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Abstract

The human adaptive immune system has evolved to provide a sophisticated response

to a vast body of pathogenic microbes and toxic substances. The primary media-

tors of this response are T and B lymphocytes. Antigenic peptides presented at the

surface of infected cells by major histocompatibility complex (MHC) molecules

are recognised by T cell receptors (TCRs) with exceptional specificity. This speci-

ficity arises from the enormous diversity in TCR sequence and structure generated

through an imprecise process of somatic gene recombination that takes place during

T cell development.

Quantification of the TCR repertoire through the analysis of data produced by

high-throughput RNA sequencing allows for a characterisation of the immune re-

sponse to disease over time and between patients, and the development of methods

for diagnosis and therapeutic design. The latest version of the software package

Decombinator extracts and quantifies the TCR repertoire with improved accuracy

and compatibility with complementary experimental protocols and external compu-

tational tools. The software has been extended for analysis of fragmented short-read

data from single cells, comparing favourably with two alternative tools.

The development of cell-based therapeutics and vaccines is incomplete with-

out an understanding of molecular level interactions. The breadth of TCR diver-

sity and cross-reactivity presents a barrier for comprehensive structural resolution

of the repertoire by traditional means. Computational modelling of TCR struc-

tures and TCR-pMHC complexes provides an efficient alternative. Four general-

purpose protein-protein docking platforms were compared in their ability to ac-

curately model TCR-pMHC complexes. Each platform was evaluated against an
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expanded benchmark of docking test cases and in the context of varying additional

information about the binding interface.

Continual innovation in structural modelling techniques sets the stage for novel

automated tools for TCR design. A prototype platform has been developed, inte-

grating structural modelling and an optimisation routine, to engineer desirable fea-

tures into TCR and TCR-pMHC complex models.



Impact Statement

This thesis provides a computational analysis of T cell receptor (TCR) sequence

and structure. TCRs are responsible for the recognition of invasive antigens and

for triggering downstream immune responses to fight off disease. A quantitative

understanding of the TCR repertoire (set of TCRs) of individuals provides insight

into the complexities of the immune system, allows us to develop methods for early

diagnosis of disease, to design new therapeutics, and to predict patient outcomes.

The body of work that explores TCR structure in this thesis focuses on the pre-

diction of binding modes between TCR structures and antigen structures in the form

of peptides presented by major histocompatibility complex (pMHC) molecules.

A benchmark of test cases has been extended and used to compare four popular

protein-protein docking software platforms in the context of TCR-pMHC assembly.

This work has been recently published, providing guidance for researchers about the

most effective methods for modelling TCR-pMHC complexes in their own work.

A substantial section of this thesis is dedicated to describing the latest version

of the Decombinator software for TCR sequence analysis. Decombinator has been

designed to extract and quantify TCR repertoires from biological samples. This

quantification allows us to compare the immune response between healthy indi-

viduals and patients with disease. Furthermore, we are able to track the immune

response of individuals over time, assessing how they respond to treatment or how

the disease progresses. The Decombinator software has been used in a wide vari-

ety of settings in numerous collaborative studies, including investigations into the

immune response to tuberculosis, HIV, and a number of different cancers.

Over the course of this PhD project, the latest Decombinator release has been
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published in two academic journals. The first provides all the details necessary to

carry out the experimental protocol for affordable TCR sequencing, and the com-

plementary computational pipeline for TCR analysis. The second provides details

on the latest features of the computational package. This newest version of the soft-

ware has been used in collaborative studies to investigate the dynamics of the TCR

repertoire in individuals being treated for alopecia areata, and in response to stem

cell transplantation for multiple myeloma.

The latest version of Decombinator is the most accurate to date for TCR quan-

tification. The software has been upgraded to support a more robust experimental

protocol, while remaining backwards compatible, broadening its useability. The

software has been brought in line with the International Adaptive Immune Receptor

Repertoire Community guidelines, allowing it to be seemlessly integrated with a

large body of other immunological tools. Decombinator is free to use, open source,

and complemented by a large number of tools that have been designed and extended

to support analyses. The software is provided with extensive documentation for new

users. During the course of this project, the author of this thesis ran a workshop to

guide interested users through installation and example usage of the software. The

workshop was well attended by PhD students, postgraduate researchers, and group

leaders, from a number of academic groups at University College London.
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Chapter 1

Introduction

1.1 The Innate and Adaptive Immune Systems

The human immune system has evolved to protect the body from a rich world of

pathogenic microbes and toxic substances. Pathogens that threaten to disrupt nor-

mal homeostasis replicate, spread and damage the host through a broad range of

mechanisms. Tasked with detecting and eliminating these pathogens without ex-

cessively damaging self-tissue or commensal microbe populations, the immune sys-

tem has developed into a highly complex network of biological processes (Chaplin,

2010).

The mechanisms of the immune response are generally categorised as pertain-

ing to two immune subsystems. The first of these subsystems, the innate immune

system, is assumed to have arisen over 600 million years ago, and elements of in-

nate immunity can be found in all multicellular organisms (Smith et al., 2019).

The innate system responds rapidly to infection, and is triggered within minutes

or hours of pathogenic invasion (Marshall et al., 2018). The various components of

the innate immune system are diverse and include physical barriers such as the skin,

secreted mucus layers and epithelial cilia (as in the respiratory and gastrointenstinal

tracts), humoral components (such as cytokines, antimicrobial peptides, comple-

ment serum proteins, and a number of other soluble proteins) and cell-mediated

mechanisms (such as those of phagocytic and non-specific cytotoxic cells) (Romo

et al., 2016; Smith et al., 2019; Chaplin, 2010).
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The development of the second subsystem, the adaptive immune system, is a

more recent event in the history of verterbrate evolution. Specific components of

the adaptive immune system, including immunoglobulins, T cell receptors (TCRs)

and major histocompatibility complex (MHC), are believed to have arisen approxi-

mately 450 million years ago in the first jawed vertebrates (Smith et al., 2019; Fla-

jnik and Kasahara, 2010; Brazeau and Friedman, 2015; Buchmann, 2014). Through

an imprecise process of somatic gene recombination, the cells that comprise the

adaptive immune response achieve extraordinary specificity for a broad array of

pathogens, toxins and allergens. Upon encountering a foreign antigen, these cells

proliferate to attain sufficient numbers to generate effective protection against the

infection (Chaplin, 2010). Consequently, the adaptive response generally activates

more slowly than the innate response. A subset of the expanded cell population

persists after infection in a dormant state (Ratajczak et al., 2018). This process

provides the host with an immunological memory, whereby a rapid and effective re-

sponse can be mounted against a specific pathogen upon reinfection, and provides

the basis for immunisation (Marshall et al., 2018).

Like the innate immune system, the adaptive immune system is composed of

both humoral and cell-mediated components. Humoral mechanisms, including the

production of high affinity immunoglobulins and cell surface presentation of antigen

for T cell activation, are orchestrated by B cells (Smith et al., 2019). Cell-mediated

immune response activity is coordinated by T cells. TCRs, which sit on the surface

of T cells and provide them with their exquisite specificity, are the primary media-

tors of T cell activation (Pennock et al., 2013) and the main focus of this thesis.

1.2 Computational Approaches in Immunology

Over the last few decades, the scientific community has witnessed an explosion

of biological data. Breakthroughs in sequencing technology and advancements in

computing power and storage capabilities have seen the fields of bioinformatics

and computational biology firmly cemented at the forefront of modern science. So

much of the biological research conducted today relies on some form of quantitative
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analysis, that it has been argued that we now live in an era where all biology is

computational biology (Markowetz, 2017).

The world of bioinformatics encompasses a broad array of computational ap-

proaches used to address biological questions across all scales. At the molecular

level, modelling the behaviour, activity and interaction of proteins and small com-

pounds are of crucial importance for drug discovery (Sliwoski et al., 2014) and in

rational protein design (Tiwari et al., 2012). At the population level, computational

methods are used to disentangle the underlying genetic basis of common diseases

(Moore et al., 2010).

Attempts to make sense of the accumulation of vast quantities of immuno-

logical data have seen the emergence of the immunoinformatics (or computational

immunology) branch of bioinformatics. Integration of functional, clinical and epi-

demiological data generated using high-throughput experimental techniques are

used to probe the dynamics of the immune system in the context of health and

disease (Tomar and De, 2014). Research presented in this thesis includes the de-

velopment of computational tools, approaches, and resources for the study of T cell

receptors (TCRs) at different scales. The following sections describe TCRs in terms

of their sequence and structure, and provides a background on the computational

approaches used to investigate them for application in medicine.

1.3 The T Cell Receptor Repertoire

1.3.1 TCR Recognition and Function

T cell receptors (TCRs) are glycosolated heterodimers that are expressed on the

surface of T lymphocytes (T cells). The majority of TCRs (approximately 95%)

are composed of an α chain and a β chain, and are responsible for the recognition

of antigenic peptide fragments presented at the surface of antigen presenting cells

(APCs) by major histocompatibility complex (MHC) molecules. A small propor-

tion of TCRs (approximately 5%) are composed of a γ chain and a δ chain, and

may recognise free peptides (Glusman et al., 2001).

The T cell mediated immune response is driven by two broad T cell subpopu-
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Figure 1.1: (left) An αβ TCR expressed on the surface of a CD8 cytotoxic T cell, supported
by a CD8 coreceptor, recognises an antigenic peptide presented by a MHC
class I molecule at the surface of an antigen presenting cell. The MHC class
I molecule is stabilised by the non-covalently bonded β2-microglobulin (β2M)
subunit. (right) An αβ TCR expressed on the surface of a CD4 helper T cell,
supported by a CD4 coreceptor, recognises an antigenic peptide presented by a
MHC class II molecule at the surface of an antigen presenting cell.

lations. CD8 “cytotoxic” (or “killer”) T cells express TCRs that recognise peptides

presented by MHC class I molecules. A cytotoxic T cell also expresses the CD8

glycoprotein coreceptor at its surface, which binds the T cell to the MHC molecule

for the duration of T cell activation. Upon recognition of antigen, CD8 cytotoxic

T cells most commonly promote apoptosis through the delivery of cytotoxic gran-

ules into the cytosol of the infected or dysfunctional cell.

CD4 “helper” T cells, meanwhile, express TCRs that recognise peptides pre-

sented by MHC class II molecules. A helper T cell also expresses the CD4 glyco-

protein coreceptor at its surface, which binds the T cell to the MHC molecule for the

duration of T cell activation. Upon antigen recognition, CD4 helper T cells provide

indirect mechanisms for controlling pathogens primarily though the generation of

cytokines that activate neighbouring cells, or chemokines that recruit new immune

cell subsets to the site of infection (Pennock et al., 2013). Schematics of CD4 and

CD8 T cell activation are illustrated in Figure 1.1.
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Figure 1.2: The somatic V(D)J recombination process is shown for the TCR α and β

chains. (left) The top row shows a Vα gene segment rearranging to a Jα gene
segment, to form the the VJα junction in the second row. Transcription and
splicing of the VJα exon to the Cα gene segment, followed by translation of
the generated mRNA, produces the TCR α chain displayed at the cell surface
in the third row. (right) The top row shows the rearrangement of a Vβ gene
segment, a Dβ gene segment and a Jβ gene segment to form the VDJβ junction
in the second row. Transcription and splicing of the VDJβ exon to a Cβ gene
segment, followed by translation of the generated mRNA, produces the TCR
β chain displayed, paired with the α chain, at the cell surface in the third row.
This figure is a redesign of that which features in Murphy et al. (2008).

1.3.2 Somatic Recombination and TCR Diversity

TCRs are formed through the somatic recombination of gene segments during T cell

development in the thymus. V (variable) and J (joining) gene segments are found at

non-adjacent locations in the TCRα locus. Similarly, V, J and additional D (diver-

sity) gene segments are found at non-adjacent locations in the TCRβ locus. Dur-

ing the recombination process, extraneous DNA between gene segments is excised,

such that junctions are formed between a Vα gene segment and a Jα gene segment

for the α chain, and between a Vβ gene segment, a Dβ gene segment and a Jβ gene

segment for the β chain. The rearrangement is imperfect, and a random number of

non-templated nucleotides are inserted and deleted at each of the VJ (TCRα) and

the VDJ (TCRβ ) junctions. Once transcribed, the rearranged VJ section of the α

chain is spliced onto the Cα constant gene segment, and the rearranged VDJ section

of the β chain is spliced onto one of two (homologous and functionally indistinct)

Cβ constant segments (Murphy et al., 2008). The recombination process is illus-

trated in Figure 1.2.
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The rearrangement of gene segments generates an extraordinarily diverse set of

TCRs. The number of configurations made available by combining α and β chains,

each of which is composed of one of a number of V, D and J genes, exceeds 2.8

million unique TCRs. Naïvely assuming that up to 10 insertions or deletions are

permitted at each junction sees this number climb to in excess of 1016 TCRs. More

sophisticated probabilistic estimates have placed the number as over 1020 (Zarnit-

syna et al., 2013), and even as high as 1061, (Mora and Walczak, 2019) possible

configurations. These numbers dwarf the total number of cells in the human body

(Sender et al., 2016). Consequently, this theoretical diversity is limited in a single

individual by their T cell population size, which is thought to be on the order of

1011 in humans and 108 in mice (Mandl and Germain, 2014). Nevertheless, the

extraordinary breadth of the TCR repertoire allows the immune system to respond

effectively to an equally broad array of invading pathogens.

1.3.3 Analysis of the TCR Repertoire

The diversity introduced by recombination has made the analysis of TCR reper-

toire a daunting challenge. Historically, TCR repertoire screening was predomi-

nantly performed through the application of flow cytometry and CDR3 spectratyp-

ing (Fozza et al., 2017). Flow cytometry allows for the screening of millions of cells

to provide quantitative information on the frequency of lymphocyte gene expres-

sion. Clonal expansion (proliferation) in the TCR repertoire can be used to identify

specific T cell responses to disease. A fast and relatively inexpensive technology

(Faint et al., 1999), the application of flow cytometry to TCR analysis is limited

by its inability to profile junction diversity, and by the availability of monoclonal

antibodies specific for TCR Vβ genes (Six et al., 2013).

The recognition of antigen by TCRs is driven by the three complementarity

determining region (CDR) loops of each chain. The majority of TCR diversity is

found in the CDR3 loop which spans the V(D)J junction, and the insertion and

deletion of nucleotides at the junctional sites results in CDR3 regions that vary

in length. The CDR3 spectratyping method involves the amplification of CDR3

fragments followed by gel electrophoresis. The fragments are sieved through a
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sequencing gel via the application of an electric field. The shorter the fragment, the

faster and further it migrates through the gel. Therefore, patterns can be identified in

the CDR3 length distribution of the TCR repertoire. Comparison of CDR3 profiles

can be used to establish the degree of clonal expansion in the repertoire at a greater

resolution than flow cytometry (Fozza et al., 2017).

Early attempts to capture TCR diversity at the nucleotide level were based on

molecular cloning and Sanger sequencing (Sant’Angelo et al., 1998; Correia-Neves

et al., 2001), but could only provide a limited description of the TCR repertoire

(De Simone et al., 2018). Since those pioneering studies, the scientific commu-

nity has witnessed dramatic breakthroughs in DNA sequencing technology (Voelk-

erding et al., 2009; McGinn and Gut, 2013; Heather and Chain, 2016). Coupled

with major advances in computing power and storage, massively parallel sequenc-

ing of millions of DNA or RNA molecules provides means for the generation of the

(increasingly) large datasets required for meaningful quantitative analysis of TCR

diversity (De Simone et al., 2018).

As the cost of next-generation sequencing (NGS) machines continues to de-

crease, an increasing need has arisen for bioinformatics pipelines (workflows) that

are efficient, scalable, and simple to use (Fjukstad and Bongo, 2017). The devel-

opment of such pipelines and the consolidation of wet lab protocols means that it

is now a routine exercise in immunoinformatics to extract full α and β chain re-

arrangements of every clone in a sample for plates of tens of samples at a time.

A comprehensive comparative review of twelve of the most widely used computa-

tional tools for TCR repertoire analysis has been undertaken by Zhang et al. (2020),

and highlights the rapidity at which the field has grown.

One of the twelve compared pieces of software is the Decombinator platform

— a suite of tools created by the Chain lab at University College London. The

Decombinator software makes novel use of an efficient pattern-matching search

algorithm to annotate TCR sequences efficiently in raw sequence data. The facil-

ities of this computational pipeline have grown in response to the increasing flow

of raw biological data produced through various protocols and encoded in various
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formats. The most up-to-date description of Decombinator has been recently pub-

lished in Peacock et al. (2021), reflecting work achieved during the course of this

PhD project.

Methods and applications of the Decombinator platform are described in Chap-

ter 2. The core components and principles of Decombinator are discussed to provide

a background for improvements made to the pipeline as part of this project. Addi-

tionally, a number of tools that have been developed and upgraded for use with

Decombinator are outlined.

The Decombinator pipeline was designed with the bulk sequencing of pooled

immune cell populations in mind. From an immunological point of view, bulk

sequencing is limited by the inability to pair the sequenced α and β chain of the

TCR, and consequently the inability to capture the full biological function of a

T cell in vivo (De Simone et al., 2018). The feasibility of solving this problem has

recently garnered considerable interest from the research community, as single cell

sequencing platforms have become more readily available (Hwang et al., 2018).

The basis of the novel tag-based approach used by Decombinator relies on a

minimum read length to annotate both the V and J genes of the TCR successfully.

This makes the pipeline — and indeed, most other TCR sequencing pipelines —

unsuitable for most single cell analyses, where reads are typically short and frag-

mented. Chapter 2 describes an adapted version of Decombinator for use with raw

single cell data. Finally, a perspective is offered on the scope of future development

for the platform.

1.4 T Cell Receptor Structure

1.4.1 TCR Domains and Geometry

TCR heterodimers are composed of variable and constant domains, a transmem-

brane domain and a short cytoplasmic tail (Rudolph et al., 2006). The TCR variable

domains can be divided into framework regions and complementarity determining

regions (CDRs). The CDR regions are found as six hypervariable loops (three per

TCR chain), and are understood to be the driving force behind TCR recognition of
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Figure 1.3: (A) The crystallised structure of the 2C TCR (PDB code 1TCR) is shown with
the Vα domain highlighted in orange, Vβ domain in blue, Cα domain in rose,
and Cβ domain in green. (B) The same TCR is shown with the α chain CDR1,
CDR2, and CDR3 loops highlighted in yellow, red, and orange, respectively,
and the β chain CDR1, CDR2, and CDR3 loops highlighted in green, rose, and
blue, respectively. (C) A close up of the CDR loops is provided, with identical
highlighting.

antigen, with the framework regions serving as structural support. An example TCR

structure with highlighted domains and CDR loop regions is shown in Figure 1.3.

Analysis of antibody structures has shown that antigen binding is affected by

the relative orientation of variable domains (Abhinandan and Martin, 2010; Kuroda

et al., 2012). Recent computational work has shown a similar phenomenon for

TCR structures, with CDR3 loop conformation strongly influenced by the interface

between the Vα and Vβ domains (Fernández-Quintero et al., 2020). The relative

orientation between TCR variable domains has been previously characterised by six

parameters (the “TRangles”), following an approach first used to describe antibody

geometry (Dunbar et al., 2014).

1.4.2 MHC Class I and Class II Architecture

MHC class I molecules are heterodimers composed of a heavy α chain covalently

bonded to a light β2-microglobulin (β2M) chain. The groove in which the peptide

is presented is constructed from only the heavy chain. MHC class II molecules are

also heterodimers, but are composed of two heavy chains (α and β ). The peptide

groove is constructed from both heavy chains, such that, despite their differences

in composition, the two MHC class molecules share a similar resultant architec-

ture (Rudolph et al., 2006). Examples of MHC class I and class II molecules are
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Figure 1.4: (A) The HLA-A2 MHC class I structure with heavy chain shown in orange and
light β2M chain in blue. (B) The HLA-DR1 MHC class II structure is shown
with the two heavy chains in orange and blue. (C) View of the HLA-A2 MHC
class I peptide groove from above, composed of only the heavy chain, shown in
orange. (D) View of the HLA-DR1 MHC class II peptide groove from above,
with the two heavy chains shown in orange and blue. The MHC class I and
class II structures correspond to structures in the PDB under codes 1DUZ and
1KLG, respectively, with the peptides artificially removed for visualisation.

compared in Figure 1.4.

1.4.3 Presentation and the Peptide Groove

For both MHC classes, the presented peptide sits above a β -sheet and is bordered on

each side by an α-helix wall. Peptides presented by MHC class I are anchored by

their termini, and are therefore somewhat restricted in their length. The majority of

MHC class I peptides are between 8 and 10 amino acids long. Nevertheless, MHC

class I has been shown to bind longer peptides, either by extending at the C terminus

or by bulging outwards from the binding groove (Rudolph et al., 2006; Burrows

et al., 2006), thereby providing additional surface area for recognition. Their fixed

termini and bulging from the groove mean that TCR binding usually occurs around

the central residues of the peptide (Singh et al., 2020). In contrast, the MHC class

II peptide groove is open at both ends. Peptides presented by this groove therefore

tend to be longer than those presented by MHC class I, typically between 13 and 25

amino acids in length (Wieczorek et al., 2017). These peptides do not bulge away
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Figure 1.5: The tax nonamer peptide is shown (in green and in stick representation) pre-
sented in the MHC class I peptide groove (orange) from the side (A) and from
above (B). The triosephosphate isomerase 15-mer peptide is shown (in green
and in stick representation) presented in the MHC class II peptide groove (or-
ange and blue) from the side (C) and from above (D). The two structures can
be found in the PDB under codes 1DUZ and 1KLG, respectively.

from the groove and instead the residues show a pattern of alternating high and low

exposure to TCRs (Singh et al., 2020). Examples of peptides displayed in MHC

class I and class II binding grooves are shown in Figure 1.5.

1.4.4 TCR-pMHC Complex Binding and Geometry

The majority of resolved structures of TCRs bound to pMHC show a relatively con-

served binding mode, whereby the CDR3α and CDR3β loops are oriented over the

center of the bound peptide, maximising interaction (Wucherpfennig et al., 2009;

Rudolph et al., 2006). The CDR1 and CDR2 loops are generally responsible for

binding the MHC α helices. Examples of bound TCR-pMHC complexes are shown
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Figure 1.6: The crystallised bound complex of the 868 TCR and the HIV p17 Gag pep-
tide presented by the HLA-A2 MHC class I molecule (found under PDB code
5NMF) is shown (A) with the TCR α chain highlighted in orange, β chain
in blue, peptide in rose, HLA-A2 domain in yellow, and β2M domain in green.
The same complex is shown (B) rotated anticlockwise by 90° with only binding
interface domains visible, the same highlighting, and the peptide shown in stick
representation. The crystallised bound complex of the F24 TCR and the RQ13
peptide presented by the DR11 MHC class II molecule (found under PDB code
6CQL) is shown (C) with the TCR α chain highlighted in orange, β chain in
blue, peptide in rose, DR11 α domain in yellow, and DR11 β domain in green.
The same complex is shown (D) rotated clockwise by 270° with only binding
interface domains visible, the same highlighting, and the peptide shown in stick
representation.

for MHC class I and MHC class II in Figure 1.6. A TCR generally takes up a diag-

onal rotation above the pMHC such that the CDR1 and CDR2 loops may also make

contact with the presented peptide and contribute to antigen specificity.

The diagonal binding mode of a specific TCR with respect to pMHC can be
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described by the crossing (or docking) angle and the incident angle. Traditionally,

the optimal method for measuring the crossing angle has been to calculate the dot

product of the vector that passes through the centroids of the conserved disulphide-

forming sulfur atoms in the two TCR domains and the best-fit straight line that

passes through the Cα atoms of the MHC helices (Rudolph et al., 2006). This pro-

vides a measure of TCR twist relative to the pMHC. The incident angle is calculated

as the angle between the axis of pseudo symmetry between the TCR variable do-

mains and the vector normal to the MHC peptide groove plane. This provides a

measure of TCR tilt relative to the pMHC (Pierce and Weng, 2013).

A large degree of variability in the crossing and (to a lesser extent) incident

angles has been reported for resolved TCR-pMHC structures (Rudolph et al., 2006;

Pierce and Weng, 2013; Rossjohn et al., 2015). TCR-pMHC complexes with un-

usual binding geometries have been implicated in limited or altered T cell responses

(Adams et al., 2011; Gras et al., 2016) and autoimmune disease (Wucherpfennig

et al., 2009). Furthermore, visual inspection and centre of mass (CoM; defined

in Appendix A) calculations have shown that these two measurements alone are

incomplete descriptors of TCR binding modes (Blevins et al., 2016; Singh et al.,

2020).

A new geometric description of TCR binding has recently been designed by

Singh et al. (2020) that differentiates between TCR binding modes that were indis-

tinguishable using crossing and incident angle calculations. In this novel coordinate

system, the CoM of the MHC peptide binding domain is set as the origin. The y-

axis is formed by the line of best fit through the Cα atoms of the two alpha helix

walls of the binding groove; the x-axis is defined as normal to the y-axis, forming

an xy plane; and the z-axis defined as normal to the xy plane. This system allows

three new parameters to be defined: r, the distance between the MHC binding plane

domain CoM and the TCR (V domain) CoM; φ , (tilt of TCR relative to MHC), the

angle formed by the z-axis, the MHC CoM and the TCR (V domain) CoM; and θ ,

(rotation of TCR around MHC), the angle between the x-axis and the projection of

the TCR (V domain) CoM onto the xy plane. These measurements are shown for
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Figure 1.7: An influenza peptide presented by MHC Class I molecule HLA-A2 (green)
bound by the JM22 TCR (blue) superimposed with the coordinate system de-
vised by Singh et al. (2020). The geometry is described by three parameters:
(1) r gives the distance between the TCR CoM and xy binding plane, (2) φ gives
the angle which specifies the tilt of the TCR relative to the pMHC, and (3) θ

gives the angle which specifies the rotation of the TCR around the pMHC. The
values that correspond to the displayed structure are: r = 29.10Å, θ = 52.69°
and φ = 12.64°. These values were calculated using the Python script provided
in Singh et al. (2020). The raw structure for this complex can be found under
PDB code 1OGA.

an example TCR-pMHC structure in Figure 1.7.

Analysis using this coordinate system has revealed that class I and class II

restricted TCRs orientate such that their CDR loops converge on peptide regions

that are maximally solvent exposed, and bisect the high points of the MHC α he-

lices (Singh et al., 2020).
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1.4.5 TCR Structural Databases

The growing number of available TCR and TCR-pMHC structures has encouraged

efforts to curate TCR-specific structural databases that might permit the community

to analyse TCR structures more easily and efficiently. The Structural TCR Database

(STCRDab) automatically collects and annotates TCR and TCR-pMHC structural

data from the Protein Data Bank (PDB) (Leem et al., 2018). MHC type, αβ and

γδ pairings, CDR loop canonical forms, and geometric measurements are all auto-

matically determined. As of September 2021, STCRDab reports 518 PDB entries

that contain at least one TCR structure. The majority of these contain αβ TCRs and

are the focus of most structural studies. Nevertheless, a small number of γδ TCR

structure have also been resolved.

The ATLAS (Altered TCR Ligand Affinities and Structures) database is a man-

ually curated repository for TCR and TCR-pMHC structures which have associated

binding affinity measurements recorded (Borrman et al., 2017). ATLAS contains

both structures collected from the PDB and homology modelled structures.

The TCR3d database is another repository that automatically identifies all TCR

and TCR-pMHC structures in the PDB, and focuses on TCR targeting and antigen

interactions (Gowthaman and Pierce, 2019). TCR3d reports MHC type, TCR dock-

ing angles, buried surface area and shape complementarity. Users can filter by

virus or cancer targeting TCRs, and tools are provided for calculating the r, θ and φ

parameters and the crossing and incident angles described in Section 1.4.4 for TCR-

pMHC complexes. In addition, TCR3d provides a set of 30 TCR-pMHC complexes

that have experimentally determined unbound TCR and pMHC structures. These

structures are particularly useful for benchmarking TCR-pMHC structure predic-

tion tools. Research conducted to expand this benchmark through the identification

and analysis of other such structures is discussed in Chapter 3.
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1.5 Computational Modelling of TCR and TCR-

pMHC structures

1.5.1 Protein Structure Prediction

A complete understanding of the function of a protein is often impossible without

knowledge of its three dimensional structure. Pioneering work in the 1950s pro-

duced the first experimentally resolved protein structures (Fersht, 2008). Over the

subsequent decades, tremendous progress has been made in the determination of

protein structures through innovations in x-ray crystallography, nuclear magnetic

resonance (NMR) and, more recently, cryo-electron microscopy (cryo-EM) (Hame-

duh et al., 2020). In response to the increasing quantity of crystallographic data and

the advent of graphical hardware and software, the Protein Data Bank (PDB) was

established in 1971 as a resource for the storage and search of protein structural

data (Protein Data Bank, 1971), and remains the central repository for structural

biologists today (wwPDB consortium, 2019). As of September 2021, the Protein

Data Bank (Berman et al., 2000) contains over 150,000 protein structures.

Despite these successes, breakthroughs in sequencing technology have cre-

ated an ever-increasing gap between the enormous number of annotated pro-

tein sequences (over 100 million) and the number of resolved protein structures

(Muhammed and Aki-Yalcin, 2019). Modern computing has allowed for cheaper,

faster, and increasingly more accurate and automated approaches to the problem of

structure prediction, and there is hope that these methods may reduce the divergence

between available sequence and structural data (Muhammed and Aki-Yalcin, 2019;

Hameduh et al., 2020; Guo et al., 2008).

Initial attempts to predict protein structure from sequence aimed to derive

rules for protein folding using principles from thermodynamics (Levitt and Warshel,

1975). However, the enormous size and complexity of the search space that must

be explored to locate the lowest free-energy structure into which an amino se-

quence should fold has proven beyond the reach of the scientific community (Guo

et al., 2008). Nevertheless, these early approaches have evolved into one of two
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branches of structural prediction methods. First, a branch that aims to address the

protein folding problem directly with no prior structural information. These so-

called “ab initio” methods include molecular dynamics (MD) simulations of protein

folding, Monte Carlo optimisation routines for efficiently sampling conformational

space, and contact prediction through evolutionary covariation (Bonneau and Baker,

2001). Ab initio methods tend to be computationally expensive.

The second branch of structural prediction methods overcomes the challenge of

protein folding by ignoring it, and instead focuses on making use of existing protein

structures as templates. Homology modelling is a “knowledge-based” technique

that relies on the assumption that proteins with similar sequences will share struc-

tural features. The sequence of the target (the protein being modelled) is aligned

against a set of template proteins with known sequence and resolved structure. Once

templates have been identified, they are aligned with the target sequence and opti-

mised. A backbone model is constructed from structural elements of the templates,

and regions of the target with no template may be constructed through de novo loop

modelling or by consulting loop databases. Side chain rotamers may be added, and

a model is generally optimised through energy minimisation, before final validation

(Hameduh et al., 2020; Krieger et al., 2003). Homology modelling has been a pop-

ular and high achieving strategy in the regularly held CASP (Critical Assessment

of protein Structure Prediction) experiments over the last two decades (Moult et al.,

2018).

Protein threading (or fold recognition) is a modelling approach that has been

used to predict structures for proteins that have the same fold as proteins with known

structures, but for which no homologous structure is known. This method “threads”

the target sequence, amino acid by amino acid, through that of a template protein.

For a given local environment, the similarity between target and template is assigned

a score. This process is repeated for a large number of templates, and the highest

scoring template provides a prediction of the backbone for the target (Guo et al.,

2008). Threading relies on the assumption that the total number of protein folds in

nature is small and that the majority have already been discovered. This technique
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has proved a useful tool, particularly when the sequence identity between the target

and known structures is low.

Over the last few years, machine learning (ML) techniques have been incorpo-

rated into all aspects of protein structure prediction (AlQuraishi, 2021). The ability

to lever enormous quantities of input data coupled with extensive deep learning

architectures, and facilitated by considerable computational resources, has seen a

dramatic improvement in protein structure prediction (Jumper et al., 2021). The

unrivaled success of Deepmind’s AlphaFold2 software at the latest round of the

CASP experiments has been a milestone for the field, and it has been argued that

the folding problem has now been essentially solved for single domain proteins

(AlQuraishi, 2021).

Preliminary studies that have extended this approach to predict protein-protein

complexes have shown a number of successes, though it has been noted that at-

tempts at antibody-antigen structural prediction remain largely unsuccessful (Evans

et al., 2021; Yin et al., 2021). Nevertheless, improvements in antibody-specific epi-

tope prediction have been reported when combining AlphaFold with rigid-docking

approaches (Xu et al., 2022). Recently, a study that compared AlphaFold and MOD-

ELLER for TCR-pMHC complex modelling resulted in divergent sets of structural

models, however benchmarking against known TCR-pMHC structures was not un-

dertaken (Rollins et al., 2022).

The following sections describe homology modelling approaches that have

been designed specifically for modelling TCR and TCR-pMHC complex structures.

1.5.2 Homology Modelling of TCRs

Provided that adequate templates can be identified, homology modelling approaches

are not limited to only single domain proteins. Due to their central role in the adap-

tive immune response and their potential for cell-based and soluble therapeutics, a

large number of TCR structures have been resolved, providing a broad set of tem-

plates for TCR structural modelling. While numerous homology modelling soft-

ware platforms have been designed for general purpose modelling, over the last few

years a small number of platforms have been published for TCR-specific modelling.
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The LYRA (LYmphocyte Receptor Automated modeling) web server provides

automatic B cell receptor (BCR) and TCR modelling (Klausen et al., 2015). LYRA

selects framework templates based on BLOSUM score, and CDR loops based on

canonical structures. Users have the additional options of manually selecting tem-

plates or excluding certain templates from selection. The interface residues of the

selected chains are subjected to packing (if the chains originate from different tem-

plates and exhibit atomic clashes), loops are grafted onto the framework regions,

side chains are repacked, and the entire model subject to energy minimisation us-

ing the ENCAD program (Levitt et al., 1995). The LYRA web server was used

for modelling successive generations of TCR structures from sequence for research

described in Chapter 5.

The TCRModel web server automatically models TCRs using the Rosetta

modelling framework (Leaver-Fay et al., 2011), and has been shown to compare

favourably to LYRA (Gowthaman and Pierce, 2018). TCRModel also selects inde-

pendent templates for framework and CDR regions, assembles models by grafting

the loops onto the framework regions, and then refines the backbone and side chains

using Rosetta energy minimisation protocols. Users can choose to further refine the

CDR3 loop of their models through an implemented kinematic closure loop mod-

elling algorithm (although this feature significantly increases the length of the task).

Like LYRA, TCRModel also allows the exclusion of undesirable templates.

The Repertoire Builder web server uses multiple sequence alignment (MSA)

for bulk generation of BCR or TCR structures (Schritt et al., 2019). Separate MSAs

are constructed for CDR and framework templates and then extended to include the

target sequence. Each alignment between target and template is scored per residue

to select an appropriate template. The backbone structure is assembled using con-

served anchor residues between the CDR, framework and orientation templates, and

side chains are re-modelled using SCWRL4 (Krivov et al., 2009) where appropriate.

Repertoire Builder has been reported to compare favourably with LYRA and TCR-

Model, and is capable of generating 10,000 structures in approximately 30 minutes.

The web server is backed by considerable computational resources, and the design-
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ers have emphasised that other existing TCR modelling platforms would be capable

of similar throughput if distributed over a large number of processors.

The TCRBuilder web server uses structural templates to generate an ensem-

ble of TCR models predicted to capture the dynamic nature of the TCR binding

region (Wong et al., 2020). Framework and orientation templates are selected by

sequence identity, CDR templates are predicted using FREAD (Choi and Deane,

2010) or modelled using Sphinx (Marks et al., 2017), and side chains are modelled

by PEARS (Leem et al., 2018). TCRBuilder has shown comparable performance

to LYRA, TCRModel and Repertoire Builder.

1.5.3 Homology Modelling of TCR-pMHC Complex Structures

Traditional methods for modelling protein-protein complexes reside in the realm of

computational docking. Where either the two (or more) independent protein struc-

tures are already known, or can be modelled accurately, protein-protein docking

approaches attempt to predict the relative position and orientation of the compo-

nents accurately through efficient sampling and effective scoring to build a complete

model of the complex. A more detailed overview of the docking field is provided in

Section 1.5.4. However, there is no reason that homology modelling should be only

limited to unbound proteins, provided adequate templates of complexes exist.

Two recently published software platforms have demonstrated that full TCR-

pMHC complex models can be constructed using the growing number of exper-

imentally determined complexes as templates. The TCRpMHCModels platform

(Jensen et al., 2019) uses LYRA to model the TCR component and the homology

modelling tool MODELLER (Šali and Blundell, 1993) to model the pMHC com-

ponent from sequence independently. MODELLER is then used to construct the

TCR-pMHC complex using the modelled TCR and pMHC components and one or

more TCR-pMHC templates. The platform has been built to model only complexes

containing MHC class I, is supported by a free-to-use web server, and has been

shown to outperform the bespoke TCRFlexDock docking platform for TCRs for a

set of test cases. The TCRpMHCModels web server was used for modelling suc-

cessive generations of TCR-pMHC structures from sequence for research described
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in Chapter 5.

The ImmuneScape (Li et al., 2019) platform builds TCR-pMHC complex mod-

els through similar approaches to TCRpMHCModels. Models for the TCR and

pMHC are constructed independently and then oriented using TCR-pMHC tem-

plates to build the complex. Unlike TCRpMHCModels, ImmuneScape models the

CDR regions after the TCR and pMHC templates have been combined (Teraguchi

et al., 2020). Furthermore, it permits modelling of complexes containing both MHC

class I and MHC class II molecules. At present there is little in the way of bench-

marking reported for ImmuneScape, and it is hard to judge how the two platforms

compare.

Advantages of homology modelling methods include the rapid speed at which

models can be produced and the accuracy of predictions if high sequence identity

can be found with template structures. Where adequate templates cannot be found,

or a more rules-based approach is desired, computational protein-protein docking is

a well-established field.

1.5.4 Computational Docking

Previous sections in this chapter have discussed methods for modelling (most fre-

quently) individual proteins from their amino acid sequence using computational

methods. In general, resolving the structure of a protein-protein complex experi-

mentally is more challenging than for an individual protein (Vakser, 2014). While

comparative techniques have been explored for modelling proteins that have a large

number of templates available, such as BCRs and TCRs, computational docking

offers an alternate approach for protein-protein structural modelling, and has long

been a focal point of structural biology.

The scope of computational docking is very broad, encompassing methods

for the structural prediction of protein-protein complexes (Porter et al., 2019),

protein-ligand (small molecule) complexes (Pagadala et al., 2017), protein-nucleic

acid complexes (Tessaro and Scapozza, 2020), protein-peptide complexes (Agrawal

et al., 2019), and protein-carbohydrate complexes (Pérez and Tvaroška, 2014).

Molecular docking approaches are regularly used throughout the virtual screening
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and lead optimisation processes for drug discovery (Meng et al., 2011). Macro-

molecular (protein-protein) docking approaches provide insight into protein interac-

tions at the binding interface and provide a basis for rational protein design (Vakser,

2014). The CAPRI (Critical Assessment of PRediction of Interactions) community-

wide experiment has served as a means for researchers to regularly test and discuss

their algorithms with others, and has seen the field flourish over the last two decades

(Janin et al., 2003).

In general, the computational docking process involves efficiently sampling

thousands of possible positions and orientations of the binding partners relative to

one another, with the aim of producing a model that captures the true structure (na-

tive solution) of the complex. Each pose is ranked according to a scoring function

that is designed to predict how similar a generated model is to the native solution.

The size of the search space presents a challenge for sampling procedures.

Many algorithms (Chen and Weng, 2003; Tovchigrechko and Vakser, 2006; Cheng

et al., 2007; Macindoe et al., 2010) are based on the rigid-body fast Fourier Trans-

form (FFT) shape complementarity approach (Katchalski-Katzir et al., 1992) de-

veloped in the 1990s for rapid, yet exhaustive, searching. Others have made use

of geometric hashing techniques (Fischer et al., 1992; Schneidman-Duhovny et al.,

2005).

A wide variety of techniques have been explored since in attempts to improve

upon the speed and accuracy of docking. Geometric search has been extended to

include electrostatic (Gabb et al., 1997) and desolvation contributions (Chen and

Weng, 2003). Speed improvements have been gained through implementing the

algorithm in spherical polar (rather than Cartesian) coordinates (Ritchie and Kemp,

2000), and by using graphics processing units (GPUs) (Ritchie and Venkatraman,

2010). External scoring functions that include knowledge-based terms that take

advantage of information from existing structures as well as physics-based terms

have proven successful. Consensus-based scoring and scoring functions that make

use of existing evolutionary information have also performed well (Oliva et al.,

2013).
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An alternate approach to FFT docking has been to make use of Monte Carlo

algorithms. Binding partners arranged in some initial position and orientation are

translated and rotated over a large number of successive steps. At each step, the

pose is scored, and then either accepted or rejected based on the score, with the

aim of converging upon the native solution. This is the basis for the popular and

successful RosettaDock protocol (Chaudhury et al., 2011). Other algorithms have

attempted similar convergence on solutions using optimisation routines, such as

swarming (Moal and Bates, 2010; Jiménez-García et al., 2018), simulated annealing

(Dominguez et al., 2003) and genetic algorithms (Gardiner et al., 2001). Clustering

of docked models has also proved a powerful tool for improving the accuracy of

results (Comeau et al., 2004; Mashiach et al., 2010; Dominguez et al., 2003).

While the occurrence of conformational change upon protein-protein binding

is well established, accounting for the additional degrees of freedom introduced

by flexibility proves very difficult for traditional approaches such as FFT docking.

Modelling conformational change is often performed as an additional routine af-

ter an initial FFT search, such as by short MD simulation, normal mode analysis,

or rigidity and hinge detection algorithms (Andrusier et al., 2008). Alternatively,

algorithms that reduce the search space through the use of optimisation routines

are more readily capable of exploring flexibility during the initial docking process

(Moal and Bates, 2010; Jiménez-García et al., 2018; May and Zacharias, 2008;

Zacharias, 2003).

A number of docking platforms have introduced features to allow users to

specify additional information alongside the protein binding partners to guide the

docking. These “data-driven”, “information-driven” or “integrative modelling”, ap-

proaches have been highly successful in recent years (Rodrigues and Bonvin, 2014).

Permitting the specification of binding residues or regions has been popularly im-

plemented into algorithms to bias the scoring step (Kozakov et al., 2017; Tovchi-

grechko and Vakser, 2006; Schneidman-Duhovny et al., 2005; Pierce et al., 2014b;

Jiménez-García et al., 2018), the sampling step (Dominguez et al., 2003; Moal and

Bates, 2010; Macindoe et al., 2010; Chaudhury et al., 2011), or a post-modelling
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filtering step (Cheng et al., 2007). Docking platforms have also made use of in-

formation from small angle x-ray scattering (SAXS) (Karaca and Bonvin, 2013;

Pons et al., 2010) and Cryo-EM density maps (de Vries and Zacharias, 2012) to

improve results. The HADDOCK platform, which is very much designed with inte-

grative modelling principles in mind, accepts mutagenesis, mass spectrometry and

NMR analysis data as ambiguous restraints to drive the docking (Dominguez et al.,

2003).

The construction of TCR-pMHC model structures has revealed biological in-

sight in a range of contexts. The ClusPro rigid-body platform has been used in

conjunction with MD refinement in the search for cross-reactive epitopes for vac-

cines in response to the 2009-H1N1 influenza pandemic (“swine flu”), revealing

effects of TCR residue mutations on binding affinity (Su et al., 2013). ClusPro

has also been used to study promiscuous T cell epitope prediction for vaccine de-

sign against Streptococcus pyogenes (Ebrahimi et al., 2019), in the generation of

cytotoxic T cells with enhanced anti-tumor activity (Ouchi et al., 2018), and for

the investigation of possible superantigenic fragments in the spike protein of severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Cheng et al., 2020). The

RosettaDock platform has been used to help reveal the influence of CDR loops on

the Vα /Vβ interdomain angle and the impact this can have on antigen binding (Mc-

Beth et al., 2008). Although unfortunately no longer available, FTDOCK (Gabb

et al., 1997) has been used to dock the Vβ domain of TCR to pMHC to provide

insight into the mechanisms of self reactivity in the context of rheumatoid arthritis

(Rosa et al., 2010), and AutoDock has been used to build TCR-pMHC models to

reveal details of the TCR binding mode in the context of multiple sclerosis (Kato

et al., 2010).

Despite the broad interest in constructing TCR-pMHC complexes using com-

putational docking, there has been little research conducted into the accuracy and re-

liability of these algorithms for the purposes of TCR modelling. Most new docking

algorithms are tested using the protein-protein docking benchmark (Vreven et al.,

2015), which contains a diverse set of bound and unbound proteins of varying de-
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grees of modelling difficulty. However, no TCR-pMHC structures feature in this

benchmark, and consequently few platforms are challenged in this context. The

TCRFlexDock platform (Pierce and Weng, 2013), an extension of RosettaDock, is

the only bespoke platform for TCR-pMHC modelling. To address the specific chal-

lenges in TCR-pMHC complex docking, a TCR-pMHC specific benchmark of 20

cases was assembled to test the TCRFlexDock software. This has been expanded

to 30 cases in the TCR3d database. Efforts to identify additional benchmark cases

comprise a portion of the work presented in this thesis, and are reported in Chap-

ter 3.

To provide the community with guidance on the accuracy of general-purpose

docking platforms for TCR-pMHC modelling, Chapter 4 of this thesis reports the

performance of four popular docking algorithms — ClusPro, HADDOCK, Light-

Dock and ZDOCK — against the expanded TCR benchmark. Each platform was

chosen for its ability to incorporate additional information into the docking process.

Varying levels of detail about the TCR-pMHC binding interface were provided to

each platform to assess how final models might be improved given a priori infor-

mation. Conformational changes that take place upon binding have been reported

as being higher on average for TCR-pMHC structures than for unbound antibody-

antigen structures (Pierce and Weng, 2013). Chapter 4 also explores the ability of

the two flexible docking platforms — HADDOCK and LightDock — to accurately

model conformational change in the TCR CDR loops upon binding.

1.5.5 Alternative Methods for TCR-pMHC Modelling

Although this thesis is largely concerned with the use of computational docking to

model TCR-pMHC complexes, the problem has been approached using alternative

methods. The bespoke DynaDom method (Hoffmann et al., 2017) for TCR-pMHC

assembly, implemented within the DynaCell molecular modelling suite (Antes,

2010), is something of a hybrid approach of template-based, docking and molec-

ular dynamics techniques. It places an emphasis on the prediction of TCR Vα /Vβ

inter-domain and TCR-pMHC orientations, performing particularly well in the for-

mer case. It is unclear how long each modelling task takes, and the software does
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not appear to be currently available to the public.

Molecular dynamics (MD) simulations have been briefly discussed in the con-

text of performing short energy minimisation routines on modelled protein or pro-

tein complex structures. An MD protocol numerically solves Newton’s equations

of motion for a system of particles over time and under certain thermodynamic con-

straints, and this field is another well-established branch of molecular modelling. A

major advantage of MD simulations is the insight that can be obtained by observing

the movement of particles over time, rather than the static snapshots of crystallised

proteins. However, these simulations are computationally expensive, with run times

often extending into several weeks for the analysis of a single complex (Knapp et al.,

2015).

Generally, MD simulations of TCR-pMHC complexes are more concerned

with investigating structural mechanisms for TCR cross-reactivity and binding than

TCR-pMHC complex assembly. Furthermore, computationally modelled struc-

tures are often required prior to a simulation study, and therefore constructed us-

ing homology approaches (Leimgruber et al., 2011) or side-chain substitution tools

(Knapp et al., 2008, 2011). MD simulation for TCR-pMHC structural analysis has

been reviewed by Flower et al. (2010) and, more recently, by Knapp et al. (2015).

Application of MD simulations to the design of novel TCRs is further discussed in

Section 1.6.

1.6 Rational Design and TCR Engineering

The breadth of TCR diversity and their critical role in fighting disease has made

them attractive targets for protein engineering projects. Introducing enhanced bind-

ing properties through mutation has been explored for vaccine design (Chen et al.,

2005; Koup and Douek, 2011), and adoptive cell transfer therapy (Rosenberg et al.,

2008). A number of studies have successfully engineered novel high-affinity TCRs

through directed evolution (Holler et al., 2000; Li et al., 2005; Dunn et al., 2006),

whereby protein function is modified through successive rounds of random muta-

tion and artificial selection (Romero and Arnold, 2009).
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In addition to these wet lab approaches, a number of rational design studies

have engineered high-affinity TCRs using computational analysis (Haidar et al.,

2009; Alli et al., 2011; Zoete et al., 2013; Pierce et al., 2014a). In contrast to the

random mutation of directed evolution, rational design studies focus on identifying

specific protein sites that are predicted to enhance function upon mutation. The

advantages and disadvantages of directed evolution and rational design have been

reviewed by Chica et al. (2005), in the context of enzymes, and a synthesis of the

two approaches has been predicted to pave the way for new areas of protein design.

Lead optimisation techniques are common place in the realm of virtual drug

discovery (Hughes et al., 2011), whereby the various pharmaceutical properties of

a compound identified as a leading drug candidate are enhanced through succes-

sive rounds of modification and validation. A number of automatic approaches

have been developed for lead optimisation using fragment growing and replacement

techniques (Lamoree and Hubbard, 2017; Li et al., 2015). In attempts to automate

replacement and iteration in silico, optimisation routines such as genetic algorithms

have been implemented to converge on high quality solutions (Singh et al., 1996;

Spiegel and Durrant, 2020). Genetic algorithms have been similarly applied to the

optimisation of peptides for validation in vitro, applying mutation and crossover

to amino acid residues, rather than compound fragments (Fjell et al., 2011; Röck-

endorf et al., 2012; Burnside et al., 2019). Additionally, genetic algorithms have

been explored in combination with structural modelling methods to optimise pep-

tides for MHC binding (Knapp et al., 2011). Chapter 5 of this thesis describes a

prototype platform for the design of TCRs with novel properties using a genetic

algorithm and structural modelling methods.

1.7 Scope of Thesis
This thesis explores computational methods and tools for the analysis of TCR se-

quence and structure. A short summary of the work presented in the following

chapters is provided below.

• Chapter 2 provides a detailed overview of the entire Decombinator pipeline
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and the new features that have been introduced for the latest official release,

Decombinator V4. Additional tools that have been developed to aid in reper-

toire analysis or pipeline testing are also described. An adaption of Decom-

binator for the analysis of short-read single cell data is also described, and

compared to two alternative platforms using independent datasets.

• Chapter 3 expands the existing benchmark of TCR-pMHC bound and un-

bound structures to aid the development and testing of tools for TCR-pMHC

complex structural modelling. Methods are described for the cleaning, rela-

belling and repairing of the publicly available data.

• Chapter 4 compares and contrasts four general-purpose computational dock-

ing platforms in the context of TCR-pMHC modelling. A background is pro-

vided for each platform along with useability notes for future researchers.

The success rate of each platform is evaluated against the expanded TCR

benchmark and with varying degrees of additional information about the

TCR-pMHC binding interface. The platforms are compared to the bespoke

TCRFlexDock modelling platform, and CDR loop modelling is assessed for

the flexible docking approaches. It is hoped that this study will provide re-

searchers with guidance and rationale when choosing appropriate software

for TCR-pMHC complex modelling in future projects.

• Chapter 5 describes a novel platform for the computational engineering of

TCRs. The software centres around a genetic algorithm that evolves the

amino acid sequence of a population of TCRs over successive generations

according to a customisable fitness function. For every iteration, a structural

model of each TCR (or TCR-pMHC complex) is built and evaluated accord-

ing to the fitness function, such that desired features are engineered into the

models. It is hoped that this platform demonstrates a proof of concept of the

scope of automated approaches for biological design that will only improve

as structural modelling methods become more accurate.



Chapter 2

The Decombinator package for TCR

repertoire analysis

2.1 Introduction to the Decombinator Package

Decombinator was one of the earliest software packages designed to detect TCR

signatures in the expanding realm of bulk immunological sequence data (Thomas

et al., 2013). While this computational pipeline operates as a stand-alone tool for

sequence analysis, it is ideally complemented by an optimised experimental proto-

col designed by the Chain lab at University College London (UCL) (Uddin et al.,

2019).

The Decombinator platform has been used to annotate TCR repertoire data

in a range of biological settings. Changes in the TCR repertoire have been anal-

ysed in the context of immunization against Mycobacterium tuberculosis (Thomas

et al., 2014), in chronic HIV infection following antiretroviral therapy (Heather

et al., 2016), and in response to cord blood transplantation (Gkazi et al., 2018). De-

combinator has also been used to explore the immune response to neuroblastoma

(Fisher et al., 2014) and to clear cell renal cell carcinoma (Au et al., 2021) (preprint

— manuscript accepted). Furthermore, the pipeline has been used to investigate

TCR repertoire diversity in naïve and memory subsets from healthy donors (Oakes

et al., 2017), and in the context of non-small-cell lung cancer (NSCLC) (Joshi et al.,

2019).
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Decombinator Pipeline
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Figure 2.1: An overview of the main components and the flow of data through the Decom-
binator pipeline.A DCR identifier is a shorthand annotation that unambiguously
describes a TCR sequence, and is described further in Section 2.1.4.

The name “Decombinator” originally referred to a single software module

(Thomas et al., 2013) that was designed to search for TCR signatures by inferring

the recombination events that produced a given read (Peacock et al., 2021). Over

subsequent years, the name has been extended to refer to a suite of complementary

tools that extend beyond the original module. In general, Decombinator offers tools

for: sorting data produced by massively parallel sequencing runs into separate sam-

ple files; V and J gene read annotation; sequence error correction; full DNA and

protein translations; and CDR3 extraction. This functionality is divided among four

primary modules: (1) Demultiplexor, (2) Decombinator, (3) Collapsinator, and (4)

CDR3translator.

An overview of the computational pipeline is provided in Figure 2.1. Sec-

tion 2.1 of this chapter provides an introduction to the main components of the

original Decombinator platform prior to work undertaken over the course of this

PhD project (except where explicitly referred to as Decombinator V4). The original
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pipeline was written collaboratively by a number of researchers, and some of the

extensions that have been made to the pipeline have been formally published over

the years (Thomas et al., 2013; Best et al., 2015; Oakes et al., 2017).

Section 2.2 describes the latest version of the pipeline, Decombinator V4 (Pea-

cock et al., 2021), which was developed over the course of this PhD project. The

extensions presented in this section can be assumed to have been made by the author

of this thesis, except where collaborators are explicitly acknowledged.

Section 2.3 describes a suite of additional tools that may be used in conjunc-

tion with Decombinator to aid in TCR repertoire analysis. These scripts were writ-

ten over several years by multiple collaborators. Where an existing tool has been

extended for compliance with Decombinator V4 (such as being upgraded from

Python 2 to Python 3), the author of this thesis can be assumed to have been the

sole contributor. Where new tools have been written by others or in collaboration

with the author of this thesis, these collaborators are explicitly acknowledged.

Section 2.4 outlines an adaption of Decombinator for use with short-read frag-

mented data. This work was undertaken solely by the author of this thesis. The

performance of this adaption is compared to two alternative TCR repertoire analy-

sis packages for two single cell data sets. Except where explicitly stated otherwise,

this comparative study was undertaken by the author of this thesis.

Finally, Section 2.5 offers some perspective on what the future might hold for

the Decombinator pipeline. Decombinator is open source and made freely available

online at https://github.com/innate2adaptive/Decombinator.

2.1.1 Experimental Protocol

It is recommended that the Decombinator computational pipeline is used in con-

junction with an experimental protocol designed by the Chain lab at University

College London. The technicalities of the experimental design are not detailed here,

but the interested reader is directed to a recent publication by Uddin et al. (2019),

where each step of the protocol is described in full. However, it is worth drawing

attention to three key features that make this pipeline valuable to the immunological

community.

https://github.com/innate2adaptive/Decombinator
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Firstly, unlike many commercial TCR sequencing services, this experimental

pipeline is open-source — full details of the protocol are freely available, and re-

quired primers, enzymes and materials are easy to source (Uddin et al., 2019).

Secondly, the pipeline is cheap to run. The total cost of a typical reaction is less

than $50. Sequencing samples in parallel as part of the same run also reduces costs.

The Chain lab typically analyses 80 samples per run using an Illumina NextSeq

machine, without significant loss in read depth or repertoire coverage (Uddin et al.,

2019).

Finally, the experimental protocol is designed to incorporate unique molecular

identifiers (UMIs) (Weinstein et al., 2009; Mamedov et al., 2013; Shugay et al.,

2014) with high efficiency. UMIs are used in the Decombinator pipeline to correct

for sequencing error introduced by the incorrect assignment of base pairs by the

sequencing machine, as well as error introduced through several rounds of poly-

merase chain reaction (PCR) amplification of the recombined TCR α and β chains

(Oakes et al., 2017). Crucially, these error-correction procedures allow for quanti-

tative estimates of TCR gene abundance (Best et al., 2015).

The construct produced by the original experimental protocol is shown in Fig-

ure 2.2. The UMI is composed of two random hexamers separated and bordered

by two known spacer sequences (identical 8 base pair I8 oligonucleotides). This

barcoding scheme is typically referred to in shorthand as the “I8 oligo” in Decom-

binator documentation. More recently, a new barcoding schema has been developed

and incorporated into the pipeline, and is discussed further in Section 2.2.2.

When sequenced, the raw data generated by the machine must typically be

converted to FASTQ format to produce the output reverse, forward and index files.

The structure of the reads in these files is additionally illustrated in Figure 2.2,

and the file conversion process is described in the following section. The original

experimental protocol makes use of two index sequences, shown here as x1 and x2,

for demultiplexing purposes. This protocol is referred to throughout this chapter as

the internal dual index (IDI) protocol, named for the x1 index contained within the

R1 sequenced read. The latest version of Decombinator is also compatible with a
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Figure 2.2: Schematic for the (internal dual index) sequencing of the TCR construct assem-
bled through the recommended experimental protocol for use with the Decom-
binator software package. The x1 and x2 indexes are used by Demultiplexor to
separate reads into sample specific files, while the random hexamers make up
the molecular barcode.

new unique dual index (UDI) protocol, which is outlined in Section 2.2.1.

2.1.2 Preprocessing of Raw Sequence Data

Sequencing performed by the Chain lab is typically accomplished using Illumina

MiSeq or NextSeq HTS machines. The raw data produced by these machines are

stored in binary base call (.bcl) format. On some machines, such as the Illumina

MiSeq, these files are automatically demultiplexed by default to the commonly used

FASTQ format using the Illumina SP2 index (index x2 in Figure 2.2).

FASTQ input for the Decombinator pipeline, however, must be demultiplexed

using both the SP2 index and an additional SP1 index introduced during the ex-

perimental protocol (x2 and x1 in Figure 2.2, respectively). Therefore, the raw

data should be converted to FASTQ format without automatically demultiplexing,

and instead processed using the custom Demultiplexor script of the Decombinator

platform.

File conversion is typically performed using the Illumina bcl2fastq conver-

sion software (http://emea.support.illumina.com/downloads/bcl2fast

q-conversion-software-v2-20.html). It should be noted that separate index

FASTQ files are not always generated as default by the sequencing machine. Under

these circumstances, it is recommended that an experienced Illumina user should be

consulted to alter the configuration files of the machine appropriately.

http://emea.support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html
http://emea.support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html
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If using an IDI protocol, as illustrated in Figure 2.2, the bcl2fastq conversion

should be performed as:

bcl2fastq --runfolder-dir $RUN_DIR -o $OUT_DIR --use-bases-mask

y*,y*,y* --minimum-trimmed-read-length 6

--mask-short-adapter-reads 0 --no-lane-splitting

If using the Illumina MiSeq machine, R1.fastq.gz, R2.fastq.gz and

I1.fastq.gz files are generated, which can be used by the Demultiplexor script.

If using the Illumina NextSeq machine, the output files have different default la-

belling, and R1.fastq.gz, R2.fastq.gz and R3.fastq.gz files (R1, I1, and R2

in Figure 2.2, respectively) are generated.

If using the Decombinator V4 UDI protocol, described in Section 2.2.1 and

illustrated in Figure 2.9, the conversion should be performed as:

bcl2fastq --runfolder-dir $RUN_DIR -o $OUT_DIR --use-bases-mask

y*,y*,y*,y* --minimum-trimmed-read-length 6

--mask-short-adapter-reads 0 --no-lane-splitting

When using the Illumina NextSeq and Novoseq machines, the bcl2fastq out-

put files are generated as: R1.fastq.gz, R2.fastq.gz, R3.fastq.gz and

R4.fastq.gz (R1, I1, I2, and R2 in Figure 2.9, respectively).

2.1.3 Demultiplexor Module

For the sake of efficiency, a typical TCR sequencing experiment involves the se-

quencing of many biological samples pooled together (multiplexed) as part of the

same run on a sequencing machine. The Demultiplexor script uses index sequences

to identify the specific sample to which a given sequence belongs, and to then save

that sequence into a data file specific to that sample. Output sample files are writ-

ten in FASTQ format and compressed by default. Demultiplexor has been written

specifically for the TCR library preparation wet lab protocol used by the Chain

lab (Uddin et al., 2019), and some modification may be required if using different

experimental setups.
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Figure 2.3: Sequences in the R1, R2 and I1 files pertaining to a single read are rearranged
by the Demultiplexor script and saved to a sample-specific file defined by the
x1 and x2 indices. This schematic describes the demultiplexing process for IDI
experimental protocols.

As described in Section 2.1.2, Illumina sequencing machines produce three or

four output data files. In the context of the Chain lab IDI protocol, these files con-

tain: (1) the first sequencing read (R1) containing the V(D)J sequence and the SP1

demultiplexing index (x1 in Figure 2.2 and Figure 2.3); (2) the second sequencing

read (R2) which contains the UMI barcode sequences, and reads into the start of

the 5′ untranslated region (UTR) of the TCR; and (3) the 8 base pair index read (I1)

containing the second demultiplexing SP2 index (x2 in Figure 2.2 and Figure 2.3).

In the more recent UDI protocol, the SP1 index (x1) is removed from its position

in R1 to a position between the SP1 sequencing primer and P5, and the read (I2) is

written to a fourth file.

Iterating through the three files, Demultiplexor extracts relevant subsequences

from each read and combines them into a new single sequence. This output se-

quence is composed of: the first 45 base pairs of R2 (which covers the I8 oligo

barcoding schema, or the longer M13 oligo barcoding schema described in Sec-

tion 2.2.2, along with a few additional buffer base pairs); the 6 base pair SP2 index

from I1; the 6 base pair SP1 index from R1; and the remainder of the R1 read, which

includes the end of the constant region and the majority of the variable region of the

TCR sequence. These reconstructed sequences are saved to individual FASTQ files

specific to the SP1 and SP2 indices.

User-friendly file naming can be achieved by supplying an additional file con-
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Figure 2.4: Each sequence provided to Decombinator is searched for short tag sequences
that are each unique to a given V or J gene. If both a V and J tag are identified
in the sequence, a 5-part identifier (DCR) is assembled by Decombinator as a
descriptor of the TCR sequence.

taining SP1 and SP2 index combinations alongside desired sample names. Demulti-

plexor also writes the accompanying FASTQ identifier and sequence quality scores

to the output files. The demultiplexing procedure is illustrated in Figure 2.3.

The latest version of Demultiplexor has been upgraded to support UDI proto-

cols, and is discussed further in Section 2.2.1.

2.1.4 Decombinator Module

The Decombinator script operates as the core of the whole pipeline, efficiently iden-

tifying TCR sequences in FASTQ reads. This is achieved through the novel appli-

cation of the finite-state pattern-matching Aho-Corasick algorithm (Aho and Cora-

sick, 1975), which searches reads for V and J genes. This algorithm is outlined in

the following section. Following V and J gene assignment, junctional insertions and

deletions (produced by the imperfect somatic recombination during TCR formation)

are identified relative to the germline gene sequences.

For each successful TCR identification, a key five-part identifier, referred to

as a “DCR”, is written to an output file. The identifier unambiguously represents

a given TCR rearrangement, and consists of: (1) the V index (referencing which

V gene was found); (2) the J index (referencing which J gene was found); (3) the

number of 3′ deletions of the V region; (4) the number of 5′ deletions of the J region;

and (5) the “insert” sequence — the sequence found between the ends of the deleted
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Figure 2.5: The three primary functions of the Aho-Corasick algorithm. (A) A directed
graph of states built from the set of keywords {at,pat,hog,path}, and which
defines the goto function. (B) The result of the failure function for each state.
(C) The set of words returned by the output function is shown for each of the
terminating states. This diagram is based on a figure in the original paper (Aho
and Corasick, 1975), but uses an updated example set of keywords.

V and J regions (Thomas et al., 2013). The decombination process is illustrated in

Figure 2.4. The DCR identifier is typically accompanied by additional, and non-

essential, read-specific information: (6) the FASTQ identifier; (7) the “inter-tag”

sequence — the full nucleotide sequence from the start of the V tag to the end of

the J tag; (8) the inter-tag sequence quality scores; (9) the barcode sequence; and

(10) the barcode sequence quality scores.

2.1.4.1 The Aho-Corasick Algorithm

The Aho-Corasick algorithm performs the construction of a simple, but highly, ef-

ficient finite-state machine that searches a given string of text for a defined set of

keywords in one pass (Aho and Corasick, 1975). The directed graph structure of

the machine is built only once and in advance of the search, and consequently the

construction time is proportional to the sum of the lengths of the keywords. All

keywords are searched for simultaneously, such that run time is proportional to the

sum of the lengths of the keywords, the length of the queried text string, and the

number of keywords that are found in the queried string (Thomas et al., 2013). The

algorithm can be described in terms of three main functions, and is illustrated with

a simple example below.
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Consider a finite set of keywords, K = y1,y2, ...,yk, where keywords y1, ...,yk

are text strings. Let x denote an arbitrary text string that we wish to search for key-

words. For the sake of this example, let us consider a simple set of four keywords:

K = {at, pat,hog, path}.

We first construct a directed graph of states, s, and associated symbols, σ , by

moving in order through K. Therefore, starting from an initial state 0, that maps to

itself, we build the path 0 a−→ 1 t−→ 2 by stepping through the characters of the first

keyword, at. This is shown in the first row of Figure 2.5a. For the second and third

keyword, pat and hog, we begin construction again from the initial state, 0, and

create new routes, 0
p−→ 3 a−→ 4 t−→ 5 and 0 h−→ 6 o−→ 7

g−→ 8, illustrated on the second and

third rows of Figure 2.5a. For the final keyword, path, we note that there is an al-

ready constructed route that takes us some way through the word. Consequently, we

are left only to define one final state, 9, and complete the route, 0
p−→ 3 a−→ 4 t−→ 5 h−→ 9.

Goto Function

The goto function, G(s,σ), aims to map a state, s, and an associated input sym-

bol, σ , into another state, s′. Following the example in Figure 2.5a, we can see,

for instance that G(0,a) = 1 or G(4, t) = 5. If no mapping is available for a

given state and symbol, then the goto function fails, and we consult the failure

function. In the provided example, for instance, G(0,σ) = f ail ∀ σ /∈ {a, p,h}.

Failure Function

The failure function, F(s), is consulted upon a failed mapping of the goto function.

We first define the depth, d, of a given state s as the length of the shortest path

from the initial state to s. In the provided example, states 1, 3 and 6 have depth 1.

States 2, 4, and 7 have depth 2, and so on. To construct the failure function, we

first set F(s) = 0 for all states of depth 1. We next compute the failure function for

all states of depth 2, then depth 3, and so on, until all states have been considered.

To compute the failure function for state s with d ≥ 1, we perform the following

actions:
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1. Let r be the state with d−1 along the path from the initial state to s. Let ρ be

the symbol such that G(r,ρ) = s. First compute s∗ = F(r).

2. Iteratively compute s∗ = F(s∗) until a state is reached such that G(s∗,ρ) 6=

f ail.

3. Set F(s) = G(s∗,ρ).

Performing this routine for all state results in the function illustrated in Figure 2.5b.

As an example, consider calculating the failure function for state s = 9. Exam-

ining the graph, we determine r = 5 and ρ = h. In the first iteration, We first

compute s∗ = F(r) = F(5) = 2. We note that G(s∗,ρ) = G(2,h) = f ail. Con-

sequently, we continue to iterate, and compute s∗ = F(2) = 0. Now, G(s∗,ρ) =

G(0,h) = 6. As the goto function has not failed, we finally set F(9) = s∗ = 6.

Output Function

The output function, H, is constructed alongside the goto and failure functions.

We initially consider the output function to return an empty set for any given state.

Upon construction of the graph, a keyword is added to the set returned by the output

function of the state at which the path terminates. For the given example, the output

function returns non-empty sets when H(2) = {at}, H(5) = {pat}, H(8) = {hog}

and H(9) = {path}. These terminating states are highlighted in orange in Fig-

ure 2.5a.

As we construct the failure function, we merge the set H(s) into the set

H(s′) for F(s′) = s. For instance, in the given example, the set H(2) =

{at} is merged with H(5) = {pat} when considering the failure function of

state 5, F(5) = 2. Then the output function for state 5 becomes H(5) =

{pat,at}. The output function for non-empty sets is shown in Figure 2.5c.

Operating Cycle Example

As a full example of an operating cycle, whereby all keywords are located in a given

string in one pass, consider the aforementioned keywords K = {at, pat,hog, path},



2.1. Introduction to the Decombinator Package 61

Figure 2.6: Finite state machine transitions for the text string “pathogen” and the keyword
trie shown in Figure 2.5.

and the text string x = pathogen. The sequence of state transitions is shown in

Figure 2.6. The machine begins the search at state s = 0 and σ = p. Consulting the

goto function, G(0, p) = 3. The output function H(3) is consulted and returns an

empty set, indicating no keywords have been found. The machine then considers

the transition G(3,a) = 4, and so on. Upon reaching state 5, the output function

returns H(5) = {pat,at}. Upon reaching state 9, the output function returns H(9) =

{path}. The goto function then attempts G(9,o) = f ail, and so the failure function

is consulted. F(9)= 6, and so the machine proceeds from state 6. The final keyword

is returned upon the reaching state 8, as H(8) = {hog}. Consequently, all keywords

within the string pathogen have been determined without repeated looping through

the graph.

2.1.4.2 Assignment of Sequences with Mismatches

Rather than searching for entire V and J sequences in target read sequences, Decom-

binator instead uses a set of short V and J tag sequences as its vector of keywords.

Each tag is unique to a known V or J sequence, and were chosen via a simple ex-

haustive search (Thomas et al., 2013). Not only do these shorter keywords improve

the efficiency of the algorithm, they also navigate the problem of mismatch between

read and V/J sequence due to junctional deletion of nucleotides.

The Aho-Corasick algorithm is a method for solving exact pattern-matching

problems. However, error is commonly introduced into DNA or RNA sequence

data, both from misassignment of the correct base by the sequencing machine, and

through successive rounds of PCR amplification. As a result, the algorithm is mod-

ified in Decombinator to account for mismatches. Each V and J tag is subdivided

into two half tags, which are not necessarily unique to a given V or J sequence. For

target sequences where a tag is not found, the search is repeated using half tags. If
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Figure 2.7: The introduction of UMIs prior to PCR are used to account for the uneven am-
plification of raw sequences. Identical DCR identifiers with identical UMIs
are considered to originate from the same TCR, and therefore should not be
counted more than once. The Collapsinator script uses the UMI correction pro-
cess to provide a frequency count of each TCR in the sample. This schematic
shows a simplification of the collapsing procedure. In reality, both UMIs and
TCR sequences may feature errors introduced during amplification or sequenc-
ing. Solutions to these challenges are described further in Section 2.2.3.

a half tag is found, the corresponding full tag sequence is aligned with the target,

and the Hamming distance (defined in Appendix A) is computed. If the Hamming

distance is equal to a maximum of 1 for, at most, one of the full V and J tags, then

an assignment is made using these tags to annotate the target as containing a TCR

sequence. This approach maintains a high degree of speed compared to alternative

approaches, and achieves an accurate assignment rate. The method is outlined fully

in the original Decombinator manuscript by Thomas et al. (2013).

2.1.5 Collapsinator Module

The Collapsinator script is used to correct for the effects of sequencing error and

PCR amplification heterogeneity in the data format produced by Decombinator

(Best et al., 2015). Upon input streaming, each line in the input file (which con-

tains the DCR identifier and barcode information) is quality-checked. Firstly, the

barcode is searched for the fixed spacer oligonucleotide sequences that border the

UMI hexamers using regular expression patterns. A small number of substitutions,

insertions and deletions are allowed when locating the spacers. Lines for which no
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spacers are suitably identified are skipped. Additionally, barcode sequences con-

taining ambiguous bases (assigned as “N” by the sequencing machine) or contain-

ing low average quality (determined from the machine-assigned sequence quality

scores) are skipped by default.

After quality control, input DCRs are grouped and clustered by their UMI

sequences. This process has undergone much development since. the original pub-

lication (Best et al., 2015), and has been outlined in a recent manuscript describing

the latest version of the Decombinator pipeline (Peacock et al., 2021). The cluster-

ing routine has since been optimised for speed, and a complete overview, including

the differences between the old and new methods, is provided in Section 2.2.3.

Once the data has been clustered by UMI sequence, each cluster is “collapsed”

to give a UMI–TCR pair that is believed to represent the sequence output from a sin-

gle initial TCR molecule. Quantitative estimate of TCR clone size can then be esti-

mated by counting the number of identical TCR sequences (or more constructively,

identical DCRs) that have different associated UMIs. This principle is illustrated in

Figure 2.7 for an ideal case featuring no errors in TCR or UMI sequences.

2.1.6 CDR3translator Module

The CDR3translator script has been primarily designed to read in data produced

by Collapsinator or Decombinator, and extract the CDR3 protein sequence of each

DCR identifier using predefined sets of sequences for each V and J region.

The CDR3translator script first assembles the full TCR nucleotide sequence

from the DCR identifier. This sequence is then translated to protein sequence. The

algorithm identifies both “productive” TCR sequences and “non-productive” TCR

sequences (sequences containing stop codons, that are out of frame, or do not con-

tain CDR3 motifs) (Oakes et al., 2017). Finally, the CDR3 sequence is extracted by

locating gene-specific conserved motifs. A schematic and example translation are

illustrated in Figure 2.8.

The CDR3 region is conventionally defined as the region from the position of

the second conserved cysteine in the V gene to the phenylalanine in the conserved

“FG(X)G” motif in the J gene (where the X amino acid varies across J genes). For
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Figure 2.8: The CDR3translator script can be used to convert DCR identifiers produced by
Decombinator or Collapsinator to CDR3 sequence. The TCR nucleotide se-
quence is assembled from the DCR and translated to protein sequence. The
CDR3 region is then identified by locating the conserved C and FG(X)G mo-
tifs. This procedure is shown schematically (left), and for an example DCR
identifier (right). CDR3translator has been recently upgraded to produce ad-
ditional information, including CDR1 and CDR2 sequences, and is described
further in Section 2.2.4.

some genes, however, non-canonical motifs are used, the positions of which vary in

the sequence. The CDR3translator script performs a look up to identify the position

and type of motif used for a given sequence based on the V and J genes in the DCR

identifier. The predefined lookup motif sets that are imported into CDR3translator

can be found as the .translate files in the Decombinator-Tags-FASTAs repository

(https://github.com/innate2adaptive/Decombinator-Tags-FASTAs),

assembled from the V and J gene germline sequences recorded in the IMGT/GENE-

DB database (Giudicelli et al., 2005).

The CDR3translator module has recently been expanded to output data com-

pliant with the standards set by the International Adaptive Immune Receptor Reper-

https://github.com/innate2adaptive/Decombinator-Tags-FASTAs
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toire (AIRR) Community guidelines (Vander Heiden et al., 2018). For the sake of

consistency and compatibility, CDR3translator has retained its original name, but

now provides a richer range of output data, including CDR1, CDR2 and full TCR

sequences. These changes have been incorporated into the latest Decombinator re-

lease (Peacock et al., 2021) and are discussed further in Section 2.2.4.

2.2 Decombinator V4
In response to the rapid growth of the TCR sequencing field, the Decombinator

pipeline has undergone substantial development since its first publication. The lat-

est major release, Decombinator Version 4 (V4), has been recently described in

Peacock et al. (2021). This version has been subsequently used to investigate the

dynamics of the TCR repertoire in individuals exposed to an organic potent skin

sensitizer that is used to treat warts, melanoma, and alopecia areata (Ronel et al.,

2021), and to investigate the TCR response to autologous stem cell transplantation

in multiple myeloma patients (Lee et al., 2021).

The suite is actively maintained and updated, and represents the collaborative

effort of a number of researchers. This section outlines some of the major and

minor changes that have been made to improve the pipeline as part of, and since,

the Decombinator V4 release. The specific modification of tools and features that

have been implemented over the course of this PhD by collaborators are attributed

where relevant.

2.2.1 Demultiplexor Compatibility with Unique Dual Index Pro-

tocols

The original experimental protocol used in conjunction with the Decombinator

pipeline introduced an additional index for demultiplexing samples in combination

with the Illumina SP2 index. This protocol is referred to in this thesis as the “inter-

nal dual index” (IDI) protocol. The arrangement of the sequencing construct for the

IDI protocol has previously been illustrated in Figure 2.2.

The multiplexing method that is used for efficient high-throughput sequencing

has been recently shown to produce incorrect sample assignment for a significant
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Figure 2.9: Schematic for the sequencing of the TCR construct assembled through the new
UDI experimental protocol for use with Decombinator V4. Both x1 and x2 in-
dex are used by Demultiplexor to separate reads into sample specific files, while
the spacer sequences and random hexamers make up the molecular barcode.

number of subsequently demultiplexed reads (Sinha et al., 2017; Costello et al.,

2018). While a number of mechanisms can produce this effect, sample “index hop-

ping” has been shown to be the primary cause (Farouni et al., 2020).

During multiplexing, sequence constructs are pooled together. A percentage of

index primers that were used to create these constructs do not bind to any other frag-

ments, and so continue to float freely in the library pool. These free index primers

may anneal to existing library molecules in the pool. Active DNA polymerase ex-

tends the annealed fragments to form a molecule with a switched index. This pro-

cess has been termed “index hopping” (or “index swapping” or “index switching”).

The synthesised strand separates and is amplified through rounds of PCR amplifi-

cation (Sinha et al., 2017).

The effects of index hopping have been shown to be effectively eliminated

when using unique dual index (UDI) protocols (MacConaill et al., 2018). When

using two unique indices per sample, misassignment of samples will only occur in

the unlikely event that both indices hop (Farouni et al., 2020).

In accordance with this research, index hopping ambiguity leads to Demul-

tiplexor assigning a given read to the wrong sample file for IDI protocols. The

downstream effects of this are noticeable in the apparent sharing of TCR clones

between unrelated samples. Given the relative rarity of public TCRs, the biological



2.2. Decombinator V4 67

likelihood of finding such repertoire overlap between samples is very low.

To address the artefacts of artificial overlap, the Demultiplexor module has

since been upgraded to support data produced using UDI protocols. The internal

SP1 index is removed from the protocol, and two unique Illumina indices are intro-

duced for each sample. The arrangement of the sequencing construct for the UDI

protocol is illustrated in Figure 2.9.

Examples of the level of artificial overlap between the two protocols are shown

in Figure 2.10. Figure 2.10A shows the overlap effect on a sequencing run using

an IDI protocol, and Figure 2.10B the overlap effect on a similar sequencing run

using a UDI protocol. Samples names are shown along each axis, with the colour

bar denoting the amount of overlap between a given pair of samples. The sample

names in these plots are composed of: (1) an experiment ID, (2) a patient ID, (3)

a time point or sample type ID, and, for certain samples, (4) a label identifying the

sample as a repeat of a previous run, all separated by underscore characters. The

first two identifiers are most important when examining the overlap. Figure 2.10A

shows apparent TCR sharing between samples from disparate experiments and pa-

tients. Figure 2.10B also shows TCR sharing, but only between samples from the

same patient at different time points. The dual index protocol, therefore, largely

eliminates the effects of artefactual sample mixing overlap. These plots show the

overlap for the TCR α chain of each run. The results for the β chain are similar,

and can be found in Appendix B.

The overlap measure shown in these plots is calculated in the following way:

for an overlap matrix, A, the overlap between two samples, i and j, with respect to

i, is calculated as,

Ai j =
Number of distinct TCRs found in both i and j

number of unique TCRs in i
(2.1)

where the 5-part DCR identifier is used to represent each TCR. It should be noted

that A is an asymmetric matrix, and in general Ai j is not equivalent to A ji.

The overlap calculation above was devised and implemented as an R script by

Dr Tahel Ronel. The script, which was used to generate the plots in Figure 2.10, is
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Spacer Nucleotide sequence

I8 ATCACGAC

M13 CCAGGGTTTTCCCAGTCACGAC

Table 2.1: I8 and M13 spacer nucleotide sequences.

available in the Decombinator-Tools repository (https://github.com/innate2

adaptive/Decombinator-Tools).

2.2.2 Support for Multiple Oligonucleotide Barcoding Protocols

Molecular barcoding is critical for accurate quantification of TCR clones in PCR

amplified data. The original experimental protocol for use with the Decombinator

pipeline used a barcode schema composed of: (1) an I8 spacer, (2) a random hex-

amer, (3) a second I8 spacer, and (4) a second random hexamer. The Collapsinator

script searches for the two spacer sequences in order to locate the random hexamers,

which, when extracted and joined together, form the 12 base pair UMI.

A more robust barcode schema has been designed since, and is composed of:

(1) an M13 spacer, (2) a random hexamer, (3) an I8 spacer, and (4) a second ran-

dom hexamer. This schema is now assumed as default by Collapsinator, however

the module has been refactored to also retain compatibility with the original barcod-

ing protocol. Running Collapsinator for the either I8 or M13 data can be specified

through an input argument. The task of implementing a new oligo is now fairly

trivial, and while modification is required in code, only minimal changes are re-

quired to the getOligo function. Extraction to an input configuration file could be

implemented easily into a future iteration.

The sequences for the I8 and M13 spacers are shown in Table 2.1 (and their

reverse complements are implemented in Collapsinator). Collapsinator searches for

these sequences, using regular expressions, to identify the location of the random

hexamers that make up the UMI. A small number of substitutions, insertions and

deletions are allowed in each spacer. Previous iterations of the Collapsinator fuzzy

matching method would occasionally filter out reads with insertions or deletions

detected in the spacers more frequently than necessary. This has been improved in

https://github.com/innate2adaptive/Decombinator-Tools
https://github.com/innate2adaptive/Decombinator-Tools
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Figure 2.10: A) TCR overlap between patients and experiments for α chain data from
an IDI protocol NextSeq run. (B) TCR overlap for α chain data from a
UDI protocol NextSeq run. Rows and columns with suffixes “Neg”, “Neg1”
and“Neg2” provide negative controls.
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the V4 release, increasing the number of usable reads.

To support the fuzzy matching method, a large number of unit tests have been

written for both the M13 and I8 protocols. These tests cover a range of cases to

ensure the correct analysis of spacers with minor errors. Details for running the test

suite are provided online as part of the Decombinator pipeline README (https:

//github.com/innate2adaptive/Decombinator#collapsinator-test-su

ite).

2.2.3 Improved Accuracy of UMI Clustering

The Collapsinator script is used to correct errors introduced to the data through PCR

amplification and through misassignment of bases by the sequencing machine. The

algorithm has been re-designed for the Decombinator V4 release, and has been

shown to significantly improve the accuracy of the pipeline (Peacock et al., 2021).

The original Collapsinator algorithm is outlined by example in Figure 2.11.

(1) The first step in the diagram shows three TCRs, each with a unique UMI. The

TCRs are identical, such that the clone size equals 3. (2) The second step shows the

effects of PCR amplification and sequencing, whereby errors are introduced into

both the TCR sequences and the UMIs. (3) The third step demonstrates how the

algorithm reads in the barcoded data. Input data is rapidly streamed into a Python

dictionary (hash table), with reads (values) indexed by unique UMIs (keys). The

data is, therefore, initially grouped by unique UMI. (4) The fourth step shows the

results of collapsing and regrouping the data. Levenshtein distances (defined in

Appendix A) are computed between TCR sequences in each UMI group. Those se-

quences with Levenshtein distance below a set threshold are considered to be iden-

tical, and are consequently collapsed, with the most populous TCR sequence taken

as the representative sequence. The data is subsequently re-grouped, such that it is

indexed by TCR (or, more accurately, by DCR identifier). (5) In the fifth step, the

Levenshtein distance is computed for all UMIs in each group. Those within a set

threshold are considered to be identical UMIs and are clustered together, to com-

plete the error correction process. (6) Finally, the sixth step provides a count of how

many UMIs are associated with each TCR. A clone size of 3 is recovered for the

https://github.com/innate2adaptive/Decombinator#collapsinator-test-suite
https://github.com/innate2adaptive/Decombinator#collapsinator-test-suite
https://github.com/innate2adaptive/Decombinator#collapsinator-test-suite
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Figure 2.11: The outdated algorithm for clustering and collapsing TCR data in legacy Col-
lapsinator versions. (1) Three identical TCRs with unique UMIs, representing
a clone size of 3. (2) Errors are introduced into the UMI and TCR sequences
through PCR amplification and sequencing. (3) Reads are initially grouped by
unique UMI. (4) The UMI groups are collapsed, and the data is re-organised to
group by identical TCR — or, more specifically, by DCR identifier. (5) Within
each DCR group, UMIs are clustered by their similarity and collapsed. (6) A
count is provided of the number of unique UMIs that are associated with a
specific TCR (DCR identifier). The TCR with clone size of 3 is recovered,
but the algorithm introduces an additional erroneous sequence.

original TCR present in the first step. However, the same TCR sequence but contain-

ing sequencing error is incorrectly annotated as a separate TCR. This occurs when

errors are present in both UMI and sequence, and through the independent handling

of UMI and sequence by the algorithm. This phenomenon was the main contributor

to Collapsinator inaccuracy in legacy versions of the Decombinator pipeline.

Figure 2.12 shows the same example but processed by the re-designed Col-

lapsinator algorithm of Decombinator V4. (1-2) The first and second steps show the
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Figure 2.12: Decombinator V4 features a re-designed algorithm for clustering and collaps-
ing TCR data. (1) Three identical TCRs with unique UMIs, representing a
clone size of 3. (2) Errors are introduced into the UMI and TCR sequences
through PCR amplification and sequencing. (3) Reads are initially grouped
by unique UMI. (4) Initial groups are merged if both UMI and sequence meet
threshold criteria. (5) Each cluster is collapsed, with the cluster size provid-
ing a measure of PCR heterogeneity. (6) A count is provided of the number
of unique UMIs that are associated with a specific TCR (DCR identifier). The
TCR with clone size of 3 is recovered, and no erroneous sequences are intro-
duced.

same barcoded TCRs before and after PCR amplification and sequencing. (3) The

third step shows the initial grouping of data by unique UMI, as before. (4) In the

fourth step, both the UMI and sequences of each group are compared to that of every

other group. Groups are combined if both the Levenshtein distance between UMIs

and the Levenshtein distance between sequences are below set thresholds. (5) In

the fifth step, each group is collapsed, providing a count of how many sequences

contribute to each cluster. (6) Finally, the sixth step provides a count of how many
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UMIs are associated with each TCR, and the TCR clone size of 3 is recovered.

The consideration of both UMI and sequence simultaneously by the V4 algorithm

avoids the artefacts produced by the old algorithm.

A simulated data set was constructed to test the improvement in accuracy of

the new algorithm. An initial set of artificial TCR sequences was created using the

probabilistic repertoire generation software package, IGoR (Marcou et al., 2018).

Individual TCRs were given different abundances based on the observed long-tailed

distributions observed in experimental data sets (Oakes et al., 2017). A 12 base

pair UMI was stochastically generated for each TCR sequence to produce an ini-

tial artificial set of 10,000 TCR-UMI combinations. PCR amplification was sim-

ulated by duplicating sequences over a number of iterations, introducing sequence

errors at a rate of 5× 10−6 (somewhat higher than that which has been estimated

for the polymerase used in the experimental protocol), to produce a data set of ap-

proximately 2.8 million sequences. Finally, NextSeq sequencing errors and base

pair quality scores were simulated using the ART Illumina simulator (Huang et al.,

2012). Across 10 simulated runs, all but 2 ± 1 (mean ± standard deviation) se-

quences were recovered by the new Collapsinator algorithm. 109 ± 15 sequences

introduced by PCR amplification or sequencing error were incorrectly retained by

the new algorithm. The correlation coefficient between the sequence abundances in

the initial simulated set and the Collapsinator output was 0.97± 0.7. In contrast, the

old Collapsinator algorithm introduced 5855 ± 335 erroneous sequences, and the

correlation coefficient was measured as 0.86 ± 0.006. Generation of the simulated

data and Collapsinator benchmarking was carried out by Professor Benny Chain.

The main drawback of the new algorithm is the increased run time associ-

ated with comparing each UMI and TCR sequence simultaneously before collaps-

ing. This requires a pairwise comparison of the initial unique UMI groups of se-

quences, rather than the rapid hash mapping technique of the old algorithm. Fig-

ure 2.13A illustrates the pairwise comparison step and efforts designed to opti-

mise for speed and memory. The comparison of groups can be visualised as a

2D symmetric matrix. It is sufficient to compute only the off-diagonal elements,
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Figure 2.13: (A) The most expensive part of the new Collapsinator algorithm is the pair-
wise comparison of UMIs and sequences of all initial UMI groups. Run time
can be reduced by considering only off-diagonal pairs. Memory usage can
be reduced by storing a merge list of IDs pertaining to only those groups that
should be merged. The merge list can be visualised as a network of discon-
nected subgraphs. Extraction of the subgraphs amounts to clustering the data.
(B) The number of input reads, initial groups and clusters are shown for one
of the Decombinator test data samples. Clusters of size greater than 1 are
visualised for reference.
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reducing the number of calculations from N2 to N(N−1)
2 , with N the number of

initial groups. A merge list is created, storing pairs of IDs of each group that

meet the similarity criteria. Storing only IDs — and, moreover, only the IDs of

groups that require merging — avoids overloading the memory with vast arrays of

data that would typically crash the software for large datasets. If the initial UMI

groups are abstracted as nodes in a network, tuples in the merge list describe the

edges between them. Clusters can then be extracted as disconnected subgraphs

from the main network. The networkx Python package has been introduced as

a Collapsinator dependency to quickly and effectively perform this routine. Fig-

ure 2.13B provides some values for the number of reads, initial groups and clusters

involved in collapsing data from the Decombinator test data (which is consider-

ably smaller than production runs), which can be found in the test data repository

(https://github.com/innate2adaptive/Decombinator-Test-Data). The

network of clusters of size greater than 1 is also visualised.

Finally, estimates of the effect of heterogeneous PCR amplification can be

made by measuring the size of a given cluster. This information is now included

in the default output by Collapsinator, and carried through the rest of the pipeline

to be reported in the final CDR3translator output. Furthermore, an optional in-

put argument can be used to output an additional .csv file of cluster size data. If

used, tailored commands are provided to the user with instructions of how to gen-

erate histograms of the data automatically using the UMIHistogram script in the

Decombinator-Tools repository.

2.2.4 AIRR Community Compliance

The Decombinator pipeline is now compliant with the standards outlined by the

Adaptive Immune Receptor Repertoire (AIRR) Community of The Antibody Soci-

ety for the acquisition, storage, annotation, or sharing of associated AIRR-seq data

sets (Rubelt et al., 2017).

The final output data of the pipeline, produced by the CDR3translator module,

is written as a tab-separated values (.tsv) formatted file with the required schema

for compatibility with other compliant immune-repertoire tools (Vander Heiden

https://github.com/innate2adaptive/Decombinator-Test-Data
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Field Description

sequence_id A unique identifier for the TCR rearrangement

v_call TCR V gene

d_call Blank required field

j_call TCR J gene

junction_aa CDR3 junction amino acid sequence

duplicate_count TCR abundance

sequence Inferred full-length variable domain nucleotide sequence

junction CDR3 junction nucleotide sequence

decombinator_id Five-field Decombinator identifier

rev_comp True/False (T/F) flag for whether rearrangement is reverse comple-
mented

productive True/False (T/F) flag for whether rearrangement is productive

sequence_aa Inferred full-length variable domain amino acid sequence

cdr1_aa CDR1 amino acid sequence of the used V gene

cdr2_aa CDR2 amino acid sequence of the used V gene

vj_in_frame True/False (T/F) flag for whether rearrangement is in frame

stop_codon True/False (T/F) flag for whether rearrangement contains a stop codon

conserved_c True/False (T/F) flag for whether rearrangement contains a conserved
cysteine

conserved_f True/False (T/F) flag for whether rearrangement contains a conserved
phenylalanine (or equivalent)

legacy_v_call V gene as referred to by older versions of Decombinator (i.e. ≤ v3)

legacy_j_call J gene as referred to by older versions of Decombinator (i.e. ≤ v3)

v_alleles List of V gene alleles covered by used V tag

j_alleles List of J gene alleles covered by used J tag

v_gene_functionality IMGT predicted functionality of V gene (or genes) used in this rearrange-
ment (F/ORF/P, comma delimited)

j_gene_functionality IMGT predicted functionality of J gene (or genes) used in this rearrange-
ment (F/ORF/P, comma delimited)

sequence_alignment Blank required field

germline_alignment Blank required field

v_cigar Blank required field

d_cigar Blank required field

j_cigar Blank required field

av_UMI_cluster_size Number of identical sequences associated with a single UMI

Table 2.2: Fields that feature in the AIRR Community compliant output format produced
by CDR3translator, as displayed in the Decombinator repository README.

et al., 2018). All fields present in CDR3translator output data are listed in Table 2.2

alongside complementary descriptions. Output data now includes full nucleotide

and amino acid sequences, and CDR1, CDR2 and CDR3 subsequences. TCR re-

arrangements are labelled as either productive or non-productive. Mandatory fields

that are irrelevant to Decombinator are left blank. A number of Decombinator-

specific fields, including the DCR identifier and the average UMI cluster size, have

http://www.imgt.org/IMGTScientificChart/SequenceDescription/IMGTfunctionality.html#P1-2
http://www.imgt.org/IMGTScientificChart/SequenceDescription/IMGTfunctionality.html#P1-2
https://github.com/innate2adaptive/Decombinator#readme
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Script name Description Status Author Editor

collapsed_sample_overlap.R Measure collapsed sample overlap new TR

DCRtoGeneName.py Convert V/J IDs to gene names existing JH TP

ExactSearch.py Exact subsequence search new TP

ExactSearchLogSummary.py Summarise exact search results new TP

LogSummary.py Collates log data existing MI TP

RandomlySample.py Sub-sample Decombinator data existing JH TP

RunTestData.py Run Decombinator test data new TP

SortSummary.py Sort log summary file new TP

TestDataGenerator.py Generate Decombinator test data new TP

UMIHistogram.py Plot UMI distribution new TP

Recipes Templates for cluster jobs new BC, TP

Table 2.3: A summary of the available tools in the Decombinator Tools repository. Tools
with status “existing” are old tools that were upgraded by the “Editor” for com-
patability with the Decombinator V4 release. Tools with status “new” are tools
first released alongside Decombinator V4. “Author” and “Editor” initials repre-
sent collaborators: Dr Tahel Ronel (TR), Dr James Heather (JH), Thomas Pea-
cock (TP; thesis author), Dr Mazlina Ismail (MI) and Professor Benny Chain
(BC).

been added as permitted by the AIRR Community schema. These adaptions to

CDR3translator were conducted in collaboration with Dr James Heather.

2.2.5 Python 3

The Decombinator pipeline was originally written in Python 2.7, support for which

ended on January 1st 2020. Consequently, all main Decombinator scripts, as well

as the majority of support scripts in the Decombinator-Tools repository, have been

upgraded to Python 3.7.

It is recommended that the Decombinator pipeline is run within a virtual envi-

ronment to avoid potential package dependency clash with other installed Python

projects. In particular, instructions for setting up and installing Decombinator

through a Conda environment either locally or on one of the UCL computing clus-

ters are provided in the Decombinator README.

2.3 Decombinator Tools
The Decombinator-Tools repository (https://github.com/innate2adaptive

/Decombinator-Tools) has been created to host a number of scripts that may be

of use when working with the Decombinator pipeline or the data it produces. These

https://github.com/innate2adaptive/Decombinator-Tools
https://github.com/innate2adaptive/Decombinator-Tools
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scripts are summarised in Table 2.3, and an overview of each script is provided in

Appendix D.

2.4 Single Tag Decombinator for Single Cell Analysis

A weakness of bulk sequencing pooled immune cell populations has always been

the lack of information about which α chain pairs with which β chain, limiting

descriptions of individual T cells and their interaction with antigen. Recently, solu-

tions to this problem have emerged through the increased availability of single cell

sequencing technology (Hwang et al., 2018). It might be expected that an individual

T cell expresses a single TCR on its cell surface. However, as has been reviewed

by Schuldt and Binstadt (2019), studies have revealed that approximately 10% and

1% of αβ T cells overcome allelic exclusion to express dual surface α chains, and

dual surface β chains, respectively. Nevertheless, in many cases the sequencing

of a single T cell offers the opportunity to pair α and β chains to resolve the full

composition of the TCR, offering much greater insight into immune function than

traditional methods.

The sequencing of single T cells typically produces fragmented, short-read

data (De Simone et al., 2018). These fragmented reads most frequently feature only

part of the TCR V region sequence or part of the TCR J region sequence. This

presents a problem for computational TCR analysis methods, which generally rely

on the alignment of reads to a reference sequence and the subsequent inference of

the CDR3 junction sequence. The Decombinator pipeline is no exception — we

might expect to find a 20 base pair V tag or 20 base pair J tag in a single read, but

we are unlikely to find both. Consequently, a certain amount of de novo assembly

must be performed to reconstruct full TCR sequences.

An adaptation of the Decominator module has been designed to analyse short-

read fragmented data for use with single cell data. This approach allows reads

featuring only a single V or J tag to persist through to the output data, rather than

requiring both. Reads featuring V tags are aligned with reads featuring J tags (using

the Biopython pairwise2 dynamic programming algorithm) in an attempt to locate
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overlap between the ends of the reads, and so reconstruct the TCR sequence.

Single Tag Decombinator began as a Masters research project prior to the start

of this PhD. During this time, the single tag search was completed and a rudimentary

overlap identifier was designed, with some manual reassembly required. Since the

original project, the overlap identifer and reconstruction steps have been improved

and automated, and the software has been tested with larger datasets. Single Tag

Decombinator has been used to determine TCRs expressed by neoantigen-reactive

T cells (NARTs) in the context of non-small-cell lung cancer (NSCLC) (Joshi et al.,

2019). The following sections detail the various steps of the Single Tag Decombi-

nator pipeline and provide a comparison between Single Tag Decombinator and the

popular TraCeR (Stubbington et al., 2016) and MiXCR (Bolotin et al., 2015) TCR

sequence analysis programs for two independent single cell datasets.

2.4.1 Pipeline

The original Decombinator pipeline was not designed with a single tag approach

in mind. Consequently, Single Tag Decombinator sits as a separate module out-

side the main pipeline, although a large proportion of code is reused. Figure 2.14

shows the various steps of the Single Tag Pipeline that performs the end-to-end

annotation of TCRs from short-read data. This procedure can be run as a sin-

gle script (SingleTagPipeline.py) from the Single-Tag-Decombinator repository

(https://github.com/innate2adaptive/Single-Tag-Decombinator). Each

step in this pipeline is outlined below.

Single Tag Decombinator

The Single Tag Decombinator module is an adaption of the Decombinator V3 mod-

ule, and identifies reads with a single V or single J tag. Rather than producing

the traditional five-part DCR identifier, the Single Tag Decombinator approach pro-

duces a list of three key elements:

(Vi,Ji,Sextratag) (2.2)

where Vi and Ji are the V and J indices (if found, otherwise “N/A”), and Sextratag

https://github.com/innate2adaptive/Single-Tag-Decombinator
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SingleTagDecombinator

ReconstructTCR 

Decombinator

CDR3translator

SingleTagPipeline

Input FASTQ

Data

Output
Data

Annotated V and
J fragments

FASTQ file with
reassembled

TCRs
Traditional

Decombinator
output (DCR
identifiers)

Tab-separated
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Figure 2.14: Overview of the Single Tag Decombinator Pipeline. Up to two FASTQ files
can be provided to the SingleTagPipeline script, along with input arguments to
specify search orientation (forward, reverse or both) and chains (α , β , γ , δ , or
a combination). The SingleTagPipeline script will automatically run (1) Sin-
gleTagDecombinator to search for V and J fragments, (2) ReconstructTCR to
pair V and J fragments and reassemble TCR reads into new FASTQ files, and
(3) Decombinator to produce the usual DCR identifier output. This output
can then be used with CDR3translator to extract the full information about the
identified TCR sequences.

is the subsequence from the end of the V tag to the end of the read if a V tag is

identified, or the subsequence from the start of the read to the start of the J tag if a J

tag is identified.

For single cell data, it is not always clear whether TCR fragment matches will

be found in forward or reverse order in the files produced by the machine. Addi-

tionally, α and β chain data are unlikely to be separated. Single Tag Decombinator

includes functionality to search reads for both α and β chain tags, in both forward

and reverse directions, simultaneously. Users may also provide two FASTQ files

(for example, the forward and reverse read files from the sequencing machine),
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rather than one, to be searched in succession. These modifications allow users

to search for as many TCR fragment matches as possible by running Single Tag

Decombinator only once per cell, while also noticeably improving run time.

Reconstruct TCR Reads

The output TCR fragments identified by Single Tag Decombinator are aligned and

by the reconstructTCR script to locate overlaps. The aim of this algorithm is to

pair as many fragments as possible containing a V tag (V fragment) to fragments

containing a J tag (J fragment). V and J fragments are exclusive — that is to say, a

V fragment can be paired with one, and only one, J fragment, and vice versa. These

pairings are prioritised based on the length of overlap and the number of mismatches

the overlap contains. The process is illustrated in Figure 2.15 and described below.

Each V fragment is compared with each J fragment to identify overlapping

regions between the ends of the fragments. An overlap must meet a set minimum

length to be considered. The end of the V fragment of the minimum length is

searched for in each J fragment. If detected, a pairwise sequence alignment is per-

formed to identify the full length of the overlap and to calculate a quality score

based on the number of mismatches and gaps.

For each V fragment, those J fragments that meet the overlap criteria are sorted

into a ranked list. J fragments are first sorted by the longest overlap that they share

with the V fragment. The longer the overlap, the higher the ranking. J fragments

that have the same length overlap are then sub-ranked by their “purity”. The purity

is here defined as the score produced by the pairwise sequence alignment of the

fragments subtracted from the length of the overlap. The closer the purity is to a

value of zero, the better the ranking.

Once each V fragment has a ranked list of J fragments, the V fragments are

sorted by the length of the overlap they share with their top ranking J fragment. The

highest ranking V fragment gets its “first choice” of J fragments. The two are paired

and then excluded from the pool. Next, the second highest ranking V fragment

gets its first choice of J fragments, so long as that J fragment has not already been
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Figure 2.15: (A) Fragments with identified V tags (blue) or J tags (orange) are consid-
ered for TCR reassembly. (B) For each V fragment, J fragments are aligned
to search for overlap between the ends of the reads. (C) A ranked list of J
fragments is produced for each V fragments. J fragments are sorted by the
maximum overlap (“o”) with the V fragment. J fragments that have the same
length overlap are sorted by “purity” (“p”), where the closer the value to zero,
the higher the ranking. (D) V fragments are sorted by which has the longest
overlap with a J fragment. The top V fragment pairs with its top J fragment.
The second top V fragment pairs with its top J fragment, provided that that J
fragment does not already have a pair — otherwise, the second top J fragment
is chosen, and so on. (E) The final pairings are reassembled to construct se-
quences containing the V tag, the J tag, and the insert (overlap) sequence, and
are written to FASTQ format.

excluded. If its top candidate has already been excluded, the V fragment receives

its second choice, and so on. This process continues until all V fragments have been
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matched.

Finally, reassembled sequences of V tag, J tag, and the overlapping insert se-

quence are written to FASTQ file, along with the relevant sequence quality scores

produced by the HTS machine.

The TestDataGenerator.py script, described in Figure 2.3, was written to

produce test data for Single Tag Decombinator in order to evaluate the performance

of the algorithm. No formal benchmarking was recorded using the generated test

data, so high accuracy can be only reported anecdotally. However, the performance

of Single Tag Decombinator is shown to be competitive with two other analysis

platforms in sections Section 2.4.2 and Section 2.4.3.

Decombinator

As FASTQ reads produced by the fragment reassembly script contain both a V and

J tag by construction, they can be easily analysed using the usual Decombinator

pipeline. The usually low number of reassembled reads makes this process trivial

in terms of computational run time. Five-part DCR identifiers are produced for

each read, which can be analysed by the rest of the Decombinator pipeline in the

traditional way.

CDR3translator

Finally, the identifiers for the reconstructed TCRs can be provided to the

CDR3translator script to extract full information about their sequences.

2.4.2 Application in Non-small-cell Lung Cancer and Bench-

marking against TraCeR

One of the earliest tools developed to identify paired α and β chains was the TraCeR

software package (Stubbington et al., 2016). TraCeR and Single Tag Decombinator

were compared in their abilities to reassemble single cell fragments and identify

TCRs in response to neoantigen in a non-small-cell lung cancer dataset. RNA data

from 139 cells were analysed using both platforms. A crash on the supercomputer

being used to analyse data with Single Tag Decombinator meant that results for one
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cell became corrupted, and the analysis was not re-run. Consequently, the analysis

presented here features a total of 138 cells, 43 of which were labelled as neoantigen

reactive T cell (NART) positive, and 95 of which were labelled as NART nega-

tive. This dataset forms part of the TRACERx project (not to be confused with

the unrelated TraCeR software) for studying cancer evolution (Jamal-Hanjani et al.,

2017). The analysis of cells using TraCeR, and the mapping of TraCeR output to a

Decombinator-style output (DCR identifiers), was performed by Dr Mazlina Ismail.

Figure 2.16 shows a comparison of TCR α chains identified by Single Tag

Decombinator and TraCeR across the 138 cells. A TCR chain is here represented

by the Decombinator DCR identifier. Hits in green represent DCRs identified by

both TraCeR and Single Tag Decombinator. Hits in blue represent DCRs identified

by TraCeR but not by Single Decombinator, while hits in orange represent DCRs

identified by Single Tag Decombinator but not by TraCeR. Figure 2.17 shows a

similar plot of identified β chains. To aid readability, the axes are labelled by an ID

for each cell and for each DCR. Full mapping of IDs to DCRs and IDs to cells are

provided in Appendix Table C.1, Appendix Table C.2 and Appendix Table C.3.

At least one TCR α chain was identified by either of the two platforms in

47.8% of cells. Single Tag Decombinator found at least one TCR α chain in 47.8%

of cells, and TraCeR found at least one TCR α chain in 44.2% of cells. For no cell

was an α chain identified by TraCeR but not by Single Tag Decombinator. However,

for 3.62% of cells, an α chain was identified by Single Tag Decombinator but not

by TraCeR.

At least one TCR β chain was identified by either of the two platforms in

59.4% of cells. Single Tag Decombinator found at least one TCR β chain in 59.4%

of cells, and TraCeR found at least one TCR β chain in 49.3% of cells. Again, for

no cell was a β chain identified by TraCeR but not by Single Tag Decombinator.

However, for 10.1% of cells, a β chain was identified by Single Tag Decombinator

but not by TraCeR.

For cells where at least one TCR α chain was identified, the same TCR was

identified by Single Tag Decombinator and TraCeR in 91.0% of cases. For cells
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where at least one TCR β chain was identified, the same TCR was identified by

Single Tag Decombinator and TraCeR in 81.7% of cases.

The Jaccard index (or Tanimoto index) provides a measure of similarity and

diversity between sets, and for two sets A and B, is calculated as:

J(A,B) =
|A∩B|
|A∪B|

(2.3)

The TCRs identified by the two approaches are more similar for the α chain

data, which has a Jaccard index of 0.83. The β chain data has a Jaccard index of

0.68, perhaps implying that β chains (which notably contain an additional D gene)

are more difficult to identify unambiguously than α chains. Looking closely at the

DCR indexes in Table C.1 and Table C.2 in Appendix C, it is likely that these values

provide a lower bound of TCR similarity. In several cases, very similar but distinct

DCRs were identified by the two platforms.

For the α chain, three cases feature the same V and J annotation, different

numbers of deletions, and either the same, or a short and extended version of the

same, insert sequence (cell 24 for DCRs 12, 14, and 15; cell 47 for DCRs 12, 14

and 22; and cell 60 for DCRs 26 and 27). For the β chain, the same pattern is seen

in an additional three cases (cell 25 for DCRs 21 and 23; cell 56 for DCRs 36 and

37; and cell 67 for DCRs 40 and 41).

Furthermore, five β chain cases feature the same J gene annotation, identical

insert sequences, but different V gene annotations (cell 12 for DCRs 8 and 9, where

the insert sequence features one additional prefixing residue; cell 15 for DCRs 11

and 12; cell 21 for DCRs 16 and 17; cell 82 for DCRs 48 and 51; and cell 138 for

DCRs 56 and 59). One β chain case features the same V gene annotation, identical

insert sequence, but different J gene annotations (cell 44 for DCRs 32 and 33).

These features reflect different decisions made by each platform when search-

ing for overlaps, and to some extend may reflect issues in the mapping of TraCeR

output to the Decombinator format. Furthermore, Single Tag Decombinator iden-

tifies multiple rearrangements in a single cell more frequently than TraCeR. It is

likely that only one or two of these are real TCRs, and other rearrangements (that
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feature overly long overlaps or are found in low numbers) can be discarded. This

would likely see an increase in the Jaccard index between the two platforms.

Despite some difference in annotation, the two platforms show a generally

good agreement in identifying TCRs in single cell data, and this study has benefited

from the complementary use of the two approaches. This is most evident in the clear

discrimination between the NART negative cells (cells 1 to 95) and NART positive

cells (cells 96 to 138) in Figure 2.16 and Figure 2.17. Nearly all cells labelled as

NART negative were identified as expressing the same TCR α chain (ID 38) by

both Single Tag Decombinator and TraCeR. Similarly, these cells were identified

as expressing the same two TCR β chains (IDs 56 and 57) by the two platforms.

The agreement between the approaches provides a measure of confidence that the

TCR responsible for neoantigen recognition has been identified. The use of both

platforms is particularly helpful for deducing that the positive cells express two β

chains, rather than one chain being an artefact of the reassembly software. The two

platforms identify a much more diverse set of TCR α and β chains for the NART

negative cells, as one might expect. The identified TCRs for NART positive cells

have been reported in (Joshi et al., 2019).

2.4.3 Application in SARS-CoV-2 and Benchmarking against

MiXCR

Single Tag Decombinator has also been more recently compared to the popular

MiXCR TCR analysis platform (Bolotin et al., 2015) in the context of SARS-CoV-

2. Figure 2.18A and Figure 2.18B compare TCR α chains and TCR β chains

identified by the two platforms for 48 CD8 T cells labelled as positive against the

ORF3a-28 peptide in a single patient, respectively. A TCR chain is here represented

by the identified V gene, J gene and CDR3 sequence. Hits in green represent TCRs

identified by both MiXCR and Single Tag Decombinator. Hits in blue represent

TCRs identified by MiXCR but not by Single Decombinator, while hits in orange

represent TCRs identified by Single Tag Decombinator but not by MiXCR. To aid

readability, the axes are labelled by an ID for each cell and for each V gene, J gene,

and CDR3 sequence. Full mapping of IDs to TCRs and IDs to cells are provided
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Figure 2.16: TCR α chains identified by only Single-Tag Decombinator, only by TraCeR,
or by both platforms, are shown in orange, blue and green, respectively, in the
NSCLC dataset.
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Figure 2.17: TCR β chains identified by only Single-Tag Decombinator, only by TraCeR,
or by both platforms, are shown in orange, blue and green, respectively, in the
NSCLC dataset.
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in Table C.4, Table C.5 and Table C.6 in Appendix C. Data analysis using MiXCR

was conducted by Dr Ling Felce.

In this study, rearrangements identified by Single Tag Decombinator were

sorted according to how many times they were found for a single cell. A thresh-

old was set equal to the number of rearrangements found by MiXCR for that cell

or equal to 1 if MiXCR found no rearrangements. The top TCRs identified by Sin-

gle Tag Decombinator within this threshold were kept for analysis. For instance,

if MiXCR found 3 TCRs for a given cell, and Single Tag Decombinator found 5

TCRs, only the top 3 most frequently occurring TCRs would be kept for Single

Tag Decombinator. This strategy was employed to counteract the exhaustiveness

of Single Tag Decombinator in searching for overlaps, avoiding unlikely TCR rear-

rangements found in low numbers with very long overlap regions.

Rearrangements for the α chain and β chain were identified by at least one of

the platforms in 75% and 87.5% of cells respectively. For cells where at least one α

chain was identified, both platforms identified the same rearrangement in 83.3% of

cases. For cells where at least one β chain was identified, both platforms identified

the same rearrangement in 85.7%. The Jaccard index between the sets of TCRs

identified by Single Tag Decombinator and MiXCR is 0.66 for the α chain, and

0.59 for the β chain.

In some circumstances where Single Tag Decombinator and MiXCR identify

different TCRs for the same cell, the rearrangements are very similar. For example,

the three β chains identified by MiXCR for cell 11 all feature the same V gene, the

same J gene, and differ by one amino acid in the CDR3 sequence. Those identified

by Single Tag Decombinator feature the same J gene as those identified by MiXCR,

the same CDR3 sequence as one of the MiXCR rearrangements, but three differ-

ently annotated V genes. A second example can be seen for cells 3, 10, 12, 31 and

39. These cells each feature a TCR β chain identified by both platforms (with ID

2), and an additional β chain identified by MiXCR only (with ID 4). These two

β chains share a J gene and CDR3 sequence, differing only in V gene (TRBV13

for ID 2, and TRBV7-3 for ID 4). The 20 bp sequence tags used by Single Tag
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Decombinator are very similar for these genes, with a Levenshtein difference of 3.

It is difficult to assess whether MiXCR is correct in assigning two β chains, or

Single Tag Decombinator is correct in assigning only one. With these characteristics

of the data in mind, the analysis was repeated using only the CDR3 sequences

annotated by both platforms. Respective plots for the α and β chain are shown in

Figure C.1A and Figure C.1B in Appendix C. Separate tables are also provided

mapping IDs to CDR3 sequences as Table C.7 and Table C.8, respectively. The

overlap of hits predicted by the two platforms increases for this analysis, with a

Jaccard index of 0.73 and 0.80 for the α and β chain, respectively.

The general agreement between the two approaches is a promising outcome of

the analysis, suggesting that, for many cells, a correct TCR rearrangement has been

identified. As in the previous comparison between Single Tag Decombinator and

TraCeR, the complementary use of Single Tag Decombinator and MiXCR proves

more informative than the use of a single platform. As this dataset comprises only

CD8 positive cells from a single patient, it is limited in terms of the biological or

clinical insight it can offer. Nevertheless, some interesting features of the analysis

stand out.

Figure 2.18A shows the most commonly identified α chains across the cells

are those with ID 1 (for cells 3, 8, 10, 12, 14, and 39) and ID 9 (for cells 18, 23,

27, 29, 30, 35, 43, and 45). 12 of these are identified by both platforms, and 2

by MiXCR only. Figure 2.18B shows that the same β chains are commonly iden-

tified for these cells. Rearrangements with β ID 2 are found for all cells with α

ID 1 (cells 3, 8, 10, 12, 14, and 39), as well as for three additional cells (16, 24,

and 31). For these additional cells, no α chain was identified at all by either plat-

form. Rearrangements with β IDs 17 and 18 are both found for nearly all cells

with α ID 9 (18, 23, 27, 29, 30, 43, and 45). For one cell (35) with α ID 9, no β

chain was identified by either platform. All identified β chains were predicted by

both platforms. The most prevalent αβ chain pairings across all 48 cells are there-

fore those with α rearrangement 1 (TRAV8-6, TRAJ22, CAVSGPQGSARQLTF)

and β rearrangement 2 (TRBV13, TRBJ1-2, CASSLIGQGGYTF), and those with
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α rearrangement 9 (TRAV17, TRAJ7, CATGGNNRLAF) and dual β rearrange-

ments 17 (TRBV16, TRBJ2-1, CASSQDLYNEQFF) and 18 (TRBV20-1, TRBJ1-

2, CSVTRTHPRCYTF). These TCR clonotypes are the most prolific responders, at

least in this limited dataset, to the ORF3a-28 peptide.

2.5 Future Perspectives

This chapter has described in detail the main components of the Decombinator

pipeline for TCR repertoire analysis. The platform is actively maintained and up-

dated in response to adjustments and improvements made in the complementary

wet lab protocol. In this regard, this chapter has explored some of the new features

that have been implemented into the computational pipeline over the course of this

PhD and which have been released as Decombinator V4. An extensive set of addi-

tional scripts to aid with Decombinator analysis has been developed and improved,

collected in the form of the Decombinator-Tools repository.

Additionally, an adaption of Decombinator for use with short-read fragmented

(primarily single cell) data has been described. The performance of Single Tag

Decombinator has been compared with the TraCeR and MiXCR repertoire analy-

sis software in two independent studies of non-small-cell lung cancer and SARS-

CoV-2. In general, Single Tag Decombinator shows a good agreement with these

approaches, and its complementary use alongside the other platforms has proved

biologically illuminating.

There are a number of routes that can be explored to enhance the performance

of the Decombinator pipeline in the future. As Decombinator was not originally

designed with single cell analysis in mind, Single Tag Decombinator has been de-

veloped outside of the main pipeline, to avoid considerable refactoring of the code-

base. However, with the steady increase in the production of single cell data and the

promising results of Single Tag Decombinator, an overhaul of the code to unify the

projects would likely be worthwhile, expanding the ease of use and approachability

of the software. Furthermore, a refactoring of the codebase into a more modular

workflow would ease future software development and integration of new features.
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Figure 2.18: TCR (A) α chains and (B) β chains identified by only Single Tag Decombi-
nator, only by MiXCR, or by both platforms, are shown in orange, blue and
green, respectively, in the SARS-CoV-2 dataset.
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Decombinator has largely been developed with an input data format consistent

with the complementary Chain lab experimental protocol in mind. However, when

working with external collaborators, initial input data often varies in format. A more

generalised approach to input data parsing would streamline the process of working

with new datasets. This could be accomplished through the use of configuration

files or templates, where researchers could specify relevant details of their protocol,

such as the locations of spacers, demultiplexing indices, or any other elements of the

sequencing construct. Furthemore, the Decombinator pipeline has been designed to

analyse FASTQ data, but could be extended to additionally parse the commonly

used SAM/BAM format (Li et al., 2009).

In terms of computational run time, Decombinator is one of the fastest tools

currently available (Zhang et al., 2020). An adaption of Decombinator parallelised

to run over multiple cores was experimented with over the course of this PhD

project, and offers the platform the potential to become significantly faster. Formal

implementation of these features into the pipeline may prove worthwhile in the con-

text of the increasingly large datasets being produced by HTS machines. This work

would be aided by benchmarking Decombinator for speed against other TCR reper-

toire analysis pipelines. Furthermore, The Decombinator module currently searches

input data for only α chain rearrangements or β chain rearrangements, and must be

run twice to search for both. Adaptions in the Single Tag Decombinator pipeline to

allow simultaneous α and β chain searching has drastically improved run time, and

could be introduced in the main Decombinator workflow.

Decombinator V4 was benchmarked for accuracy against an artificial dataset

based on probabilistic sequence generation and simulated PCR amplification and

sequencing. A separate tool for generating test data sets based on the Decombi-

nator α and β tags has also been described. Sampled experimental test data is

also available in the Decombinator-Test-Data repository. Each of these sets serve

a somewhat different purpose. The simulated data has been useful in assessing the

end to end accuracy of the Decombinator pipeline. Customisable tag-constructed

data is useful for testing specific functionalities within the Decombinator and Single



2.5. Future Perspectives 94

Tag Decombinator pipelines, such as error correction and overlap reconstruction.

The Decombinator-Test-Data repository is generally used for rapid assessment that

the pipeline is installed and working as intended, and is useful for onboarding new

users with the software. Further work could be done to expand the Decombinator

testing framework. While the input data is recorded for these datasets, the output

is not. Test output data would be useful as a means to ensure that Decombinator

is working as intended when implementing new features. This process could be

automated by integrating the test output data with unit testing, which has proven an

effective strategy in overhauling the Collapsinator fuzzy matching algorithm (using

the Python unittest module). A wider range of unit tests would offer particular

support for larger pieces of Decombinator refactoring, such as the unification of the

Decombinator and Single Tag Decombinator pipelines.

Finally, a number of improvements could be made in the Single Tag pipeline.

This could involve experimentation with more sophisticated overlap detection algo-

rithms, such as the construction of de Bruijn graphs, which has been implemented

in other platforms (Mose et al., 2016; Chen et al., 2020). The current version of Sin-

gle Tag Decombinator exhaustively pairs as many V fragments and J fragments as

possible. The resultant data often comprises a large number of some reconstructed

sequences and very few of others. Automatic filtering of these sequences according

to, for example, a minimum number of hits for a given reconstructed sequence prior

to output, would likely improve performance in benchmarking tests. This thresh-

old could be set as a hard cut-off, or, for example, as a fraction of the sequence

with the largest number of reconstructed sequences. Additional automated filtering

steps might include the prediction of unlikely rearrangements in the reconstructed

data, such as those with over-long insert sequences. Finally, it would be illumi-

nating to test the software in a wider range of contexts, against simulated datasets

with “ground truth” information as with Decombinator V4, and in comparison to

other high-performing software platforms such as CATT which reconstructs over-

laps using a greedy-feasible-flow algorithm (Chen et al., 2020) and TRUST4 which

focuses on full-length TCR and BCR sequence reconstruction (Song et al., 2021),
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neither of which had been published at the time this work began.



Chapter 3

Expanding the TCR Benchmark

3.1 Benchmark Assembly

To assess the accuracy of a given computational docking platform, the platform

must be tested with known information. Accordingly, a docking platform may be

tasked with generating a bound model of two unbound proteins of known structure,

for a case where the structure of a complex of the two protein components is also

already known. The modelled complex can then be compared to this bound refer-

ence complex so that an assessment can be made about the quality of the docking

procedure. A successful model will closely resemble the reference structure. The

regularly updated Protein-Protein Docking Benchmark (Vreven et al., 2015) con-

tains a large number of such docking cases and has been made use of extensively

for this purpose.

Due to their generally conserved binding mode, no TCR-pMHC structures fea-

ture in the Protein-Protein Docking Benchmark. However, an independently curated

set of 20 TCR-pMHC docking cases was assembled as the TCR Docking Bench-

mark for the development and testing of the TCRFlexDock software (Pierce and

Weng, 2013). This benchmark has since been updated as part of the establishment

of the TCR3d database (Gowthaman and Pierce, 2019), and totals 30 unique cases.

Each case consists of three independently crystallised structures: (1) an unbound

TCR structure, (2) an unbound pMHC structure, and (3) a bound complex structure

composed of the aforementioned TCR and pMHC proteins.



3.1. Benchmark Assembly 97

Figure 3.1: Structures of two identical TCRs crystallised together and found in PDB un-
der code 4GRM. Despite matching a TCR-pMHC structure (4FTV) along with
an unbound pMHC structure (1DUZ), these structures were not retained as a
benchmark case due to regions of missing residues and missing atoms around
the binding interface. Residues adjacent to missing residues are here shown in
orange, and residues with missing atoms are shown in yellow.

As part of this study, an attempt was made to identify additional docking cases

that might be added to the benchmark for the assessment of the TCR-pMHC mod-

elling capabilities of docking software. Potential docking cases were identified by

comparing unbound TCR and unbound pMHC structures with bound TCR-pMHC

structures collected from online repositories. Unbound TCR and bound TCR-

pMHC structures were sourced from the automatically curated set of structures

recorded in the STCRDab database (Leem et al., 2018). Unbound “pMHC-like”

structures were sourced from the Protein Data Bank (PDB) (Berman et al., 2000)

using a simple keyword search (“MHC” and “HLA”). Structures with a resolution

worse than 3.5Å were omitted. This cut off value was chosen such that the struc-

ture with PDB code 3DXA, which features in the most recent update to the TCR

Benchmark (Gowthaman and Pierce, 2019) and has a resolution of 3.5Å, could be

retained. All other structures presented in this chapter have resolutions of no worse

than 3.25Å, which is the resolution cut off used in previous iterations of the TCR

and protein-protein benchmarks (Pierce and Weng, 2013; Hwang et al., 2010).

Sequence alignment was performed between the chains of the unbound TCR

structures and the TCR chains of the bound TCR-pMHC structures. Similarly, se-

quence alignment was performed between the chains of the unbound pMHC struc-

tures and the peptide and MHC chains of the bound TCR-pMHC structures. A
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bound TCR-pMHC structure with a high degree of sequence similarity to both an

unbound TCR structure and to an unbound pMHC structure was considered to be

a “candidate” docking case. Each candidate case was then manually validated to

ensure that it featured matching TCRs, peptides and MHC molecules.

Following the approach of the original TCR Benchmark (Pierce and Weng,

2013), candidate cases that featured additional proteins complexed with the identi-

fied structures were discarded. The cases 2IAM and 2IAN are notable exceptions.

Both feature the staphylococcal enterotoxin superantigen bound to their pMHC

structures (1KLG and 1KLU). The superantigen has been found not to interact sig-

nificantly with the peptide or the TCR binding site, and these cases are therefore

retained in the benchmark in this and previous assemblies (Pierce and Weng, 2013;

Gowthaman and Pierce, 2019). The superantigen was removed from both structures.

Additionally, most candidates with structures that featured missing atoms or

residues around the binding site were omitted from the benchmark assembly. Miss-

ing residues were identified by comparing the protein sequences provided in the

header information in the raw PDB files downloaded from the Protein Data Bank

and sequences constructed through the concatenation of the amino acid residues

provided in the PDB file coordinates information. PDB header parsing and PDB

coordinate parsing were performed using the Bio.SeqIO and Bio.PDB Biopython

modules, respectively. Missing atoms were identified by comparing the atoms pro-

vided for each residue in the PDB coordinate information to an expected set of

atoms for each amino acid. Locations of missing residues and atoms were visu-

alised using PyMOL to judge whether they were far enough away from the binding

interface to be included in the benchmark, or minimal enough in missing informa-

tion to be repaired before docking. Some examples of highlighted missing residue

and atom locations are shown in Figure 3.1. The candidate case displayed, 4FTV,

was ultimately rejected for featuring too many missing residues and atoms in bind-

ing interface regions. Three cases were retained despite missing features around

the binding interface — 2NX5, 2OI9 and 2PXY. These cases have been used previ-

ously in the benchmarking of the TCRFlexDock platform (Pierce and Weng, 2013).
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Methods for repairing the structures prior to docking is detailed in Section 3.2.2.

In total, a resulting 14 additional TCR-pMHC docking cases were identified for

use in the docking platform comparison. The original PDB codes for the structures

of each of the 44 docking cases is provided in Table 3.1. Throughout this study,

an individual docking case is referred to by the PDB code of its original bound

TCR-pMHC complex.

3.2 Preprocessing Structures
Each of the benchmark structures was passed through a number of preprocessing (or

“cleaning”) steps before submission to the docking algorithms and future analysis.

These steps are detailed below.

3.2.1 Isolation of a Single Biological Assembly

PDB structural data contains the unit cell, which contains one or more copies of

a macromolecular assembly. These may represent the biologically active molecule

or a part of the biological assembly (or biounit) that may be reconstructed by ap-

plying symmetry operations. Differences in experimental conditions and in local

packing may result in these assembly copies having identical or slightly different

conformations. The PDB file with code 3SKN from benchmark case 3SJV features

four copies of the same TCR biological assembly, and is illustrated as an example

in Figure 3.2. For an αβ TCR, the biological assembly is composed of an α chain

and a β chain. The chain IDs for each α and β chain pair are A and B, C and D, E

and F, and G and H, and are coloured orange, blue, green and rose, respectively.

Generally, only one of each of the unbound components should be used when

modelling a bound protein-protein complex using computational docking soft-

ware. In preprocessing each TCR benchmark case, multiple biological asssemblies

present in a single PDB file were automatically isolated using a bespoke pairing

script that associates each α chain with the appropriate β chain. The RMSD (de-

fined in Appendix A) between each isolated TCR and each isolated TCR-pMHC

structure was computed, and the pair with the lowest value was retained to form

the benchmark case. The RMSD between the chosen TCR-pMHC structure and
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Bound Complex Unbound TCR Unbound pMHC MHC Class IRMSD Fnon-nat Difficulty

1AO7 ∗ 3QH3 1DUZ I 1.25 0.33 rigid

1MI5 ∗ 1KGC 1M05 I 1.25 0.48 medium

1MWA ∗ 1TCR 1LEK I 1.14 0.3 rigid

1OGA ∗ 2VLM 2VLL I 1.36 0.43 medium

2BNR ∗ 2BNU 1S9W I 0.72 0.23 rigid

2CKB ∗ ‡ 1TCR 1LEG I 1.17 0.45 medium

2IAM ∗ 2IAL 1KLG II 0.87 0.24 rigid

2IAN ∗ 2IAL 1KLU II 0.82 0.3 rigid

2NX5 ∗ † 2NW2 1ZSD I 1.19 0.37 rigid

2OI9 ∗ 1TCR 3ERY I 1.1 0.41 medium

2PXY ∗ 2Z35 1K2D II 1.18 0.55 medium

2PYE ∗ 2PYF 1S9W I 0.88 0.3 rigid

3DXA ∗ † 3DX9 3DX8 I 1.48 0.39 rigid

3H9S ∗ 3QH3 3H7B I 1.31 0.42 medium

3KPR ∗ 1KGC 3KPQ I 1.37 0.55 medium

3KPS ∗ 1KGC 3KPP I 1.31 0.48 medium

3PWP ∗ 3QH3 3PWL I 1.24 0.36 rigid

3QDG ∗ † ‡ 3QEU 1JF1 I 0.91 0.31 rigid

3QDJ ∗ ‡ 3QEU 2GUO I 0.94 0.28 rigid

3SJV ∗ ‡ 3SKN 1M05 I 0.96 0.41 medium

3UTT ∗ 3UTP 3UTQ I 0.75 0.4 rigid

3VXR 3VXQ 3VXN I 0.82 0.38 rigid

3VXS ∗ † 3VXQ 3VXP I 0.89 0.35 rigid

3W0W ∗ † ‡ 3VXT 3VXO I 0.94 0.42 medium

4JFD ∗ † 4JFH 4JFP I 1.51 0.51 medium

4JFF 4JFH 1JF1 I 1.54 0.52 medium

5C07 3UTP 5C0E I 0.57 0.15 rigid

5C08 3UTP 5C0F I 0.65 0.43 medium

5C09 3UTP 5C0G I 0.59 0.24 rigid

5C0A 3UTP 5N1Y I 0.5 0.3 rigid

5C0B 3UTP 5C0I I 0.59 0.25 rigid

5C0C 3UTP 5C0J I 0.64 0.35 rigid

5HHM 2VLM 5HHN I 1.42 0.51 medium

5HYJ 3UTP 5C0D I 0.55 0.34 rigid

5IVX 5IW1 3ECB I 1.29 0.38 rigid

5NME 5NMD 2V2W I 1.07 0.34 rigid

5NMF ∗ † 5NMD 5NMH I 1.05 0.38 rigid

5NMG ∗ † ‡ 5NMD 5NMK I 1.07 0.42 medium

6AMU 3QEU 6AMT I 1.16 0.41 medium

6AVF ∗ † 6AT6 6AT5 I 1.95 0.72 medium

6CQL ∗ † 6CPH 6CPN II 0.78 0.23 rigid

6CQQ ∗ † 6CPH 6CPO II 0.83 0.21 rigid

6CQR ∗ † 6CPH 6CQJ II 0.85 0.26 rigid

6EQB 4JFH 2GUO I 1.62 0.55 medium

Table 3.1: PDB codes for each unbound TCR and pMHC, and bound TCR-pMHC struc-
ture, for each docking benchmark case. The interface root-mean-square devi-
ation (IRMSD), the fraction of non-native contacts (Fnon-nat), and the docking
difficulty are provided for each case, and are defined in Section 3.3.
∗ TCR docking cases that feature in the TCR3d database;
∗ Cases that differ in IRSMD score to those in the TCR3d database;
‡ Cases that differ in docking difficulty class in the TCR3d database.
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Figure 3.2: Multiple copies of the same TCR found in the PDB file with code 3SKN from
benchmark case 3SJV. (A) It is unclear which protein chains make up each
TCR in the raw PDB data. Each α chain was paired with a β chain such that
each TCR was isolated and distinguishable. Paired α and β TCR chains, with
chain IDs A and B, C and D, E and F, and G and H, are shown coloured orange,
blue, green and rose, respectively, according to (B) their original coordinates,
and (C) separately.

each pMHC structure was also computed, and the pMHC structure with the lowest

RMSD value was retained to complete the benchmark case.

It is worth noting that this decision may lower the conformational change

present between the bound and unbound components, resulting in an easier mod-

elling task for docking software. For benchmark cases that feature both in this

and previous benchmarks, differences in the interface root-mean-square deviation

(IRMSD; defined in Section 3.3) and difficulty class can likely be attributed to alter-

nate strategies for choosing which TCR, TCR-pMHC or pMHC structure to retain

for each case, and is discussed further in Section 3.3. The extent of conforma-

tional change between unbound and bound structures has been reported previously
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Figure 3.3: Repair of missing residue and atoms in the TCR of case 2NX5 (2NW2). The
TCR is shown (A) with repaired loop (orange) superimposed on top of the
original broken loop (blue). Close up images of the loop region are shown in
cartoon (B) and stick (C) representation.

as higher on average for TCR-pMHC docking test cases than for antibody-antigen

test cases (Pierce and Weng, 2013). In this study, IRMSDs between unbound TCR

and bound TCR-pMHC structures were found to range from 0.72Å to 1.95Å.

In summary, this preprocessing step assures that each benchmark case com-

prises only a single TCR structure, single pMHC structure, and single TCR-pMHC

structure.

3.2.2 Repair of Structures with Missing Features

A number of structures retained as part of the set of benchmark cases feature miss-

ing residues or atoms around the binding interface. The TCR structure of case

2NX5 (2NW2) is missing one CDR3 loop residue and 5 further atoms in two ad-

jacent residues; the pMHC structure of case 2NX5 (1ZSD) is missing 3 side chain

atoms in one of its peptide residues; the pMHC structure of case 2OI9 (3ERY) is

missing 6 side chain atoms in one peptide residue; and the pMHC structure of case

2PXY (1K2D) is missing 6 side chain atoms in one peptide residue.

The missing residues and atoms were added to these structures using the

MODELLER software (Webb and Sali, 2016), version 9.25. The protocol to re-

pair these structures can be found in the Modeller-Repair repository, at https:

//github.com/innate2adaptive/Modeller-Repair/. Input data for the

TCR structure of case 2NX5 is provided as an example, alongside instructions for

installing and running the protocol. The protocol is described briefly below.

https://github.com/innate2adaptive/Modeller-Repair/
https://github.com/innate2adaptive/Modeller-Repair/
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A structure in need of repair should have its amino acid sequence saved with

gaps replacing missing residues (or residues with missing atoms) alongside the de-

sired sequence in PIR format (as in example/2nx5_r_u.ali). A repaired struc-

ture can then be generated by simply supplying the repair.py script with the

alignment file and with the PDB file of the template structure (the structure to

be repaired). Ten models of a replacement protein chain are automatically pro-

duced using the MODELLER automodel class (via scripts/model_chain.py),

and the model with the best MODELLER DOPE score is retained. The template

structure then has its broken chain replaced with the retained modelled chain (via

scripts/replace_chain.py) to produce the repaired output structure. Users

might optionally make use of the “select range” feature, whereby flexibility in the

model refinement is limited to only the specified range of residues, through an addi-

tional argument supplied to the repair.py script, which should produce structures

more closely aligned with the template.

Figure 3.3A shows the TCR of case 2NX5 with the loop repaired by MOD-

ELLER (orange) superimposed upon the original loop with missing atoms (blue).

Close up images of the loop region are shown in cartoon representation in Fig-

ure 3.3B, and with residue side chains visible in stick representation in Figure 3.3C.

Existing atoms in the template are close to their original position, though some have

been adjusted slightly by MODELLER to make room for the added residues.

3.2.3 Alternate Locations, Solvent and Small Molecules

Most protein structures resolved using x-ray crystallography in the Protein Data

Bank contain additional solvent atoms that were present during the experimental

crystallisation. Other small molecules used to aid the crystallisation process are

also sometimes present in the raw data. As these are generally only present for

crystallisation purposes, they were removed for each structure prior to docking, as

shown in Figure 3.4A.

Occasionally, molecular flexibility can result in structural data that features

multiple spatial coordinates, or alternate locations, recorded for a single atom.

Atoms with multiple recorded coordinates cause problems for certain docking plat-
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Figure 3.4: (A) The pMHC structure of benchmark case 6CQL (6CPN) is shown before and
after the removal of solvent and other small molecules. MHC chains are shown
in yellow and orange, the antigenic peptide in green, solvent molecules in blue,
and additional small molecules in red and rose. (B) The alternate locations of
atoms in a residue of the TCR of benchmark case 3H9S (3QH3) are coloured
in green and yellow and shown in stick representation. Insets show close ups
of the residue before and after one of the sets of atoms has been removed.

forms, molecular dynamics simulations, and RMSD calculations. Atoms with al-

ternate locations in TCR, pMHC and TCR-pMHC structures typically feature only

two sets of coordinates, and are usually labelled as A and B. For this benchmark

dataset, alternate locations were automatically identified using the Bio.PDB Python

module, and resolved by simply removing one of the coordinate sets. In this study,

those labelled with alternate position A were retained, and the others were discarded.

This process is illustrated in Figure 3.4B.

An example of the alternate locations for a Cα atom in a cysteine residue in the

raw PDB data for the pMHC structure for benchmark case 5HHM is shown below,

with A and B labels highlighted in orange:

ATOM 2955 CA ACYS B 80 -4.338 0.663 51.500 0.50 22.62 C

ATOM 2956 CA BCYS B 80 -4.288 0.696 51.390 0.50 23.02 C
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Loop Residue Numbers

CDR1 27 - 38

CDR2 56 - 65

CDR3 105 - 117

Table 3.2: Standardised residue number ranges for the CDR loops according to the IMGT
numbering scheme.

3.2.4 Standardisation of Chain Labels

In order to submit each benchmark case to a given docking platform automatically

(or at least in reasonable time), the TCR and pMHC chains were relabelled to a

standardised convention employed by the original docking benchmark (Pierce and

Weng, 2013). TCR chains were given chain IDs D and E; MHC molecules were

given chain IDs A and B; and peptides were given chain ID C.

3.2.5 Standardisation of TCR Residue Numbering

Raw TCR and TCR-pMHC PDB files do not generally specify their residues ac-

cording to a standardised convention. The TCR residues in these structures were

therefore renumbered according to the IMGT (international ImMunoGeneTics in-

formation system) numbering scheme. This ensures that the CDR loops, which vary

in length, are always specified using the same numbering IDs, making them easy to

locate in analysis scripts or to submit to docking platforms as binding residues. Ta-

ble 3.2 shows the numbering IDs of each CDR loop according to the IMGT scheme.

Figure 3.5 shows a TCR structure with these residues highlighted before and after

IMGT renumbering. Renumbering was performed using the ANARCI (Dunbar and

Deane, 2016) Python module.

3.2.6 Spatial Initialisation

In order to avoid any potential initial orientation bias, all TCR and pMHC structure

were randomly translated and rotated before docking. Structures were permitted

to translate by up to 20Å along each axis from their initial coordinates, and freely

rotate around one or more axes, during preprocessing.
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Figure 3.5: Residues of the TCR of benchmark case 6EQB (4JFH) with IDs matching the
numbering of the CDR3 loops according to the IMGT numbering scheme (105-
117) are highlighted before (A) and after (B) renumbering in blue and orange,
respectively. (C) Sections of the α chain sequence are shown with the CDR3
loop residues highlighted in orange with incorrect numbering (middle) and cor-
rect numbering (bottom) before and after renumbering, respectively. Residues
incorrectly labelled with the CDR3 IDs are highlighted in blue, matching those
in (A).

3.3 Benchmark Difficulty Evaluation Criteria
In an effort to establish the performance and improvement of docking algorithms

on sets of benchmark docking cases, the CAPRI community has established met-

rics that can be used to capture the expected difficulty of modelling any particular

protein-protein complex. The protein-protein benchmark provides docking cases

categorised (in order of increasing difficulty) as of either “rigid”, “medium” or “dif-

ficult” difficulty (Hwang et al., 2010). The same approach was taken in the as-

sembly of TCR-pMHC cases for the TCR docking benchmark (Pierce and Weng,

2013). The criteria describing each of these categories is shown in Table 3.3, and

the associated metrics — the interface root-mean-square deviation (IRMSD); and

the fraction of non-native contacts (Fnon-nat) — are described below.

The IRMSD is calculated by superimposing the unbound partner structures

(here, the unbound TCR and unbound pMHC structures) onto the bound reference
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Difficulty IRMSD (A) Fnon-nat

Rigid ≤ 1.5 ≤ 0.4

Medium > 1.5 and ≤ 2.2 -

or

≤ 1.5 > 0.4

Difficult > 2.2 -

Table 3.3: CAPRI criteria for determining docking case difficulty.

structure (here, the bound TCR-pMHC structure), and then computing the RMSD

of the interface residue backbone atoms of the reference structure and those of the

superimposed unbound partners. In this context, an interface residue is defined as a

residue containing at least one atom within 10Å of an atom in the binding partner

(Méndez et al., 2003).

The Fnon-nat is here calculated by superimposing the unbound partner struc-

tures onto the bound reference structure (as above), and then computing the number

of non-native contacts between the unbound partners divided by the total number

of contacts between these partners. Non-native (incorrect) contacts are defined as

residue pairs that are in contact in the superimposed unbound structures, but are not

in contact in the reference structure (Méndez et al., 2003). Contacting residues are

here defined as pairs of residues with a distance of at most 5Å between their clos-

est atoms. Mathematical descriptions and illustrations for RMSD, IRMSD and the

Fnon-nat are provided in Appendix A.

The IRMSD, Fnon-nat, and docking difficulty is provided alongside each dock-

ing case in Table 3.1. It should be noted that in some cases, these measurements

differ from those reported in the original TCR Benchmark (Pierce and Weng, 2013).

These discrepancies can largely be attributed to differences in which protein chains

were selected for cases where multiple TCR, pMHC or TCR-pMHC structures fea-

tured in the raw PDB data. In this study, bound and unbound components were

chosen such that the RMSD between the two was minimised, as described in Sec-

tion 3.2.1. Differences to the original benchmark are highlighted in Table 3.1. In

general, the difference in IRMSD is minimal compared to the original benchmark.
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Benchmark Feature Number

Contains MHC Class I 38

Contains MHC Class II 6

Contains human TCR 39

Contains mouse TCR 5

Max TCR sharing among cases 8

Max pMHC sharing among cases 2

Total unique TCRs 20

Total unique pMHCs 40

Total cases 44

Table 3.4: A summary of some biological features of the TCR Benchmark cases.

The original benchmark does not provide Fnon-nat values, so no direct compari-

son could be made. Five cases in this study have been reclassified from “rigid”

to “medium” difficulty, and one case from “medium” to “rigid” difficulty. The 44

docking cases are all of “rigid” or “medium” difficulty, with no “difficult” docking

cases identified.

3.4 Features of the Benchmark
The benchmark cases used in this study feature both TCR and pMHC structures

from human and from mouse. The majority of MHC structures in the benchmark

are of Class I, though a small number of MHC Class II structures are also repre-

sented. A number of cases feature the same TCR but bound to different pMHC

molecules, or different TCRs bound to the same pMHC molecule, demonstrating

the nature of TCR cross-reactivity. The most prevalent TCR structure (3UTP) fea-

tures in 8 separate cases. Among the 44 cases, the benchmark contains 20 unique

TCR structures and 40 unique pMHC structures. These biological features of the

benchmark cases are summarised in Table 3.4.

3.5 Data Availability
All docking benchmark cases used in this study are available at https://github

.com/innate2adaptive/ExpandedBenchmark. Original data from the PDB can

https://github.com/innate2adaptive/ExpandedBenchmark
https://github.com/innate2adaptive/ExpandedBenchmark
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be found (renamed) in the raw directory, and preprocessed according to the above

specifications in the imgt directory.

3.6 Tools
Repair of missing atoms and chains was performed using the MODELLER software

(Webb and Sali, 2016), version 9.25, directed with a Python protocol made available

at https://github.com/innate2adaptive/Modeller-Repair/. Renumber-

ing of TCRs according to the IMGT numbering scheme was performed using the

ANARCI (Dunbar and Deane, 2016) Python module. Isolation of single biological

assemblies, removal of solvent, small molecule and alternate locations, and chain

relabelling, were performed using the Bio.PDB (Hamelryck and Manderick, 2003)

Biopython (Cock et al., 2009) module. Structures were randomly translated and

rotated using the PyMOL (http://www.pymol.org) api.

https://github.com/innate2adaptive/Modeller-Repair/
http://www.pymol.org


Chapter 4

Information-Driven Docking for

TCR-pMHC Complex Prediction

4.1 Introduction to Study

Understanding the nature of the TCR-pMHC recognition process on a molecular

level is essential for TCR based therapeutics and vaccine design. The breadth of the

TCR repertoire and the cross-reactive nature of TCRs are obstacles to this under-

standing, as crystallising even a small sample of proteins remains an expensive and

difficult task. Accurate computational modelling of protein structures and structural

complexes offers an efficient alternative to traditional crystallography. The study

detailed in this chapter explores the ability of four general-purpose computational

docking platforms (ClusPro, LightDock, ZDOCK and HADDOCK) to accurately

model bound TCR-pMHC complexes and serves as a more detailed description of

work recently published in Peacock and Chain (2021).

The ClusPro, HADDOCK, LightDock and ZDOCK docking platforms were

chosen for this work as each allows additional information to be supplied alongside

unbound structures to guide their protein complex modelling algorithms. These

features include the ability to specify particular residues in the unbound components

that are expected to form a part of the binding interface in the bound complex.

Each of the docking suites make use of this binding site information differently

(outlined in Section 4.3), but have the shared goal of restricting their set of output
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models around the specified interface. This approach is particularly suitable for

proteins that form complexes around well-characterised interfaces, such as TCRs

and antibodies. Nearly all TCR residues that make contact with pMHC are found

in the CDR loop regions. All pMHC residues that make contact with the TCR are

found in the peptide and in nearby MHC surface residues in the plane of the peptide

groove (Rudolph et al., 2006). Analogously, antibodies form binding interfaces

with antigen around their CDR hypervariable (HV) loops.

Ambrosetti et al. (2020a) have explored the ability of ClusPro, HADDOCK,

LightDock and ZDOCK to accurately model the antibody-antigen interface using

varied descriptions of the binding residues to assess modelling performance in the

context of incomplete (and possibly unreliable) additional information. These de-

scriptions mimic different levels of information that might be obtained about the an-

tibody and antigen before binding. The first description (“HV-Surf”) contains only

a list of residues known to be in the antibody HV loops. In these circumstances,

the docking suites have vague information about which part of the antibody makes

contact with the antigen, but no knowledge of the location on the antigen at which

the contact takes place. The second description (“HV-Epi 9”) is more detailed, pro-

viding the residues in the HV loops as well as any residues in the antigen that are

within 9Å of the antibody in the docking case reference structure. The third de-

scription (“Real interface”) is the most detailed, and provides only those residues in

both the antibody and the antigen that are within 4.5Å of their binding partner. This

description is intended to represent the ideal case, where all information about the

binding interface is known. The docking suite comparison was performed using the

16 new antibody-antigen docking cases in the protein-protein docking benchmark

(Vreven et al., 2015).

The basis of this TCR-pMHC modelling study is founded on similar principles.

Four scenarios were constructed containing varied descriptions of the TCR-pMHC

interface to assess modelling performance in the context of vague or detailed knowl-

edge of the binding. These scenarios are outlined in the following section. The

expanded TCR benchmark dataset described in Chapter 3 was used to test the soft-
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Figure 4.1: TCR and pMHC residues that constitute four varied descriptions of the TCR-
pMHC binding interface are highlighted in yellow and green respectively.

ware, and the performance of each platform for each of the four scenarios for these

structures is presented in Section 4.5.

4.2 Varied Descriptions of the TCR-pMHC Interface
Various levels of information about each TCR-pMHC binding interface are repre-

sented in the four scenarios detailed below. For each docking case, residues that

met the requirements of the scenario were provided to the four docking platforms

as binding site information to guide the docking. Each docking platform requires

the binding residue specification to be formatted differently. Example inputs for

docking case 1AO7 for Scenario 4 and submission instructions are provided in Ap-

pendix E. The four scenarios are illustrated in Figure 4.1 for TCR recognition of

a peptide bound by MHC Class I, with selected TCR residues highlighted in yel-

low and selected pMHC residues highlighted in green. Residue identification was

performed using the Bio.PDB (Hamelryck and Manderick, 2003) Biopython (Cock

et al., 2009) module.

4.2.1 Scenario 1

Scenario 1 is the simplest docking scenario in this study, and provides the most

vague information about the binding interface. Here, only the TCR CDR loop

residues and the residues of the presented peptide are provided as binding residues.

No information is provided about likely MHC binding residues. This information

is readily available from the unbound TCR and pMHC structure with no additional

analysis required, provided that they have already undergone chain relabelling and
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IMGT renumbering steps, described in Section 3.2.4 and Section 3.2.5, respectively.

For the unbound TCR structure, it is enough to simply supply all residues for chains

D and E that have residue IDs that sit in the range of the CDR loops (provided in

Table 3.2). For the unbound pMHC structure, all residues of chain C (the relabelled

peptide) should be supplied.

4.2.2 Scenario 2

In addition to the CDR loop and peptide residues of Scenario 1, Scenario 2 also

provides a vague description of MHC residues likely to be involved in the binding

interface. MHC residues were selected as any residues in pMHC structure with at

least one atom within a distance of 9Å from any atom in the peptide. For MHC

Class I structures, these residues almost always sit exclusively in the HLA chain

(relabelled as chain A in the TCR benchmark), which contains the whole of the

peptide groove. For MHC Class II structures, these residues sit in the two HLA

chains (relabelled as chain A and B) that together form the peptide groove.

4.2.3 Scenario 3

Scenario 3 is similar to Scenario 2, but is intended to provide a more accurate rep-

resentation of peptide and MHC residues involved in the binding interface. In this

scenario, MHC residues are retrieved from the bound reference structure, rather

than the unbound pMHC structure. Any residues in the pMHC component with

at least one atom within a distance of 9Å of an atom in the TCR binding partner

were selected as binding residues. This information is typically not available prior

to docking, and is possible only for the constructed benchmark cases where a ref-

erence structure exists. As with Scenarios 1 and 2, residues in the CDR loops were

specified as binding residues for the TCR component.

4.2.4 Scenario 4

Scenario 4 provides “real interface” information, where all binding residues are se-

lected from the bound reference structure. All TCR residues and pMHC residues

with at least one atom within a distance of 4.5Å of an atom in their correspond-

ing binding partner were selected as binding residues. This scenario supplies the
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docking platforms with the most accurate available information about the binding

interface. It is expected that the docking platforms should show the best perfor-

mance for this scenario. As with Scenario 3, the information in Scenario 4 relies on

the reference structures of the benchmark cases, which are not generally available

when performing a docking experiment.

4.3 Information-Driven Docking Platforms
An overview of the four platforms used in this study and how they make use of

additional information to improve docking accuracy is provided below. Details of

the settings for each approach and rough run time estimates are included, as well as

a subjective review of their accessibility (which, nevertheless, hopefully provides

some insight to the interested reader).

4.3.1 ClusPro

Models from ClusPro were generated using the ClusPro online web server (ht

tps://cluspro.org) (Kozakov et al., 2017) with the default settings. The

ClusPro platform makes use of the FFT rigid-body approach (see Section 1.5.4)

for rapid protein-protein docking. By default, the web server provides results

using four different scoring functions — balanced, electrostatic-favored,

hydrophobic-favored, and van der Waals + electrostatics. The 1000

lowest-energy structures sampled by ClusPro are clustered by RMSD into up to

30 clusters. Retained structures undergo fixed-backbone energy minimisation using

only the van der Waals term of the CHARMM potential (Brooks et al., 1983) to

remove steric clashes. Conformation change in output models has been reported as

very minimal (Kozakov et al., 2017).

The ClusPro web server provides a variety of advanced options to tailor the

docking search, including the option of providing either known attractive or repul-

sive residues in initial unbound components. In this study, binding residues were

submitted as attractive residues. An additional attractive force is applied to the

specified residues in the scoring function.

The ClusPro web server has a simple, minimal interface and is very easy to use.

https://cluspro.org
https://cluspro.org
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Submission of unbound proteins, binding residues, and downloading results should

be straightforward for researchers with minimal computational experience. Despite

heavy usage and sometimes long queue times, a ClusPro docking job generally

finishes within 4 hours (Kozakov et al., 2017). A submission allowance of 15 jobs

is permitted at any given time, and are easy to monitor if using the server with a free

account.

ClusPro results can be downloaded from a url based on the ID of the ClusPro

job as a compressed archive. Security restrictions require logging in to a ClusPro

account to download output data, and therefore these archives must be downloaded

manually and individually. A Python script was written to automatically unpack

and organise the downloaded data.

4.3.2 ZDOCK

Models from ZDOCK were generated using the ZDOCK online web server (http:

//zdock.umassmed.edu/) version 3.0.2 (Pierce et al., 2014b) with the default set-

tings. Like ClusPro, ZDOCK makes use of the FFT rigid-body approach for highly

efficient docking. The top 1000 models scored by ZDOCK are made available for

download.

The ZDOCK web server allows users to provide information about the binding

interface in two ways. The first method allows users to choose specific residues

to block from being included in the binding interface. Atoms in these residues are

assigned a highly unfavourable contact energy by the scoring function that makes

them much less likely to feature as binding residues in output models. The second

alternative method allows users to choose specific contacting residues to include in

the binding interface. Rather than assigning atoms in these residues with highly

favourable contact energies, output models are instead filtered to remove results

that do not feature these residues as being part of the binding interface. For this

project, residues found not to be involved in the binding for each scenario were

supplied to the blocklist, allowing ZDOCK to tailor the docking algorithm to the

additional information, rather than using the information as a post-modelling pro-

cess. This approach is consistent with that of Ambrosetti et al. (2020a) in the context

http://zdock.umassmed.edu/
http://zdock.umassmed.edu/
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of antibody-antigen docking, and allows for comparison between the studies.

Like the ClusPro web server, ZDOCK also features a simple and easy to use

interface. Users may upload their own PDB files or use structures directly from

the PDB by supplying the relevant PDB code (although an error produced by a

Python script appears to have broken this feature at the time of writing). The residue

selection screen includes visualisation of uploaded PDB files for web browsers with

java applet support. Blocked or binding residues must be selected manually from

lists of every residue in the two proteins (rather than inputting as free text to a text

box, as with ClusPro). This is very inconvenient for large scale docking studies, and

consequently custom JavaScript commands were written to automatically select the

appropriate residues. The commands can be copied and pasted into the console of

web browser development tools. This clumsy workaround proved more efficient

at this scale than resolving difficulties in installing antiquated libraries relied upon

by the ZDOCK command line tool to use locally or on alternate remote computing

resources. Examples of the custom JavaScript commands and usage guidance are

provided in Appendix E.

ZDOCK output files must be individually downloaded from the results page of

the ZDOCK job, and then processed using the ZDOCK create.pl Perl script to

obtain all 1000 complexed models. In order to process output files from ZDOCK

efficiently, a helper script was written in Python to parse the HTML of the results

webpage automatically based on a user specified ZDOCK job ID, and then to build

and organise the output models from the relevant results file using the ZDOCK Perl

script.

ZDOCK jobs submitted as part of the project were the fastest to complete out

of the four docking platforms, and results were generally available within about ten

minutes of submission.

4.3.3 LightDock

During the span of this project, LightDock did not have an available web server

for modelling jobs. Therefore, LightDock v0.8.0 (Roel-Touris et al., 2020) was

installed via the PyPi package (https://pypi.org/) in a Miniconda virtual envi-

https://pypi.org/
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ronment (https://docs.conda.io/en/latest/miniconda.html) on Thomas,

the UK National Tier 2 High Performance Computing (HPC) Hub in Materials and

Molecular Modelling (MMM). Thomas was particularly suited to large multi-core

computational jobs, and has recently been retired as an MMM machine and replaced

with the new MMM hub, Young. LightDock has since been made available through

a web server (https://server.lightdock.org/) as a beta release.

The sampling process in LightDock is driven by an implementation of the

glowworm swarm optimisation (GSO) algorithm (Krishnanand and Ghose, 2009).

A complex modelled by the docking platform is here imagined as a glowworm that

emits a quantity of the bioluminescence-generating compound luciferin as it tra-

verses the energetic landscape of possible docking solutions. The luciferin value

emitted by each glowworm agent is determined by an objective function (in this

case, the docking scoring function) and is broadcast to its neighbouring glow-

worms. In each cycle of the algorithm, each glowworm moves towards a proba-

bilistically selected neighbour with a higher luciferin value than its own. These

movements result in convergence of glowworms upon locally (or globally) optimal

solutions (favourably energetic complexes). Results from each swarming simula-

tion are merged and clustered to remove redundant models. The final representative

of each cluster corresponds to the structure with the best energy (Jiménez-García

et al., 2018). The LightDock swarming algorithm has been implemented for broad

scalability for HPC architectures, and allows users to design their own custom scor-

ing functions.

LightDock makes use of normal mode analysis through an implementation

of the anisotropic network model (ANM) for modelling protein flexibility. Un-

der this framework, a protein is treated as an elastic network with nodes repre-

senting the alpha carbon atoms of the amino acid residues and edges represent-

ing inter-residue potentials that stabilise the protein folding conformation (Atilgan

et al., 2001; Doruker et al., 2000). Treating these potentials as harmonic oscilla-

tors (springs), the fluctuation dynamics of residues within the protein are described

by a superposition of the normal modes (harmonics) of the system. Mathematical

https://docs.conda.io/en/latest/miniconda.html
https://server.lightdock.org/


4.3. Information-Driven Docking Platforms 118

decomposition of these modes allows for the displacement of each residue to be cal-

culated, providing a description of protein flexibility. Under this framework, each

glowworm represents the extent of deformation along each normal mode for the

receptor and ligand, as well as the translation and orientation between the respec-

tive components. The mathematics of normal mode analysis and its application to

biomolecular structures have been reviewed in detail by numerous research groups

(Case, 1994; Ma, 2005; Skjaerven et al., 2009; Bahar et al., 2010; Bauer et al.,

2019).

LightDock makes uses of additional information in the form of specified bind-

ing residues in both the sampling and scoring procedures. Initial swarms that are

not in the proximity of the provided interfaces are filtered out, limiting the search

to the binding region. This process also considerably reduces computation time

(Roel-Touris et al., 2020). Glowworms are also initially oriented based on random

pairings of binding residues in the receptor and ligand. Furthermore, the scoring

function is biased according to the percentage of satisfied restraints. LightDock al-

lows binding residues to be defined as either “active” or “passive”. Both active and

passive restraints are included in the filtering and orienting of the initial poses, but

only “active” residues are used to adjust the scoring function.

Default settings were used for each LightDock docking job — 400 initial

swarms, with 200 glowworms per swarm and 100 simulation steps. The first 10

non-trivial normal modes for both receptor and ligand were calculated using the

LightDock ANM implementation. The default fastdfire function, a fast C imple-

mentation of the DFIRE scoring function (Zhou and Zhou, 2002), biased according

to the percentage of satisfied restraints (Roel-Touris et al., 2020), was chosen to

score docked models. For models produced using Scenario 1 information, TCR

loop residues were defined as active and peptide residues as passive; for Scenarios

2 and 3, TCR loop residues were defined as active and pMHC residues as passive;

and for Scenario 4, TCR and pMHC residues were all provided as active. This mir-

rors the active and passive settings used for HADDOCK in this study and related

work modelling antibody-antigen complexes (Ambrosetti et al., 2020a).
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Prior to the recent LightDock web server, the modelling software was available

only via the command line. Despite this, LightDock was very easy to install and

run using the online documentation (https://lightdock.org). For interested

researchers, performing large docking runs will likely require some familiarity with

setting up parallel jobs on an available HPC cluster. LightDock jobs in this project

were run across 24 cores, and generally completed within 2 hours.

4.3.4 HADDOCK

Models from HADDOCK were generated using the HADDOCK web server (http

s://haddock.science.uu.nl) (van Zundert et al., 2016) version 2.4. Docking

runs on HADDOCK are computationally demanding. Modelling through the in-

teractive web server offsets potentially long job times with access to over 100,000

CPU cores made available by the European Grid Initiative (EGI) and associated

National Grid Initiatives (van Zundert et al., 2016; Wassenaar et al., 2012).

HADDOCK makes use of a data-driven sampling strategy, encoding known

biochemical or biophysical information about the interaction as “ambiguous in-

teraction restraints” (AIRs) that are used to drive the docking (Dominguez et al.,

2003). The types of information that can be integrated into the docking protocol

are remarkably diverse, including data obtained from mutagenesis and chemical

cross-linking experiments (Rodrigues and Bonvin, 2014), nuclear magnetic reso-

nance (NMR) titration analysis (Dominguez et al., 2003), and small angle x-ray

scattering (SAXS) profiles (Karaca and Bonvin, 2013). As with the other platforms

discussed in this study, interaction restraints were encoded in HADDOCK based on

the predicted interfaces described in Section 4.2.

HADDOCK restraints can be defined as either “active” or “passive”. Active

residues are considered central to the interaction. They are restrained throughout the

simulation to always be a part of the interface where possible, and are accounted for

in the HADDOCK scoring function (Dominguez et al., 2003). Passive residues

are expected to contribute to the interface, but are considered less important to the

interaction, and models that contain them are neither penalised nor rewarded by the

scoring function. Furthermore, HADDOCK allows for a random fraction of AIRs to

https://lightdock.org
https://haddock.science.uu.nl
https://haddock.science.uu.nl
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be discarded for each docking trial. This option can produce more accurate docked

models, due to the possibility of randomly removing bad restraints when working

with speculative binding interface data (de Vries et al., 2010).

The HADDOCK docking protocol is split into three stages of increasing lev-

els of model refinement (de Vries et al., 2007). In the first stage (it0), rigid body

docking is performed through energy minimisation, whereby the sampling is driven

by the interaction restraints. In the second stage (it1), semi-flexible simulated an-

nealing refinement is performed whereby side-chains and backbone atoms of the

interface residues are permitted to move. In the third stage, a short molecular dy-

namics refinement process is performed in explicit solvent (typically water). Addi-

tionally, HADDOCK automatically clusters its final models by either the positional

interface ligand RMSD (iL-RMSD) or the fraction of common contacts (FCC) (Ro-

drigues et al., 2012). Representative models of each cluster are made available for

download alongside the full set of models of each refinement stage at the end of a

docking job.

Default sampling settings were used for each scenario using HADDOCK: 1000

models for the rigid body (it0) stage, and 200 models for the semi-flexible (it1)

and water refinement stages. While it has been recommended that increased sam-

pling should be used when less information about the binding interface is available,

a recent benchmarking of antibody structures using HADDOCK did not show an

improvement when sampling was increased compared to the default parameters

(Ambrosetti et al., 2020a). For Scenarios 1, 2 and 3, the random removal of re-

straints was set to the HADDOCK default of 50% for each docking run, while for

Scenario 4, the random removal of restraints was disabled. For Scenario 1, the

CDR loops were specified as active and the peptide as passive. For Scenarios 2 and

3, the CDR loops were specified as active and the pMHC residues as passive. For

Scenario 4, residues selected in both the TCR and in the pMHC were specified as

active. HADDOCK models were clustered using the default FCC method using de-

fault parameters (FCC cutoff of 0.6 and a minimum cluster size of 4). The average

HADDOCK score of the best 4 models of each cluster was used to produce a ranked
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list of the clusters (de Vries et al., 2010).

The HADDOCK web server offers users three tiers of access for setting up

docking jobs. The “easy” tier allows only minimal parameters to be customised.

While perhaps more daunting to the novice user than platforms such as ClusPro or

ZDOCK due to its wide variety of customisable parameters, it is relatively straight-

forward to generate models with HADDOCK by using the locked default parame-

ters of this access tier, and by exploring the extensive and impressive set of online

tutorials. For more bespoke docking jobs, users may request to be upgraded to “ex-

pert” or “guru” tier. While the majority of this study is repeatable using the “easy”

tier access level, disabling the random removal of restraints for Scenario 4 requires

“expert” level access. Like ClusPro, users are able to monitor the progress of their

HADDOCK docking jobs in the workspace of their free (academic) user account.

Docking jobs were slowest for HADDOCK out of the four platforms in this study.

The run time for HADDOCK jobs has been reported as varying between half an

hour and several days depending on the type of docking task (van Zundert et al.,

2016). Most jobs in this study completed within approximately 8 hours.

4.4 Model Evaluation Criteria

Class Fnat LRMSD (Å) IRMSD (Å)

High ≥ 0.5 ≤ 1.0 or ≤ 1.0

Medium ≥ 0.3 ≤ 5.0 or ≤ 2.0

Acceptable ≥ 0.1 ≤ 10.0 or ≤ 4.0

Incorrect < 0.1 - -

Table 4.1: Docked models are assigned a quality based on their calculated Fnat, LRMSD
and IRMSD.

Every model produced for the four scenarios on each platform was compared

with the corresponding reference structure and classified as incorrect, acceptable,

medium, or high quality, according to the CAPRI evaluation criteria (Janin et al.,

2003; Méndez et al., 2003), shown in Table 4.1. The interface root-mean-square

deviation (IRMSD), the ligand root-mean-square deviation (LRMSD) and the frac-
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Figure 4.2: Success rate of the top 1, 5, 10, 20, 50 and 100 ranked models for ClusPro,
HADDOCK, LightDock and ZDOCK for each of the four docking scenarios.
Colour coding indicates the quality of the best model found in a given number
of ranked models according to the CAPRI criteria.

tion of native contacts (Fnat) are detailed in Appendix A, and were calculated with

scripts using the Bio.PDB (Hamelryck and Manderick, 2003) Biopython (Cock

et al., 2009) module, with the TCR set as the receptor and the pMHC set as the

ligand.

4.5 Results

4.5.1 Docking Performance

The success rate is commonly defined in benchmark docking studies as the per-

centage of benchmark cases for which a docking platform has achieved a model of

adequate quality within the top N ranked models (with N a chosen integer number)

(Chen and Weng, 2003; Karaca and Bonvin, 2013; Pierce and Weng, 2013; Am-
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brosetti et al., 2020a). A comparison of the success rates of ClusPro, HADDOCK,

LightDock and ZDOCK across the expanded TCR benchmark data is shown for

each scenario in Figure 4.2 as the percentage of cases that feature at least an ac-

ceptable, medium or high quality model in the top 1, 5, 10, 20, 50 and 100 ranked

models. The 44 cases that feature in this study mean a difference in success rate

of approximately 2.3% corresponds to one additional or one fewer benchmark case

featuring a successful model. The LightDock results are here left unfiltered and are

explored further in Section 4.5.4. ClusPro results are shown according to the default

balanced scoring function, which is compared to other ClusPro scoring functions

in Section 4.5.5.

The top row of Figure 4.2 shows the success rate of each platform when only

the CDR loop and peptide residues were provided as binding interface information

(Scenario 1). With a success rate of 34.1%, HADDOCK was found to be the best

performer for the top ranked model. ClusPro, ZDOCK and LightDock achieved

success rates of 27.3%, 15.9% and 6.8% respectively. Broadening the performance

analysis to the top 10 ranked models, ClusPro was found to be the best performer,

achieving a success rate of 86.4%. HADDOCK, ZDOCK and LightDock achieved

success rates of 72.7%, 47.7% and 18.2%, respectively. Across the top 100 models,

ClusPro was again found to be the best performer with a success rate of 95.5% (ac-

tually achieved within the top 50 models), closely followed by HADDOCK with a

success rate of 93.2%. ZDOCK and LightDock achieved success rates of 72.7% and

36.4%, respectively. HADDOCK generated the highest number of medium quality

models, followed by ZDOCK, ClusPro and LightDock respectively. HADDOCK

generated at least one high quality model for 9.1% of cases in the top 100 models,

while ZDOCK generated at least one high quality model for a single case in the top

100 models.

The two middle rows of Figure 4.2 show the success rates of each platform

when additionally provided with information about MHC residues involved in, or

close to, the binding interface (Scenarios 2 and 3). While HADDOCK achieves the

highest success rate for the top ranked model for Scenario 2 with 22.7% (compared



4.5. Results 124

to success rates of 18.2%, 13.6% and 2.3% for ZDOCK, ClusPro and LightDock

respectively), ZDOCK shows the best performance when using Scenario 3 infor-

mation, with a success rate of 27.3% (compared to 20.5%, 15.9% and 0% for Clus-

Pro, HADDOCK and LightDock, respectively). Outside of the top ranked model,

ZDOCK shows the best performance when using Scenario 2 information, achiev-

ing 100% success rate for the top 100 models. When using Scenario 3 informa-

tion, ZDOCK and ClusPro show the joint best performance for the top 10 models,

achieving a success rate of 79.5% (compared to 63.6% and 9.1% for HADDOCK

and LightDock, respectively). Outside the top 10 models, ZDOCK shows the best

performance using Scenario 3 information and achieves success rates of 97.7% and

100% for the top 50 and top 100 models. In general, Scenario 3 information (derived

from the reference structure) achieves slightly higher success rate than Scenario 2

(derived from the unbound structures). ZDOCK was the only platform to show im-

proved performance when using Scenario 2 and Scenario 3 information compared

to Scenario 1 information, with ClusPro, HADDOCK and LightDock all achieving

lower success rates. HADDOCK was the only platform to generate any high quality

models, achieving a success rates of 2.3% and 6.8% in the top 100 ranked models

for Scenarios 2 and 3 respectively.

The final row of Figure 4.2 shows the success rate of the four platforms when

using the real binding interface information (Scenario 4). HADDOCK showed the

best performance for the top ranked model, achieving a success rate of 56.8%,

compared to 43.2%, 43.2% and 20.5% for ClusPro, ZDOCK and LightDock, re-

spectively. ClusPro showed the best performance for the top 10 ranked models,

achieving a success rate of 100%, compared to 90.9%, 70.5% and and 43.2%, re-

spectively. ZDOCK achieved a success rate of 100% for the top 50 ranked models.

Providing the true interface information improved the performance in comparison

to the other three scenarios for all the top N ranked models for ClusPro, ZDOCK

and LightDock, and for the top ranked and top 5 ranked models for HADDOCK.

All platforms showed a higher success rate for the generation of medium quality

models. Additionally, both HADDOCK and ZDOCK achieved slightly higher suc-
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Figure 4.3: Success rate of the top 1, 5, 10, 20, 50 and 100 models for each complex mod-
elled by ClusPro, HADDOCK, LightDock and ZDOCK for each of the four
docking scenarios. Complexes are coloured and grouped by their docking dif-
ficulty.

cess rates for high quality model generation compared to Scenario 1 for the top 100

models. In general, as might be expected, all platforms show the best performance

when supplied with the true binding interface of Scenario 4.

4.5.2 Docking Performance Per Case

Figure 4.3 shows a breakdown of the success rate of each platform for each sce-

nario by individual docking case. Results are grouped and coloured according to

the difficulty class, calculated as described in Section 3.3. ClusPro appears to show

a largely consistent performance across the benchmark data, whereby if a success-

ful model is generated for a case using Scenario 1 information, it is likely to also be
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Figure 4.4: Top 10 models produced by HADDOCK using Scenario 4 information and the
reference structure for three docking cases: 3DXA (left), 4JFF (middle) and
6EQB (right). For each case, the pMHC chains in the models are superimposed
onto the pMHC chains of the reference structure. TCR chains are coloured
light orange and light blue in the docked models, and dark orange and dark
blue in the reference structures. For these cases, each of the top 10 predictions
by HADDOCK has the TCR reversed in orientation relative to the reference
structure.

found using the information in Scenario 2, 3 and 4. There are no cases for which

a successful model was generated for Scenario 1 but not for Scenario 4. This is

not the case for HADDOCK, which, despite achieving the best performance using

Scenario 4 information, fails to find acceptable quality models in the top 100 for

certain cases for which an acceptable model was generated using Scenario 1 in-

formation (for example, cases 3VXR, 5C0C, and 4JFF). Furthermore, HADDOCK

appears to perform very well for certain cases across all scenarios (for example,

1AO7, 2PYE and 3W0W) but very poorly for others (for example, 1MI5, 3DXA

and 6AVF). ZDOCK, while perhaps more inconsistent that ClusPro across docking

cases, generates a higher quantity of medium quality models and some high quality

models. In general, rigid difficulty TCR-pMHC complexes do not seem noticeably

easier to predict than medium difficulty complexes.

While a complete visual inspection of all models produced by the docking
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platforms is not feasible due to the quantity of data produced, valuable insight can

still be obtained through manual exploration. For certain benchmark cases, HAD-

DOCK performs very well, achieving an acceptable, medium or high quality model

as its top ranked model. For other cases, no acceptable model is found in the top

100 ranked models. Examining some of the individual models produced by HAD-

DOCK goes some way towards explaining this variation in success rate across the

benchmark data. For many of the cases where HADDOCK performs poorly when

provided Scenario 4 information, generated models feature the TCR in what appears

to be a sensible position and orientation over the pMHC, but with the α and β chains

reversed — that is to say, the TCR α chain sits where the β chain sits in the refer-

ence model, and the TCR β chain sits where the α chain sits in the reference model.

This is illustrated in Figure 4.4 for cases 3DXA, 4JFF and 6EQB. This pattern was

also observed in models produced for cases 1MI5, 3QDG, 5C0C, 5NMF, 5NMG

and 6AVF. The TCR and pMHC residues of Scenario 4 are provided independently

to HADDOCK — no information is included about which specific residues are in

contact between the binding partners. Therefore it appears that HADDOCK gener-

ates internally high scoring models, with a large percentage of satisfied restraints,

but is blind to the the fact that it has positioned the TCR in a reversed orientation.

This phenomenon and its implications for TCR-pMHC modelling are discussed fur-

ther in Section 4.6.

Docking platform performance per benchmark case are additionally shown

grouped and coloured according to MHC class in Figure 4.5. No docking plat-

form appears to disproportionately struggle to model complexes composed of one

MHC class relative to the other, although though this conclusion is limited by the

small number of Class II structures in the benchmark.

4.5.3 Docking Performance Compared to Bespoke TCR-pMHC

Modelling Platform

The TCRFlexDock software is an extension of RosettaDock (Sircar et al., 2010),

and the only bespoke platform designed to model TCR-pMHC complexes using

computational docking. The TCR-pMHC modelling accuracy of two tailored pro-
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Figure 4.5: Success rate of the top 1, 5, 10, 20, 50 and 100 models for each complex mod-
elled by ClusPro, HADDOCK, LightDock and ZDOCK for each of the four
docking scenarios. Complexes are grouped and coloured by their MHC class.

tocols has been reported for the original TCR benchmark data set of 20 TCR-pMHC

complexes (Pierce and Weng, 2013). The extent to which these two protocols ac-

count for protein flexibility varies — the CDR3 protocol allows movement to take

place in the backbones of CDR3 loops; the CDRpep protocol allows movement to

take place in all CDR loops as well as in the peptide. The accuracy of these proto-

cols has been compared to the fixed backbone protocol of RosettaDock, Fixedbb,

and the CDRPep protocol was shown to have the best performance against the bench-

mark data (Pierce and Weng, 2013).

The success rates of ClusPro, HADDOCK, LightDock and ZDOCK were com-

pared to that of the TCRFlexDock CDRPep protocol. Using only Scenario 1 in-

formation across the expanded 44 benchmark cases, HADDOCK approximately



4.5. Results 129

Figure 4.6: Success rate of the top 1, 5, 10, 20, 50 and 100 ranked models for ClusPro,
HADDOCK, LightDock and ZDOCK for each of the four docking scenarios
for the 20 docking cases assembled to test the TCRFlexDock platform. Colour
coding indicates the quality of the best model found in a given set of ranked
models according to the CAPRI criteria.

matches the performance of CDRPep across the original 20 benchmark cases for

the top ranked model (34.1% vs. 35.0%). Across the top 10 ranked models, HAD-

DOCK performs worse than CDRPep (72.7% vs. 80.0%), but ClusPro achieved a

higher success rate (86.4% vs. 80.0%). If using the detailed Scenario 4 information,

HADDOCK, ClusPro and ZDOCK all outperform CDRPep for the top ranked model

(56.8%, 43.2%, and 43.2% respectively, vs. 35.0%), and ClusPro and ZDOCK out-

perform CDRPep for the top 10 ranked models (100.0% and 90.1% respectively, vs.

80.0%).

Figure 4.6 shows the success rates of the general purpose platforms for only

the original 20 benchmark cases used to evaluate the performance of TCRFlex-

Dock. For this smaller data set, modelling accuracy is improved. Using Scenario 1
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information, HADDOCK outperforms CDRPep for the top ranked model (50.0% vs.

35.0%), and ClusPro and HADDOCK outperform CDRPep for the top 10 ranked

models (95.0% and 85.0% respectively, vs. 80.0%). Using Scenario 4 information,

HADDOCK, ClusPro and ZDOCK each outperform CDRPep for the top ranked

model (75.0%, 50.0% and 50.0%, respectively, vs. 35.0%), as well as for top 10

ranked models (85.0%, 100.0% and 90.0% respectively, vs. 80.0%).

4.5.4 LightDock Filtering Performance

After model generation and clustering, the LightDock software recommends filter-

ing out models that do not satisfy a set percentage of the supplied restraints. This

approach has been shown to improve the success rate of docking using LightDock

for other protein benchmark cases (Roel-Touris et al., 2020). A filtering thresh-

old of 40% of satisfied restraints was applied to the LightDock model, chosen in

accordance with the LightDock tutorial documentation and the antibody-antigen

modelling of Ambrosetti et al. (2020a). The percentage of satisfied restraints is

calculated as

percentage =
crec∩ rrec + clig∩ rlig

rrec + rlig
(4.1)

where crec and clig are the contacts in the receptor and ligand of a modelled com-

plex respectively, and rrec and rlig are the supplied receptor and ligand restraints

respectively.

The first two columns of Figure 4.7 show the LightDock success rate across

the benchmark cases before and after filtering. The filtering step proved to have a

negative impact on results generated using Scenario 1 information, and particularly

using Scenario 2 and 3 information where all models were filtered out. Scenario 4

results remained unchanged. In an attempt to reduce potential over-filtering, the

threshold was reduced, but results failed to improve. Consequently, results shown

in Figure 4.2 for LightDock remain unfiltered, as published in Peacock and Chain

(2021).
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Figure 4.7: The docking success rate is shown for LightDock without the recommended
filtering of models by the satisfaction of spatial restraints (first column). This is
compared to filtering by the satisfaction of at least 40% of spatial restraints us-
ing: the LightDock v0.8.0 filtering script (second column); an adapted filtering
script that takes into account passive restraints (third column); and an adapted
filtering script that ignores passive restraints (fourth column).

Recent analysis of the lgd_filter_restraints.py script has highlighted an

issue in LightDock v0.8.0, whereby restraints, rrec and rlig, labelled as “passive”, are

not correctly formatted for use in Equation 4.1. This problem explains why results

generated using Scenario 2 and 3 were the most badly affected by filtering, as they

feature the largest numbers of passive restraints. Information provided as Scenario 4

features only active restraints, and the success rate results were unaffected.

Two approaches were taken in an attempt to rectify the LightDock filtering

step. The first approach involved modifying the lgd_filter_restraints.py
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script to correctly format the passive restraints for inclusion in the percentage of

satisfied restraints calculation, such that

crec = crec_active∪ crec_passive (4.2)

clig = clig_active∪ clig_passive (4.3)

rrec = rrec_active∪ rrec_passive (4.4)

rlig = rlig_active∪ rlig_passive (4.5)

The LightDock success rates after applying this filtering are shown in the third

column of Figure 4.7.

The second approach involved modifying the lgd_filter_restraints.py

script to ignore the passive restraints entirely, such that

crec = crec_active (4.6)

clig = clig_active (4.7)

rrec = rrec_active (4.8)

rlig = rlig_active (4.9)

The LightDock success rates after applying this filtering are shown in the fourth

column of Figure 4.7.

Filtering with correctly formatted passive restraints produces a modest im-

provement in the success rate of LightDock when using Scenario 1 and Scenario 3

information. The performance worsens when using Scenario 2 information in com-

parison to the unfiltered results. Filtering with only active restraints produces a

modest improvement in the success rate when using Scenario 1, Scenario 2, and

Scenario 3 information. In both cases, filtering for Scenario 4 information did not

produce a change in the results. While these new filtering approaches improve the

success rates relative to leaving results unfiltered, the performance of LightDock

remains below that of ClusPro, HADDOCK and ZDOCK for the TCR docking



4.5. Results 133

Figure 4.8: The docking success rate is shown for the top 1, 5, 10, 20, 50 and 100 ranked
models generated by ClusPro using the four scoring functions provided by the
ClusPro web server.

benchmark structures. Were these changes to be implemented into a new version of

LightDock, it would be worthwhile verifying these improvements against an inde-

pendent set of protein-protein test cases.

4.5.5 ClusPro Scoring Function Performance

At the end of a docking task, the ClusPro server produces four sets of models gener-

ated using four different scoring functions — balanced, electrostatic-favored,

hydrophobic-favored, and van der Waals + electrostatics. The balanced

function is recommended for the modelling of complexes where no particular inter-

action properties are assumed (Kozakov et al., 2017), and is shown in Figure 4.2.

Results generated using the other three scoring functions are compared

to the balanced function in Figure 4.8. The electrostatic-favored and
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hydrophobic-favored functions outperform the balanced function for the top

ranked model and top 10 ranked models using Scenario 1 information. The

electrostatic-favored function outperforms the balanced function for the top

ranked model using Scenario 2 information, and for the top 10 ranked models,

alongside the hydrophobic-favored function. The electrostatic-favored

and hydrophobic-favored functions worsen performance for the top ranked

model using Scenario 3 information, but improve performance across the top

ten models. While generally worsening performance, the van der Waals +

electrostatics function improves performance for the top 10 ranked models

using Scenario 2 information and for the top ranked model using Scenario 3 in-

formation. Finally, the electrostatic-favored function improves performance

for the top ranked model using Scenario 4 information.

4.5.6 HADDOCK Cluster Performance

The models generated by the HADDOCK platform were automatically clustered

by the fraction of common contacts (FCC) using the default cut-off of 0.6 and a

minimum cluster size of 4. Clusters were ranked according to the average HAD-

DOCK score of the best 4 models of each cluster. The success rates of the top four

members of the top five clusters is shown in Figure 4.9. Additionally a breakdown

by individual docking case is shown in Figure 4.10. When using Scenario 3 and 4

information, the HADDOCK success rates improve using the cluster-based scoring

method. However, when using the more vague interface descriptions of Scenario 1

and Scenario 2, performance decreases. As has been highlighted by previous studies

(Ambrosetti et al., 2020a), the decision to rely on the clustered HADDOCK results

rather than the full set of models should be carefully chosen based on the level of

detail known about the TCR-pMHC binding interface.

4.5.7 Sampling Performance

The sampling stage of the docking process involves the exploration of possible so-

lutions through the generation of thousands of modelled complexes of the two bind-

ing partners. Figure 4.11 shows the percentage of models generated for a specific
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Figure 4.9: Success rate for the top 1, 2, 3, 4 and 5 ranked clusters for HADDOCK for the
four docking scenarios. Colour coding indicates the quality of the best model
found in a given set of ranked models according to the CAPRI criteria.

docking case that were of acceptable, medium and high quality for each docking

platform and scenario. It should be noted that a different scale is used for each of

the four platforms to aid readability.

The sampling performance of HADDOCK is striking in comparison to the

other platforms. For several benchmark cases, every single model generated by

HADDOCK using Scenario 4 information was of at least acceptable quality (for

example: 2NBR, 3PWP, 2PXY). Furthermore, providing the real information about

the binding interface through Scenario 4 produces a stronger sampling performance

than the other three scenarios. The strengths of the HADDOCK sampling strategy

have been reported before and attributed to its use of the supplied binding informa-

tion to drive the energy minimisation and molecular dynamics steps of the simula-

tion, rather than only at the scoring stage like most docking protocols (Ambrosetti

et al., 2020a).



4.5. Results 136

Figure 4.10: Success rate for the top 1, 2, 3, 4 and 5 ranked clusters for each complex mod-
elled by HADDOCK for the four docking scenarios. Complexes are coloured
and grouped by their docking difficulty.

ClusPro achieved the second best sampling performance, which can be likely

attributed to the removal of somewhat redundant solutions through its eponymous

clustering algorithm, resulting in a low number of total models. Nevertheless, for

no docking case were more than 25% of the models of at least acceptable quality

for any scenario.

4.5.8 CDR3 Loop Modelling Performance

While ClusPro and ZDOCK are rigid-body docking platforms, HADDOCK and

LightDock allow the protein components to undergo conformational change dur-

ing the docking procedure. The ability of the two platforms to accurately model

TCR CDR loops in the TCR-pMHC complex structure from the loops found in the

independently crystallised TCR and pMHC components was explored following a

strategy that has been recently applied to the modelling of H3 antibody loops (Am-

brosetti et al., 2020a).

For each benchmark case, the framework region residues of the unbound TCR

were superimposed upon those of the bound reference structure. The all-atom
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Figure 4.11: Percentage of total models for each complex of acceptable, medium or high
quality according to the CAPRI criteria, shown for ClusPro, HADDOCK,
LightDock and ZDOCK for each of the four docking scenarios. Colour coding
indicates the quality of models for both rigid and medium difficulty docking
cases. The y axis is scaled differently for each docking platform to aid read-
ability.

RMSD of the residues in each CDR loop of the two structures was calculated to

determine a baseline measure of similarity between the bound and unbound loops

prior to docking. The same procedure was then carried out for each docked model.

The RMSD between each docked model loop and the reference structure loop was

compared to the baseline RMSD to assess whether the modelled loops were closer

to (or further away from) the reference structure loop than the starting unbound

structure loop.

Figure 4.12 shows the modelled-to-reference RMSD compared to the

unbound-to-reference RMSD for the α chain CDR3 loop for each of the top 100

models produced for each docking case. The results are displayed for both HAD-

DOCK and for LightDock, for each scenario. Figure 4.13 shows the results of the

same procedure applied to the β chain CDR3 loop. Values below the diagonal

line correspond to an improvement in the loop conformation, whereas values above

the line correspond to a worsening in the loop conformation. Models are coloured

according to their quality.

HADDOCK produces models with both improved and worsened CDR3 loop
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Figure 4.12: The RMSD of the TCR α chain CDR3 loop between the unbound TCR and
the reference structure versus that between each of the docked models and the
reference structure, for each complex. Loop flexibility modelling by HAD-
DOCK is shown in the top row and by LightDock in the bottom row. Models
are coloured by their quality according to the CAPRI criteria.

RMSDs. In general, for complexes that undergo low conformation change upon

binding, the flexible refinement leads to a worsening of the loop CDR3 RMSD.

However, for complexes that undergo greater conformational change, the flexible

refinement does not appear to worsen RMSD overall. This pattern is also evident in

the modelling of the CDR1 and CDR2 loops, shown in Appendix F. Loop flexibility

in models produced by LightDock are minimal, but generally worsen the CDR3

loop RSMD for both α and β chains. Again, the same pattern is observed in the

CDR1 and CDR2 loops.

4.6 Discussion
The work in this chapter has comprised an assessment of the ability of four general

purpose docking platforms — ClusPro, HADDOCK, LightDock and ZDOCK —

to model TCR-pMHC bound complexes accurately from unbound TCR and pMHC

components. This serves as an expansion of work published in Peacock and Chain

(2021) and mirrors a recently published comparison of the same software suites in

the context of antibody-antigen modelling (Ambrosetti et al., 2020a). Each platform
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Figure 4.13: The RMSD of the TCR β chain CDR3 loop between the unbound TCR and
the reference structure versus that between each of the docked models and the
reference structure, for each complex. Loop flexibility modelling by HAD-
DOCK is shown in the top row and by LightDock in the bottom row. Models
are coloured by their quality according to the CAPRI criteria.

facilitates the inclusion of additional information to aid its modelling capabilities

through the specification of binding interface residues. As these residues are not

often known when aiming to perform computational docking, each platform was

benchmarked across 44 TCR-pMHC docking cases in the context of four different

descriptions of the binding interface that varied in their specificity.

The binding interface interactions of TCRs and antibodies are both dominated

by six flexible CDR loops. Despite this similarity, as well as their relatively more

conserved binding mode (Dunbar et al., 2014), the results of the four platforms

are less impressive when modelling TCR-pMHC structures than when modelling

antibody-antigen structures (which are, in turn, typically less impressive than when

modelling other types of protein-protein complexes). Antibody-antigen complexes

are more frequently modelled than TCR-pMHC complexes and have long been a

staple of the protein-protein docking benchmark (Chen et al., 2003), with which

most docking software platforms are assessed. Consequently, the docking platforms

included in this study have likely been designed, to some extent, with antibody-

antigen modelling in mind. ClusPro, in particular, has a dedicated antibody-antigen
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modelling feature available as part of its docking suite (Brenke et al., 2012). The at-

tention received by antibodies when new docking approaches are developed could

partly explain the superior performance for antibody-antigen modelling in com-

parison with TCR-pMHC modelling. The binding affinity between antibody and

antigen is known to be much stronger than that between TCR and pMHC (van der

Merwe and Davis, 2003). While docking scoring functions are not an accurate

reflection of binding affinity measurements (Pantsar and Poso, 2018), it could be

speculated that the low affinities of TCRs additionally contribute to the increased

difficulty in TCR-pMHC modelling.

The LightDock platform was found to struggle particularly with TCR-pMHC

modelling, despite strong performances when tested with antibodies (Ambrosetti

et al., 2020a; Roel-Touris et al., 2020). It remains unclear whether the main chal-

lenges in improving results lie in the sampling or scoring stages, as neither have

been extensively explored. HADDOCK offers the best sampling performance of

the four platforms and is the only platform to drive the sampling with the provided

binding information. This more restricted type of search in the range of the typi-

cal TCR binding mode could yield higher quality results for future bespoke TCR-

pMHC methods rather than incorporating binding residues into only the model scor-

ing process.

It would also be informative to explore the effect of different scoring func-

tions and parameters in the context of TCR-pMHC modelling. This chapter

has highlighted improvements in overall model accuracy by ClusPro when the

weighting of the electrostatic term in the scoring function was increased (the

electrostatic-favored function), and a decline in performance when the hy-

drophobic term was removed (the van der Waals + electrostatics function).

Both hydrophobic and electrostatic interactions have been highlighted as important

effects in TCR-pMHC recognition (Singh et al., 2017), and it would be interesting

to explore the effects of these scoring function terms in more detail in future re-

search. Through a visual inspection of modelled complexes for which HADDOCK

performed poorly, it was found that the α and β chains were often reversed in the
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model compared to the reference structure. This information could be taken into

account in bespoke TCR-pMHC docking scoring or filtering approaches, provided

the researcher is confident in which way round the chains should sit relative to the

pMHC prior to modelling. The HADDOCK unambiguous pairwise restraints func-

tionality was not explored in this project, but might offer a solution for these com-

plexes. The LightDock platform offers a number of built in scoring functions aside

from the default fastdfire function and additionally facilitates the incorporation

of custom scoring functions. The design and exploration of bespoke TCR-pMHC

scoring functions would also make for an intriguing prospective research project.

The two strongest performing docking platforms both make use of clustering

to improve their modelling accuracy — ClusPro as a fundamental step in its algo-

rithm and HADDOCK as a optional step to produce an alternate set of final models.

The results in this chapter suggests that, for HADDOCK, a balance must be struck

between the level of detail known about the binding interface and the decision to

use the clustered output. Performance noticeably worsened when supplying bind-

ing residues from Scenario 2, which features the most MHC residues out of all four

scenarios. The results suggest that an over-specification of MHC residues, many of

which are not directly involved in the binding, has a negative impact on the clus-

tering. In these circumstances, as HADDOCK performs a restricted search around

the supplied restraints, models are likely to be more frequently clustering in regions

where MHC residues not involved in the true interface are located. On the other

hand, when supplying only the true binding residues of Scenario 4, models are

likely to more frequently cluster in regions including true binding residues, and, as

such, performance noticeably improves. The alternative approach of not restricting

the search space also seems to prove effective in combination with model clustering,

as highlighted by the consistent performance of the ClusPro platform.

Flexible docking has long been considered an important method for improv-

ing modelling accuracy (Pagadala et al., 2017). The interaction between the TCR

and pMHC is known to be driven by the CDR loops, with the CDR3 loop in par-

ticular being key to the recognition process. The modelling of these flexible loops
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remains a difficult and important problem in the field. TCRFlexDock, a bespoke

platform for TCR docking, has shown improvement when allowing for flexibility

in the CDR loops and the peptide. However, the two platforms that offer flexible

refinement analysed in this study — HADDOCK and LightDock — were unable

to improve the conformation of CDR loops consistently regardless of the additional

information provided. It can be concluded that the current successes of all four plat-

forms are a result of accurate modelling of position and orientation rather than of

conformational change.

Nevertheless, despite an inability to model flexibility effectively, HADDOCK

and ClusPro in particular are competitive with TCRFlexDock for TCR-pMHC

docking. The success rate for HADDOCK using Scenario 1 information across the

44 benchmark cases used in this study approximately matches that of TCRFlexDock

across the original 20 benchmark cases. If only the original 20 cases are considered,

HADDOCK noticeably outperforms TCRFlexDock using Scenario 1 information.

This information is easily accessible from the unbound components. If the top

10 ranked models are considered, ClusPro outperforms TCRFlexDock using Sce-

nario 1 information for both the expanded and original TCR docking benchmarks.

Additionally, when supplying the true interface residues of Scenario 4, ClusPro,

HADDOCK and ZDOCK all achieve higher success rates than TCRFlexDock for

the top, and top 10, ranked models. Two major advantages of these three platforms,

in comparison to TCRFlexDock, are their ease of use and their computational run

times. Each platform is supported by a readily accessible online modelling server,

with little (if any) additional software or computational resources required by the

modeller. The ZDOCK server often completes a docking run within ten minutes,

while the HADDOCK server can take several hours. In contrast, TCRFlexDock re-

quires some familiarity with the somewhat complex Rosetta modelling framework

for running docking jobs and has been recently reported as taking over 100 hours

per complex in its current implementation (Jensen et al., 2019).

As might be expected, ClusPro, HADDOCK, LightDock and ZDOCK all

showed the strongest performance when provided with only the residues that were
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determined to be directly involved in the binding interface (Scenario 4), highlight-

ing the role accurate binding information can play in TCR-pMHC modelling. When

provided with the vaguest information about the binding interface — simply the

CDR loop and peptide residues (Scenario 1) — ClusPro, HADDOCK, and Light-

Dock all achieved higher success rates than when additionally providing MHC

residues likely to be close to the interface (Scenarios 2 and 3). The poorer perfor-

mances achieved with Scenario 2 and Scenario 3 information suggests that forcing

these platforms to accommodate a large number of MHC residues in their sampling

and scoring processes leads to the true binding residues being lost in a background

of residues that are not directly involved in the binding, resulting in a less specific

set of results. In contrast to these findings, the accuracy of ZDOCK improved when

supplied with the broad MHC residue selections of Scenarios 2 and 3. Rather than

scoring models based upon the residues supplied as being involved in the binding,

ZDOCK scores models based on the blocking of residues known to not be involved

in the binding. This approach is less restrictive in satisfying the MHC residues

restraints of Scenarios 2 and 3, and likely explains the improved success rate for

ZDOCK for these scenarios compared with Scenario 1. Therefore, it is important to

consider carefully which residues to include when specifying unknown binding in-

formation. When specifying binding residues that would be desirable in the output

models, a narrow selection is preferable. Alternatively, when specifying residues

that should not be blocked by the scoring function, a wider selection may be pro-

vided.

Which platform is most suitable for modelling depends upon the amount of

information available and the required quality of the output model. Overall, the

HADDOCK platform is the best performer for generating accurate TCR-pMHC

complexes as the top ranked model. If the required results are not limited to the

top ranked model, ClusPro is the most consistent performer. In the absence of de-

tailed information about the binding interface, it is recommended that users specify

only the CDR loop residues of the TCR and the peptide residues of the pMHC as

binding information for both HADDOCK and ClusPro. If using ClusPro, users may
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yield more accurate models by making use of the electrostatic-favored scor-

ing function. If using ZDOCK, specifying MHC residues close to the interface in

addition to the peptide residues will likely improve modelling results.

Despite some of the successes shown in this study, it is clear that there is op-

portunity for improvement in the computational docking of TCR-pMHC complexes.

Firstly, in many of the examined docking cases across the four platforms, accept-

able (or higher) quality models can be found well outside of the top ranked model.

Novel tools for re-ranking or filtering docked TCR-pMHC models could improve

the overall success rate of the platforms considered in this model. Bespoke scoring

functions could be designed for TCR-pMHC-specific modelling platforms.

Secondly, there are improvements to be made in the modelling of the flexi-

ble CDR loop regions. To date, a number of groups have formulated descriptions of

canonical forms for TCR CDR loops (Al-Lazikani et al., 2000; Klausen et al., 2015;

Wong et al., 2019; Fernández-Quintero et al., 2020), while others have attempted

to model TCR CDR loop flexibility in unbound contexts (Gowthaman and Pierce,

2018). Some investigation has been conducted into the modelling of conformational

change that takes place in the loops upon binding (Jensen et al., 2019), though only

the TCRFlexDock platform does so in a docking setting (Pierce and Weng, 2013).

Although very challenging problems, improvements in these areas would no doubt

produce more accurate TCR-pMHC models. Thirdly, results in this chapter have

shown that docking platforms do not appear to show stronger modelling accuracy

for “rigid” difficulty TCR-pMHC cases than for “medium” difficulty cases. While

this classification has proved informative for protein docking cases in general, per-

haps the modelling of TCR-pMHC complexes would benefit from a new difficulty

classification system.

Finally, it is evident that when exact residues of the binding interface are

known, model accuracy dramatically improves. A number of computational meth-

ods have been developed that attempt to predict contact residues between antibody

and antigen (Kunik et al., 2012; Krawczyk et al., 2013; Liberis et al., 2018; Dab-

erdaku and Ferrari, 2019; Deac et al., 2019; Ambrosetti et al., 2020b; Akbar et al.,
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2021), however no such methods have been applied to TCR-pMHC structures.

Tools for the accurate prediction of TCR-pMHC contact residues would be an ex-

tremely useful aid for information-driven modelling of TCR-pMHC complexes.



Chapter 5

Structural Optimisation for TCR

Design

5.1 Introduction to TCR Design

Traditionally, the use of structural information in the design of novel TCRs has

been used to carefully analyse and modify particular residues of a TCR known to

already bind a given antigen in order to enhance some property, such as its binding

affinity. The ever-increasing accuracy of protein modelling tools and computational

speeds offered by modern hardware provide an opportunity for us to speculate about

how structural modelling may be integrated with other approaches or pipelines for

automated protein design.

This chapter outlines a prototype computational framework that aims to en-

hance desirable properties in TCR structures by artificially evolving them over suc-

cessive generations using a genetic algorithm optimisation routine. TCR or TCR-

pMHC structures are generated from sequence using homology modelling tools.

The modelled structures are evaluated according to a function that assigns high

scores to structures with desirable properties and low scores to structures that do

not have desirable properties. High scoring structures are preferentially selected by

the algorithm, and undergo crossover and mutation of various amino acids within

their sequences. These sequences are then modelled to produce a new generation

of structures, with an aim of producing fitter and fitter structures over the course of
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the run.

The following sections describe the principles of genetic algorithms, and a be-

spoke platform for TCR design. Two applications of the pipeline are demonstrated,

whereby the number of contacting residues between TCR homology model α and

β chains, and between TCR and pMHC homology modelling chains, are increased

in quantity. Finally, limitations and future perspectives of the framework are dis-

cussed.

5.2 Genetic Algorithms

The genetic algorithm (GA) is a heuristic problem solving technique that belongs to

a larger class of evolutionary algorithms that are inspired by natural selection. These

algorithms are typically employed to generate high quality solutions to complex

problems where the search space is too large to sufficiently test every candidate so-

lution. An initial population of candidate solutions are evaluated according to some

measure of “fitness”, and then evolved over successive generations, through breed-

ing and mutation, selecting for higher quality (fitter) solutions. Other population-

based evolutionary algorithms include ant colony, glowworm and particle swarm

algorithms. More broadly, other heuristic algorithms routinely used for optimisa-

tion problems include first order algorithms such as gradient descent, second order

algorithms such as the Newton-Raphson Method, and stochastic algorithms such as

simulated annealing, amongst others.

GAs have been used extensively over several decades as a computational ap-

proach for a wide range of biological problems. In structural biology they have

seen considerable application to the protein folding problem (Unger, 2004), and

have been used to intelligently navigate conformation space for complex prediction

via protein-protein docking (Gardiner et al., 2001). GAs have been used for lead

optimisation of compounds (Singh et al., 1996; Spiegel and Durrant, 2020) and pep-

tides (Fjell et al., 2011; Röckendorf et al., 2012; Burnside et al., 2019) in virtual

drug discovery. Furthermore, integration of a GA with structural modelling tech-

niques has been employed in the optimisation of peptides for MHC binding (Knapp
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Figure 5.1: (A) Schematic of a simple genetic algorithm. (B) Single point crossover opera-
tion, whereby two parent individuals are mated to produced two offspring indi-
viduals. The dashed line denotes the crossover point beyond which the encoded
“genes” are swapped between individuals. (C) Mutation operator, whereby a
randomly selected “gene” in an individual is mutated.

et al., 2011).

The theory and implementation of genetic algorithms are supported by a dense

body of research which are covered in detail elsewhere (Holland, 1992; Mitchell,

1996). The principles of a generic GA are described below, and illustrated in Fig-

ure 5.1.

5.2.1 Initialisation

The algorithm begins with the generation of an initial population of individuals.

Each individual is a candidate solution to the given optimisation problem. Bor-

rowing from biological terminology, an individual is often referred to as a “chro-

mosome” and is usually encoded as a bit string. The “genes” that make up this

chromosome are represented as either single bits or blocks of bits, and encode fea-

tures of the candidate solution. In most problem settings, it is simplest, but by no

means necessary, to represent an individual using a single chromosome. Candidate

solutions are typically randomly generated, but are sometimes seeded according to

some known information to narrow the search space and computational run time.
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5.2.2 Evaluation

The quality of each individual in a given generation is evaluated according to a

problem-specific fitness function. The fitness function assigns a score to each indi-

vidual that reflects how successful the candidate solution is in exhibiting the desired

properties of the optimisation task. The function should assign high fitness scores

to those individuals that are performing well for the set task, and low fitness scores

for those individuals failing to meet the desired criteria. Individuals with higher

fitness scores are more likely to be selected as “parents” for the next generation of

individuals.

5.2.3 Selection

The selection operator selects evaluated individuals from the population for repro-

duction. The fitter an individual, the more likely it is to be selected. Those that are

selected are considered “parents” of the next generation, and are subject to crossover

and mutation operations to produce “offspring” individuals. Selection must be bal-

anced against crossover and mutation to avoid high-quality but sub-optimal indi-

viduals taking over the population, as well as to avoid the persistence of too many

low-quality individuals in the population, resulting in slow evolution.

A wide range of strategies have been developed to perform selection. A

commonly used approach is fitness-proportionate selection, implemented through

“roulette wheel” sampling. Here, each individual is assigned a slice in the roulette

wheel, with the slice size proportional to the fitness of the individual. The wheel is

spun a number of times equal to the population size, with an individual selected as

a parent chromosome on each spin. This approach provides low-quality solutions a

chance of making it through to the next generation, thereby maintaining diversity in

the population.

Tournament selection is a more efficient selection strategy that can be imple-

mented in parallel. Two (or more) individuals are chosen at random from the pop-

ulation and enter a tournament. A random number is chosen between 0 and 1 and

compared to a predefined threshold. If the number is below the threshold, the fitter
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individual is selected to be a parent. If the number is above the threshold, the less

fit individual is selected to be a parent. The tournament process is repeated a num-

ber of times equal to the population size. Various alternative strategies have been

accessibly outlined by Mitchell (1996).

5.2.4 Crossover

The crossover operator exchanges subsequences between two selected parent chro-

mosomes to produce two offspring chromosomes that share information from both

parents. Not all selected parents are subject to crossover, but rather are given some

set probability of being subject to the operation. The crossover process is illus-

trated in Figure 5.1B using a single crossover locus. Single-point crossover is the

simplest form of the operator, but two-point and parameterised uniform crossover

(which avoids positional bias), amongst many others, have also been commonly im-

plemented. The locus beyond which subsequences are exchanged is typically ran-

domly selected, although some approaches have implemented crossover “hotspots”,

specifying particular locations at which crossover should take place in a given bit

string.

5.2.5 Mutation

The mutation operator introduces mutations into selected parent chromosomes. For

binary strings, this is accomplished by randomly flipping some of the bits of the

given chromosome. This process is illustrated in Figure 5.1C. For alternate base

systems, such as for chromosomes encoded as amino acids, a mutation is accom-

plished by choosing a new amino acid at random at a given locus. As with the

crossover operator, not all selected parent sequences need be subject to mutation,

but are rather chosen according to some set probability. Similarly, for chosen in-

dividuals, each locus is subject to mutation given some additional (typically very

small) probability.

5.2.6 Final Population

Fitness evaluation, selection, crossover and mutation are iteratively performed on

successive generations of individuals in the genetic algorithm run, as illustrated in
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Figure 5.2: A schematic of the main components of the genetic algorithm pipeline for TCR
design.

Figure 5.1A. A genetic algorithm is usually terminated after a desired fitness score

has been achieved by an individual in the population, a maximum number of gen-

erations has been constructed, or maximum wall-clock time has been reached. The

final population of individuals should, on average, be fitter than the initial popula-

tion.

5.3 GA Pipeline for TCR Structural Optimisation
An overview of the main components of the GA pipeline for TCR structural opti-

misation is shown in Figure 5.2, and each step is detailed below.

5.3.1 Initialisation

At the start of a new optimisation run, the pipeline constructs a tree structure for

appropriately storing output data. A results directory is created with a user-provided

name. Within this directory, subdirectories are created for storing PDB structures of
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TCRs or TCR-pMHC complexes and for storing plots. Additionally, a tab-separated

database file is created to keep a record of every individual produced by the run. The

database contains the ID and generation of a given individual, the ID of the parent of

the individual (if it has one), the fitness score, the sequences of each chain, whether

crossover has occurred, which mutations have taken place, the ID of the original

templates (if used to construct the TCR), and paths to relevant structure files and

snapshot images.

The population size, maximum number of generations, crossover probability,

mutation probability, and base mutation probability (for individuals selected for

mutation), should be chosen by the user. Initial TCR sequences can be chosen by

providing the ID of TCR α and β chain template sequences (stored in a pre-built

templates directory) as input arguments. All TCRs in the initial population will

be seeded with these sequences. Alternatively, TCR sequences can be selected at

random from the templates. In the case of optimising TCR-pMHC complexes, the

peptide and MHC sequences must be specified manually.

5.3.2 Construct Generation

5.3.2.1 Modelling Structure from Sequence

An initial generation of TCR or TCR-pMHC individuals is constructed using the

parameter information and specified sequences. Each individual in the generation

then has its structure modelled from sequence using external homology modelling

tools.

Subsequent generations are constructed in a similar manner, using the initial

parameter information, the TCR sequences of offspring individuals from the selec-

tion, crossover and mutation operators, and structures modelled from the evolved

sequences.

5.3.2.2 LYRA and TCRpMHCModels

For runs involving the optimisation of only TCRs, the LYRA homology modelling

platform (Klausen et al., 2015) is used to generate structures from α and β chain

sequences. For runs involving the optimisation of TCR-pMHC complexes, the
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TCRpMHCModels homology modelling platform (Jensen et al., 2019) is used to

generate structures from α chain, β chain, peptide chain and MHC chain sequences.

The TCRpMHCModels software has been designed for only MHC Class I com-

plexes, and this therefore extends to the current implementation of the GA pipeline.

The two processes are implemented in a similar way. For TCR structures, a

POST request containing the α and β chain sequences is submitted to the LYRA

modelling web server. For TCR-pMHC structures, the sequence information is

first assembled into FASTA format, and then submitted as a POST request to the

TCRpMHCModels web server.

Once every individual in the generation has been submitted for modelling, the

pipeline waits until a structure has been generated for each individual, and then

downloads them in PDB format. If the structure of an individual fails to generate,

then the individual is replaced by its parent individual.

5.3.3 Evaluation

Each structure is evaluated and assigned a fitness score. The fitness function is

imported as a separate module into the core protocol, so can be easily swapped for

alternative custom-written functions.

5.3.3.1 Fitness functions

For unbound TCR structures, the current implementation parses the PDB format of

each individual and then computes the distances between atoms of the α chain and

those of the β chain. The fitness score is calculated as,

f =
j

∑
0

i

∑
0

(c−daib j)
2 if d < c

0 if d ≥ c
(5.1)

where daib j corresponds to the Euclidean distance between the i-th atom of chain a

and the j-th atom of chain b, and c is a threshold representing the minimum distance

required for each pair of atom to be considered interacting. The α and β chains are

set as a and b.

The closer the two chains are to one another, the higher the fitness score. The
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function has been designed such the shorter the distance between a given pair of

atoms, the more this distance contributes to the fitness score. The network of inter-

facial contacts has been shown as a reasonable predictor of binding affinity across a

diverse set of proteins (Vangone and Bonvin, 2015). Suggestions for more sophisti-

cated fitness functions are discussed in Section 5.6.2.

A similar approach has been implemented for TCR-pMHC complexes. Using

Equation 5.1, the TCR α and β chains are here set as a and the peptide and MHC

chain are set as b.

5.3.4 Selection

Each generation of individuals is subject to tournament selection. Individuals with

higher fitness scores are more likely be chosen to be parents for the next generation,

but individuals with low fitness scores are still provided a chance of selection to

maintain diversity in the population and avoid fixation.

During selection, n tournaments are constructed between x randomly chosen

individuals. The individual with the highest fitness score for a given tournament is

selected as a parent. n is taken as the number of individuals in the generation, such

that the offspring generation will be the same size as the parent generation.

5.3.5 Crossover

A selected individual is subject to crossover with another selected individual with

probability cxpb. The current implementation swaps the TCR α chain sequence

between the two individuals to produce two offspring which are retained as part of

the next generation.

5.3.6 Mutation

A selected individual is subject to mutation with probability mutpb. If selected

for mutation, each amino acid in the α and β chain sequences of the individual is

subject to being mutated with probability mpb. An amino acid selected for mutation

may be substituted for another random amino acid, deleted from the sequence, or

have a random amino acid inserted after it in the sequence.
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Parameter Value

c (Å) 7.0

x 3

n 40

g 61

cxpb 0.05

mutpb 0.20

mpb 0.01

Table 5.1: TCR αβ interfacial contact optimisation parameters: c, the distance cut-off in
the fitness function; x, the tournament size; n, the population size; g, the total
number of generations; cxpb the crossover probability; mutpb, the mutation
probability; and mpb, the per-base mutation probability.

5.3.7 Final Population

The genetic algorithm pipeline runs for a set number of generations. The final

population is equal in size to the initial population but should contain individuals

with higher fitness scores, provided that fixation has not been reached early in the

run.

5.4 Example application: increasing quantity of

TCR αβ interfacial contacts

To demonstrate the functionality of the software, the GA pipeline was applied to

an unbound TCR and tasked with increasing the quantity of interfacial contacts

between the α and β chains over a number of generations. The BM3.3 TCR (from

structure with PDB code 1FO0) was selected for this experiment at random from

the set of publicly available resolved crystal structures. An initial population of 40

individuals was set to evolve over an additional 60 generations. The fitness function

described by Equation 5.1 was implemented using only the Cα atoms of the α and

β chains. The distance cut-off, c, was set to 7 Å, such that any pair of residues with

a distance between them lower than this value would contribute to the fitness score.

Selected individuals were given a 20% chance of being subjected to mutation.
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Figure 5.3: (a) The average fitness of the TCRs of each generation is shown, with rib-
bon lines denoting the maximum and minimum fitness scores achieved in each
generation. The average fitness increases over the generations. (b) Example
contact maps of the fittest individual in generations 0, 20, 40 and 60. For each
map, the amino acids of the TCR α chain extend along the y-axis and those
of the β chain along the x-axis. The colour bar denotes the pairwise distance
between a given α chain Cα atom and a given β chain Cα atom (up to a maxi-
mum distance of 18Å). A subtle increase in the quantity of shorter distances is
noticeable across the generations.

For these individuals, each amino acid in its sequence was given a 1% chance of be-

ing substituted for another random amino acid, of being deleted from the sequence,

or of being followed in the sequence by a random inserted amino acid, each with

equal probability. The consequences of these settings are discussed further in Sec-

tion 5.6.4. A full parameter set can be found in Table 5.1.

Figure 5.3A shows the average fitness of the population per generation. The

maximum and minimum fitness scores of each generation are indicated by the rib-

bon lines. This plot is fairly typical of genetic algorithm optimisation, whereby

regions of rapid increase in fitness are interspersed with flat regions of local fixation

during which the algorithm explores new solutions. The very last generation shows

a small spike in maximum fitness, suggesting that perhaps higher fitness scores

might be achieved if the run had been allowed to evolve over more generations.

A notable feature of this plot is the dramatic downwards spike in the mini-

mum fitness for many generations. These features are the result of a poorly chosen
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crossover operator for the run — the swapping of entire α and β chains between

individuals. As the aim of the run is to decrease the interfacial distance between

the two chains, the swapping of chains tends to eliminate any optimisation that has

occurred specific to a given αβ pairing. Consequently, the optimisation of this run

can be largely attributed to the mutation operator. A more sophisticated crossover

operator might seek to swap only specific sequence regions between individuals,

rather than entire chains.

Figure 5.3B shows contact map plots for the modelled structures of the fittest

individuals of four sampled generations. These heatmaps represent the pairwise

distance between the Cα atom of every amino acid in the α chain and the Cα atom

of every amino acid in the β chain. For each plot, the α chain sequence extends

along the y-axis, and the β chain sequence along the x-axis. The colour of each

pixel represents the distance between a given α chain residue and a β chain residue.

A cut-off has been applied to the colour bar such that any pairwise distance greater

than 18Å is displayed as 18Å. Over the generations, as fitness increases, an increase

in the number of residues with pairwise distance of less than 7Å (the fitness function

distance cut-off) can be seen in the heatmaps, indicating that the α and β chains in

the optimised models are closer to one another than in the initial structure. The

limitations of this study and suggestions for future improvements are discussed in

Section 5.6.

5.5 Example application: increasing TCR-pMHC in-

terfacial contacts
The GA pipeline may also be applied to TCR-pMHC structures. A GA run was

tasked with increasing the quantity of interfacial contacts between the α and β

chains of the DM5 TCR (from the structure with PDB code 3QEU), and the pMHC

chains of the nonameric MART-1 peptide complexed with the HLA-A2 MHC Class

I α chain (from the structure with PDB code 2GUO). An initial population of 30

individuals was set to evolve over an additional 50 generations. The fitness function

described by Equation 5.1 was implemented using all atoms of the TCR and pMHC
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Parameter Value

c (Å) 7.0

x 3

n 30

g 51

cxpb 0.05

mutpb 0.20

mpb 0.1

Table 5.2: TCR-pMHC interfacial contact optimisation parameters: c, the distance cut-off
in the fitness function; x, the tournament size; n, the population size; g, the total
number of generations; cxpb the crossover probability; mutpb, the mutation
probability; and mpb, the per-base mutation probability.

chains. As in Section 5.4, the distance cut-off, c, was set to 7 Å. A full parameter

set can be found in Table 5.2. Mutation of amino acids was limited to substitution

only, with deletion and insertion of residues disallowed. Additionally, mutations

were only permitted within the CDR regions (plus two additional residues at each

end of each region) of the TCR α and β chains.

Figure 5.4 shows the average fitness of the population per generation. The

maximum and minimum fitnesses of each generation are indicated by the ribbon

lines. As in Section 5.4, the GA exhibits generations of rapid optimisation inter-

spersed with generations of local fixation. Small spikes in maximum fitness in the

final few generations suggest that higher fitness scores might be achieved if the

system were allowed to evolve over additional generations.

The ribbon bands on this plot are fairly broad. This is likely to be a feature

of a too high per-residue mutation rate, which produces a wide array of individuals

with multiple mutations in each generation. An excessively high mutation rate can

also have a negative impact on optimisation speed, as advantageous mutations can

be more easily lost in a sea of disadvantageous mutations. Nevertheless, a modest

increase in fitness can be seen over the generations of the run, indicating that the

most fit structural models feature more binding interface contacts than the initial

structures.
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Figure 5.4: The average fitness of the TCR-pMHC complexes is shown to increase across
the generation of the GA run. The ribbon lines denote the maximum and mini-
mum fitness scores achieved by each generation.

Figure 5.5 shows a comparison of the starting TCR-pMHC model to that of the

fittest TCR-pMHC of the GA run (found in generation 48). Residues that feature

atoms within 4.5Å of (and deemed to be in contact with) the binding partner are

shown in stick representation. These atoms are highlighted in blue and red for the

initial and fittest TCR structures, and in green and orange for the initial and fittest

pMHC structures, respectively. The complexes are very similar in their docking

mode, but the composition of contacting atoms is noticeably different. Subsequent

panels in this plot show the TCR and pMHC components rotated such that the bind-

ing interface region points out from the page and with the surface displayed, aiding

visibility of the highlighted atoms. The initial TCR-pMHC structure features a bind-

ing interface of 82 TCR atoms (from 22 residues) and 95 pMHC atoms (from 24

residues). The fittest TCR-pMHC structure features a binding interface of 125 TCR
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Figure 5.5: (A) The TCR-pMHC complex model used to initiate the GA run. Residues
that feature atoms in contact with the binding partner are shown in stick rep-
resentation. These atoms are coloured blue and green for the TCR and pMHC
components respectively. (B) The TCR component and (C) the pMHC com-
ponent of the initial model are shown, rotated such that the binding interface
points out of the page, and with the surface displayed to aid visibility of the
highlighted atoms. (D) The highest scoring TCR-pMHC complex model in the
GA run. Residues that feature atoms in contact with the binding partner are
shown in stick representation. These atoms are coloured red and orange for
the TCR and pMHC components respectively. (E) The TCR component and
(F) the pMHC component of the fittest model are shown, rotated and with the
surface displayed.

atoms (from 24 residues) and 124 pMHC atoms (from 26 residues). The limitations

of this study and suggestions for future improvements are discussed in Section 5.6.

5.6 Limitations and Future Perspectives
This chapter has described the principles of a prototype computational pipeline for

TCR design through a genetic algorithm optimisation routine. A simple fitness

function has been constructed to maximise the number of interfacial contacts be-
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tween TCR α and β chains, or between TCR and pMHC chains, illustrating how de-

sirable features can be automatically engineered into structural models. This work

serves as a preliminary investigation into how advances in structural modelling may

be employed for future automated design projects. The current implementation is

not without its limitations, a number of which are discussed below.

5.6.1 Limitations of Structural Modelling

An individual is assigned a fitness score based on the analysis of a structure mod-

elled from its sequence. The fitness evaluation is the basis upon which the popula-

tion is optimised. The challenges of protein structure prediction have been discussed

throughout this thesis and in many other works. While it is possible to generate high

quality models with existing prediction tools in some circumstances, modelling in-

accuracy continues to permeate the discipline.

Consequently, we must assume that a reasonable number of the structural mod-

els generated and selected by the genetic algorithm pipeline may lack sufficient

accuracy to be considered fitter than their predecessors. Until technology has de-

veloped to a point at which we can consider protein structure and protein-protein

complex prediction a solved problem, tools that make use of structural modelling

for rational design will themselves contain inherent inaccuracies.

The structural biology community continues to innovate. The TCRpMHC-

Models software had not yet been published when the development of the pipeline

described in this chapter began. Now it has been implemented as a tool for itera-

tively modelling generations of TCR-pMHC complexes. Similarly, the LYRA plat-

form for TCR modelling was the only automated tool for TCR modelling (Klausen

et al., 2015). More recently, the TCRModel (Gowthaman and Pierce, 2018) plat-

form has been published as an alternative tool for TCR homology modelling. It has

been shown to exhibit higher accuracy than LYRA for certain cases, and has been

released with an additional loop refinement protocol which further improves model

accuracy (at the cost of increased run time). Furthermore, a recently published deep

learning approach has made such dramatic improvements in structural modelling

accuracy (Jumper et al., 2021) that the folding problem for single chain proteins is
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considered to be solved by some members of the community (AlQuraishi, 2021). It

is worth acknowledging, however, that this approach has not yet proven particularly

well-suited to modelling antibody and TCR structures (Evans et al., 2021; Yin et al.,

2021; Rollins et al., 2022).

In Chapter 4, four general-purpose platforms have been compared in their mod-

elling of TCR-pMHC complexes. Whether these docking platforms would prove

more effective for TCR-pMHC modelling than TCRpMHCModels would be worth-

while investigating as an extension of this project. If a significant increase in accu-

racy were to be demonstrated, a docking-based approach could be implemented into

the pipeline as an alternative method for TCR-pMHC modelling. Without access to

very large grid computing, it is likely that the incorporation into the pipeline of a

long-running and intensive software such as HADDOCK would prove infeasible.

Even if entire generations could be processed in parallel, GA runs would likely ex-

tend into multiple weeks of run time. Implementation of faster platforms such as

ZDOCK and ClusPro serves as a more achievable goal.

It is worth noting that if docking tools were implemented as an alternative ap-

proach to homology modelling, the unbound TCR and pMHC components of each

individual would themselves require modelling from sequence. Docking platforms

are less successful when assembling modelled unbound structures, which feature

their own inaccuracies, into complexes. Both homology modelling and docking ap-

proaches additionally suffer from their inability to capture the dynamics of proteins

over time, particularly those of flexible loop regions.

In the short term, the accuracy of structural modelling approaches form a major

limitation of the optimisation pipeline. However, the scientific community contin-

ues to make steady progress in modelling accuracy. The availability of new cutting-

edge technologies with high accuracies and fast modelling times will no doubt in-

crease the viability of approaches such as that described in this chapter in the future.

5.6.2 Alternative Scoring Functions

The current implementation of the scoring function aims to maximise the number

of interfacial contacts between either TCR α and β chains or between TCR chains
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and pMHC chains. The function has been design to reward a range of achieved

distances between atoms within a set distance threshold. Shorter achieved distances

contribute more to the fitness score than longer achieved distances.

The scoring function is based on an assumption that a greater number of in-

terfacial contacts reflects a higher binding affinity. This has been shown by Van-

gone and Bonvin (2015) in a study which demonstrates that additionally incorpo-

rating the physico-chemical properties of the residues, and contributions of the non-

interacting surface (Kastritis et al., 2014), provides a yet stronger predictor of bind-

ing affinity. These features could be incorporated into a more sophisticated scoring

function for the GA optimisation.

Furthermore, the binding affinity may not be the only property of interest for

novel TCR design. Section 1.4 has discussed geometric descriptions that have been

developed for both TCRs and TCR-pMHC complexes. Specific angles and dis-

tances could be encoded into a new fitness function to optimise TCR models to-

wards desirable geometries. Alternatively, a fitness function could be designed to

search models for specific charge pairings or for desirable interaction types in the

structural models (such as hydrogen bonds or salt bridges), or to tune hydrophobic-

ity.

5.6.3 Optimal Parameter Sets and Computational Resources

The use of an evolutionary algorithm involves choosing values for a number of

parameters (the population size, mutation and crossover rates, and so on). It can be

difficult to know what the best values are for these parameter when setting up a new

run. Section 5.5, for example, has highlighted the detrimental effect on run time

produces by a too high mutation rate.

The parameters for the runs shown in this chapter were chosen by experimental

trial and error. A continuation of this project would benefit from a more sophisti-

cated approach. An automated parameter sweep employed to systematically adjust

appropriate parameters could be conducted as a simple (yet potentially very lengthy)

approach to parameter tuning. Optimal tuning of evolutionary algorithm parame-

ters has been the subject of numerous studies (DeJong, 2007; Smit and Eiben, 2009;
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Sipper et al., 2018), and is an area that would be worthwhile exploring to improve

the pipeline.

The runs described in this chapter were performed relatively quickly in terms

of computational run time (< 48 hours per run), using limited population sizes and

numbers of generations. Increasing the population size would require additional

parallelisation efforts, likely involving the installation of the structural modelling

software (LYRA and TCRpMHCModels) on a dedicated high performance com-

puting server, rather than relying on external web servers, to model all individuals

from a single generation simultaneously. It is harder to avoid an increase in run

time if increasing the number of generations in a run. However, so long as a single

generation can be modelled quickly, there is scope to increase this value beyond the

settings used in this chapter.

5.6.4 Alternative Crossover and Mutation Operators

5.6.4.1 Crossover

The results shown in Section 5.4 have highlighted how the current simplistic imple-

mentation of the crossover operator, whereby α and β chains are switched between

individuals, has had a negative impact on the optimisation of contacts between the

two TCR chains. Moreover, the optimisation is largely driven by the mutation op-

erator for this run.

The chain swapping crossover operator is less detrimental to evolution in runs

for TCR-pMHC optimisation, as shown in Section 5.5. This can be attributed to

the two TCR chains largely optimising independently for contact with the pMHC,

rather than for contact with one another.

It may be worthwhile exploring more sophisticated crossover operators as an

extension to this project, particularly for runs optimising contacts between TCR α

and β chains. “Hotspot” crossover, for example, permits the swapping of only cer-

tain regions of the encoded chromosomes. This could be used to limit crossover to

only specific regions of the TCR sequences deemed unlikely to excessively disrupt

the interface.



5.6. Limitations and Future Perspectives 165

5.6.4.2 Mutation

Section 5.4 and Section 5.5 make use of two similar, but distinct, approaches to

mutation. For the TCR modelling, substitution, insertion and deletion of amino

acids were all permitted. For TCR-pMHC modelling, only substitution was permit-

ted. In the former case, addition and deletion introduces additional diversity into

the population. In the latter case, the mutation was restricted to reduce the number

of cases where the structural modelling platform would fail to generate a model.

The platform could be improved by introducing greater flexibility to these features.

Addition and deletion could be weighted with a lower probability of occurring than

substitution. Maximum and minimum thresholds could be imposed on sequence

and CDR loop lengths. The different types of mutation could be restricted to only

certain regions of the sequence.

The current implementation of where a mutation can take place in a sequence

is fairly naïve. In Section 5.4, any residue was permitted to undergo mutation. In

Section 5.5, the pipeline was upgraded to support mutation only in the CDR regions.

The CDR loops are the primary regions of the TCR that contact the pMHC, and vari-

ation in these regions drives most of the diversity in the population. Currently, any

mutating amino acid can be substituted for any other random amino acid. A more

sophisticated approach would allow for greater customisability. The likelihood of a

residue mutating could be weighted by its position in the sequence. Functionality

could be introduced to allow certain key residues to be blocked from mutating en-

tirely. Mutation could also be restricted based on physico-chemical similarity, such

that substitution is permitted only according to observed residue distributions.

5.6.5 Affinity, Specificity, and Activity

The optimisation routines outlined in this chapter have aimed to maximise the num-

ber of interfacial contacts between TCR and TCR-pMHC chains as a surrogate for

binding affinity. The engineering of TCRs with arbitrarily high binding affinities

must be approached with a great degree of caution. Due to the cross-reactive nature

of TCRs, enhancement of TCR affinity poses a risk of reduced specificity, lead-
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ing to unexpected side effects (Pierce et al., 2014a). These side effects can lead

to tragic consequences in clinical settings (Linette et al., 2013). Designed TCRs,

particularly those with high affinity, must therefore be carefully evaluated to ensure

that their specificity is maintained. The role that structural biology can play in this

evaluation has been recently reviewed by Singh et al. (2017).

An additional side effect of TCRs with very high binding affinities is a noted

reduction in T cell activity beyond a given “affinity threshold” (McKeithan, 1995;

Rabinowitz et al., 1996; Carreño et al., 2007). This threshold is consistent with

the “half-life” model of TCR activation, which proposes that a TCR must bind an

antigen with a strength and duration sufficient for productive signalling, and must

additionally bind for a time short enough that adjacent TCRs may bind the same

antigen in a given window for signal amplification (Zoete et al., 2013). A higher

binding affinity increases the TCR dwell-time, and may inhibit serial engagement,

thereby attenuating T cell signalling. For the GA pipeline, this suggests that it may

be beneficial to constrain the optimisation of the binding affinity, to preserve T cell

activity.

5.6.6 Experimental Validation

A complete assessment of the successes of this pipeline would require experimental

validation, whereby the fittest TCRs discovered by the algorithm could have their

properties measured in the laboratory. The preliminary nature of this research has

meant that wet lab work has not yet been feasible, but would make for an exciting

and hopefully illuminating continuation of this project.

5.7 Tools
The genetic algorithm implementation was constructed using the DEAP evolution-

ary computation framework (Fortin et al., 2012).
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Conclusions

Our understanding of the complexities of the immune system and our ability to

guide it towards more effective elimination of invasive pathogens continues to blos-

som. T cell activity is a critical feature of the adaptive immune response. Break-

throughs in sequencing technology have allowed us to probe the TCR repertoire

in great depth. As we aim to convert discoveries into immunologically driven

medicines, it is important to also understand TCR interaction at a structural level.

This thesis has explored methods and tools for analysing TCRs at various scales.

At the population level, methods for TCR repertoire analysis have been reported.

At the molecular level, methods for structural modelling of TCR-pMHC complexes

and automated structure-guided design have been explored.

In particular, this thesis has described the development of the latest version of

the Decombinator platform, Decombinator V4, for TCR sequencing analysis. The

efficient pattern-matching algorithm that forms the basis of its TCR annotation al-

lows Decombinator to achieve shorter run times than most other platforms. New

sequencing error and PCR amplification bias correction routines have improved

Decombinator annotation accuracy, and the implementation of a unique dual index

protocol has mitigated the effects of artefactual sample mixing through index hop-

ping. As TCR repertoire sequencing and analysis have matured to become routinely

used methods for the study of adaptive immunity, a need has arisen for standardised

formats for the management, sharing and compatability of datasets and computa-

tional tools. Accordingly, Decombinator V4 has been upgraded to comply with the
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international standards proposed by the AIRR community.

The inability to pair α and β chain sequences in historical TCR repertoire

analyses has hindered our understanding of the immune response in vivo. The

emergence of affordable and reliable single cell sequencing has provided the im-

munological community with the means to overcome this challenge for the first

time. Traditional repertoire analysis tools are not necessarily suitable for the short,

fragmented reads produced by single cell sequencing. An adaption of Decombina-

tor that searches for single V or J genes in single cell reads and for overlap between

these reads to reconstruct full TCR sequences has been outlined in this thesis, and

shows comparable performance to two other single cell repertoire analysis plat-

forms.

A number of ways in which the platform could be extended in the future have

also been discussed. An integration of Decombinator and Single Tag Decombinator

into a unified pipeline would streamline analysis and enhance useability. At present,

this would be likely to constitute a large amount of work. In the long term, however,

the requirement of maintaining two similar, but independent, pipelines would be

eliminated. A formalised testing framework would aid in development and routine

benchmarking of the platform for speed and TCR annotation accuracy for both bulk

and single cell protocols. Parallelisation of the pipeline has been experimented

with, and could be implemented to improve run time further. Useability could be

extended by providing greater flexibility regarding input data formats.

An understanding of protein interaction at the molecular level is critical for

the development of new therapeutics. Enormous diversity in the TCR repertoire

means that interesting TCRs identified in high-throughput sequencing experiments

are very unlikely to have had their structure resolved. Traditional methods for struc-

tural resolution of TCRs can be challenging, time-consuming, and out of reach

for many research groups. Computational modelling of TCR structures and TCR-

pMHC complexes provides an efficient and accessible alternative. The accuracy of

the modelled structures produced computationally is of primary concern.

Protein-protein docking algorithms, that aim to assemble unbound protein
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structures into models that accurately resemble native bound complexes, are often

tested against the Protein-Protein Docking Benchmark (Vreven et al., 2015). How-

ever, no TCR-pMHC complexes are found among these assembled test cases and

most algorithms are not specifically benchmarked in the context of TCRs. An inde-

pendent set of bound and unbound TCR and pMHC structures has been previously

assembled as the TCR docking benchmark (Pierce and Weng, 2013; Gowthaman

and Pierce, 2019). In this thesis, research conducted to expand the set of bench-

mark cases has been described. Details are provided of the preprocessing methods

to prepare these structures for use with docking software, including a protocol for

repairing missing atoms or residues. Scores have been calculated that describe the

expected difficulty of modelling each case, and the structures are made available

online in raw and preprocessed form for general use.

Each docking case assembled as part of the expanded TCR benchmark was

used to assess the ability of four general-purpose protein-protein docking platforms

to accurately model TCR-pMHC complexes. ClusPro, HADDOCK, LightDock and

ZDOCK all include features that allow guiding of their docking algorithms with ad-

ditional information known about the proteins of interest. The performance of each

platform was evaluated and compared in the context of varying provided informa-

tion about the TCR-pMHC binding interface. The performance per docking case

has been discussed, with little evidence that “medium” difficulty cases were harder

to model than “rigid” (easy) cases. The effects of alternative scoring functions have

been discussed in the context of ClusPro; the effects of model filtering in the context

of LightDock; and the effects of clustering of models in the context of HADDOCK.

HADDOCK was shown to have a notably stronger sampling performance than the

other platforms. The ability of the two flexible docking platforms, HADDOCK

and LightDock, to model conformational change in the CDR loops was assessed,

with neither platform notably improving resultant models. Choosing the most ap-

propriate modelling platform for a given task depends on the amount of available

information. In general, HADDOCK was shown to be the most accurate docking

software for TCR-pMHC modelling when considering the top ranked model. Clus-
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Pro was found to be the most consistent performer outside the top ranked model.

Each of the platforms showed the best performance when detailed information about

the binding interface (determined from the reference structure) was provided.

Despite some of the successes shown in this thesis, it is clear that there is still

progress to be made in the computational docking of TCR-pMHC structures. Dis-

cussion has been provided on some of the paths this progress might take, including

novel re-ranking and filtering methods, loop region modelling, and in tools to accu-

rately predict binding residues in the CDR loops and pMHC.

As methods for structural modelling continue to improve, there is an oppor-

tunity to speculate how they may be integrated into broader automated scientific

pipelines. A prototype platform for TCR design using homology modelling and ge-

netic algorithm routines has been outlined in this thesis. The platform has been used

to automatically generate TCR and TCR-pMHC models with more interfacial con-

tacts than initial structures. Potential extentions to the software have been discussed,

including alternative scoring functions to engineer other features into models, the

optimisation of parameters, and improved implementation of genetic operators.

The usefulness of such pipelines depends fundamentally on the accuracy of the

structural modelling tools they employ. Discussion has been provided about these

limitations and what options might improve accuracy in the short term. However,

as the scientific community continues to make progress in structural modelling ac-

curacy, approaches such as those outlined in this thesis stand to increase in viability

for protein design.
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Tools

Visualisation

Protein structures are visualised using PyMOL (http://www.pymol.org). Plots

were designed using Matplotlib (Hunter, 2007), Seaborn (Waskom, 2021) and gg-

plot2 (Wickham, 2016). Diagrams were designed using diagrams.net (https:

//www.diagrams.net/; formerly draw.io).

Structural Analysis

Structural data was analysed using the Bio.PDB (Hamelryck and Manderick, 2003)

Biopython (Cock et al., 2009) module, and the PyMOL (http://www.pymol.org)

api.

IMGT Renumbering

IMGT renumbering of sequences was performed using ANARCI (Dunbar and

Deane, 2016).

Genetic Algorithm Infrastructure

The genetic algorithm implementation was constructed using the DEAP evolution-

ary computation framework (Fortin et al., 2012).

http://www.pymol.org
https://www.diagrams.net/
https://www.diagrams.net/
http://www.pymol.org


Appendix A

Metrics for Sequence and Structural

Analysis

Equations for Structural Geometric Descriptions

Centre of Mass

The centre of mass (CoM) of a protein is defined by a weighted average of the

atomic positions in the protein:

RRR =
1
M

N

∑
i=1

mirrri (A.1)

where RRR = (x,y,z) gives the coordinates of the CoM, M gives the total mass of all

the atoms in the system, and N gives the total number of atoms in the system each

with mass mi and coordinates rrri = (xi,yi,zi). Often, hydrogen atoms are omitted

from the calculation, to provide the CoM of only the heavy atoms of the protein.

Metrics for Sequence Analysis

Hamming Distance

The Hamming distance is a measure of dissimilarity (edit distance) between two

strings of equal length. It is defined as the minimum number of substitutions re-

quired to transform one string into the other. Mathematically, the Hamming dis-

tance, d(u,v) between two strings, u = u1, ...,un and v = v1, ...,vn, can be expressed

as:
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d(u,v) =
n

∑
i=1

1 if ui 6= vi

0 if ui = vi

(A.2)

For example the Hamming distance between:

"pathogen" and "patients" is 5

and the Hamming distance between

"pathogen" and "pangolin" is 4.

Levenshtein Distance

The Levenshtein distance is a measure of dissimilarity (edit distance) between two

strings that may be of equal or unequal length. This distance is measured as the

minimum number of insertions, deletions or substitutions required to transform one

string to the other. For example, the Levenshtein distance between:

"pathogen" and "pattern" is 4

corresponding to 3 substitutions and 1 deletion. The Levenshtein distance between:

"pathogen" and "patterns" is 5

corresponding to 5 substitutions (and equal, in this case, to the Hamming distance).

The Levenshtein distance between:

"pathogen" and "pathogens" is 1

corresponding to 1 insertion.

Numerous algorithmic approaches have been implemented to efficiently com-

pute the Levenshtein distance (Navarro, 2001; Berger et al., 2021). The Decom-

binator software package has historically made use of the python-Levenshtein

package (https://github.com/ztane/python-Levenshtein) for Levenshtein

distance calculations, however the Collapsinator module now makes use of the more

efficient polyleven package (https://github.com/fujimotos/polyleven).

https://github.com/ztane/python-Levenshtein
https://github.com/fujimotos/polyleven
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A B C D

Figure A.1: (A) The unbound TCR (blue) and unbound pMHC (orange) structures for
docking case 1AO7. (B) The reference bound TCR-pMHC complex structure
(grey). (C) The unbound components are superimposed onto the reference
structure. (D) The TCR and pMHC residues that make up the interface for the
superimposed unbound structures (highlighted in green and red, respectively)
are extracted.

Metrics for Structural Analysis

Root-Mean-Square Deviation (RMSD)

The root-mean-square deviation (RMSD) is a measure of dissimilarity in the geom-

etry of two sets of superimposed atoms. It is calculated as:

RMSD =

√
1
N

N

∑
i=1

δ 2
i (A.3)

where δi is the distance between atom i in the model structure and atom i in the

reference structure.

Interface Root-Mean-Square Deviation (IRMSD)

The interface root-mean-square deviation (IRMSD) is a measure of dissimilarity in

the geometry of atoms that form the binding interface in two protein complexes.

The interface region is of critical importance in protein-protein complex modelling,

and IRMSD measurements provide a more accurate assessment of the modelling
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Figure A.2: (A) The reference TCR-pMHC complex for docking case 1AO7, with interface
residues highlighted (blue). (B) A docked model with an accurately captured
interface (green). Inset, superimposition of the reference and model interfaces,
showing good structural alignment. (C) A docked model with a poorly cap-
tured interface (orange). Inset, superimposition of the reference and model
interfaces, showing poor structural alignment.

than global RMSD measurements (that take into account unimportant regions of

the protein) in this context.

The IRMSD has been used as a measure to stratify the difficulty of a given

docking test case (Chapter 3). In a protein-protein complex, the interface is com-

posed of all the residues that contain at least one atom within 10Å of an atom in the

binding partner (Méndez et al., 2003). To determine the IRMSD, the unbound pro-

teins (here, the TCR and pMHC) are first superimposed on the reference structure

(here, the bound TCR-pMHC complex). The interface can then be extracted from

the superimposed components. This procedure is shown in Figure A.1. The IRMSD

is then found by calculating the RMSD (Equation A.3) between the backbone atoms

in the reference interface and the superimposed unbound components interface.

The IRMSD is similarly computed as a measure of evaluating the quality of

docked models (Chapter 4). The interface is extracted from the reference structure

and from the docked model. The IRMSD is then found by calculating the RMSD

between the backbone atoms of these two interfaces. Figure A.2A shows the refer-

ence structure for the docking case with PDB code 1AO7, with interface residues

highlighted in blue. Figure A.2B shows a model that has accurately captured the

binding interface, highlighted in green. The inset shows the model interface su-

perimposed with the reference interface, demonstrating good structural alignment
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Figure A.3: (A) The reference TCR-pMHC complex for docking case 1AO7 with residues
involved in residue-residue contacts highlighted (green). (B) The unbound
TCR (blue) and pMHC (orange) structures for docking case 1AO7 arranged
as superimposed upon the reference structure. Residues involved in residue-
residue contacts that do (green) and do not (red) feature in the reference struc-
ture are highlighted.

(IRMSD = 1.63Å). Figure A.2C shows a model that has poorly captured the binding

interface, highlighted in orange. The inset shows the model interface superimposed

with the reference interface, demonstrating poor structural alignment (IRMSD =

13.00Å).

Fraction of Non-Native Contacts (Fnon-nat)

The fraction of non-native contacts (Fnon-nat) is defined as the number of non-native

(incorrect) residue-residue contacts in an assembled complex divided by the total

number of residue-residue contacts in that complex. A residue-residue contact, in

this context, is defined as a pair of residues on either side of the interface that have

at least one pair of atoms within 5Å of one another (Méndez et al., 2003).

The Fnon-nat has been used as a measure to stratify the difficulty of a given dock-
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Figure A.4: A) The reference TCR-pMHC complex for docking case 1AO7 with residues
involved in residue-residue contacts highlighted (green). (B) A docked model
with residues involved in residue-residue contacts highlighted in green if they
are found in both the reference and model complexes, and in orange if they are
found only in the reference complex.

ing test case (Chapter 3). Figure A.3A shows the reference structure for the docking

case 1AO7, with residues involved in residue-residue contacts highlighted in green.

Figure A.3B shows the unbound TCR (blue) and pMHC (orange) components of the

docking case assembled through their superimposition with the reference structure

(as in Figure A.1). Residues involved in residue-residue contacts are highlighted in

green if they also feature in the reference model, and in red if they do not. It should

be noted that a given residue may form multiple residue-residue contacts, which is

not illustrated in Figure A.3. Therefore, the Fnon-nat of 0.33 for this docking case is

perhaps higher than Figure A.3 might suggest.

Fraction of Native Contacts (Fnat)

The fraction of native contacts (Fnat) has been used as a measure of evaluating the

quality of docked models (Chapter 4). The Fnat is defined as the number of native

(correct) residue-residue contacts found in the docked model divided by the total

number of residue-residue contacts in the reference complex (Méndez et al., 2003).

A residue-residue contact, in this context, is defined as a pair of residues on either
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Figure A.5: (A) The reference structure for docking case 1AO7. (B) A docked model with
TCR shown in blue and pMHC in orange. (C) The TCR (receptor) of the
docked model is superimposed with the TCR of the reference structure, high-
lighting a large deviation in the position of the pMHC (ligand) component.

side of the interface that have at least one pair of atoms within 5Å of one another.

Figure A.4A shows the reference complex for docking case 1AO7 with

residues involved in residue-residue contacts highlighted in green. Figure A.4B

shows a docked model with residues involved in residue-residue contacts high-

lighted in green if they are found in both the reference and model complexes, and

in orange if they are found only in the reference complex. It should be noted that

a given residue may form multiple residue-residue contacts, which is not illustrated

in Figure A.4. The Fnat score for this model is 0.49.

Ligand Root-Mean-Square Deviation (LRMSD)

The ligand root-mean-square deviation (LRMSD) is a measure of geometric fit and

has been used to evaluate the quality of docked models (Chapter 4). To calculate the

LRMSD, the receptor of the modelled complex is superimposed upon the receptor

of the reference structure. The RMSD (Equation A.3) is then computed between

the backbone atoms of the ligand of the reference structure and the backbone atoms

of the ligand of the model structure (Janin et al., 2003; Méndez et al., 2003). In this

study, the TCR is taken as the receptor and the pMHC as the ligand.

Figure A.5A shows the reference TCR-pMHC complex for docking case
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1AO7. Figure A.5B shows a docked TCR-pMHC model for this case, with TCR

shown in blue and pMHC in orange. Figure A.5C shows the TCR (receptor) in the

model superimposed with the TCR in the reference structure, highlighting a large

deviation in the position of the pMHC (ligand) component. In this example, the

LRMSD was computed as 20.80Å.



Appendix B

Beta Chain Internal and Unique

Dual Index Decombinator Protocols

The following page provides a comparison of the overlap between samples for the

β chain data for two NextSeq runs using different protocols. Figure B.1A shows the

overlap for a run using the legacy IDI protocol, and Figure B.1B shows the overlap

for a run using the new UDI protocol. As with the α chain data shown in Sec-

tion 2.2.1, the IDI plot shows overlap between disparate patients and experiments,

whereas the UDI plot shows only inter-patient overlap.
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Figure B.1: (A) TCR overlap between patients and experiments for β chain data from an
IDI protocol NextSeq run. (B) TCR overlap for β chain data from a UDI proto-
col NextSeq run. Rows and columns with suffixes “Neg”, “Neg1” and“Neg2”
provide negative controls.



Appendix C

Single Tag Decombinator

Supplementary Data

ID DCR ID DCR

1 4, 45, 0, 8, AGTAC 21 31, 19, 2, 8, AGGG

2 1, 22, 5, 1, GAGGG 22 43, 41, 7, 15, GAACGCCCCCCC

3 35, 17, 2, 0, CCCTGGGG 23 17, 36, 5, 0, TG

4 18, 34, 0, 0, ATGAGG 24 35, 20, 8, 1, GGTT

5 19, 31, 1, 11, ACCG 25 39, 11, 10, 0, CTGTCG

6 31, 32, 6, 11, CGCTTCTGCGG 26 41, 45, 3, 7, GGGCCG

7 39, 49, 4, 5, TCTC 27 41, 45, 9, 7, AGTGAGGGGCCG

8 24, 46, 1, 6, GAGGG 28 38, 9, 7, 6, GCC

9 16, 48, 0, 20, CACAGTGCAACCCAGGCTCCCAGAAC 29 40, 0, 9, 6, CCTG

10 12, 8, 6, 4, GGAGGG 30 14, 57, 0, 8, ACCTTGTG

11 32, 49, 8, 4, TTATT 31 8, 32, 1, 0, TTT

12 43, 41, 7, 15, GAAAGCCCCCCCCTAGCTCTCGAAAGCCCCCCC 32 7, 18, 3, 13, GATTAAGG

13 31, 23, 2, 16, GATTCTCG 33 31, 38, 5, 1, T

14 43, 41, 7, 15, GAAAGCCCCCCC 34 41, 9, 8, 7, ATGGG

15 43, 41, 7, 15, GAAATCCCCCCCCTAGCTCTCGAAAGCCCCCCC 35 4, 10, 1, 4, GAAG

16 23, 41, 0, 10, GAGA 36 44, 19, 0, 18, TGACCTTCCTATTATTTGGGGGCCTTACACCGATAAAC

17 21, 29, 0, 4, CACG 37 21, 40, 6, 3, CTGGTGG

18 20, 21, 12, 11, CCATGGGG 38 12, 45, 6, 7, ACTGGGATC

19 17, 1, 6, 1, TTCTCGGTGG 39 35, 16, 4, 6, G

20 39, 29, 0, 3, TCCG

Table C.1: Mapping between representative IDs and α chain Decombinator classifiers
(DCRs) used in Figure 2.16 for the NSCLC single cell analysis comparison
of Single Tag Decombinator and TraCeR.
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Figure C.1: TCR (A) α chains and (B) β chains identified in the SARS-CoV-2 dataset
by only Single Tag Decombinator, only by MiXCR, or by both platforms, are
shown in orange, blue and green, respectively, using CDR3 information only.
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ID DCR ID DCR

1 44, 8, 0, 2, CCGAAGGACTAGACCT 31 31, 6, 5, 2, TACAGCGGGGGGG

2 19, 4, 5, 0, AAATGGGGACGGATCTTCGAACA 32 25, 5, 5, 0, GAATTTATGGGAGA

3 14, 10, 4, 2, GTTCTCGGACAGGA 33 25, 6, 5, 0, GAATTTATGGGAGA

4 25, 6, 0, 4, TCGAAGCGGGACT 34 12, 9, 3, 7, TCTTGCAGGGGGCCCACTG

5 15, 12, 3, 2, TGTACCCA 35 4, 0, 3, 1, TCCGGG

6 19, 6, 6, 6, CCATAGCGGTGCCCT 36 42, 5, 5, 1, CGCGGCCCGGGGTCA

7 19, 6, 2, 9, GGTTGGCTAAG 37 42, 5, 5, 24, CGCGGCCCGGGGTCA

8 43, 11, 2, 0, CGGGACGGATT 38 31, 0, 6, 2, ATTCCGACAGGGCGCCATT

9 28, 11, 2, 0, ACGGGACGGATT 39 43, 2, 4, 19, CAACCAGCCCGAGGACAGGGCCTCTCTGGAAACACCATATA

10 6, 0, 5, 11, CCCCGGGCAGGATGGAGG 40 25, 0, 0, 1, TTTCGGGGGGGGGGG

11 42, 1, 3, 8, TGACTCGGGACAGGGGTATATTTGGGAA 41 25, 0, 0, 0, TTTCGGGGGGGGGG

12 37, 1, 3, 8, TGACTCGGGACAGGGGTATATTTGGGAA 42 44, 5, 4, 17, TCCCGGACAGGAGAGA

13 6, 6, 7, 9, CCTTGACCCTGCC 43 15, 0, 5, 7, GATTGGTCTCG

14 13, 0, 4, 1, GCCCATCGGA 44 6, 0, 6, 6, CCTACTTGGGATTGCCG

15 24, 3, 1, 6, GGTGGGGGACCTTAG 45 6, 3, 5, 6, CTAGACAGGGCTTTCG

16 36, 12, 5, 6, CCCTCCGGGACAGGGCCCAC 46 25, 3, 0, 0, CCTGCCGCCCTGGGACAGGGTTG

17 33, 12, 5, 6, CCCTCCGGGACAGGGCCCAC 47 25, 4, 0, 14, CCTGCCGCCCTGGGACAGGTATGCAACCAGAGTACGGG

18 18, 6, 3, 2, TGATATAGCGGAGG 48 33, 3, 5, 0, CCAGGGACCTTTG

19 37, 6, 1, 0, GACTTCG 49 6, 4, 6, 5, CTATGCCGGGG

20 31, 6, 9, 12, TAGCGGGAGGGCCCTCGTAGG 50 31, 6, 5, 6, ACTGGACCAAG

21 44, 7, 3, 9, GCCGGGACCCCAACCCGACCA 51 36, 3, 5, 0, CCAGGGACCTTTG

22 37, 6, 5, 4, GCCCCCCCGGACCAT 52 19, 4, 6, 3, CCCGAC

23 44, 7, 3, 5, GCCGGGACCCCAACCCG 53 4, 12, 3, 1, CCCTTCAGGA

24 15, 0, 0, 3, TCTGGGGT 54 27, 0, 0, 3, GCCCACACAGGTTCCGGT

25 30, 4, 2, 0, CCAGGGCTA 55 40, 1, 1, 4, GGATTACGGG

26 19, 0, 6, 3, CCCCAGGACAGGTACAG 56 43, 12, 4, 1, CAGGG

27 8, 0, 4, 4, CCAGGGACAGGGGGGGTGG 57 54, 7, 3, 0, GTCGAAAGGATCCGAAGTGCCGGGACAGGTCTTCG

28 2, 0, 3, 4, AGGGGGGCTTGGGGT 58 43, 12, 5, 3, CCTCGGACAGGGGG

29 54, 12, 3, 4, TGGCCCAGGAGGA 59 3, 12, 4, 1, CAGGG

30 29, 1, 0, 6, CGGCAGGGGAGG

Table C.2: Mapping between representative IDs and β chain Decombinator classifiers
(DCRs) used in Figure 2.17 for the NSCLC single cell analysis comparison
of Single Tag Decombinator and TraCeR.
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ID Cell ID Cell ID Cell ID Cell

1 VT10_N701_S502 36 VT10_N705_S505 71 VT10_N709_S517 106 VT8_N703_S504

2 VT10_N701_S503 37 VT10_N705_S506 72 VT10_N710_S502 107 VT8_N703_S517

3 VT10_N701_S504 38 VT10_N705_S507 73 VT10_N710_S503 108 VT8_N704_S502

4 VT10_N701_S505 39 VT10_N705_S508 74 VT10_N710_S504 109 VT8_N704_S503

5 VT10_N701_S506 40 VT10_N706_S502 75 VT10_N710_S505 110 VT8_N704_S504

6 VT10_N701_S507 41 VT10_N706_S503 76 VT10_N710_S506 111 VT8_N704_S517

7 VT10_N701_S508 42 VT10_N706_S504 77 VT10_N710_S507 112 VT8_N705_S503

8 VT10_N701_S517 43 VT10_N706_S505 78 VT10_N710_S508 113 VT8_N705_S504

9 VT10_N702_S502 44 VT10_N706_S506 79 VT10_N710_S517 114 VT8_N705_S517

10 VT10_N702_S503 45 VT10_N706_S507 80 VT10_N711_S502 115 VT8_N706_S502

11 VT10_N702_S504 46 VT10_N706_S508 81 VT10_N711_S503 116 VT8_N706_S503

12 VT10_N702_S505 47 VT10_N706_S517 82 VT10_N711_S504 117 VT8_N706_S504

13 VT10_N702_S506 48 VT10_N707_S502 83 VT10_N711_S505 118 VT8_N706_S517

14 VT10_N702_S507 49 VT10_N707_S503 84 VT10_N711_S506 119 VT8_N707_S502

15 VT10_N702_S508 50 VT10_N707_S504 85 VT10_N711_S507 120 VT8_N707_S503

16 VT10_N702_S517 51 VT10_N707_S505 86 VT10_N711_S508 121 VT8_N707_S504

17 VT10_N703_S502 52 VT10_N707_S506 87 VT10_N711_S517 122 VT8_N707_S517

18 VT10_N703_S503 53 VT10_N707_S507 88 VT10_N712_S502 123 VT8_N708_S502

19 VT10_N703_S504 54 VT10_N707_S508 89 VT10_N712_S503 124 VT8_N708_S503

20 VT10_N703_S505 55 VT10_N707_S517 90 VT10_N712_S504 125 VT8_N708_S504

21 VT10_N703_S506 56 VT10_N708_S502 91 VT10_N712_S505 126 VT8_N708_S517

22 VT10_N703_S507 57 VT10_N708_S503 92 VT10_N712_S506 127 VT8_N709_S502

23 VT10_N703_S508 58 VT10_N708_S504 93 VT10_N712_S507 128 VT8_N709_S503

24 VT10_N703_S517 59 VT10_N708_S505 94 VT10_N712_S508 129 VT8_N709_S517

25 VT10_N704_S502 60 VT10_N708_S506 95 VT10_N712_S517 130 VT8_N710_S502

26 VT10_N704_S503 61 VT10_N708_S507 96 VT8_N701_S502 131 VT8_N710_S503

27 VT10_N704_S504 62 VT10_N708_S508 97 VT8_N701_S503 132 VT8_N710_S517

28 VT10_N704_S505 63 VT10_N708_S517 98 VT8_N701_S504 133 VT8_N711_S502

29 VT10_N704_S506 64 VT10_N709_S502 99 VT8_N701_S517 134 VT8_N711_S503

30 VT10_N704_S507 65 VT10_N709_S503 100 VT8_N702_S502 135 VT8_N711_S517

31 VT10_N704_S508 66 VT10_N709_S504 101 VT8_N702_S503 136 VT8_N712_S502

32 VT10_N704_S517 67 VT10_N709_S505 102 VT8_N702_S504 137 VT8_N712_S503

33 VT10_N705_S502 68 VT10_N709_S506 103 VT8_N702_S517 138 VT8_N712_S517

34 VT10_N705_S503 69 VT10_N709_S507 104 VT8_N703_S502

35 VT10_N705_S504 70 VT10_N709_S508 105 VT8_N703_S503

Table C.3: Mapping between representative IDs and cell names used in Figure 2.16 and
Figure 2.17 for the NSCLC single cell analysis comparison of Single Tag De-
combinator and TraCeR.
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ID V J CDR3 ID V J CDR3

1 TRAV8-6 TRAJ22 CAVSGPQGSARQLTF 17 TRAV8-2 TRAJ3 CAVTPLGSSASKIIF

2 TRAV12-1 TRAJ38 CVVNPPSAGNNRKLIW 18 TRAV8-1 TRAJ23 CAVNALYNQGGKLIF

3 TRAV14/DV4 TRAJ8 CAMREGTGFQKLVF 19 TRAV8-4 TRAJ3 CAVTPLGSSASKIIF

4 TRAV12-2 TRAJ18 CAVAVMALGRLYF 20 TRAV3 TRAJ3 CAVTPLGSSASKIIF

5 TRAV12-3 TRAJ36 CAMNNNLFF 21 TRAV8-6 TRAJ3 CAVTPLGSSASKIIF

6 TRAV3 TRAJ40 22 TRAV8-1 TRAJ23 CDVNALYNQGGKLIF

7 TRAV26-1 TRAJ28 CIVSALLRESYQLTF 23 TRAV8-3 TRAJ39

8 TRAV25 TRAJ24 CAGWAEGWGKLQF 24 TRAV17 TRAJ7 CATGGNNRLTF

9 TRAV17 TRAJ7 CATGGNNRLAF 25 TRAV20 TRAJ35 CAVQAEGFGNVLHC

10 TRAV25 TRAJ15 CAGPNQAGTALIF 26 TRAV14/DV4 TRAJ43 CAMRVQLNDMRF

11 TRAV35 TRAJ52 CAGQWAGGTSYGKLTF 27 TRAV25 TRAJ15 CVGPNQAGTALIF

12 TRAV12-1 TRAJ13 28 TRAV24 TRAJ22 CAPRGPGSARQLTF

13 TRAV25 TRAJ16 CAGRSDGQKLLF 29 TRAV25 TRAJ47 CAGQIVGINKLVF

14 TRAV25 TRAJ16 CAGRSDGQKLLL 30 TRAV35 TRAJ52 CAGPRRLNAGGTSYGKLTF

15 TRAV14/DV4 TRAJ9 CAMKTGGFKTIF 31 TRAV14/DV4 TRAJ52 CAMRDPSNAGGTSYGKLTF

16 TRAV12-2 TRAJ9 CAVKWDGGFKTIF

Table C.4: Mapping between representative IDs and α chain V genes, J genes and CDR3s
used in Figure 2.18A for the SARS-CoV-2 single cell analysis comparison be-
tween Single Tag Decombinator and MiXCR. Blank CDR3s represent where
the V and J gene have been annotated as directly joining one another with no
insert.

ID V J CDR3 ID V J CDR3

1 TRBV5-1 TRBJ2-5 CASSLWAGGETQYF 24 TRBV4-3 TRBJ2-7 CASSQVSGSGYEQYF

2 TRBV13 TRBJ1-2 CASSLIGQGGYTF 25 TRBV7-3 TRBJ2-3 CASSLGGGSTDTQYF

3 TRBV13 TRBJ1-2 CASSLFGQGGYTF 26 TRBV20-1 TRBJ1-2 CSVTRTYPRCYTF

4 TRBV7-3 TRBJ1-2 CASSLIGQGGYTF 27 TRBV28 TRBJ2-7 CASSSVGSNEQYF

5 TRBV2 TRBJ2-6 28 TRBV27 TRBJ2-7 CASRELDGYEQYF

6 TRBV4-2 TRBJ2-1 CASSQTVGQGYEQFF 29 TRBV5-1 TRBJ2-7 CASSVWTGVGYEQYF

7 TRBV9 TRBJ2-3 CASSEGQGSTDTQYF 30 TRBV20-1 TRBJ1-2

8 TRBV5-1 TRBJ1-2 CASSLIGQGGYTF 31 TRBV14 TRBJ2-1 CASSQDLYNEQFF

9 TRBV12-4 TRBJ1-5 CASSVRAPGQPQHF 32 TRBV20-1 TRBJ1-2 CSVTRTHPRYYTF

10 TRBV12-4 TRBJ1-5 CASSVRAPVQPQHF 33 TRBV28 TRBJ2-7 CVSSSVGSNEQYF

11 TRBV12-4 TRBJ1-5 CASSVRAPGQQQHF 34 TRBV2 TRBJ2-2 CASSDPTSGELFF

12 TRBV13 TRBJ1-5 CASSVRAPGQPQHF 35 TRBV7-3 TRBJ2-3 CASSLGGSSTDTQYF

13 TRBV9 TRBJ1-5 CASSVRAPGQPQHF 36 TRBV26 TRBJ2-3 YASSLGGSSTDTQYF

14 TRBV6-4 TRBJ1-5 CASSVRAPGQPQHF 37 TRBV13 TRBJ1-2

15 TRBV13 TRBJ1-2 CASSLIGQGSYTF 38 TRBV6-5 TRBJ2-6 CASSLGQEGANVLTF

16 TRBV4-1 TRBJ2-3 CASSVGGGSDTQYF 39 TRBV13 TRBJ2-6 CASSLGQEGANVLTF

17 TRBV16 TRBJ2-1 CASSQDLYNEQFF 40 TRBV4-1 TRBJ2-7 CASSQVSGVGYEQYF

18 TRBV20-1 TRBJ1-2 CSVTRTHPRCYTF 41 TRBV4-3 TRBJ2-7 CASSQVSGVGYEQYF

19 TRBV7-9 TRBJ1-6 CASSLAGQGDGSPLHF 42 TRBV16 TRBJ1-5 CASSPDQGAPQHF

20 TRBV6-9 TRBJ2-7 CASSYTTSPHEQYF 43 TRBV23-1 TRBJ1-3 CASSHLSGTGHPLRRSGNTIYF

21 TRBV6-6 TRBJ2-7 CASSYTTSPHEQYF 44 TRBV16 TRBJ1-5 CANSPDQGAPQHF

22 TRBV27 TRBJ2-7 CASSYTTSPHEQYF 45 TRBV3-2 TRBJ1-5 CASSPDQGAPQHF

23 TRBV4-1 TRBJ2-7 CASSQVSGSGYEQYF 46 TRBV12-4 TRBJ2-5 CASSLLAGGLETQYF

Table C.5: Mapping between representative IDs and β chain V genes, J genes and CDR3s
used in Figure 2.18B for the SARS-CoV-2 single cell analysis comparison be-
tween Single Tag Decombinator and MiXCR. Blank CDR3s represent where
the V and J gene have been annotated as directly joining one another with no
insert.
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ID Cell ID Cell ID Cell

1 P3_A01_S25 17 P3_B05_S81 33 P3_C09_S137

2 P3_A02_S27 18 P3_B06_S83 34 P3_C10_S139

3 P3_A03_S29 19 P3_B07_S85 35 P3_C11_S141

4 P3_A04_S31 20 P3_B08_S87 36 P3_C12_S143

5 P3_A05_S33 21 P3_B09_S89 37 P3_D01_S169

6 P3_A06_S35 22 P3_B10_S91 38 P3_D02_S171

7 P3_A07_S37 23 P3_B11_S93 39 P3_D03_S173

8 P3_A08_S39 24 P3_B12_S95 40 P3_D04_S175

9 P3_A09_S41 25 P3_C01_S121 41 P3_D05_S177

10 P3_A10_S43 26 P3_C02_S123 42 P3_D06_S179

11 P3_A11_S45 27 P3_C03_S125 43 P3_D07_S181

12 P3_A12_S47 28 P3_C04_S127 44 P3_D08_S183

13 P3_B01_S73 29 P3_C05_S129 45 P3_D09_S185

14 P3_B02_S75 30 P3_C06_S131 46 P3_D10_S187

15 P3_B03_S77 31 P3_C07_S133 47 P3_D11_S189

16 P3_B04_S79 32 P3_C08_S135 48 P3_D12_S191

Table C.6: Mapping between representative IDs and cell names used in Figure 2.18 and
Figure C.1 for the SARS-CoV-2 single cell analysis comparison between Single
Tag Decombinator and MiXCR.

ID CDR3 ID CDR3

1 CAVSGPQGSARQLTF 14 CAMKTGGFKTIF

2 CVVNPPSAGNNRKLIW 15 CAVKWDGGFKTIF

3 CAMREGTGFQKLVF 16 CAVTPLGSSASKIIF

4 CAVAVMALGRLYF 17 CAVNALYNQGGKLIF

5 CAMNNNLFF 18 CDVNALYNQGGKLIF

6 19 CATGGNNRLTF

7 CIVSALLRESYQLTF 20 CAVQAEGFGNVLHC

8 CAGWAEGWGKLQF 21 CAMRVQLNDMRF

9 CATGGNNRLAF 22 CVGPNQAGTALIF

10 CAGPNQAGTALIF 23 CAPRGPGSARQLTF

11 CAGQWAGGTSYGKLTF 24 CAGQIVGINKLVF

12 CAGRSDGQKLLF 25 CAGPRRLNAGGTSYGKLTF

13 CAGRSDGQKLLL 26 CAMRDPSNAGGTSYGKLTF

Table C.7: Mapping between representative IDs and α chain CDR3s used in Figure C.1A
for the SARS-CoV-2 single cell analysis comparison between Single Tag De-
combinator and MiXCR. Blank CDR3s represent where the V and J gene have
been annotated as directly joining one another with no insert.
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ID CDR3 ID CDR3

1 CASSLWAGGETQYF 17 CASSLGGGSTDTQYF

2 CASSLIGQGGYTF 18 CSVTRTYPRCYTF

3 CASSLFGQGGYTF 19 CASSSVGSNEQYF

4 20 CASRELDGYEQYF

5 CASSQTVGQGYEQFF 21 CASSVWTGVGYEQYF

6 CASSEGQGSTDTQYF 22 CSVTRTHPRYYTF

7 CASSVRAPGQPQHF 23 CVSSSVGSNEQYF

8 CASSVRAPVQPQHF 24 CASSDPTSGELFF

9 CASSVRAPGQQQHF 25 CASSLGGSSTDTQYF

10 CASSLIGQGSYTF 26 YASSLGGSSTDTQYF

11 CASSVGGGSDTQYF 27 CASSLGQEGANVLTF

12 CASSQDLYNEQFF 28 CASSQVSGVGYEQYF

13 CSVTRTHPRCYTF 29 CASSPDQGAPQHF

14 CASSLAGQGDGSPLHF 30 CASSHLSGTGHPLRRSGNTIYF

15 CASSYTTSPHEQYF 31 CANSPDQGAPQHF

16 CASSQVSGSGYEQYF 32 CASSLLAGGLETQYF

Table C.8: Mapping between representative IDs and β chain CDR3s used in Figure C.1B
for the SARS-CoV-2 single cell analysis comparison between Single Tag De-
combinator and MiXCR. Blank CDR3s represent where the V and J gene have
been annotated as directly joining one another with no insert.
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Decombinator Tools

The Decombinator-Tools repository (https://github.com/innate2adapti

ve/Decombinator-Tools) hosts a number of scripts that may be of used when

working with Decombinator. An overview of these scripts is provided below, and a

full README of operating instructions is provided within the repository.

collapsed_sample_overlap.R

This script can be used to measure the TCR overlap (using the DCR identifier) of

samples produced using Collapsinator from Decombinator V4. The path to col-

lapsed files should be supplied as input, and overlap heatmaps are generated as

output. This script was used to generated the plots in Figure 2.10, and was written

in R by Dr Tahel Ronel.

DCRtoGeneName.py

This script can be used to automatically convert the V and J tag indices in a file of

DCR identifiers (used as a shorthand by the Decombinator pipeline scripts) to V

and J gene names. For example, the identifier:

30, 37, 8, 7, CTGGGG

becomes:

TRAV38-2/DV8, TRAJ48, 8, 7, CTGGGG

https://github.com/innate2adaptive/Decombinator-Tools
https://github.com/innate2adaptive/Decombinator-Tools
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This was a legacy script that has been recently upgraded to Python 3 and refac-

tored to run from Decombinator-Tools as part of the Decombinator V4 release. The

original code was written by Dr James Heather.

ExactSearch.py

This script performs searches for exact subsequences in FASTQ data. While it does

not account for sequence mismatches, it can be useful as a rapid assessment that

subsequences of interest are within frame for the reads produced by experiment.

The script takes a FASTQ file to be searched, and a file listing subsequences

to search for, as input arguments. Additional arguments can be included to also

search the data for the reverse, the complement, and the reverse complement of the

supplied subsequences. An output FASTQ file is generated for each subsequence

containing all reads of the original FASTQ file that feature that subsequence. This

feature can be suppressed through an input argument. The output files are written

to an output directory named after the input FASTQ file, which is in turn stored in

the “ExactSearchResults” directory (which is created if it does not exist), alongside

a log file summarising the total counts of each subsequence.

ExactSearchLogSummary.py

This script can be used to generate a summary of log files produced by the

ExactSearch script. Log files are collated from each subdirectory in the “Ex-

actSearchResults” directory. A table is constructed listing the file, line count, read

count, average read length, and number of subsequence matches found, for each

log file. This can be useful for the quick assessment that subsequences of interest

feature in multiple FASTQ files.

LogSummary.py

This script collates log file data stored in the Logs directory produced during De-

combinator and Collapsinator runs. An output comma-separated values (.csv) file

is generated summarising quantitative information from the run, including total and

unique DCR counts, average RNA duplication, and a measure of average sequence

quality. This can be useful in quickly providing a broad overview of how many hits
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were found for various samples at once.

This was a legacy script that has been recently upgraded to Python 3 and refac-

tored to run from Decombinator-Tools as part of the Decombinator V4 release. The

original code was written by Dr Mazlina Ismail. Additionally, a file of sample

names can be provided as an input argument to the script as an ordering for the final

report. If not included, the report will contain samples containing “alpha” in their

name, followed by those containing “beta”, followed by any additional samples that

contain neither, all sorted alphabetically.

RandomlySample.py

This script can be used to randomly sub-sample a file produced from the Decombi-

nator pipeline down to a specified sample size.

This was a legacy script that has been recently upgraded to Python 3 and refac-

tored to run from Decombinator-Tools as part of the Decombinator V4 release. The

original code was written by Dr James Heather.

RunTestData.py

The Decombinator-Test-Data repository (https://github.com/innate2adapti

ve/Decombinator-Test-Data) contains a set of multiplexed data files produced

by the Chain lab experimental protocol. It provides a convenient starting point for

users who wish to test their installation of Decombinator, as well as an end-to-end

test case for developers when modification is made to the pipeline.

The RunTestData.py script will attempt to automatically complete an end-to-

end analysis of the test data using the Decombinator pipeline — that is to say, it will

attempt to run the data set through the Demultiplexor, Decombinator, Collapsinator,

and CDR3translator scripts in order. Users can choose to set start and stop check-

points for the script — for example, running data only through Demultiplexor and

Decombinator, or from only Collapsinator onwards, and so on.

SortSummary.py

This script can be used to sort the summary files generated by the LogSummary

script. The script takes the log summary file and a file of sample names as input

https://github.com/innate2adaptive/Decombinator-Test-Data
https://github.com/innate2adaptive/Decombinator-Test-Data
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arguments, and outputs a new summary sorted according to the sample sheet.

TestDataGenerator.py

This script can be used to produce custom FASTQ files as test input data for the De-

combinator script. It should be noted that this data is not simulated from biological

principles (it does not simulate recombination of genes, or error through sequencing

or PCR amplification), but creates data using the set of V and J tags used as part of

the Decombinator algorithm, and according to user-specified information. V and J

tags are chosen at random for each generated TCR read.

The test generator provides customisability allowing users to choose one of

the two oligonucleotide protocols used by the Chain lab (“I8” or “M13”), one of

two species (mouse or human), and whether the reads should be or not be (entirely

or partially) reverse-complemented. Test data can be produced with or without

barcodes, and can be run to use only a single V or J tag when building each read, to

generate data for Single Tag Decombinator (Section 2.4). By default, the script will

produce both an exclusive α and an exclusive β FASTQ file, but users may specify

the output files to contain a mixture of α and β reads if they wish. Finally, users

may also specify the read length (before barcoding), the barcode length, the total

number of reads, the percentage of reads that contain TCRs, and the percentage of

reads containing one sequencing error.

UMIHistogram.py

Users can choose to generate a data file containing the average size of the UMI

cluster sizes associated with each DCR when running Collapsinator. This script can

be used to generate a histogram plot from the data file, which can be useful when

investigating the effects of PCR amplification on the sample. Input arguments make

it easy to quickly customise the number of bins, and the colour and DPI (Dots Per

Inch) of the resultant plot.

Recipes

The “recipes” directory contains a number of bash shell scripts that can be useful

for running the pipeline scripts over multiple input files in parallel. Additionally, a
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submission script is provided for running the Decombinator test data set through the

entire pipeline on cluster or grid computing systems that make use of job schedul-

ing. Typical data analysis jobs using Decombinator in the Chain lab are run on

the Myriad cluster at University College London. This script may serve as a tem-

plate for running customised analysis using similar computing resources. These

templates were written by the thesis author and by Professor Benny Chain.



Appendix E

Binding Residue Specification

Formatting

For each of the benchmark docking cases, and for each docking scenario, the

residues involved in the binding interface were determined. These residues were au-

tomatically formatted for use in the four docking platforms - ClusPro, HADDOCK,

LightDock and ZDOCK.

ClusPro

Listing E.1 and Listing E.2 provide the ClusPro format for the receptor and ligand

residues respectively for example case 1AO7 for Scenario 4. These can be immedi-

ately pasted into the two boxes in the attraction section in Advanced options

on the ClusPro web server docking page.

D-2 D-26 D-27 D-28 D-29 D-37 D-38 D-57 D-58 D-63 D-82 D-107 D-108

D-109 D-110 D-113 D-114 E-37 E-107 E-110 E-111 E-112 E-113 E-114

E-115

Listing E.1: ClusPro format for receptor residues involved in the binding interface using

Scenario 4 information for the benchmark case 1AO7.
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A-58 A-65 A-66 A-68 A-69 A-72 A-73 A-149 A-150 A-151 A-154 A-155

A-158 A-159 A-163 A-166 A-167 A-170 C-1 C-2 C-3 C-4 C-5 C-6 C-7

C-8

Listing E.2: ClusPro format for ligand residues involved in the binding interface using

Scenario 4 information for the benchmark case 1AO7.

HADDOCK

Listing E.3 and Listing E.4 provide the HADDOCK format for the receptor and

ligand residues respectively for example case 1AO7 for Scenario 4. These can be

immediately pasted into the active residues boxes for the receptor and ligand

respectively in the input parameters tab on the HADDOCK web server docking

submission page.

The digression from the usual numbering scheme should be noted here. The

HADDOCK web server requires that each component in the docking features only

a single chain ID. Consequently, a mask was applied to the input PDB files such

that the chain ID of both α and β chains of the TCR were set to A, and the chain ID

of the peptide and two MHC components were set to B. To avoid clashes in residue

ID in a single component, an additional mask was applied. The second TCR chain

has a value of 1000 temporarily added to each residue ID. The second and third

pMHC chains had values of 1000 and 2000 added to each residue ID respectively.

After modelling with HADDOCK, the reverse of these operations was performed to

return to the standardised chain and residue labelling. All the benchmark cases can

be found formatted for HADDOCK according to this description in the haddock

directory at https://github.com/innate2adaptive/ExpandedBenchmark.

2, 26, 27, 28, 29, 37, 38, 57, 58, 63, 82, 107, 108, 109, 110, 113,

114, 1037, 1107, 1110, 1111, 1112, 1113, 1114, 1115

Listing E.3: HADDOCK format for receptor residues involved in the binding interface

using Scenario 4 information for the benchmark case 1AO7.

https://github.com/innate2adaptive/ExpandedBenchmark
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58, 65, 66, 68, 69, 72, 73, 149, 150, 151, 154, 155, 158, 159, 163,

166, 167, 170, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008

Listing E.4: HADDOCK format for ligand residues involved in the binding interface using

Scenario 4 information for the benchmark case 1AO7.

LightDock

Listing E.5 provides the LightDock format for the receptor and ligand residues

for example case 1AO7 for Scenario 4. Receptor residues are given the prefix

R and ligand residues the prefix L. Scenario 4 features only active residues. If

passive residues are to be included, they should feature the additional P flag, e.g.

R D.LYS.2 P. These formatted restraints are saved to a file which is provided to

LightDock via an input argument.

R D.LYS.2

R D.SER.26

R D.ASP.27

R D.ARG.28

R D.GLY.29

R D.GLN.37

R D.SER.38

R D.TYR.57

R D.SER.58

R D.ASN.63

R D.LYS.82

R D.THR.107

R D.THR.108

R D.ASP.109

R D.SER.110

R D.TRP.113

R D.GLY.114

R E.GLU.37



197

R E.ARG.107

R E.LEU.110

R E.ALA.111

R E.GLY.112

R E.GLY.113

R E.ARG.114

R E.PRO.115

L A.GLU.58

L A.ARG.65

L A.LYS.66

L A.LYS.68

L A.ALA.69

L A.GLN.72

L A.THR.73

L A.ALA.149

L A.ALA.150

L A.HIS.151

L A.GLU.154

L A.GLN.155

L A.ALA.158

L A.TYR.159

L A.THR.163

L A.GLU.166

L A.TRP.167

L A.ARG.170

L C.LEU.1

L C.LEU.2

L C.PHE.3

L C.GLY.4

L C.TYR.5

L C.PRO.6

L C.VAL.7
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L C.TYR.8

Listing E.5: LightDock format for residues involved in the binding interface using Scenario

4 information for the benchmark case 1AO7.

ZDOCK

Receptor and ligand residues involved in the binding interface are individually sup-

plied to the ZDOCK web server using the residue selection screen. This is extremely

cumbersome if performing a large number of docking runs. The manual selection

problem was bypassed by generating custom JavaScript for each docking case that

can be pasted into the developer tools console of the web browser to automatically

select all relevant residues. This procedure was performed using Google Chrome,

and is functional in the latest version 92.0.4515.107. Listing Listing E.6 provides

the ZDOCK JavaScript for the receptor and ligand residues for example case 1AO7

for Scenario 4.

// receptor

var x = document.getElementsByName("nonContactRec[]")[0].options;

for(var i=0;i<x.length;i++){

var res = x[i].text.split(" ");

var res = res[0] + " " + res[1] + " " + res[2]

if(['2 Chain D', '26 Chain D', '27 Chain D', '28 Chain D', '29

Chain D', '37 Chain D', '38 Chain D', '57 Chain D', '58 Chain

D', '63 Chain D', '82 Chain D', '107 Chain D', '108 Chain D',

'109 Chain D', '110 Chain D', '113 Chain D', '114 Chain D', '37

Chain E', '107 Chain E', '110 Chain E', '111 Chain E', '112

Chain E', '113 Chain E', '114 Chain E', '115 Chain

E'].includes(res)){

x[i].selected=false;

}

else{

x[i].selected=true;

}
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}

// ligand

var x = document.getElementsByName("nonContactLig[]")[0].options;

for(var i=0;i<x.length;i++){

var res = x[i].text.split(" ");

var res = res[0] + " " + res[1] + " " + res[2]

if(['58 Chain A', '65 Chain A', '66 Chain A', '68 Chain A', '69

Chain A', '72 Chain A', '73 Chain A', '149 Chain A', '150 Chain

A', '151 Chain A', '154 Chain A', '155 Chain A', '158 Chain A',

'159 Chain A', '163 Chain A', '166 Chain A', '167 Chain A',

'170 Chain A', '1 Chain C', '2 Chain C', '3 Chain C', '4 Chain

C', '5 Chain C', '6 Chain C', '7 Chain C', '8 Chain

C'].includes(res)){

x[i].selected=false;

}

else{

x[i].selected=true;

}

}

Listing E.6: Custom ZDOCK JavaScript for residues involved in the binding interface

using Scenario 4 information for the benchmark case 1AO7.



Appendix F

CDR1 and CDR2 Modelling

Performance

Figure F.1: The RMSD of the TCR α chain CDR1 loop between the unbound TCR and
the reference structure versus that between each of the docked models and the
reference structure, for each complex. Loop flexibility modelling by HAD-
DOCK is shown in the top row and by LightDock in the bottom row. Models
are coloured by their quality according to the CAPRI criteria.
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Figure F.2: The RMSD of the TCR β chain CDR1 loop between the unbound TCR and
the reference structure versus that between each of the docked models and the
reference structure, for each complex. Loop flexibility modelling by HAD-
DOCK is shown in the top row and by LightDock in the bottom row. Models
are coloured by their quality according to the CAPRI criteria.

Figure F.3: The RMSD of the TCR α chain CDR2 loop between the unbound TCR and
the reference structure versus that between each of the docked models and the
reference structure, for each complex. Loop flexibility modelling by HAD-
DOCK is shown in the top row and by LightDock in the bottom row. Models
are coloured by their quality according to the CAPRI criteria.
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Figure F.4: The RMSD of the TCR β chain CDR2 loop between the unbound TCR and
the reference structure versus that between each of the docked models and the
reference structure, for each complex. Loop flexibility modelling by HAD-
DOCK is shown in the top row and by LightDock in the bottom row. Models
are coloured by their quality according to the CAPRI criteria.
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Colophon

This document was set in the Times Roman typeface using LATEX and BibTEX,

drafted in the Sublime text editor, and composed with Overleaf.
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