. Moving Fast with Software Verification.

In NASA Formal Methods: 7th International Symposium, Proceedings, Vol. 9058.
Springer, 3.

[24] Johannes Kinder. 2015. Hypertesting: The Case for Automated Testing of Hyper-

properties. In Hot Issues in security and trust (HotSpot).
[25] Miqing Li, Tao Chen, and Xin Yao. 2020. How to Evaluate Solutions in Pareto-

based Search-Based Software Engineering? A Critical Review andMethodological

Guidance. IEEE Transactions on Software Engineering 01 (2020), 1–1.

[26] LLVM Foundation 2022. Clang 15.0.0git documentation, AddressSanitizer.

https://clang.llvm.org/docs/AddressSanitizer.html. Accessed: 2022-05-02.

[27] Pasquale Malacaria, Michael Tautchning, and Dino Distefano. 2016. Information

Leakage Analysis of Complex C Code and Its application to OpenSSL. In Lever-
aging Applications of Formal Methods, Verification and Validation: Foundational
Techniques - 7th International Symposium, ISoLA 2016, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 9952). 909–925.

[28] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel

Egele, Edward J Schwartz, and Maverick Woo. 2019. The art, science, and engi-

neering of fuzzing: A survey. IEEE Transactions on Software Engineering 47, 11

(2019), 2312–2331.

[29] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scalable

multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th International Conference on Software Engineering (ICSE). 691–701.

[30] Hector D Menendez and David Clark. 2021. Hashing fuzzing: introducing input

diversity to improve crash detection. IEEE Transactions on Software Engineering
(2021).

[31] Ibrahim Mesecan, Daniel Blackwell, David Clark, Myra B Cohen, and Justyna

Petke. 2021. HyperGI: Automated Detection and Repair of Information Flow

Leakage. In 2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 1358–1362.

[32] JonathanMetzman, László Szekeres, Laurent Simon, Read Sprabery, and Abhishek

Arya. 2021. FuzzBench: An Open Fuzzer Benchmarking Platform and Service.

In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,

Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,

USA, 1393–1403. https://doi.org/10.1145/3468264.3473932

[33] JonathanMetzman, László Szekeres, Laurent Simon, Read Sprabery, and Abhishek

Arya. 2021. FuzzBench: an open fuzzer benchmarking platform and service. In

ESEC/FSE. 1393–1403.
[34] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-

dra. 2013. Semfix: Program repair via semantic analysis. In 2013 35th International
Conference on Software Engineering (ICSE). IEEE, 772–781.

[35] Yannic Noller and Saeid Tizpaz-Niari. 2021. QFuzz: Quantitative Fuzzing for Side

Channels. In Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2021). ACM.

[36] Justyna Petke, Saemundur O Haraldsson, Mark Harman, William B Langdon,

David R White, and John R Woodward. 2017. Genetic improvement of software:

a comprehensive survey. IEEE Transactions on Evolutionary Computation 22, 3

(2017), 415–432.

[37] Willard Rafnsson and Andrei Sabelfeld. 2016. Secure multi-execution: Fine-

grained, declassification-aware, and transparent. Journal of Computer Security
24, 1 (2016), 39–90.

[38] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based information-flow

security. IEEE Journal on Selected Areas in Communications 21, 1 (2003), 5–19.
[39] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera

Jaspan. 2018. Lessons from building static analysis tools at google. Commun.
ACM 61, 4 (2018), 58–66.

https://github.com/anonymous183459/LeakReducer/
https://www.cs.cornell.edu/jif/
https://doi.org/10.1145/3468264.3473932

ASE 2022, 10 - 14 October, 2022, Ann Arbor, MI Trovato and Tobin, et al.

[40] Vali Tawosi, Federica Sarro, Alessio Petrozziello, and Mark Harman. 2021. Multi-

objective software effort estimation: A replication study. IEEE Transactions on
Software Engineering (2021).

[41] The MITRE Corporation 2022. CVE – Common Vulnerabilities and Exposures.

https://cve.mitre.org/. Accessed: 2022-05-02.

[42] The National Institute of Standards and Technology 2014. CVE-2014-0160 Heart-

bleed. https://nvd.nist.gov/vuln/detail/CVE-2014-0160. Accessed: 2022-05-02.

[43] The OpenSSL 2021. bn - multiprecision integer arithmetics. https://www.openssl.

org/docs/man1.0.2/man3/bn.html. Accessed: 2022-03-12.

[44] The OpenSSL 2021. OpenSSL 1.1.1 versions download. https://ftp.openssl.org/

source/old/1.1.1/. Accessed: 2022-03-18.

[45] The R Project 2022. Anova: Anova Tables for Various Statistical Models. https://

www.rdocumentation.org/packages/car/versions/3.0-12/topics/Anova. Accessed:

2022-04-18.

[46] The R Project 2022. t.test: Student’s t-Test. https://www.rdocumentation.org/

packages/stats/versions/3.6.2/topics/t.test. Accessed: 2022-04-18.

[47] Universal Ctags Team 2021. Universal Ctags. https://ctags.io/. Last Accessed:

2022-05-02.

[48] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. 1996. A Sound Type

System for Secure Flow Analysis. Journal of Computer Security 4, 2/3 (1996),

167–188.

[49] Shuang Wang and Jeff Offutt. 2009. Comparison of unit-level automated test

generation tools. In 2009 International Conference on Software Testing, Verification,
and Validation Workshops. IEEE, 210–219.

[50] David R White, Andrea Arcuri, and John A Clark. 2011. Evolutionary improve-

ment of programs. IEEE Transactions on Evolutionary Computation 15, 4 (2011),

515–538.

[51] Hirotoshi Yasuoka and Tachio Terauchi. 2014. Quantitative information flow

as safety and liveness hyperproperties. Theoretical Computer Science 538 (2014),
167–182.

https://nvd.nist.gov/vuln/detail/CVE-2014-0160
https://www.openssl.org/docs/man1.0.2/man3/bn.html
https://www.openssl.org/docs/man1.0.2/man3/bn.html
https://ftp.openssl.org/source/old/1.1.1/
https://ftp.openssl.org/source/old/1.1.1/
https://www.rdocumentation.org/packages/car/versions/3.0-12/topics/Anova
https://www.rdocumentation.org/packages/car/versions/3.0-12/topics/Anova
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/t.test
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/t.test
https://ctags.io/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Quantified Information Flow
	2.2 Related work

	3 LeakReducer
	3.1 Automated Functional Test Generation
	3.2 Automated Hypertest Generation
	3.3 Genetic Improvement
	3.4 Implementation Details

	4 Evaluation
	4.1 Benchmarks
	4.2 Experimental Protocol
	4.3 Test Environment
	4.4 Threats to Validity

	5 Results
	5.1 Parameter Tuning Results
	5.2 RQ1: Leak Detection
	5.3 RQ2: Single-objective Leak Reduction
	5.4 RQ3: Multi-objective Leak Reduction
	5.5 Discussion

	6 Conclusions and Future Work
	Acknowledgments
	References

