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Abstract

Parkinson’s disease (PD: is a progressive neurodegenerative disorder
characterised by motor and cognitive symptoms. The pathology hallmarksinclude
alpha-synuclcin aggregation and predominant dopaminergic ccll loss in the
midbrain. Advancing age is thc main risk-factor and the rcasons bchind
development of non-hereditary Parkinson’s discasc remain largely unknown.
Although much cffort has gone into finding biomarkers, there are currently no

specificbiomarkers allowing for screening of PD.

Aiming todiscover new biomarkers and affected pathways for PD, and to probe the
divergence between healthy and non-healthy ageing, discovery protcomics was
performed and followed by a targeted validation. The protein expression
associated with Parkinson’s disease and healthy ageing was explored using a label-
free, bottom-up mass spectrometry-based discovery methodology applied to
serum, plasma and urine from Parkinson’s discase patients, and plasma from
cognitively healthy centenarians, all groups matched with controls. The discovery
phase identified several proteins putatively related to Parkinson’s disease and to
longevity in the centenarians. Pathway analysis suggested an altered inflammatory
responseinboth groups. Thebiomarker targets which emerged from the discovery
phase were developed into a mass spectrometric, multiple reaction monitoring-
based assay, augmented with inflammatory proteins from the literature, and
applied to new and larger sample cohorts. Several proteins from the pathways were
successfully confirmed in the targeted validation phase, and the results indicated
activation of the unfolded protein response, reduced Wit signalling and increased
complement-mediated inflammation in the Parkinson’s patients. In  the
centenarians, a longevity-promoting protein  expression  consisting  of
downregulated C3 and upregulated A2M and ADIPOQ was identified. Supervised
machine learning models were trained to classify individuals as PD or healthy
controls, and when predicting new samples, Parkinson’s discase patients and
controls could be discriminated perfectly in plasma and with 8517 accuracy in

urine.



1 mpacf Statement

Worldwide, approximately 1% of the population over the age of 65 develop
Parkinson’s disease, and roughly 47 after the age of 85. Therefore, thereisaneed for
biomarkers of PD, not only for diagnosis and to follow the discasc progression, but
to also monitor new therapics as they are developed. Although significant cfforts
have goncinto finding discasc-specificbiomarkers, nonchave yet proven successful
and conscquently, the diagnosis is sct clinically, often at a relatively late stage of the
discasc when a large proportion of the dopamincrgic ncurons have been lost. The
discovery of new biomarkers, especially for prodromal and carly stages of PD,
would have a significant impact on the understanding of the mechanisms behind
the discasc and also the possibilitics of finding new drug targets. Most fluid
biomarker studies of PD have focused on cerebrospinal fluid because of its
proximity to the central nervous system. However, because of the highly invasive
nature of the lumbar punctures used to sample cerebrospinal fluid, it may not be the

most ideal choice of sample for routine screening of Parkinson’s disease.

Due to their less invasive sampling methodology and case of access, the biofluids
blood and urine were evaluated for feasibility in neurodegenerative biomarker
discovery in this work. Several putative biomarkers were identified by untargeted
mass spectrometry and developed into a mass spectrometric targeted test. Using
machine learning modelling, a panel of biomarkers measured in the targeted test
could discriminate perfectly between newly diagnosed Parkinson’s discase
patients and healthy controls in plasma. In urine, the discriminating accuracy was
85.17. Although further refining and testing for robustness and reproducibility is
needed, these results show great promise and speak in favour of using urine and
plasmain biomarker discovery studies of neurodegenerative disease.

A mass spectrometric blood- or urine-based test for risk of Parkinson’s discase
would be highly beneficial, given the relatively non-invasive sampling compared to
lumbar punctures, and because of the speed, accuracy, and cost-efficiency of
targeted mass spectrometric assays. This test could be used for screening and
confirmation of Parkinson’s discase and could aid in capturing individuals in carly
stages of the discase, before severe dopaminergic neuron loss has occurred. Thus,
treatment could be commenced earlier.

Finally, the protein expression obscerved in the targeted analysis pointed towards a
reduction in Wit/ 3-catenin signalling in the PD patients. Wat signalling is critical
for brain homeostasis and, importantly, maintenance of dopaminergic neurons.
Wnt signalling in the early stages of Parkinson’s disease should be explored further

and may better the understanding of the discasc.
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CHAPTER 1

1.1 WHAT IS BIOMARKER DISCOVERY?

In1998, the National Institutes of Health Biomarkers Definitions Working Group defined

abiomarker as:

“a characteristic that is objectively measured and evaluated as an
imdicator of normal biological processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention” 1

Anidcal biomarker should be specific to the discasc in question and preferably reflect the
pre-symptomatic stage and discasc progression. It must be stable over time, and it is
desirable that it changes in response to disecase-modifying treatment. Biomarkers can be
metabolites, proteins, or genes| 2 |, butalso other types of chemical and biological entities.
Biomarkers are routinely used in clinical practice and have several meaningful
applications, ranging from disease screening to diagnosis of different conditions and
indication of disease severity. Examples of established biomarkers commonly utilised in
clinical medicine include blood glucose elevation used to diagnose diabetes [ 3, creatinine
levels in urine and blood to indicate renal failure 4 , and levels of C-reactive proteinasa
marker of inflaimmation and response to antibiotic treatment 5, 6 |. One of the most
successful applications of biomarker monitoring can be found in inborn errors of
metabolism. These inherited conditions are often caused by a defect in a protein-coding
gene and lead to a lack of functioning protein, thus causing a blockage in a certain
metabolic pathway and accumulation or decrease of specific metabolites. Many countries
therefore perform population screening, monitoring relevant metabolites using targeted

mass spectrometry | 7,8].

Biomarkers are undoubtedly valuable and therefore much sought after. Tremendous
efforts have been applied into finding biomarkers for diagnosis in common
neurodegenerative conditions, such as Alzheimer’s and Parkinson’s discases. In these
complex and heterogenous phenotypes, where the cause of discase is largely unknown,
this is a combined endeavour of finding biomarkers not only for diagnosis, but also to
identify biochemical mechanisms and affected pathways thereby allowing for better
understanding of the discasc and development of treatments. For some discasces, such as
the ones observed in inborn errors of metabolism, single key biomarkers capable of
diagnosing disease have been identified. However, especially for complex conditions
where there has not been one pivotal discovery pinpointing the cause of discasc, the
efforts are increasingly going into finding panels of compounds, a “fingerprint”, which can

diffcrentiate discase from control 9|,
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Biomarker discovery can be performed utilising any of the “omics” techniques, where
genomics studies DNA molecules, transcriptomics studies RNA, protcomics studies
protcins and metabolomics study metabolites 10, Figure 1-1 gives a simplified overview

of the omics technologies and examples of the instrumentation used.

Omics: GENOMICS TRANSCRIPTOMICS PROTEOMICS METABOLOMICS

Studies: Genome Transcriptome

Application examples:  *

Figure 1-1. Major omics technologics and cxamples of their applications. Genomics studies the genome and
applications include genomic sequencing and GWAS studies. Transcriptomics studies the transcriptome and is often
applied to sequence RNA and to study post-translational modifications. Proteomics studies the proteome, applications
include protein profiling and post-translational modification studies. Metabolomics studies the metabolome and is applied
for metabolic profiling, and also the identification of metabolites.

The experiments in this thesis investigate proteomic biomarkers of Parkinson’s disease
and healthy ageing using mass spectrometry-based techniques, therefore the focus of this
introductory chapter will be on proteomics, the instrumentation and analytical pipelines

used, and the current status of biomarkers in the two fields.
1.1.1 Steps involved in the biomarker discovery workflow

Thepipeline for any biomarker discovery study canbe dividedinto three distinct umbrella

phases: (i) discovery, (i’ validation verification and (iii) clinical evaluation 11 In the
initial discovery phase, a small number of well-characterised samples are analysed in an
unbiased manner, attempting to measure a maximum of endogenous compounds present
in a sample. In the validation verification phase, putative biomarkers from the discovery
phase are developed into a targeted test utilising an analytical platform different from the
one used in the discovery study. This is then applied to a new and larger set of samples,
typically consisting of more than onc hundred subjects. The putative biomarkers which
are successfully validated can thereafter be evaluated in much larger sample sets to assess
their robustness and viability in a clinical test. Figure 1-2 shows a graphical illustration of

the numbers of samples and analytes typically involved in the three steps of process.

]
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Figure 1-2. Biomarker discovery workflow describing the numbers of samples and analytes in the different
phases. In the discovery phase, a small group of well-defined samples are analysed, generating a large number of analytes,
represented by filled hexagons. In the validation verification phase, a larger number of samples, typically more than 100,
are analysed, measuring only the compounds of interest selected from the discovery phase. In the clinical evaluation phase,
the biomarkers whichwere verified in the validation phase are measured invery large numbers of samples to ensure that the
markers are robust

1.2 LIQUID CHROMATOGRAPHY COUPLED
WITH MASS SPECTROMETRY

Proteomic analyses, both targeted and untargeted, are frequently performed using liquid
chromatography (L.C paired with mass spectrometry (MS . The L.C system separates
compounds based on their chemical properties and the mass spectrometer separates and
detects the compounds based on their molecular weights and charges. The retention time
a molecule elutes from a column is extremely consistent using modern pumps and
chromatographic columns, allowing another dimension of identification. The coupling
of the two techniques provides a powerful tool for the separation and detection of

proteins presentina sample.

1.2.1 Liquid Chromatography

Liquid chromatography is a scparation technique which can be used to separate and
purify analytes of interest. It is commonly used to reduce the complexity of the sample

reaching a detector; andor to separate compounds to facilitate identification. A

rudimentary LC system consists of a column packed with a stationary solid phasc and a
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liquid mobile phase pumped through the column. The mobile phase customarily consists
of two separate solutions, delivered to the column in different proportions throughout
the run to manipulate the analyte separation. The chemistry of the stationary and mobile
phascs can be tailored to suit the intended application depending on its requircments.
Thereis awiderange of column chemistries and the utility of them can broadly be divided
into two umbrclla categorics — normal phasc applications and reversed phase
applications. The normal phasc applications arc generally tailored towards polar
compounds, making them useful for biochemical analyses of sample matrices containing
alarge proportion of polar analytes, such as urinary metabolites |12 . Reversed phase LC
has a wide range of applications and is often employed in studies of more hydrophobic
molecules, such as metabolite and peptide screening experiments, due to its all-around

ability to separate compounds based on their polarities 13,14 .

Reversed phase is arguably the most common procedure for liquid chromatography
separations. Reversed phase applications encompass a non-polar stationary phase with
spherical silica-based particles bonded with hydrocarbon chains, generally alkyls with
four to 18 carbons, and a mobile phase with high aqueous content. The separation of
analytes is mainly achieved by hydrophobic interaction and solute transfer between the
aqueous-rich mobile phase and non-polar stationary phase. The order of analyte elution

goes from more polar tolesspolar 15].

Normal phase applications generally consist of asilica-based polar stationary phase and an
aqueous or organic mobile phase, depending on the application. An important and much
used sub-category of normal phase chromatography is hydrophilic interaction
chromatography (HILIC), an efficient technique for separating polar compounds. In
HILIC, the stationary phase can be neutral, charged or zwitterionic, and the mobile phase
is composed of a high amount of organic solvent. The separation of analvtes is chictly
determined by the analytes” hydrophilic partitioning between the highly organic mobile
phase and an aqueous layer formed on the stationary phase [16]. The order of analyte

elution generally goes from less polar to more polar.

Additionally, there are hybrid column chemistries utilising a combination of the reversed
and normal phase properties. There are also applications combining different column
chemistries in series, thus allowing for highly specific separations. Figure 1-3 shows an
illustration of diffcrent column chemistrics and mobile phasce systems commonly utilised

to scparate analytes in biochemical applications.
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Figurce 1-3. Tllustration of liquid chromatography column chemistries, mobile phase systems and analytes.
Column chemistry shows stationary phase polarity, from non-polar C18 commonly used in reversed phase applications to
polar HILIC and silica, used in normal phase applications. Mobile phase system shows the highly polar system used for
reverse phase applications, where the mobile phase gradient starts as highly aqueous and moves towards organic, and the
highly non-polar mobile phase system utilised in HILIC applications, initiated with high organic and moving towards
aqueous. The analyte polarity shows a scale of increasing polarity of functional groups.

1.2.1.1 Theory of liquid chromatography separations

Liquid chromatography separations are generally performed with the aim of obtaining
the best possible resolution in the shortest amount of time. The success of this aim is
governed by chemical and physical properties of the column and mobile phase, and by the

applied temperature and flow rate 17 .

The time an analyte remains on a column is determined by its affinity for the mobile and
stationary phases. By utilising a suitable mobile phase and a well-designed elution
gradient, the elution can be manipulated to render selectivity and maximum separation
between analytes. The time a non-retained analyte takes to reach the detector isknown as
the dead time (7o) of the system while the time it takes a retained analyte to reach the
detector is known as retention time (#g . The base peak width is denoted by @ and the
width of a peak at half of its hcigh is denoted by wi.. Figure 1-4 shows an example
chromatogram of two analyte peaks including the terms used to describe the propertics

of the clution and scparation.
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The flow rate with which the mobile phase is pumped through the column, the system’s

dead volume, column temperature, the diameter of the column and particle size affect

Retention fime, £}y

scparation, scnsitivity and resolution,
and must be thercfore be  carefully
optimised 17 . The chromatographic Fetention fime: sy
scparation of analytes prior to detection

is crucial in most applications, but Pealk wich of half

peak height, Wy
especially so in untargeted biochemical
analyses as the samples arc  highly
: Dead fime, £,
complex and the overarching goal is to
measure the largest number possible of
compounds present in a sample. Bose peok width, &yy)  Base peak width, &y

Figure 1-4. Artificial chromatogram describing the
nomenclature of dead time, retention time and peak
spectrometers are capable of detecting  Width.

Although ~ high  resolution  mass

multiple coeluting compounds simultaneously, chromatographic separation reduces the
impact of issues such as matrix suppression and detector saturation. Moreover, the
analysis time should be kept as short as possible. Therefore, it is necessary to employ a
liquid chromatography method which efficiently separates and distributes the analytes
across the chromatogram as evenly as possible, thereby allowing the detector sufficient

time to detect the greatest number of compounds possible in the shortest amount of time.

1.2.1.2 Ultra performance liqguid chromatography

Modern I.C systems used for biochemical analyses often employ a technology known as
ultra performance liquid chromatography (UPLC . This is a technique which builds on
the advances of its predecessor, high performance liquid chromatography (HPLC). The
major differences between the two techniques are system pressure tolerance, stationary
phase particle size and column diameter. In HPLC, the maximum system pressure is
around 500 bar whereas in UPLC, it is around 1000 bar. In HPLC, the stationary phase
particle size is 5 - 10 um, whilc in UPLC, it is bclow 2 pm. The column diameter in [TPLC
is typically 3.0 - 4.6 mm and in UPLC it is typically 1.0 — 2.1 mm| 18 |. Smaller particle sizc
generates more cfficient  chromatography and since system pressure is directly
proportional to solvent viscosity, column length and flow rate, higher pressure tolerance
limits allow for more rapid applications. Overall, UPLC grants increased sensitivity, more
cfficient chromatographic scparation in a shorter amount of time, with the added

advantage of reduced solvent consumption duc to smaller column diameters [ 19 .
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1.2.1.3  Two-dimensional nano liquid chromatography

As desceribed in section 1.2.1.1, chromatographic scparation is cssential as it reduces the
complexity of the sample rcaching the mass spectrometer and thereby allows more
proficient detection of analytes present in a sample. In untargeted proteomics, which is
used for discovery studies, the overall aim is to achieve the greatest possible coverage of
the proteins presentinasample ata certain time, therefore maximum sensitivity is crucial.
To achieve this, two-dimensional nano-L.C applications (2D-L.C)) are commonly applied.
In nano-L.C, the inner diameter of the column is generally 50 — 75 um and the flow rate is
between 200 and 400 nL. min. The increased sensitivity of nano applications compared
to UPLC is mainly achieved by reduced dilution of the chromatographic bands, thus
analytes clute from the column in more concentrated bands [ 20 . Additional advantages
of the miniaturisation are reduced solvent consumption and minimal required sample

volumes.

To further enhance sensitivity in protcomics applications, sample fractionation is often
performed. The aim of this procedure is to reduce the complexity of the sample by
dividing it into smaller parts which are analysed separately. Sample fractionation can be
performed “offline” as part of the sample preparation, or “in-line” during the
chromatographic separation. Both strategies have advantages and disadvantages. For the
experiments described in this thesis, in-line fractionation was performed. In this
methodology, two separate LC systems are operated in series and the sample is separated
in two dimensions, two-dimensional LC (2D-LC". The analytes are separated by two
different columns with high orthogonality and different separation mechanisms. A
common sctup,and the one used in our experiments, utilises areversed phase column and
abasic mobile phase in the first dimension, followed by a reversed phase column and an
acidic mobile phase in the second dimension 20, 21. The difference in separation
selectivity between the two LC dimensions is due to altered charge distribution in the
peptide chains with alteration of the mobile phase pH 22°. In practical terms, the
separation is performed by loading the sample onto the first-dimension column and
cluting the first fraction of analytes with a high pII mobile phasc onto the sccond-
dimension column, wherefrom the analytes are cluted with a low pII mobile phasc and
sent to the mass spectrometer for detection. The second fraction is thereafter eluted from
the high plI system in a scrics of “slugs” to the low pll system, and this procedurce is

repeated until all fractions have been analysed.
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In conclusion, 2D-LC is an efficient strategy of increasing the coverage of proteins in a
sample as it greatly reduces the sample’s complexity for downstream mass spectrometric

detection.

1.2.2 Mass Spectrometry
The first mass spectrometer was developed by J.J. Thompson in 1912 and was at that time
called a “parabola spectrograph” 23]. Since its invention, mass spectrometry has become
an invaluablc tool in a wide range of ficlds - from studics of the solar system to biology.
Mass spectrometry is often described as a somewhat enigmatic technology, and a
textbook on the subject humorously concludes:

“despite occasional mysteries, mass spectrometry is still highly

useful”[ 24

The fundamental principle of any mass spectrometer canbe divided into three stages 25 :

1 Generate ions in the gas phase

SN

Separate theions with respect to their mass-to-charge ratio (m/z)

~

OS]

Count the number of formed ions using a detector

Figure1-5showsahighly simplified schematic diagram of the process for two compounds,
AandB. Theseare first introduced to the MS through the sample inlet into the ion source.
From there, they are pulled from the ion source towards the mass analyser by the system’s
vacuum. The ionised compound A has a mass of 100 but since itis doubly charged (z - 2),
its resulting mass-to-charge ratio becomes mz — 50, while for the singly charged

compound B withamass of 80, the mass-to-charge ratioism/z - 80.

SAMPLE INLET ———— > |ION SOURCE ——— > MASS ANALYSER ——— > DETECTOR

Formation of charged ions Separate ions by m/z Detect and count the ions

DQD @9@@ @;@@9@;@

0 @ ¢ & &S

m=280,z=1

m

m/z = 80

INCREASINGLY LOW PRESSURE/VACUUM

Figure 1-5. Basic principle of mass spectrometry. Compounds A and B are introduced to the MS by the sample inlet.
They areionised inthe ion sourcewhere A has apositive double-charge and B has a positive single-charge, fromthere A and
Barepulled by the increasingly low pressure towards themass analyser where they ave separated based on their m |z ratios
(miz=50for A andmiz=80 for B), andfinally, the ions are detected and counted by a detector, three for A and two for B.
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Thereare several different techniques utilised for ionisation and mass analyser separation;
some examples include time-of-flight ( TOL, orbitrap, quadrupole, matrix-assisted laser
desorption ionization {MALDI), and clectrospray ionisation (ESI) techniques [26].
Iybrid-instrumentsarc common, where two or more of the massanalyser techniques are

combincd, thus bencfitting from their respective best traits.
1.2.2.1  lonisation

lonisation is a key step in any MS application, as only charged molecules can be detected.
Depending on the application, different ionisation techniques can be utilised. Apart from
thealready mentioned ESTand MALDI, other techniques, tailored towards the ionisation
of compound classes with certain characteristics, include atmospheric pressure chemical
ionisation,atmospheric pressure photo ionisation and desorption electrospray ionisation
27 . Throughout the experiments performed in this thesis, EST was utilised, therefore the

focus will be on this technique.

In proteomicapplications, soft ionisation techniques such as ESI dominate as they readily
produce multiply chargedions, thereby making it possible to analyse large molecules. ESI
has been said to provide “the wings of a molecular elephant” [ 28] as molecules with high
masses can be detected while intact. The soft ionisation is partly achieved because ion
transferisinitiated atatmospheric pressure and allows ions to move gradually towards the
vacuum of the mass analyser| 25 . lons are formed from the LC eluate which is converted
into an acrosol in the mass spectrometer’s ion source and sprayed into an electrostatic

field with large potential before entering the vacuum system of the mass analyser 29 .

The formation of ions in ESI happens in three steps: creation of an clectrically charged
spray, reduction of the droplets’size, and lastly desolvation and liberation of the ions. The
sample is introduced to the ion source under atmospheric pressure, sprayed through a
capillary. A high potential is applied (typically 3-4 kV') to the capillary, which leads to the
formation of charged droplets. The solvent of the dropletsis evaporated by applyinga hot,
inert gas, thus continuously producing smaller and more concentrated droplets. The
tightly packed droplets containing ions of the same polarity will eventually break up in a
process termed Coulomb explosion. This occurs when the force of repulsion between the
ions exceeds that of the droplet’s surface tension and the droplets break into smaller drops
130 . The mechanism behind ion formation in ESLs not entircly understood. There are
two theorics - the charged residuc modeland theion evaporationmodel. Thereare claims
that the first model is valid for larger molecules while the latter applies to small ones | 23,

31 . In the ion evaporation model, ions cventually desorb into the gas phasc after the



Proteomic biomarker discovery by mass spectrometry: introduction, background and theory

droplets are subjected to Coulomb explosion | 30 |, while in the charge residue model the
solvent is completely evaporated post Coulomb explosion 32 |. Figure 1-6 illustrates a

simplified scheme of the ion formation models.
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Figure 1-6. Simplified illustration of the ionization in TSI+ fons of the same polarity forma Taylor cone on the surface

of the cluate solution, charged droplets are cjected in a jet and break up in droplets moving towards the mass detector.

1.2.2.2 Mass analyser separation

The mass analyser is a central component of a mass spectrometer and where the mass-to-
charge separation of ions takes place [ 26 . In the experiments performed in this thesis,

quadrupole and time-of-flight mass analysers were used and thus the focus will be on

these techniques. D e
The quadrupole mass analyser was 728 2
) : ION SOURCE L _.=7~~_
developed by the Nobel prize winner P—F— - — - —

Wolfgang Paul and was first described

in 1956 733]- A quadrupole consists of Figure 1-7. Quadrupolc mass analyser. The quadrupole
rods have different potentials applied, thus generating an
electric field in which ions develop an oscillating motion with
cavity in between them. The pairs of  frequenciesand amplitudes related to the ions’mjz. Only tons

“ with stable trajectories will pass through the quadrupole to the
opposing rods have a radio frequency  detector

four cylindrical rods in parallel with a

voltage with a direct current offset applied to them, thereby creating an electric field. As
ions enter the quadrupole from the ion source, they are subjected to the clectric ficld
which causes them to oscillate at unique frequencies and amplitudes related to their m/z
ratios | 34 . Only ions with stable trajectories will pass through the quadrupole 35 . By
altering the radio frequency and the direct current applied to the quadrupole, ions of

different m/z will develop a stable oscillation thus making it possible to create a mass-to-

DETECTOR
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charge filter for either an m/z range or a set of specific m z values. Apart from being used
as mass filters, quadrupoles can also be utilised for fragmentation of ions. The
fragmentationisachicvedby only applying radio frequency to the quadrupole, citherasan
cnergy ramp or as a fixed value. Quadrupoles arc utilised in both targeted and untargeted

applications. Figurc 1-7 shows an illustration of a mass filtcr quadrupole.

Theideaof time-of-flight asamass analyser technique had been around for some time, but
was first applicd in practice by A.E. Camcron and D.F. Eggers in 1948, at the time it was

called “lon Velocitron”

36 .Initsearly days, the time-of-flight analyser was known for low
resolution and poor sensitivity but thanks to electronical and computational advances, it
is today recognised as a high sensitivity instrument with nearly unlimited mass range [ 37].
In time-of-flight mass analysers,ions arc accelerated by an electric filed, thereby providing
ions of the same charge with equivalent kinetic energy. Theions will disperse inrespect to
their m/z when flying down a ficld-free flight tube. The time-of-flight for the ions is
recorded as they hit a detector [37 , and is directly proportional to their mass-to-charge

ratios 38 ,as demonstrated by equation{ 1-1:

t=d |— i
N 2eEz L

where #is time-of-flight, 4 is the distance from the ion source to the detector, m is the ion

mass, zis theion charge, eisauniversal constantand Eis an electric field. Tons arrive at the
ion detector in order of increasing weight, thus by recording their time of flight, the exact
molecular weights can be determined. Time-of-flight analysers are useful for measuring
compounds distributing over a wide mz range and are therefore often employed in

screening studies. Figure 1-8 gives a simplified schematic illustration of the process.

ION SOURCE o FLIGHT TUBE DETECTOR
O E— - —> - - et
—O— O IR o,
O — ( f—>----- e

Figure1-8. Timc-of-flight mass analyscr. Tons of different mass enter the flight tube at time L. Asthey travel through the
flight tube, they are dispersed in space based on their mass-to-charge ratios, molecules with lower mjz ratios reaching the
detector first as visualised by the time points t, tand t;.

The resolving power of a time-of-flight mass analyser is constrained by the slight variation
inkineticenergy forionsof the same m z. This variationis caused by adistribution ininitial
kinetic energy of the ions and as a result, ions of the same m z will have minor differences
in velocity and flight time, thus reaching the detector at slightly different times |39 .
Several strategies were attempted to solve this problem. Arguably, the most successful was
the reflectron, introduced by B.A. Mamyrinin 1973 40 . A reflectron consists of ascrics of

clectroniclenses containing an clectrostatic ficld held at inercasingly higher potential that
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can reflect the ions to the detector. lons with higher kinetic energy will penetrate deeper
into the reflectron and have a longer flight path before reaching the detector, while less
cnergetic ions will be reflected carlier, allowing all ions of the same m/z, but slightly
diffcrent Kinctic energics, to be refocused so they reach the detector simultancously

regardless of small differences in their initial kinetic energy 17

. The efficiency of a time-
of-flight analyscr depends on its capability to accurately measurce short time intervals in
whichions of different m/z reach the detector | 29 and the usc of areflectron significantly

increases the resolution. Figure 1-9 shows a simplified illustration of a TOF coupled with

arcflectron.
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o — Y
— O G —— L1 T
O C — TN
D)
1 s
| EXEEEES C — 7| L1 ,//
DETECTOR @ — === =—— -~ 2 —T77 LT
O 1

Figure 1-9. Timc-of-flight mass analyscr utilising a reflectron. Tons with identical miz but slight differences in initial
kinetic energy are accelerated at to and will travel through the flight tube at different velocities. As they reach the reflectron,
thedons are refocused and the kinetic energy equalised so that they reach the detector at the same time, 1,

Atechnique often coupled with massanalysers inuntargeted applicationsis “ion mobility”
(IMS . Ion mobility is a way to further enhance the resolution and separation of ions by
their structural conformation. The technique was pioneered by EW. McDaniel and
developedin the 1950s and 1960s | 41 |. Inion mobility, ions are subjected to a flow of inert
gas in a low clectric field. The velocity of the ions is, in simple terms, constrained by
collisions with the inert gas _42. Bulkier ions will have a greater number of collisions and
thus a longer drift time, making it possible to separate ions with the same m/z by their

structural configuration.

Detection is the final stage of the ions’ journey through a mass spectrometer. As jons exit
the mass analyser; they hitadetector where the number of ions of a certainm;zat aspecific
time are countedand the relative abundance of theion species canbe determined. Anideal
detector should have a fast response time, good collection cfficiency, wide dynamic range,
low noise, high amplification and produce the same response regardless of mass [ 43 |. In
the untargeted experiments presented in this thesis, an ultra-fast electron multiplier
detector was used, and in the targeted applications the detector was a photomultiplicr.

Apart from these two detectors, there are numerous others | 44 |.
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1.2.3 Instrumentation used in untargeted mass spectrometry for discovery
proteomics: 2D-LC coupled with Q-TOF-IMS-MS

In untargeted protcomics discovery studics, the aim is to achicve the greatest possible
coverage of the proteins present in a sample and since the samples arc highly complex,
sensitivity and resolution are critical. The instrumentation is therefore highly specialised
to achicve this goal. In the discovery experiments performed in this thesis, the LC-MS
arrangement consisted of a two-dimensional nano-LC system (Waters nanoAcquity,
Manchester, UIX ) coupled to a mass spectrometer ( Waters Synapt-G2-S2) equipped with
an 11SI ion source, an ion mobility module to separate the ions based on their structural
conformation, a collision cell for alternating between high and low energy, thereby
passing both intact and fragmented ions, and a time-of-flight mass analyser utilising a
reflectron to accurately record the ions’ mass-to-charge ratios. Figure 1-10 gives a

schematic diagram of the modules and their functions.

LTy .
2D-NANO-LC ———> ION SOURCE —3 QUADRUPOLE —3 'ON ?E?LL"“ v "'O,ELE‘EL‘” 5 TIME-OF-FLGHT ——> DETECTCR
g ,

[ T [ [ [ T
Chromatographic fractionation and lonises analytes Mass filter (not Separates ions Alternales between low  Separates ions based on Detecis and
separation of analyles using reversed by elecirospray utilised in current based on their and high energy, their mass-to-charge rafios counts the

phase column chemistry and two  ionisation in set-up) structural con- leaving ions infact and  and uses a reflectron to number of ions
high/low pH mobile phase systems ~ posifive mode figuration fragmenting them focus the ions

Figure 1-10. Diagram of the instrumentation utilised in the untargeted protcomics experiments of this thesis.
The sample s fractionated on a reversed phase column with high pH mobile phase and thereafter separated on a reversed
phase columnwith alow pH mobile phase before entering the mass spectrometer. The analytes are ionised in positive mode
in the ion source and thereafter pulled towards the mass analyser by lower pressure. The ions first enter the ion mobility
module, where the ions are separated by their structural conformations. The fons thereafter reach the collision cell, where
high and low energy alternate, thus sending both intact and fragmented ions to the flight tube, which is equipped with a
reflectron. The time of flight of the intact and fragmented ions are recorded by the detector, and miz values and relative
intensities for cach species are recorded.

The resulting output data from the LC-MS system is a three-dimensional representation
of intensity, retention time and mass-to-charge ratio for each chromatographic peak in
cach sample. The output also contains drift time given by the ion mobility separation.
Moreover, each peak is represented by a precursor ion { the non-fragmented ion ) and the
fragments produced from the precursor ion. Figure 1-11 shows a demonstration of the
information which is extracted. Iow the data is used

for identifving proteins is described in detail in

Intensity

section 1.3 of this chapter.

Figure 1-11. Representation of output data from untargeted LC-
MS. The illustration shows peaks eluting at certain retention times, the
m/z of the fragments resulting from the ions, and the intensities.
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1.2.4  Instrumentation for targeted proteomics mass spectrometry: UPLC
coupled with triple quadrupole MS

In targeted applications where sclectivity, dynamic range and speed of analysis arc

important,itis common to uscasinglc chromatographic [ IPLC or UPLC system coupled

to a triple quadrupole {QqQ ) mass spectrometer. The invention of the triple quadrupole

mass speetrometer is attributed to C.G Enke and R.A. Yost and they published their first

reporton theinstrumentin1978 45 .

A triple quadrupole MS is a tandem mass spectrometer and consists of two quadrupole
mass analysers with anon-resolving, radio frequency only, collision-cell, present between
them. Arguably, the most common operating mode of triple quadrupole instruments is a
method known as “multiple reaction monitoring” {MRM . In this methodology, the first
(Q1)andlast (Q3) quadrupoles operate as mass analysers and the middle (q2) quadrupole
as a collision cell that can be flooded with inert gas, typically argon. In practical terms, it
works by utilising the first quadrupole as a mass filter, allowing only precursor ions of a
certain pre-defined mass-to-charge ratio to pass. The ions are thereafter collided with a
flow of inert gas in the collision cell, producing fragmentation of the ions. Only the
selected product ions are allowed to pass through the third quadrupole, also acting as a
mass filter, and on to the detector |35 . By varving the energy applied to the second
quadrupole, the number of collisions can be regulated, and the degree of fragmentation
controlled. Lower collision energy tvpically generates little or no fragmentation of the
precursor ions whereas higher collision energies can result in ion cleavage and molecular
rearrangements | 46 . Figure 1-12 shows a simplified diagram for the precursor selection,

fragmentation and product ion selection employed in triple quadrupole multiple reaction

momtormg.
Q1: PRECURSOR ION SELECTION q2: FRAGMENTATION Q3: PRODUCT ION SELECTION
ION SOURCE (7 =~ Toe DETECTOR
S e B E—— r'__________

Figure 1-12. Triple quadrupole operating in MRM mode. fozns exit the ion source and enter the first quadrupole, Q1,

where only ions of a specified miz develop stable trajectories and thus move on to the second, non-resolving, quadrupole g2.

THere, the ions are fragmented by application of energy and collisions with aninert gas. From g2, the ionsmouve to the third

quadrupole, Q3, where a mass filter is applied, thereby only allowing fon fragments of a specified m/x to develop stable

trajectorics and finally reach the detector.

MRMallows for supcrior sensitivity and specificity, which can be tailored to fita varicty of
diffcrent purposcs. Itis also casily translatable and can be used in clinical cnvironments. A
triple quadrupole’s mass resolution is lower than that of the high resolution instruments

previously described, typically around or less than 0.1 Dalton 47 , but as the technique is
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highly selective due to the chromatographic separation and the MRM mode, high

resolutionis generally not required.

In the targeted experiments performed in this thesis, a UPLC system (Waters UPLC
Acquity) was coupled to a triple quadrupole mass spectrometer ( Waters Xevo TQ-S)

operating in positive MRM mode.

1.3 PROTEOMICS BY MASS SPECTROMETRY

Mass spectrometry has been utilised for protein and peptide sequencing since the 1960s
48 . The two predominant approaches in mass spectrometric protein analyses are “top-
down” and “bottom-up” proteomics. In the top-down methodology, intact proteins are
introduced to the mass spectrometer’s gas phase and fragmented, whereas in bottom-up
proteomics, proteins are digested into peptides before entering the mass spectrometer
49/ In the work presented in this thesis, we have used a predominantly bottom-up

protcomics approach, therefore this is the methodology which will be focused on.
1.3.1 Bottom-up discovery proteomics

Discovery proteomics can be defined as the global characterising of the entire protein
contentinatissue, bio-fluid, cell line or organism | 50 . The use of highly specific proteases
to cleavea proteininto smaller fragments, peptides, allows for the peptides tobe separated
chromatographically before entering the MS, thereby reducing the complexity of the
cluting species. Cleavage of proteins canbe performed with multiple types of reagents and
enzymes,but trypsinis arguably the most common. Trypsin cleaves amino acid sequences
after lysine and arginine unless any of them are followed by a proline, an exception known

asthe Keilrule 511

In the discovery study experiments performed in this thesis, an acquisition mode known
as “MSF” was utilised. This method rapidly alternates between low and high energy
applicd to the collision celland results in spectrafromboth the non-fragmented precursor
peptide and its fragments being acquired simultancously, thereby making it especially
suitable for peptide sequencing| 52,53 |. Post-acquisition, the low and high energy spectra
arc aligned by retention and IMS drift times, thus matching the precursor ions with their
fragments| 53 |. In practical terms, this means that information about a peptide’s retention

time, molccular mass and charge, and amino acid scquence is obtained.

Figure 1-13 gives an example of the non-fragmented and fragmented spectra obtained

fromapcak cluting at aspecificretention time. The spectra contain structural information
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about the peptides and make it possible to deduce the amino acid sequence. As the data s
processed by application-specific software, the fragments belonging to a certain peptide
arc collated and the protein from which the peptides are originated is determined using

scquencing databascs.

ELVIESLIVESK

RT = 3763 min

ntensity

ntensity

Intensity

N
1= 6153712
N ‘ ‘ >
’ 600 70 800

o a0 &0 500 60 0 100 300 500 700 900 1100

Time miz m/z
Figure 1-13. MS  middlc: and MS/MS (right s spectra of the peptide ELVISLIVESK. The MS spectrum shows the
doubly charged precursor ion with miz 615.3712 and the MSMS spectrum shows all the possible fragmented v and b
product ions and theirmz.

1.3.2 Targeted proteomics

Targeted proteomics has been around as an analytical technique since the mid-1970s | 48 |
and was awarded the journal Nature’s “Method of the vear” in 2012 [54]. In targeted
proteomics, the procedure differs significantly from the discovery approach. Here,
specific peptides are chosen to represent the protein in question. Synthetic peptide
standards are generally used to determine optimal analytical conditions such as the ideal
ion fragments to monitor and the collision energy to apply to the non-resolving
quadrupole. The standards are morcover used to develop a suitable gradient for the LC
system and to determine retention times. Advantages of targeted proteomics include
shorter analysis times, translatability between labs, the option of absolute quantitation,

and the possibility of highly specific and tailored analyses| 54 .

The most common choice of analysis method for targeted studies is multiple reaction
monitoring as it allows for highly specific monitoring of the transitions between
precursor and product ions. It is further common to develop “multiplexed” methods,
where several peptides are measured in the same run. The sensitivity of multiplexed
methods canbeimproved by timing the different MR M functions so that they only record

data within the time window of the clution of the peptides.
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1.3.3 Proteomic biomarkers - from discovery to a clinical test

The process of finding and translating new biomarkers for novel clinical testsis a costly,
complicated and timc consuming process [11]. Biomarker studics arc often
interdisciplinary as expertise in several fields is required 55/, therefore it frequently

involves a collaboration between clinicians, analytical chemists and bioinformaticians.

The first step of the biomarker study involves identifying a suitable discovery cohort for
the discasc in question and matching it with appropriate controls. Any confounding
factors, such as differences in age, sex or collection site between the disease and control
groups, shouldbe avoided. Secondly, the sample preparation and instrumental method for
the discovery study need to be chosen with care to enable the detection of the largest
possible number of analytes. After the data collection, appropriate statistical and
modelling methods must be selected for the data analysis. Once putative biomarkers have
been identified in the discovery phase, the next step is to validate the findings in a targeted
test. This involves finding suitable peptides to represent the proteins, ordering peptide
standards, finding the best ion fragments and ideal MRM settings ( called “tuning” of the
peptides ), developing an LC gradient which efficiently separates the analytes, and finally
merging the mass spectrometric and chromatographic parameters into a targeted,
multiplexed LCMS method. Also in the validation study, great care needs to be taken
when selecting the patient cohort. After instrumental analysis and quantitation of the
analytes, the validity of the putative biomarkers can be evaluated in statistical tests. They
can also be modelled by machine learning algorithms to assess their predictive ability. It is
common to utilise a panel of proteins which together can differentiate between disease
and control. After the validation study, the proteins demonstrating differential expression
between the groups, or predictive ability, are kept in the assay while analytes showing no
discriminating capacity are excluded. The refined assay can thereafter be evaluated
clinically, to ascertain if it is feasible to utilise as a clinical test. Figure 1-14 shows a detailed

illustration of the workflow and the steps involved.
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DISCOVERY | Untargeted mass specirometry IMPORTANT STEPS
MBER OF SAMPLES NUMBER OF ANALYTES Experimental design
n=10-2 Hundreds to thousands Optimising of sample preparation
20202020202@202020202020202020202020 and instrumental parameters
000000000000000000 Instrumental analysis
20000000000 0000 OROR - 5 B _
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO Data processing (identification and quantitation)
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO Data analysis and literature review

Selection of proteins for validation

Peptide Ordering/manufacturing Selection of peptides to
tuning of synthetic peptides represent targef proteins
Selechion of optimal Ophmising LC Multiplexed
MRM transitions parameters MRM method

VALIDATION | Targeted mass specirometry
MBER OF SAMPLES NUMBER OF ANALYTES
10 T Experimental design
Optimising of sample preparation
Instrumental analysis
Data processing (quantitation)

Data analysis and modelling for prediction

Reduction of assay, keeping
only meaningful peptides

Finetuning of instrumental parameters

CLINICAL EVALUATION | Targeted mass specirometry

OF SAMPLES NUMBER OF ANALYTES
Few
QO00000000¢C [s]e] o] Instrumental analysis

Experimental design

Data processing (quantitation)

Data analysis and application of
prediction models

Final evaluation of clinical feasibility

Figure1-14. Detailed proteomics biomarker discovery workflow. e workflow includes proteomic discovery studies
to find putative biomarkers in a small, deeply phenotyped sample set, followed by validation of the putative biomarkersin a
larger set of samples and finally clinical evaluation of the biomarkers in a large set of samples. The important steps within
and between the three phases are described.

1.3.4  Challenges involved in protecomic biomarker discovery studies

Thereare several challenges involved in the biomarker discovery worktlow, and especially
inthediscovery phase. Indiscovery proteomics, the aimis toachieve the greatest coverage
possible of all proteins present in a sample, thereby placing high demands on both the

sample preparation and the analytical method.
1.3.4.1  Dynamic range of blood-based samples

Different sample matrices pose different challenges in regard to sample preparation, with
plasma and scrum being among the more complex. One of the major challenges in blood-
based proteomics biomarker discovery is the dynamic range of protein concentrations.
The difference between the most abundant proteins - albumin, immunoglobulins and

transferrin, and low abundant protcins such as interleukins and cytokines arce several
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orders of magnitude| 56 |. In addition, albumin s a large protein, weighing 69 kDa. When
comparing this to a small and low abundant protein such as a chemokine, weighing 8-10
kDa the number of moles of tryptic peptides produced during digestion will differ
significantly illustrated in Figurc 1-15). As a modern mass speetrometer’s normal
operatingrange can detectaround four orders of
magnitudc of diffcrenceinabundance, detection
of low-abundant spccics present in a sample

becomes a challenging task. Furthermore, the

Albumin (1 mole ) Cytokine (1 mole )

diversity of the high-abundant protcins is
minimal although they represent around 957 of
the total mass of plasma proteins, meaning that a

limited number of proteins make up the majority
Figure 1-15. Equimolar digestion of albumin
and a small cytokine, illustrating the
difference in number of peptides available.

of thetotal proteinmass 57 .One way of getting
around this problem is to deplete the sample of
abundant proteins using antibodies or immuno-depletion, selectively removing the more
abundant proteins thereby reducing the dynamic range, de-complexing the sample and
improving the possibility to detect low-abundant species. The depletion techniques are
based on antibodies selectively pulling out certain highly abundant housekeeping
proteins, leaving the low abundant proteins more readily available for detection. The
depleted proteins are commonly, all or a subset of, albumin, immunoglobulins, fibrinogen,
transferrin, alpha-1-antitrypsin, alpha-1-acid glycoprotein, alpha-2-macroglobulin,
apolipoprotein A1and A2, and haptoglobin. The enrichment strategies work by utilising
beads with a number of binding sites for each protein, effectively meaning that high
abundant proteins will be diluted, and low abundant proteins will be concentrated, thus
making the proteins present in a sample approach an equimolar concentration. Thereisa

wide range of commercially available products for depletion and enrichment.

1.3.4.2  Instrumental drift

Theanalysis of asamplcinthediscovery phascis generally arclatively lengthy process due
to the extensive fractionation and long 1.C gradient. To achieve the greatest possible
protein coverage, long run times are necessary, but they do posc technical challenges. Asa
mass spectrometer is operated for long periods of time, parts become contaminated and
sensitivity decreases, meaning that a low-abundant peptide possible to detect in the
beginning of a run may not be possible to deteet towards the end of a run. The
instrumental drift is mainly caused by samples coming into dircct contact with

components of the mass spectrometer. Experiments have shown that the changes in
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response are generally non-linear over time and not comparable between different peaks

58 . Strategies to overcome these problems include quality control sample-based
correction algorithms to remove variation in the data related to instrumental drift post
analysis and breakdown of sample scts into smaller batches 59 . Although the correction
algorithm-based strategies are useful, they do not solve the problemaltogether since some
types of variation, such as scvere drops in sensitivity, cannot be corrected for afterwards.
Furthermore, addition of fractionated quality control samples to arun would prolong the
run time, thus introducing even more drift. Since instrumental conditions by necessity
nced to be kept the same during an experiment in order to allow for a non-biascd
comparison of the results in the end, there is only so much that can be done. One crucial
part of the experimental set-up is therefore the run order, which must be done in a
controlled randomised fashion thereby reducing the risk of instrumental drift being
interpreted as biological difference between the samples [60]. In the experiments
performed in this work, the samples were randomised using a “constrained” randomising
strategy, where paired samples were kept as a unit and randomised within and between
the pairs. In the experiments where the samples were not paired, the run order was

randomised within and between the sample groups.

1.4 MACHINE LEARNING

Machine learning is a discipline in the intersection between statistics and computer
science. It has a wide range of applications, from speech recognition to modelling of
biological systems. In the machine learning methodology, computer algorithms find
patterns in data, predict continuous or class outcomes and select relevant variables to
explain a phenomenon. Artificial-intelligence and machine learning are powerful tools
increasingly used to model medical data, utilising prior knowledge to predict future

outcomes 61,62].

Machine learning algorithms can broadly be divided into unsupervised and supervised
methodologies 62 . In the unsupervised methodology, models are constructed based on
input data (X)) only, without any dcfinition of a potential output (Y. The aimis often to
find clusters and structures in the data, and/or dimensional reduction into a smaller
number of latent variables. There are numerous unsupervised machine lcarning
algorithms, such as PCA, whichis described in section 1.4.1. The general methodology for
supervised strategies involves the training of a model using a matrix of independent
rariables (X) and one or several dependent variables (Y, allowing the model to learn

how to best model the data, while generalising well to be able to predict new data. There
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are many supervised algorithms,suchas(O PLSand (O PLS-DA, Ridgeregression, linear
discriminant analysis and support vector machine, all described in sections 1.4.2 - 1.4.6.
Machinc lcarning is a rclatively young ficld under rapid development. Tlere, the modcls

used in this thesis are introduced.

1.4.1 Principal component analysis

Principal component analysis { PCA') can be considered the “bread and butter” of many
data analysis toolboxcs. It is an unsupervised machine Icarning modecl, and a uscful
instrument for discerning major trends, groups, and outliers in the data. It models co-
variation between the variables (e.g., protein expression ) and expresses this as a score, for

cach object (or sample ) in function of sets of weighted variables ( the loadings .

PCA was developed in 1901 by the English statistician and founder of the Department of

Applied Statistics at University College London, Karl Pearson |63, 64 . PCA is a

projection method that summarises the systematic variation in a matrix X into a low
dimensional model hyperplane built up by latent variables or principal components
(PCs). The largest variation in the data is described by the first PC, while the second
largest variation is described by the second PC, and so on. A PC is a bi-lincar
decomposition consisting of two separate vectors. The scores (T approximate the
observations {or samples) in X and a score scatter plot will reveal trends, groups, and
outliers in the samples. Observations in close proximity to each other will have similar
properties and analogously, observations far from each other will have dissimilar
properties. The loadings (P) describe the relation between the variables in X. A loadings
scatter plot will show the weight of individual variables in each component and can be
related to the score scatter plot to reveal which variables are responsible for the variation
in the observations. A sample with a high score value in one component means that the
sample has high levels on the variables with strong weight on that component, and vice-

versal 65,60 .

Figure 1-16 shows a simple example of PCA applied to a dataset containing quantities of
foods consumed in different European countrics. Shown in the figure arc the scores -
describing the samples (countries), and the loadings — describing the variables (food
quantities . It can be seen in the scores that Portugal, [taly, Austria and Spain are separated
horizontally, along the first principal component, from England, Sweden, olland and
Denmark. Interpreting why the countries separate, we investigate the loadings of the first
principal component. There,itcanbe seen that “Garlic”and “Olive oil” are on theleft-hand

side and therefore, these foods are consumed in larger quantitics in Portugal, Italy, Austria
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and Spain. Analogously, “Tinned fruit”, “Sweetener”, “Tinned soup” and “Tea”, which are
found on the right-hand side of the plot, are consumed in higher quantities in England,
Sweden, Tolland and Denmark. Vertically - along the second principal component -
France, England, Ircland and Switzerland separate from Sweden, Finland, Denmark and
Norway. To understand why, the loadings from the second principal component are
investigated. In the second principal component’s loadings, it can be noted that “Instant
coffee”, “Powder soup” and “Yoghurt” arc consumed in higher quantitics in France,
England, Ireland and Switzerland, while higher quantities of “Crisp bread”, “Frozen fish”,

“Frozen vegetables” and “Ground coffec” are consumed in Sweden, Finland, Denmark

and Norway.
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Figure1-16. PCA scorcs and loadings from an cxample comparing the consumption of different foodsbetween
Ruropcan countrics. The scores (left) show the first and second principal components [t71] versus t/27), showing which
countries are more similar and dissimilar in their food consumption. The loadings plot (right) show the first and second

principal components’loadings (p/ 1] versus pi 2 |, where it can be seen which foods are more related to which countries.

1.4.2  (Orthogonal) partial least squares projections to latent structures

Partial least squares, or projections to latent structures (PLS ), is the regression extension
of PCA and useful when the data matrix of independent variables, X, can be related to a
response matrix or vector of dependent variable(s), Y, containing quantitative
information. PLSis a supervised machine learning algorithm developed by the Swedish-
Norwegian statistician Herman O.A. Wold and his son, Svante Wold 67 . PLSis a
multivariate regression model relating X to Y by partial least squares. The scores in PLS
are representations of the observations in the X matrix correlated to the Y matrix. To
visualisc the variables’ contribution to the PLS modcl, the weights for X and Y can be
viewed together. An extension of PLS is orthogonal PLS (OPLS’, developed by the
Swedish chemometrician Johan Tryggin 2002 68]. In OPLS, the variationin Xis divided
into two parts; onc that is rclated to Y, called predictive variation and onc that is
orthogonal and not related to Y, called orthogonal variation [ 65, 69 . OPLS and PLS

models have the same predictive ability,but OPL.S has advantages for interpretability.
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PLS and OPLS are very useful modelling strategies when relating independent variables
to aresponse, or when determining if there is a relationship between for instance age and
protcin expression. Figure 1-17 shows an example of a protcomics datasct modelled with
OPLS to determine the relationship between age and the protein expression. In the
scores, the horizontal predictive principal component shows how the samples relate to
age. Obscrving the predictive component’s loadings, the levels of proteins closer to the y-
variable, “Age” increase with age, while the opposite is obscrved for variables in the
oppositeside to the “Age” variable. Vertically, the orthogonal principal componentmodels
variation not corrclated with age. A significant benefit of the orthogonality between the
principal components is that model interpretation is simplified since it is possible to
distinguish between structured variation correlated to aresponse as well as uncorrelated
structure variation. For this reason, the predictive component’s loadings are often

represented inabar plot where only the variation related to the y-variable is shown.
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FFigure 1-17. OPLS scores and loadings fr()m an example relating protein expression to age. The scores (top left)
show the predictive principal component (1)) on the x-axis, describing the relation to age, and the orthogonal principal
component {to' 17y on the y-axis, describing v ariation in the samples not related to age. The loadings plot (top right) shows
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proteins with a standard error crossing zero are not significant to modelling age. The scores are coloured continuously
according to age, and the loadings according to correlation with the y-variable.
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1.4.3  Discriminant (O)PLS

Discriminant analysis PLS modcls {PLS-DA) are used when the obscrvations can be
divided into discrete classes. In PLS-DA, the responsce matrix Y is of qualitative naturce
(binary vectors 0/1 for cach class). Moreover, the discriminant models can be used to
predict the outcomes of new samples. Asin the regular (O )PLS, the variation in X can be
divided into components, or latent variables, related and unrelated to Y (OPLS-DA ) | 63,
69 .

Figure 1-18 shows an example of the Furopean food consumption dataset from section
1.4.1, modelled by OPLS-DA with the countries Portugal, Spain, Ttaly and France set as
b3

class (“South

! ) and the countries Sweden, Norway, Denmark and Finland set as class
(“North”). All other countries were excluded from the dataset. The predictive latent
variable scores show how the samples separate according to the classification “North”and
“South”, and the orthogonal principal component’s scores show how the samples
distribute within the classes according to variation not specific for the discrimination of
“North” “South”. In the loadings, it is shown that the predictive component separates the
samples according to higher consumption of “Garlic”, “Olive oil” and “Instant coffee” for
the countries belonging to the south-class,and higher consumption of “Sweetener”,“Tea”,
“Ground coffee” and “Crisp bread”, among others, in the north-class. Just as in OPLS, it is
common to represent the predictive component’s loadings in a bar plot where only the

variation related to the class separation is shown.

44



45

CHAPTER 1

03
«
2 @ Margarine
8- _ M T
= 02- g
6 £ i)
g = | Class = South Class = North
01- @
a4 E c / .
g _ 5 @0iive Ol Tea ‘L
- © @rorfugal @rinland o % e @
8272 @Nomay 205 g carlic T i Stz @
= o2 ____@taly i S | ZV}DAE) @sutter @
* b= Spam. @ Denmark = & CrisfyBretiter
. = enma = 8
= o 301" G Gr_Coffe @@
g-2- 5 g £ @ nst_Coffe @Fro Fish
5 .Fr:m(n .S\M}dc-n a To_fs!
4~ 2 02- 5 | @Fro Veg
= 5 @raso Ti_Sou
o Pa_Soup _Soup
6 5 2 Youghurt @ ® Biscuits @
-8.. > 03 % Apples ! g}am
Predictive principal component @] Pledlcnve prmupul component |ood|ngs
T t T Q4+ —
10 -5 0 5 10 04 03 02 01 0 01 02 03 04
t[1] * 1.00316 pq(l] * 0.892423
05
04

ﬁ? mm%m%WWWWMHm

Predictive principal component loadings

pql1] * 0.892423

051 -1

06— T T T T T T y T T T T T T T T T T T T
[ 5 £ £ 3 |4 3 £ B o} 2 3 £ s £ g B & 3 z z
< ] | ] £ a o o H] 5 £ £ £ = o i > ] o = = =4
] G 2 o] o 9 3 = 2 % a 5 = b o o a8 Y 8 a
o = ! o 5 @ c = ] = = = P N
= o g & & s] = 5 o = 2 & s g
= = 2 =

5 &

Figure 1-18. OPLS-DA scorcs and loadings from an cxample of northern and southern European countrics
modclled as classcs based on the consumption of different foods. The scores (fop left) show the predictive principal
component (/11 on the x-axis, describing the variation related to the classes “North” and “South”, and the orthogonal
principal wmpmze‘m‘ ‘to/ 1) on the y-axis, describing var zaz‘z(m in the samples not related to the classes. The loadings plot
(top right) shows the pr)dzcz‘zue component’s loadings (pqi1]; on the x-axis, representing the correlation between the
different food quantities and the classes “North” and “South”. The o thogonal component’s loadings (posoi 1) represents

cariation in food consumption not related to the classes. The predictive component’s loadings are moreover py esented asa
bar plot (bottom ), where the different foods are in closer proximity to the class where their ua/ucs are highest, “South”to the
leftingreen, and “North”to therightinred. The error bars are thestandard error obtained through cross-validation. The
variables with the largest loadings values have the largest impact on the class separation, while variables with a standard
error crossing zero donot contribute to the separation of the classes.

1.4.4  Ridgeregression

Ridge regression was introduced by Art Hoerl and Robert Kennard in 1970 ' 70|. Itis a
methodology based on ordinary least squares regression, thus the values of the regression
cocfficients (f3) for cach variable are found by minimising the residual sum of squares
Additionally,it addresses the problems of collinearity between variablesand of overfitting
by introducing a regularisation parameter. The regularisation is introduced by what is
known as the “La penalty”. It shrinks the beta cocfficients of the predictors with little
influence in the model towards, but not to, zero| 71 |. The regularisation is complex and
the feature importance ranking for a model is not straight forward. For this reason, it is
required to optimisc the model, ideally using a cross validation approach to sclect the
scttings which minimisc the sum of squares of the residuals. There are extensions of Ridge

regression, suchas Lasso 72]and ElasticNet 73, where the regularisation is different. In
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Lasso, beta coefficients of variables with little importance are shrunk to zero {which also
makes Lasso an efficient feature selection method:, while Elastic Net utilises the
regularisation of both Ridge regression and Lasso.
1.4.5  Linear discriminant analysis
Eigenvector 1 P
. . .. ., N rojection
Linear discriminant analysis (LDA» isa  * Sl of e 1
supcrvised machine lecarning  mcthod, h
originally developed by Ronald Fisher in S
il
1936 74| It uses linear combinations of Projection
Cless 1 . of class 2
variables to explain the data given a certain / \
. O O O /’ Figenvecior 2
output and thus falls under the N Class 2
dimensional reduction strategies umbrella, -~ ® / Suey
like PCA. LDA finds the dimension in /

which the projected discriminant classes
Figure 1-19. Example of lincar discriminant

have the maximum between-class analysis, showing the cffect of projection for data

separati()n relative to the minimum frokmAt\\'o c]assg‘s. The_}‘)gzu"eslzow.s'cla.s'.s:esl.f and 2
‘m; for the variables xi and x2 and their within-class

within-class variance (75, Firstly, LDA variances Swi and Sw. for the non-projected data, and
o the classes projected on eigenvectors 1 and 2, the within-

computes the between-class variance class variances S*v, and S*w. for the transformed data.

As can be noted, the variances of the projected classes
have been minimised, and they can be separated in the
LDA space.

(Sg), and the within-class variances (Sw ).
From the between- and within-class
variances, transformation matrices are calculated, and the eigenvectors and eigenvalues
from the transformation matrices are utilised for projecting the data, aiming to reduce the
variation within the classes while maximising the variation between them [76]. New
observations can be classified as belonging to one of the classes depending on wherein the
model’s space they are projected. Figure 1-19 shows a simplified illustration of data from
two classes which cannot be separated by the variables x1 and x2. After LDA projection,
the within-class variances have been minimised, and the classes can be separated in the

LDA space.
1.4.6  Support vector machine

Support vector machines (SVM ) are supervised machine learning models, learning the
best algorithm to classify data. The algorithm was originally developed by Vladimir N.
Vapnik and Alexey Ya. Chervonenkis in 1963 771, SVM uscs the training data to build an
algorithm which maps points in space and utilises a hyperplane to maximise the
scparationbetweenclasses| 78 . The mathematical foundations of SVMsare complexand

increascinintricacy with the number of variables. In simplified terms, the algorithm bases

X
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its decision function on a , _

X Optimal hyperplane Soft margins .-
hyperplane which maximises the ¢
distancc  between  the  support
vectors of the discriminant classes.
The margins of the hyperplane are

Support vectors .
determined by how strictly the \\’) =

limits for misclassification are set,

Class 2
where alarger margin ( called a “soft

margin”) will render the model

more generalisability but also more i o S
. Figurc 1-20. Hustration of the decision function in *

erroneous classifications 79 . This support vector machines. The figure shows classes 1 and 2,
. . ) not separable in either of the vectors x1 or X2, but separated by
is generally the preferred scenario, the SVAMs optimal hyperplanc. The soft margins of the

hyperplane  are also  shown, allowing a degree  of
misclassifications in favour of generalisability of the model.

asatoo strictly set margin may lead
to overfitting of the model, thereby
making it difficult to predict new data. The misclassifications generated by the soft
margins can be restrained by a user-specific parameter, controlling the number of
permitted misclassifications during the model’s training. After the SVM model has been
built, trained, and optimised, new observations can be predicted as belonging to one class
or the other depending on which side of the hyperplane they are mapped to. Figure 1-20
showsanillustration of the decision boundary in SVM, where the classes 1and 2 cannotbe
separated by cither of the variables x1 and x2 but can be separated by the SVM’s

hyperplane.

1.4. Additional tools

~1

1.4.7.1  Feature selection

In machine learning modelling, feature selection are methods that reduce the number of
independent variables in a matrix X included in a model by selecting variables related to
the dependent variable(s) Y, while leaving non-descriptive variables out. The rationale
behind the process is to remove irrelevant andor redundant variables, while
simultaneously reducing the model’s complexity, minimising its noise and curtailing the
risk of multicollincarity and overfitting [ 80 . In the feature sclection process, a subsct of
features from the original dataset are kept in the model, while redundant features are
excluded |81 . There are numerous strategies to perform feature selection, including
recursive feature climination, Lasso, Elastic Net, and recciver operating charactcristic

(ROC) curve.
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1.4.7.2 Cross-validation

Cross-validation (CV)isamodcl validation methodology used toassess how wellamodel
will perform when inserting new obscervations. In practice, cross-validation is performed
by evaluating the results of several models built with different fractions of the data. The
held-out fractions of data are predicted in the respective models, allowing for evaluation
of the model’s performance [82 . There arc several ways of partitioning data for cross-

validation, examples including:

e Lcavc-onc-out cross-validation: I lere, modcls are built using the datasct whilc Icaving
one observation out and then evaluating its predicted result versus the actual value
|83 |. Consequently, the number of models to build will be equal to the number of
observations, making leave-one-out CV useful for smaller datasets.

e Leave-p-out cross-validation: At each cross-validation round, p observations are left
out and a model is built using the remaining data. The p observations are then
predicted, and the process is repeated until all possible combinations of p from the
original data have been predicted [84 . Although a thorough CV methodology, the
leave-p-out CV quickly becomes computationally expensive and may therefore not
be feasible for larger datasets.

e kfold cross-validation: The dataset is partitioned into & equally sized subparts,
building models with all data but one part which is predicted, and repeating the
procedure until all £ parts have been predicted | 85 |. k-fold CV can also be stratified,
where roughly equal proportions of the classes in the model are used in each k-fold

86
the model is trained and tested using data from the different classes. k-fold CV is

.Stratified k-fold CV is thus uscful for discriminant class modecls, as it ensures that

computationally inexpensive and allows for a systematic cross validation of all
samples, making it an attractive choice for larger datasets.

1.5 PARKINSON’S DISEASE

Parkinson’s discase (PD) is a progressive neurological disorder characterised by motor
dysfunctionresulting in bradykinesia, rigidity, tremor, and postural instability. Non-motor
symptoms are common, including apathy, depression, mood disturbances, anxiety, sleep
problems, constipation, loss of smell and tastc and dementia 87, 88 . Even though it is
possible to reduce symptoms by trcatment, PD remains a progressive discase ' 89,90 . PD
is the second most common neurodegenerative disorder after Alzheimer’s disease (AD).
After theage of 65, the prevalence of PDis approximatcely 172 and after the age of 8o it rises
to more than 3. Sporadic PD is morc common than heritable forms and makes up
approximately 90’ of the cases. In most populations, PD is roughly twice as common in

men as in women. Risk factors of idiopathic PD may include external elements such as
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head trauma and exposure to pesticides, whereas certain habits such as smoking and
coffee drinking appear tobe protective 91,92 . One of the earliest manifestations of PDis
rapid cyc movement sleep behaviour disorder (RBD) which can oceur long before any

motor symptoms manifest 93 .

PD was first described around two hundred vears ago by the Lnglish surgeon and
apothecary James Parkinson in the work “An Essay on the Shaking Palsy”, 1817 |94 .
Parkinson’s observations led him to suggest that PD/is caused by lesions in the spinal cord.
Today we know that the neuropathology in most casesis characterised by selective loss of
dopaminergic neurons in the substantia nigra pars compacta and intracellular
accumulation of alpha-synuclein-containing Lewy bodies in the surviving neurons. The
loss of dopamine causesaderegulationin the basal ganglia circuitsandleads to the cardinal

motor symptoms of PD 95

. There are also atypical forms of parkinsonism such as
progressive supranuclear palsy (PSP and multiple system atrophy (MSA . PSP has no
alpha-synuclein pathology, but rather tau pathology with neurofibrillary tangles asin AD
instead of Lewy bodies. MSA does have alpha-synuclein pathology, but in oligodendroglia
instead of neurons 96 . Less common conditions such as Perry syndrome and heritable

Parkinsonism caused by different gene mutations also occur with various manifestations.

1.5.1 Disease mechanisms and gene deficits known to be causes of

and risk factors for PD
Asnew discoveries are made, it isbecoming increasingly clear that Parkinson’s disease isa
multifactorial and heterogeneous condition with a wide spectrum of different
pathologices. The mechanisms behind classical PD have been suggested to include alpha-
synuclein proteostasis and degradation, lysosomal autophagy system, mitochondrial

dysfunction, activated microglia, inflammation, and oxidative stress.

1.5.1.10  Alpha-synuclein

The proteinalpha-synuclein is coded for by the gene SNCA. It consists of 140 amino acids
and is highly abundant in the brain, but also found in other tissues such as red blood cells.
Alpha-synuclein has a wide range of functions, playing a role in synaptic activity by vesicle
transport and ncurotransmitter release, being involved in the regulation of dopamine
neurotransmission 97, 98], among others. Alpha-synuclein gains neurotoxic properties
when soluble monomers oligomerisc and subsequently aggregate to form large, insoluble
fibrils known as Lewy bodics. Degradation of alpha-synuclein is governed by the
ubiquitin-proteasome system and the lysosomal autophagy system. As alpha-synuclein

aggregatces, clcarance is vital. Dysfunctional lysosomal clcarance is believed to play an
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importantrole in PD pathology. A vicious cycle of alpha-synuclein aggregation combined
with deficiencies in the ubiquitin-proteasome system and lysosomal autophagy system
has been suggested to contribute to intracellular alpha-synuclein accumulation [90].
Further supporting this theory, certain mutations in the genes coding for LRRK2 and

GBA arcassociated with reduced lysosomal autophagy system function.
1.5.1.2  Oxidative stress

Reactive oxygen specics (ROS) are produced continuously in all tissues. Oxidative stress
damage can occur when the activity of ROS clearing antioxidants and produced reactive
oxygen species become imbalanced. This state has been proposed as an underlying
mechanism of mitochondrial dysfunction and is believed to play a role in the
dopaminergicneurotoxicity 99 .Oneexampleis mitochondrial complex 1, the activity of
which has been found reduced in several tissues from PD patients. It has been suggested
that accumulation of alpha-synuclein inside the mitochondria leads to a mitochondrial
complex 1 defect and oxidative stress. Nigral dopaminergic neurons may be especially
susceptible to oxidative stress as they have long unmyelinated axons with a large number

of synapses requiring large amounts of energy.
1.5.1.3  Neuroinflammation

Neuroinflammation is suggested to contribute to neuronal degradation, production of
pro-inflammatory cytokines and oxidative stress via activation of microglia, the central
nervous system’s first line of defence. It is proposed that microglia are activated when
trying to clear alpha-synuclein aggregates, leading to the production of pro-inflammatory
species. This ultimately ends up becoming neurotoxic due to the production of ROS
1100 |. An increase in pro-inflammatory cytokines such as I1.-18, 11.-2, I1.-6, TGF-o and
TGF-Bhasbeenshownin PDbrainsand thereis evidence that the immune responseis not

restricted to microglia, but can be seen in other tissues as well [ 101 .
1.5.1.4  Genetics of PD

A number of gene variants have been found associated with inercased risk of PD. Some of
the most commonly identified risk factors are the proteins alpha-synuclein, leucine rich
repeat kinase 2(LRRK2 ) and lysosomal acid glucosylceramidase { GBA ). Alpha-synuclein
(SNCA ) is the major component of Lewy bodics, providing a link between familial and
sporadic PD. To datc, five different missense mutations in the gene SNCA have been
discovered to be causal of PD. The neuropathology consists of neuronal degradation in

the substantia nigra and extensive Lewy body formation in the cerebral cortex and
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brainstem. Mutations in the LRRK2 gene occur in approximately 47 of the familial PD
cases. A number of mutations have been suggested to be strongly associated with PD. The
phenotype of LRRK2-linked Parkinsonism is commonly the same between sporadic and
familial cascs, with Lewy bodics in the brainstem and ncuronalloss in the substantia nigra.
In some cases, neurofibrillary tangles and neuronal loss are observed without the
formation of Lewy bodics. The gene GBA codes the enzyme GBA. Tlomozygous
mutations in the gene can result in a deficiency of GBA which causes Gaucher discasce

102 . However, itis also the most common genetic risk factor for developing PD, typically

with earlier disease onset and atypical clinical manifestations 103 .
1.5.2 Diagnosis and treatment of PD

In clinical terms, PD is defined by bradykinesia and at least one other motor symptom -
tremor or rigidity 104 . The criteria for diagnosing PD were devised by several different
organisations, including the United Kingdom Parkinson’s Discase Society Brain Bank,
Gelb and the International Parkinson and Movement Disorder Society (MDS-PD ). It is
estimated that roughly 90™ of the cases are correctly clinically diagnosed using the MDS-
PD criteria | 105 |. However, total certainty of PD diagnosis during life is currently not
possible| 104 |, partly due to the lack of reliable biomarkers for PD, meaning that diagnosis
will be affected by a certain bias depending on the criteria used and the symptoms

manifested. Hencee, there is a need for better and more informative tests for PD.

Itisimportant to note that diagnosis and treatment are limited by the late onset of cardinal
symptoms, often occurring after a substantial portion of the dopaminergic neurons have
already beenlost. Figure 1-21 givesan overview of the timescale and degree of disability for

motor and non-motor symptoms| 87,90 |.
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Figure1-21. The different stages, progression, and clinical manifestations in Parkinson’s disease. Motor- and non-
motor symptoms, the level of disability and the level of dopaminergic neuron loss are shown.
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Levodopa is the most common drug used to treat motor symptoms in PD and has been
used since the 1960s. It is able to cross the blood brain barrier (BBB) where it is
mctabolised to dopamine. Levodopa is often combined with other drugs to prolong its
clearancc half-life whichis only one to three hours, and to enhanccits cfficacy[ 106 . There
are however drawbacks associated with levodopa, such as dyskinesia, motor fluctuations
and “off” time (times when the drug has no cffect, and the patient may experienee motor
symptoms such as spasms and tremor). An alternative to levodopa is apomorphine, a
dopamine receptor agonist which also reduces motor symptoms. It has been reported
that paticnts treated with apomorphine infusions suffered from less frequent dyskinesia
andareductionin “off” time compared to placebo [ 107 . Another alternative is deep-brain
stimulation, a surgical technique which involves the implantation of clectrodes at specific
sites of the brain. Deep-brain stimulation has shown an overall anti-Parkinsonian effect

andareduction of dyskinesiaand motor fluctuations 108 .
1.5.3 Current status of biomarkers in Parkinson’s disease

There is undoubtedly a need for new and better biomarkers of Parkinson’s disease to aid
in diagnosis, especially of the early stages before significant loss of dopaminergic neurons
has occurred. A look at the current status of biomarkers for Parkinson’s discase
demonstrate their scarcity. Although great efforts have gone into finding candidates that

candiagnose PD,only afew putative biomarkers have been testedinaclinical setting 109 |

The status as reported by Covaand Prioriin 2018 110, demonstrates that the majority of
the diagnostic markers are clinical. Morcover, most are late indicators, meaning that they
donot capture the discase early enough, or also common in the general population (such

as constipation and depression , therefore lacking specificity.

1.6 HEALTHY AGEING AND CENTENARIANISM

One of the major risk factors for neurodegenerative diseases, including Parkinson’s
disease, is ageing. Thus, a study of ageing and in particular longevity in centenarians was
included in this work. A better understanding of the divergenee between healthy and
unhcalthy ageing would be bencficial for providing insights into the mechanisms

responsible for the development of neurodegenerative discase.

The human population is reaching an increasingly older average age, mainly due to
improved life-conditions (access to food, watcr, less hard labour, antibiotics, discasc-

modifying medication, and vaccines, to mention a few . According to the World Health
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Organization {WHO, there are more than 125 million people aged 80 years or older.
WHO further predicts that the world’s population over 60 years will more than double
between 2015and 2050 [ 111]. While this is undoubtedly positive, age-related discascs are
thelcading causce of mortality and represent a substantial healtheare cost. Discases where
age is a risk factor include, but are not limited to, dementia and diabetes, and

cardiovascular, respiratory, and renal diseases| 112,113 .
1.6.1 Successful healthy ageing

Rowe and Khan are the first authors to use the term “successful ageing” in their
publication with the same name from 1987. They make a distinction between wsual and
successful non-pathological ageing, where usual ageing is defined as non-pathological
ageing, but with high risk of morbidity and mortality, and successful healthy ageing is
defined as low morbidity mortality risk and high function. The authors state that
successful ageing lies in the intersection between avoiding discase and disability, high
cognitive and physical function, and engagement with life | 114, 115 . Centenarians, a term
used for people who reach the age of 100 years or more, are often used as a model for
successful ageing. The prevalence of centenarianism is approximately 0.01 to 0.027% in
economically developed countries | 116 |. In most populations, centenarianism is four to
seven times more common in women compared to men | 117 . In a study from 2008, the

highest concentrations of centenarians were found in Japan, Bulgaria and [taly | 118 |.

Centenarians are described as having a marked delay of life-threatening diseases such as

cancer or Alzhcimer’s discase 119 . Albeit not all centenarians fulfil the definition of

successtul healthy ageing towards the very end of their lives, they do in general reach an
older age with intact cognitive abilities and better physical health than the general
population | 120 . Moreover, they have avoided or survived the most severe pathologics
causing mortality in the older population. For these reasons, centenarians are a valuable
source of information in the study of longevity and successful ageing. It further poses the
question - do centenarians reach an advanced age duce to a specific genotype or duc to

lifestyle and environment, or acombination of both?

A vast number of theories describing the process of ageing have emerged throughout the
history of gerontology studies. The theories mainly fall under two, often described
compcting with cach other, umbrella-categorics;  programmed or error/damage. The
programmed theorics arc essentially evolutionary and based on the idea that ageing
occurs according to a biological timetable aimed at promoting successful reproduction

and that changes in gene expression affect and regulate maintenance, defencee, and repair
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processes. The error/damage theories have an environmental footing and highlight
external exposure to an organism as capable of inducing cumulative damage, thereby

causing ageing| 121 .

Areview by Weinertand Timiras from 2003 describes theorics of ageing, classifying them
as evolutionary, molecular, cellular or systemic | 122 ). Itis possible, even likely, that ageing
cannot be explained by evolutionary or damage error classified theories exclusively, but
rather a combination of both naturc and nurture. Ageing rescarch has been undertaken
for more than a century, yet a comprehensive theory remains absent. It could be
hypothesised that an organism is subject to both types of ageing to cope with external
changes - at times prioritising reproduction and at times prioritising the individual. This
hypothesis would encourage a more non-biased approach to ageing research, thus
opening up for a better chance of elucidating the underlying mechanisms of ageing and

allowing for the development of treatments for age-related diseases 123 .
1.6.2 The ageing processes

As we grow older, a number of processes oceur. The decline of muscle mass and increase
of inflammation and oxidative stress are often quoted. Skeletal muscle mass starts to
decline with a rate of approximately 57 per decade after the age of 40 years. Severe loss of
muscle mass and strength, called sarcopenia, occurs in approximately 507 of individuals
over the age of 80 years. Skeletal muscle is not only vital for strength; it also functions as a
reserve for energy and isimportant for fatty acid oxidation and carbohydrate metabolism.
Therefore, age-related loss of muscle mass can provoke frailty and metabolic side effects

124 ].
1.6.2.1  Inflammageing and oxidative stress

Age-related, low-grade, chronic inflammation (termed “inflammageing”) has been
reported in several studies, with subjects presenting upregulated levels of the
inflammatory blood markers 11.-6 andor CRP 125, 126 . Inflammageing has been
identificd as a global indicator of poor hcalth status and specifically as a risk for frailty,
cardiovascular discasc, kidney discasc, diabctes, cancer, and sarcopenia. The causces of
inflammageing are not fully elucidated, however, research suggests that it may be triggered
by a number of factors, including visceral obesity, genctic predisposition, changes in the
gut microbiome and chronicinfections [ 127 . Inflammation and free radical damage often
go hand in hand, with high levels of oxidative stress correlating with reduced longevity
128 . It has been suggested that oxidative stress in the mitochondria can bring upon a

vicious cycle where damaged mitochondria produce cven more reactive oxygen specics,
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thereby augmenting the damage. Oxidative stress can moreover refer to processes
occurring outside the mitochondria, such as oxidation of lipids, proteins,and DNA | 129 |.
Oxidative stress is suggested to be involved in the development of obesity and has further
beenimplicated in the ncuronal damage observed in ncurodegencrative disorders. There
is a strong relationship between oxidative stress and inflammation as reactive oxygen

specics can activate pro-inflammatory specics such as NF-«B 130 .
1.6.2.2 Telomere length and mitochondria

Chromosomes  become  increasingly damaged  with age. Telomeres, which arce
nucleoproteins sitting at the tips of chromosomes like caps, can alleviate this damage.
However, every time DNA replicates, the telomeres get shorter. The enzyme telomerase
canadd telomere units to the existing telomeres, thereby cancelling out some of this effect
albeit not completely, the consequence being that telomeres shorten with age. When
telomere-length becomes too short, it will trigger DNA damage signals, the protein p53
among others, leading to apoptosis or senescence [131 . A mouse study linked telomere

damage and increased levels of p53 to mitochondria dystfunction 132 1.

In conclusion, ageing is undoubtedly a multi-factorial and highly complex process. The
study of centenarians and how their protein expression compares to that of patients
suffering from neurodegenerative disease may help us to better understand the
divergence between healthy and unhealthy ageing. Centenarians have been shown to
develop neurodegenerative discases at alower rate than the normal population, and when
they do, it is with a markedly delaved onset [ 133]. It hasbeen proposed that they may have
protective mechanisms providing resilience in place [134], and thus the comparison
between centenarians and Parkinson’s patients may provide additional information and

insights relating to both groups.
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2.1 SAMPLES

Thesample cohortsincludedin the studies presentedin this thesis were provided through

the Europcan Union-funded I Horizon 2020 projects PROPAG-AGEING and TTUMAN.

2.1.1 Samples included in the discovery proteomics studies

In the discovery proteomics study of centenarians, plasma from centenarians and
controls were collected by IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy.
In the Parkinson’s discasc discovery studics, two groups of blood-based samples were
included (i plasma from healthy controls and newly diagnosed, treatment-naive

Parkinson’s disease patients from the DeNoPa ( de novo Parkinson’s disease » cohort 135

and (ii) serum from The Swedish Twin Registry 136 ] from homozygous twins sampled
prior to the development of Parkinson’s disease in one of the twins from cach pair. In the
urine discovery study, samples from idiopathic PD patients, controls, symptomatic and
asymptomatic LRRK2 variant carriers collected by the National Hospital of
Neurosurgery and Neurology, were included. The discovery proteomics samples are
summarised in Table 2-1 and described in detail in the Methods and Materials sections of
Chapters 4,5and 6.

Table 2-1. Summary of the samples included in the discovery proteomic studies of centenarians and Parkinson’s
disease. Sample matrix, and the total number of samples included are listed.

Sample group Matrix Number of samples
Centenarians and controls Plasma 20
Newly diagnosed PD patients and healthy controls Plasma 20
Homozygous twin pairs discordant for developing PD post sampling Serum 18
Idiopathic PD patients, symptomatic and asymptomatic LRRK2 Urine 31

mutation carriers, and controls

2.1.2 Samples included in the targeted proteomics studies

In the targeted proteomic centenarian study, plasma samples from centenarians,
centenarian offspring and controls from IRCCS Istituto delle Scienze Neurologiche di
Bologna were included. In the targeted protcomic Parkinson’s disease studies, paired
plasma and urine from newly diagnosed Parkinson’s disease patients, patients with
idiopathic rapid eye movement sleep disturbance disorder, patients with other (non-PD)
neurological disorders,and healthy controls from the DeNoPa cohort wercincluded. The
targeted proteomics samples are summarised in Table 2-2 and described in detail in the

Mecthods and materials sections of Chapters 4,5 and 6.
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Table 2-2. Summary of the samples included in the targeted proteomic studies of centenarians and Parkinson’s
discase. Sample matrix, and the total number of samples included are listed,

Sample group Matrix Number of samples
Centenarians, offspring, and controls Plasma 186
Newly diagnosed PD patients, iRBD patients, non-PD neurological Plasma 211

disorders patients, and healthy controls

Newly diagnosed PD patients, iRBD patients, non-PD neurological Urine 211
disorders patients, and healthy controls

2.2 MODULES IN THE SAMPLE PREPARATION FOR
UNTARGETED AND TARGETED PROTEOMICS

Unless stated otherwise, all chemicals and reagents were purchased from Sigma Aldrich.
2.2.1  Freeze drying

100 pl MilliQQ water was added to precipitated pellet samples while samples already in
aqueous solutions were processed directly. The samples were placed on dry ice for a
minimum of 20 minutes to ensure that they were frozen completely solid. The samples
were freeze dried using a Modulyo freeze dryer from Edwards (Burgess Hill, UK,
equipped with a C/RVpro6 vacuum pump from Welch (Firstenfeldbruck, Germany),

setto operate at-40 'C under vacuum.
2.2.2 Digestion

The digestion protocol was performed sequentially, in the order of the sections 2.2.2.1 to

2.2.2.4.

2.2.2.1 Solubilising proteins

The butfer used to bring the freeze-dried samples” proteins back into solution has two
functions - to lyse the cells, making membrane and cytoplasm proteins available, and to
solubilise the proteins in the samples. The buffer consisted of 6 M urea, 2 M thiourea and
27 amidosulfobetain-14 in 100 mM Tris, pL1 7.8. 20 pL of this digest buffer was added to
the freeze-dried samples which were shaken for 60 minutes on an orbital shaker; 1500
rpm.

2.2.2.2 Reduction of protein disulphide bridges

In a protein, disulphate bridges are formed between cysteine moieties. To break these
bridges and open the protein’s conformation up, reducing agents are utilised. Reduction

of the disulphate bonds was performed by adding 45 ug dithiocrythriol (DTE) to the

samples, which were thereafter shaken for 60 minutes on an orbital shaker, 1500 rpm. The
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DT solution was made up fresh, moments prior to usage, as 30 pg/ul. in 100 mM Tris,

pH7.38.
2.2.2.3 Alkylation of reduced cysteine

After cysteine disulphate bridges have been reduced, thus breaking the disulphate bonds
in the protcins, they must be prevented from reforming. This is done by introducing an
alkylating reagent that binds covalently to the cysteine’s sulphur moiety.
Carbamidomethylation was performed by adding 108 ug iodoacetamide (TAA ) to the
samples, which were thereafter shaken for 45 minutes on an orbital shaker, 1500 rpm,
covered from light. The IAA solution was made up fresh, moments prior to usage, as

36 pg/pl.in1oo mM Tris, pI'1 7.8.

2.2.2.4 Dilution of urea concentration and addition of the digestion enzyme
trypsin

Urea concentrations higher than 1 M hamper the activity of trypsin. To lower the urea

concentration, 160 uL. Milli-Q water was added to the sample, thereby bringing the

concentration below 1 M. To digest the proteins into peptides, 1 pg trypsin gold from

Promega ( Mannheim, Germany » was added and the samples were incubated for 16 hours

ina+37 "C water bath. The trypsin solution was made up fresh, moments prior to usage,

as 0.1 pg/ulin 50 mM aceticacid.
2.2.3 Solid phase extraction

Solid phase extraction { SPE ; was emploved to purity the peptides, cleaning the solution
of digested peptides from salts and polar low-molecular weight compounds. Depending
on the number of samples processed, individual cartridges or 96-well plates were utilised.
Prior to SPE, the samples were adjusted to a trifluoroacetic acid ( TFA ) viv concentration

of 01%.

2.2.3.1  Solid phase extraction using individual cartridges

100 mg Isolute Cig cartridges from Biotage (Uppsala, Sweden' were utilised. The
stationary phasc of the cartridges was solvated by two 1 mL aliquots of acctonitrile. Each
aliquot was eluted off the cartridge by applying gentle positive pressure. Equilibration of
the stationary phasc was performed by adding two 1 mL aliquots of 0.1% TEFA, again cach
aliquot was cluted by applying gentle positive pressure. The sample was loaded on the
cartridge and the peptides bound to the stationary phase. Salts and low-molecular weight

compounds were washed off the cartridges by two 1 mL aliquots of 0172 TEFA, cach cluted
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by applying gentle positive pressure. Finally, the peptides were eluted off the stationary
phase by two 250 pL. aliquots of 607 acetonitrile, 0.17% TFA. The samples were eluted into

1.5 mL centrifugal tubes from Eppendort.

2.2.3.2 Solid phase extraction using 96-well plates

100 mg Bond Elute Cis 96-well plates from Agilent { Santa Clara, CA, USA ) were utilised.
The stationary phase was solvated by two 1 mL aliquots of acetonitrile. IZach aliquot was
eluted off the plate by centrifugation on a Sorvall Legend RT centrifuge ( Thermo Fisher
Scicntific, Waltham, Massachusctts, USA ) at 44 x g for four minutes. Equilibration of the
stationary phase was performed by adding two 1 mL aliquots of 0.1% TFA, again cach
aliquot was eluted by centrifugation at 44 x ¢ for four minutes. The samples wereloaded to
the wells and the peptides bound to the stationary phase during gentle centrifugation at
36 x g for five minutes. Salts and low-molecular weight compounds were washed oft by
adding two 1 mL aliquots of 017 TFA, each eluted by centrifugation at 36 x g for five
minutes. Finally, the peptides were eluted off the stationary phase by two 250 pl. aliquots
of 607 acetonitrile, 017 TFA, the first aliquot eluted by centrifugation at 36 x g for three
minutes and the second by 64 x gfor three minutes. The samples were eluted intoa 700 pL.

96-well sample plate from Agilent.
2.2.3.3 Evaporation of solvents

Solvents were evaporated from the SPE-cleaned samples using a vacuum rotator, a
Concentrator Plus from Eppendort ( Hlamburg, Germany . The samples were sealed and

stored at -80 “C until further use.
2.2.4  Colorimetric peptide assay

In the instances where the total peptide concentration of a sample was required prior to
instrumental analysis, a colorimetric peptide assay was utilised, Pierce Quantitative
Colorimetric Peptide Assay from Thermo Fisher Scientific. The samples were first
reconstituted in a solution matching the initial conditions of the liquid chromatography
gradient. From the reconstituted samples, 5 uLL was aliquoted into a new centrifugal tube
and 45 pL Milli-QQ water was added. 20 pL of the diluted sample was added to a flat-
bottom 96-well plate from Costar { Corning, Glendale, Arizona, USA ) in duplicates. An
cight-point standard curve was added in triplicate. The standard curve consisted of
scrially diluted digested peptide standard, provided in the kit, ranging from 0 to 1000
ng/ml. A working solution was constructed by mixing the provided reagents A, Band C

in the following ratio: 50 volumes A / 48 volumes B / 2 volumes C. 180 pl. of the working
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solution was added to the samples and the standard curve. The plate was covered with a
lid and incubated in room temperature for 30 minutes. The absorbance in each well was
rcad on an Infinitc F200 plate reader from Tecan { Méannedorf, Switzerland) equipped
with a 475 nm absorbancc filter. The absorbance measurements of the calibrants were
related to their concentrations to construct a calibration curve utilised to determine the

total peptide concentrations in the samples.

2.3 SAMPLE PREPARATION FOR DISCOVERY
PLASMA/SERUM PROTEOMICS

The sample preparation for discovery plasma/serum proteomics consisted of Topi2
depletion followed by freeze-drying, digestion and SPE clean-up. The steps in the process
are illustrated in Figure 2-1. The method development performed to optimise the sample

preparation worktlow is described in Chapter 3, section 3.2.1.
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Figure 2-1. llustration describing the process of preparing plasma samples for discovery proteomics. The steps
include: on day one - thaw the samples and deplete by Topi2 followed by freeze drying overnight, on day two - digest the
samples and incubate overnight, on day three - SPL clean the samples and evaporate solvents overnight. The stop signs
indicate steps after which it is possible to pause the process.

2.3.1 Procedure

The plasma samples were thawed at room temperature. The Top12 depletion cartridges
from Thermo Scientific were equilibrated to room temperature for a minimum of one
hour. The plasma was vortexed for five seconds and 10 pl. was added to the Topi2
cartridges which were vortexed briefly to ensure that the resin had not settled at the
bottom of the cartridge. The samples were incubated for one hour, allowing the high-
abundant specics to bind with the antibodics in the resin, under gentle end-to-end
rotation. The depleted sample was separated from the resin by centrifugation in room
temperature for two minutes at 1000 X g using a Micro-centrifuge 5424 R from
Eppendort. The samples were freeze dried overnight as per section 2.2.1, followed by
digestion with overnight incubation as per section 2.2.2and SPI clean-up using cartridges

as per section 2.2.3.1 and overnight evaporation of solvents as per section 2.233. The
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depleted, digested and SPL-cleaned samples were reconstituted in 50 ulL 3% acetonitrile,

0.1% TFA before instrumental analysis by 2D-LC-MS.

2.4 SAMPLE PREPARATION FOR DISCOVERY URINE
PROTEOMICS

The sample preparation for discovery urine proteomics consisted of centrifugation to
remove sediments, filtering and concentration of urinary protcins followed by acctone
precipitation and freeze-drying, digestion and SPE clean-up. The steps in the process are
illustrated in Figure 2-2. The method development performed to optimise the sample

preparation workflow is described in Chapter 3, section 3.2.2.

Figure 2-2. Tllustration describing the process of preparing urine samples for discovery proteomics. 1he steps
include: on day one - thaw the samples, aliquot and centrifuge to remove sediments, filter the urine in 10 kDa MWCO
filters followed by acetone precipitation overnight and on day two freeze drying overnight, on day three - digest the samples
and incubate overnight, on day four - SPE clean the samples and cvaporate soloents overnight. On the day of instrumental
analysis, the peptide concentration in cach sample is determined and the samples diluted to equal peptide concentration.
The stop signs indicate steps after which it is possible to pause the process.

2.4.1 Procedure

The urine samples were thawed at room temperature. The samples were vortexed for five
seconds and 4 mL of urine was aliquoted into 5 ml. centrifuge tubes from Eppendorf. The
4ml.aliquots were centrifuged at room temperature at 3761 x g for 30 minutes to separate
the urinary sediment from solution using a Sorvall Legend RT centrifuge. 2 mL of the
supcrnatant was transferred to Amicon Ultra-4 10 kDa molccular weight cut-oft filters
from Merck Millipore (Burlington, Massachusetts, USA ) and 2 ml. Milli-Q water was
addcd to give a final volume of 4 mL. To concentrate the urinary proteins, the samples
were centrifuged at room temperaturce for onc hour at 4444 x g Sorvall Legend RT . The
concentrate was transferred to a 1.5 ml. centrifuge tube (Eppendorf). To ensure

maximum recovery, the filters were washed with 100 pL. 50 mM ammonium bicarbonate
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which was pooled with the concentrate. 800 pl.ice-cold acetone was added to the pooled
concentrate and the samples were vortexed for five seconds before overnight incubation
in 20 “C. In order to separate the supernatant from the protein pellet, the samples were
centrifuged for ten minutes at —4 “C and 16900 x g using a Micro-centrifuge 5424 R
(Eppendort ). The supernatant was carcfully pipetted oft and discarded. The pellet was air
dricd in a fume hood for 20 minutes to evaporate residual acetone. 100 ulL Milli-Q water
was added to the samples and the protcin pellet broken up by vigorous vortexing. The
samples were thereafter freeze dried overnight as per seetion 2.2.1, followed by digestion
with overnight incubation as per section 2.2.2, SPIL clean-up using cartridges as per
section 2.2.3.1, and overnight evaporation of solvents as per section 2.2.3.3. The digested
and SPE-cleaned samples were reconstituted in 50 pl. 37 acetonitrile, 0.7 TFA and a
peptide assay was performed as per section 2.2.4. The peptide concentration in the

samples was normalised to 1000 ng/ul. before instrumental analysis by 2D-LC-MS.

2.5 INSTRUMENTAL ANALYSIS OF DISCOVERY
PROTEOMICS SAMPLES BY 2D NANO-LC IMS MS*

The instrumental analysis of the discovery cohorts was performed utilising a nano-2D-
LC system coupled to a time-of-flight mass spectrometer equipped with ion mobility
(IMS separation. Figure 2-3 shows a diagram of the 2D-LC set-up. The method
development performed to optimise the parameters for instrumental analysis is

described in Chapter 3, section 3.3.
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Figure 2-3. Configuration of the 2D-LC fractionation utilised in discovery proteomics. The diagram shows the
set-up of the high pI'T and analytical pumps and their valve configurations. In configuration (A) of the inject valve, the
sample is drazon by the auto sampler after which the sample needle is washed, drawing wash solution through the syringe.
In inject valve position (B), the sample is loaded onto column +1 and fraction-cwise elution by pump /' 1, providing high pH
mobile phase, commenced. The eluted fraction enters the trap valve and is loaded onto the trap column and subsequently
column /12 inconfiguration {C). Pump /1 is thereafter bypassed, and the fraction eluted from column /2 sent to the mass
spectrometer for detection in configuration (D). The events associated with valve configurations (B) - (D) are repeated
until all fractions have been eluted from columns 7’1 and i:2 and the analytes have been detected by the mass spectrometer,
beforethe subsequent sample is infected, and the process starts over again.
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2.5.1 Two-dimensional liguid chromatography separation

The peptides were separated using a 2D-NanoAquity liquid chromatography system
(Waters, Manchester, UK). Allsamples were fractionated online into ten fractions over a
12-hour period. The fractionation was performed by reversed phase chromatography,
utilising the orthogonality in peptide separation between high and low pH mobile phases.
The mobile phasc in the first, fractionating, chromatographic system consisted of A1:
10 mM ammonium hydroxide titrated to pH 9 with hydrochloric acid (12 M) and B1:
acetonitrile. The second, analytically separating, chromatographic system’s mobile phase
wasA2: 57 dimetylsulfoxid(DMSO ), 0.17% formic acid, and B2: acctonitrile with 572 DMSO,
0.1% formic acid. 2D-LC fractionation was performed by loading the sample onto a 300
um X 50 mm, 5 um Peptide BEH C18 column ¢ Waters ). The peptides were thereafter
cluted fraction-wise from the first to the second column at a flow rate of 2 uL,/min. The
initial condition of the gradient elution was 3% B, held over 0.5 minute before linearly
increasing the proportion of organic solvent B, fraction per fraction, according to Table
2-3 over 0.5 minute. The conditions thereafter remained static for 4 minutes before
returning to the initial conditions over 0.5 minute and equilibration prior to the next
clution for 10 minutes. The eluted peptides from the first dimensional column were
loaded into 2180 um x 20 mm, 5 um Symmetry Cs trap column { Waters ) before entering
the analytical column, a 75 um x 150 mm, 1.7 um Peptide BEH Cis (Waters . The column
temperature was +45 “C. The gradient elution applied to the analytical column started at
37 Band was linearly increased to 407 B over 40 minutes after which it was increased to
857 B over 2 minutes and washed for 2 minutes before returning to initial conditions over
2 minutes followed by equilibration before the subsequent injection for 15 minutes. The
cluted peptides were detected using a Synapt-G2-Si (Waters: equipped with a nano-
clectrospray ion source.

Table 2-3. Pereentage of cluent B for the first dimension of the 2D-1.C fractionation before loading onto the
sccond, analytical system. The B eluent on the high pI column was acetonitrile andthe B eluent on the analytical column
was acetonitrile with 0.1% formic acid.

Fraction number High-pH column Analytical column

Percentage B at endpoint Percentage B at midpoint Percentage B at endpoint
# 1 7.4 5.7 40
# 2 10.8 9.9 40
#3 12.6 11.9 40
# 4 14.0 13.4 40
#5 15.3 14.6 40
#6 16.7 15.9 40
#7 18.3 17.3 40
#8 20.4 18.9 40
#9 23.5 22.0 40

#10 60.0 42.0 60
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2.5.2 Detection by time-of-flight IMS MS* mass spectrometry

The mass spectrometer was a Synapt-G2-Si  Waters ). Prior to analysis, a detector set-up
in positive modc was performed utilising lcu-cnkephalin at a concentration of 200 pg/ul.,
infused at a flow ratc of 03 pL. per minute. The mass spectrometer was thereafter
calibrated in positive mode for resolution in the mass range m 'z 50 - 2000 utilising| glut |-
fibrinopeptide B with a concentration of 500 fmol/uL, infused at a flow rate of 03 uL per
minute. At least 13 of the 15 theoretical fragments were required to match for the

calibration to be accepted.

Data were acquired in positive MSF mode from 0 to 60 minutes within the m/z range
50 -2000. The capillary voltage was set to 3kV and the source temperature to + 100 “C.
The cone gas consisted of nitrogen witha flow of 50 L 'h, the desolvation temperature was
set to - 200 "C. The purge and desolvation gas consisted of nitrogen, operated at a flow
rate of 600 mL/hand 600 L /hrespectively. The gas in the IMS cell was helium with a flow
rate of 90 mL 'h. The low energy acquisition was performed applying a constant collision
voltage of 4 V with a 1 second scan time. High energy acquisition was performed by
applying a collision energy ramp, from 15 to 40 V, the scan time was 1 second. The lock
mass consisted of 500 fmol/ulL | glut Hibrinopeptide B, continuously infused at a flow rate
03 ul.'min and acquired every 30 seconds. The doubly charged precursor ion, m/z

785.8426, was utilised for mass correction.

2.6 DATA PROCESSING FOR DISCOVERY
PROTEOMICS

2.6.1 Identification and relative quantitation of proteins

After acquisition, data were imported to Progenesis QI for proteomics (Waters) and the
individual fractions 1 - 10 were individually processed before all results were merged into
one experiment. The Ion Accounting workflow was utilised, with UniProt Canonical
Human Proteome {exported 2017 as data base. The digestion enzyme was set as trypsin.
Carbamidomethyl on cysteines was set as a fixed modification; deamidation of glutamine
and asparagine, oxidation of tryptophan and pyrrolidone carboxylic acid on the N-
terminus were set as variable modifications. The identification tolerance was restricted to
at least two fragments per peptide, three fragments per protein and one peptide per
protcin. A false discovery rate of 47 orless was aceepted. The individual fractions 1- 10 for
cachsample were combined in Progencesis, using the multi-fraction experiment workflow.

Generally, at least two unique peptides per protein and an identification confidence score
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(a Progenesis specific value denoting the identification confidence, where a higher value
implies a more certain protein identification ) larger than 15 were set as thresholds for
classifyinga protcinas a confidentidentification. The resulting identifications and relative

quantitation were exported to Microsoft Excel.
2.6.2  Quality control

The data scts were visualised using the multivariate tool principal component analysis
using the softwarc SIMCA, version 15 (Umctrics Sartorius Stedim, Umca, Sweden ) and
inspected for issues such as instrumental drift and outliers. In the event that severe
instrumental drift was observed, a drift correction filter utilising locally estimated
scatterplot smoothing ( LOWESS » was applied { strategy described in Chapter 3, section
3.5.2). The variables were tested for normal distribution by IYAgostino’s I<2 test. In the
cases of non-normaldistribution, the variables were transformed to normality using anin-
house Box-Cox script written in Python [137 . The data were once more inspected in

SIMCA to ensure that eventual corrections had been successful.

Lo
1

.7 SAMPLE PREPARATION FOR TARGETED PLASMA
PROTEOMICS

The sample preparation for targeted plasma proteomics consisted of Top2 depletion
followed by freeze-drving, digestion and SPE clean-up. The steps in the process are
illustrated in Figure 2-4. The method development performed to optimise the sample

reparation workflow is described in Chapter 3, section 3.4.2.
prep pter 3 R
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Figure 2-4. Illustration describing the process of preparing plasma samples for targeted proteomics. The steps
include: on day one - thaw the samples and deplete by Topz2 followed by freeze drying overnight, on day two - digest the
samples and incubate overnight, on day three - SPE clean the samples and evaporate solvents overnight. The stop signs
indicate steps after which it is possible to pause the process.

2.7.1 Procedure

The plasma samples were thawed at room temperature. The Top2 depletion cartridges

from Thermo Scientific were equilibrated to room temperature for a minimum of one
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hour. The plasma was vortexed for five seconds and 10 pl. was added to the Top2
cartridges. 150 ng wholc protcin ENO1 (ycast: was added as an intcrnal standard
accounting for sample preparation. The samples were vortexed briefly to ensure that the
resin had not settled at the bottom of the cartridge. The samples were incubated for one
hour, allowing the high-abundant specics to bind with the antibodics in the resin, under
gentle end-to-end rotation. The depleted sample was separated from the resin by
centrifugation at room temperature for two minutes at 1000 X g using a Micro-centrifuge
5424 R from Eppendorf. The samples were freeze dried overnight as per section 2.2.1,
followed by digestion with overnight incubation as per scction 2.2.2 and SPE clean-up
using 96-well plates as per section 2.2.3.2 and overnight evaporation of solvents as per
section 2.23.3. The depleted, digested and SPE-cleaned samples were reconstituted in
30 ul.3acetonitrile, 017 TFA, containing 0.1 M of heavy isotope labelled peptides from
the proteins ALDOA, C3, GSTO1, RSU1 and TSP1 (full amino acid sequences given in

Table 2-4 ) before instrumental analysis by UPLC-MS/MS.

Lo

.8 SAMPLE PREPARATION FOR TARGETED URINE
PROTEOMICS

The sample preparation for targeted urine protecomics consisted of centrifugation to
remove sediments, filtering and concentration of urinary proteins followed by acetone
precipitation and freeze-drying, digestion and SPE clean-up. The steps in the process are
illustrated in Figure 2-3. The rationale behind the sample preparation workflow is

described in Chapter 3, section 3.4.3.

Figure 2-5. llustration describing the process of preparing urine samples for targeted proteomics. The steps
include: on day one - thaw the samples, aliquot and centrifuge to remove sediments, filter the urine in 10 kDa MW CO
filters followed by acetone precipitation overnight and on day two freeze drying overnight, on day three- digest the samples
and incubate overnight, on day four- SPE clean the samples and evaporate soloents overnight. The stop signs indicatesteps
after which itis possible to pause the process.
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2.8.1 Procedure

Theurine samples were thawed at room temperature. The samples were vortexed for five
sccondsand 4 mL of urinc was aliquoted into 5 mL centrifuge tubes from Eppendort. The
4mL aliquots were centrifuged at room temperature at 3761 x g for 30 minutes to separate
the urinary sediment from solution using a Sorvall Legend RT centrifuge. 3 mL of the
supcrnatant was transferred to Amicon Ultra-4 10 kDa molecular weight cut-oft filters
from Merck Millipore and 1 mL Milli-QQ water was added to give a final volume of 4 ml..
150 ng whole protein ENO1 (yeast) was added as an internal standard accounting for
samplc preparation. To concentrate the urinary proteins, the samples were centrifuged in
room temperature for one hour at 4444 x g {Sorvall Legend RT . The concentrate was
transferred to a 1.5 mL centrifuge tube (Eppendort . To ensure maximum recovery, the
filters were washed with 100 pl. 50 mM ammonium bicarbonate which was pooled with
the concentrate. 800 pL ice-cold acetone was added to the pooled concentrate and the
samples were vortexed for five seconds before overnight incubation at -20 “C. In order to
separate the supernatant from the protein pellet, the samples were centrifuged for ten
minutes at 4 "C and 16900 x g using a Micro-centrifuge 5424 R (Eppendorf). The
supernatant was carefully pipetted off and discarded. The pellet was air dried in a fume
hood for 20 minutes to evaporate residual acetone. 100 p L Milli-Q) water wasadded to the
samples and the protein pellet broken up by vigorous vortexing. The samples were
thereafter frecze dried overnight as per section 2.2.1, followed by digestion with overnight
incubationas per section 2.2.2, SPE clean-up using 96-well plates as per section 2.2.3.2and
overnight evaporation of solvents as per section 2.233. The concentrated, digested and
SPE-cleaned urine samples were reconstituted in 50 L 3% acctonitrile, 0.7 TFA,
containing 0.1 uM of heavy isotope labelled peptides from the proteins ALDOA, C3,
GSTO1, RSUT and TSP1 (full amino acid sequences given in Table 2-4) prior to

instrumental analysis by UPLC-MS/MS.

)

2.9 TARGETED INSTRUMENTAL ANALYSIS OF THE
VALIDATION SAMPLES BY UPLC-MS/MS

The instrumental analysis of the targeted cohorts was performed utilising a UPLC-LC
system coupled to a triple quadrupole mass spectrometer. Figure 2-6 shows a diagram of
the UPLC sct-up. The development of the targeted multiple reaction monitoring method

is described in Chapter 3, section 3.4.1.
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Figure 2-6. Configuration of the LC system utilised in targeted proteomics. Inn configuration | A of the inject valve,
the sample is drazon by the auto sampler after which the sample needle is washed, drawing wash solution through the
syringe. In inject valve position | B), the sample is loaded onto the column and eluted by the mobile phase provided by the
pump. A flow diverter valve post-column can direct the eluent either to the mass spectrometer in configuration (C) or divert
ittowaste in configuration (D).

2.9.1  Liquid chromatography separation

Chromatographic separation of the peptides was performed on a binary UPLC Acquity
system ( Waters) utilising a 1 X 100 mm, 1.7 pm ACQUITY UPLC® Peptide CSH Cis
column (Waters). The mobile phase consisted of A: 017 formic acid and B: 017 formic
acid in acetonitrile pumped at a flow rate of 0.2 mL ‘min. The column temperature was set
to 55 'C. The starting conditions of 3% B were kept static for 0.8 minutes, before
initialising the linear gradient utilised to elute and separate the peptides over 7.6 minutes
to 257 B. B was thereafter lincarly increased to 807 over 0.5 minutes and held for 1.9
minutes to wash the column and elute the most apolar peptides, before returning to the
initial conditions over 0.1 minutes followed by equilibration for 6 minutes prior to the

subsequentinjection.
2.9.2  Detection by MS/MS

The 1.C system was coupled to a Waters Xevo-TQ-S triple quadrupole mass
spectrometer for multiple reaction monitoring { MRM ' detection in positive electrospray
ionisation mode. The capillary voltage was set to 2.8 kV, the source temperature to 150 “C,
the desolvation temperature to 600 “C, the cone gas and desolvation gas flows to 150 and
1000 L/hour, respectively. The collision gas consisted of nitrogen and was sct to
0.15 ml. min. The nebuliser operated at 7 bars. The cone voltage was set to 35 V and the
collision voltages varied depending on the optimal settings for each peptide. The L.C flow
was diverted to waste outside of the acquisition windows. The MRM method consisted
of 189 unique peptides and was split over two injections to ensurc adequate acquisition of
the transitions. Figure 2-7 illustrates the retention time-based MRM segments for

injcctions oncand two.
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Figure 2-7. MRM scgments of the targeted protcomics method for the two injections. The segments were
distributed to allow for the largest possible acquisition windows, thereby minimising the risk of failed measurements due to
retention time drift. Each segment was populated by a maximum of 25 peptides. The segments belonging to injection +1are

filled, while the segments belonging to injection 2 are striped. Each function is labelled by its time windozw.

The monitoredaminoacid sequences, the transitions of precursor to product ionsand the

coneand collision voltages forall peptides included in the assay are presented in Table 2-4.

Table 2-4. Analytical details of the peptides included in the targeted assay. TV precursor proteins of the peptides
arerepresented asgene names. Amino acid sequences, the transitions of precursor to product ions and the cone and collision
voltages are presented. A: Alanine, R: Arginine, N: Asparagine, D: Aspartic acid, C: Cysteine, Q: Glutamine, E: Glutamic
acid, G: Glycine, H: Histidine, I: Isoleucine, L: Leucine, I: Lysine, M: Methionine, F: Phenylalanine, P: Proline, S: Serine,
T: Threonine, W: Tryptophan, Y: Tyrosine, and V: Valine

Precursor Product Product Collision

Gene Amino acid sequence ion ion #1 ion #2 voltage, ion

[m/z] [m/z] [m/z] #1/#2 V]
A2M AFQPFFVELTMPYSVIR 1023.30 1079.59 1208.63 37 /37
ADIPOQ IFYNQQNHYDGSTGK 591.27 666.32 1106.49 20/20
ANXA2 TNQELQEINR 622.82 659.35 772.43 22/22
ANXA2 TPAQYDASELK 611.80 825.40 1024.49 22/22
APOE LGPLVEQGR 484.78 588.31 701.39 17/17
APP GLTTRPGSGLTNIK 472.27 572.33 622.85 16/16
APP YLETPGDENEHAHFQK 638.96 767.39 1010.48 22 /22
ATIC HVSPAGAAVGIPLSEDEAK 616.65 847.44 888.43 21/ 21
ATIC DVSELTGFPEMLGGR 804.39 759.38 963.47 29/29
BCAP29 SSTSRPDAYEHTQMK 435.20 468.72 504.23 14 /14
BCHE YGNPNETQNNSTSWPVFK 1041.98 490.30 874.92 37 /37
BCHE YLTLNTESTR 599.31 707.33 921.46 21 /21
C150rf62 EQFPSEPSF 534.24 350.17 718.30 19/19
C150rf62 LPLWGDEQPR 605.81 701.32 887.40 21/ 21
C3 TVMVNIENPEGIPVK 820.44 853.48 982.52 29 /29
CAPN2 SDTFINLR 483.26 515.33 763.45 17 /17
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Precursor Product Product Collision
Gene Amino acid sequence ion ion #1 ion #2 voltage, ion
[m/z] [m/z] [m/z] #1/#2 V]

CAPN2 NFFLTNR 456.24 650.36 797.43 16/16
CCL13 SYVITTSR 463.75 577.33 676.40 16/16
CCL17 DAIVFVTVQGR 602.84 806.45 905.52 21/ 21
CCL2 WVQDSMDHLDK 458.54 845.38 960.41 15/15
CCL22 HFYWTSDSCPRPGVWVLLTFR 610.31 627.89 649.40 21/ 21
CCL24 GQQFCGDPK 518.73 576.22 723.29 16/16
CCL26 SYEFTSNSCSQR 733.30 838.35 939.39 26 /26
CCL4 NFVVDYYETSSLCSQPAVVFQTK 894.76 889.47 1104.56 27 /27
CD200R1 QITANYSK 491.09 370.66 740.45 14/18
CD22 EVQFFWEK 556.77 609.30 756.37 20/20
CHI3L1 VTIDSSYDIAK 606.31 696.36 783.39 21/ 21
COL4A2 GLDGYQGPDGPR 616.29 541.27 726.35 22/22
COL4A2 SVSIGYLLVK 539.83 692.43 892.55 19/19
COL6A3 QLGTVQQVISER 679.38 859.46 1116.60 24 /24
CPS1 FVHDNYVIR 388.20 458.74 779.40 13/13
CRP APLTKPLK 289.86 586.39 699.48 9/9
CRP ESDTSYVSLK 564.77 696.39 797.44 20/20
CS ALGVLAQLIWSR 663.92 448.06 561.10 16/16
CSF1R NVLLTNGHVAK 583.34 625.34 726.39 21/ 21
CSF1R VVEATAFGLGK 546.31 764.43 893.47 19/19
CST3 ALDFAVGEYNK 613.81 780.39 927.46 22 /22
CTHRC1 GDASTGWNSVSR 618.78 805.40 906.44 22 /22
CUL5 YVEQLLTLFNR 698.39 763.45 876.53 25/25
CYCS TGPNLHGLFGR 390.21 505.78 534.29 13/13
CYCS GIIWGEDTLMEYLENPK 670.00 763.35 892.39 18/18
DCXR TQADLDSLVR 559.39 474.52 888.86 26/16
DCXR AVIQVSQIVAR 592.36 772.47 900.53 21/ 21
DKK3 EVPDEYEVGSFMEEVR 957.92 843.87 1053.50 34 /34
DKK3 SAVEEMEAEEAAAK 732.83 818.39 1078.47 26 /26
EFNA5 VFDVNDK 418.71 590.28 737.35 14/14
EFNA5 VENSLEPADDTVHESAEPSR 728.00 755.84 820.36 25/25
ENDOU YGSEQEFVDDLK 715.33 865.43 1266.58 25/25
EPO TITADTFR 462.74 609.30 710.35 16/16
EPO EVWQGLALLSEAVLR 842.78 674.61 1141.94 22/28
FABP5 ELGVGIALR 464.28 529.35 685.44 16/16
FABP5 TTQFSTLGEK 556.29 781.41 909.47 20/20
FGA AQLYDMK 402.72 492.25 605.33 14 /14
FGA GLIDEVYNQDFTNR 760.87 894.41 1237.54 27 /27
FGF2 LESNNYNTYR 637.29 716.34 830.38 23/23
FGF21 EDGTVGGAADQSPESLLQLK 672.34 464.28 701.46 23/23
FGF21 YLYTDDAQQTEAHLEIR 689.33 813.89 895.42 23/23
GRN ENATTDLLTK 553.29 690.40 791.45 19/19
GRN AVALSSSVMCPDAR 732.35 1022.44 1109.47 26 /26
HBE1 MNVEEAGGEALGR 666.81 730.38 859.43 24 /24
HBE1 EFTPEVQAAWQK 717.36 830.45 1056.55 25/25
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Precursor Product Product Collision
Gene Amino acid sequence ion ion #1 ion #2 voltage, ion
[m/z] [m/z] [m/z] #1/#2 V]

HELLS LISQIQPEVDR 649.36 743.37 984.51 23/23
HPX YYCFQGNQFLR 748.34 862.45 1009.52 27 /27
HSP90ABT  SIYYITGESK 580.80 634.34 797.40 20/ 20
HSPA1L VEIIANDQGNR 614.82 703.31 774.35 22/22
HSPA5 ITITNDQNR 537.78 747.34 860.42 19/19
HSPA8 DAGTIAGLNVLR 600.34 742.46 855.54 21/ 21
HSPD1 VTDALNATR 480.76 645.37 760.39 17 /17
ICAM1 LLGIETPLPK 540.84 797.48 854.50 19/19
ICAM1 ASVSVTAEDEGTQR 725.34 834.36 1006.44 26 /26
IFNG AIHELIQVMAELSPAAK 911.15 386.13 473.19 25/25
IFNG IMQSQIVSFYFK 745.89 903.50 1031.56 27 /27
ILTA ESMVWATNGK 567.79 589.33 688.40 20/ 20
IL1B SLVMSGPYELK 612.32 793.41 924.45 22 /22
IL2 DLISNINVIVLELK 791.97 813.54 927.59 28/ 28
IL4 EANQSTLENFLER 775.88 807.40 920.48 28 /28
IL5 TLLIANETLR 572.34 703.37 816.46 20/20
IL6 YILDGISALR 560.82 616.38 844.49 20/ 20
L7 LNDLCFLK 511.77 680.38 795.41 18/18
IL10 AMSEFDIFINYIEAYMTMK 1159.71 379.34 510.43 26 /24
IL10 DQLDNLLLK 536.31 715.43 828.52 19/19
IL12A TSTVEACLPLELTK 781.41 700.40 1173.60 26 /26
IL12B EDGIWSTDILK 638.82 676.39 862.47 23/23
IL13 ELIEELYNITQNQK 835.95 944.52 1057.60 30/30
IL15 TEANWVNVISDLK 744.89 788.45 887.52 26 /26
IL16 DPGVSESPPPGR 597.79 739.37 925.47 21 /21
IRAK4 SANILLDEAFTAK 696.87 781.37 894.46 25/25
ITIH2 TEVNVLPGAK 514.29 698.42 797.49 18/18
ITIH2 VQFELHYQEVK 473.91 666.35 803.40 16/16
LMO7 KPQDQLVIER 409.23 417.25 710.38 13/13
MAPK12 VTGTPPAEFVQR 651.35 472.25 846.45 23/23
MASP2 AGYVLHR 408.23 425.26 524.33 14/14
MASP2 WPEPVFGR 494.26 575.33 801.43 17 /17
MMP3 GNQFWAIR 496.26 545.32 692.39 17 /17
MMP3 TYFFVEDK 524.75 637.32 784.39 18/18
MSN EDAVLEYLK 540.28 552.30 665.39 19/19
MUC5B ATNSTATPSSTLGTTR 783.39 919.48 1020.53 28/ 28
NCAM1 LEGQMGEDGNSIK 689.32 819.38 950.42 24 /24
NCAM1 DGQLLPSSNYSNIK 768.39 1009.49 1122.58 27 /27
NDRG1 ISGWTQALPDMVVSHLFGK 696.03 615.32 787.45 24 /24
NDRG1 MADCGGLPQISQPAK 786.88 868.49 1038.59 28 /28
NEFL YEEEVLSR 512.75 603.35 732.39 18/18
NEFL VLEAELLVLR 577.86 613.44 813.52 20/20
NEFM SIELESVR 466.76 490.26 732.39 16/16
NEFM FVEEIEETK 618.82 732.41 990.50 22 /22
NEFH LEQEHLLEDIAHVR 426.23 595.37 710.39 14 /14
NEFH TSVSSVSASPSR 582.80 604.30 877.44 20/20
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Precursor Product Product Collision
Gene Amino acid sequence ion ion #1 ion #2 voltage, ion
[m/z] [m/z] [m/z] #1/#2 V]

NFATC2 YQQQNPAAVLYQR 789.90 820.47 917.52 28/ 28
NFKBIZ ASGQAVDDFK 519.25 694.34 879.42 18/18
NLRP3 YLEDLEDVDLK 676.34 831.45 946.47 24 /24
OLR1 QQAEEASQESENELK 573.93 719.36 848.40 19/19
PGAM1 AMEAVAAQGK 488.25 644.37 773.42 17 /17
PGK1 VLPGVDALSNI 549.50 466.54 885.84 8/10
PKM ITLDNAYMEK 599.29 755.34 791.39 21/ 21
PLAU SDALQLGLGK 501.28 615.38 728.47 17 /17
PLD3 LLISCWGHSEPSMR 558.27 667.27 723.82 19/19
PLD3 ALLNVVDNAR 542.81 574.29 787.41 19/19
PPP3CB GLTPTGMLPSGVLAGGR 792.43 656.86 813.46 28/ 28
PRDX3 GLFIIDPNGVIK 643.38 742.41 855.49 23/23
PRG4 GFGGLTGQIVAALSTAK 795.95 1058.62 1159.67 28 /28
PTGDS AQGFTEDTIVFLPQTDK 955.51 363.41 588.56 42 /26
PTGDS TMLLQPAGSLGSYSYR 872.44 989.47 1157.56 31/ 31
PTGES2 QWADDWLVHLISPNVYR 704.54 735.46 848.62 20/ 24
RANGAP1 AFNSSSFNSNTFLTR 564.94 637.34 751.38 16/16
RANGAP1 VINLNDNTFTEK 704.36 968.43 1195.56 25/25
SAAT EANYIGSDK 498.74 682.34 796.38 17 /17
SAAT SFFSFLGEAFDGAR 776.22 303.33 822.63 34 /22
SELE YTHLVAIQNK 396.22 573.34 672.40 13/13
SERPINAT LSSWVLLMK 538.81 603.39 876.50 19/19
SERPINA3 LYGSEAFATDFQDSAAAK 946.44 952.44 1053.48 34 /34
SERPINF2 LGNQEPGGQTALK 656.85 674.38 771.44 23/23
SERPINF2 HQMDLVATLSQLGLQELFQAPDLR 908.65 500.13 1112.82 18/18
SERPING1 LVLLNAIYLSAK 659.41 765.45 992.58 23/23
SMC4 SNNIINETTTR 631.82 721.35 834.43 22 /22
SNAP25 AWGNNQDGVVASQPAR 557.27 558.30 629.34 19/19
SNAP25 HMALDMGNEIDTQNR 582.26 633.30 746.38 20/20
SOD1 LACGVIGIAQ 501.18 201.01 218.10 22/18
SOD2 LTAASVGVQGSGWGWLGFNK 1018.20 1064.53 1208.58 37 /37
SOD3 AGLAASLAGPHSIVGR 492.95 582.83 618.35 16/16
SOD3 VTGVWVLFR 445.78 534.34 690.43 15/15
SPP2 DALSASWVVK 445.25 503.32 590.35 15/15
SPP2 VNSQSLSPYLFR 705.87 695.39 782.42 25/25
TEK IVDLPDHIEVNSGK 512.61 548.28 662.33 17 /17
THY1 HVLFGTVGVPEHTYR 428.73 401.70 479.74 14/14
TLR6 DMPSLEILDVSWNSLESGR 1074.49 948.79 1035.89 32/30
TNF DNQLVVPSEGLYLIYSQVLFK 1213.38 570.24 669.35 27 /27
TNF ANALLANGVELR 620.85 758.42 871.50 22/22
TNFB MHLAHSTLKPAAHLIGDPSK 531.79 331.20 619.35 18/18
TNNT3 DLMELQALIDSHFEAR 629.98 764.89 830.41 21 /21
TOLLIP LNITWQAK 493.31 645.39 758.48 17 /17
TOLLIP GPVYIGELPQDFLR 802.43 77541 1074.56 29/29
TRAP1 ELGSSVALYSR 591.31 609.34 882.47 21/ 21
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Precursor Product Product Collision

Gene Amino acid sequence ion ion #1 ion #2 voltage, ion

[m/z] [m/z] [m/z] #1/#2 V]
TUBA4A DVNAAIAAIK 493.29 586.39 771.47 17717
TUBA4A AVFVDLEPTVIDERR 858.46 942.53 1299.68 31/ 31
TXN LEATINELV 501.22 47411 528.24 9/9
UBC TITLEVEPSDTIENVK 894.47 905.46 1002.51 32/32
VCAM1 LHIDEMDSVPTVR 756.59 251.23 472.42 28/ 24
VCAM1 NTVISYNPSTK 580.32 732.39 944.54 20/20
VEGFA SWSVYVGAR 512.76 565.31 751.41 18/18
VEGFC FAAAHYNTEILK 459.91 580.31 615.83 15/15
VEGFD FAATFYDIETLK 709.86 718.40 881.46 25/25
Internal standards
ENOI1
(yeas) GNPTVEVELTTEK 709.06 623.49 948.68 18/20
RSU1 ALYLSDNDFEILPPDIGK 1014.30 633.37 746.37 36/36
C3 SSLSVPYVIVPLK 704.43 357.25 934.60 25/25
GSTO1 GSAPPGPVPEGSIR 664.36 556.81 1015.56 23/23
TSP1 TIVITLQDSIR 627.36 940.52 1039.59 22 /22

2.10 TARGETED PROTEOMICS DATA PROCESSING

After acquisition, data were peak picked using an in-house Python-based guided user
interface (GUI peak picking application (development described in Chapter 3, section
3.5.1) or the MassLynx (version 4.1y module TargetLynx ( Waters .. In the GUT application
workflow, the .raw files were converted to .txt files and imported to the application. Peaks
were aligned if necessary, and thereafter integrated. When Targetl.ynx was used, data
were imported to TargetLynx and quantitative methods were created and applied to the

data.

The integrated peak arcas were exported to Microsoft Excel where firstly the ratio
between quantifier and qualifier peak areas were calculated and evaluated to ensure that
the correct peaks had been integrated. The digestion efficiency was evaluated by
monitoring the presence of the yeast enolasc peptide from ENO1 GNPTVEVELTTEK).
After the initial quality assessment, the quantifier area was divided by the area of a heavy
isotope labelled peptide internal standard to yield a ratio used for the determination of
rclative concentrations. Any compound that also showed an intensity signal in the blank
samples had the blank signal subtracted from the analyte peak intensity. Pooled quality

control samples were additionally evaluated to assess the robustness of the run.

The final data were cvaluated through corrclation analysis and by comparing the groups

through multivariatc and univariatc analyscs. The results were assessed and visualised
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using the software packages GraphPad Prism (version 6.0.1, GraphPad Software, San

Dicgo, California USA, www.graphpad.com ), Simca and various Python scripts.

2.11 GENERAL PROTOCOLS
2.11.1  Analysis of creatinine for normalising urinary biomarkers

The metabolite creatinine is commonly utilised for normalising urinary biomarkers,
expressing them as a ratio to the urinary creatinine concentration. Creatinine
concentrations were determined in all urine samples according to the here described
procedure. All ereatinine measurements were performed by Mrs Justyna Spiewak ( The

Biological Mass Spectrometry Group, Institute of Child Health, UCL, London .

A working solution consisting of 0.25 mM Djs-creatinine (CDN Isotopes, Quebec,
Canada in water was prepared. 100 pL of urine was aliquoted to a 1.5 mL centrifuge tube
from Eppendort. The samples were centrifuged at room temperature for ten minutes at
16900 x g on a Biofuge Pico ( Heraeus, Hanau, Germany . 10 pL of the urine supernatant
wasadded to300 pL. Chromacolmicroinsert vials from Thermo Fisher Scientific. 200 pl
working solution was added and the samples shaken briefly. The creatinine
concentrations were determined on a Waters Micromass Quattro Micro triple
quadrupole mass spectrometer. The mobile phase was A: 4mM Ammonium Acetate -
0.0527 heptafluorobutyric acid and B: methanol. The column was a Discovery HS F5-5(5
cmx 2.1 mm,5pm ) equipped with aguard column: Discovery HS F5 Supelguard Cartridge
(2cmx21mm,5um: both from Sigma-Aldrich. The column temperature was 120°C. The
gradient elution was initialised with 5% B for 1.9 minutes and a flow rate of 0.2 mI./min. B
was thereafter linearly increased to 1007 over 0.1 minute, at a flow rate of 0.5 mL/min. B
was held at 1007 for 1.9 minutes at aflow rate of 0.6 mL ‘min, before returning to the initial
composition of 5% B over 0.01 minute. The column was equilibrated before the
subsequent injection for 1.99 minutes at a flow rate of 0.6 ml/min. Detection was
performed in positive ESImode. The capillary voltage was 3.5 kV, the cone voltage was 22
V and the extractor and RF lens were set to 2 'V and 1.7 V, respectively. The source
temperature was 120 “C and the desolvation temperature 350 “C. The desolvation gas
flow was 950 L hour. The transition m 'z 114.03 to m 'z 43.7 was monitored for cndogenous
crcatinine and the transition m'z 117199 to m/z 46.72 for the internal standard ds-
creatinine. The cone voltage and collision energy were 28 Vand 14 V, respectively, forboth

compounds. The creatinine concentration in the samples was determined by relating the
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ratio of endogenous creatinine to ds-creatinine to a calibration curve ranging from o to

40mM.

2.11.2 Top-down protein fractionation by molecular weight

Top-down fractionation of intact proteins was performed as part of the method
development for discovery proteomics. A GELFrEL 8100 fractionation system from

Lxpedeon {Cambridgeshire, UK was used. The utilised method is here described.

The samples were prepared for fractionation by combining sample (ncat or treated
plasma), 30 pl. sample buffer (provided by the supplier), 8 ul. 1 M DTE and a volume of
Milli-QQ water rendering a final sample volume of 150 pl.. The sample was heated for ten
minutes at -50 “C, thenallowed to cool to room temperature. The fractionation cartridge
consisted of 87 Tris Acetate and was prepared by firstly removing the storage buffer and
secondly rinsing out residual storage buffer with running buffer (provided by the
supplier ). 150 pL running buffer was added to the collection chambers and the cathode
buffer reservoirs were filled with 6 mL running buffer. The sample was loaded to the
loading chamber and the cartridge attached to the instrument. The program
demonstratedin Table 2-5 was utilised to fractionate the proteins based on their molecular
weights. The first migrated load was discarded. After this, fractions were collected as per
Table 2-3. After cach fraction had been collected, the collection chamber was washed
carefully before the next step. The fractions were freeze dried before digestion and mass

spectrometric analysis.

Tablc 2-5. Settings for GELFrED system in the fractionation of plasma proteins

Fraction # Load 1 2 3 4 5 6 7 8 9 10
Voltage (V) 50 50 50 100 100 100 100 100 100 100 100
Time (min) 16  41.5 7 2 2 3 5 7 10 15 20
Total time

16 575 645 665 685 715 765 835 935 1085 1285

(min)

2.11.3  One-dimensional gels to visualise protein preparation results

Many of the method development steps for discovery proteomics were evaluated visually

on gels. The preparation and running of the gels are described in this section.

Topreparc the samples, 4x Lacmmlibuffer from Bio-Rad (Tlercules, CA, USA  was diluted
four times with 62.5 mM DTE. Equal volumes of sample and .aemmli bufter were mixed,
and the sample heated at —95 “C for five minutes. The sample was cooled to room

tempcerature before 10 L was loaded onto a Mini-PROTEAN TGX precast gel (Bio-
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Rad). The gel was run using a Mini-PROTEAN Tetra Cell (Bio-Rad . The running buffer
was 0.17% sodium dodecyl sulphate (SDS ) and the voltage was set to 200 V. A pre-stained
protein ladder was also run. After completion, the gel was Comassic bluc stained for

15 minutes with InstantBlue Protein Stain from Iixpedeon and photographed.



Optimising sample

preparation,
instrumental
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of low-abundant
proteinsin urine and

blood

bstract. The overall aim of the

experiments carried out throughout

this thesis was to identify proteomic

biomarkers and affected pathwaysin

Parkinson’s disease and healthy
ageing. The greatest possible coverage of low- and
medium-abundant proteins in these biofluids is
crucial to find novel protein targets.

Inthis chapter, several preparatory, instrumental,
and processing parameters were evaluated and
optimised to increase the number of detectable
proteins in the mass spectrometric discovery
analyses of blood and urine. It was found that by
depleting the twelve most abundant plasma
proteins, followed by chromatographic online
separation of digested peptides into ten fractions,
the greatest number of proteins could be detected in
blood. Inurine, itwas concludedthat the use of a low
molecular weight cut-off filter, followed by online

chromatographicfractionation into ten fractions of
digested peptides, allowed for the largest number of

proteins to be identified. A targeted, MRM-based

multiplexed method was developed from  the
proteins identified in the discovery phase, where
blood and urine from PD patients, and blood from
centenarians were analysed. A total of 127 proteins
wereincluded in the validation assay. A meticulous
process was implemented to select unique peptides
for each protein, also ensuring that they were
compatible with LC-MS/MS analysis. The assay
was further augmented with several known pro-
and  ani-inflammatory  proteins  from  the
literature. 'The preparation and analysis of the
samples for the validation phase were optimised
and it was decided that depletion of albumin and
1gG was the most ideal method for the preparation
of plasma samples. FFor targeted urine preparation,
the same protocol as in the discovery phase was
utilised. The developed targeted assay was later
applied to larger validation cohorts to confirm the
targets from the discovery phase. To allow for
consistent and high throughput analysis of the
targeted validation data, several in-house scripts
were developed and greatly expedited the data
analysis.
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N INTRODUCTION AND AIMS

9

The samples analysed in this thesis were serum, plasma, and urine. None of these biofluids
are optimal samples for studying neurological disease as proteins of “interest” of disease
mechanisms arc of low abundance relative to the house-keeping proteins. Therefore, to
study these proteins, every step of these analyses was optimised to maximise the efficiency

of extracting low-abundant protcins for analysis.

Sample preparation and analytical methods have alarge impact on the quality of a datasct.
Fromthe point of samples arriving inalaboratory tothe moment of instrumental analysis,
avast number of decisions must be taken. These decisions include the amount of sample
to use, which reagents to utilize and at what concentrations, timings and temperatures of
different processing and incubation steps, purification strategies and fractionation
methods. The instrumental analysis further requires careful attention to the set-up of the
chromatographic separation - a suitable column needs to be selected and paired with an
adequate mobile phase and eventual buffering additives. Moreover, the gradient elution
must be optimised to achieve sufficient separation between compounds, maximise the
number of theoretical plates, minimise band broadening and avoid carry-over between
injections. It must also be designed in such a way that retention times remain stable, and
the system does not casily reach overpressure. After the chromatic separation,
compounds are detected by mass spectrometry and also here a number of important
parameters must be considered. In targeted assays, the multiple reaction monitoring
method must be constructed in such a way that it allows for a sufficient number of data
points to be measured for cach peak. The time cach data point is acquired must also be
large enough. Moreover, suitable fragments must be selected for detection and the
collision energy for each of these fragments must be optimised. In untargeted analyses,
the mass spectrometer’sdetectorneeds to be set up at asufficiently high voltage to provide
a suitable response for the analytes, the instrument needs to be well-calibrated and
capable of adequately detecting and measuring compounds in the defined mass range.
After acquisition, the untargeted data is peak picked and identified through a largely
automatic process. The targeted data is peak picked manually meaning great care must be
taken in integrating the correct peaks. Once the data table of feature intensities has been
exported, the data must pass quality control checks for sufficient sensitivity, instrumental
drift, and robustness of the run before any significance testing and biological

intcrpretation can be undertaken.
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This chapter is dedicated to method development and describes the experiments

performed to circle in on the best way to prepare and analyse urine and blood samples by

targeted and untargeted LC-MS protcomics. The aims of the method development

performed in this chapter werc to:

¢ Developasample preparationmethod for the untargeted discovery analysis of plasma
and scrum which reduces the presence of house-keeping proteins

e Dcevclopasample preparation method for the untargeted discovery analysis of urine

e [valuate andimprove the instrumental parameters of untargeted LC-MS to allow for
theidentification of the maximum number of proteins

e Develop a targeted MRM-based method that can measure the putative proteomic
biomarkers identified in the discovery phase

e Develop the mostideal sample preparation methods for plasmaand urine for targeted
proteomics

e Developapipeline for data analysis

3.2 METHOD DEVELOPMENT FOR SAMPLE
PREPARATION OF URINE AND PLASMA/SERUM

TOBE ANALYSED BY UNTARGETED

PROTEOMICS

To maximise the number of detectable proteins in the untargeted discovery phase, several
steps included in sample preparation were evaluated and optimised. The method
development included strategies to decomplex and concentrate the samples, evaluation

of the ideal digestion enzyme and incubation time, and fractionation steps. Figure 3-1

shows agraphical summary of the evaluated and optimised steps.
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Challenges Challenges
* Dynamic range * Low amount of proteins
« Complexity of sample « Normalising protein levels

between individuals

Optimising of depletion / Optimising of filtering
enrichment strategy strategy

I

Removal of high-abundant Concentrate urinary
proteins with minimal variation proteins. Evaluation of
between individuals to reduce the molecular weight cuff-off
dynamic range. Evaluation of filters. 3 and 10 kDa
Tope. Topizand precipitation Depleted
methods plasma and
concentrated
urinary
proteins
& ——— — Most efficient digestion with
fewest non-specific or missed
Optimising of cleavage sites. Evaluation of
digestion sequencing grade trypsin,
enzyme LCMS grade trypsin and a
LCMS grade combination of
trypsin and Lys-C
|deal time of digestionfor ——————= @
maximal recovery. Evaluation of
time needed to digest xxx Optimising of
moles albumin - 1.2, 3.4, 5 and digestion relysine. no
16 hours time elysine, no
@& ——— De-complexing sample.
Evaluation of fractionation of
Bottom-up or intact proteins by GELFrEE
top-down system or by peptides by
fractionation online LC fractionation
De-complexingsampleand ————@
improving chromatographic Optimising
separation of peptides - instrumental
altogether allowing for greater parameters
coverage. Evaluation of the LC (Lc
gradient on high-pHand fractionation)

analytical columns \

Figure 3-1. Graphical summary of the optimiscd steps in the preparation for untargeted urinc and
tel J
plasma;serum proteomics.

3.2.1  Optimising the sample preparation of plasma/serum for untargeted
discovery proteomics

Plasma and serum are complicated matrices for performing proteomic biomarker

discovery, primarily due to the high levels of house-keeping proteins such as albumin,

immunoglobulins, and other compounds in high concentration. Thesce proteins arc often

considerable in size and pronc to generate an abundance of tryptic peptides per mole of

protein, thereby creating an even more complex environment to detect small and low-
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abundantproteinsin 138 . Withoutremoving the high-abundant proteins prior to tryptic
digestion, detection of low-abundant species is extremely difficult, therefore a
depletion enrichment strategy was considered 139 ). The initial part of the plasma
mcthod development was to assess the usc of different depletion techniques and several
strategies to de-complex the sample matrix, altogether aiming to develop a protocol
allowing for improved protcin detection and coverage of low-abundant specics. The

following preparation steps were evaluated and optimised:

e Dcplction strategy
e linzyme for digestion
e Digestion time

e Top-up or bottom-down fractionation

3.2.1.1  Assessment of depletion strategy

Depletion of high-abundant proteins using Pierce™ Top2 and Top12 columns from
Thermo Fisher Scientific (Waltham, Massachusetts, US ) was evaluated. These columns
use immunoaffinity to selectively extract high-abundant proteins from biofluids, leaving
behind the lesser abundant proteins. A strategy including enrichment by proteominer
beads from BioRad was considered but discarded as it is not compatible with heparin
treated plasma. “Top2 columns” deplete albumin and IgG while “Top12 columns” deplete
albumin, immunoglobulins (IgG, IgM and IgA’, fibrinogen, transferrin, alpha-1-
antitrypsin, alpha-1-acid glycoprotein, alpha-2-macroglobulin, apolipoprotein A1and A2,
and haptoglobin. Selective precipitation of albumin with 107 trichloroacetic acid ( TCA )

inacetone was also performed.

Top2 and Top12 column depletions were performed according to the manufacturer’s
instructions. In short, 10 pl. pooled plasma were added to the depletion columns which
were end-over-end mixed for 1 hour at room temperature before clution by
centrifugation, 2 minutes, 2000 xg. Acetone TCA precipitation was performed by adding
40 pL acctone, 107 TCA to 10 pL plasma. The sample was placed in -20 “C for 16 hours
before centrifugation at+4 "C, 16900 x gand the supernatant was discarded. The samples
werefreeze-dried prior to digestion. To solubilisc the proteins, 20 pL of digest buffer were
added (100 mM "Tris (pH 7.8, 6 M urea, 2 M thiourea and 272 ASB14 1. To reduce sulphide
bonds, dithiocrythriol {45 pg ) wasadded and the samples were shaken for 60 minutes. To
prevent the sulphide bonds from reforming, 108 ug iodoacetic acid were added and the
samples were shaken for 60 minutes. MilliQ) water was added to dilute the concentration

of ureaand 1 pg trypsin was added before the samples were placed in a +37 “C water bath
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for 16 hours. Solid phase extraction (SPL) was performed using 100 mg C,s cartridges
from Biotage ( Uppsala, Sweden . Prior to SPLI clean up, the samples were adjusted to a
concentrationof 0.1 trifluoroaceticacid  TFA ). Inbrief, the cartridges were washed with

two1mLaliquotsof 702 ACN,0.1%

100%
s . e 1009
I'FA before equilibration by two 00%
. . - 20% 0
aliquots of 017 TFA. The samples & 83%
= 80% 73%
were loaded and the flow-through ¢
o S 70%
re-applied. Salts were washed é’ 60%

away by the addition of 1 mL 0.1% 2 509
TFA prior to clution with two 250 40%
pLaliquots of 707 ACN,01% TFA.  530%
The results were evaluated by
untargeted mass spectrometry.

(a) Top2 (b) Acetone/TCA (c) Top12
The depletion strategy assessment
Figure 3-2. Comparison of thrce conditions for the de-
complexing of plasma prior to protcomic analysis. The
vertical axis is normalised to the percentage of the maximum
number of proteins detected. (a) and (¢) show the results of
and acetone/ TCA  precipitation. antibody depletion removing the top two proteins, albumin, and
1gG (a; and the top 12 proteins detected in plasma (¢). (b shows
T()/) 12 enrichment resulted in 27% the results of the standard acetone!TCA precipitation of all
o ) proteins with no specific depletion. Top12 depletion (¢
mor¢ protem hits than Top2 and demonstrates 177 more hits than acetone/ T CA precipitation (b)
and 277 more hits than removal of albumin and 1gG alone (@ .

demonstrated that Top12

enrichment was superior to Top2

17 more than acetone/TCA

precipitation( Figure 3-2).
3.2.1.2  Assessment of further improvements to depletion strategy

To evaluateifit was possible to modify and further improve the optimal depletion strategy
using Topi12 columns, a combination of depletion and precipitation procedures was also
attempted. Aliquots fromapooled plasma sample were used in all experiments. Depletion
by Top2 and Top12 columns were performed as per section 3.2.11. The following

experiments were performed:

(a, Topi2followed by acetone precipitation. Plasma (10 pl.) was depleted usinga Top12
column. The cluate from the column was precipitated with acctone and left to
incubate at-20 “Cfor 16 hours before centrifugation at +4 “C,16900 x g for io0 minutes.
Supernatant was discarded.

(b Two Topi2 columns in series. Plasma (10 pl. ) was depleted using a Top12 column and

the cluate was added to yet another Topi2 column.

¢ Top2 and Topi2 in scrics. Depletion was performed using 10 pL plasma on a Top2

column, the eluate was added to a Top12 column and incubated whilst end-over-end
mixing for 60 minutes.
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(d) Top12 reapplied to the same cartridge. Plasma (10 ul.) was depleted using a Topi2
column and reapplied to the same column before 60 minutes incubation whilst end-

over-end mixing.

o

Top12, no alterations to protocol. Plasma (10 ul.» was depleted using a Top12 column

with noaltcrations or additions to the manufacturer’s protocol.

The final cluate from cxperiments (a) - (¢) were all freeze dried before digestion and

cleaned up as described in Chapter 2, section 2.2.3.1. The results were evaluated by mass

SpCCtl‘OlllCtl'_\’.

The  results  (Figure 33

100%
demonstrate that the normal 100%
. . . 88%
protocol without alterations (¢) s 70% 82%
! o
o . © 9
results in 127 more hits than 7 80% .
o 70% 68%
when reapplying the cluate to 8
’ T 60%
the same column /d), 1872 more 5
S c 50%
hits than when using 7op2 and £ 40w
- . e . o 9
Topizinserics (¢, 3272 morchits & 309 ~ 27%
< =
3]
than when applying two Topi2 3 20%
- [
columns in series, and 737 more 10%
: S 0%
hits than when performing a ’ N
) & & & X °
. ~ AN (2 Q' N
Top12  depletion followed by %\v@ &° \\rf’ %QOQQ o=
L N R v & .
acetone precipitation. & PP N
© & S \&

Therefore, the Top12 column
using  the  manufacturer’s
instructions was the optimum
method for the purification of
low-abundantproteins presentin

plasmaandanalysis by MS.

Figure 3-3. Optimising the depletion strategy. The vertical axis is
normalisedto the percentage of the maximumnumber of proteins detected.
Top12 depletion combined with acetone precipitation (@), using two Top12
colummns in series (b, using a Top2 columm in series with a Top12 column
(o), reapplyingthe eluate froma Topi12 column to the same column (d) and
using a Topi2 column according to the manufacturer’s instructions
without any alterations (e). The normal protocol resulted in the greatest
number of protein hits.

3.2.1.3  Evaluation of the optimum digestion proteases for the analysis of
low-abundant proteins in plasma

The efficiency of sequencing grade trypsin, mass spectrometry grade trypsin and
combined trypsin Lys-C was cvaluated by digesting equal volumes of plasma following

the protocol referred to above.
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The results (Figure 3-4 showed 100%
oo 100%
that MS grade trypsin gold § 90%
5 . — 76%
produced 24% morc hits than o 80% ?
. : o . B 70%
trypsin Lys-C and 507 morc hits £ """
] ) E 60% 50%
. . — 0
than sequencing grade trypsin. S 509
Therationalcis mostlikely thatMS -5 40%
o 0
srade trypsin has higher activity 5 0%
1(].(. i re [e
5 *P & ’ 5 20%
and purity, and more stringent é‘—,j 10%
specificity in its clcavage  of 0%

(a) Seq. Trypsin (b) Trypsin/LysC (c) Trypsin Gold

proteins and thereby leading to ) o o

Figure 3-4. Relative number of protein hits after digestion of

fewer random, n()n-specjﬁcaﬂy plasma using sequencing grade trypsin (a), a combination of

) trypsin and Lys-C by and using MS gradc trypsin gold (¢ The

cleaved peptides not recognjsed b}‘ vertical axis is normalised to the percentage of the maximum number

of proteins detected. MS grade trypsingold renders 247 more hits than

combined trypsin and Lys-C, and 50°% more hits than sequencing
gradetrypsin.

the protein database used for

identification.

3.2.1.4  Optimising the digestion time

Theideal time required for sufficient digestion was evaluated. The efficiency of the tryptic
digestion over time was determined by quantitating the production of albumin peptides.
Therationale behind choosing albumin rather thanaless abundant protein was that it was
desired to monitor the largest and most high-abundant protein possible to represent the
sample matrix. A pooled plasma sample was prepared and split into six different aliquots.
The six aliquots were incubated in a 137 “C water bath for 1, 2, 3, 4, 5 and 16 hours,
respectively. The digestion process was halted by snap-freezing the samples on dry ice
after their allocated digestion time. The samples were SPE-cleaned and analysed by
targeted mass spectrometry. A linear production of peptides with increasing incubation
time was observed, indicating that overnight or 16 hours digestion resulted in the most

cfficient protein digestion ( Figure 3-5).
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Figure 3-5. Relative intensitics of albumin as a result from the digestion of a pooled plasma sample in timed
intervals consisting of 1,2, 3, 4, 5 and 16 hours. Incubation for 16 hours showed the highest intensity

3.2.1.5 Comparison of top-down and bottom-up fractionation

Fractionation strategies are often employed in plasma proteomics to reduce the
complexity of the sample by limiting the dynamic range and subsequently increasing the
availability of measurable proteins| 140 |. In our laboratory, fractionation has traditionally
been performed as part of a bottom-up proteomics strategy, meaning that digested
peptides are separated into fractions. However, top-down proteomic techniques have

beendescribedasanalternative and better strategy for obtaining greater protein coverage

141

Comparing these two techniques experimentally, pooled and Top12 depleted plasma was
used. In the top-down methodology, an offline preparative isoclectric focusing (IEF ) unit
was utilised (GELFrEE, Expedeon, Cambridge, UK to fractionate the intact plasma
proteins based ontheir molecular weights. Table 3-1 shows the settings and timings for the
different fractions. Ten fractions were opted for as this had previously been determined to
be ideal in our laboratory (data not shown ). After the proteins had been separated into

molecular mass-based fractions, the separate fractions were digested and SPE cleaned.

Table 3-1. Settings for GELFrEE system in the fractionation of plasma proteins.

Fraction # Load 1 2 3 4 5 6 7 8 9 10
Voltage (V) 50 50 50 100 100 100 100 100 100 100 100
Time (min) 16 415 7 2 2 3 5 7 10 15 20
Total fime (min) 16 575 645 665 685 715 765 835 935 1085 1285

Anadditional sample was fractionated using the IEF unit and visualised ona 1D gel from

BioRad (prepared according to Chapter 2, scction 2.11.3 ), shown in Figure 3-6. It can be
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noted that the masses of the proteins increase with increasing fraction number, thereby
demonstrating the IEF unit’s capacity of separating proteins by mass and reducing the
samplec complexity.

kDa

- F10 - 230
/ Fosg £°° - 150
Fo7

100
FO6
‘ — .
[Fa5 b

Fo4 [S— 60

Fo3 b - 50
Fo2 L .

—

. Fo1 e 30

- 25

20

- 15

10

Figure 3-6.1D gcl of ten fractions from a Top12 depleted plasma sample, separated by mass on the GELFrEE
system. The figure shows graphically enhanced bands of the mass ranges of proteins present in cach fraction obtained

In the bottom-up methodology, the depleted Topi2 sample was digested and SPE-cleaned
before chromatographic fractionation. The fractionation was performed utilising two LC
pumps and two columns in parallel (known as two-dimensional liquid chromatography .
It separated the peptides in the sample into ten fractions based on their isoclectric points
before eluting cach of the fractions onto the second analytical column for
chromatographicscparation prior to entering the MS. The percentages of organic solvent
utilised for elution from the first dimensional high-pI column are displayed in Table 3-2.

Table 3-2. Percentages of eluent B in the ten online bottom-up LC fractions used to decomplex samples for
untargeted proteomics analysis.

Fraction # 1 2 3 4 5 6 7 8 9 10
High-pH column [%B] 74 108 126 14 153 167 183 204 235 60

Both methodologics were evaluated by untargeted mass spectrometry. The comparison
of top-down IEF fractionation of intact proteins and bottom-up two-dimensional L.C
fractionation of digested proteins demonstrated that 277 more hits could be detected in

the bottom-up methodology than in the top-down methodology ( Figure 3-7 .
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In conclusion, the bottom-up strategy
resulted in a higher number of hits than
the top-down strategy. The reason for this
might simply be losses along the sample
preparation as that the top-down
mcthodology requires more steps. The
bottom-up stratcgy was sclected as the
preferred option asit resulted in more hits
and demanded fewer steps. Towever,
fractionation of intact protcins certainly
has its merits as a protein is confined to a
unique fraction, thus allowing for fine-
tuning of which proteins to capture in
which fractions and which proteins to

discard. Another advantage of the top-

1

Detected proteins, normalised to 100%

of low-abundant proteins in urine and blood
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Figure3-7. Topi2 depleted samplesfractionated as
intact proteins by an IEF unit {GELFrEL) and as
digested peptides by 2D-1.C online fractionation,
cachintoten fractions. Thevertical axisis normalised
to the percentage of the maximum number of proteins
detected. The merged results from the ten fractions
demonstrated that the online bottom-up fractionation
resulted in 277 more protein hits.

down strategy is that it renders greater flexibility in the instrumental analysis of the

samples as each fraction canbe loaded separately.

3.2.1.6  Optimised workflow for proteomic biomarker discovery in plasma

After optimising every critical step in the sample preparation of proteins purified from

plasma/serum, a final protocol was decided upon for use in this study. This final and

optimised sample preparation protocol producing the highest number of protein

identifications was determined to be Top12 enrichment, followed by digestion using MS

grade trypsin with 16 hours digestion and online bottom-up fractionation into ten

fractions (Figure 3-8).

Acetone Acetone/TCA 3 )
o precipitation Top2 depletion Top1z depletion
%
Sequencing LCMS grade : Figure 3-8. Optimised
h ) Trypsin/Lys-C .
grade trypsin trypsin workflow for the
preparation  of  plasma
""""""" o samples, including Topi2
v . . . -
Offline GELFrEE Online 2D-LC depletion, digestionby MS

fractionation
(intact proteins)

fractionation
(digested protein)

grade trypsin and online
fractionation

The final protocol for untargeted discovery plasma protcomics sample preparation is

presented in Chapter 2, section 2.3.
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3.2.2 Optimising the sample preparation of urine for untargeted discovery
proteomics

Urinc is a less complex matrix for protcomics biomarker discovery than plasma, chictly
duc to the fact that the dynamic range of protcin concentrations is smaller, reportedly five
orders of magnitude, thereby presenting a more even distribution of protein levels in a
sample 142 . Urinc does however provide challenges on its own as thc amount of protein
normally is very low; typically less than 150 mg of protein arc exercted per day | 143 . Urine
is further rich in waste metabolites including creatinine at mM levels and salts, typically
not well-tolerated by mass spectrometers. Moreover, the protein levels change with the
urine’s dilution, thus highlighting the importance of a robust normalising strategy
between individuals for a non-biased comparison. Therefore, the challenge was to purify
or enrich low amounts of protein from a solution containing very high amounts of salts

and low molecular weight waste metabolites.

3.2.2.1 Filtering and concentration of urinary proteins

To assess strategy of concentrating the urinary proteins, two different molecular weight
cut-off filters were evaluated - 3 kDa and 10 kDa, cach capable of filtering 4 mL { Amicon
Ultra-4, Merck, Darmstadt, Germany . The filters exclude any molecules with a mass

smaller than 3kDaor 10 kDa, respectively.

100%

A pooled urine sample was used in the 100%

° 909
experiment. Prior to filtering, the urine was % :2; 78%
centrifuged at room temperature at 000 X ¢ ;Z 70%
for 30 minutes to separate sediment from é 60%
solution, 2 ml of urine were thereafter 550%

g
applied to cachfilter and 2mL of Milli(Q water *§ 22:
were added. The filters were centrifuged at 8 5,
room temperature at 5000 x g for 60 minutes é‘j 10%
before the concentrate was collected and 0%

3 kDa filter 10 kDa filter

frecze dried, followed by tryptic digestion

) Figure 3-9. Evaluation of molecular weight
and Lmtill'geted mass spectrometiy Eln‘d]_VSiS- cut-oft filters for the preparation of urine for
proteomic discovery mass spectrometry. The
vertical axis is normalised to the percentage of the
maximumnumber of proteins detected. The10kDa
filter resulted in 227 more protein hits than the 3

filter (Figurc 3-9). kDa filter.

The results demonstrated that the 10 kDa

filter resulted in 2277 more hits than the 3 kDa
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3.2.2.2 Acetone precipitation to further decomplex and purify the sample

It was hypothesiscd that an acctonc precipitation step post-filtering would incrcase the
coverage of proteins by further purifying the sample, extracting any residual salt or small
molecules remaining. This was evaluated by filtering pooled urine according to section
3.2.2., using a 10 kDa filter. After filtration, the concentrate was split into two equal
aliquots and four volumes of ice-cold acctone were added to once of the aliquots, which
was then incubated at 20 “C for 16 hours. The acetone precipitated sample was
centrifuged at —4 “C, 16900 x g for 10 minutes. The supernatant was discarded, and the

both of the samples freeze dricd before tryptic

100%
digestionand SPE-cleaning. The twosamples ~ 100%
90% 84%
were  evaluated by targeted  mass
’ 80%
spectrometry, measuring the high-abundant = 70%
. . - <
urinary protein uromodulin. The results £ 60%
. . . o 0
demonstrated that acetone precipitation & °9%
2 40%
renderedan6 intensity increasccomparedto 5
) S 30%
the filtered neat urine (Figure 3-10). The 20%
reason for the signal increase in the acetone 10%
ecipitated sample s likely due to tt o
precipitated sample is likely due to the Neat Acetone precipitated

removal of non-protein compounds, thereby  Figure  3-10. Comparison  of uromodulin
L . intensity in neat, filtered urine and filtered urine
resulting in a cleaner sample matrix with less precipitated with acctone. Acetone precipitation

. o . . results in @ 167 increase in signal intensity.
interference and ion suppression.

3.2.2.3 Digestion enzyme and digestion time

The parameters of ideal digestion enzyme and digestion timing were extrapolated from
the method development performed for plasma discovery proteomics, sections 3.2.1.3and
3.2.1.4 of this chapter. It was consequently decided to utilise .LCMS-grade trypsin for

digestion with 16 hours incubation time.

3.2.2.4 Chromatographic fractionation of urine

Ixtrapolating from the plasma discovery proteomics method development, it was
determined that bottom-up onlinc fractionation would be utilised instcad of top-down
fraction of intact protcins as demonstrated in scetion 3.2.1.5. Taking the lesser complexity
of urine compared to plasma into account, it was theorised that fewer fractions might be
feasible to render sufficient protein coverage. This was evaluated by preparing a urine
sample, filtered in a 10 kDa molecular weight cut-oft filter followed by acctone

precipitation, tryptic digestion for 16 hours and SPIi-cleaning. The sample was thereafter
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online fractionated into two, four, six and ten fractions and detected by untargeted mass
spectrometry. The results demonstrated that ten fractions yielded 187 more hits than six

fractions and 537 and 51°% more than two and four fractions respectively ( Figure 3-11).

100%
100%

0% 82%
80%
70%
60%
50%
40%
30%
20%
10%

0%

47% 49%

Detected proteins, normalised to 100%

2 fractions 4 fractions 6 fractions 10 fractions

Figure 3-11. Detected proteins in urine prepared by online, bottom-up fractionation into two, four, six and ten
fractions. The vertical axis is normalised to the percentage of the maximum number of proteins detected. Ten fractions
resultedinthe greatest number of hits, 187 more than in six fractions and 537 and 517 more than in two and four fractions,
respectively.

The fractionation experiment demonstrated that an increcased number of fractions
indeed resulted in a greater protein coverage, it was therefore decided upon ten online
fractionsalso for urine.

3.2.2.5 Optimised workflow for proteomic biomarker discovery in urine

Combining all the optimised steps, the final protocol for untargeted discovery urine

proteomics was filtering of 2 mL urine

3kDa molecul 10 kDa molecul . i .
cUtooff filer b usinga 10 kDa MWCO filter, followed by
5 acetone precipitation and digestion for 16
. Acetone . — . .
Neat filtered precipitated hours using LCMS-grade trypsin and
urine . f < C U N
filtered urine
— . fractionation into ten online fractions.
SequEnEne LOMS grade _ The steps evaluated in the modules and
grade trypsin trypsin e lE=C
chosen methods are illustrated in Figure
v T . fin: - , . Aot
Offline SELErEE OnlinesDLe 3-12. The final protocol for untargeted
fractionation fractionation . . .
(intact proteins) (digested protein) d]SCOVC]:V prOtC()n“CS urme Samp]e
— 3 preparation is presented in Chapter 2,
2 fractions 4 fractions 6 fractions 10fractions .
section 2.4.

Figure 3-12. Optimiscd workflow for untargeted urine protcomics. 2 ml. urine are concentrated using a 10 kDa
MWCO filter and the concentrate acetone precipitates followed by freeze drying and digestion with 1.CMS-grade
trypsin for 16 hours. In the instrumental analysis, the sample is fractionated into ten online fractions by 2D-LC.



Optimising sample preparation, instrumental parameters and data processing for analysis
of low-abundant proteins in urine and blood

3.3 OPTIMISING THE INSTRUMENTAL PARAMETERS
FORUNTARGETED DISCOVERY MASS
SPECTROMETRY PROTEOMICS ANALYSIS

The objective of the instrumental method development was to increase the number of
detectable proteins in a sample. When performing discovery protcomics, it generally
holds truc that longer analysis-time will result in more protein identifications as sample
de-complexion often involves extensive fractionation which reduces the number of
peptides exiting the LC system and entering the MS simultancously, thereby decrcasing
ion suppression and cnabling more reliable detection of proteins as more peptides per
protein will be measurable. The intent of the performed experiments in this section was
to evaluate if it was possible to increase the number of detectable proteins and

concurrently reduce the time of analysis.

Inthe setup utilised in the discovery experiments, the samples’ analytes were fractionated
into discrete fractions by a fractionation column and a high pH LC system, before being
cluted on, one by one, onto the analytical column and a low pH LC system where the
analytes were separated chromatographically prior to MS detection. Figure 3-13 gives a

schematicillustration of the process.

Column: Fractionation column Analytical column
o= a2 o= -ca > 3
]
£
: s
sample I
] H & ' i
=X . | L
s sl M
LC system:  High pH LC system Low pH LC system action 7
Separates the sample’s analytes Separates the analytes in each
info discrete fractions prior to fraction chromatographically
entering the analyfical column prior to MS detfection

Figure 3-13. Set-up of the fractionation and chromatographic separation of asample’s analytes. The analytes of a
sample are fractionated into n fractions by the high pH LC system and a fractionation column. The discrete fractions
thereafter sequentially enter the low pH LC system and analytical column where the analytes from cach fraction are
chromatographically separated prior to MS detection. After the first fraction has been analysed on the analytical column,
the second fraction is eluted from the fractionation column and onto the analytical column. This repeats until the n™
fraction has eluted off the analytical column and been detected by the mass spectrometer.

The chromatographic separation and fractionation were optimised by an initial rough
adjustment of thelow plLanalytical clutionrange (scction3.3.1 ), followed by an evaluation

of the high pl1 fractionation and fine-tuning of the analvtical clution parameters (scetion

2

(O8]
Q9
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3.3.1 Optimising the analytical chromatographic peptide elution range

In the traditional LC-gradicnt sct up utilised in our laboratory, peptides are cluted from

the high-pIT column at an incrcasing ACN pereentage and scparated on the analytical

3

column with a linear gradient starting at 3% ACN and ending at 407 ACN. Generally, this
leads to a relatively narrow elution range. It was hypothesised that by creating a gradient
capablc of better separating the peptides on the analytical column, ion suppression could
be reduced and thereby, the number of detected proteins increased. Figure 3-14
demonstrates the traditional elution range when injecting 500 fmol of peptide standard 1
from Watcrsand the theorctically ideal clution range.
100
w0

&0 Ideal eluticn range?

Traditional elution range
|

20
10
e b AL sl WP LW L.

5k 1000 1200 200 20 o 4sm0 | & fs0

B %]

Retention fime [min]

Figure 3-14. Elution profilc on the analytical column, injecting 500 fmol of peptide standard, showing the actual
clution range and the hypothetically ideal clution range.

Several different gradients were evaluated on the analytical LC-system, the high-pl1
system was bypassed and not utilised for the purposes of this experiment. The mobile
phasc in the analytical system consisted of A: water with 0.1 TFA and B: ACN with 57
DMSO and 0.1% TFA, pumped at a flowrate of 0.4 uL. min. The column was a 75 um x 150
mm, 1.7 um Peptide BEI Cis (Waters ). The gradient most successtul in separating the
peptides was a curved rather than a linear profile and is illustrated in Figure 3-15. The
chromatograms show that the curved gradient expands the clution range with
approximately five minutes on cach side. Several analytical column gradients were
moreover evaluated in order to fine-tune the settings, these are described in the following

section.
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Figure 3-15. Gradient profile of 500 fmol peptide mixture comparing {A'; the traditional lincar gradient to (B a
curved gradient on the analytical column. The curvedgradient extended the elution range by approximately 5 minutes
oncach side of the traditional range.

Optimising the fractionation on the high pH column and fine-tuning
of the analytical elution parameters

3.3.2

Having extended the analytical elution range, thus improving separation of the peptides
prior to entering the MS, attention was turned to the chromatographic fractionation
system. Asdescribedin sections3.2.1.5and3.2.2.4, ten fractions had been found optimal for
both plasma and urine. However, it was considered that it might be possible to establish a
more cven distribution of the peptides eluting in cach fraction. The following
fractionation profiles were generated and evaluated on the high pl fractionation column

and are described in detail as follows:

i) Profile+1 Traditional percentage Ten fractions
(i) Profilc 2 Evenpereentage Ten fractions
(i) Profile =3 Traditional percentage Fight fractions
(v, Profile £ 4 Even percentage Seven fractions

The numbers of peptides cluting in the first (7.4 B and sccond (10.87% B) fractions of the
traditional gradient (profile ' 1, are typically a great deal lower than in the subsequent
fractions, thusit was hypothesized thatit could be feasible to commence the fractionation
at higher pereentage of B and focus on improving the scparation of peptides in later

fractions. This strategy was implemented in profile / 2 with ten fractions. It was further
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consideredit it would be possible to achieve an acceptable coverage with fewer fractions,
thereby reducing the time of analysis. Profile / 3 has the same final elution percentages as
profile # 1 although the initial three fractions were merged thereby resulting in cight
fractions. In profile 4, the clution percentages of the first six fractions arc identical to
profile 2 whereas the four last fractions have been merged, thus vielding seven fractions.
Thcejustification for merging the last rather than the first fractions in this experiment was
that the clution would start at a pereentage of B high enough to render a significant
proportion of the peptides to elute in the first fraction, thereby aggravating rather than
improving the scparation. The pereentages for the fractions in the different sct-ups arc
listed in Table 3-3 and illustrated in Figure 3-16.

Table 3-3. Elution pereentages and total analysis time of cach fraction in the four different high-pl I column
profiles. P=profile. The total time of analysis is given in hours.

Fraction 1 2 3 4 5 6 7 8 9 10 Time
P#1 74% 108% 12.6% 14.0% 153% 16.7% 183% 20.4% 23.5% 60.0% 13.8
P # 2 126% 149% 18.0% 21.3% 24.6% 29.7% 342% 393% 452% 60.0% 13.8
P#3 126% 14.0% 153% 16.7% 18.3% 20.4% 23.5% 60.0% 11.0
P # 4 126% 149% 18.0% 21.3% 24.6% 29.7% 60.0% 9.7
60%
Normal [10 fractions]
50% Even [10 fractions]
Normal [8 fractions]
40% Even [7 fractions]
@ 30%
20%
10%
0%

FO1 FO2 FO3 FO4 FO5 FO6 FO7 FO8 FO9 F10

Fraction number

IFigurc 3-16. Percentages utilised in the different fractions to elute peptides from the high-pH column.

Fine-tuning the parameters for the analytical column set-up described in section 33.1,
both the traditional lincar gradient and two types of curved gradients were applied in
conjunction with thc high-pl I columnprofiles * 1- 7 4. Thelinear gradient on the analytical
column ran from 3% B to 40 B {except for the last fraction, running to 60% B) over
qominutes. Curve 7/ 1{identical to the set-upinscction 3.3.1) was programmed to run from
3% B in a logarithmic profilc up to the clution midpoint at 20 minutcs, where the

percentage of B reflected the percentage of the high-pH elution. Curve £ 1is equivalent to
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the gradient developed in section 3.3.1, but altering the percentage at the midpoint to
distribute the eluting peptides towards the beginning and end of the chromatogram. At
the midpoint, the curve was set to an exponential profile running to 407 B for 20 minutcs.
Curve # 2 had the same sct-up as curve 7 1, but with a lower pereentage of B at the 20-

minute midpoint. Figure 3-17 shows the different clution profiles on the analytical column.

yo% Curve # 2
Curve # 1
70%
80% Linear
50%
408
30% 14
Elution midpoint |

i
20% T

I

0

1
10% .

Refention time [min]

Figure 3-17. Gradicnts cvaluated on the analytical column. “Linear”is the traditional, linear gradient. “Curve #17is
acurvedgradientutilisingthe same percentage of Bat 20 minutes (mid-elution point (—---) iasthe high-pl column. "Curve
#27is a curved gradient with a mid-elution point percentage lower than the high-pH column
Evaluating the fractionation experiment, a Topi2 depleted pooled plasma sample was
utilised, prepared according to section 3.2.1.6. The high-pH fractionation mobile phase
was composed of A: water with 10 mM NH,OH (pH 9 and B: 1007 ACN, pumped at a
tflowrate of 2 uL/'min. The high-pI1 svstem was equipped with a 300 pm x 50 mm, 5 pm
Peptide BEH C18 column { Waters . Theanalytical system’s mobile phase was A: 0.1 TFA
and B: ACN, 572 DMSO, 017 TFA, pumped at a flowrate of 0.4 gL/ min. The column set up
was 2180 pm x 20 mm, 5§ um Symmetry Cys trap column {Waters ) trap in series with a

~

75 umx 150 mm, 1.7 um Peptide BEH Cis{ Waters ) operating at +45 "C.

The four different high-pl1 fractionation profiles were combined with the three different

analytical profiles. In summary, the following 12 experiments were carried out:

(A) High-pLI: Profile ** 1 combined with analytical column: Linear/Curve i/ 1/Curve // 2
(B Iligh-pII: Profile "2 combined with analytical column: Linear/ Curve
(C) High-pI1: Profile 73 combined with analytical column: Linear/ Curce /1) Curve /12

(D) High-plI: Profile 74 combined with analytical column: Linear/Curve /1) Curve /2

1/Curve /2

The peptides were deteeted by untargeted mass spectrometry. The full results from the
experiment are displayed in Figure 3-18. Experiments (A} demonstrated the typically
observed pattern, with limited numbers of peptides in fractions -+ 1and - 2, but other than
thatarclatively evendistribution. It was clcarly demonstrated that the peptide clution was

left-skewed in experiments (B where an even elution percentage was applied to the high-
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pH column. The majority of the peptides in this experiment eluted in the early fractions,

leaving few peptides left to elute in the final fractions. Experiments (C ) demonstrated an
g Iewpep P N

overallevendistribution. Experiments (D demonstrated arclatively even distribution for

curves1and-/2butaleft-skewed profile for the linear analytical curve.
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Figure 3-18. Numbcr of identificd peptides per fraction and condition in the cvaluation of different 2D-LC
gradicnts combined with three different gradients on the analytical column used to scparate the peptides prior
to MS-entry. (A ) shows the traditional gradient. /B shows the evenly distributed ACN-increase profile. (C) shows the
traditional gradient reduced to eight fractions by combining I°01 - FO3 of gradient (A ). (D) shows the evenly distributed
gradient from (B) reducedto seven fractions by combining Fo7 - F10.

After merging the proteins identified in the individual fractions from each experiment
(Figure 3-19), it was concluded that ten fractions with high-pH profile #1 in conjunction
with analytical column curve #2 resulted in the largest number of identified proteins. The
best compromise between number of hits and analysis time was determined to be cight
fractions, high-pH profile #3 with analytical column curve #1. It was decided that the time
saved by utilising eight fractions rather than ten (2.8 hours per sample) did not motivate
thelossinidentified proteins, thus the final protocol consisted of ten fractions, cluted from
the high-pl1 column by profile 1 and separated on the analytical column applying curve

.
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Figure 3-19. Numbcer of total unique proteins in cach of the fractionation experiments. High pH profile 1
combined withanalytical curve 2 resulted inthe highest number of identifications while high pl profile #3 combined with
analytical curve #1was considered the best trade-off between analysis time and number of protein identifications

3.3.3  Final experimental set-up for untargeted discovery proteomics

The final LC set-up for the untargeted discovery studies was 2D-LC fractionation
according to profile #1, paired with curve #2 on the analytical column. In prior
experiments carried out in our laboratory, it had been demonstrated that detecting the
peptides with ion mobility enabled resulted in a greater coverage than without (datanot

shown ), this was consequently included in the protocol.

The final instrumental settings for untargeted discovery proteomics are presented in

Chapter 2, section 2.5.

3.4 METHOD DEVELOPMENT FOR TARGETED
PROTEOMICS

Aswillbeshowninchapters 4,5and 6,several proteins were found differentially expressed
in the untargeted discovery studies of PD patients and centenarians. To confirm and
validate the pathways affected and the putative proteomic biomarkers from the discovery
studies, a targeted peptide assay was developed. It was decided to combine the putative
biomarkers from the PD paticnts and the centenarians into onc assay rather than two
condition-specific assays; the rationale being that ageing is the greatest risk of developing
PD, thus markers of delayed ageing from the centenarians could be of interest in the study
of PD. Analogously, centenarians gencrally do not develop PD, therefore the absence of

PD-markers expression would be of interest in the centenarian study.
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The development of a targeted assay is a complex and time-consuming task, increasing in
complexity and time-requirement with increasing number of peptides included. The
development involvesanumber of steps that must be performed meticulously for the final
assay to be functional and have sufficient sensitivity. The transfer from discovery to
targeted proteomics also includes a change of instrumental platform, going from, in our
casc, an exceptionally sensitive high-resolution nano-LC-QTOF-MS sct-up to a lower
resolution UPLC-MSMS instrument. Apart from the technical aspects involved, this
transfer poses challenges as proteins detected in the discovery study may not be possible

to detect in the targeted study. Figure 3-20 illustrates the targeted assay development

process.
Putative proteomic Design and ordering Tuning of peptides (find O,O{,;.)r
biomarkers identified of peptides ideal transitions and CE) &4%,
L
L
‘a{\on Optimise sample Create dynamic Determine de{oo
QQ’%& preparation MRM method retention times oM
3.0
oS
ol (0]
==
&,
81@@ Adjust and fine- Finalised Run Data processing
’7’5’/\3 tune methods assay samples and data analysis

Figure 3-20. Workflow for devclopinga final targeted assay based on targets from discovery studics. Identified
putative proteomic biomarkers are developed into a targeted test by utilising synthetic peptide standards which are
employed to develop ideal MRM and LC settings, the optimised and final assay can thereafter be applied to analysis of
samples.

3.4.1  Construction of a targeted LC-MS/MS method

The proteinsin the targeted assay were selected from the discovery studies of Parkinson’s
disease and centenarians, described in Chapters 4, 5 and 6. Due to the suggested
involvement of inflammation in neurodegenerative discases and ageing, several known
pro- and anti-inflammatory proteins identified from literature were also included in the
multiplexed targeted assay. Targets were furthermore included from other related
protcomic screcning studics of plasma, urine and cerebrospinal fluid in Alzheimer’s
discasc and other neurodegencrative conditions. This resulted in an assay monitoring
putative markers of healthy ageing, inflammation, and neurodegeneration in general and

specificto PD.
3.4.1.1  Design of peptides for putative proteomic biomarkers

The final targeted panel consisted of 127 proteins from discovery studies and literature.

The following process was implemented designing the peptides:
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e Inssilico tryptic digestion of the target protein using Skyline | 144
theoretical peptides and peptide fragments froma protein

. This provides the

e Identification of potential peptide targets

e Aminoacidscquence length preferentially 7 - 20 amino acids long

e Suitable amino acid sequence without repeated units of negatively charged
amino acids (glutamic acid and aspartic acid

e Peptidechargcot MIITP or[M 11 3"and suitable peptide fragments

e Peptide polarity, not too polar or apolar as this can cause peptides to elute in
the LC void (no chromatographic retention; or cause the peptides to be
retained too strongly on the column and not clute during the analytical LC
range

e  Check the peptide homology to other proteins using Basic Local Alignment Search
Tool (BLAST ) provided by UniProt| 145 |. The chosen peptides must be unique to the
protein in question otherwise the measurement will be arbitrary.

Several of the proteins were represented by two peptides, leading to a total of 189 unique
peptides. The selected peptides were purchased as synthetic peptide standards from
GenScript ( Amsterdam, Netherlands . Table 2-4, presented in Chapter 2, section 2.9,

shows the amino acid sequences of the peptides included in the targeted assay.

3.4.1.2  Determining peptide fragmentation and optimal collision energics

The peptide standards were reconstituted in suitable solvents (for the vast majority this
was 507 ACN  and a1 pmol/ul. pool containing all standards was created. Injections of 1
pmol peptide standard onto a Waters Acquity ultra performance liquid chromatography
(UPLC) system coupled to a Waters Xevo-TQ-S triple quadrupole MS were performed
and the two most high-abundant precursor-to-product ion transitions were selected for
cach peptide. Detection was performed in positive ESI mode. The capillary voltage was
setto 2.8 kV, the source temperature to 150 “C, the desolvation temperature to 600 “C, the
cone gas and desolvation gas flows to 150 and 1000 I hour, respectively. The collision gas
consisted of nitrogen and was sct to 0.15 mL/min. The nebuliser operated at 7 bar. The
peptide tuning was performed manually or using Skyline [ 144 . The optimal collision
energies were determined by repeated injections, monitoring the most abundant
transitions for cach peptide, with altering collision encrgics. The voltages producing the

most intense signals were chosen.

In the final assay, two transitions were selected for each peptide, one quantifier for
concentration determination and one qualifier for identification, rendering a total of

378 analyte transitions.

100
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3.4.1.3  Chromatographic separation of peptides

Chromatographic scparation of the peptides was performed utilisinga 1 x 100 mm, 1.7 um
ACQUITY UPLC® Peptide CSH Cis column { Waters . The mobile phase consisted of
Az 017% formic acid and B: 0.17% formic acid in acctonitrilc pumped at a flow ratc of
0.2mL/min. The gradient clutionis described in Figure 3-21. The column temperature was
set to -55 “C. Retention times of the peptides were determined by repeated injections of

the peptide standards, 1 pmol on column.

100
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Figure 3-21. Gradientclution of targeted assay. Thestarting conditions of 3% Bwerekept static for 0.8 minudes, before
initialising the linear gradient, running for 7.6 minutes to 25% B, eluting the majority of the peptides. B was thereafter
linearly increased to 807 over 0.5 minute and held for 1.9 minutes, eluting the most apolar peptides and washing the
column, before returning to the initial conditions over 0.1 minute followed by equilibration for 6 minutes prior to the
subsequent injection

3.4.1.4 Combining the LC and MS methods to a final assay

The determined retention times were used to divide the peptides into timed segments
containing maximum 2.4 peptides, measured by atleast 12 points per peak and adwell time
of at least 100 milliseconds. Due to the large number of monitored analytes, the peptides
weredistributed over two MSmethods. The peptides were sorted according toascending
retention time and split into timed acquisition scgments. Figure 3-22 illustrates the
strategy to allow maximum retention time windows for cach segment. Dvnamic MRM
([dMRM’ methods were created to only acquire data during the time of elution of the
peptides in cach segment. The LC flow was diverted to waste outside of the data

acquisition interval.
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Retention time [min]
zZ

Figure 3-22. lllustration of the retention time-based segment division of the peptides included in the targeted
assay for centenarians and PD. The peptides were sorted by retention time and divided into acquisition segments
allowing the largest possible windows for each segment

Before the start of each targeted study, the retention time segments were adjusted and
fine-tuned to ensure that all peptides could be detected. The elution profiles of the
discovery and inflammatory markers upon injection of 1 pmol of peptide standards can be

seenin Figure 3-23.

The final instrumental settings for targeted proteomics are presented in Chapter 2,

section 2.9.
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3.4.2  Optimising sample preparation for targeted plasma proteomics

As mentioned in section 3.2.1, plasma is a highly complex sample matrix and the sample
preparation prior to targeted instrumental analysis must therefore be tailored to ensure
that the analytes in the assay are detectable. In our case, with 127 unique proteins included
in the assay, it was recognised that there would never be one sample preparation method
idcal for all the proteins. Morcover, given the large number of samples that would be
prepared for targeted analysis, the cost of sample preparation increasingly became a
consideration to factor into the decision. The aim was consequently to develop a sample
preparation method that allowed for detection of the maximum number of peptides at the

lowest possible cost.
The following sample preparation procedures were evaluated:

(a) Neat plasma

(b} Precipitation by pure acetone

(¢ Precipitation by acetone with 107 TCA
(d) Immunodepletionby Top2

(e) Immunodepletionby Topi2

A pooled plasma sample was used for all preparations. The Top2 and Topi2 samples were
prepared as described in section 3.2.1.1. The acetone and acetone TCA treated samples
were precipitated overnight at 20 °C, centrifuged at +4 °C, 16900 x ¢ for 10 minutes
before the supernatant was pipetted off and discarded. All samples were freeze dried
before tryptic digestion and solid phase extraction. The samples were reconstituted in

25wl 32 ACN, 0% TFA per 10 pl.

. x 50%
plasma used. The injection volume % 45%
was5ul.. 2 40%
2 35%
. ~ ~ O
In the comparison of the five € 30%
) o
different  sample  preparation 2%
Ee]
) c 20%
methods, it was concluded that 3
o 15%
Top2 cnabled detection of the g 109
. e
highest number of compounds. In-— & 5%
L 0
this method, 49% of the monitored & 0% . . . o o
- N <& N Q N
analytes could be seen.  Neat N voé\o \V&‘O T«
s a
plasma, acctonc  precipitated < <

Figure 3-24. Samplc preparation cvaluation for targeted
plasma protcomics. Top2 resulted in detection of the largest
resulted in a similar number of hits,  number of compounds.

plasma and Top12 depleted plasma
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while the TCA jacetone preparation under-performed compared to all other methods

(Figurc3-24).

The results of the optimised preparation methodology of samples prior to targeted
analysis demonstrated that Top2 depletion of 10 plL plasma allowed for the greatest
number of proteins to be reliably detected. Although this resulted in an extra step and
costs, it was decided that because of the extra sensitivity and reduction of matrix
interference resulting from the removal of albumin and IgG by the Top2 column, that this

wouldbe theincorporated into the final targeted protcomics protocol.

The final protocol for targeted proteomics sample preparation of plasma is presented in

Chapter 2, section 2.7.

3.4.3  Sample preparation for targeted urine proteomics

The preparation for targeted urine protcomics was kept identical as in the protocol
developed for untargeted discovery urine proteomics in section 3.2.2, except for utilising 3
mL of urine instead of 2 mL to allow for a sufficient sample volume for the two injections
required for the targeted assay.

The final protocol for targeted proteomics sample preparation of urine is presented in

Chapter 2, section 2.8.

5 DEVELOPMENT OF TOOLBOXES FOR DATA
ANALYSIS

(V)
1

After sample preparation and instrumental analysis, the mass spectrometric variables
need to beidentified, peak picked, integrated and quality controlled before statistical tests
and biological interpretation can commence. In the case of untargeted proteomics, the
process of peak picking, integration and identification is relatively streamlined as the
software Progenesis QI-P guides the user through a set of well-defined steps. The analysis
of targeted data is however more hands-on as the uscr has full control over all steps
involved in turning raw data into a final table of results. The processing of targeted data
can quickly turn into a time-consuming task, increasing in requirement with the number

of samples and analytes as each peptide needs to be inspected in every sample.

Once theraw data have been processedanda table of results exported,anumber of quality
checks need tobe performed to ensure that the dataare of sufficient quality and that there

arc no confounding factors affecting the data before any actual interpretation of the
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results can start. Common issues include instrumental drift and confounding effects of

agcandsex.

Aiming to expedite the targeted data processing and to develop a workflow for dealing
with instrumental drift and confounders, a sct of toolboxes were developed in the

programming language Python.

3.5.1  Development of a high-throughput peak picking application in
Python for targeted proteomics assays

Pcak picking and quantitation arc traditionally performed using vendor specific softwarc.
In the case of Waters instrumentation, the choice is normally TargetLynx, a quantitation
application from the MassLynxpackage. The workflow of TargetLynx consists of creating
compound specific methods utilising retention times and quantifier qualifier transitions
for identification, thereafter applying the methods to a run batch and adjusting poorly
integrated peaks manually, sample by sample. Baseline corrections are often necessary, as
peaks with fronting tailingare managed differently depending on the size and shape of the
front tail. High-abundant peaks are in general well-handled as they in the majority of the
casesare correctly integrated and require minimal manual correction. Quantitation using
Targetlynx however becomes problematic if there is retention time drift, other peaks
present in the chromatogram, poor baseline separation, poor peak shapes or a
combination of some or all factors. In many cases, it is possible to adjust the quantitation
methods so that they correctly identify the analyte peak, albeit often requiring a
substantialamount of baseline re-drawing. Method adjustmentis however initself a time-
consuming procedure including a significant amount of trial and error as there is not one
ideal method adjustment applicable to all analytes. The result is a non-streamlined and
time-consuming process with a substantial amount of user input in the form of manual

adjustments and corrections.

The final targeted method included 189 unique peptides, cach measured by two
fragments, leading to 378 monitored transitions. The total number of samples in the
targeted studies were approximately 600, meaning that around 220 000 peaks would
nced to be visually inspected, and a large proportion manually corrected. Assuming 5
seconds would be spent on each peak, it would take more than 300 hours to integrate the

data. This was deemed not feasible.

To address this problem, a guided uscr interface {GUI application was developed in
Python, version 3.6 ( Python Softwarc Foundation, https:/ ' www.python.org/) and PyQt,

version 5.0.0 (The Qt Company I.td, Finland ;, aiming to create an user-friendly, clickable
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software resulting inanaccelerated data processing pipeline and amore robust procedure
for peak integration. The GUI application allows for retention time alignment of peaks
and simultancous intcgration of all samplcs in a sct. In cssence, the time required to
integrate one sample, or one thousand samples becomes the same. The application allows
the user to specify the integration range, meaning that all peaks are integrated within an
identical retention time window. A function with trapezoidal integration was utilised for

determination of the peak areas.

In the initial step, the raw output files from the instrument are converted to text files using

MSConvert from Proteo-

Wizard ‘146", The text files

Quusiisie_ o528

were thereafter importedto T

the application using the -

interface displayedin Figure

3-25. The interface allows

the user to visualise the ﬂ

peaks generated by a

transition in all samples

Figure 3-25. User guided interface of the targeted peak picking
application. The overlaid chromatogram for all imported samples is shown for
the selected transition.

simultaneously  as an

overlaid chromatogram.

If needed, the application allows the user to
I align peaks in the case of retention time drift.
Figure 3-26 shows an overlaid chromatogram

\ before and after alignment. The peak

[\ alignment function is implemented by

N,

Figure 3-26. Example of a peptide
demonstrating retention time drift. The figure
shows the chromatographic peaks before left; and
after (right) retention time alignment.

centring on the apex of each peak within a

given retention time span. As canbe noted in
the figure, all samples have been centred
around the same retention time. In case of
poor or failed alignment, the application
allows the uscr to re-load the original, non-aligned data and redcfine the retention time

span.

Once aligned (if needed), the user can specify the integration range, upon which the

intcgrated range of all peaks will be displaved and also the intensitics for cach sample
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(Figure 3-27). After the integration has been completed, the results can be exported to a

csvfile for further processing,.

N

To cvaluate the
performance of the GUI
application, a sample set
consisting of 176 samples
was  intcgrated  using
TargetLynx from Waters,

and the GUlapplication.

y,
=y

Figure 3-27. Resulting plots after integrating a MRM transitionin the
targeted peak picking application. T/eintegrated range andthe resulting
intensities are shown for the selected transition.

The results from the

integration of  the

quantifier and qualifier

ions of peptides from Apolipoprotein E and Alpha-2-antiplasmin are shown in Figure

3-28. Tt was clearly demonstrated that the difference between the areas resulting from the

two peak picking methods was minimal.
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Figure 3-28. Comparison of integrated arcas of peptides from Apolipoprotein E and Alpha-2-antiplasmin,
produced by TargetLynx and an in-house GUI application. The comparison shows the resulting area units after
integration of two peptide fragments from cach protein, where the precursor miz isgiven by Q1 andthe product miz is given

by Q3.
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The improvement in processing time and consistency in retention time windows
rendered by the GUI application made this the primary strategy for peak picking. Inafew
cascs, when peaks were of very low-abundance and ‘or it was concluded that cach sample

needed individual assessment, TargetLynx was utilised for quantitation.

In conclusion, an in-house Python-based application was created to automate the

intcgration process, and greatly incrcased the throughput of data processing and analysis.
3.5.2  Deuvelopment of a strategy for correcting instrumental drift

Instrumental drift can occur in both untargeted and targeted analyses. Generally, it is
caused by parts of the instrument getting contaminated from contact with samples and
leads to changes in sensitivity correlated with the run order of the samples. In targeted
analyses, this effect can be mitigated by the use of internal standards. However, to fully
correct the drift, each analyte would need to have an isotope-labelled internal standard,

and thisis rarely the case in large-scale multiplexed assays.

A script was developed in Python, utilising the function LOWESS from the package
Statsmodels version 0.13.0 | 147 |. The samples were sorted according to run order and a
Locally Weighted Scatterplot Smoothing ( LOWESS) curve was individually fitted to
cach variable, a smooth curve thus capturing the overall drift for the variable by, in brief,
fitting multiple polynomials to the data using weighted least squares 148 . The script was
sct to loop through all variables and return individual LOWESS points for cach protein.
The original data points were thereafter divided by the LOWESS points, resulting in
individual drift correction of cach variable. Figure 3-29 illustrates an example of a protein

affected by run order drift, the fitted LOWESS curve, and the corrected data.
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Figure 3-29. Exampleof aprotcinaffectedby run order drift. (A ; shows the raw data and the fitted LOWESS curve,
(B) shows the protein after LOWESS drift-correction.

3.5.3  Development of a strategy and a script for outlier removal

Anoutlier canbe defined as any value deviating from the expected normal behaviour of a
dataset. Outliers can create difficulties in data interpretation as they affect mean values,
significance tests and fold-change calculations based on sample means. Outliers are
morcover poorly handled by classification and machine learning models and may lead to
non-robust models with unexpected behaviour 149 |. For these reasons, it is necessary to
adapt a strategy for dealing with outlier values. One option is to model the data by
principal component analysis and delete any sample that falls outside the threshold set at
a certain distance from the model’s centre by Hotelling’s T2 distribution | 66 |. Although
uscful, this strategy encompasses that a whole sample is deleted. A more lenient strategy
is to only target the extreme individual values and keep the remaining ones, thus avoiding

the deletion of whole samples.

Traditionally, a certain number of standard deviations from the mean have often been
utilised for outlier detection. This approach is however not without problems, since both
mean and standard deviation are sensitive to outliers, meaning that the method for
detecting outliersisitsclf affected by outliers. A more robust option is the median absolute

deviation (MAD as the median is less sensitive to extreme values 150 .

For a feature variable xi, X», X3, ..., Xn, MAD can be defined as the median of the absolute

deviations from the data’s median, writtenas ( 3-1) 151,152
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where x;is the initial observation and M; the median of the series of initial obscrvations

subtracted by the median of the absolute deviation (M;(x;) ).

Oneimportant consideration in outlier analysis is that the thresholds must not be set too
conscrvatively. As the data are biological and expected to demonstrate inter-person
variation, the outlicr detection needs to take this into account and not filter out outlicrs
too strictly. Taking this in consideration, the threshold was set to detect data points
deviating more than ten MADs, thus only excluding the most extreme outliers and
keeping the less severe ones. A seript was developed in Python, going through the data
variable by variable, and replacing outliers by missing values. The script moreover plotted
the data before and after outlier removal, allowing for a visual overview of the process.

Figure 3-30illustrates example data from five variables before and after outlier correction.

Variable #1 Varioble #2 Varioble #3 Variable #4 Variable #5

]

Sample numbe

Sample numbe
nf
[ J

|A) Before

Intensity Intensity Infensity ntensity Intensity

ier removal

Sample numbe

Somple number
Sample number

Intensity Intensity Infensity intensity Intensity

Figure 3-30. Example of data before and after outlier removal at a threshold of 10 median absolute deviations
(MADs . The figure shows five variables with outliers a, b and c) detected at 10 MADs in variables 7701, 704 and 703.
(A ) shows the data points for the variables before outlier removal, with the outliers highlighted in pink. (B) shows the same
variables after outlier removal

3.5.4  Development of a script for age and sex adjustment

The age and sex of a person can have an influence on their protein expression as described
in scveral studics and also demonstrated in this thesis [153 . Age and sex can be used as
informative variables when modelling data, but can also act as confounders, influencing
both the dependent and independent variables, thus biasing the data interpretation.

Therefore, it may in some situations be desirable to adjust the data for age and jor sex.

A script was written in Python, where cach protein was sct as the dependent variable Y

and modelled with age and sex as independent variables using linear regression. The
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protein values for each sample were thereafter predicted in the model and the residuals

calculated as:
Vijlres] = Yjlobs] — Yj[pred]

where ¥jes is the residual, vy is the observed value for the point j and yjpred; is the
predicted value for pointj (illustrated graphically in Figure 3-31 . Theresidual vectoris the
proportion of the protein expression not related to the independent variable and thus
contains the adjusted data. The seript was run individually for all the protcins and the
residuals extracted.

- The adjustment ~ was
I

, evaluated in several datasets
Residual y, [

- and proved efficient in

removing age and sex cffects.

Figure 3-32 shows an example

Protein,

of data corrected for age and

sex. The initial data proved
AT highly dependent onboth age

| and sex; this was evaluated

through multivariate analysis.

Confounding variable (age/sex)
An OPLS model with age set

Figure 3-31. Illustration of the adjustment of data affected by age or
sex. The scatter plot shows the protein expression for protein; as a function
of a confounding factor, x. The 1quressz’0n lz'fze ITC‘/??“C’SC‘I?Z‘.S’ the predicted y- was si g nificant {,p 8T, as
values and y;the observed value for observation ). The distance between the & - /
observed and predicted values is the residual and the proportion of the  was an OPLS-DA model of
vectory not related to the confounding variable x.

as the dependent variable y

males versus females (p ~ 7E-
4. After age and sex correction, both models exhibited insignificant relationships with
age and sex, thus demonstrating the correction was successtul. Moreover, the correction

did not significantly affect the multivariate models related to discase.
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Figure 3-32. Agcand scx adjustment of a datasct highly affccted by both variables. 1A ; shows an OPLS model of
the data with age set as Y, where a trend in age can be seen along the x-axis. 1B i shows the same model after successfil age-
correction. 2 (A ) shows an OPLS-DA model of males versus females, where a discrimination is possible between the two
sexes. 2 (B) shows the same model after successful sex-correction. In all figures, t/1] represents the predictive principal
component andto] 1 | represents the orthogonal component.

3.5.5  Dcvelopment of a script for comparing machine learning prediction
models

Inthe targeted datasets presented in Chapters 4,5and 6,it was desired to create predictive
machine learning models to determine if Parkinson’s discase/centenarianism could be
modeclled from the measured proteins. OPLS-DA was modclled using the commercial
software Simca (Umetrics). However, other machine learning models (described in
Chapter 1, section 1.4) were implemented using functions and scripts written in Python.
As mentioned, there exists a vast number of supervised machine learning algorithms to
choose between for predictions, and as they are built on different mathematical
foundations,a model that was suitable for one dataset may not be ideal for the next. Itisin
other words a matter of trial and error to find the optimal model for a certain datasct,

which can turn into a time-consuming exercisc.
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Addressing this, a script was written in Python including three different classification
algorithms: support vector machine (SVM ), linear discriminant analysis ( LDA » and Ridge
regression classificr. The script imports a two-condition datasct and performs the

following tasks:

e Performk-fold cross-validation, using five cross-validation splits

e lixtract the scores for the goodness of model fit from the five cross-validation splits

e  Split the datainto two groups, onc for model training and onc for prediction

e From the training data, determinc the ideal number of predictors to usc in the SVM
and LDA modcls using recursive feature climination

e Determine optimal settings for the Ridge regression classifier based on the training
data

e  Optionally reduce the number of predictors in the Ridge regression classifier model

e Buildandfitmodels from the training data

e Calculate model scores

e Predict the test setin the newly built models

e Optionally predict an additional class of samples to test the models” specificity for the
tested condition

e Calculate, for cach model, the proportion of correctly and incorrectly predicted
samples, and the sensitivity (3-3), specificity (3-4), and accuracy (3-5) given by | 154,

155 |
Sensitivi TP i
ensitivity = TPTFN (33
Specificity = TN \
pecificity = TN - FP 3-4)
| _ TP +TN \
CCUracY = TP I TN + FP + FN SR

where TP - true positives, FN — false negatives, TN — true negatives, and FP - false

positives.

The development of this script allowed for rapid and streamlined determination of the
ideal machine learning model to use for a specific dataset. The example illustrated in
Figurc3-33 demonstrates that, in this case, the LDA model performed superior to the SVM
modcl and the Ridge classificr, which can also be scen in Table 3-4 displaying the

classification metrics of the three modcls.
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Predicted class RidgeC
Predicted class SVM
Predicted class LDA

Actual class

Figure 3-33. Prediction of the test dataset in SVM, LDA and Ridge classifier models. The bottom row shows the
actual classes of the samples where m control and w disease. The top three rows show the prediction results of the samples as
control or disease from the three different classifying models. The LDA model performs superiorly when compared to the
SVA and Ridge classifier models

Table 3-4. Classification metrics from the prediction of a test dataset by the three machine learning models
LLDA, SVM and Ridgce classificr. The table shows the number of samples predicted as disease and control by the models,
andthe truenumber of samples in the classes. Accuracy, sensitivity, and specificity are reportedfor eachmodel. LDA yields

the best resulls.

LDA SVM RidgeC Actual classes
Predicted as control 21 18 14 25
Predicted as disease 45 34 42 49
Accuracy 89% 70% 76%
Sensitivity 92% 83% 79%
Specificity 84% 55% 67%

3.5.6  Data processing and analysis workflow

Oneimportant part of the data analysis development was to establish a pipeline that could
be applied to all the datasets, ensuring consistency in both quality control and analysis.
With the toolboxes developed and described in this section, the analysis workflow was
streamlined,and the targeted data processing greatly expedited. Figure 3-34illustrates the

stepsincluded in the processing and analysis of the targeted and untargeted data.

Figure 3-34. Data analysis pipeline for targeted and untargeted proteomics. The raw data is first processed by
Progenesis QI-P (untargeted : or an in-house Python application; Targetl ynx targeted ). Quality control checks arethen
carried out, evaluating instrumental drift, outliers, and confounders. Once the data have been pre-processed and the
quality deemed adequate, several tools can be used for biological interpretation
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3.6 DISCUSSION

By carefully optimising the steps in the discovery proteomics sample preparation and
analysis process, we increased the possibility of detecting lower abundant proteins and
thereby improved the chances of identifying blood- and urine-based biomarkers. In the
studies presentedin this thesis, this was especially important asbloodand urine were used
to study Parkinson’ disease, a condition usually researched by exploring CSF due to its
proximity to the brain. Plasma and scrum arc not idcal biofluids for this purposc, in part
because of their further distance from the brain but mainly becausc of their high
abundance of house-keeping proteins, present at high concentrations and often
considerableinsize, makingit difficult to detect smalland 'or low abundant proteins. Urine
on the other hand, provides a less challenging matrix but is even further from the brain,
thus emphasising the importance of proficient detection of proteins present at low
concentrations. Comparing the number of detected proteins in a non-depleted and non-
fractionated sample to a sample prepared using the optimised workflow, the number of

detectable proteins was greatly increased.

With the development of such an extensive multiplexed targeted assay, it was apparent
that quality control of the produced data was also a requirement for interpretation of the
complex datascts. Therefore, method development was extended to include several data
handling and analysis tools. Scripts were designed to optimise and extract information
from the acquired data. The refinement of all aspects of the analyses were then applied to

the cohorts of samples described in this thesis.

There are a few limitations to the method development experiments that need to be
considered. The most important is the use of single replicates in the untargeted
proteomics sample preparation development. The reason why single samples were used
and not replicates was mainly due to time constraints as cach fractionated sample takes
between nine and 14 hours depending on the settings. Another consideration in the
untargeted method development is that the entire chain of digestion parameters ideally
should have been evaluated as continuous experiments rather than each step separately.
In the fractionation of discovery samplcs, it would have been possible to fractionate the
digested peptides offline in conjunction with the solid phase extraction and evaluate
alongside the TEF and online fractions. In the experiment of trypsin efficiency as a
function of digestion time, itis acknowledged that albumin may not be fully representative

of the digestion cfficicney and that several proteins ideally should have been evaluated to

16
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fully capture the effect of the digestion time. Finally, in the targeted method development,

itis rccognised that also other sample preparation techniques could have been evaluated.

In the end, the methods developed for the untargeted discovery analyses of plasma and
urinc arc time-consuming and low throughput, but it was argued that the gain in protcin

coverage justificd the extra preparation and analysis time.



The usc of protcomic
techniques to study
healthy ageing and
identify markers of

longevity in
centenarians

bstract. Ageing is a complex and

multi-factorial ~ process,  often
leading ~ to  life-threatening
diseases.  Centenarians — are

mdividuals who, remarkably, have escaped or
survived the most severe pathologies and reach
an advanced age with their cognitive abilities
mtact at a higher frequency than the normal
population. For this reason, centenarians can
give us clues into what drives healthy ageing
and longevity, and they may also help us
understand the divergence between healthy
ageing and the development of neuro-
degenerative conditions.

Inthis study, we applied an optimised discovery
proteomics workflow to a cohort of samples
consisting of healthy controls (n — 10) with a

mean age of 68.8 years, and a group of

cognitively healthy centenarians (n—10)witha
mean age of 103.8 years. The samples were
profiled using label-free proteomics mass
spectrometry with the aim of identifying
markers of healthy ageing and longevity.
Several proteins were differentially expressed
between the groups and pathway analysis
indicated that inflammatory pathways were
upregulated in the centenarians.

Thirteen proteins found in the discovery phase
were added to a targeted, mass spectrometric,
MRM-based assay, where several pro-and
anti-inflammatory proteins from literature
were also included. The targeted assay was
applied to a new and larger set of samples (n
186 ) consisting of centenarians free of cognitive
decline, healthy controls, and children of
centenarians. The targeted analysis validated
eight of the proteins from the discovery study;
these proteins were A2M, ADIPOQ), CST3,
PTGDS, PKM, SAAT and SERPINAL

Comparing our results with studies of ageing
from the literature, it was hypothesised that the
centenarians exhibited altered expression of
several proteins and that some of these proteins
likely exert protective functions, while others
may indicate that they are closer to the end of
their lives. We saw an increase of several
iflammatory proteins, thus indicating an
overall elevated state of inflammation in the
centenarians.  However, — several — anti-
imflammatory acting proteins were  also
differentially expressed, possibly counteracting
some of the detrimental inflaimmatory effects.
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Phase 1: DEEP PROTEOMIC PROFILING TO IDENTIFY CANDIDATE
BIOMARKERS OF HEALTHY AGEING IN BLOOD
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Figure 4-1. Graphical abstract of the blood-based discovery and validation study of centenarians presented in
this chapter.

4.1 INTRODUCTION AND AIMS

Centenarians are an intriguing population with individuals who have remarkably avoided
or survived events usually leading to mortality. To this day, we do not know for certain if
their longevity is due to genetics or environment — or a combination of both. Studies of
twins found that approximately 257 of the longevity could be explained by genetics while
75 - appeared to be due to environment and chance 156 . Centenarians have been shown
to develop neurodegenerative diseases at a lower rate than the normal population, and

whenthey do,itis witha markedly delaved onset| 133

.Asageisthe greatestrisk factor for
the two most common ncurodegencrative conditions, Alzhcimer’s and Parkinson’s
diseases, this is highly interesting and it has been proposed that centenarians have
protective mechanisms providing resilience in place [ 134 |. Centenarians consequently
make an idcal population to study hcalthy agcing. The comparison between centenarians
and Parkinson’s patients may provide additional information and insights relating to both
groups. However, in this chapter, the focus will be solely on the centenarians; the
comparison of centenarians and Parkinson’s disease patients will be examined in Chapter

/-
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In the experiments performed in this chapter, a carefully optimised plasma proteomics
workflow was applied to a discovery cohort aiming to identify differentially expressed
protcins between centenarians and controls. Putative biomarkers were developed into a
targeted assay, also including pro- and anti-inflammatory protcins from litcrature, and

applicd toanew, larger sct of samples to validate the discovery results.
The aims of the experiments performed in this chapter were:

e In the discovery phasc, find novel targets and pathways related to the longevity
observedin centenarians

e Develop the markers from the discovery phase into a targeted MRM assay and
validate the discovery results

e Assess the expression of several pro- and anti-inflammatory proteins from literature
to determine if the centenarians exhibit differences compared to controls

4.2 DISCOVERY PROTEOMICS OF
CENTENARIANS AND CONTROLS TO IDENTIFY
MARKERS OF HEALTHY AGEING

In the discovery phase of the centenarian study, the untargeted plasma proteomics
workflow developed in Chapter 3 was applied. The purpose was to identify proteins with
differential expression between centenarians and controls, aiming to find putative
markers of healthy ageing and longevity, and to include these in a targeted assay to be

confirmedinanew and larger sct of samples.

4.2.1 Materials and methods
4.2.1.1  Sample cohort

The plasma samples from controls and centenarians were collected and provided by
IRCCS Istituto delle Scienze Neurologiche di Bologna, Italy. The control group consisted
of healthy individuals, and the centenarian group of elderly but cognitively healthy
persons. The mean age of the control group was 68.8 years, and the mean age of the
centenarians was 103.8 vears, lcaving anage differencc of 35 yearsbetween the two groups.
Assummary of the characteristics of the sample groups is presented in Table 4-1.

Table 4-1. Sample characteristics of the discovery proteomics plasma samples from centenarians and controls.

Themeanage of the controlswas 68.8 years, and for the centenarians 103.8 years. Inthe controlgroup, 607% of the samples
were females while in the centenarian group, 80 were females

Group Number of samples Percentage males / females Age = SD

Control 10 40% M | 60% F 68.8 (£ 6.7)
Centenarian 10 20% M | 80% F 103.8 (= 2.9)

120
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4.2.1.2  Preparation of plasma samples for discovery proteomics

The protocol for the preparation of plasma proteomics discovery samples is described in
detail in Chapter 2, scetion 2.3. Bricfly, ten microlitres of plasma were depleted from high-
abundant proteins to allow for detection of medium- and low-abundant species. The

proteins were digested into tryptic peptides before solid phase extraction.
4.2.1.3  Instrumental analysis

After sample preparation, the centenarian and control samples were online fractionated
into ten fractions and analysed on a Waters Synapt-G2-Si quadrupole time of flight mass
spectrometer utilising ion mobility. Detection was performed in positive MSF mode as

described in Chapter 2, section 2.5.
4.2.1.4 Data analysis

The acquired data were analysed as described in Chapter 2, section 2.6. In summary, the
data were processed fraction-wise in Progenesis utilising the ion-accounting worktlow.
The tractions were merged, and the data were filtered according to the criteria described
in Chapter 2, section 2.6. Run order drift was observed and LOWESS scaling was applied
to correct for this as described in Chapter 3, section 3.5.2. After LOWESS scaling no run

order drift was observed.

4.2.2 Results from the discovery analysis of centenarians and controls

Utilising the protocol developed for discovery plasma proteomics in Chapter 3,
875 proteins were detected in the analysis of centenarians and controls. Out of these
identified proteins, 420 had a confidence score above 15 and two or more unique peptides.
74 of the proteins were found to be significantly different between the two groups on a
nominal 957 confidence p-value significance level. Out of these significant proteins, 54 had

aconfidence score higher than 15 and two or more unique peptides.

The interpretation of the discovery results was divided into three parts; pathway analysis
of the significantly differentially expressed proteins to identify any affected pathways,
multivariate analysis to find protein covariation relating to centenarianismand or age, and
finally univariate analysis to explore the individual protein expressions and their

difference between the groups and relationship with age in detail.
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4.2.2.1 Pathway analysis

The proteins expressing a nominally significant difference (p < 0.05) between
centenarians and controls were further investigated using Ingenuity Pathway Analysis
(Qiagen . Supplementary table 1 shows the p-values and fold-changes utilised in the
analysis. The pathway analysis demonstrated that inflammatory pathways were affected -
acutc phasce signalling, coagulation system and complement system. Inaddition, pathways
relating to lipid and bile acid homeostasis, LXR/RXR and FXR/RXR activation, were

found to be significant. Figure 4-2 shows the significant IPA pathways.

A2M, ALB, AMBP,
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Figure 4-2. Statistically significant pathways from the Ingenuity pathway analysis of the discovery proteomics
analysis of centenarians and controls. The pathways are annotated by the respective proteins included in cach. Circle
radit indicate the significance of the pathway enrichment p-value, and z-scores denote a suggested up- or downregulated
pathway, where z > 0 indicates up regulation and = < O indicates downregulation. The pathways where no up- or
downregulation could be established lack z-score annotations.

Below, the top five significant pathways arc deseribed in bricf. The enrichment p-valuces

arc described, as well as the z-scores, which tell if a pathway is predicted to be up- or
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downregulated. A z-score with an absolute value greater than 2 is deemed significant and

negative values predict downregulation, while positive valuces predict upregulation.

Acute phase response. Out of the significant protcins, 15 were found included in the
acute phase response pathway. The p-value was 113'¢ and the z-score 1.9, thereby
indicating pathway activation. The acute phase response is a rapid, inflammatory
response with an increasc of inflammatory factors and positive acute phase plasma
proteins, and a decrease of negative acute phase proteins. The purpose is to provide
protection against microorganisms, although the response can also be triggered by injury,
trauma and inflammation [ 157 . The production of acute phasc proteins is predominantly
stimulated by cytokines (small, intercellular signalling proteins’, which are produced
during inflammatory processes. Examples of cytokines are IL6, IL1B and TNF-alpha. IL6
is the primary activator of acute phase proteins, although other cytokines can affect
subgroups of acute phase proteins [ 158 . The acute phase proteins are involved in defence
against infections, homeostasis and take part in coagulation and transport of
biomolecules. Certain acute-phase proteins can take part in initiation, amplification,
attenuation and resolving of inflammation. They canalso act as pro-or anti-inflammatory
agents. Many of the complement proteins are additionally acute-phase proteins, with the
ability to bring upon a pro-inflammatory response through activation of the complement
cascade. Hemopexin on the other hand, acts as an anti-inflammatory protein, scavenging
reactive oxvgen species and protecting against oxidative stress, thereby dampening the

inflammatory response [158 .

LXR /RXR and FXR /RXR activation pathways. Twelve of the proteins were foundin
the LXR/RXR pathway. The p-value was 2E14 and the z-score 2.3, thus indicating
activation of the pathway. Liver X receptors (L.XRs) are pivotal in the control of lipid
metabolism. They areactivated in response to raised levels of intracellular cholesterol and
promote the expression of several genes involved in transport, excretion, and absorption.
[.XRs are moreover capable of affecting immune and inflammatory responses [159 .
Eleven of the proteins were found in the FXR /RXR activation pathway. The p-value was
1E2, however there was not cnough congruency in the protein expression to suggest
activation dcactivation of the pathway. Farnesoid Xreeeptors (FXRs , also called bile acid
receptors, react to intracellular bile acids and activation of these receptors can modulate
triglyceride levels and glucose metabolism. LXRs and RXRs are intraccllular and can
regulate target genes directly in the nucleus. Both reeeptor families form heterodimer
complexes with retinoid X receptors (RXRs ,a nuclear receptor superfamily,and regulate

avastnumber of genes 160,101 .
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Complement system. Iiight complement proteins were identified. The enrichment p-
valuc was 63E13 and the z-score 1.3, suggesting that the pathway may be activated. The
complement system is an inflammatory responsc to external pathogens and can be
activated through three different routes - the alternative, the classical and the lectin
pathway, all prompting the production of the central protein C3 and ultimately the
complex Csb-9, MAC. The classical pathway is activated by the binding of antibody-
antigen complexes to C1. The alternative pathway is triggered by bacteria and fungi. The
lectin pathway is activated by the binding of mannose-binding lectin ( MBL) to mannosc
residues on pathogen surfaces, which in turn activates MASP1and MASP2. Complement
activators  include amyloid beta, lipofuscin  constituents, CRP, cholesterol,
immunoglobulin and advanced glycation products. Complement components have been
reported to be upregulated in Alzheimer’s disease and have been shown to be involved in
microglia-mediated elimination of synapses. In mice, C3 production is upregulated by
microglia and astrocytes. A study found that by inducing C3 deficiency, the mice were

protected from cognitive impairment seen in normal ageing | 162 .

Coagulation cascadc. Five proteins were identified in the coagulation cascade pathway.
The p-value was 1;7E7 and the z-score -0.4, thereby very weakly suggesting that the
pathway may be deactivated. The coagulation pathway involves the defence mechanism
of blood clotting, a process protecting the vascular system after tissue injury through the
formation of a hacmostatic plug, covering the site of injury. The proteins and molecules
participating in coagulation are present in the blood under non-stressed conditions in
their inactive form. The species are transformed to active enzymes through the cleavage
of peptide bonds when stimulated. In addition, platelets and endothelial cells undergo
biochemical changes to gain new properties aiding coagulation upon stimulation by
agonists [ 163 . The coagulation cascade consists of two entry pathways; the intrinsic
(three proteins found in this pathway: FGA, KLKB1 and KNG1, with a p-value of 4.6+
and no suggested up- or downregulation) and the extrinsic. Both pathways lead to the
formation of fibrin, a protein that polymerises and together with platelets forms a clot
covering thesitc of injury. In the extrinsic pathway, factor X1lis first activated, followed by
theactivation of factors XI, IXand X and prothrombin. In the extrinsic pathway,a complex
consisting of tissue factor and factor VIl isinitially constructed, followed by the activation
of factors VII and X and prothrombin [164 . The extrinsic pathway, also known as the

tissuc factor pathway, is the primary initiator of blood clotting.

Although modelled as separate entities, there is evidence that the coagulation and

complement cascades modulate cach other’s activity. Factor XITaand kallikrein can cleave
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Cisand thereby trigger the classical complement pathway. Thrombin can activate C3,Cs,
Co6 and factor B. Kallikrein is further able to cleave C5and factor B. Factor X1Ila can cleave

3165 .

Morcover, several proteins were predicted by Ingenuity as upstream regulators based on
the observed proteins’ expression in this dataset. Table 4-2 shows the three top proteins
which on a significant level were predicted to be activated upstream regulators. No
proteins were predicted to be deactivated on a significant level.

Table 4-2. Predicted activated upstream regulators and the target proteins in the IPA analysis of the discovery
proteomics of centenarians and controls.

Upstream Regulator p-value of overlap ~ Target molecules in dataset

IL6 1.09E7 A2M, ALB, CD14, CD163, CFD, CP, CST3, FGA, GFAP,
HBET, LRG1, ORM1, PPBP, STOOA?, SAAT, SERPINAT,
SERPINA3

CEBPB 2.4E® ADIPOQ, ALB, CD14, CFD, CHIT1, CP, FBLN1, GFAP, NRPT,
ORMT, SAAT, SERPINAT

STAT3 3.74E° A2M, ADIPOQ, FGA, GFAP, NRP1, PROCR, STO0A?, SAAT,

SERPINAT, SERPINA3

These proteins are involved in inflammatory response and transcription. IL6 can induce
acute phase response. STAT3 can bind to IL6 elements. CEBPB can regulate the

expression of genesinvolved in inflammatory responses.

Overall, the pathway analysis suggests that the centenarians have increased levels of
inflammation compared to controls. There is a large amount of overlap between the
proteins seen in the different pathways as all the most relevant pathways are involved in
inflammation, thus making it difficult to pinpoint the exact ongoing mechanisms. Proteins
fromtheacute phase response signalling pathway are for example included to some extent
inall the other pathways. Morcover, LXR 'RXR and FXR /RXR overlap almost completely,

with only one unique protein {CD14  found in LXR butnotin FXR.

4.2.2.2 Multivariate analysis

To obtainan overview of the protcins mostly affected by ageand to testif there wasanage-
related multivariate protein expression, an OPLS model with age as the dependent
variable y was constructed. The model suggested a relationship with age for many of the
proteins, although the modcl itself was not significant (ANOVA p = 0.069 ). This mcans
that there is not enough age-related covariation between the proteins to build a model
with adequate predictive ability for protein expression and age. Figure 4-3 shows the 40
proteins, which according to the OPLS model have the strongest positive and negative

corrclation with age.
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An OPLS-DA model that compared centenarians and controls was created to assess
group-specific protein expression. This model was not significant {ANOVA p - 016,
againindicating that thereisnotsufficient co-variationbetween the proteinsrelated to the
discriminating factor of age in cach group. An OPLS-DA analysis of males versus females
was further performed and proved non-significant (ANOVA p - 018, thereby implying
that no general gender-dependent difference in protein expression could be

demonstratedin this study.

In summary, the multivariate analyses demonstrated that the protein expression was not
gender dependent and, although the expressions of some individual proteins were related

to age, no overall age-related multivariate protein expression could be established.

4.2.2.3 Univariate analysis

A univariate approach was undertaken to further investigate the age-correlation and
differences between the groups for individual proteins. For an overview, the difference in
protein expression between the centenarian and the control group was visualised in a
Volcano plot { Figure 4-4 . The Volcano plot shows that the overall distribution of up-and
down-regulated protcins was relatively similar but that among the significant protcins, a

majority werce upregulated in the centenarians.
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proteins which were identified by two or more peptides and with an identification confidence score above 15 are annotated
by their gene names.

4.2.2.3.1 Linear regression correlating protein expression with age

The multivariate analysis of protein expression versus age that was performed in section
4.2.2.2 showed promise but did not produce significant models allowing for identification
of a protein panel significantly correlated with age. To investigate the protein-age
correlation in detail, separate linear regression models were created for each of the
significantly different proteins. Controls and centenarians were modelled individually
and together as onc group. The slope of cach model was examined for a significant
diffcrence from zero. In the combined analysis of centenarians and controls, 67 protcins
had a slope significantly different from zero. In the regression analysis of centenarians
only, 23 protcins demonstrated a slope significantly different from zero, and in the control

group, only one protein had a significantly non-zero slope.

Table 43 shows the summary of the p-values in the group comparison between

centenarians and controls, and results from the regression analysis. As expected, most of
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the proteins differing in the group comparison also demonstrated asignificantly non-zero
slope in the combined control-centenarian model. The regression analysis demonstrated
that nonc of the protcins had a non-zcro slope in both the control and centenarian group,
thereby indicating that no overall age-protein correlation could be established. The beta-
cocfficients of the modcls are provided in Supplementary table 2.
Table 4-3. Significance of univariate lincar regression models of age versus protein expression. The table shows
the significance level of the proteins differentially expressed comparing the groups centenarians and controls, and the
results from the non-zeroslope significance test when modelling centenarians and controltogether, centenarians alone, and

control alone. The proteins are denoted by their gene names. The significance leoels are represented by asterisks, where
D <0.000L < 0.001 ¥ p< 0.0 *p<0.05and NSp > 0.05

Significance level of Significance level of age versus protein expression regression,
t-test between testing if the slope is different from zero
centenarians and

control Centenarians and control Centenarians Control
p7P . . NS NS
SERPINAT ok ok NS NS
ITIH3 . Kok * NS
CLEC3B x ox NS NS
LRG1 Kok - - NS
CTBS Kok ok * NS
CD5L * ox NS NS
SERPINA4 o o NS NS
OAF o o NS NS
CHIT1 * * NS NS
CD14 o o NS NS
DKK3 o * NS NS
UGT2B7 o ** NS NS
CIRL o o NS NS
Cc9 * ** NS NS
CACNB3 * ** NS NS
A1BG ok ok ok NS
GFAP * * NS NS
HYI o * NS NS
PI6 o o NS NS
C220rf15 o ok ok NS
PKM ok ok * NS
SAA1 * ** NS NS
AMBP o o * NS
CP * * NS NS
STX11 * * NS NS
LMNA * ** NS NS
CFD * * NS NS
SERPINA3 * > * NS
A2M * * NS NS
ORM1 * ** NS NS
A6NIZ1 * * NS NS

METTL4 * * * NS
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Significance level of Significance level of age versus protein expression regression,
t-fest between testing if the slope is different from zero
centenarians and

control Centenarians and control Centenarians Control
TGFBI * * NS NS
AMPD3 * * NS NS
ADIPOQ - - : NS
B2M * * NS NS
SPARCL1 * * NS NS
AZGP1 - . . NS
SOD3 * ** ok NS
FAM184A * * ** NS
ITIH4 * * o NS
APMAP * * NS NS
HBE1 * * NS NS
C1QB * * NS NS
TPM2 * * NS NS
DYTN * o * NS
KIF7 * * * NS
PTGDS * * NS NS
KLKB1 * * o NS
PPBP * * NS NS
OLFMI1 * * NS NS
DOCK10 * o * NS
CST3 * * * NS
GSN * * NS NS
KNG1 * * ok NS
ORM?2 * * ok NS
Cc7 * NS NS NS
FHL5 * * NS NS
ciQC * * NS NS
SRFBP1 * NS NS NS
ERICHé6B * NS NS NS
RAB40AL * * NS NS
S100A9 * * NS NS
C4BPA * * NS NS
FBLN1 * * NS NS
Cé * * * NS
FGA * NS NS NS
PROCR * * NS NS
CD163 * * NS NS
BTD * NS NS *
VCL * NS ** NS
CFI * NS NS NS
ALB * NS NS NS

NRP1 : : NS NS




The use of proteomic techniques to study healthy ageing and identify markers of longevity in centenarians

There are differences in the levels of many proteins between controls and centenarians.
Although the sample groupsare small and thereby limiting the interpretability, none of the
protcins demonstrate a lincar relationship with age in both the control and centenarian
group, thus indicating that there is no overall age-dependent protein expression in the

studicd groups among the significant protcins.
4.2.3  Summary and conclusions from the discovery phase

Utilising the optimised workflow for discovery plasma protcomics, 875 proteins were
detected and 74 found significantly different between centenarians and controls. 11 of the
proteins were downregulated in the centenarians and 63 were upregulated. Multivariate
and linear regression analyses demonstrated that none of the proteins had a distinet
trajectory withage. The reason for this may be that the sample size was too small,and that
the age gap between the two groups was too large. To determine age-protein correlations,

alarger sample set with a wide age spread should ideally have been studied.

Somewhat surprisingly, pathway analysis indicated an overall elevated inflammatory
response in the centenarian group compared to the control group, suggesting activation
of the LXR/RXR pathway, acute phase response signalling and, less confidently, of the
complement system. The coagulation system was suggested to be deactivated, albeit ona
non-significant level. Even though centenarians reach an advanced age with their health
remarkably intact, they are nevertheless close to the endpoint of their lives, and this could

be why evidence of inflammation was observed.

The following proteins were chosen from the discovery study to be included in a targeted
assay, aiming to validate the discovery results: A2M, ADIPOQ), CST3, CTHRCI, FGA,
HBE1 PTGDS, SOD3, CSF1R, DKK3, PKM, SAAT and SERPINA1 The selection was

based on significance testing, quality of the protein identification, and literature reviews.

4.3 TARGETED PROTEOMICS TO CONFIRM
FINDINGS FROM THE DISCOVERY PHASE AND TO
IDENTIFY INFLAMMATORY TARGETS FROM
LITERATURE

In the targeted proteomics study, the proteins identified and selected in the discovery
phasc were evaluated in alarger sct of samples to confirm the findings from the univariate
and pathway analyses. Several pro- and anti-inflammatory proteins from the literature
were moreover included in the assay. Samples from centenarians and controls were

analysed, but also samples from children of centenarians (called “offspring” in this

1
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chapter ). The offspring samples were included in the study to evaluate if they possessed
any similarity in protein expression to the centenarians, which could indicate that there

might be a genetical component to centenarianism, passed on from parents to children.

4.3.1  Materials and methods
4.3.1.1 Sample cohort

The plasmasamples for the targeted study were collected and provided by IRCCS Istituto
delle Scienze Neurologiche di Bologna, Italy. The control group consisted of healthy
individuals; the centenarian group consisted of elderly but healthy persons without
cognitive decling; the offspring group consisted of healthy individuals with at least one
centenarian parent. A total of 186 plasma samples were included in the targeted study.
Table 4-4 shows the characteristics of the three sample groups and Figure 4-5 shows a
histogram of the age distribution.

Table 4-4. Characteristics of samples in the targeted proteomic study of centenarians, offspring, and controls.
The table shows the number of samples, the percentages of males and females, and the mean age in cach group

Group Number of samples Percentage males / females Age = SD
Control 40 50% M | 50% F 70.0 (= 7.1)
Offspring 54 35% M | 65% F 71.0 (£ 6.6)
Centenarian 92 23% M | 77% F 103.8 (= 3.0)
m Control
70 Offspring
60 Centenarian
50
® 40
g
w30
20
10 I I
0 - -
51-60 61-70 71-80 81-90 91-100 101-110 >110
Age

Figure 4-5. Histogram of age in the groups showing the frequencies of samples as 10-year bins

4.3.1.2 Sample preparation for targeted proteomics

The samples were prepared for targeted proteomics as described in Chapter 2, section 2.7.
Bricfly, 10 uL plasma was spiked with 150 ng yeast ENO1 (whole protcin), and thereafter
depleted of albumin and IgG using Pierce Top2 columns. The samples were tryptically

digested and solid phasc extracted. Quality control samples consisted of pooled, acctone



The use of proteomic techniques to study healthy ageing and identify markers of longevity in centenarians

precipitated plasma. Calibration curves were prepared by spiking increasing amounts of

peptide standards into blank and pooled quality control samples.
4.3.1.3  Instrumental LC-MS analysis

The settings and parameters for the instrumental analysis are described in detail in
Chapter 2, section 2.9. In brief, the samples were reconstituted in 30 pl. 37 acetonitrile,
o.1% trifluoroacetic acid containing 0.1 uM of isotope labelled internal standards. 5 pL was
injected onto a UPLC system coupled to a triple quadrupole mass spectrometer. Two
injections were made per sample, each with a different MRM method. In total,

20 snHidee swere H Ve ~onrecentl - SN Q
189 peptides were monitored, representing 127 proteins.
4.3.1.4 Peak picking, integration, and data pre-treatment

Dataanalysis was performed as described in Chapter 2, section 2.10. In brief, the acquired
data were peak-picked and integrated using an in-house software. The peptides were
identified by the retention times given by blank and matrix calibration curves. Digestion
efficiency was evaluated by monitoring the presence of veast ENO1 in the samples. The
analyte peak areas were normalised to the heavy isotope labelled peptide internal
standard from the protein ALDOA. Run order drift was corrected by LOWESS curve
fitting. Extreme outliers were detected at a threshold of 10 median absolute deviations
andreplaced by missing values. Outliers were identified in 14 samples, containing a total of
160utlier valuespresentin SERPINA3, FABP3, HSPA1L, PTGDS,SAA1,SOD3, TUBA4A
and VCAM1. The outlier values were randomly distributed among the samples, apart
from SAA1 where outliers were observed only in female centenarians. The table of

outliersis presented in Supplementary table 3.

4.3.2 Results from the targeted validation analysis

The MRM-based proteomic assay with targets from the centenarian discovery study,
studies of Alzheimer’s and Parkinson’s discases, and pro-and anti-inflammatory proteins
from literature, could reliably detect 29 individual endogenous proteins in the
186 samplcs. The data were investigated using scveral methods, and the results arce

presented in this section.
4.3.2.1 Multivariate analysis

Multivariate analysis was performed with two different objectives. Firstly, unsupervised
PCA analysis to asscss the data quality and to look for major trends in the data. Sccondly,

supervised OPLS and OPLS-DA analyses to determine relationships between the protein
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expression and dependent variables such as age and sex, and to discriminate between the

sample groups.

4.3.2.1.1 Unsupervised Principal Component Analysis

Anunsupervised principal component analysis was performed to inspect the data quality
post drift correction and outlier removal. The PCA demonstrated that there was a clear

difference between centenarians and controls but not between offspring and controls

(Figure 4-6).
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Figure 4-6. PCA of the targeted protcomics data from the study of centenarians, offspring, and control. A dear
separation could be observed between the centenarians and offspringicontrol; however, no difference could be discerned

between the control and offspring groups. m centenarians, m controls, and m offspring. 11 represents principal component
Land i 2 [represents principal component 2.

4.3.2.1.2 Supervised OPLS to relate age and protein expression

To examine the relationship between the proteins and age, an OPLS regression model
including all sample groups with age as the dependent variable y was generated (model
scores shown in Figure 4-7). Model validation demonstrated that there was a strong
relationship with age, withan ANOVA p 6 I237and permutations p << 0.001. The model
showed that there wasadifference in protein expressionbetween the two age groups. The
loadings plot demonstrated that the difference was mainly caused by higher levels of
PTDGS, VCAM1, CST3, [CAM1, A2M, ADIPOQ, SERPINA3, SAA1, SERPINA1T and
FABPs3, and lower levels of SERPINF2, BCHE, ITTH2, PKM, PRG4 and C3 in the

centenarians.
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Figure 4-7. Scores from an OPLS model of the targeted data from the study of centenarians, offspring, and
control with age as the dependent variable. T score plot is colowred in a scale going from blue (youngest age) to red
‘oldest age . A distinct age-dependence can be observed. The x-axis represents the predictive component, and the y-axis the
orthogonal component.

An OPLS model of the control and offspring samples, with age as the dependent variable,
was created but proved non-significant (p — 0.4, thereby suggesting that not enough
covariation in the protein expression of these two groups exists to determine a
multivariate relationship with age. The centenarians were moreover modelled in an
OPLS, with age as the dependent variable. The model was weakly significant (p -~ 0.02),
suggesting lower levels of SERPINE2, C3, HPX, ITITH2 and BCIHE negatively correlated

withage.
4.3.2.1.3 OPLS-DA to discriminate between the sample groups

Investigating the data further, discriminant OPLS-DA modecls were constructed,
comparing all three groups to each other. The comparison between controls and
offspring did not demonstrate a difference between the groups with both ANOVA and
permutation p > 0.05. The comparison between centenarians and controls showed a
clear separation between the groups (ANOVA p = 2E12 and permutations p <= 0.001), as
did the comparison between centenarians and oftspring (1152° and permutations p <
0.001 . Examining the relationship between the two discriminant centenarian models, a
Shared and Unique Structures (SUS) plot was generated. This plot can be used to
compare the results of two different models. The SUS plot in Figure 4-8 demonstrated
that the loadings were indeed highly similar, only FABP5 differing slightly. This means that
the discriminating proteins between centenarians and controls, and centenarians and

offspring are the same. It moreover signifies that there is no discernible difference
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between the offspring and control groups. The most discriminating proteins with higher
levels in centenarians were found to be CST3, PTGDS, VCAM1, ADIPOQ and ICAM1.
The most discriminating proteins with lower levels in centenarians were BCTIE, A2AP,

I'TTH2, PKM, PRG 4 and C3.
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Figure 4-8. Shared and Unique Structures plot of the two OPLS-DA models centenarians versus offspring and
centenarians versus control. The SUS plot demonstrates a linear relationship betieen the models, thus illustrating that
the discriminating proteins in both models are highly similar, only FABP3 differing slightly.

Additionally, an OPLS-DA model of males versus females was constructed and proved
significant (p -~ 2.91°¢), thus indicating a protein expression correlation with sex. The
modecl showed that SERPING1, APOE, HPX, ADIPOQ), SERPINA3Z, SOD3, A2M and

SERPINA1 were upregulated in the females compared to the males.

4.3.2.1.4 Conclusions from the multivariate analysis

The multivariate analysis demonstrated that there is a strong relationship between
age centenarianism and protein expression when analysing all sample groups together. In
summary, the proteins that exhibited altered expression with age (OPLS » or between the
age-groups { OPLS-DA were CST3, PTGDS, VCAM1 and ICAM1, all upregulated in the
centenarians, and BCIIE, ITII 2, PKM, PRG4 and C3, which were downregulated in the
centenarians. Additionally, A2M, SERPINA3, SAA1, SERPINA1 and FABP5
demonstrated a relationship with age only in the OPLS model of all sample groups and
SERPINF2adifferencebetween the centenarian and offspring control groups only inthe
OPLS-DA models. The analysis further highlighted that no multivariate differences could
be detected between the control and offspring groups, and that no correlation with age

couldbe determined in these in these two groups either.
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4.3.2.2 Univariate analysis

To examinc the individual protein expressions and their relationship with the dependent
variables, cach protcin was cxamined in dctail by corrclation analysis and group

comparisons.
4.3.2.2.1 Correlation analyses

The relationship between the proteins, age and sex in the sample groups were examined
by Pearson correlation, and correlation coefficients and p-values were extracted. All p-
values were adjusted for multiple testing applying Benjamini-Hochberg false discovery

rate withalpha - 0.05.

Correlation between protein expression and sex. Firstly, the relationship between
the protein expression and sex was investigated and it was found that the following
proteins were significantly correlated with sex, all downregulated in males compared to
temales: A2M, SERPINA3, ADIPOQ, APOLE, HPX, ICAM1, SERPINA1L SERPING1,and
SOD3.

Corrclation between protein expression and age. Next, the age-protein correlation
was examined in the following sample groups (7) control, (i) offspring, (7ii) control and
offspring, (iv) centenarians, and (v) all samples. In the control, offspring and combined
control offspring groups, no significant correlations were identified. In the centenarians,
the following proteins were significantly correlated (all negatively) with age: C3, HPX,
and SERPINF2. In the correlation analysis of all samples, 19 proteins were found

significantly correlated with age. These were:

e A2M e (ST3 e MASP2 e SERPINA1
e SERPINA3 e [FABP3 e PKM e  SERPINF2
e ADIPOQ e [CAMI e PRGy e SOD3

e BCHE e [ITIH2 e PTGDS e VCAMiI

e (3 e [LMO7 e SAAI

Given the large number of proteins significantly corrclated with sex, the data were
adjusted for sex as per Chapter 3, section 3.5.4 and the same correlation analysis run again.
Theresults frombothanalyses were compared and are summarised in Table 4-5. After sex-
adjustment, the only protein changing frombeing significantly corrclated withage tonon-

significant was SERPING1, all other proteins remained significant after adjustment.

Adjustment of age was not considered as this would remove the discriminating factor of

what our study set out to explore.
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4.3.2.2.2 Group comparisons

The sample groups control, offspring and centenarians were compared to cach other, one
by onc, using a two-tailed Student’s t-test. The p-values were adjusted for multiple testing
by applying Benjamini-Hochberg FDR-correction. Both data adjusted for sex and non-

adjusted data were evaluated.

Comparing centenarians to control, 21 proteins were significantly altered in the non-sex
adjusted data and 16 in the sex-adjusted data. The proteins not significant post sex-
correction were FABPS, LMO7, HPX, MASP2 and SERPING1. In the comparison of
centenarians and oftspring, the same 16 proteins were differentially expressed in the non-
adjusted and the sex-adjusted data. Comparing centenarians to the combined group of
control and offspring, 20 proteins were differentially expressed in the non-adjusted data
and 18 in the sex-adjusted data. The proteins not significant after sex-adjustment were
LMO7and SERPING1. Nosignificant differences in protein expression were identified in
the comparison between controland oftspring. The results are summarised in Table 4-6.

Table 4-6. Summary of the FDR adjusted results from the comparison of controls, offspring, and centenarians.
The significance levels are represented by asterisks, where > p < 0.0001, ** p < 0.00L ** p < 0.0L * p < 0.05, and
NS p>0.05. Cent— centenarian, ctrl— control, and offsp - offspring.

Not adjusted for sex Sex-adjusted
Cent. vs Cent. vs Cent. vs Ctrl vs Cent. vs Cent. vs Cent. vs Cirl vs
ctrl offsp. ctrl/offsp. offsp. ctrl offsp. ctrl/offsp. offsp.
ADIPOQ sk sk Kook NS . . Kook NS
APOE NS NS NS NS NS NS NS NS
C3 * *okk ok *okk ok NS * *k Kk *kokk NS
CST3 . Kook Kook NS Kook Kok Kook NS
FABP5 * *x o NS NS o > NS
FGA NS NS NS NS NS NS NS NS
GRN NS NS NS NS NS NS NS NS
HPX * NS NS NS NS NS NS NS
HSPATL NS NS NS NS NS NS NS NS
HSPA5 NS NS NS NS NS NS NS NS
ICAM1 ok Kook Kook NS * . Kook NS
LMO7 * NS * NS NS NS NS NS
MASP2 * NS o NS NS NS * NS
PGK1 NS NS NS NS NS NS NS NS
PKM - . . NS - stk . NS
PLD3 NS NS NS NS NS NS NS NS
SERPINA1 o * o NS * * o NS
SERPING1 * NS > NS NS NS NS NS
SOD3 o NS o NS * NS * NS
TUBA4A NS NS NS NS NS NS NS NS
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Next, the difference in protein expression between males and females was investigated in
detail to clarify the sex-effect on the different proteins. A two-tailed Student’s t-test was
performed between males and females in the following groups (i) all samples, (i) control,
(i) offspring, (iv) centenarians, and (v control and offspring combined. The p-valucs
were adjusted to account formultiple testing using Benjamini-Hochberg FDR-correction
and arc summariscd in Table 4-7. Importantly, it is shown that there is a significant
diffcrenceinage between males and females. The majority of the proteins do not exhibita
sex-related difference in expression in the subgroups, however, when inspecting the
samples as a whole, ten proteins demonstrate significant differences in expression
between males and females. When relating these results to the significance testing shown
in Table 4-6,only HPX and SERPING1 are affected to adegree that places them below the
significance threshold in the sex-corrected data compared to the non-corrected.

Table 4-7. Comparison of the protein expression between males and females in the targeted data from

centenarians, offspring, and control. T/e table shows the significance levels of the FDR-adjusted p-vatues represented
by asterisks, where ™ p<0.0001, % p<0.001 * p<0.01, *p<0.05,and NS p> 0.05

All samples Control Offspring Centenarians :f;r:r:?é
Age * NS NS NS NS
A2M * NS NS NS NS
SERPINA3 * * NS NS NS
ADIPOQ ** NS * NS *
APOE e NS * NS *
BCHE NS NS NS NS NS
C3 NS NS NS NS NS
CsT3 NS NS NS NS NS
FABP5 NS NS NS NS NS
FGA NS NS NS NS NS
GRN NS NS NS NS NS
HPX ** NS NS NS *
HSPATL NS NS NS NS NS
HSPA5 NS NS NS NS NS
ICAM1 * NS NS NS NS
ITIH2 NS NS NS NS *
LMO7 NS NS NS NS NS
MASP2 NS NS NS NS NS
PCK1 NS NS NS NS NS
PKM NS NS NS NS NS
PLD3 NS NS NS NS NS
PRG4 NS NS NS NS NS
PTGDS NS NS NS NS NS
SAAT NS NS NS NS NS
SERPINA1 * NS NS NS NS
SERPINF2 NS * NS NS *
SERPING1 o NS NS NS *
SOD3 * * NS NS NS
TUBA4A NS NS NS NS NS

VCAMI1 * NS NS NS NS
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It was determined that the sex-corrected data would be utilised for all further modelling.
Theresults from the univariate analysis, comparing centenarians to control and offspring,
arc represented in a Voleano plot (Figure 4-9'. It is clearly demonstrated that several

proteins exhibit highly significant p-values.

25
® Prostaglandin D2 Synthase
® Cystatin C
20
®Vascular Cell Adhesion Molecule 1
15
9 ® Serpin Family F Member 2
©
7
a
o
)
ie) ® Butyrylcholinesterase
10 ’ﬁer-Alpho-Trypsin Inhibitor Heavy Chain 2
® Pyruvate Kinase M1/2 ® Alpha-2-Macroglobulin
® Serpin Family A Member 3
5 ® Proteoglycan 4 Adiponecin
® Complement C3 @rtercellular Adhesion Molecule 1 PY
Serum Amyloid Al
Alpha-1-Antitrypsifi Fatty Acid Binding Protein 5
Mannan Binding Lectin Serine Peptidase® ~ @  Superoxide Dismutase 3
0
-2 -1 0 1 2 3 4 5
Fold change

Figure 4-9. Volcano plot of the protcins from the targeted study of centenarians, offspring, and controls. The
data points are coloured according to their FDR-corrected p-value significance comparing centenarians to offspring and
control, where » p-value > 0.053, ® p-value < 0.05.

The individual values of the samples in the significantly different proteins are shown in
Figure 4-10. As demonstrated in the Volcano plot, a few proteins exhibit large differences
between the centenarians and the controland offspring groups, especially PTGDS, CST3,
VCAM1 and SERPINF2. The offspring samples with values closer to the distribution of
the centenarians were examined in detail for the different proteins, but no congruency
couldbe detected among these samples, therefore it was not possible to identify offspring

samples with a centenarian-like profile.
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4.3.2.2.3 The targeted study validates eight proteins from the discovery phase

IMaving analysed the targeted data thoroughly and now satisfied that bias had been
accounted for, the results from the targeted study were compared to the results from the
discovery phase. 13 proteins from the discovery phase had been selected for validation.
Out of these 13 proteins, nine could be detected in the targeted validation study and eight
demonstrated a significant difference between the centenarians and control and jor
offspring samples. Comparing the results from the targeted study and the discovery study
("Table 4-8), A2M, ADIPOQ,CST3, PTGDS, PKM, SAA1and SERPINA1 were confirmed
and demonstrated an expression matching the one scenin the discovery study. CTIIRC1,
HBE1, DKK3 and CSF1R could not be detected. FGA could not be confirmed and SOD3
could only be confirmed when comparing the centenarians to control, or control
combined with offspring. In summary, the targeted study validated eight of the 13 proteins
from the discovery phase.

Table 4-8. Comparison of results from the discovery study and the targetedstudy. The table shows the significance
levels of the proteins from the discovery study, which group they were highest in and the significance level in the targeted
study for the comparisons centenarians versus control, offspring, and control and offspring combined and if the discovery
results were replicated in the targeted study. A2M, ADIPOQ, CST3, PTGDS, PKM, SAA1 and SERPINAI were

confirmed. CTHRC1, HBE1, CSFIR and DKK3 could not be detected. FGA could not be confirmed. TSOD3 was
confirmed, but not in centenarians vs offspring ¥ p < 0.0, p< 0.01,** p < 0.001, ™ p < 0.0001, and NSp > 0.05).

Sig. level targeted study

csilg e Highest in Centenarians Torgeted
Iscovery Centenarians  Centenarians results

study vs control vs offspring vs cont.rol/

offspring

A2M * Centenarian o ok ok Confirmed
ADIPOQ * Centenarian o o ok Confirmed
CST3 * Centenarian e e e Confirmed
CTHRC1 * Control Not detected
FGA * Centenarian NS NS NS Not confirmed
HBE1 * Centenarian Not detected
PTGDS * Centenarian Rk ok ok Confirmed
SOD3 * Centenarian * NS * Confirmed!
CSF1R * Centenarian Not detected
DKK3 * Centenarian Not detected
PKM o Control o ok ek Confirmed
SAAI1 * Centenarian o o o Confirmed
SERPINAT o Centenarian * * o Confirmed

4.3.2.2.4 Conclusions from the univariate analysis

The univariate analysis concluded that there was a significant age difference between the
males and females in the study, and morcover that some proteins exhibited altered
expression between males and females. Therefore, the data was adjusted for sex to avoid

bias. Correlation analysis demonstrated that there was no significant relationship
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between age and protein expression in the control and offspring groups, not either when
combining the groups. The proteins C3, HPX and SERPINF2 were significantly
deercased with older age in the centenarians. A total of 18 proteins were differentially
expressed between the centenarians and control/offspring. No differences in protein
expression could be discerned between the control and offspring groups. Finally, eight of
13proteins fromthe discovery phase were validated in the targeted analysis; these proteins

were A2M, ADIPOQ,CST3, PTGDS, PKM, SAA1, SERPINATand SOD3.
4.3.2.3 Machine learning for age prediction of centenarians

The correlation analysis performed in section 4.3.2.2.1 could not establish an age-protein
relationship in the control and offspring samples when analysing the individual
expression of the proteins. To evaluate if more complex modelling could identity a
protein-age dependency in the data, a machine learning approach was undertaken. The
aim was to construct a regression model from the control and offspring samples and
predict the centenarians to evaluate if their predicted age would be younger than their

biological age.

Ridge regression was utilised to create a model of the control and offspring subjects, with
age set as the dependent variable Y. The feature importance of the proteins in the model

areshownin Figure 4-11.

SERPINF2 | Serpin Family F Member 2 {
HPX | Hemopexin 1§
HSPAS | Heat Shock Protein Family A (Hsp70) Member 5 §
PLD3 | Phospholipase D Family Member 3 §
LMO7 | LIM Domain 7 §
PTGDS | Prostaglandin D2 Synthase §
VCAM1 | Vascular Cell Adhesion Molecule 1 {
FABPS | Fatty Acid Binding Protein 5 §
CST3 | Cystatin C1
BCHE | Butyrylcholinesterase §
ITIH2 | Inter-Alpha-Trypsin Inhibitor Heavy Chain 2§
PKM | Pyruvate Kinase M1/2 {
ADIPOQ | Adiponectin {
TUBA4A | Tubulin Alpha 4A §
ICAM1 | Intercellular Adhesion Molecule 1 §
APOE | Apolipoprotein E §
SERPING1 | Serpin Family G Member 1§
HSPA1L | Heat Shock Protein Family A (Hsp70) Member 1 Like {
PGK1 | Phosphoglycerate Kinase 1§
SAA1 | Serum Amyloid A1 §
SOD3 | Superoxide Dismutase 3 §
SERPINA1 | Alpha-1-Antitrypsin §
MASP2 | Mannan Binding Lectin Serine Peptidase 2 §
A2M | Alpha-2-Macroglobulin §
FGA | Fibrinogen Alpha Chain §
PRG4 | Proteoglycan 4 §
C3 | Complement C3 §
GRN | Granulin Precursor §
AACT | Serpin Family A Member 3 §
0.0 05 10 15 20

IFigure 4-11. Feature importance of the proteins in a Ridge regression model of control and offspring
individuals, relating protein expression to age.
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Next, the ages of the centenarians were predicted in the Ridge regression model. The
prediction resulted in the centenarians being predicted in the age span 70 to 90 years
rather than their biological age of 100 to 112 years (Figure 4-12). Although initially
promising, closcr inspection concluded that the model fit for the training sct alonc (the
control and offspring samples: was R2 0.2, thus demonstrating that the
correspondence between the observed and predicted values was limited. Evaluating this
further, the controland offspring samples were split randomly into two groups. One of the
groups was used to build a new model and the second group was predicted in this model.
The results of the age prediction were mostly random and did not correspond with the
actual ages, signifying that the model had poor predictive ability and that no strong
relationship with age could be determined and used for predictions of the centenarians’

ages.

90

85

-
o

Predicted age
~
S

o
a

60

55

60 7 80 90 100 110
Actual age

Figure 4-12. Prediction of the centenarians’ ages in a Ridge regression modcl trained by control and offspring
samples. Although the centenarians are predicted in an age range approximately 30 years younger than their actual ages,
so arethe control and offspring individuals which were used to construct the model as demonstrated by the line expected in
a perfect model (- - - ) showing the minimum and maximum age of the control and offspring samples. The sample colours
represent m controls, m offspring and © centenarians.

Other, non-linear, machine learning strategies such as neural network and random forest,
both from Scikit Learn version 0.24, were attempted but also resulted in poor ability to
correctly predict the ages in the training data. The consistent absence of predictive power
in the training set consisting of offspring and control samples, regardless of model type,
strongly indicates that thereis insufficient correlationbetween the protein expressionand
agc in the training data. The results from the machine learning regression conscquently
verifies what the univariate correlation analysis demonstrated - that the control and

offspring groups do not exhibit any distinct age-related protein expression.
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4.3.2.4 Pathway analysis and literature studies

A predicament in the study of centenarianism is that ageing in itsclf may alter the
expression of some proteins regardless of centenarianism. There is a risk of confounding
asmany of the proteins whose expression correlate with normal ageing will also changein
the centenarians. As mentioned in sections 4.3.2.2.1 and 4.3.2.3, the correlations between
agc and protcin levels in offspring and controls were not significant, meaning that no
information about the normal ‘expected protein changes over age could be acquired from
this source and compared to the progression of the centenarians’ protein expression. For
this rcason, the strategy to identify proteins relevant to centenarianism was based on the
difference in protein expression between centenarians and offspring/controls in
conjunction with pathway analysis and literature studies of the proteins’ reported changes

with age.

4.3.2.4.1 Pathway analysis

The significantly different proteins were analysed using Ingenuity Pathway Analysis
(Qiagen . The pathway analysis (Figure 4-13) demonstrated that mainly inflammation-
related pathways were affected, and the results largely overlapped with the significant
pathways resulting from the discovery analysis  Section 4.2.2 . The pathway with highest
significance in both analyses was acute phase response signalling. Also, LXR/RXR and
FXR/RXR activation, and complement and coagulation system were identified in both
the discovery and targeted data. Although these results were expected as the targeted
assay mainly contains inflammation-related proteins, it was reassuring that the protein
expression from the targeted analysis closely matched the discovery phase. Given the
limited number of proteins, the IPA software could not predict if the pathways were up-

or downregulated and thus, no z-scores are provided.
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A2M, ITIH2, SAAL,

SERPINAL, SERPINAS,
SERPINF2, SERPING 1
Acute Phase Response Signaling

A2M, SERPINAL, SERPINF2
Coagulation System

_ SAAL, SERPINAL, SERPINF2
LXR/RXR Activation

ICAM1, SERPINAL, VCAM1
Atherosclerosis Signaling

SAAL, SERPINA1L, SERPINF2
FXR/RXR Activation

MASP2, SERPING1
Complement System

Hepatic Fibrosis / Hepatic Stellate Cell @2M, ICAM1, VCAM1

Activation
ICAM1, VCAM1
Apelin Endothelial Signaling Pathway
. ADIPOQ. PKM
Type |l Diabetes Mellitus Signaling
S0D3

Superoxide Radicals Degradation

) A2M. ICAM1, VCAM1
Glucocorticoid Receptor Signaling

ICAM1, VCAM1
HMGB1 Signaling
ICAM1. VCAM1
Granulocyte Adhesion and Diapedesis
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Prostanoid Biosynthesis
Agranulocyte Adhesion and ICAM1, VCAM1
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Leukocyte Extravasation Signaling fit1. VoAML
IL-8 Signaling . vt
LPS/1L-1 Mediated Inhibition of RXR FABPS, SOD3
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Osteoarthritis Pathway jpriroQ. FRa4
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Glycolysis | M
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Arthritis
Inhibition of Matrix Metalloproteases M
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P) [ 10
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Figure 4-13. Pathway analysis in IPA of centenarians versus offspring /controls. The pathways are annotated by
the respective proteins included in cach. Circle radiiindicate the significance of the pathway enrichment p-value. Themost
significant pathway, acute phase signalling, was also the most significant pathway in the discovery phase. Additionally, the
pathways LXR/RXR and FXR/RXR activation, and complement and coagulation system were identified in both the
discovery and targeted data.

4.3.2.4.2 Literature studies

Previous studies of ageing and centenarianism are a valuable tool in determining if a
protein has been related to the normal process of ageing or if it is a potential marker of
longevity. The strategy to identify proteins potentially involved in explaining
centenarianism was composcd of reviewing the significantly different proteins from our
study but also the lack of significance in proteins that that have previously been described
to correlate with age. The goal of the literature review was to separate proteins normally
correlated with age (senescence ) from markers that could otherwise explain the healthy
agcing of centenarians. Figure 4-14 shows aschematic representation of how the proteins

from the targeted study were classified with the help of previous published studics.
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Difference in protein expression between
centenarians and control/offspring?

T
T T T
Yes I i I No
® L ® ® ®
(A) Previously (B) Previously (C) Not previously (D) Previously (E) Not previously
associated with associated with associated with associated with associated with
normal ageing centenarianism normal ageing normal ageing ageing
‘I=/ i ! No new
! | information
Does the expression v i 1
match literature? ! W
Mo Possible
Yes - -
. involvement in
\i, centenarianism
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associated with ~ ====-3 >
ageing but not
necessarily

cenfenarianism

Figure 4-14. Schematicillustration of the workflow used when reviewing literature.

In a systematic review published by Johnson et al in 2020 166 , a large number of
proteomic age studies were collated and the proteins most commonly reported to be
associated with age listed. The authors highlighted several proteins found to have age-
related levels in five or more studies, all detected in plasma and or serum ‘hereafter called
“Tier A” proteins ). None of the most significant proteins from our study are included in
thislist of repeatedly reported age-associated proteins. The authors also compiled a list of
proteins mentioned in two or more studies (called “Tier B” proteins ), from this list of
“lower-confidence” proteins, A2M, ADIPOQ, CST3, PTGDS, SERPINA3 and
SERPINF2 are reported to alter expression with age. BCHE, ITTH2, PKM, PRG4 and

VCAM?1 are not mentioned.

A large-scale protcomic study published in 2019 by Lehallier et al describes undulating
changesin the plasmaproteome overage 167 |. Comparing Lehallier’s study to the results
fromthis study, PTGDS, SERPINF2and VCAMiarealso foundin Lehallier’s study where
PTGDS demonstrated a drastic incrcase with age in the span 70 - 100 ycars and

SERPINF2 decreased from 20 to 100 years. VCAM1 did not change withage.

The proteins from our study were compared with ILehallier’s study and the review by
Johnson ct al. The proteins were also cross reviewed against other studics of ageing,
longevity and centenarianism found through PubMed or Google Scholar. After reviewing

literature, the proteins were classified as: (A possible link to centenarianism, (B)
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previously reported to correlate with normal ageing, and (C) no reported relationship

with ageing. This resulted in a complex and intricate weave of potential risks and

protective functions presented in Table 4-9.

Table 4-9. Literature compared with the significantly different proteins from the targeted study. Based on
& ) 5 )

previous reports from the literature, the proteins are classified as (A) possible link to centenarianism, (B) reported

correlation with normal ageing, or {C)not previously reported linked to ageing

Protein Literature references Classification
Significantly differentially expressed between centenarians and control/offspring

A2M (1) Not included in Lehallier’s study. Tier B protein in Johnson's review. A2M has been A, B
reported to decrease with age [168]. In this study, A2M is upregulated in the
centenarians.

ADIPOQ (1)  Variant of ADIPOQ significantly positively correlated with longevity in a study of A
centenarians [169]. Reported to protect against age-related diseases [170].

BCHE (|) Hydrolyses Ghrelin of which low levels are associated with less obesity and possibly B
longevity [171]. High levels of BCHE are linked to lower mortality risk [172]

C3 () Found to increase with age in a microarray study of young and aged individuals, and A, B
AD patients [173]

CST3 (1) Involved in intra-cellular degradation of APP-AB [174]. Lower levels of CST3 were B
found associated with longevity (and late onset AD) in a proteomic study [175].

FABP5 (1) No changes in Lehallier or Johnson's studies. No compelling evidence from literature A, C
to support that FABP5 changes with age

ICAM1 (1) No changes in Lehallier or Johnson’s studies. Reported to increase with age in an B
ageing study in rats [176]. Also reported to be upregulated in senescent cells [177].

ITIH2 (1) ITIH2 has been identified in ageing studies, downregulated with increasing age [178].

MASP2 (1) Tier B protein in Johnson’s review but not found in Lehallier’s study. Additional A, C
literature searches did not identify any results related to longevity or ageing.

PKM ({) Increased levels in older naked mole-rats compared to younger [179]. Otherwise, no A B
evidence found of associations with age.

PRG4 (|) Not significant in Lehallier's or Johnson’s publications. PRG4 has been found to A C
decrease with advancing age in tendons and cartilage in animal studies [180, 181]

PTGDS (1) Up with age (Lehallier). Changes with age, tier B, Johnson.

SAAT (1) No changes in Lehallier or Johnson's studies. No compelling evidence to support that A C
SAAT changes with age.

SERPINAT (1)  No changes in Lehallier’s study, but a tier B protein in Johnson's review. A, B

SERPINA3 (1)  No changes in Lehallier or Johnson’s studies. Upregulated with age in healthy controls A, C
in a study of prion disease [182]. Other studies have found no differences.

SERPINF2 (|)  Downregulated with age in Lehallier’s study and altered with age in Johnson's review B
(tier B). Upregulated in younger rats compared to older. Dietary intervention increased
levels [183]

SOD3 (1) No changes in Lehallier or Johnson’s studies. SOD3 is an antioxidant. No clear hits A, C
on ageing.

VCAM1 (1) Elevated levels are associated with ageing and have been linked to an increased B
inflammatory profile in endothelial brain cells [184]
No significant difference between centenarians and control/offspring

HPX Altering with age in Johnson’s review but not in Lehallier’s study. It was also found to A, B
alter in a proteomics longevity study in men [175].

APOE Alters with age in Johnson's review (fier B) but not in Lehallier’s study. In ageing men, B/C
APOE changed with age [175]. Associated with increased lifespan in some studies but
not others [185]

FGA Altered with age in both Johnson's review (tier A) and Lehallier’s study. It was also A B
found to significantly correlate with age in a large-scale proteomics study [186].

GRN Altered with age in both Johnson’s review and Lehallier’s study. A, B

HSPA1L Not found in Johnson’s review or Lehallier’s study. No compelling evidence to support C
an expression change with age.

HSPAS5 Not found in Johnson’s review or Lehallier’s study. Increased levels were found to be A B
associated with increased mortality in a study of longevity in men [175]

LMO7 Not included in Lehallier’s study and not found in Johnson's review. No compelling c
evidence to support an expression change with age.

PCGK1 Tier B protein in Johnson’s review and changes with age in Lehallier’s study. A, B
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Significantly differentially expressed between centenarians and control/offspring

PLD3 Tier B protein in Johnson's review and weakly correlated with age in Lehallier’s study. B/C
Variants are associated with AD, but no evidence that the protein is correlated with
age or longevity.

SERPING1 No changes in Lehallier or Johnson’s studies. No compelling evidence to support that C
SERPING1 changes with age from the literature.

TUBA4A Not found in Johnson's review or Lehallier’s study. No compelling evidence that the C
protein is correlated with ageing.

4.3.3  Summary and conclusions from the targeted validation phase

In the validation phasc, 13 proteins from the centenarian discovery phase were includedin
an assay together with other proteins from neurodegenerative studies and several pro-
and anti-inflammatory proteins from literature. The assay was applied to a cohort of
samples consisting of centenarians, offspring, and controls. Eight proteins identified in
the initial discovery study were confirmed and validated in the targeted study, these
proteins were A2M, ADIPOQ, CST3,PTGDS, PKM, SAA1and SERPINA1 Inaddition to
these proteins, 11 other proteins were significantly differentially expressed between the
groups, these were BCHE, C3, FABP3, ICAM1, ITIH2, MASP2, PRG4, SERPINA3,
SERPINF2, SOD3and VCAM1. No differences in protein expression could be discerned

between the controland offspring samples.

Although limited in interpretation possibilities due to the targeted nature of the study,
pathway analysis largely reflected the results from the discovery study, also demonstrating
that inflammatory pathways were affected. Literature reviews aided in classifying the
proteinsintothree groups: (i’ proteins withapossible link to centenarianism, (i) proteins
correlated with normal ageing, and (iii} proteins with no known link to ageing or
centenarianism. Based on these classifications and the observed protein expression, it was
concluded that the centenarians likely exhibited both protective and risk protein
characteristics. Several inflammatory proteins were upregulated in the centenarian
group, including FABP3, MASP2, SERPINA3 and SAA1. Also, VCAM1 and ICAM1, both
pro-inflammatory and indicators of oxidative stress. Interestingly, the central
complement protein C3 was downregulated in the centenarian group, thereby indicating
reduced complement responsc. The potent anti-inflammatory protcin ADIPOQ) was

moreover upregulated in the centenarians.

In conclusion, it was hypothesised that the centenarians exhibited a protein expression
both indicative of risk, likely due to being near the end of their lives, and of protective
mcchanisms which may have aided in keeping them healthy for such an extended amount

of time.
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4.4  DISCUSSION

The initial study performed in the discovery phase identified many proteins that differed
in expression between centenarians and controls, and pathway analysis demonstrated
that the centenarians had inflammatory pathways activated. From the discovery study, 13
proteins were selected for validation andadded toan explorative targeted assay whichalso
included targets from neurodegenerative disease discovery studies and known
inflammatory protcins from litcraturc. Eight of the 13 protcins were validated in a larger
targeted study, and ten additional proteins from the augmented assay were differentially

expressed in the centenarians.

The measured plasma proteins in the centenarians did show evidence of increased
inflammation compared to controls and offspring. However, a number of proteins
measured in the centenarians also show a pattern hypothesised to provide protective
functions compared to offspring and controls. The pattern of elevated levels of
inflammation corresponds with previous centenarian studies. Franceschi et al call this the
“paradox of the pro-inflammatory status of healthy centenarians” in their seminal paper on
inflammageing from 2000 187 There, thev describe increased levels of pro-
inflammatory agentsinhealthy ageing and centenarians and argue that individuals lacking
what they call “robust and anti-frail’ gene variants are more susceptible to age-related
discases. The authors suggest that inflammatory stimuli throughout life provide a
biological background which may increase the susceptibility to inflammatory, age-related
discases such as Alzheimer’s disease, diabetes and atherosclerosis, but that a lack of
protective gene expression is likely required for these conditions to develop. They further
rationalise that the inflammageing observed in centenarians may be a result of beneficial
effects of the immune response at younger age, turning detrimental at older age. Our
study may indicate that the higher levels of A2M, ADIPOQ and SOD3 provide protection
against inflammation and oxidative stress. The lower level of the central complement
cascade protein C3 observed in the centenarians may suggest inhibition of the
complement cascade. The lower levels of PKM in the centenarians may reflect more

efficient insulin-sensitivity.

Figure 4-15 shows a Venn diagram of the proteins divided into suggested protective and

risk groups and their association and influence on ageing.
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Figure 4-15. Classification of the significantly different proteins detected in the targeted study of centenarians.
The diagram is divided vertically into risk, protective and pleiotropic proteins. Horizontally, the diagram is divided into
(A ) proteins previously linked to centenarianismand longevity, (B profeins linked to normal ageingand (C ) proteins with
no prior known age assoctations. Vertically, the proteins are divided into protective and risk with the overlapping area in
between classified as pleiotropic. The overlapping area (i) represents no prior known age influence and a possible link to

proteins with no prior link to age. area iv represents pleiotropic proteins with a prior ling to ageing.

Risk protein expression. The proteins assigned to this group have been correlated with
normalageingin previous studies and are likely markers of increased mortality risk and or
being close to the end of life. Associated with increased risk of mortality are high levels of
SAALMASP2, VCAM1and ICAM1iandlow levels of SERPINF2 and BCHE. Theseareall
proteins indicative of inflammation. Serum Amyloid A1, SAA1, is a major acute phase
protein whose blood levels increase drastically with inflammation. SAA1has been shown
todisplace APOA1in HDL during acute phase response, thereby suppressing HDL's anti-
inflammatory properties 188 . It has also been demonstrated that SAA1 increases
reactive oxygen species [189 |. Some studies suggest that SAA1 may be pleiotropic, also
acting as an anti-inflammatory agent 190 |. Mannan Binding Lectin Serine Peptidase 2,
MASP2, is an initiator of the lectin pathway of the coagulation cascade where it binds to
sugar moieties on bacteria and pathogen particles to form the mannose-binding lectin
complex. Activation of the lectin pathway is believed to contributce to brain inflammation
as suggested in a study of traumatic brain injury 191 . Intercellular Adhesion Molecule 1,
ICAM1, and Vascular Cell Adhesion Molecule 1, VCAM1, are both endothelial adhesion
molccules. They canbe activated by eytokines, complement proteins and reactive oxygen
specices and inereasc in concentration with endothelial activation 192 . VCAM1is known

toincrease with age and hasbeen linked to inflammation in endothelial brain cells. A study
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showed that by transplanting blood from old mice to young, ageing was accelerated in the
young mice’s brains | 184 . Serpin Family I Member 2, SERPINF2, is a serine protease
inhibitor and a major inhibitor of plasmin, thereby regulating blood clotting [193 .
SERPINF2 has been reported to deercase with age in several studics, however a study of
rats demonstrated that SERPINEF2 levels increased with dietary intervention and
autophagy 183 . Butyrylcholinesterase, BCIE, isan csterasc involved in detoxification of
a number of compounds [194 . [Tigh levels of BCIIE arc linked to lower mortality risk

172 ] and low levels are associated with cardiovascular risk, mortality and systemic low-
gradc inflammation ' 195 . BCIIE morcover hydrolyses ghrelin, a hunger hormone. Low
levels of ghrelin are associated with less obesity and possibly longevity 171 and there are
even suggestions of using BCHLE gene therapy as obesity treatment 196 . Inessence, the
expression in this group of proteins indicates an overall increased state of inflammation,

consistent with Franceschi’s theory about inflammageing 197 .

Protcctive protein expression. The protein expression proposed to provide protection
against carly death and promote longevity consists of high levels of A2M, ADIPO(QQ and
SOD3 together with low levels of €3, PKM and ITIH2. These proteins have a
heterogeneous set of functions. Alpha-2-Macroglobulin, A2M, is a protease inhibitor that
canalso inhibit cytokines, thereby mediating inflammatory responses 198 . It was found
over-expressed in the longest-living rodent, the naked mole-rat, and is proposed as one of
the causes for its resistance to developing cancers [199]. A2M can decrease the
inflammatory response by “capturing” pro-inflammatory agents and has recently been
suggestedasatreatment to slow down osteoarthritis[ 200,201 |. Inhumans, A2M hasbeen
reported to decrease with age| 199, 202 | whereas our data show a 1.4-fold increase in the
centenarians. Adiponectin, ADIPOQ), (1.5-fold increase in the centenarians) has been
linked to longevity in several studies. Higher levels of ADIPOQ are beneficiary as it has
anti-inflammatory, anti-oxidising, anti-diabetic and anti-apoptopic propertics 203 and
protects against age-related discases 170 . Calorie restriction increases ADIPOQ) and
ADIPOQ-signalling further modulates the downstream AMPK and PPAR o pathways
204 . Supcroxide Dismutasce 3, SOD3, (1.5-fold increasc in the centenarians: is an
antioxidant cnzyme which catalyscs the breakdown of superoxide. It is reported to have
protective effects on various inflammatory diseases [ 205 . SOD3 was shown to influence
NF-xB activity in a mouse study, thereby reducing the production of pro-inflammatory
specics 206 . Complement C3¢1.2-fold decrcase in the centenarians ) is a central protein
in the inflammatory complement cascade. Although complement activation is part of the

innate immune system and aims to clear pathogens and regulate the inflammatory
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response, it is a response known to occasionally turn into a harmful promoter of
inflammation. This “friendly fire” isreported tobecome more pronounced with advanced
age 207]. Increased levels of complement have been associated with a number of
detrimental conditions such as cardiovascular and ncurodegencrative discases 208].
Down-regulated levels of C3 have been associated with increased lifespan and negatively
corrclated with metabolic syndrome and abdominal obesity 209 7. Pyruvate Kinasce M,
PIKM, (1.2-fold deercase) is an enzyme that regulates the terminal step in glycolysis,
transforming glucose to pyruvate and yielding one ATP. PKM is also involved in
gluconcogenesis, the process of providing tissucs with glucosc in a fasting state [210].
Interestingly, recent research shows that PKM can initiate an alternative route to insulin
secretion from R-cells by locally increasing the ATP/ADP ratio in an oscillating manner,
thus providing the energy required for insulin secretion 211 A study of rats subjected to
hyperglycaemic stress showed that the rats with type 11 diabetes exhibited higher levels of
PKM compared to controls| 212]. Another rat study examined the expression of PKM in
response to a simple and a complex carbohydrate dict. The researchers found that PKM

was significantly lower in the rats being fed complex carbohydrates | 213

. The proposed
protective mechanisms expressed in this group of proteins are heterogenous, however,
the common theme among them is anti-inflammatory properties. The upregulation of
A2Mand ADIPOQ) provides anti-inflammatory effects, while upregulation of SOD3 may
indicate resilience against oxidative stress. Low levels of complement C3 implies that the
complementresponseis notactivated. The downregulation of PKM may be anindication

of more efficient insulin-sensitivity.

Pleiotropic proteins. There are anumber of proteins who appear to be pleiotropic, such
as PTGDS and CST3, both markers of decreased kidney function but at the same time
suggested to protect against neurodegeneration. Cystatin C, CST3,(2-fold increase in the
centenarians) isacysteine protease inhibitor. It isamarker of kidney dysfunction and high
levels have been associated with increased risk of mortality [ 214 |. Curiously, CST3 is also
reported to have a neuroprotective role against AD and PD 215, Prostaglandin D2
Svnthase, PTGDS, (2-fold increase in the centenarians) is an inhibitor of platclet
aggregation but has also been reported to increase with decreased kidney function 216 .
PTGDS has also been suggested to enhance the anti-inflammatory function of astrocytes
together with the PD gene DJ-1 217 . Alpha-1-Antitrypsin, SERPINA3, (1.3-fold incrcase
in the centenarians ) is a positive acute phase protein, thus increasing with inflammation,
but has also been suggested to act as a mediator of amyloid-f clcarance in AD patients.

Protcoglycan 4,PRG4, (1.3-fold decrcasc in the centenarians ) isajoint-lubricating protcin.



The use of proteomic techniques to study healthy ageing and identify markers of longevity in centenarians

It has been proposed that PRG4 has a wider function and can bind to and effect
inflammation cell surface receptors, thereby regulating the inflammatory response 218 |.
Fatty Acid Binding Protcin 5, FABPS, (1.3-fold increascin the centenarians yislocated in the
cytosol and the plasma membranc | 219 ), it is a carricr for lipids and fatty acids within the
cell and is also involved in modulating inflammation 220 . It has been reported to
scavenge reactive lipids and was found upregulated in mice exposed to Western dict | 2211,

Curiously, FABP3 was found downrcgulated in adiposc tissuc of insulin resistant subjects

222, .

Non-significantly different proteins. The group of proteins previously described to
correlate with age, or to be associated with longevity, but not differentially expressed in
this study are HPX, APOL, FGA, GRN, HSPA5 and PGIK1. This group of proteins can
provide valuable information since the absence of expected change can give clues about
pathways that are not affected in the centenarians. Hemopexin, HPX, is an acute phase
reactant, increasing in response to inflammation. It also acts as an extracellular
antioxidant, binding heme and thereby protecting molecules from heme oxidation 223 .
Apolipoprotein E, APOE, has been studied with various outcomes in different ageing
studies. When the different APOLE alleles genotypes have been researched, an influence
on lifespan has been determined. The APOE €4 genotype is for example strongly
correlated with several detrimental conditions such as cardiovascular disease and
Alzheimer’s disease and therefore negatively correlated with extended lifespan, while the
£2/e3 genotype is associated with longevity [ 224 . We measured total APOE and found
no differences between the groups. Fibrinogen Alpha Chain, FGA, is a positive acute
phase reactant and an element of fibrin, one of the major components of blood clots. Low
FGAlevelsareassociated withrisk of bleeding due todecreased ability of clottingand high
levels are linked to risk of cardiovascular disease [ 225,226 . The lack of difference between
the groups suggests that blood clotting is not affected in the centenarians. Granulin
Precursor, GRN, is a pleiotropic protein. It is a regulator of lysosomal function and is
involvedinanti-inflammatory response where it canactasaninhibitor of cytokine release.
It has also been found excerting proinflammatory cffects in tvpe 11 diabetes patients and
obesc individuals where it corrclated with levels of CRP (227 . Mutations in GRN arc
moreover associated with frontotemporal lobe dementia. Heat Shock Protein Family A
/

Member 5(BiP ), HSPAs, isakey regulator of protein folding and quality controlin the ER

and caninitiatc thc unfolded proteinresponscin cases of ER stress 228 LTISPAgincreases
in response to IER stress and the lack of upregulation in the centenarians indicates that

there is no ongoing stress in the endoplasmic reticulum. Phosphoglycerate Kinase 1,
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PGK1, is an enzyme involved in catalysing the first ATP producing step in the glycolytic

pathway 229 .

In conclusion, we proposc that the results from this study indicate that the centenarians
have increased levels of inflammation and higher levels of several proteins normally
associated with age, but also a protein expression that we suggest acts protectively, mainly

by protecting against inflammation.

Study limitations. The greatest limitation we recognisc in this study is the absence of
suitable control samples. This is a problem hampering all studies of centenarianism and
there is no casy way of amending the shortfall. Not only is the control issue related to
comparing two groups who are at different ages, but also groups who have lived through
different times. The centenarians have been exposed to an environment which may ditter
greatly from that of a 60 year old control [230]. One possible strategy to identify
longevity-related proteins is to build regression models from control samples and predict
centenarians. We attempted this in section 4.3.2.3 but as we were unable to build robust
models from the training data, we could not explore this approach further. The reason for
the non-robust models is likely that the control group was not large enough and that the
majority of the samples were foundinarelatively narrow age range, therefore notallowing

for sufficient model training across the age range.
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bstract. There is a need for

specific biomarkers of PD - for

diagnosis, to follow the disease

progression and to monitor new

therapies as they are developed.
A mass spectrometric blood-based test would be
highly benceficial, as the sampling is relatively
non-invasive, compared to for instance lumbar
punctures, and because of the speed, accuracy,
and  cost-cfficiency  of  targeted mass
spectrometric - assays. Aiming to identify
biomarkers of Parkinsons disease, the first
phase of our study was dedicated to discovery
proteomics. Applying an optimised workflow to
identify the maximum number of proteins in
plasma and serum, two Parkinson’s discase
discovery cohorts were analysed by untargeted
LC-MS. The cohorts consisted of newly
diagnosed, treatment-naive PD patients and
controls, and of homozygous twins, discordant

for developing PD a few years after the time of

sampling. The analyses identified several
putative proteomic biomarkers and pathway
analysis  indicated  that  inflammatory
pathways were affected in the PD patients,
along with unfolded protein response and Wit
signalling. A selection of the identified target
proteins was added to an augmented targeted
mass spectrometric, MRM-based assay, also
including several pro- and anti-inflammatory
proteins from literature. The targeted assay

was applied to a larger cohort of newly
diagnosed PD  patients, iRBD patients,
controls, and a positive control group consisting
of non-PD neurological disorders. A total of 19
proteins  from the targeted assay were
differentially expressed between PD and
controls. Five of the proteins from the discovery
study were also differentially expressed in the
targeted study, this included the Wt signalling
protein Dickkopf 3 and the unfolded protein
response  protein  BiP.  Discriminant
multivariate  modelling by  OPLS-DA
demonstrated that the control and PD groups
could be differentiated  based on  the
multivariate protein expression. The targeted
data were further used to buwild machine
learning models, and prediction of the data
demonstrated  that it was possible to
discriminate Parkinson’s disease from control
with 100 accuracy based on the expression in
a panel of nine proteins.

Finally, the protein expression observed in the
largeted — analysis  pointed  towards  the
imvolvement — of  increased  complement,
increased unfolded protein response, and a
reduction in Wit B-catenin signalling in the
PD patients. We postulate that the observed
1.8-fold downregulation of Dickkopf3 inthe PD
patients may indicate that they have reduced
protection of dopaminergic neurons.
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Figure 5-1. Graphical abstract of thc blood-bascd discovery and validation biomarker study of Parkinson’s
disease presented in this chapter.

5.1 INTRODUCTION AND AIMS

Diagnosis of Parkinson’s disease has traditionally been determined clinically and based on
motor phenotype| 231 |. Evidence does however suggest that this diagnosis fails to capture
the complexity of the disorder since motor symptoms appear years after the discase
process has started and after approximately 607 of substantia nigra neurons have already
been lost. Morcover, non-motor symptoms often occur prior to the manifestation of
motor symptoms |232|. The accurate clinical identification of PD is consequently
challenging and a meta-analysis from 2016, examining 13 clinicopathological studies,
showed that no relevant improvement in the diagnostic accuracy had occurred over the
past 25 vears | 233 . Thercfore, identification of rcliable PD biomarkers, idcally capturing
the early stages of the disease and allowing for evaluation of disease progression, would be
extremely beneficial. There have been several efforts to find PD biomarkers, but no single
marker, or pancl of markers, has yet been discovered to reliably discriminate between PD

paticntsand healthy controls| 234-236 .
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Asdescribedin Chapter 1,blood-based biomarker discovery is challenging due to the high
concentration of house-keeping proteins such as albumin and immunoglobulins. These
protcins arc often of high molecular mass and consequently producc a large number of
tryptic peptides thereby making it difficult to deteet low- and medium-abundant protcins
by mass spectrometry. Adding to that, plasma and serum are not ideal biofluids for
studying discascs of the brain. The gold standard for examining neurological discascs is
cercbrospinal fluid where neural cclls seeret proteins into the extracellular matrix which
are then carried through the central nervous system by secreted cerebrospinal fluid 237,
238]. Blood and cercbrospinal fluid arc not in dircct contact but separated by the blood-
brain-barrier. The blood-brain-barrier allows for selective transfer of molecules through
different processes and some correlations between proteins in cerebrospinal fluid and
plasma have been identified 239, 240 . Due to the lesser invasiveness, case of sampling,
and accessibility, blood-based biomarkers of neurodegenerative disease are desired and
couldmorereadily be usedin clinical tests of neurodegeneration, thus making the effort of

exploring blood-based biomarkers of Parkinson’s discase worthwhile.

Extensive method development was performed in Chapter 3 to enable the detection of
low-and medium-abundant proteins inblood-based discovery proteomics, and further to
increase the number of identified proteins. In this chapter, the optimised method was
applied to two different discovery cohorts and several putative biomarkers of Parkinson’s
disease were developed into a targeted test which was applied to a new, larger cohort of

samples.

This chapter is dedicated to the search for new blood-based proteomic biomarkers of
Parkinson’s disease and goes through several stages, from the discovery phase -
identifying potential targets, to a validation study of the putative biomarkers in anew and
larger cohort of samples, and finally the development of a predictive panel of biomarkers

using machinelearning. The aims of the experiments performed in this chapter were to:

e In the discovery phase, identify putative blood-based proteomic biomarkers of
Parkinson’s discasc by mass spectrometry

e \alidate the targets from the discovery phase using a targeted, mass spectrometric
MR M-based proteomicassay, applied to a new and larger cohort of samples

¢ Identity additional differentially expressed pro-and anti-inflaimmatory protcins from
the literature

e Identity protcins, or a pancl of a proteins, capable of distinguishing between
Parkinson’s discasc and control
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5.2 DISCOVERY PROTEOMICS IN PARKINSON’S
DISEASE PLASMA AND SERUM TO IDENTIFY
PUTATIVE PROTEOMIC BIOMARKERS

In the discovery phase of this study, the overall aim was to find blood-based biomarkers for
Parkinson’s discasc that could be developed into a targeted test. The optimised discovery
protcomics workflow described in Chapter 2 was applicd to two sample cohorts: onc
used to explore the pre-symptomatic protein expression in Parkinson’s disease, and one

toidentify putative biomarkers is newly diagnosed patients.
5.2.1 Materials and methods
5.2.1.1  Discovery sample cohorts

Two sample cohorts were analysed separately in the discovery phase; plasma from newly

diagnosed and PD patients and serum from homozygous twins discordant for PD.
5.2.1.1.1  Denovo Parkinson’s disease patients and controls

Samples from de novo Parkinson’s discase and controls were provided by Professor Brit
Mollenhauer, Universititsmedizin - Gottingen-Klinik  fiir - Neurologie, Gottingen
University, Germany. The samples were from the DeNoPa cohort and consisted of newly
diagnosed, treatment-naive PD patients and controls. The cohort has the potential to
show proteins and pathways implicated in the early stages of the disease but not yet
affected by symptom moditving treatment. The characteristics of the cohort are
presented in Table 5-1.

Table 5-1. Characteristics of the samples included in the proteomic screening of de novo Parkinson’s disease

and control individuals. TVe table shows the number of samples and percentages of males and females in each group.
Time since diagnosis and age are not known. Ni A =not available. SD = standard deviation.

Group Number of samples ~ Males/females  Years since PD onset + SD Age = SD
De novo PD 10 80% M | 20% F N/A N/A
Control 10 40% M | 60% F N/A N/A

5.2.1.1.2 Homozygous twins discordant for developing Parkinson’s disease

Parkinson’s disease discordant twin pair samples from the Swedish Twin Registry were
provided by the Karolinska Institute, Sweden, and consisted of serum from homozygous
twins. One of the twins developed PD after sampling and one did not. This study benefits
from having perfectly paired controls and has the potential to allow us to identify pre-
symptomatic markers of idiopathic PD and the influcnce of lifestyle. The characteristics

of the cohort are presented in Table 5-2.
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Table 5-2. Characteristics of the samples included in the proteomic screening of pre-Parkinson’s discase
discordant twins. The table shows the number of samples, percentages of males and females, munber of years before D
onset inthe pre-PD twins and average age in cachgroup

Group Number of samples Males/females  Years until PD onset + SD Age = SD
Pre-PD 9 33% M | 67%F 4.6 (£ 1.7) 64.8 (= 9.4)
Control 9 33% M | 67%F N/A 64.8 (= 9.4)

5.2.1.2 Sample preparation

The samples from both cohorts were prepared according to the workflow described in
detail in Chapter 2, scetion 2.3. In short, ten microlitres of plasma or serum were depleted
of the twelve most abundant protcins using Picree Topi2 columns, before freeze drying,
digestion and solid phase extraction. This allowed us to detect lower abundant proteins
andincreased the chances of identifying potential biomarkers and or discase mechanisms

for PD.
5.2.1.3  Instrumental analysis

All samples were analysed utilising a two-dimensional nano liquid chromatography
system coupled to a Waters Synapt G2-S7 time-of-flight mass spectrometer equipped
withionmobility separation. The samples were fractionated online into ten fractions and
detection, using a label-free proteomics approach, was performed in positive MS* mode.
The detailed parameters of the instrumental analysis are described in Chapter 2, section

2.

U

5.2.1.4 Data processing and analysis

The acquired data were analysed as described in Chapter 2, section 2.6. In summary, the
data were processed fraction-wise in Progenesis utilising the ion-accounting workflow.
The fractions were subsequently merged, and the data were quality controlled. Run order
drift was observedin the de novo PD dataset and LOWESS scaling was applied to correct

it. Post LOWESS scaling, no run order drift was observed.

5.2.2 Results from the study of de novo PD patients and controls

Utilising the optimised plasma proteomics workflow, a total of 1238 proteins were
identified and quantified in the study of newly diagnosed PD patients and controls. Of
these, 696 proteins had an identification confidence scorc above 15 and were represented

by two or more uniquc peptides.
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5.2.2.1  Univariate analysis

A total of 47 protcins were found differentially expressed between de novo PD patients
and controls on a nominal significance level of 957 using Student’s t-test. Out of thesc,
35 proteins had two or more unique peptides and a confidence score larger than 15. The
significance and direction of change are presented ina Volcano plot ( Figure 5-2 ) and show
that the numbcer of protcins significantly up- or downregulated in the de novo PD and

control groups arc similar.
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Figure 5-2. Volcano plot of all data from the discovery protcomics of de novo IPD and control samplcs. The
horizontal axis shows log, of the average fold change and the vertical axis shows -log.o of the p-values. The significantly
different proteins are annotated by gene name. m significantly different, = not significantly different.

Ducto the skewed gender distributionin the sample set, an additional significance test was
performed using males only. In this test, 63 proteins were significantly different between
de novo PD patients and controls, 21 of which were also significant in the full dataset. Out
of the significant proteins foundin males, 52 were represented by at least two peptidesand
had an identification confidence score greater than 15, Figure 5-3 shows a Volcano plot of

these results.
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Figure 5-3. Volcano plot of male samples only from the discovery protcomics of de novo P and control. The
horizontal axis shows log, of the average fold change and the vertical axis shows -log.o of the p-values. The significantly
different proteins are annotated by gene name. m significantly different, m not significantly different.

Adetailed inspection of the similar and differentially expressed proteins discoveredin the
two comparisons, all data, and males only, demonstrated that all the proteins shared the
same trend in direction of fold change regardless of being significant or not

(Supplementary figure1).
5.2.2.2 Multivariate analysis

A principal component analysis was performed to assess the data quality and to examine
if any major trends or patterns could be detected in the data. The PCA did not detect any
outlier samples and no run order drift post LOWESS scaling, therefore the data quality
was deemed satisfactory. No clear separation could be observed between the de novo PD
and control groups or between males and females. An OPLS-DA model of de novo PD
versus control was constructed to assess if any discriminating protein expression could be
discerned between the groups but proved non-significant (ANOVA p  0.59). Due to the
skewed sex distribution in the discovery set, an additional OPL.S-DA model with males
only was constructed, and this modcl also proved non-significant (ANOVA p=0.26 . The
lack of significance in the discriminant modelsimplics that there is not cnough covariation

in the protein expression in the two groups to separate them from cach other.
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In conclusion, multivariate analysis demonstrated that no large-scale differences induced

by the instrumental analysis could be detected thus indicating that the data quality was

satisfactory and that any disease-related changes in protein expression are likely subtle.

5.2.2.3 Pathway analysis of the significant proteins in the de novo PD study

Pathway analysis of the discovery proteomics results from the de novo PD study showed

scveral pathways related to inflammation enriched in the newly diagnosed PD patients

(complement system, acute phase response signalling, prothrombin activation pathway and

agranulocyte adhesion ), when viewing all the data as well as the males separately (Figure

54). Tt also showed enrichment of protein folding pathways (ER stress pathway and

unfolded protein response). Below, brief descriptions of the inflammatory and protein

folding pathways are provided.

Complement System (M) 1

Acute Phase Response Signaling (M) {

Complement System (A) 1

Glucocorticoid Receptor Signaling (M) {

Endoplasmic Reticulum Stress Pathway (M) 4
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Agranulocyte Adhesion and Diapedesis (M)
Intrinsic Prothrombin Activation Pathway (A) 1
LXR/RXR Activation (M) {

FXR/RXR Activation (M)

Acute Phase Response Signaling (A) 1

Thyroid Hormone Biosynthesis (M)
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Figure 5-4. Significantly enriched pathways in the de novo PD and control discovery protcomics study of all
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data, and m males only. Each pathway is annotated by the respective proteins included. Circle radii indicate the
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Inflammation related pathways. The complement system demonstrated the highestlevel
of significanccinboth comparisons. The complement systemis part of theinnatc immunc
system and activates inflaimmation. Acute phase response signalling refers to a rapid
inflammatory response which can be triggered by microorganisms, trauma, or
immunological disordcrs. It results in an incrcase of pro-inflammatory compounds such
as cytokines and can additionally activate the complement system (1571, Agranulocyte
adhesion and diapedesis describes an inflammatory response to infection or injury and
includes the process of certain molecules adhering to the surface of the endothelium 157
Finally, the extrinsic prothrombin activation pathway is part of the coagulation cascade,
serving to repair broken vessels via the production of thrombin which is needed for the

conversion of fibrinogen to fibrin

157 . The pathway analysis therefore indicates that

these inflammation-and clotting-related pathways may be dysregulated in the PD group.

Protcin folding pathways. The endoplasmic reticulum manages the synthesis and
folding of membrane and secretory proteins, ensuring that only correctly folded proteins
exit the ER. The endoplasmic reticulum stress pathway describes the response of the cell
under stressed ER conditions when handling extensive amounts of mis- or unfolded
proteins| 157 ]. Unfolded protein response describesarange of ER functions toalleviate stress
induced by excessive handling of mis- or unfolded proteins. However, under extreme ER

stress, the unfolded protein response can stimulate apoptosis 157 |. Therefore, our results

indicate that thereis asignificant change in the correct folding or function of the ER in the

PDgroup.
5.2.3  Results from the PD discordant twins study

.2.3.1  Univariate analysis

wn

In the analysis of serum from PD discordant twin pairs, a total of 1141 proteins were
detected and identified using the optimised workflow described in Chapter 2. Out of
these proteins, 594 had a confidence score > 15 and were represented by two or more
unique peptides per protein. The pre-PD and control twin pairs were compared using
paired t-tests, which demonstrated that twelve proteins were differentially expressed
utilising a nominal significance of 957 as threshold. These proteins were: PRG4, DKK3,
Ci50rf62, SPP2, BCHE, TNNT3, CSF1R, MMP3, PTGDS, CDH1, ITTH2 and NCAM1.

Figure 5-5 shows the fold change within each twin pair for the significant proteins.
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Figure 5-5. Fold changes in each pre-PD;control twin pair for the twelve significantly different proteins. Positive
values denotethat the pre-PD twin demonstrated higher levels of a protein while negative values show that the pre-PD twin

had lower levels of a protein.
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5.2.3.2 Correlation between MS measured proteins and clinical data

A large amount of questionnaire clinical data had been collected for the twin pairs. The
clinical variables consisted of alcohol dosage ( ALC_DOSE ), hypertension (11T, yesorno ,
diabetes (yes or no), body mass index (BMI), apolipoprotein A1 (APOA1), haecmoglobin
(HGB), glucose (GLU ), total cholesterol (CHOLTOT ), high density lipoprotein (HDL ),
low density lipoprotcin (LDL, triglycerides (' TRIG) and C reactive protein (CRP). A
correlation matrix (Figure 5-6  was constructed from the provided clinical variables, the
significantly different proteins, the PDrelated proteins PARK7and BST1,and APOA1and

CRP measured by MS for comparison with clinically measured APOA1and CRP.

The correlation analysis demonstrated that age was positively correlated with diabetes
and the expression of TNN'T3and PTGDS. Males were negatively correlated with higher
levels of HDL and the expression of CSF1R and BST1, and positively correlated with
higher levels of LDL and the expression of NCAM1. The pre-PD individuals were
negatively correlated with the expression of PTGDS and positively correlated with the
expression of DKIC3 and I'TIH2. Alcohol dosage was positively correlated with HGB-
levels. Hypertension was positively correlated with BMI. Diabetes was positively
correlated with GLU and the expression of SPP2, TNNT3 and NCAM1. BMI was
positively correlated with the expression of PRG4 and BCHE. Clinically measured
APOA1-levels were positively correlated with HDI. and MS-measured APOA1, and
negatively correlated with the expression of NCAM1. HGB was negatively correlated
with CRP and CSF1R and positively correlated with total cholesterol and LDL. Glucose
was positively correlated with SPP2. Total cholesterol was negatively correlated with
CSF1R and positively correlated with LDIL and triglycerides. HDIL was negatively
correlated with BCHE. LDL was negatively correlated with CSF1R and positively
correlated with triglycerides. Triglycerides were positively correlated with BCHE.
Clinical CRP was positively correlated with MS-measured CRP and negatively

correlated with SPP2.
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5.2.3.3  Multivariate analysis

Principal component analysis was performed for quality control assessment and to
investigate if any major patterns were present in the data. No correlation with
instrumental drift or run order could be detected, thus indicating that the data was of
sufficient quality. The PCA demonstrated that no clear pattern could be discerned
between pre-PD and controls. When investigating the distribution of the twin pairs, the
principal components PC3 and PC4 clearly demonstrated that the twin pairs clustered
closely together (apart from two pairs) as shown in Figurce 5-7. This suggests that the
protein expression within each twin pairis highly conserved. Pairs1and 9 deviate from the
clustering pattern and interrogation of the clinical data revealed that the twins in pair 1
were males and pair 9 were females; pair 1 was the oldest twin pair (81 years at sampling )
and pair 9 was the youngest (49 years at time of sampling), both twins in pair 1 had

diabetes. In both pairs, PD was diagnosed 6 vears before sampling, a timescale similar to
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the other twin pairs. PD-onset at the age of 43 for the pre-PD twin in pair 9 may indicate a

genctic component.

Pair #1

@
-, OPair#1|M|81Y , @
T | OQPair#2 | F | 73Y .

Pair #3 | M | 72 Y b Pair #9

1 O pair#4 | M| 6aY Early onset PD
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"1 Orair #6 | M| 62Y @
| Orair#7 | M| 61Y

1 Qpair #8 | M | 58 Y
| OPair #9 |F | 49Y
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U3

Figure 5-7. Principal component score scatter plot (PC4 vs PC3) of the proteomic results from the PD
discordant twin study shows that the twin pairs group together, except for pair 1and pair 9. Te legend describes
if the twin pairs were males or females and their ages.

The PCA model of the proteomic results also demonstrated that there was a difference
between males and females. To investigate this further, a discriminant OPLS-DA model of
males versus females was created. The model was significant (ANOVA p = 0.005,
permutations p < 0.05) and showed that a number of proteins were influential for the

difference between males and females (Figure 5-8).
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Figure 5-8. OPLS-DA loadings (pq1]) from a model of males versus females showing the most influential
proteins. The proteins coloured in green were higher in males and the proteins inved were higher in females.

The influence of age was evaluated in an OPLS model with age as the dependent variable
Y. The model was significant (ANOVA p  0.007, permutations p < 0.05) and
demonstrated that the expression of a number of histone protceins were related to older

age (Figurc5-9).
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An OPLS-DA model of pre-PD versus controls was created but proved non-significant,
likely due to the highly similar protein expression within each pair. To maximise the
separation between the twins, the pairs were centred around the average protein value,
meaning that the twins had the same absolute value but were positive or negative
depending onif the control or pre-PD twin had a higher initial value. An OPLS-DA model
was constructed from the centred data but also proved non-significant. Although not
enough covariance could be found between the proteins to build a significant model, the
model’s loadings do show which proteins are more strongly correlated with cach group

(Figure510).
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Figure 5-10. OPLS-DA loadings {pq 1 from centred pre-PD and control pair analysis showing the 20 most
influential proteins for each group. The proteins in green are positively correlated with controls and the proteins inred
are positively correlated with pre-PD. The proteins annotated with a * were significant in the univariate paired
significancetest.
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5.2.3.4 Pathway analysis of the results from the PD twin study

The significantly differentially expressed proteins between pre-PD and controls were
included in a pathway analysis. Given the small number of significantly different protcins,
the interpretability of the pathway analysis was limited and no z-scores indicating
activation or deactivation were obtained for any of the pathways. The analysis did
however demonstrate that ncuroinflammation was onc of the significant pathways.
Pathways related to Wit signalling and inflammation were also detected. The significant

pathways arc shown in Figure 5-11.

Role of Osteoblasts, Osteoclasts and
Chondrocytes in Rheumatoid Arthritis MMP3, DKK3, CSF1R

Bladder Cancer Signaling MMP3, CDH1
Wnt/B-catenin Signaling DKK3, CDH1
Prostanoid Biosynthesis PTGDS,
Osteoarthritis Pathway MMP3, PRG4
Colorectal Cancer Metastasis Signaling MMP3, CDH1
Neuroinflammation Signaling Pathway MMP3, CSF1R
Role of Macrophages, Fibroblasts and
Endothelial Cells in Rheumatoid MMF3, DKK3
Arthritis
Inhibition of Matrix Metalloproteases MMP3
Oncostatin M Signaling MMP3
Thyroid Cancer Signaling CDH1

Melanoma Signaling
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Remodeling of Epithelial Adherens COH1
Junctions

Endometrial Cancer Signaling
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Figure 5-11. Pathway analysis results of the discovery protcomics of pre-PD and control twins. The pathways are
annotated by the respective proteins included in each. Circle radii indicate the significance of the pathway enrichment p-
value.

Neuroinflammation signalling pathway. Two of the significant proteins were part of
the neuroinflammation signalling pathway { MMP3 and CSF1R ), which had a p-value of
0.01 and indicate inflammation as a risk factor, even prior to PD onset. The
neuroinflammation signalling pathway describes a range of inflammatory functions
working to maintain the homeostasis of the central nervous system, clearing damaged
tissue and targeting threats. However, the protective system can start producing an
uncontrolled responsc leading to the destruction of healthy tissuc and a state of chronic
inflammation which eventually leads to necrosis of neurons and glial cells [ 157 |. The role
of MMP3 in the pathway is putative activation of NF-»B in microglia which can lead to
production of proinflammatory proteins. CSF1R can be activated by 11.34 and lead to

microglial production | 2411.

Wit B-catenin signalling pathway. Two of the significant protcins were identified in

the Wnt/f3-catenin signalling pathway { DKIK3 and CDI 1), with a p-value of 0.0035. Wnt
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proteinsare involved in many different and complexaspects of cellular development, such
as cell differentiation and proliferation. The Wnt/ 3 -catenin signalling pathway involves
thelow-density lipoprotcein receptor-related family as co-reeeptors of Wit ligands for the
3 -catenin-dependent signal transduction, allowing it to translocatc to the nucleus and

expedite the transeription of Wit target genes 157 .

Inflammatory pathways. The pathway Role of Osteoblasts, Osteoclasts and Chondrocytes
m Rheumatoid Arthritis describes the chronically inflammatory condition of the
autoimmune disease Rheumatoid Arthritis. There is no clear evidence for alink between
Rhcumatoid Arthritis and PD and it possible that the pathway cssentially signals

inflammation. The same may also be observed in the Osteoarthritis pathiay.

Cancer related pathways. Five cancer related pathways were found significant: bladder
cancer, colorectal cancer metastasis, thyroid cancer, melanoma and endometrial cancer
signalling. All cancer related pathways include CDH1and in two of the cases also MMP3.
CDHiuisindeed associated with hereditary cancer where a pathogenic variant of the gene
is known to increase the risk 2427 CDH1 is also important for epithelial integrity and
involvedin Wnt signalling where it forms a complex with 3-cateninand can modulate the
pathway 243 . MMP3 is associated with cancer metastasis and tumour growth [244 .
However, MMP3 has also been implicated in neurodegenerative disease through the
activation of microglia | 245 |. Morcover, it is suggested to contribute to dopaminergic
neuronal death mediated through oxidative stress [ 246 | and to have the capability of

disrupting the blood-brain barrier under certain conditions 247 .

In summary, the number of statistically different proteins in the comparison of pre-PD
and control twins was relatively low, thus limiting the power and validity of pathway
analysis. There are nonetheless interesting proteins differentially expressed between the
compared groups, especially DKIK3, CSF1IR and MMP3 due to their association with
neurodegencrative diseases. DKIC3, Dickkopf-related protein 3, is a glycoprotein
belonging to the Dickkopt family, modulators of the Wit signalling pathway. DKIC3 has
been seen downregulated in many cancer studies and was recently proposed to have a
ncuroprotectiverole| 248 . Ithasbeenrelated to Alzhcimer’s discasc inscveral studicsand
furthermore its expression is proposed to positively correlate with increased age [ 249 |.
CSF1R, Colony Stimulating Factor Receptor 1,is a cytokine acting as a receptor for CSF1
and L34, promoting the rclease of pro-inflammatory chemokines. CSF1R has been
associated with Parkinson’s disease in gene studics 250 . CSF1R has also been suggested

to climinate microglia, possibly lcading to loss of dopaminergic ncurons 2511,
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5.2.4  Conclusions from the discovery studies of newly diagnosed PD
patients and pre-onset PD patients

Scveral proteins were detected in the two discovery studics, many with differential
expression between de novo PD /pre-PD and control. The results of the sereening studics
show thatanumber of interesting proteins in the circulation were up- or down-regulated
in the serum/plasma of individuals at risk or paticnts recently diagnosed with Parkinson’s

disease.

Throughout the data sets, the presence of proteins associated with inflammation is
reoccurring. In the pre-symptomatic PD discordant twins, neuroinflaimmation was
indicated to be upregulated and in the de novo PD dataset the complement system was
indicated to be activated. The complement system is part of the body’s innate immune
system and can be activated through three different pathways, all resulting in the
formation of a membranc attack complex (MAC), inserting itself in the cell membranes
and causing them to lyse. Studies have showed that inhibition of MAC after traumatic
brain injury reduced neuronal damage and microglial activation 252, 253]. MAC is
neurotoxic 254 and it is possible that the complement cascade may be involved in
initiating the vicious cycle of microglial activation and production of reactive oxygen
species suggested to occur in Parkinson’s disease. A study from 2018 showed that
complement activation is involved in the triggering of neuroinflammation and that
complement-mediated neuroinflammation is associated with degeneration observed in

traumatic brain injury

255 . Pathway analysis also implicated the involvement of protein
misfolding in PD, thus another potential discase mechanism viaactivation of the unfolded
protein response and subsequently neuroinflammation. Unfortunately, our data is not
able to distinguish if endoplasmic reticulum stress is the driver of the suggested

neuroinflammation observed in the data or vice-versa.

Overall, several promising proteins were identified as potential biomarkers and put
forward for development into a targeted assay and validation in a larger set of patient
samples, these proteins were: ANXAL GOLM1L TISPAS,NRP1, UTIRF1BP1L, SERPINA3,
PRGy4, DKK3, Cisort62, SPP2, BCLHE, TNNT3, CSF1R, MMP3, PTGDS, ITII12 and
NCAML
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5.3 TARGETED PLASMA PROTEOMICS TO VALIDATE
THE PROTEINS IDENTIFIED IN THE DISCOVERY
PHASE AND TO IDENTIFY INFLAMMATORY

TARGETS FROM LITERATURE

In the targeted validation phase of this study, the putative biomarkers of Parkinson’s
discasc which weidentified in the discovery phasc were evaluated ina new and larger sct
of samples. The aim was to confirm the discovery findings, and to evaluate if several pro-
and anti-inflammatory proteins from the literature were differentially expressed. The
samples analysed in the targeted validation study consisted of newly diagnosed PD
patients, controls, patients with neurological non-PD disorders as a positive control
group, and finally patients with rapid eye movement sleep disorder - a condition often

preceding the development of Parkinson’s disease.
5.3.1 Materials and methods
5.3.1.1  Sample cohort

The validation study consisted of plasma samples collected and provided by
Universititsmedizin Gottingen-IKlinik fiir Neurologie, Gottingen University, Germany.
The samples were from newly diagnosed Parkinson’s patients, patients suffering from
rapid eye movement sleep disturbance disorder (iRBD), controls and a heterogencous
group of non-Parkinson’s discase but other neurological disorders (OND ). The control
and de novo PD samples were utilised to verify the findings from the discovery study. The
other neurological diseases were included to assess the specificity of the peptides. The
iRBD samples were evaluated for potential prediction of the iRBD patients who would
converge to develop Parkinson’s disease. A total of 211 samples were included in the
targeted validation study. Table 5-3 shows the characteristics of the validation samples and
Figure 5-12 shows a histogram of the age distribution in the groups.

Table 5-3. Characteristics of the samples included in the targeted validation study of Parkinson’s discasc. The

table describes the number of samples in each group, percentages of males and females, the mean age and mean years of
symptom duration prior to diagnosis. SD - standard deviation.

Grovp “mes gD iy BNAla it
Control 50 63.9 (= 7.1) 54% M | 46% F

iRBD 20 66.9 (= 8.6) 55% M | 45% F 5.4 (= 4.1)

De novo PD 101 67.1 (= 10.6) 50% M | 50% F 2.3 (= 3.2)

OND 40 70.3 (= 8.8) 72% M | 28% F 2.2 (= 2.0)
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Figure 5-12. Age histogram showing the age distribution in the four different groups included in the targeted
Parkinson’s discasc validation study - de novo PD, iR BD, control and other neurological disorders.

5.3.1.2 Sample preparation for targeted proteomics

The samples were prepared for targeted proteomics according to Chapter 2, section 2.7.
Briefly, 10 L. plasma was spiked with 150 ng yeast ENO1 (whole protein) and depleted
from albumin and IgG using Pierce Top 2 columns. The samples were digested and solid
phase extracted. Pooled and acetone precipitated plasma were used as quality control
samples. Calibration curves were prepared by spiking increasing amounts of peptide

standards into blank and pooled samples.

5.3.1.3  Instrumental analysis

The settings and parameters for the instrumental analysis are described in detail in
Chapter 2, section 2.9. In short, the samples were reconstituted in 30 ul. 3% acetonitrile,
o7 trifluoroacetic acid, containing 0.1 uM of isotope labelled internal standards and 5 L.
wasinjected onto a UPLC system coupled to a triple quadrupole mass spectrometer. Two
injections were made per sample, each with a different MRM method. In total,

189 peptides were monitored.

5.3.1.4 Peak picking, integration, and data pre-treatment

After acquisition, peak picking was performed utilising an in-house software written in
Python or Targetlynx (Waters, UK . Peptide peaks were identified by blank and matrix
calibration curves. The integrated peak arcas were exported to Microsoft Excel where
first the ratio between quantifier and qualifier peak areas was evaluated to ensure that the
correct peaks had been integrated. The digestion efficiency was evaluated by monitoring
the presence of yeast ENOL1 in the samples, and the samples where veast ENO1 was not

detected were excluded from further analysis (16 samples out of which 12 controls, 2iR BD,
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and 2 PD), leaving a total of 195 samples in the final dataset. After the initial quality
assessment, the quantifier area was divided by the area of an internal standard (heavy
isotopc labclled peptides from the proteins ALDOA or GSTO1) to yicld a ratio used for
the determination of relative concentrations. Any compound that also showed an
intensity signal in the blank samples had the blank signal subtracted from the analyte peak
intensity. Pooled plasma quality control samples were additionally evaluated to assess the
robustness of the run. Run order drift was corrected by applying a LOWESS filter as per
Chapter 3, section 3.5.2. Outliers at more than 10 median absolute deviations were
removed and replaced by missing values as described in Chapter 3, section 3.53, the

outliersare presented in Supplementary table 4.

5.3.2  Results

The MRM-based proteomic assay could reliably detect peptides from 32 unique

endogenous proteins in the targeted sample set.

5.3.2.1  Multivariate analysis

Multivariate analysis was performed with two different objectives. Firstly, unsupervised
PCA analysis to assess the data quality and to look for major trends in the data. Secondly,
supervised OPLS and OPLS-DA analyses to determine relationships between the protein
expression and dependent variables such as age and sex, and to discriminate between the

sample groups.
5.3.2.1.1  Unsupervised Principal Component Analysis

For an overview of major patterns and groupings in the data, an unsupervised PCA was
created. No run order issues could be detected in the LOWESS corrected data, nor any
other instrumental or sample preparation bias. The analysis demonstrated that the
control and DNP groups differed from each other (Figure 513", The iRBD group was
situated in the middle of controls and DNP, and the OND group was distributed over the
whole space with no evident clustering. The corresponding loadings of PC1 and PC2
demonstrated that the control samples contained higher levels of PPP3CB, DKK3, SELE

and GRN, and lower levels of the majority of the other proteins.
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Figure 5-13. Principal component analysis of the outlicr corrected targeted protcomics de novo PD data
showingallgroups. (A ) principalcomponent 1171])and principal component 2 (1727, show a separation between denovo
PD and control. The iIRBD samples distribute between de novo PD and control while other neurological disorders mainly
cluster with control, indicating that some iRBD patients could be developing the early hallmarks of PD. (B) The
correspondingloadings (p/ 1] andp; 2 | demonstrate that de novo PD are correlated with lower levels of PPP3CB, DKIS3,
SELE and GRN. mdenovo PD,m control, = iRBD and = other neurological disorders

The OND and iRBD samples were excluded from the model to get a clearer view of the
proteinsresponsible for the difference between de novo PD and controls. The two groups
separated into two distinct clusters with DKIK3, LYAM2, PPP3CB and GRN being higher
inthe controls, and IC1, A2AP, TIPX, C3,and AACT higherin DNP (Figure 5-14).

17

6



177

CHAPTER 5

(A) )
| °
°
® ® o
o
®
® o
°
g
, ¢ @ ® ° L °® °
L [ ] ®
° 0o '
® ® . e® ¢
s ° °
= L
¢ q '~.o *° 5 o® %
0 o ® ‘~ ; ® : > o ° ‘ ® T s ®
® ® o 0% o % o o o
° P : * ] ° .
b LD ®
2 - & s o/® 8 o . P
. I
o o o
e ® L °
° ®
-
-6
-8 6 4 -2 [ 4 & & 10
LU
04
ok sa
(B) @ @AMz YT
@rrrscs. cur
@07k
@I
N @GR,
o @72 TEV
° @it n ®roLAL
camn il
@nrcE
o o o
o ] @TUBMA AV @urisons i
- @00 [ @PRGA_GFC
[ B¥ N
@
®F1605 4G
0
o @502 0nL
L v
0.1 A2
$: ®ic1
AMCTLYG @
A2AP HOME@
. @C3 TV
@0iPO0IFY PO
02 o o1 00 o 005 o 015 02 035 ¥

pli

Figure 5-14. Principal component analysis of de novo PD and controls. Scores (A} and loadings (B of PC1 and
PC2. The scores (1717 versus 2] show a clear separation between the groups and the loadings (pi17 versus p/2])
demonstrate that it is caused by higher DKK3, LYAM2, PPP3CBand GRN inthe controls and higher IC1, A2AP, HPX,
C3,and AACT indenovo PD. m denovo PD andm control

The PCA model was moreover evaluated for age and sex dependency with the proteins

and suggested that there was a non-random protein expression related to both variables.

5.3.2.1.2 Supervised OPLS and OPLS-DA

confounding effects of age and sex

models for cvaluating the

Investigating the age-protein expression dependency in detail, an OPLS model of all the
samples with age sct as the dependent variable Y was created. The model proved highly
significant with ANOVA p = 1.8 E™ and permutations p << 0.001. The modcl
demonstrated that higher expression of CST3, PTGDS, VCAM1, A2MG and SOD3 were

significantly positively correlated with older age ( Figure 5-15).
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and SOD3 are significantly positively correlated with older age.

The protein expression difference between males and females was further explored inan
OPLS-DA model. Also this model was highly significant with ANOVA p -~ 6 E'7 and
permutations p << 0.001. The model demonstrated that SPP2, ADIPOQ, SOD3, APOE,
I'TTH2 and PKM were significantly higher in females compared to males (Figure 516 ).
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Figure 5-16. Loadings (pq[1]; from the predictive component of the discriminant OPLS-DA model of males
versus females in all samples. The proteins in red are higher in females and the proteins in green are higher in males.
SPP2, ADIPOQ, SOD3, APOE, I'TII2 and PKM were significantly higher in females compared to males.

The analyses demonstrated that both age and gender were significantly correlated with

the expression of the measured proteins. Asaresult, it was determined that these factors

178



179

CHAPTER 5

needed to be adjusted for, to ensure they did not have an impact on the discrimination

between de novo PDand control, before progressing with further analyscs.

Age and sex correction. Utilising multiple lincar regression according to the
methodology described in Chapter 3, section 3.5.4, the data were modelled with proteins
set as dependent variables and sex and age as independent variables. The residuals (the
part of the data not related to age and sex) were extracted and utilised in the subsequent

modcls.

After age and sex correction, new supervised models were created. As previously, OPLS
was utilised to determine the influence of age and OPLS-DA to determine discrimination
between males and females. Both models were non-significant, thereby demonstrating

that the correction was successful in removing age and sex dependency in the variables.
5.3.2.1.3 Supervised OPLS-DA to discriminate between PD and controls

Satisfied that confounding cffects had been corrected for,an OPLS-DA model comparing
controls and de novo PD was created from the age and sex corrected data (Figure 5-17 ).
Model validation showed that the model was highly significant with ANOVA-p -2 E*%and
permutations p << 0.001. This indicates a high degree of covariation in the expression of
the proteins in the two separate groups. The discriminating expression between de novo
PD and controls was higher levels of GRN, DKK3, PPP3B and LYAM2 in controls, and
higher levels of HPX, A2AP, C3, AACT, IC1, SPP2 and HSPAS in de novo PD.
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Figure 5-17. () Scores, t'1] versus tof 17, and | B : loadings, pq 17, from the discriminant OPLS-DA model of de
novo PD versus control after age and sex correction. The model could separate the groups on a significant level. The
proteins in the loading plot coloured in green are higher in the control group, while the proteins coloured in red are higher

in the de novo PD group. Higher levels of GRN, DKK3, PPP3B and LYAM2 are found in controls, and higher levels of

HPX, A2AP, C3, AACT, IC1, SPP2 and HSPAS in de novo PD. = de novo PD and m control.

The age and sex corrected OPLS-DA model of de novo PD versus control was compared
toanidenticalmodelbased on thenon-corrected datainaSUS plot (Figure 5-18 ). The SUS
plot demonstrated that the relationship between the two modcls was lincar and that they
were indeed noticcably similar. This significs that the protein expression related to

discrimination between de novo PD and control is largely unaffected by age and sex.
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Figure 5-18. Sharcd and unique structures plot of the age and sex corrected OPLS-DA model versus the original
OPLS-DAmodclofdenovo PD versuscontrol. p/corr i representsthe scaled predictive loadings. No major difference
can be seen betiween the teo models, signifying that the protein expression discriminating between de novo 1D and control
largely is unaffected by age and sex.

5.3.2.1.4 Prediction of iRBD and OND samples in the OPLS-DA model of de
novo PD and controls

To evaluate the specificity of the model and if the protein expression from the targeted
experiment would allow for prediction of theiRBD samples more likely to develop PD, the
OND and iRBD samples were predicted in the OPLS-DA model of de novo PD and
controls (Figure 5-19 ). The OND prediction resulted in 5272 of the samples classified as de
novo PD and 487 as control, thus suggesting that the OPLS-DA model has a level of
specificity for Parkinson’s discase. The iRBD prediction resulted in 947 of the samples
classified as de novo PD, thereby indicating that the variance of the most influential
proteins in the OPLS-DA model is largely shared between the de novo PD and iRBD

patients.
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Figurc 5-19. Prediction of OND and iRBD in the OPLS-DA model of de novo PD versus control. The
classification of the OND samples resulted in 527 predicted ad de novo PD and 48% as control. The iRBD classification
resulted in 94 predicted as denovo PD. m denovo PD, m control, m iRBD (predicted) and v other neurological disorders
‘predicted). tPS[1] denotes the predictive component of the prediction, and 1oPS{1] the first orthogonal principal
component of the prediction.

5.3.2.1.5 Conclusions from the multivariate analysis

Multivariate analysis demonstrated that the protein expression was strongly influenced
by age and sex. After adjusting for these covariates, the data were modelled by OPLS-DA,
discriminatingbetween de novo PDand controls,and produceda highly significant model
that demonstrated that the de novo PD patients differed from controls by expressing
lower levels of GRN, DKK3, PPP3CB and LYAM2, and higher levels of HPX, A2AP, C3,
AACT,IC1, SPP2and HSPAS. Prediction of the iRBD and OND groups in the PD-control
model resultedin 947 of the iRBD samples and 5272 of the OND samples predicted as PD.

5.3.2.2 Univariate analysis

For both the age and sex corrected data and the non-corrected data, the groups de novo
PD,iRBD and other neurological disorders were compared to control using Student’s t-
test. Applying Benjamini-Hochberg FDR multiple testing correction with alpha - 0.05,19
proteins were statistically different when comparing de novo PD and control in the age
and sex corrected data and 21 in the non-corrected data. In the iRBD versus control
comparison, five protcins were different in both the non-corrected and the age and sex
corrected data. Comparing OND versus control, seven proteins were differentially
expressedin the age and sex corrected data and eight in the non-corrected data. The FDR-

adjusted p-values for the different comparisons are presented in Table 5-4.
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Table 5-4. Summary of FDR-adjusted p-values from the comparison of de novo PD (DNP), iRBD and other
neurological disordersversus control. Thetable show results from age and sex corrected andnon-corrected data, where
D <0.000L 7 p<0.00L ¥ p<0.0L *p<0.05and NSp > 0.05

Age and sex corrected data Non-corrected data
FDR adjusted p-value FDR adjusted p-value
Control vs Control vs Control vs Control vs Control vs Control vs
DNP iRBD OND DNP iRBD OND

GRN . ook . Kok . .
DKK3 AEx NS NS HHxx NS NS
SERPINF2 ok * NS e * NS
c3 Kok * NS . * NS
HPX - NS NS N— NS *

PPP3CB HEx NS NS HHxx NS NS
SERPINA3 e * NS e * NS
SERPING1 AEx NS NS HHxx NS NS
E-selectin (SELE) Ak NS NS Hxx NS NS
HSPA5 . NS * stk NS *

A2M . NS NS stk NS .

SPP2 Ak NS NS ok NS NS
HSPA1L ok NS * o NS NS
ADIPOQ Ex NS NS xx NS NS
TUBA4A ok NS * * NS NS
PGK1 ** NS * * NS NS
PTGDS * NS NS o NS *

MASP2 * . NS * stk NS
PLD3 * NS * * NS *

FGA NS NS NS NS NS NS
CST3 NS NS * * NS aonx
VCAM1 NS NS NS * NS *

PRG4 NS NS NS NS NS NS
ITIH2 NS NS NS NS NS NS
SAA1 NS NS NS NS NS NS
FABP5 NS NS NS NS NS NS
APOE NS NS NS NS NS NS
ICAM1 NS NS NS NS NS NS
LMO7 NS NS NS NS NS NS
BCHE NS NS NS NS NS NS
PKM NS NS NS NS NS NS
SOD3 NS NS NS NS NS NS

The age and sex corrected data were used for all further analyses and plots. Figure 5-20
shows scatter plots of the 19 significantly different proteins comparing de novo PD

patients and controls.
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IFigure 5-20. Significantly differentially expressed proteins in the comparisonbetween de novo PD patients and

control after FDR correction. The proteins are expressed as normalised abundance. The error bars represent the 95%

confidence interval. In total, 19 proteins demonstrated a significant difference between the two groups. The sample groups
arerepresented by m controls,and m denovo PD.

The five proteins significantly different between iRBD and control post p-value FDR-
correction are shown as scatter plots in Figure 5-21. All the proteins differentially
expressed in the iRBD patients were also differentially expressed in the de novo PD

paticnts.
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Figure 5-21. Significantly differentially expressed
proteins in the comparison between iRBD and
control after FDR correction. The proteins are
expressed as normalised abundance. The error bars
represent the 957 confidence interval. In total, five
proteins demonstrated a significant difference between the
two groups. The sample groups are represented by m
controls, and = iRBD.

The seven proteins significantly differentially expressed between the OND group and

control after p-value FDR-adjustment are shown in Figure 5-22. The OND proteins were

also differentially expressed in the de novo PD group apart from CST3, which was

uniquely found elevated in the OND group.
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Figure 5-22. Significantly differentially expressed proteins in the comparison between other neurological
disordersand control samplesafter FDR correction. The proteins are expressed asnormalised abundance. Theerror
bars represent the 95% confidence interval. In total, seven proteins demonstrated a significant difference between the two

groups. The sample groups arerepresented by m controls, and

otherneurological disorders.

5.3.2.3 Roles of the proteins showing differential expression in de novo PD

Many biomarker discovery experiments, functional assays and mouse models have been

studicd with the aim of understanding Parkinson’s discase pathology and to find
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predictive and diagnostic markers, therefore the scientific literature on the subject is
plentiful. Any previously established link with Parkinson’s disease andor
ncurodegencration was investigated by reviewing literature. The significantly different
protcins from our study were cross reviewed against other studics of Parkinson’s discasc
and neurodegenerative diseases using PubMed and Google Scholar and the findings are

presentedin Table 5-5.

Table 5-5. Description and reported PD links of the significantly different proteins between de novo PD

patients and healthy controls.

Protein

Description and reported links to Parkinson’s disease

Progranulin

(GRN)

Dickkopf 3
(DKK3)

Protein
Phosphatase 3
Catalytic Subunit
Beta (PPP3CB)

Complement 3

(C3)

Mannan binding
serine peptidase
2 (MASP2)

Alpha-1-
antichymotrypsin
(SERPINA3)

Alpha-2-
antiplasmin
(SERPINF2)

Plasma protease
C1 inhibitor
(SERPING1)

GRN was strongly downregulated in the de novo PD patients (p = 1.2E'®). It was moreover
downregulated in the iRBD patients (p = 2.0E) and in the OND group (p = 5.8E7).
Progranulin is the precursor of several granulins. It is suggested to act as a neurotrophic
factor, promoting neuronal survival. It is also suggested to modulate lysosomal function
together with granulin although the exact mechanism is not yet fully understood.
Pathogenic mutations in the GRN gene are known to cause frontotemporal dementia
[256]. Loss of progranulin has been linked to increased production of pro-inflammatory
species such as TNF and ILé in microglia. Moreover, a mouse study showed that G-
mice had elevated levels of complement proteins, including C3, before neurodegeneration
onset [257]. A study of GRN in neurodegenerative disease found it significantly
downregulated in PD patients [258].

DKK3 was strongly downregulated in the de novo PD patients (p = 5.5E"19). DKK3 is a
glycoprotein belonging to the Dickkopf family, the majority of which are antagonists of the
Whnt signalling pathway, although DKK3 is a modulator rather than an antagonist. DKK3
has been seen downregulated in many cancer studies and was recently proposed to have
a neuroprotective role [248]. It has been related to Alzheimer’s disease in several studies
and furthermore proposed to positively correlate with increased age [249]. Interestingly, a
mouse study found that DKK3 may protect dopaminergic neurons and proposed that DKK3
has potential as a pharmacological target for treatment of neurodegeneration [259].
Another study of mice and pluripotent stem cells showed that DKK3 is necessary for correct
differentiation and survival of dopaminergic neurons [260)].

PPP3CB, also known as calcineurin A2, was strongly downregulated in the de novo PD
patients (p = 1.7E7). It makes part of the calcineurin complex and is also component of
the Wnt/Ca?* pathway [261, 262]. PPP3CB was identified as a risk gene for AD in
microarray studies in the early 2000s [263]. Calcineurin has been proposed to increase in
response fo accumulation of alpha-synuclein and to trigger both protective and toxic
responses to maintain neuronal Ca?* homeostasis [264].

C3 was upregulated in the de novo PD patients (p = 1.7E%) and in the iRBD patients (p =
3.1E%). C3 is a central protein in the complement cascade, it is formed regardless of the
initiating pathway branch. Complement activation has been linked to neurodegeneration
in several studies.

MASP2 was downregulated in the de novo PD patients (p = 1.9E) and in the iRBD patients
(p = 1.4E%). MASP2 is an initiator of the lectin part of the complement cascade where it
recognises certain sugar moieties on pathogens. MASP2 is moreover involved in the
coagulation cascade, able to cleave prothrombin to thrombin.

SERPINA3 was upregulated in the de novo PD patients (p = 4.5E”) and in the iRBD patients
(p = 3.3E?). SERPINA3’s major target is cathepsin G although it can also inhibit other
serine profeases. SERPINA3 has been associated with AD and proposed to mediate
amyloid-beta clearance [265]. SERPINA3 was also found upregulated in studies of prion
diseases and progressive MS [266, 267].

SERPINF2 was upregulated in the de novo PD patients (p = 1.7E) and in the iRBD patients
(3.1E?). SERPINF2 is a major regulator of the clotting pathway where it acts as an inhibitor
of plasmin. SERPINF2 was upregulated in a recent proteomics study of platelet activation
in AD patients [268]. Moreover, plasmin has been reported to cleave and degrade
extracellular and aggregated alpha-synuclein [269].

SERPING1 was upregulated in the de novo PD patients (p = 7.6E®). SERPING1 is a
modulator of the complement cascade where it inhibits C1r and Cls in the classical
pathway and MASP1 and MASP2 in the lectin pathway. A recent study of medically PD
induced mice demonstrated that there was an association between increased levels of
SERPING1 and dopaminergic cell death in the substantia nigra [270].
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Protein

Description and reported links to Parkinson’s disease

Hemopexin (HPX)

Alpha-2-
macroglobulin
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Heat shock 70
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Secreted
phosphoprotein 2
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Adiponectin
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Phosphoglycerate
kinase 1 (PGK1)

Tubulin alpha 4A
chain (TUBA4A)

HPX was upregulated in the de novo PD patients (p = 1.7E%). HPX is a glycoprotein with
extraordinary binding offinity for heme, transporting it from the plasma to the liver [271]
preventing the oxidative reactions of heme. Hemopexin is traditionally known as an anti-
inflammatory protein, however, a study from 2017 described that nitration can occur on
the second tyrosine (Tyr199) of the peptide YYCFQGNQFLR, thereby reducing its heme-
binding capability [272]. This is the same peptide sequence as was used to identify
Hemopexin in this experiment and it could be theorised that this is related to the observation
of elevated levels of Hemopexin in the disease groups. Additionally, a recent study found
that the neurotoxicity of haemoglobin increased with increased levels of hemopexin in
absence of haptoglobin [273].

A2M was upregulated in the de novo PD patients (p = 5.7E%). A2M is a protease inhibitor
and a cytokine transporter. It is associated with AD where it contributes to the degradation
of A-beta. A transcriptomics study found the gene significantly upregulated in PD patients
[274].

SELE was downregulated in the de novo PD patients (p = 1.7E%). SELE is an endothelial
cell adhesion molecule and plays a role in the interaction between leukocytes and the
endothelium. E-selectin is expressed by cytokines on inflamed endothelium surfaces [275].
It plays an important role in the recruitment of compounds to sites of inflammation [276].

HSPA5 was upregulated in the de novo PD patients (p = 2.1E) and in the OND group (p
= 1.8E?). HSPA5 a key regulator in protein folding and the degradation of misfolded
proteins [277]. Several neurodegenerative diseases exhibit protein misfolding as part of
the pathology, PD among them. When proteins fold incorrectly and/or aggregate, HSPAS
activates the unfolded protein response to alleviate endoplasmic reticulum stress [278].

HSPATL was upregulated in the de novo patients (p = 1.2E#) and in the OND group (p
= 1.8E?). Itis a heat shock protein involved in the quality control system of the cell. Among
its functions are folding and transport of newly synthesised polypeptides and re-folding or
destruction of misfolded proteins [279, 280]. In a publication from 2005, overexpression
of HSPATL was suggested to reduce neurodegenerative symptoms in Parkinson’s disease,
Huntington’s chorea and spinocerebellar ataxia [281].

SPP2 was upregulated in the de novo PD patients (p = 8.8E). SPP2 is associated with
Gerstmann-Straussler disease, a rare inherited prion disease [282]. A study of kidney
function associated SPP2 with biomarkers of bone and mineral disease, and also found an
inverse relationship with Wnt antagonists [283].

ADIPOQ was upregulated in the de novo PD patients (p = 1.5E*). ADIPOQ has been
linked to longevity in several studies. Higher levels of ADIPOQ are beneficiary as it is has
anti-inflammatory, anti-oxidising, anti-diabetic and anti-apoptopic properties [203] and
protects against age-related diseases [170]. Calorie restriction increases ADIPOQ and
ADIPOQ signalling further modulates the downstream AMPK and PPARa pathways [204].

PGK1 was upregulated in the de novo PD patients (p = 1.2E%) and in the OND group (p
= 3.7E%). PGK1 is an enzyme involved in the first ATP producing step of the glycolytic
pathway [229]. Intriguingly, PGK1 was recently proposed as a drug target to slow down
the progression of Parkinson’s disease via the repurposing of the drug Terazosin which
traditionally has been used to treat enlarged prostates. The drug is suggested to attenuate
PGK1 activity and increase glycolysis thereby increasing oxidative phosphorylation,
mitochondrial activity and ATP production and improving the parkinsonian phenotype
[284].

TUBA4A was upregulated in the de novo PD patients (p = 5.3E*) and in the OND group
(p = 3.7E?). TUBA4A is a major component of microtubules - core components in the
cytoskeleton of the cell. A number of posttranslational modifications can modulate the
tubulins’ properties and PTMs have been reported to be especially abundant in the
microtubules of neurons [285]. Mutations in the TUBA4A gene have been linked to
amyotrophic lateral sclerosis and frontotemporal dementia. A case study from 2021 found
that there may be a link between a TUBA4A mutant and selective neuronal loss in the
substantia nigra [286].

5.3.2.4 Pathway and enrichment analysis

Given the targeted nature of the analysis and the limited number of proteins, the possible

output froma pathway analysis is limited. Still, it can provide valuable information about
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enrichment of biological processes and functions, and about the proteins’ interactions

with cach other.

The significantly differentially expressed proteins from the comparison of de novo PD
and control were analysed using DAVID Bioinformatics Resources 6.8 [ 287, 288]. The
analysis showed that the KEGG pathway Complement and coagulation cascades was
enriched (FDR p 3.8+, with the proteins C3, SERPINF2, SERPING1, MASP2 and
A2M included. Gene ontology analysis suggested that the biological processes Platelet
degranulation FDR p 15155 and Negative regulation of endopeptidase activity (FDRp - 1715
7) were enriched. The molecular functions Endopeptidase inhibitor activity (FDRp - 4815
4+, Serine-type endopeptidase inhibitor activity [FDR p —0.003 ) and Protein binding (FDR p -

0.005) were moreover suggested to be enriched.

The interactions between the significantly different proteins were explored in STRING

version 1.0 289 |. The resulting network ( Figure 5-23 ) showed that the proteins had a

significant number of known interactions and a protein-to-protein enrichment p-value of
1219, All proteins except PTGDS, PLD3, DKIX3 and PPP3CB were connected in the

interaction network.
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Figure 5-23. rotcin-to-protein interaction network from STRING. The enrichment p-value was 1.2E-9,
demonstrating that there is a significant number of known interactions between the proteins

5.3.2.5 Comparison of the results from the discovery and the targeted studies

Comparing the resultsfromthe discovery studies, where 17 protcins had been seleeted for
ralidation, to the targeted results, eight proteins were detected and five demonstrated a
significantly different expression. Diverging in expression between the two studics,
DKK3 was upregulated in the control twins in the discovery study but significantly
downregulated in de novo PD in the targeted study. PTGDS was downregulated in the

discovery pre-PD twins but upregulated in de novo PD. HSPA5, SERPINA3 and SPP2
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were upregulated in de novo PD/pre-PD in both the discovery and targeted studies. Nine
of the discovery proteins could not be reliably quantitated in the targeted assay. Table 5-6
summarises the comparison between the discovery and the targeted study.

Table 5-6. Comparison of results from the discovery studies of de novo PD and controls, and pre-PD and

control twin pairs with the results from the targeted study of de novo PD patients and controls. Eight of the
discovery proteins were defected in the targeted study and five demonstrated a significant difference beteeen de novo PD

and controls. ™ p < 0.000L *™*p<0.00L*p < 0.0L *p< 0.05,NS p> 0.05.
Discovered in  Gene Significance level Discovery Significance level
discovery (all/males only) highest in targeted study/highest
in
de novo PD ANXAT ) de novo PD Not detected
de novo PD GOLM1 NS /* de novo PD Not detected
de novo PD HSPA5 NS/ * de novo PD **** / de novo PD
de novo PD NRP1 e de novo PD Not detected
denovoPD  UHRFIBPIL A de novo PD Not detected
denovoPD  SERPINA3 e de novo PD **%*/ de novo PD
PD twins PRG4 o Control twin NS
PD twins DKK3 * Pre-PD twin ***+*/ Control
PD twins C150rf62 * Control twin Not detected
PD twins SPP2 * Pre-PD twin ****/ de novo PD
PD twins BCHE * Control twin NS
PD twins TNNT3 * Control twin Not detected
PD twins CSFIR * Control twin Not detected
PD twins MMP3 * Control twin Not detected
PD twins PTGDS . Control twin ***/ de novo PD
PD twins [TIH2 * Pre-PD twin NS
PD twins NCAM1 * Pre-PD twin Not detected

5.3.2.6  Prediction and machine learning models to classify samples as PD or
control

Artificial-intelligence and machine learning are increasingly used to model medical data,
for example utilising prior knowledge to predict future outcomes | 62 ). They are powerful
tools allowing for prediction and classification [61]. The multivariate OPLS-DA
classification performedin section 5.3.2.1.3 showed promisc in discriminatingbetween PD
paticnts and control subjects. Further exploring the prospect of discriminating between
the two groups, other machine learning modelling strategies were investigated and are

presented in this section.
5.3.2.6.1 Receiver operating characteristic curve analysis

To assess the classification ability of the individual proteins, a receiver operating
characteristic (ROC) curve was gencrated from the de novo PD and control samples

utilising the web based tool casyROC 290 |. A ROC curve plots the truc positive rate



True positive rate (sensitivity)
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(sensitivity ) versus false positive rate (1 - specificity) at varied threshold settings and

returns the area under the ROC curve (AUC . The area under the curve allows for
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an aggregated measure of a variable’s performance across the full range of possible
classification thresholds. Figure 524 shows the ROC curves of the significantly different
proteins when comparing de novo PD and control, split over two graphs for the proteins
upregulated in the de novo PD group and for the proteins downregulated in the de novo

PDgroup.
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Figure 5-24. Recciver operating characteristic curves of all significantly different proteins in the comparison
between de novo PD and control. On the left: the proteins upregulated in the de novo PD group, and on the right: The

proteins downregulated in the de novo PD group. The dashed diagonal lines represent an area under the curve of 0.5, a
value at which there is no discrimination and the samples would be randomly classified as belonging to either group.

Areasunder the curve were extracted to assess the classification ability of cach protein for
the control and de novo PD groups (Figure 5-25). The largest AUC among the proteins
upregulated in the de novo PD patients were AACT, C3, HPX and A2AP, while the
downregulated proteins with largest AUCs were GRN, DKIK3,and PPP3CB.
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Figure 5-25. Areaunder the (ROC) curve showing all detected proteins from the targeted analysis of de novo
PD and control. The green bars denote proteins upregulated in de novo D and the red bars denote proteins
downregulatedin de novo PD. The AUC valueis displayed above each bar.

5.3.2.6.2 A machine learning model can predict who belongs to the de novo PD
group and to the control group

Next, the data-modelling workflow developed in Chapter 3, section 3.5.5 was applied,
aimingto find the best model for discriminating between de novo PD patients and healthy

controls.

Cross-validation to assess the overall quality of the data for prediction. The
targeted proteomics de novo PD dataset was first filtered to only contain the de novo PD
and controlsamples, thus excluding the iRBD and OND samples. The de novo PD control
dataset was thereafter divided into five different groups (called “test sets”) for cross
validation (CV), each group containing a proportion of different PD and control samples,
using the function StratifiedKfold from Scikit Learn version 0.24.2 [292" with shuffled
values and fixed random state. The remaining samples, not added to the test set, are called
the “training set”. Figure 5-26 shows the sample distribution in each cross-validation
group, where it is demonstrated that in total across all five CV groups, all of the samples
from the de novo PD control datasct were included in a test sct and thus subjected to

cross-validation.
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de novo PD Control

CV #1
CV #2
CV #3
CV #4

CV #5

Figure5-26. Cross-validation iteration groups. Thedenovo PD and control samples are divided by the dashed vertical
line, with de novo PD samples to the left and control samples to the right. In cach of the five CV groups i'1 - 1/5, the samples
selected for the test set are coloured in green, while the remaining samples, the training set, are coloured in red. The test
samples from all five CV groups together make up the full set of samples.

The three different classifier algorithms linear discriminant analysis, support vector
machine and Ridge classifier, all from Scikit Learn, were applied to build models from the
training sets and predict the test sets for each cross-validation group/iteration. The model
scores were extracted and are presented in Table 5-7. Tt can be noted that all three models
performed exceedingly well in the cross-validation, with average scores of 1 or close to 1.
This demonstrated that both model fitting and prediction was satisfactory in the models,
regardless of which samples were picked for training and prediction.

Table 5-7. Cross-validation results. The table shows the results from five cross-validation iterations, using three

different models. The scores from the training data, and the prediction scores are presented for each model and iteration,
and also the total average scores. SD = standard deviation.

Linear discriminant analysis Support vector machine Ridge classifier

.CV . Training score Test score  Training score Test score Training score Test score
iteration

# 01 1.00 1.00 1.00 1.00 0.99 0.96
# 02 1.00 0.96 1.00 0.96 1.00 0.89
# 03 1.00 1.00 1.00 1.00 0.98 0.96
# 04 1.00 1.00 1.00 1.00 0.98 0.92
# 05 1.00 1.00 1.00 1.00 0.99 0.96

’ivg‘rgge 1.00 (= 0.0)  0.99 (+ 0.02) 1.00 (= 0.0)  0.99 (= 0.02) 0.99 (= 0.008) 0.94 (= 0.03)

Construction of models for predicting which samples belong to the de novo PD
and control groups. The de novo PD,control datasct was ancw split, this time into two
equally large parts, each containing the same portion of control and de novo PD samples,
using the function train-test split {Scikit Learn ). One set, the training set, was used for
building and training thec modcls, and the other, the test sct, for predictions. Given the
superior performance of the LDA and SVM models in the initial assessment, the focus was
on these. The most discriminating proteins, determined to be most apt for separating

between de novo PD patients and controls, were chosen using recursive feature
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elimination (RFECY, SciKit Learn) in the training set. Recursive feature elimination

sclected nine proteins for cach of the modcls. These proteins were:

e LDA:BCIIE, DKIK3, GRN, TTPX, ITSPA3, I'TIT T2, MASP2, SERPING1and SOD3
e SVM:C3,DKIK3, GRN,HSPAS, ICAM1, I'TTH2, MASP2, PGK1and SERPING1

Theimportance of the proteins for discriminating between the PD and control samples in
the SVM and LDA models are shown in Figure 5-27. The Ridge model’s coefficients are

presented in Supplementary figure 2.

GRN | aAn |
SERPING1 I SERPING1 {
DKK3 | HsPas |
HSPAS | mASP2 |
MASP2 | DKK3 l
PGK1 I SoD3 ,
c3 | MH2 l
Frlel HPX{
Ic:Amli BCHE{

00 02 0.4 06 08 10 12 0 i 2 3 i 5

SVM feature importance LDA feature importance

Figure 5-27. Selected features and feature importance of the LDA and SVM models. The relative size of the bar of
each protein shows how important it is to the model’s ability to separate between de novo PD and controls in the training
data. The SVM features are presented on the left and the LDA features on the right. In both models, GRN is selected as the
most important feature, followed by SERPING1.

Prediction of de novo PD paticnts and healthy controls. Having constructed models
based on the training data - the test set, which consisted of the remaining samples that had
not been used for model training and thus never seen by the machine learning models -
was predicted in the models. The prediction resulted in the following, remarkable,
outcome: in the LDA and SVM models 1007 of the samples were correctly predicted as
PD or control. In the Ridge classifier model, 977 of the samples were predicted correctly
as PD or control. In the Ridge modcl, two of the control samples were incorrectly
predicted in the PD group. The characteristics of the modcls are summarised below and
in Figure 5-28.

e LDA:1007 sensitivity, 1007 specificity, 10O accuracy

e SVM:1007 sensitivity, 1007 specificity, 1007 aceuracy

e Ridgce classificr: 887 sensitivity, 1007 specificity, 97 accuracy
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Predicted class RidgeC A
Predicted class SVM
Predicted class LDA

Actual class

Figure 5-28. Prediction results of control and de novo PD patients in discriminant LDA, SVM and Ridge
classifier models. In the Ridge classifier model, two of the control samples (circled in red) were incorrectly predicted as
PD. In the SVM and LDA models, all samples were predicted correctly as PD or control. The last row (labelled “Actual
class”) shows the actual classes of the samples. m predicted as control, and w predicted as PD.

It was concluded that all three models were applicable to the data and that they all

performed exceptionally well.

Specificity testing by prediction of iRBD and OND samples. To test the specificity of
the models, the iIRBD and OND samples were predicted in the three models. The iRBD
samples” outcomes are at the time of writing unknown, therefore we do not know which
individuals who will develop PD and could be used to test the models’ ability to predict a
pre-symptomatic PD state. For the model to show high specificity for Parkinson’s disease
compared to other neurological conditions, the OND samples would ideally not be
predicted as PD but as controls, since they consist of a heterogenous group of other
neurological disorders and not Parkinson’s discase. The prediction of the 42 OND
samples and 18 iRBD samples resulted in the numbers presented in Table 5-8. It is
demonstrated that all iRBD samples were consistently predicted in the PD group,
regardless of model. The OND samples were evenly predicted as PD or control in all
models: the LDA model predicted 507 of the samples as PD, SVM predicted 577 as PDand
Ridge classificr 527 as PD.

Table 5-8. Prediction of OND and iRBD samples in the discriminant control;PD lincar discriminant analysis
(LDA), support vector machine (SVM) and Ridge classificr modcls. Tz the LDA model, 50% of the samples were

predicted as PD, in the SVM model 57° as PD, and in the Ridge classifier model 5272 as PD. All iRBD samples were
predicted as PD inthe three models

Predicted classes OND Predicted classes iRBD
Parkinson’s disease Control  Parkinson’s disease Control
Linear discriminant analysis 21 (50%) 21 (50%) 18 (100%) 0
Support vector machine 24 (57%) 18 (43%) 18 (100%) 0

Ridge classifier 22 (52%) 20 (48%) 18 (100%) 0
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The proportion of OND samples predicted as PD suggests that the model is not
exclusively specific for Parkinson’s disease. The OND group was highly heterogeneous,
with1-3samples from cach non-PD neurological disorder, meaning it was not possible to
discern if any particular disorder overlapped with PD. It can be noted from Figure 5-29
that the prediction models classify largely the same samples as PD and control thereby

signifying that these samples share the same characteristics.

Predicted class RidgeC-

Predicted class SVM-

Predicted class LDA-

BE28588553222252323222822382820R08303525585 03 rC0CC00rE 2BEE

Figure 5-29. Individual results from the prediction of iRBD and OND samples in the diseriminant LDA, SVM
and Ridgc control/PD classificr modcls. AlliRBD samples are predicted as PD. In all models, the OND samples are
distributed evenly in their prediction as PD or control. The predicted class for the individual samples is largely conserved
between the three models. m predicted as control, = predicted as PD

5.3.3  Summary and conclusions from the targeted validation phase

Four sample groups were analysed utilising the targeted assay developed from discovery
proteins and inflammatory proteins from the literature: treatment-naive de novo PD
patients, patients withiRBD, controls and a group of non-PD neurological disorders. The
targeted assay included 189 proteins out of which 19 were differentially expressed
between de novo PD and control, five between iRBD and control, and seven between
ONDand control. Eight of the proteinsidentified in the discovery phase could be detected
in the targeted study due to low abundance or technical difficulties. Out of these proteins,
five demonstrated a significantly different expression between de novo PD patients and
controls. DKI{3 and PTGDS diverged in expression when comparing the discovery and
targeted studics. TISPA5, SERPINA3 and SPP2 were differentially expressed and
demonstrated a protein expression matching the one observed in the discovery study.
Literaturce studics highlighted that many of the proteins had links to PD andor
neurodegeneration and pathway analysis demonstrated that the complement and
coagulation cascades were enriched. The ten proteins demonstrating the largest changes
in thc dc novo PD patients were GRYN, DKK3, SERPINF2, C3, 11PX, PPP3CB,
SERPINA3, SERPINGT, SELE and HSPAS.
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The targeted validation study indicated involvement of the unfolded protein response,

complement mediated inflammation and Wit signalling in the PD pathology.
p g g p 2)

Amultivariatc OPLS-DA modcl could separate de novo PD patients from control samples
with high significance. Two machinc lcarning modcls demonstrated that it was possible to
classity samples as de novo PD or control with 1007 accuracy based on the expression of
BCHE, D3, GRN, HPX, HSPA3, SERPINGT, ITTH2, MASP2 and SOD3 in a linear
discriminantanalysis model,and of C3, DKK3, GRN, HSPAS, SERPING1,ICAM I TIT 2,
MASP2 and PGK1 in a support vector machine model. The models were tested for
specificity by predicting the OND group and demonstrated that they were not exclusively

specific for PD as roughly half of the OND samples were classified as PD.

Finally, we identified a panel of proteins which could distinguish Parkinson’s discase
patients from healthy controls perfectly. Although exceptionally promising, these results
need to be replicated in other studies to verify their validity. If the results would indeed
replicate, this panel of proteins could be used as a screening assay to find patients in the

carly stages of Parkinson’s discasc.

5.4 DISCUSSION

Treatment-naive de novo PD patients and pre-symptomatic PD discordant twin pairs
were investigated by explorative, bottom-up proteomics. The analyses resulted in a large
number of differentially expressed proteins, and demonstrated enrichment of
inflammatory pathways (neuroinflammation, complement and clotting cascades), Wnt

signallingand ER stress signalling.

Four sample groups were analysed utilising the targeted assay developed from discovery
proteins and inflammatory proteins from the literature: treatment-naive de novo PD
patients, patients with iRBD, controls and a group of non-PD neurological disorders. The
targetedassay included 127 proteins out of which 19 were differentially expressed between
de novo PD and control, five between iRBD and control, and seven between OND and
control. Literature studies highlighted that many of the proteins had links to PD and or
ncurodegencration and pathway analysis demonstrated that the complement and
coagulation cascades were enriched. The ten proteins demonstrating the largest changes
in the de novo PD patients were GRN, DKK3, SERPINF2, C3, HPX, PPP3CB,
SERPINA3,SERPINGT, SELE and HSPAS.
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Taken together, the observed protein expression in the de novo PD patients points
towards involvement of protein misfolding, inflammation and Wnt signalling. Protein
misfolding and inflammation arc well-known features of PD, but Wnt-signalling less so.
This particular pathway is of spccific interest as it involves the maintenance of
dopaminergic neurons and could allow for new insights into the disease mechanisms of

PDand suggest a direction for new treatments.

We proposc that upregulation of the proteins IISPAS and T1SP1L indicate that the ER-
associated degradation pathway and the unfolded protein response are activated. These
are ultimately mechanisms aimed at protecting cells from endoplasmic reticulum stress
and the grave consequences prolonged ER stress cause. Our study shows that the Wnt-
related proteins DKK3 and PPP3CB are strongly downregulated in de novo PD. The
downregulation suggests a disturbance of the Wnat signalling pathway. DKK3 is an
activator of the canonical Wnt/R-catenin branch and PPP3CB is a component of the non-
canonical Wnt/Ca?' signalling pathway. Wit signalling is crucial for the development and
maintenance of dopaminergic neurons 293 and it has been suggested that activation of
the pathway could provide an important protective role in preventing the loss of
dopaminergic neurons. Disturbance of the pathway may therefore disrupt one of the
important defence mechanisms 294] and aggravate the pathology. A number of
upregulated inflammatory proteins also suggest an increased level of inflammation in the
PD patients. The strong upregulation of the protein C3 suggests that the complement
cascade is activated. Augmented complement components have been linked to
neurodegeneration in several studies. Notably, it has been suggested that complement is
295

Moreover, the strong downregulation of GRN indicates loss of neuroprotection and

activated attempting to clear amvloid-beta plaques in Alzheimer’s discase

increased susceptibility to neuroinflammation. These mechanisms are discussed in detail
below and Figure 5-30 shows anillustration of the detrimental and protective mechanisms

suggested to be taking place based on the protein expressions observed in this study.
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Figure 5-30. Suggested involvement of the proteins from the targeted validation study in Parkinson’s disease.
It is suggested that the observed protein expression consists of protective and detrimental mechanisms. The upregulation
of proteins from the unfolded protein response (HSPAS and HSPAIL ) are suggested to attempt to alleviate the effects of
protein misfolding and ER stress, brought on by the oligomerisation of alpha-synuclein. SER PING1 may be upregulated
attempting to dampen the complement response. The increase in PGK1 could be an indication of attempls to increase
brain A'TP and protect neurons. Upregulation of the inflammatory proteins A2AP, C3, AACT, HPX and A2M may
indicate an overall increased inflammatory state. Downregulation of GRN indicated reduced neuroprotection and is
modulated by increased levels of C3. Downregulation of the Wt proteins DKK3 and PPP3CB may indicate that the
Wt signalling patheay is disrupted, thus reducing the protection of dopaminergic neurons.

Ncuroinflammation and complement. Neuroinflaimmation is involved in restoring
homeostasis in the central nervous system, but it is a mixed blessing as it can cause
detrimental damage if allowed to run uncontrolled. It is a feature in the pathology of
several neurodegenerative conditions, Parkinson’s discase included. There is an
cestablished link between  neuroinflammation and  complement.  Complement
components, receptors and regulators have been found in the central nervous system in
several studies and many proteins have been shown to increase in expression during
inflammation 296 . Augmented complement expression has also been linked to
neurodegeneration in several studies. Complement factors have been observed at
elevatedlevels with AD progression and it has been suggested that complement is initially
activated attempting to clear amyloid-beta plaques [ 295 | In an AD mousc study, it was
shown that C3 knockout was protective against synaptic loss 208]. Complement
activation has been associated with the formation of alpha-synuclein and Lewy bodies in
Parkinson’s discasc and a study from 2006 also found deposits of iC3b and C9 in Lewy
bodics [ 297 . C3is a central molccule in the complement cascade; it is formed regardless
of the initiating pathway (classical, alternative or lectin) and ultimately leads to the

formation of amembrane attack complex.
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ER stress and the unfolded protein response. The endoplasmic reticulum is
responsible for folding proteins into specific conformations, adding post translational
modifications and sorting exporting the proteins for their destination - scerction, the
plasma membrane, or other organelles. Incorrectly folded proteins detected by the ER’s
quality control enter the ER-associated degradation pathway (ERAD) and are sent to the
cytosol for protcasome degradation 298,299 . Under circumstances lcading to excessive
amounts of misfolded proteins accumulating in the IR, the organelle enters a condition
knownas ER stress. Prolonged periods of ER stress can have grave consequences and lcad
to the collapsc of a number of pathways 300 . Given the deleterious effects of unchecked
ER stress, there is a defence in place - the unfolded protein response. The UPR attempts
to restore homeostasis by reducing the influx of proteins to the ER and increasing the
protein folding capacity 301 . If the UPR is unable to reduce ER stress, apoptosis is
induced 302 . The UPR can be initiated through three different sensors, IRE1o, PERIX
and ATF6q, all activated by BiP-bound misfolded proteins | 303 |. Under non-stressed
conditions, BiP interacts with the UPR sensors but when unfolded proteins accumulate
in the ER, BiP will disassociate from the sensors and preferentially bind to the unfolded
proteinsinstead, thereby allowing the cell to determine the level of ER stress by evaluating

thelevels of sensor-bound BiP| 304 .

Protein misfolding is a well-known component of Parkinson’s discase pathology and
believed to be the kev-factor behind the oligomerisation and aggregation of alpha-
synuclein ultimately leading to the formation of Lewy bodies 305 ER stress has
furthermore been linked to Parkinson’s discase in a number of studies 306 . The higher
expression of BiP (IISPAS ) and HISPA1L in the DNP group does indeed point towards ER
stress in the Parkinson’s patients. The upregulation of BiP suggests activation of the UPR
and the upregulation of HSPA71, a part of the ERAD complex;, indicates that also this

pathway is activated.

Wit signalling and dopaminergic neurons. Wit signalling is a complex pathway,
critical for several aspects of cell development in embryonic and adult tissues | 307,308 .
In mice, knockout of the pathway, or of components in the pathway, led to embryonic
lethality or severely affected phenotypes [309]. Wnt signalling is divided into three
different branches; canonical Wnt/-catenin, and non-canonical Wnt/planar cell polarity
(PCP> and Wnt Ca*>" 310 . Wnt protcins arc conscquently divided into two umbrella
categories - Wntt for ligands of the canonical pathway and Whntsa for ligands of the non-
canonical pathways. Given the potency and significance of the pathway, Wnt signalling is

tightly controlled by scveral enhancers and inhibitors. The inhibitors arc scparated into
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two categories: secreted Frizzled-related proteins (sFRP) and Dickkopfs (DKIX ).
Generally speaking, sFRPs exert inhibition by binding to Wnt proteins and can inhibit
both the canonical and non-canonical pathways while DKKs can modulate the canonical
pathway by binding to a Wit receptor complex{ LRPS 6 . Inthe DKK class, DKIK1, DKK2
and DIKIK4 act as antagonists while DKK3 is an activator 311 . In the adult human brain,
Wt signalling governs a range of crucial functions, including ncuronal survival, synapsc
formation, ncurogenesis, and regencration. Adult neurogenesis is primarily governed by
canonical Wnt/B-catenin signalling and new neurons can be produced in two areas of the
brain, the subventricular zone and the subgranular zonc 312 . It has been suggested that
downregulation of Wnt signalling promotes dysfunction and or death of dopaminergic
neurons. Interestingly, restoration of dopaminergic neurons was shown ina mouse study
where B-catenin wasactivatedinsitu 313 . Moreover,inamouse study where neural stem
cells were transplanted to the substantia nigra of medically PD-induced mice, re-
314 |. The Wnt

signalling pathway may have the potential for restoring dopaminergic neurons’ function

expression of Wnt1 and repair of dopaminergic neurons could be seen

andit has been the focus of anumber of studiesin recent years

311 .

In our study, the canonical pathway activator DKK3 was observed to be strongly
downregulated in the DNP group. Also PPP3CB, a component of the non-canonical, B-
catenin independent Wnt/Ca?* signalling pathway was strongly downregulated. A
downregulation or disturbance of Wnt signalling would appear to be happening in the
DNP group, thereby removing animportant line of defence against the detrimentalloss of

dopaminergic neurons.

Study limitations. One limitation of this study was the sample size in the discovery
phase. However, due to the major complexity of plasma as a sample matrix, extensive
fractionation and highly sensitive analysis were required to detect the low-abundant
proteins, meaning that the sample size had to be limited to reduce the risk of irreparable
instrumental drift. One additional limitation was the skewed sex distribution in the
discovery de novo PD cohort. In the targeted analysis, the outcomes of the IRBD patients
arc still unknown, thercfore we could not cvaluate the accuracy of the predictive
biomarker pancls in their classifications of these samples. Morcover, as the positive OND
group was highly heterogeneous, we did not succeed in determining which other

neurodegenerative conditions were more likely to be confounded with PD.

Concluding remarks. After performing mass spectrometric protcomic studics in a

discovery phase of newly diagnosed PD patients and pre-symptomatic PD patients, we
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found several putative biomarker targets. We applied an augmented targeted proteomic
assay to samples from newly diagnosed PD patients, iRBD patients, other (non-PD)
ncurological disorders and controls and identified several differentially expressed
protcinsbetween the sample groups. The most interesting targets were the C3, DKK3 and
HSPAS. These proteins suggest involvement of complement, Wnt signalling and the
unfolded protcin response. The Wit signalling-related protein DKK3 is especially
intcresting as it may point towards downregulation of the Wit/ 3-catenin pathway, aso far
relatively unexplored area in PD studies. The pathway may offer further insights into the
mechanisms of the pathology and offer a route to develop new treatments. To our
knowledge, this is the first time a proteomic study of Parkinson’s discase finds DKIK3

expression significantly downregulated in patients.
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bstract. i this study, urine
was explored as a potential
source of proteomic biomarkers
for Parkinson’s disease. Given
its non-invasive and cffortless
collection, urine would be an ideal fluid for
diagnostic screening. Our previous work on
plasma from PD patients had showed
considerable promise and we hypothesised that
further targets could be discovered in urine.

In the discovery phase, a cohort consisting of

idiopathic PD patients (n - 9 ), symptomatic (n
= 6) and asymptomatic (n — 6) LRRK2
mutation carriers and healthy controls (n
10), were analysed by untargeted LC-MS
proteomics. More than 2500 proteins were
identified and several of the proteins expressed
differences  between the  groups. Pathway
analysis indicated that pathways related to PD
were affected, among them neuroinflammation
and PD signalling. A sclection of the proteins
identified inthe discovery study were developed
into a targeted test which also included several
pro- and  anti-inflammatory  proteins
identified from the literature.

The targeted assay was applied to a new and
larger set of samples (n — 211), consisting of
newly diagnosed PD patients, patients with
REM sleep behaviour disorder, a positive
control  group of patients with non-PD
newrological disorders, and healthy controls. A
total of 23 proteins were differentially expressed
between PD and healthy controls in the
targeted analysis. Four of the proteins from the
discovery phase were validated; these were
MAPK12, PPP3CB, CAPN2 and NDRG1.
DKK3 was confirmed to be differentially
expressed, although with a diverging protein
expression compared to the discovery study.
The protein expression observed in the targeted
assay pointed towards neuroinflammation and
Wit signalling. A discriminant - machine
learning model could differentiate between
newly diagnosed PD patients and healthy
controls with 85.1° accuracy using a pancl of
eight proteins.

In conclusion, we suggest that wrine is a
valuable biofluid for biomarker discovery and
for exploring disease mechanisms.
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Phase 1: DEEP PROTEOMIC PROFILING TO IDEMTIFY CANDIDATE BIOMARKERS OF PARKINSOMN'S DISEASE IN URINE

[N
ldiopathic PD s (iPD), @ﬁ .
healthy control
LRRKZ muta . P —_ — — s
and asymptomatic LRRKZ n'uﬂ:th_\n ; ,
can (A 2) A
carriers (AS LRRKZ) . g /
Z
Sample cohorts and Sample preparation Analysis using online nano-LC Data analysis and selection of
study design for according o opfimised fractionation and defection by putative biomarkers for
profeomic profiling discovery blood proteamics Untargefed MSE-IMS mass targeted validation
protocol spectrometry E—

Proteins identified
from literature and

Phase 2: TARGETED VALIDATIOMN OF PUTATIVE PARKINSOM’S DISEASE BIOMARKERS

other studies
m.3Em. _/
—— @l i v o=

e

Data analysis ond modelling  Torgeted analysis using UPLC for Sample preparafion Study design ond samples for the Development of a fargeted
using machine learning chromatagraphic separation and a according to optimisad targeted validation study, multiplexed MRM method to verify
Triple quadrupole mass targeted blood including PD, healthy controls,  putative proteins from the discovery
spectrometer for detection proteomics protecol iRBD patients and patients with phase and evaluate fargets from
other nevrologicol disorders literature

N

‘f
o = ﬁ
Verfication of four dentification of putative \dentification of @
biomarkers from the disease mechanisms? predictive protein panel
discovery phase using ight profeins

Figure 6-1. Graphical abstract of the urine-based discovery and validation biomarker study of Parkinson’s
disease presented in this chapter.

6.1 INTRODUCTION AND AIMS

Urine may not stand out as the obvious choice to study diseases of the brain. Anatomically,
the brain and urine are not closely related, and the blood-brain barrier and the kidneys
further provide filter barriers. For this reason, urine has been largely overlooked and there
have been few biomarker studies of neurodegenerative disease utilising urine [315 .
Urinary proteins originate from filtered blood, constituting roughly 307 of the proteins,

and from the kidneys and urinary tract, making up approximately 707

316, 317 |. This
means that markers discovered in blood may also be reflected in urine. Importantly, urine
is not hampered by the same complexity and dynamic protein range as blood, thereby
making it an attractive fluid for biomarker discovery. It has been demonstrated in several
studies thata vast number of proteins can be detected in urine| 318 |. Exemplifying this-in
our studies, we routinely detected approximately 1000 proteins in blood-based discovery

experiments, whereas we detected nearly three times as many in urine.

Following the encouraging results from the previous chapter, using plasma to identity
biomarkers of Parkinson’s disease and to study potential disease mechanisms, we

hypothesised that protcomic profiling of urine might also provide biomarker targets and
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further insights into the disease process in PD. Moreover, urine provides an attractive
biofluid choice because of its non-invasive sampling and abundant availability. It would

thus be ideal for diagnostic screening.

Extensive method development was performed to maximisc the number of detectable
proteins, described in Chapter 3, and the final and optimised workflow was applied to a
cohortof PD patients aiming to find urinary protein biomarkers. Targets were developed

into a targeted assay, also including pro- and anti-inflammatory proteins from literature.

This chapter describes the process of identifying protein targets relevant to Parkinson’s
disease in urine. It outlines the steps involved in the discovery phase - where protein
targets are identified, to the validation study in a new and larger set of samples, aiming to

verify the discovery results.
Theaims of the study performed in this chapter were the following:

e  Utilising mass spectrometry, identify putative proteomic biomarkers of Parkinson’s
discascinurine

e \alidate the targets from the discovery phase using a targeted, mass spectrometric
MRM-based proteomic assay, applied to anew and larger cohort of samples

¢ Identify additional differentially expressed pro-and anti-inflammatory proteins from
the literature

e Identify proteins, or a panel of a proteins, capable of distinguishing between
Parkinson’s disease and control

6.2 DISCOVERY PROTEOMICS TO IDENTIFY
URINARY MARKERS OF PARKINSON’S DISEASE

In the discovery phase of this study, we explored the feasibility of identifying biomarkers
of Parkinson’s disease in urine. The optimised discovery proteomics workflow for urine,
developed in Chapter 3, was applied to samples from idiopathic Parkinson’s patients,
controls, and LRRIK2 mutation carriers (a common cause for developing familial late-
onsct PD| 319 ). The overallaim was toidentify urinary protcomic biomarkers for PDand

to validatc thescinalarger set of samples.
6.2.1  Methods and materials
6.2.1.1  Discovery sample cohort

Urine samples for deep proteomic profiling and biomarker discovery were provided by
Professor Kailash Bhatia and had been collected from patients visiting the National

Hospital of Neurosurgery and Neurology. The samples consisted of idiopathic PD
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patients (iPD ), symptomatic LRRIK2 mutant carriers {LRRIK2 S ), asymptomatic LRRK2
mutant carriers (LRRK2 AS) and controls. The samples had been collected during
routine visits and not post-fasting. The characteristics of the samples are described in
Table 6-1.
Table 6-1. Characteristics of the urine samples analysed in the discovery proteomics study. The sample groups
include control, idiopathic PD patients (iPD), symptomatic LRR K2 mutant carriers (LRRK2 S ), asymptomatic LRRK2

mutant carriers ! LRRK2 AS) and controls. The distribution of males and females, the mean age and mean years of motor
disease duration are presented. SD = standard deviation.

Percentage

Group Number of samples males/femnales Age = SD Motor disease duration = SD
Control 10 50% M [ 50% F 698 (+ 10.7)

iPD 9 56% M | 44% F 68.3 (= 7.9) 11.7 (= 4.1)
LRRK2 AS 6 50% M | 50%F  66.8 (+ 10.2)

LRRK2 S 6 50% M | 50% F 65.7 (= 7.7) 19.0 (+ 7.6)

6.2.1.2 Sample preparation

The sample preparation worktlow is described in detail in Chapter 2, section 2.4. In
summary, two millilitres of urine were filtered to remove low-molecular weight
compounds and concentrate the proteins. The concentrated proteins were purified by
acetone precipitation and freeze-dried before tryptic digestion and subsequent solid
phase extraction. A colorimetric peptide assay was performed to determine the total
peptide concentration in each sample. Before instrumental analysis, the peptide

concentrations were normalised to 1000 ng L to allow for equal injection volumes.

6.2.1.3 Instrumental analysis

The instrumental discovery proteomics analysis was performed according to Chapter 2,
section 2.5. Inbrief, 3000 ng of peptides were loaded onto a two-dimensional nano liquid
chromatography system coupled to a Synapt-G2-Si mass spectrometer (Waters). The
peptides were fractionated online into ten fractions on the first column and thereafter
chromatographically separated on the second column. The mass spectrometer operated

in positive clectrospray ionisation mode with ion mobility scparation.
6.2.1.4 Data processing and analysis

Data processing was performed as per Chapter 2, section 2.6. In brief, the ten discovery
proteomics fractions were treated individually in the software Progenesis QI-P
(Nonlinear, Waters ;, where the mass spectrometric data were searched against a database
of the canonical human protcome. A false discovery rate of 47 was deemed aceeptable for

the identifications. At least two fragments per peptide, one peptide per protein and three
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fragments per protein were set as ion matching thresholds. The individual fractions were

merged in Progencsis to acquire the full protein expression in the samples.
6.2.2  Results

2640 proteins were detected and identified by at least one unique peptide. Out of these
proteins, 1464 were identified with two or more unique peptides and demonstrated a
confidence score above 15.

6.2.2.1 Multivariate analysis

The urine discovery data were modelled by PCA for an initial overview and quality
control. No apparent clusters of the sample groups could be distinguished as
demonstrated by Figure 6-2. The PCA did not demonstrate any run order issucs, nor any

major patterns of age or sex.
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Figure 6-2. PCA of theilD, LRRK2 mutation carriers and control urine discovery protcomics study. Principal
components 1and 2 (11 jversus ti 2 [ are shown. No apparent influence from instrumental drift, age, sex, or sample group
clusters could be found. The samples are coloured accordingto m control, = ASLRRK2,m S LRRK2, miPD.

To confirm that no bias had been introduced from the instrumental analysis, an OPLS
model with run order as the dependent variable Y was constructed. The model was
insignificant with ANOVA p > 0.05. An OPLS modcl with age sct as Y was created and
proved non-significant. An OPLS-DA model of males versus females was also non-

significant.
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As the data quality control concluded satisfactory, comparisons of the different sample
groups were performed utilising OPLS-DA. Neither of the OPLS-DA models were
significant, thus indicating that there was not sufficient covariation between the proteins

in the different sample groups to render multivariate class separation.
6.2.2.2 Univariate analysis

Usinganominal p-valuc threshold of 5% as cut off, the following numbers of proteins were

significant when comparing the different groups by Student’s t-test:

e 8sproteinsdiffering between iPD and control
e y9proteinsdifferingbetween AS LRRIK2 and control
e 25proteinsdifferingbetween S LRRIK2 and control

e 23proteinsdifferingbetween AS'S LRRIX2
The significance and the average fold change of the proteins identified by at least two
unique peptides and a with anidentification confidence score higher or equal to 15in each

comparison are demonstrated in the volcano plots in Figure 6-3 to Figure 6-6.
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Figure 6-3. Volcano plot of iPD and control samples from the urine discovery proteomics study. The proteins
with negative fold change (to the left in the plot ) were elevated in the control group and the proteins with positive fold change
(to the right inthe plot) in the IPD patients. The significantly different proteins at @ nominal p-value threshold of 5% are

denoted by their gene names. M significant, and W not significant.
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Figure 6-4. Volcano plot of symptomatic LRRK2 mutation carricrs and control samples from the urine

discovery proteomics study. e proteins with negative fold change :to the left in the plot ) were elevated in the control

group and the proteins with positive fold change (to the right in the plot) in the symptomatic LRRK2 mutation carriers.

The significantly different proteins at anominal p-value threshold of 7% are denoted by their gene names. Msignificant, and
not significant.
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Figure 6-5. Volcano plot of asymptomatic LRRK2 mutation carriers and control samples from the urine

discovery proteomics study. The proteins with negative fold change {to the left in the plot) were clevated in the control

group and the proteins with positive fold change ‘to the right in the plot ) in the asymptomatic LR RK2 mutation carriers.

The significantly different proteins atanominal p-value threshold of 57 are denoted by their gene names. Wsignificant, and
not significant.
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Figure 6-6. Volcano plot of symptomatic and asymptomatic LRRK2 mutation carriers from the urine
discovery proteomics study. The proteins with negative fold change (to the left in the plot) were elevated in the
asymptomatic LRREK2group andthe proteinswithpositive fold change (to the right inthe plot) inthe symptomatic LRRIK2
mutation carriers. The significantly different proteins at a nominal p-value threshold of 57 are denoted by their gene
names. Wsignificant, and W not significant.

The proteins differentially expressed in both iPD patients and symptomatic LRRIK2
mutant carriers when compared to controls were RARRES2, TISPAS, C1RL, SHBG,
ACE, BTBD3, LUM, ARFs, TRHDE, TNFRSF1A, MASP2, COL4A2 and INIP. Out of
these proteins, SHBG, LUM, MASP2, COL4A2 and INTP were differentially expressed

alsoin the asymptomatic LRRIK2 mutation group.

6.2.2.3 Pathway analysis

The proteins demonstrating a nominal significant difference between the groups at 957
confidence level from Student’s t-test were moved forward for pathway analysis using
Ingenuity Pathway Analysis (Qiagen ). In the comparison between iPD and control,
71 pathways were significant. Comparing symptomatic LRRK2 and control, 18 pathways
were significant and comparing asymptomatic LRRIS2 and control, 43 pathways were
significant. Figure 6-7 shows a selection of the significant pathways, based on significance
and relevance to PD, from the comparison of iPD and control. The complete table of
significantly cnriched pathways from the analysis of iPD versus controls is presented in

Supplementary table 5.
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Figure 6-7. Pathway analysis results of iPD versus control. The pathways are annotated by the respective proteins
included in each. Circle radii indicate the significance of the pathiway enrichment p-value, and z-scores denote a suggested
up- or downregulated pathway, where 3 > O indicates up regulation and = < 0 indicates downregulation. The pathways
where no up- or downregulation could be established lack z-score annotations. A sclection of the significantly enriched
pathiwaysis shown.

The pathways deemed most relevant to Parkinson’s disease are described in brief in Table
6-2. The table provides a summary of the pathways, enrichment p-values, and z-scores
which indicate if the pathways were predicted to be up- or downregulated. A z-score with
an absolute value larger than 2 was deemed significant to determine up- or
downregulation. In the cases where z-scores could not be established, IPA could not
predict adirection of regulation. This means that although a pathway may be significantly
enriched, the expression of the proteins cannot significantly determine its activation or

deactivation.

Table 6-2. Sclection of significantly enriched pathways from IPA in the comparison of iPD and control. A brief

description of the pathzways is provided, and enrichment p-values, and z-scores which signify if the pathway was predicted
to be up- or downregulated.

Pathway Pathway description
LXR/RXR and FXR/RXR  Six proteins were included in the LXR/RXR pathway which had an enrichment p-value of
activation 1.7E. The z-score was 1.6, thereby weakly suggesting upregulation of the pathway.

Six proteins were found in the FXR/RXR pathway, demonstrating an enrichment p-value
of 2E5  The LXR/RXR and FXR/RXR Activation pathways are involved in lipid
metabolism, inflammation, and the catabolic conversion of cholesterol to bile acids.
FXR plays an important role in the homeostasis of bile acids, lipoproteins, and lipids

[157].

14-3-3-mediated
Signalling

Five proteins overlapped with the 14-3-3-mediated signalling pathway, which
demonstrated an enrichment p-value of 3.0E*. 14-3-3 mediated signalling proteins
are proposed to provide neuroprotective functions by inhibiting apoptopic processes
and have been associated to Parkinson’s disease where they are suggested to interact
with alpha synuclein and LRRK2 [320].
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Pathway

Pathway description

Apoptosis Signalling

Axonal Guidance
Signalling

Acute Phase
Response Signalling

Sirtuin Signalling
Pathway

Parkinson's Signalling

Coagulation System

Complement System

nNOS Signalling in
Neurons

Amyloid Processing

Huntington's Disease
Signalling

PCP pathway

Chemokine
Signalling

Mitochondrial
Dysfunction

Neuroinflammation
Signalling Pathway

Four proteins were included in the apoptosis signalling pathway with an enrichment p-
value of 6.9E* and a z-score of 2.0, thus indicating upregulation. The apoptosis
signalling pathway is initiated by caspases (intrinsic or extrinsic) and trigger a cascade
of events ultimately leading to programmed cell death.

Eight proteins were identified in the axonal guidance signalling pathway, the
enrichment p-value was 8.7E*.The pathway describes the process of guiding axons
extended by neurons to form functional neural circuits [321].

Five proteins overlapped with the acute phase response signalling pathway which had
an enrichment p-value of 8E* and a z-score of 2.2, thereby indicating upregulation of
the pathway. The acute phase response is a rapid inflammatory response to protect
against microorganisms. It can also be triggered by tissue damage. Causes an increase
of inflammatory agents such as cytokines.

Six proteins were found in the sirtuin signalling pathway. The enrichment p-value was
1.7E3 and the z-score was -1.6, weakly suggesting downregulation of the pathway.
Sirtuin signalling has been proposed to increase longevity by delaying cellular
senescence [322].

Two proteins were identified in the Parkinson’s signalling pathway, MAPK12 and CYCS.
The enrichment p-value was 2.3E3. This pathway describes the known molecular
processes occurring in PD, including accumulation of alpha-synuclein, formation of
Lewy bodies and loss of dopaminergic neurons.

Two proteins overlapped with the coagulation pathway; the enrichment p-value was
1.1E2. The coagulation pathway consists of a series of events cascading into the
formation of blood clots in response to injury. The coagulation system contains a
number of proteins to regulate the formation and dissolving of clots.

Two proteins were included in the complement system pathway, the enrichment p-value
was 1.1E2. The complement pathway describes a cascade of events that can be
initiated via three different branches. The complement system can lyse foreign cells,
activate inflammation, mediate antibody response, and clear immune complexes and
apoptotic cells.

Two proteins overlapped with the nNOS signalling in neurons pathway, which had an
enrichment p-value of 1.8E2. This pathway is associated with neuronal apoptosis [323].

Two proteins were identified in the amyloid processing pathway, MAPK12 and CYCS,
the same proteins identified in the Parkinson’s signalling pathway. The enrichment p-
value was 2.1E2. The amyloid signalling pathway describes the processes occurring
upon accumulation of beta-amyloid including oxidative stress, membrane damage and
neuronal death.

Four proteins were found in the Huntington’s disease signalling pathway, EGF, HSPAS,
CYCS and CAPN2. The enrichment p-value was 2.5E2. The pathway describes the
known molecular processes occurring with Huntington’s disease, an autosomal,
dominant neurodegenerative disorder.

Two proteins were included in the PCP pathway, the enrichment p-value was 3.0E2.
The planar cell polarity pathway is one of three known Wnt signalling pathways. The
Whnt signalling pathways may have the potential of restoring dopaminergic neurons’
function and it has been the focus of a number of studies in recent years [311].

Two proteins were found in the chemokine signalling pathway. The enrichment p-value
was 3.7E2. Chemokines are part of the proinflammatory family of cytokines. This
pathway involves the recruitment of molecules to alleviate pathological processes [324]

Three proteins were identified in the mitochondrial dysfunction pathway with an
enrichment p-value of 3.8E2. Mitochondria are large consumers of oxygen in the cell.
Through different redox processes, oxygen is transformed to radical superoxide. To
avoid ROS damage to other cellular compartments, an efficient antioxidant system is
also in place. Mitochondrial dysfunction describes the state where the amount of ROS
is too great for the antioxidant system to handle. Mitochondrial dysfunction is a trait of,
among others, neurodegenerative diseases and diabetes.

Four proteins overlapped with the neuroinflammation signalling pathway, the
enrichment p-value was 4.7E2. This pathway includes the functions aimed at restoring
homeostasis in the central nervous system. While initiated as a protective response to
clear harmful agents and injured tissue, neuroinflammation can cause detrimental
damage if uncontrolled. It is associated with a number of neurodegenerative disorders,
including PD.
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In summary, the pathway analysis revealed that many pathways related to PD were
enriched;italso highlighted enrichment of inflammation-related pathways. The pathways
suggested to be upregulated in the PD patients, based on the protein expression in the PD
and control groups, were LXR/RXR activation, apoptosis signalling and acutc phasc
response signalling. Sirtuin signalling was indicated to be downregulated in the PD
paticnts. The other enriched pathways did not demonstrate a protein expression allowing

the software to conclude if they were up-or downregulated.

6.2.3  Summary and conclusions from the discovery study of Parkinson’s
disease in urine

Weidentified more than 2500 proteinsin urine utilising a carefully optimised workflow in
the discovery phase exploring potential urinary biomarkers for Parkinson’s disease. The
study demonstrated that several proteins were differentially expressed comparing the
disease groups to control. Pathway analysis highlighted that several pathways relevant to
PDwereenriched. Of note, Parkinson’s signalling and neuroinflammation signalling were
two of the identified pathways. The LXR/RXR pathway, apoptosis signalling, and the
acute phase response were suggested to be upregulated in the Parkinson’s patients. These
three pathways have inflammation as acommon denominator 325-327 . Sirtuin signalling
was predicted to be downregulated in the iPD patients. This pathway is associated with
increased longevity and has been suggested to have an anti-inflammatory role [ 328 |. In
conclusion, the discovery study of iPD patients and LRRK2 mutation carriers showed

great promise in utilising urine for biomarker identification.

Next, a selection of the identified targets was moved forward for targeted analysis and
validationinalargersetof samples. These proteins were: RANGAP1, TUBA4A, MAPK12,
APOE, FGA, HSPAS, PPP3CB, PLAL, COL4A2, THY1, CYCS, CTHRC1, ATIC,
CAPN2, DKK3, EFNA3, ENDOU, HBE1, MASP2, MUC5B,NDRG1, SOD3 and TOLLIP.
The selection was based on significance testing, quality of the protein identification,

literature reviews, and potential relevance to Parkinson’s discase.

S}

6.3 TARGETED URINE PROTEOMICS TO VALIDATE
THE PUTATIVE BIOMARKERS FROM THE
DISCOVERY PHASE AND TO IDENTIFY
INFLAMMATORY PROTEINS FROM LITERATURE

The discovery phase of this study identified several potential protein targets in urine.
Thesc proteins were included in a targeted assay, also containing a numbcer of pro- and

anti-inflammatory protcins from the literature. The assay was applied to anew and larger
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set of samples to validate the discovery findings and to identify new inflaimmatory targets.
The samplesin the validation phase consisted of urine from newly diagnosed PD patients,
controls, paticnts with ncurological non-PD disorders as a positive control group, and
finally paticnts with rapid cyc movement sleep disorder — a condition commonly

obscrved in patients ycars before developing Parkinson’s discasc.
6.3.1  Methods and materials
6.3.1.1  Targeted validation cohort

The validation cohort for targeted urine proteomics was provided by Professor Brit
Mollenhauer, Gottingen University, Germany. The samples belonged to the DeNoPa
cohort and were from newly diagnosed Parkinson’s patients, patients suffering from
idiopathic rapid eye movement sleep disturbance disorder (iRBD), controls and a
heterogencous group of non-Parkinson’s discase but other neurological disorders
(OND). The urine samples were collected from the same individuals as the PD plasma
validation cohort describedin Chapter 5,section 5.3.1. A total of 211 samples were provided
for the validation study. The control and de novo PD samples were utilised to verify and
confirm the findings from the discovery study. The other neurological discases were
included to assess the specificity of the putative biomarkers. The iRBD samples were
evaluated for potential prediction of the iRBD patients who have a high probability to go
on to develop Parkinson’s disease. The conversion rate of iRBD to neurodegenerative
synucleinopathies, including Parkinson’s discase, is roughly~807 according to literature
'93]. Table 6-3 shows the characteristics of the validation samples.

Table 6-3. Characteristics of the urine samples analysed by the targeted proteomics assay. The numbers of
samples, distribution of males and females, and the average age are listed for each of the sample groups in the cohort.

Group Number of Age = SD Percentages Symptom duration [Y]
samples males/females before diagnosis = SD

Control 50 63.9 (= 7.1) 54% M | 46% F

iRBD 20 66.9 (= 8.6) 55% M | 45% F 5.4 (+4.1)

De novo PD 101 67.1 (= 10.6) 50% M | 50% F 2.3 (= 3.2)

OND 40 70.3 (= 8.8) 72% M | 28% F 2.2 (= 2.0)

6.3.1.2  Sample preparation

6.3.1.2.1 Extraction of peptides

The sample preparation is deseribed in detail in Chapter 2, section 2.8, In summary, 4 mL
of urine was spiked with 150 ng yeast ENO1 {whole protcin ) and filtered to concentrate
the proteins and exclude low-molecular species. The concentrate was acetone

precipitated and freeze dried followed by tryptic digestion and solid phasc extraction.
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Quality control (QC’ samples were prepared by pooling equal volumes from the
validation samples. Calibration curves were prepared by spiking increasing amounts of

peptide standards into blank and QC samples.

6.3.1.2.2 Creatinine measurement

The concentration of the metabolite creatinine was measured in the samples according to

Chapter 2, section 2.11.1.

6.3.1.3 Instrumental analysis

The parameters of the instrumental analysis are described in detail in Chapter 2, section
2.9. In short, the samples were reconstituted in 50 pl. 3% acetonitrile, 0.1°% trifluoroacetic
acid, containing 0.1 uM of isotope labelled internal standards and 5 uL. was injected onto a
UPLC system coupled to a triple quadrupole mass spectrometer. Two injections were
performed per sample, each with a different MRM method. In total, 189 peptides were

monitored.

6.3.1.4 Peak picking, integration, and data pre-treatment

After acquisition, peak picking was performed utilising an in-house Python application or
Targetlynx (Waters). Peptide peaks were identified by blank and matrix calibration
curves. The digestion efficiency was evaluated by monitoring the presence of yeast ENO1
in the samples, all samples demonstrated a signal from the peptide thereby demonstrating
that the digestion was efficient forall samples. The integrated peak areas were exported to
Microsoft Excel. The urine concentration between the samples was normalised (see
section 63.1.4.1). In the final data, outliers were detected utilising a script written in
Python with ten absolute deviations set as threshold and replaced by missing values. The
outliers are presented in Supplementary table 6. Pooled urine quality control samples

were additionally evaluated to assess the robustness of the run.

6.3.1.4.1 Normalising the urine concentration between samples

The urine concentrations in the samples were harmonised by two different methods and
cvaluated: (i) normalising to creatinine concentration and (ii) probabilistic quoticnt
normalisation {PQN . PON is a mathematical method of adjusting the dilution within a
set of samples. It compares each sample to a reference sample and calculates the relative
dilution in comparison to the reference, thus normalising the concentration within the

sample set 329 .
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Firstly, the raw and non-normalised data were visualised by principal component analysis

(Figure 6-8 . PCA clearly demonstrated that principal component 1, which accounted for

the majority of the variation in the model (357, represented the peptide intensity in the

samples and thus also the urine concentration.

1[2;

10+ | ; _ } . v
15 10 5 0 5 10 15 20
1)

Figure 6-8. Principal component analysis of raw and non-normalised data from the targeted analysis of the de
novo PD urine cohort. The plot shows the first and second principal components (1] versus #27). The samples are
continuously coloured and sized according to the average peptide intensity in each sample, where the lowest intensity is
represented by wm blue and highest intensity is represented by m red. 1t is clearly demonstrated that principal component 1,
accounting for 35% of the model’s variation, models peptide intensity with lower intensity in the samples on the left and
higher intensity in the samples on the right. PCI thus represents the peptide intensity in the samples and consequently the
urine concentration.

Next, the peptides were individually normalised to creatinine, and collectively normalised
by using PQN. The two normalising strategies were evaluated by PCA scores, where the
models were inspected for bias in the distribution of the average sample intensities, and by

the distribution of the proteins in the PCA loadings.

Creatinine normalisation. Figurc 6-9 shows PCA scores and loadings from the
creatinine normalising. The scores show that there is a clear, non-random, direction of
average intensity in the samples along principal component 1, accounting for 357 of the
model’s variation also in this model. The loadings plot further demonstrates that all
proteins arc distributed in the right-hand side of the loading space, meaning that PC1 is
driven mainly by sample concentration and thereby demonstrating that the creatinine
normalising was inefficient in equalising the urine concentrations between the samples.
Moreover, the creatinine normalising produced six extreme outliers (Supplementary

figure 3) which had to be excluded from the PCA model.
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Figurc 6-9. (A) PCA scores and (B’ loadings from the normalising of urine concentrations by creatinine. T7e
scores (111} versus 2 | are continuously coloured and sized by average sample intensity, where m lozwest intensity, and m
highest intensity. The score plot demonstrates that there is an cvident direction of intensity —lower to the left and increasing
towards the right of the plot. The correspondingloading (p/1]versusp| 2 ]) showthat samples towards the right indeed have
higher levels of all peptides. Tt is thus demonstrated that creatinine normalising does not corrvect for the urine protein
concentration efficient!y.

Probabilistic quotient normalisation. Next, the protein concentrations in the samples
were normalised by POQN. Figure 6-10 shows the PCA scores and loadings of the results
from this normalising strategy. The scores show that the sample intensitics have been
largely equalised and that no systematic variation related to sample intensity can be
detected. The loadings demonstrate that the distribution of the proteins in the loading

space is not heavily skewed to either side.
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intensity. The score plot shows that a continuous intensity trend is absent. The corresponding loadings plot (p/1] versus
pl 2 [y demonstrates that the peptides are evenly distributed and that samples are not distributing in the score space due to a
systematic intensity difference.

The evaluation of the two normalising strategies concluded that PQN normalising was
more efficient in equalising the urine concentrations between the samples and was

therefore sclected as the preferred normalising method.
6.3.2  Results
6.3.2.1 Evaluation of repeated quality control samples

The pooled urine samples utilised as quality control were evaluated by the cocfficient of
variation resulting from cach protein. In total, 16 QC injections were performed. Figure

6-11 shows the coefficient of variation and average intensity of each protein. Out of the
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measured proteins, all but four manifested a coefficient of variation of 207 or less. DKIK3
had variation of 23%, CAPN2 had variation of 28%, and A2M and FGF21 displayved
variations of 307 and 317, respectively. As expected, the variation incrcased with lower

intensities, the four proteins with largest variation having the lowest intensities.
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Figure 6-11. Charactcristics of the pooled urine quality control samples from the targeted de novo PD analysis.
The average intensities (log.) of the proteins in the QC samples and the consistency, represented as coefficient of variation,
are shown. All but four proteins {DKK3, CAPN2, A2M and FGF21) demonstrated a coefficient of variation of 207 or
less. The four proteins with highest coefficient of variation had the lowest average intensities.

In summary, PQN was performed to equalise the urine concentrations, outliers at more
than ten median average deviations were removed and the QC analysis proved
satisfactory, thereby concluding the pre-treatment and initial quality assessment of the

data.

6.3.2.2 Multivariate analysis
6.3.2.2.1 Unsupervised Principal Component Analysis for quality assessment

A PCA was performed to obtain an overview of major patterns in the data. No clear
clusters of the different discase and control sample groups could be detected in any of the
components. The first component demonstrated a weak age dependency and the second

component modclled sex. Figure 6-12 shows a summary of the results.
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Figure 6-12. Overview PCA analysis of the targeted de novo PDurine cohort. The first principal components (1 1}

27 are shown. (A} Data coloured according to sample groups, where m control, m de novo PD, w (RBD, and m
other neurological disorders. No clear clusters of the groups can be discerned. (B Data coloured by males|females, where
m males and, = females. A clear discrimination can be detected vertically in principal component 2. (C Data coloured
continuously according to age, where Mrepresents youngest (41 years ) and Moldest (87 years). A weak age-dependency
can be noted horizontally in principal component 1.
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6.3.2.2.2 Supervised models exploring the confounding effects of age and sex

Investigating the influence of age further, an OPLS model with age sct as the dependent
variable Y was crcated. The model was significant (ANOVA p = 7.8 E7, permutations

p-=0.001) thereby confirming that there was an age-protein dependency in the data.

The discrimination between males and females was explored in an OPLS-DA model. The
modcl proved highly significant {ANOVA p = 6.7 E4, permutations p << 0.001) thus
verifying that the protein expression in the dataset differs between males and females.
Figure 6-13 shows the proteins related to age and Figure 6-14 shows the proteins related to
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Figure 6-13. Predictive loadings from the OPLLS modcl of the targeted protcomic analysis of the urine de novo
PD cohortandage. The proteins are coloured continuously according to their correlationwith age, where blue represents
negative correlation and red positive correlation. pg'1; represents the predictive loadings. The error bars represent the
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Age and sex adjustment. The data were adjusted for age and sex utilising linear
regression, as described in Chapter 3, section 3.5.4, and modclled again. Both the OPLS
modcl with age sct as Y, and the discriminant OPLS-DA modcl of males versus females

were non-significant thus demonstrating that the age and sex correction was cfficient.
6.3.2.2.3 Discriminant analysis of control versus de novo PD

Adiscriminant OPLS-DA modcl of controland de novo PD was constructed from the age
and sex corrected data. The model was highly significant, demonstrating an ANOVA p
of 1.1 E'¢ and permutations p << 0.001, thereby suggesting that there is a large amount of
covariation in the protein expression related to the two groups. According to the model,
the most discriminating variables were SPP2, CAPN2, TNNT3 and FGE21, upregulated
in de novo PD patients, and SERPINF2, UBC, CCL4 and NCAM1, downregulated in PD

(Figure 6-15).
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Figure 6-15. Predictive loadings from the discriminant OPLS-DA model of de novo PD patients versus controls
in the targeted proteomics analysis of urine. The red bars represent the proteins higher in de novo PD and the green
bars the proteins higher in control. pg1] represents the predictive loadings . The error bars represent the standard ervor.

6.3.2.2.4 Prediction of the OND and iRBD samples in the discriminant
PD/control OPLS-DA model

The iRBD and other neurological disorder samples were morcover predicted in the
model and resulted in 55% of the iIRBD samples and 867 of the other neurological
disordersbeing predicted asde novo PD (Figure 6-16 1. The high rate of other neurological
disorder samples predicted as de novo PD suggests that the specificity of the modcl has
room for improvement as these samples largely act as a positive control group and should

idcally not be predicted as de novo PD.
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Figurc 6-16. Prediction of OND and iRBD in the OPLS-DA model of de novo PD versus control. The
classification of the OND samples resulted in 867 predicted ad de novo PD. The iRBD classification resulted in 557
predicted as de novo PD. m de novo PD, m control, m iRBD (predicted’ and m other neurological disorders (predicted’.
tPS/ 1/ denotes the predictive component of the prediction, and tol’S 1] the first orthogonal principal component of the
prediction.

In conclusion, the multivariate analysis demonstrated that the protein expression in the
dataset was influenced by age and sex. After correcting for these factors, a discriminant
analysis of de novo PD versus control was performed and proved highly significant,
thereby demonstrating that there was a signature protein expression differentiating
between de novo PD and control. The model however lacked specificity as demonstrated

by the prediction of a positive control group of other, non-PD, neurological disorders.

6.3.2.3 Univariate analysis

The samples in the groups de novo PD, iRBD and other neurological disorders were
compared to the control group using Student’s t-test. Benjamini-Hochberg multiple
testing correction at 957 significance level was applied. Between de novo PD and control,
23 proteins were significantly different. Comparing iRBD to control, four proteins were
significantly different, all but one also differentially expressed in de novo PD. Between
other neurological disorders and control, 11 proteins were significantly different, here too
allbut one also differentially expressedin de novo PD. Table 6-4 shows the summary of the

FDR-corrected p-values from the three analyses.
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Table 6-4. Benjamini-Hochberg FDR-adjusted p-value summary from the comparison of control to de novo
PD,iRBD and other,non-PD, neurological disorders. ***— p < 0.00L ™ p< 0.0L *p< 0.05 and NS - not significant

. De novo PD iRBD vs OND vs
Protein (gene)
vs control control control
Intercellular adhesion molecule 1 (ICAMT) o NS NS
C-C motif chemokine 4 (CCL4) o NS NS
Troponin T3, fast skeletal type (TNNT3) * NS *
Secreted Phosphoprotein 2 (SPP2) o * o
Collagen alpha-3(Vl) chain (COL6A3) o NS NS
Neurofilament medium polypeptide (NEFM) * NS *
Polyubiquitin-C (UBC) * * *
Phosphoglycerate mutase 1 (PGAM1) o NS NS
Alpha-2-antiplasmin (SERPINF2) o NS o
Calpain-2 catalytic subunit (CAPN2) * NS *
Fibroblast growth factor 21 (FGF21) > NS NS
Neural cell adhesion molecule 1 (NCAMT) o NS NS
N-myc downstream regulated 1 (NDRG1) * NS *
Matrix metallopeptidase 3 (MMP3) * NS NS
Mitogen-activated protein kinase 12 (MAPK12) o NS o
C-C motif chemokine 2 (CCL2) * * *
Heat shock protein HSP 90-beta (HSP9OABT) * NS NS
Serine/threonine-protein phosphatase 2B catalytic subunit (PPP3CB) * NS NS
Cholinesterase (BCHE) * NS NS
Interleukin-5 (IL5) * NS NS
Alpha-1-antichymotrypsin (SERPINA3) * NS NS
Dickkopf WNT signaling pathway inhibitor 3 (DKK3) * NS NS
Heat shock 70 kDa protein 1-like (HSPATL) NS NS *
Plasma protease C1 inhibitor (SERPING1) NS NS NS
Cystatin-C (CST3) NS NS *
C-C motif chemokine 17 (CCL17) NS NS NS
Heat shock cognate 71 kDa protein (HSPAS8) NS NS NS
Interleukin-1 beta (IL1B) NS NS NS
Angiopoietin-1 receptor (TEK) NS NS NS
NACHT, LRR and PYD domains-containing protein 3 (NLRP3) NS NS NS
Amyloid-beta precursor protein (APP) NS * NS
L-xylulose reductase (DCXR) NS NS NS
Erythropoietin (EPO) NS NS NS
Thioredoxin (TXN) NS NS NS
Inter-alpha-trypsin inhibitor heavy chain 2 (ITIH2) NS NS NS
Annexin A2 (ANXA?2) NS NS NS
Tubulin alpha-4A chain (TUBA4A) NS NS NS
Hemopexin (HPX) NS NS NS
Alpha-2-macroglobulin (A2M) NS NS NS
Apolipoprotein E (APOE) NS NS NS
60 kDa heat shock protein, mitochondrial (HSPD1) NS NS NS
Collagen alpha-2(IV) chain (COL4A2) NS NS NS
Prostaglandin-H2 D-isomerase (PTGDS) NS NS NS
Pyruvate kinase M (PKM) NS NS NS
Phospholipase D Family Member 3 (PLD3) NS NS NS
Alpha-1-antitrypsin (SERPINAT1) NS NS NS
Extracellular superoxide dismutase [Cu-Zn] (SOD3) NS NS NS
Fatty acid binding protein 5 (FABP5) NS NS NS
Bifunctional purine biosynthesis protein PURH (ATIC) NS NS NS
Phosphoglycerate kinase 1 (PGK1) NS NS NS
Toll-interacting protein (TOLLIP) NS NS NS
Endoplasmic reticulum chaperone BiP (HSPA5) NS NS NS
Cytochrome C (CYCS) NS NS NS
Urokinase-type plasminogen activator (PLAU) NS NS NS
Mannan binding lectin serine peptidase 2 (MASP2) NS NS NS
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Protein (gene)

De novo PD
vs control

iRBD vs
control

OND vs

control

Fibrinogen alpha chain (FGA)
Complement C3 (C3)

Vascular cell adhesion protein 1 (VCAMT)
Moesin (MSN)

NS
NS
NS
NS

NS
NS
NS
NS

NS
NS
NS
NS

Thessignificantly different protcins between de novo PD and control are shown in Figure

6-17.
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Figure 6-17. Significantly different proteins in the comparison of de novo PD and control from the targeted

urine proteomics analysis after FDR correction. The error bars represent the 95

< confidence interval. In total, 23

proteins demonstrated a significant difference between the two groups. The plots are ordered according to level of
significance, frommost to least significant. m control, and = de novo PD.
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Figure 6-17. Significantly different proteins in the comparison of de novo PD and control from the targeted
urine protcomics analysis after FDR corvection. The error bars represent the 95% confidence interval. In total, 23
proteins demonstrated a significant difference between the two groups. The plots are ordered according to level of
significance, frommost to least significant. { continued from previous page)

The four proteins differentially expressed in the iRBD patients after FDR p-value
adjustments are shown in Figure 6-18. Out of the four proteins, CCL2, UBC and SPP2
were also differentially expressed in the de novo PD patients and in the other neurological

disorders group.
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Figure 6-18. Significantly different proteins in the comparison of iRBD and control from the targeted urine
proteomics analysis after FDR correction. The error barsrepresent the 95 confidence interval. In total, four proteins
demonstrated a significant difference between the two groups. The plots are ordered according to level of significance, most
significant first. m control, and = iRBD.

In the other neurological disorders group, 11 proteins were differentially expressed
compared to control post-FDR adjustment of the p-values. Apart from CST3, all the
proteins were also differentially expressed in the de novo PD patients. The protein

expressions are shown in Figure 6-19.
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Figure 6-19. Significantly diffcrent proteins in the comparison between other, non-P D, neurological disorders,
and control from the targeted urine protcomics analysis after FDR corvection. The error bars represent the 95%
confidenceinterval. Intotal, 11 proteins demonstrated a significant difference between the two groups. The plotsare ordered

according to level of significance, most significant first. m control, and = other neurological disorders.

Three of the measured proteins demonstrated a significant difference in all three disease

groups; these were SPP2, UBC and CCILL2 (Figure 6-20).
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Figure 6-20. Proteins from the targeted study of urine which were differentially expressed in all three disease
groups compared to control. The error barsrepresent the 95% confidence interval
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The proteins that were differentially expressed in the three different groups were

represented by a network created in Cytoscape version 3.8.0|330 |. The network allows

for an accessible overview of the significant proteins in cach group and further
demonstrates which of the proteins were significantly expressed in more than once group,
if they were up- or downregulated and their p-value significance. Figure 6-21 shows the
protcins differentially expressed in de novo PD, iRBD and other neurological disorders.
SERPINF2, NDRG1 and TISPA1L were significantly downregulated in both the de novo
PD patients and the other neurological disorders group while TNNT3, CAPN2, NEFM
and MAPKi12 were significantly upregulated in both groups. UBC was significantly
downregulated in all three disease groups, and CCL2 and SPP2 were significantly
upregulated in the three disease groups. All other proteins were uniquely differentially

expressed for only one of the conditions.

SERPINF2

NDRG1

HSPAIL

®
P‘B.

H
H

CsT3

e

Other=— De novo PD
= - 4
neurologicat——__ \
PGAM1 ICAMI1
SERPINA3
KK3
.\ HSPIOABI N

Figure 6-21. Nctwork representation of the differentially expressed proteins in the groups de novo PD,iRBD
and other neurological disorders compared to control. The white circles represent the disease nodes. All proteins
connected to a node were significantly differentially expressed in that group in relation to control. Pink edges denote
downregulation of the proteins and green edges upregulation. The edge widths represent the p-value significances of the
proteins in the different diseases, where wider edges mean more significant. = downregulated in disease group, m
upregulated in discase group.

In summary, a number of proteins were found differentially expressed in the discase
groups post multiple testing correction; 23 proteins in the de novo PD patients, four in the
iRBD patients and 11 in the other neurological disorders group. Out of these proteins,
seven were found to overlap between de novo PD and other neurological disorders and

three to overlap between all three discase groups.
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6.3.2.4 Comparison to the results from the discovery study

Comparing the results from the targeted study with the discovery study, 16 of the proteins
could be detected while six could not be detected reliably. Out of the 16 detected proteins,
four were found significant in the targeted study with an expression matching the
discovery study, these proteins were MAPK12, PPP3CB, CAPN2 and NDRG1. These
protcins, apart from PPP3CB, were morcover differentially expressed also in the OND
group. DKIK3 was significantly differentinboth the discovery and targeted study, although
upregulated in the discovery iPD patients and downregulated in the targeted study of de
novo PDpatients. Table 6-5 shows a summary of the results.

Table 6-5. Comparison the proteins discovered in the untargeted urine proteomics study and their expression
inthe targetedurine proteomics assay. 1he table shows the significance level and direction of expression for the proteins

in each study an if the discovery results were confirmed by the targeted study, where NS p> 0.05, *p< 0.03, *p<0.01, 1
upregulated, || douwnregulated, <> no expression difference and | expression discrepancy between the studies

Discovery study - iPD vs control Targeted study - DNP vs control Confirmed?

Significance level  Expression in iPD Significance  Expression in de novo

level PD
TUBA4A . iPD (]) NS DNP ()
MAPK12 * iPD (1) ** DNP (1) + OND (1) Y
APOE . iPD (1) NS DNP ()
FGA * iPD (1) NS DNP (+)
HSPAS - iPD (1) NS DNP ()
PPP3CB . iPD (1) . DNP (1) v
PLAU * iPD (1) NS DNP (+)
COL4A2 . iPD (1) NS DNP ()
THY1 * iPD (1) Not detected
CYCS * iPD (1) NS DNP (+)
CTHRC1 * iPD (1) Not detected
ATIC * iPD (1) NS DNP (+)
CAPN2 . iPD (1) *  DNP(f) + OND (1) v
DKK3 . iPD (1) . DNP () vi
EFNA5 * iPD (1) Not detected
ENDOU * iPD (}) Not detected
HBE1 * iPD (1) Not detected
MASP2 * iPD (1) NS DNP (+)
MUC5B * iPD (1) Not detected
NDRG1 . iPD (1) = DNP(]) + OND ()) Y
SOD3 * iPD (1) NS DNP ()
TOLLIP . iPD (1) NS DNP ()
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6.3.2.5 Literature studies and pathway/enrichment analysis
6.3.2.5.1 Literature review

The proteins demonstrating a significant difference between de novo PD and control
were reviewed for previously reported links to Parkinson’s disease and
ncurodegencration. The scarch engines Google Scholar and PubMed were used for
discasc associations and the portal GeneCards for the proteins’ functions. Brict
descriptions of any reported associations between the proteins and PD andor
ncurodegencration arc presented in Table 6-6. A number of these protcins were also

foundin the targeted analysis of de novo PD plasmaand arc described in Chapter 5,section

53.23.

Table 6-6. Significantly diffcrent proteins and previously reported links to Parkinson’s discasc.

Protein

Description and reported link to Parkinson’s disease

Intercellular
adhesion molecule
1 (ICAM1)

C-C motif
chemokine 4
(CCL4)

Troponin T3, fast
skeletal type
(TNNT3)

Secreted
Phosphoprotein 2
(SPP2)

Collagen alpha-
3(VI) chain
(COL6A3)

Neurofilament
medium
polypeptide (NEFM)

Polyubiquitin-C
(UBC)

ICAM was downregulated in the de novo PD patients (p = 9.1E*). ICAM1 is generally
expressed on endothelial cells and is involved in inflammatory processes [331]. It has
been proposed to play a role in the neuroinflammation associated with Parkinson’s
disease in a number of studies. One study suggests that ICAM1 interacts with T cells in
the brain and modulates PD pathology [332]. ICAM1 has also been suggested to
indicate astrocyte mediated inflammation in the brain, as proposed by a study of

medically induced PD in monkeys, where ICAM1 was found upregulated in the substantia
nigra [333].

CCL4 was downregulated in the de novo PD patients (p = 9.2E*). CCL4 is a monokine
involved in inflammation [334]. It has been suggested to be involved in
neuroinflammation and a study of mice found the protein correlated with the age-related
progression of amyloid-beta levels in the brain in a mouse study of Alzheimer’s disease
[335].

TNNT3 was upregulated in the de novo PD patients (p = 1.1E%) and in the OND group
(3.4E-3). TNNT3 is involved in muscle contraction, where a process of binding Ca?*
and inferaction with actin filaments leads to a muscle contraction [336]. No previously
reported associations with PD or neurodegeneration could be found.

SPP2 was upregulated in the de novo PD patients (p = 1.1E%), iRBD (p = 4.3E?) and in
the OND group (p = 6.1E%). SPP2 is part of the cystatin superfamily, a large group of
proteins with a wide range of functions [337, 338]. As reported in Chapter 5, SPP2 is
associated with Gerstmann-Straussler disease, a rare inherited prion disease [282] and
a study of kidney function associated SPP2 with biomarkers of bone and mineral disease,
and also found an inverse relationship with Wnt antagonists [283].

COL6A3 was upregulated in the de novo PD patients (p = 1.1E%). COL6A3 is found in
most connecting tissues and binds to extracellular matrix proteins where it organises
matrix components [339]. Mutations in COL6A3 have been implicated in muscular
dystrophy [340]. A recently published genomic study of PD found that variants in the
gene may increase the risk of developing PD [341].

NEFM was upregulated in the de novo PD patients (p = 1.1E%) and in the OND group
(0 = 1.9E?%). NEFM makes up part of the axoskeleton and is involved in axonal
maintenance [342]. NEFM is associated with a number of neurodegenerative conditions
[343]. Mutations in the gene are additionally associated with familial PD [344]. It is used
as a marker of neuronal damage.

UBC was downregulated in the de novo PD patients (p = 1.1E3), the OND group (p =
1.9E2) and in the iRBD patients (p = 1.7E). UBC can be found in bound or free form;
the bound form is involved in protein degradation, usually conjugated to lysine residues
of target proteins whereas the free form can activate protein kinases [345]. UBC is
involved in the ubiquitin-proteasome pathway and it has been suggested that alpha-
synuclein is tagged by the ubiquitin system for degradation [346].
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Protein

Description and reported link to Parkinson’s disease

Phosphoglycerate
mutase 1 (PGAMI)

Alpha-2-
antiplasmin
(SERPINF2)

Calpain-2 (CAPN2)

Fibroblast growth
factor 21 (FGF21)

Neural cell
adhesion molecule
1 (NCAM1)

N-myc downstream
regulated 1
(NDRG1)

Matrix
metallopeptidase 3
(MMP3)

Mitogen-activated
protein kinase 12
(MAPK12)

C-C motif
chemokine 2
(CCL2)

Heat shock protein
HSP 90-beta
(HSP9OABT)

Serine/threonine-
protein
phosphatase 2B
catalytic subunit
(PPP3CB)

Cholinesterase
(BCHE)

PGAM1 was downregulated in the de novo PD patients (p = 1.2E%). PGAM1 is involved
in glycolysis, where it catalyses the reversible transformation of 3-phosphoglycerate to 2-
phosphoglycerate [347]. A study of ischemic damage in rabbits suggested that PGAM1
increases brain ATP and that the protein may reduce microglial activation and oxidative
stress [348].

SERPINF2 was downregulated in the de novo PD patients (p = 1.3E%) and in the OND
group (p = 1.7E). As reported in Chapter 5, SERPINF2 is a major regulator of the
clotting pathway where it acts as an inhibitor of plasmin. SERPINF2 was found
upregulated in a recent proteomics study of platelet activation in AD patients [268].
Moreover, plasmin has been reported to cleave and degrade extracellular and
aggregated alpha-synuclein [269].

CAPN2 was upregulated in the de novo PD patients (p = 2.4E%) and in the OND group
(8.8E%). CAPN2 is a calcium activated cysteine protease [349]. Calpain has been
implicated in the pathogenesis of several neurodegenerative diseases. Calpain activity
has been reported to be upregulated in AD as a consequence of malfunctioning Ca?*
homeostasis, leading to neurotoxicity and neuronal death [350]. In a study of medically
PD-induced mice, calpain was increased in microglia, astrocytes and neurons, and
neuronal cell death was moreover observed [351].

FGF21 was upregulated in the de novo PD patients (p = 2.6E7). FGF21 is involved in
a number of molecular activities and is known to be a metabolic regulator and promoter
of cell survival processes. It is also known to increase the uptake of glucose in adipose
tissue [352]. FGF21 has been suggested to have protective functions against
neurodegeneration by regulating the NF-xB and AMPKo/AKT pathways thereby reducing
oxidative stress, neuroinflammation and protecting the mitochondria in neurons [353].

NCAM1 was downregulated in the de novo PD patients (p = 3.5E%). NCAMI1 is a
member of the immunoglobulin family. It is involved in immune surveillance and
interactions with the extracellular matrix [354].

NDRG1 was downregulated in the de novo PD patients (p = 5.3E%) and in the OND
group (p = 2.0E?). NDRGI1 is involved in stress responses and is necessary for p53-
induced apoptosis [355]. NDRG1 is implicated in Charcot-Marie-Tooth disease, a
hereditary motor and sensory neuropathy. Mutations in the gene are known to lead to
demyelination [356]. A computational study of PD risk genes and transcription factors

identified NDRG1 as a hit [357].

MMP3 was upregulated in the de novo PD patients (p = 5.3E%). MMP3 is involved in
breaking down molecules from the extracellular matrix and bioactive compounds [358].
It has been implicated in neurodegenerative disease, activating microglia [245]. MMP3
is also suggested to contribute to dopaminergic neuronal death mediated through

oxidative stress and to have the capability of disrupting the blood-brain barrier under
certain conditions [246, 247].

MAPK12 was upregulated in the de novo PD patients (p = 9.0E%) and in the OND group
(p = 8.4E%). MAPK12 is involved in the MAP kinase signal transduction pathway and the
transduction of extracellular signals [359]. MAPK signalling has been suggested to play
a role in the pathological processes of PD, including neuroinflammation, oxidative stress
and neuronal death [360].

CCL2 was upregulated in all the disease groups (de novo PD p = 2.4E2,iRBD p = 1.7F
5, OND p = 1.9E?). CCL2 is a chemokine involved in immune regulation and
inflammatory processes which bring upon a strong response and mobilise intracellular
Ca?* [361]. CCL2 has been suggested to contribute to the neuroinflammation observed
in PD and to be involved in mediating neurodegeneration [362]. Variants in the gene
have been associated with PD [363].

HSP90AB1 was downregulated in the de novo PD patients (p = 2.4E2). HSP90AB1 is a
member of the HSP 90 family, proteins involved in protein folding, degradation and
signal transduction [364]. A cell study of PD found HSPP0OAB1 upregulated after
poisoning the cells with MPP* [365]. HSP90 has been identified as a chaperone to alpha-
synuclein and suggested to modulate its assembly [366, 367].

PPP3CB was upregulated in the de novo PD patients (p = 3.0E2). As reported in Chapter
5, PPP3CB makes part of the calcineurin complex and is also component of the
Wnt/Ca2?" pathway [261, 262]. PPP3CB was identified as a risk gene for AD in
microarray studies in the early 2000s [263]. Calcineurin has been proposed to increase
in response to accumulation of alpha-synuclein and to trigger both protective and toxic
responses to maintain neuronal Ca?* homeostasis [264].

BCHE was upregulated in the de novo PD patients (p = 3.6E). BCHE is an esterase
involved in the detoxification of a number of compounds [194]. High levels of BCHE are
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Protein Description and reported link to Parkinson’s disease

linked to lower risk of mortality [172] and low levels are associated with cardiovascular
risk, mortality and systemic low-grade inflammation [195]. BCHE activity was found
decreased in a study of serum from PD patients [368].

Interleukin-5 (IL5) IL5 was upregulated in the de novo PD patients (p = 4.3E%). IL5 is a cytokine involved
in mediating immune response and can differentiate B-cells to immunoglobulin secreting
cells [369]. It has been reported that the neuroinflammation in PD causes an increased
release of inflammatory mediators, including IL5 [370].

Alpha-1- SERPINA3 was downregulated in the de novo PD patients (p = 4.4E?). As reported in
antichymotrypsin Chapter 5, SERPINA3’s major target is cathepsin G although it can also inhibit other
(SERPINA3) serine proteases. SERPINA3 has been associated with AD and proposed to mediate

amyloid-beta clearance [265]. SERPINA3 was found upregulated in studies of prion
diseases and progressive MS [266, 267].

Dickkopf 3 (DKK3) DKK3 was downregulated in the de novo PD patients (p = 4.4E2). As reported in Chapter
5, DKK3 is a glycoprotein belonging to the Dickkopf family, the majority of which are
antagonists of the Wnt signalling pathway, although DKK3 is a modulator rather than an
antagonist. DKK3 has been seen downregulated in many cancer studies and was recently
proposed to have a neuroprotective role [248]. It has been related to Alzheimer’s disease
in several studies and furthermore proposed to positively correlate with increased age
[249]. Interestingly, a mouse study found that DKK3 may protect dopaminergic neurons
and proposed that DKK3 has potential as a pharmacological target for treatment of
neurodegeneration [259]. Another study of mice and pluripotent stem cells showed that
DKKS3 is necessary for correct differentiation and survival of dopaminergic neurons [260].

Heat shock 70 kDa ~ HSPATL was downregulated in the de novo PD patients (p = 5.0E?) and in the OND

protein 1-like group (p = 1.7E?). As reported in Chapter 5. HSPA1L is a heat shock protein involved

(HSPATL) in the quality control system of the cell. Among its functions are folding and transport of
newly synthesised polypeptides and re-folding or destruction of misfolded proteins [279,
280]. In a publication from 2005, overexpression of HSPATL was suggested to reduce
neurodegenerative symptoms in Parkinson’s disease, Huntington’s chorea and
spinocerebellar ataxia [281]. May be involved in translocation of PRKN [371].

6.3.2.5.2 Protein-protein interactions

Examining known intcractions between the significant proteins, the online network tool
STRING, version 11.0 was utilised [ 289 |. The protein-protein interaction enrichment p-
value was 0.03, thus demonstrating that there was a significant number of known
interactions between the proteins. Twelve of the proteins were connected in the protein-
proteininteraction network while ten were not (Figure 6-22.).
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Figure 6-22. Protein-to-protein interaction network from STRING. The enrichment p-value was 0.03,
demonstrating that there is a significant number of interactions between the proteins. m connected in network, and = not
connected innetwork.
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6.3.2.5.3 Pathway and enrichment analysis

Aspreviously stated, the acquirable information from pathway analyses of targeted data is
limited due to the nature of the data. The targeted proteomics data are acquired inabiased
mode since the monitored proteins have been pre-selected — this is in contrast to
untargeted proteomic data where the data are collected in an unbiased manner without
any prior sclection - and thus, the results from a pathway analysis will reflect this pre-
selection of proteins. Pathway analysis of targeted data can however provide insights into

cnriched functions, processes, and the proteins’ intcractions with cach other.

The proteins differentially expressed between de novo PD and control were analysed by
DAVID Bioinformatics Resources 6.8 287, 288 . The analysis resulted in cight KEGG
pathways - TN signalling pathway, Amyotrophic lateral sclerosis, Influenza A, NOD-like
receptor signalling pathway, Rheumatoid arthritis, MAPK signalling pathway, T cell receptor
signalling pathway and Protein processing in endoplasmic reticulum. Although nominally
significant, none of the pathways was significant after multiple testing correction. Among
the highlighted gene ontology (GO molecular functions were serine-type endopeptidase
imhibitor activity, endopeptidase inhibitor activity, heat shock protein binding, protein bindingand
chemokine activity, all nominally significant but not passing multiple testing correction. In
the GO biological processes analysis, four processes were suggested to be enriched;
cellular responsetodrug (FDR p - 635+, positive regulation of ERK1and ERK2 cascade (FDR
p  0.01), MAPK cascade (FDR p — 0.04) and negative regulation of endopeptidase activity

FDRp-0.04.

Insummary, theliterature review of the significantly different proteins demonstrated that
several had a previously reported link to Parkinson’s discase. An analysis of protein-
protein interactions showed that there was a significant number of interactions between
the proteins. Pathway analysis did not identify any significantly enriched pathways but
suggested that the GO processes cellular response to drug, positive regulation of ERK1 and
ERK2 cascade, MAPK cascade and negative regulation of endopeptidase activity were

cnriched.
6.3.2.6 Prediction and machine learning models

Univariate analysis showed much promise in identifying biomarkers that could be used to
distinguish PDfrom control. Therefore, we attempted to use amachine learningapproach
to develop modcls where a pancl of proteins could be used together to increase the
discriminating power and help to further differentiate PD from controls. We also wanted

to exploreif there was a panel of proteins that would allow us to predict which of the iRBD
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patients that were more likely to develop PD in the future, as iRBD is a strong risk factor

for Parkinson’s disease.
6.3.2.6.1 Receiver operating characteristic curve analysis

To assess the classification ability of the individual proteins, a receiver operating
characteristic (ROC) curve was generated from the de novo PD and control samples
utilising the web based tool casyROC 2901, A ROC curve plots the truc positive rate
(sensitivity ) versus falsc positive rate (1 - specificity ) at varied threshold settings 291
Figure 6-23 shows the ROC curves of the significantly different proteins when comparing
de novo PD and control, split over two graphs for the proteins upregulated in the de novo

PD groupand for the proteins downregulated in the de novo PD group.
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Figure 6-23. ROC curvcs of the significantly different proteins in the comparison of de novo PD and control

from the targeted urine protcomics analysis. On the left: the proteins upregulated in the de novo PD group, and on the

right: The proteins downregulated in the de novo PD group. The dashed diagonal lines represent an area under the curve

of 0.5, avalue atwhich thereis no discrimination and the samples would be randomly classified as belonging to either group.
Areas under the curve (AUC were extracted for the most promising proteins and are
shown in Figure 6-24. The downregulated proteins with strongest expression were
PGAM1,ICAM1and CCL4, allattributed with AUCs of more than 0.7. In the upregulated
proteins, the strongest expressions were found in NEFM, TNNT3, FGEF21, MMMP3,
SPP2, CO6A2and CCL2,also these with AUCs greater than 0.7.
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Figure 6-24. Areaunder the curve from the ROC analysis of targeted urine proteomics of de novo PD patients
and controls. The plot shows all significant proteins withan AUC > 0.6. The green bars denote proteins upregulated in de
novo PD and the red bars denote proteins downregulated in de novo PD. The AUC value is displayed above each bar.

6.3.2.6.2 Machine learning for classification and prediction

The strategy emploved in Chapter 5, section 5.3.2.6 was also utilised in this analysis. Three
different classifier algorithms were evaluated to determine which could best discriminate
between PD and controls: lincar discriminant analysis (LDA) with singular valuc

decomposition (SVD ) as solver, support vector machine {SVM , and Ridge classifier.

Initial cross-validation and comparison of machine learning models. The targeted
proteomics dataset from the analysis of urine from controls, PD patients, iRBD patients
and individuals with other neurological disorders was filtered to contain only the PD
patients and the control samples. Asaninitial data quality overview, the data were divided
into five groups (test sets ), sclecting different samples for each group while maintaining
the proportion of de novo PD and controls, using the function StratifiedIKfold from Scikit
Learn version 0.24.2 with shuffled values and fixed random state. Each cross-validation
iteration was performed by building models from the data remaining after the test set
(called the training set ) and predicting the classes of the samples in the test set. Figure 6-25

shows the sample distribution in the five cross validation itcrations.
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de novo PD Control
CV #1

CV #2
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Figure 6-25. Cross-validation iteration groups in the targeted urine proteomics de novo PD and control
samples. The de novo PD and control samples are divided by the dashed vertical line, with de novo PD samples to the left
and control samples to the right. In each of the five CV groups #1 - 43, the samples selected for the test set are coloured in
green, while the remaining samples, the training set, are coloured in red. The test samples from all five C'V groups together
make up the full set of samples. v training set, m test sct.

The cross-validation test sets were predicted in models created from the training sets for
the three different algorithms LDA, SVM and Ridge classifier. The model scores for the
training and prediction sets were extracted and are shown in Table 6-7. As demonstrated
by the CV scores, all models performed well with training model scores consistently
above 0.8. The test scores, the prediction of the samples extracted for cross validation,

were likewise attributed with scores of good magnitudes.

The initial quality check signified that it was possible to build well-performing models

regardless of how the data were split for training and prediction.

Table 6-7. Cross validation summary of lincar discriminant analysis, support vector machine and Ridge
classificr from the five-fold split of the de novo P and control urine samples measured by targeted protcomics.
The individual scores from each iteration fitting the training set and test set and the average scores are presented . SD -
standard deviation.

Linear discriminant analysis Support vector machine Ridge classifier

CV iteration Training score Test score  Training score  Test score  Training score  Test score
# 01 0.87 0.73 0.93 0.73 1.00 0.83
# 02 0.87 0.87 0.97 0.80 0.99 0.90
# 03 0.85 0.90 0.90 0.77 1.00 0.87
# 04 0.87 0.86 0.92 0.93 0.99 0.86
# 05 0.88 0.82 0.96 0.57 1.00 0.75
Average = SD 0.87 0.84 0.94 0.76 1.00 0.84

(£0.01) (£ 0.06) (£ 0.03) (£0.13) (+ 0.005) (+ 0.06)

Model building and variable selection. For modcl building and refinecment, the
PD/control samples data were splitinto two equally large parts, each containing the same
proportion of control and de novo PD samples, using the function train-test split ( Scikit
Learn). One set was used for training and one for prediction. The optimal numbers of

features to include in the LDA and SVM models were evaluated in the training set by

test
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recursive feature elimination (RFECYV, Scikit Learn . The ideal numbers of features
selected by RFECV for the LDA algorithm were eight (NEFM, FGF21, CAPN2, NDRG1,
CO6A3, CCL2, TEK and IL1B) and for the SVM algorithm 30 (PGAM1, NEFM, SPP2,
CAPN2, NDRG1, CO6A3, MMP3, MAPK12, PPP3CB, CCL2, IL35, BCIIE, TEK,
SERPINA3, CCL17, HSP7C, DKK3, NLRP3, IL1B, A2M, APP, ANXA2, TOLLIP, PGIX1,
A1AT, CLH60, DCXR, ATIC, C3and MOES ). The beta-cocfficients of the protcins in the
Ridge classificr model are illustrated in Figure 6-26. Many of the cocfficients had valucs
close to zero, thus demonstrating that their influence on separating the classes was

limited.
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Figure 6-26. Ridgc classificr beta cocfficients in the de novo PD versus control training modcl based on the

targeted urine protcomics. A large proportion of the proteins have limited influence on the model as shown by the size of

their beta coefficients.

Toreduce the complexity of the Ridge classifier model and to curtail the risk of overfitting,
anew model was built, containing only the top 20 variables with the most influential beta
coefficients (C3, NEFM, CCL2, CAPN2, MMP3, ATIC, TEK, SPP2, BCHE, MOES,
FGF21, NCAM1,DKK3, A2M, CO6A3,11.5, CCL17, APPand NDRG1 .

Prediction of de novo PD and healthy controls. The test dataset was predicted in the
three final training models and resulted in the following outcomes: 857 of the total
samples were correctly predicted in the LDA modcl, 79% of the total samples were
correctly predicted in the SVM model and 827 of the total samples were correctly
predicted in the Ridge classifier model. Figure 6-27 illustrates the individually predicted
classes in the three models and the actual sample classcs. In summary, the prediction

modcls had the following characteristics:
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e Lincardiscriminantanalysis: 91.8% scnsitivity, 72.07 specificity, 85.17% accuracy

5.5°csensitivity, 88.0% specificity, 79.77 accuracy

e  Support vector machine:

e Ridgceclassificr: 91.87 sensitivity, 64.07 specificity, 82.4 7 accuracy
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Figure 6-27. Prediction results of the test set in the LDA, SVM and Ridge classifier models. 857% of the samples
were correctly predicted in the LDA model, 797 in the SVM model and 827 in the Ridge classifier model, resulting in a
respective model accuracy of 85.1%, 79.7% and 82.4°%. The samples which were incorrectly predicted are circled inred. The

lastrow labelled “Actual class” shows the actual classes of the samples. m predicted as control, and = predicted as PD.

>

It was concluded that the LDA model had the most favourable characteristics with highest

sensitivity, and overall accuracy.

Specificity testing by predicting OND and iRBD samples. Testing the specificity of
the LDA model further, the OND and iRBD samples were predicted. The prediction
resulted in 85.77 of the OND samples and 507 of the iRBD samples being predicted as de

novo PD (Figure 6-28).

Figure 6-28. ’rediction of other neurological disorders and iRBD samples in the LDA modcl. The prediction
resulted in 85.7° 0f OND samples and 507 of iRBD samples predicted as de novo PD. w sample predicted as de novo PD,

m sample predicted as control.

The high rate of OND samples being predicted as de novo PD echoes what the univariate
analysis demonstrated - that many of the differentially expressed proteins are shared
between the two groups. The LDA model is consequently not well-suited to separate
between PD and the other neurological disorders included in the heterogeneous OND

group, but rather between control and neurological disorders, including PD.

6.3.3  Summary and conclusions from the targeted study

Inthe targeted urine proteomics study, an augmented MR M assay was applied toa cohort
of 211samples from de novo PD patients, controls, iRBD paticnts, and paticnts with other
non-PD ncurological disorders. Five of the proteins sclected from the discovery phasce

were differentially expressed between de novo PD and controls, these proteins were
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MAPK12, PPP3CB, CAPN2, NDRG1 and DKK3. Allapart from DIXIX3 had an expression
matching the discovery study. Another 18 proteins from the targeted assay, not from the
urine discovery phasc, were differentially expressed between de novo PD patients and
controls. Litcrature studics demonstrated that many of these proteins had previously
been linked to, or had functions relevant for, PD pathology. A discriminant LDA machine
lcarning modcl, based on the expression of cight proteins, could scparate de novo PD
paticnts from controls with a high level of accuracy. However, the LDA model was unable

to distinguish between PD and other neurological disorders.

In conclusion, the study of Parkinson’s disease using urine proteomics showed promising
results and allowed us to measure several proteins that we could not detect in plasma. The
use of urine as a screening tool would be extremely beneficial due to its non-invasive
collection. Our panel of biomarkers can indeed distinguish between PD and control with
goodaccuracy in this set of samples but would need to be evaluated inamuch larger study
to test its robustness and utility. If successful, the panel could be utilised as an entry screen
to help determine which patients would need further and more specific clinical

assessment.

6.4 DISCUSSION

Urine fromidiopathic PD patients, symptomatic and asymptomatic LRRIK2 carriers and
controls were investigated in a discovery, bottom-up proteomics study, aimed at finding
urinary biomarkers for Parkinson’s disease. The study identified many targets from which
a sclection was developed into a targeted test. The targeted test we developed also
included several inflammation-related proteins from the literature and blood-based
putative PD and ageing biomarkers identified in studies of PD and centenarians. Four
sample groups were analysed by the targeted assay: urine from treatment-naive de novo
PD patients, patients with iRBD, controls and a group of non-PD neurological disorders.
The targeted assay included 127 proteins out of which 23 were differentially expressed
between de novo PD and control, four between iRBD and control, and 11 between OND
and control. Seven of the proteins were morcover found to overlap between de novo PD
and other neurological disorders and three to overlap between all three disease groups.
Five of the proteins from the PD discovery study demonstrated a significant difference
between de novo PD and control. An LDA machine learning model demonstrated that it
was possible to classify samples as de novo PD or control with 91.87 sensitivity and 727
specificity based on the expression of NEFM, FGF21, CAPN2, NDRG1, CO6A3, CCl.2,

TEKand IL1B. The model was tested for PD specificity by predicting the OND group but
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demonstrated limited unique applicability for this as the majority of the samples were
predictedinthe denovo PD class. Still, the model has value asitis capable of differentiating

between control and neurological disorders in urine.

The reoceurring functions and processes associated with the significantly, differentially

expressed proteins from the targeted analysis included:

e Intcractions with extracellular matrix
b 1 alli

e  MAPKsignalling

e Inflammation immunc systcm

The extracellular matrix (ECM ) surrounds cells in a tissue. It provides physical structure
and is involved in a range of biochemical processes, including differentiation and
homeostasis. The ECM is largelv made up collagen, enzymes and glycoproteins | 372 .
Changesin thebrain’s ECM have been associated with neurodegeneration and cell ECM
interactions and have been found to regulate transcription factors promoting apoptosis.
ECM matrix metallopeptidases have been implicated in increasing the inflammatory
response of microglia by activation of chemokines 373 . Specifically in Parkinson’s
discase, the ECM constituents glycosaminoglycans (GAGs have been found in Lewy
bodies, thus suggesting a role in the accumulation of alpha-synuclein 374 |. It has been
proposed that the GAGs may impede the degradation of alpha-synuclein by binding to

proteases that otherwise might have been purposed to degradeit| 375,376 |.

Mitogen-activated protein kinase (MAPK cascades are involved in a number of cellular

processes, including differentiation, inflammatory responses and apoptosis | 377 . MAPK

signalling has been implicated in neurodegenerative disease in a number of studies,
primarily suggested to contribute to neuroinflammation induced by astrocytes and

microglia 378].

In essence, the proteins detected in the targeted urine proteomics study point towards
increased levels of inflammation in the de novo PD patients. Neuroinflammation is a well-
known characteristic of the PD pathology where it is suggested to be part of a vicious and
sclf-feeding evele. As mentioned in the previous PD plasma protcomics chapter,
neuroinflammation is a protective response aiming to restore homeostasis in the central
nervous system. The response includes a range of inflammatory functions working to
restore/ maintain homeostasis, clearing damaged tissuc and targeting threats. However,
the protective system can start producing an uncontrolled response leading to the

destruction of healthy tissue and a state of chronicinflammation which eventually leads to
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necrosis of neurons and glial cells 157 In animal models of Parkinson’s disease,
neuroinflammation has been demonstrated to exert an important role in the disease
progression  379]. Links between ncuroinflammation and other  pathological PD
mcchanisms, including mitochondrial dysfunction and oxidative stress, have also been
found 380 |. There are even hypotheses suggesting that neuroinflammation is the cause
of ncurodegencration|[ 362 . Whether or not this will prove to be truc remains to be seen,
but what is undisputablc is that ncuroinflammation plays a crucially important role in the

PD pathology.

In this study, we found anumber of inflammatory markers upregulated in the de novo PD
patients. The most prominent being MAPK12, CCL2, MMP3 and [1.5. MAPK12 is one of
the p38 mitogen-activated protein kinases. The p38 pathway is activated by extracellular
stimulisuch as heat, osmotic stress, growth factors or inflammatory cytokines and there s
a strong association between p38 and inflammation. The activated pathway brings upon
the production of proinflammatory cytokines and is also involved in apoptosis 381 .
Studies have shown that CCL2 levels increase during neuroinflammation 382 and,
moreover, that CCL2 can activate the p38 pathway | 383 |. It has also been demonstrated
that dying neurons release, among others, MMP3 causing microglia to secrete toxic
compounds thus harming neighbouring cells| 384 |. IL5 has been reported to be released
by inflamed dopaminergic neurons | 385 . Put together, this paints a picture of a self-

amplifying loop of inflammation in the de novo PD patients.

As described in the plasma proteomics PD chapter, DKK3 is believed to activate the
Wit/B-catenin signalling pathway and provide protection for dopaminergic neurons. It
has been suggested that downregulation of Wnt signalling promotes dysfunction and or
death of dopaminergic neurons. Restoration of these neurons was shown in a mouse
study where B-catenin was activatedinsitu 313 . A mouse study showed re-expression of
Wnt1andrepair of dopaminergic neurons after neural stem cells were transplanted to the
substantia nigra of medically PD-induced mice [314]. The Wnt signalling pathway may
thus have the potential of restoring dopaminergic neurons’ function | 311 . Lere, we are
observing downregulation of DKK3 thus indicating reduced dopaminergic neuron

protection through the Wit signalling pathway.

Neurofilament medium is part of the Type IV intermediate filament family, also
containing NEFL and NEFIL The ncurofilaments are found in ncurons and arc part of the
cytoskeleton. When damage occurs in the central nervous system, neurofilaments are

rcleased from axons and migrate to CSF from which they later circulate into blood 386 .
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For this reason, neurofilaments are commonly used as indicators of neuronal damage.
Neurofilaments have been found elevated in Parkinson’s disease and Parkinsonian
disorders throughout a number of studics [ 344 . The observed upregulation of NEFM in
our study may thercfore reflect the central nervous system damage oceurring in the de

novo PD paticnts.

Figure 6-29 gives a summary of the proposed ongoing mechanisms in the de novo PD
paticnts based on the urinary protein expression from the targeted study. In conclusion,
these mechanisms consist of an inflammatory loop - continuously fuelling

neuroinflammation, upregulation of NEFM - indicating neuronal damage, and finally

downregulation of DKIK3 - proposed to reduce the protection of dopaminergic neurons.
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Figure 6-29. Proposcd inflammatory mechanisms based on the protein expression observed in the targeted
study of dc novo PD urine. The proteins are denoted by their gene names and the arrows indicate the direction of
expression inthe de novo PD patients compared to control. An inflammatory loop is suggested, with MAPK12 indicating
activation of the p38 pathway, causing the release of CCL2 and IL3, which then feedback and continuously activate the
inflammatory p38 pathway. MMP3 is secreted as neurons die, this increases the blood-brain barrier permeability and
causes a locally toxic environment, thus increasing neuroinflammation and causing further newrons to die. The
downregulation of DKK3 reduces the protection of dopaminergic neurons, thereby potentially accelerating the neuronal
cell death. NEFM indicates neuronal damage.

Lastly, there are a few limitations to consider in this experiment. Firstly, the sample size
should ideally have been larger in the discovery phase to allow for more certainty in the
interpretation of the results. However, it was argued in the discovery study that a deeper
coverage, through extensive fractionation, of the urinary proteins was desired and
therefore the number of samples had to be limited to curtail the risk of severe and
irrcparable instrumental drift. A sccond consideration is that the discovery study was
performed on advanced PD patients while the targeted study’s PD subjects had just been
diagnosed, there may thus be discrepancies due to treatment or disease duration that are
unaccounted for. Morcover, there wereno LRRIS2 mutation carriersin the targeted study,
therefore the putative LRRK2-specificbiomarkers could not be evaluated. The outcomes

of the iRBD patients are not yet known, thus we do not know which of the iRBD patients
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will develop Parkinson’s disease in the future. This would have provided a valuable disease
progression angle to the study and might also have allowed us to find a pre-symptomatic

protein expression pattern.

Asafinal remark, although our study showed highly interesting and promising results, our
findings will need to be evaluated in alarger study to test the reproducibility and to verify
the protein expression we observed. Itis however clear that urine holds merit as abiofluid
indiscovery studics of ncurodegencration and canbe uscful for exploring putative discasce

mechanisms.
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1

7.1 CORRELATION OF PROTEIN EXPRESSION IN
PLASMA AND URINE SAMPLES FROM PD

PATIENTS

The plasmaand urine samples which were included in the verification phasesin Chapters
5and 6 were paired, meaning that the individuals in the study provided both a plasma and
aurince sample. These samples consisted of newly diagnosed Parkinson’s discasc patients,
patients with iRBD, healthy controls, and a heterogenous group of individuals with other
ncurological disorders. The samples were analysed by the same explorative targeted assay
and thercfore provide an opportunity to directly compare the expression of the analysed

proteins in both matrices.

Reiterating the conclusions from the targeted de novo PD urine and plasma studies - in
the plasma study, the observed protein expression suggested that the de novo PD patients
had increased inflammatory response, increased unfolded protein response, and
disrupted Wnt signalling. In the urine study - the results suggested a self-amplifying
inflammatory cycle and, also here, disrupted Wnt signalling in the de novo PD patients.
Comparing the proteins detected in respective sample matrix of our targeted studies -
32 proteins were detected in plasma, and 59 proteins in urine. Out of these proteins,
26 overlapped between the matrices, leaving six proteins uniquely detected in plasmaand
33 proteins uniquely detected in urine. The masses of the proteins in Dalton (Da) were

extracted from UniProt 387

. The proteins are sorted by molecular weights and as canbe
noted, there is no systematic difference in the molecular weights of the proteins detected
in the different matrices. Similar findings have been reported in studies of the molecular
weights of proteins from plasma and urine from individuals without renal dysfunction

388

discovered inboth plasmaand urine.

. Table 7-1 shows the proteins discovered uniquely in cach matrix, and the proteins

Table 7-1. The proteins uniquely detected in the targeted analysis of de novo PD plasma and urine samples, and
the proteins detected in both matrices. e proteins are denoted by gene names and the molecular masses ‘Da i are
givenin parentheses after each protein.

Unique in plasma Common between plasma and urine Unique in urine
SAAT (13532) FABP5 (15164) BCHE (68418) CCL4 (10212) PLAU (48507)
ADIPOQ (26414) CST3 (15799) HSPATL (70375) CCL17 (10507) MMP3 (53977)
GRN (63544) PTGDS (21029) HSPA5 (72333) CCL2 (11025) HSPD1 (61055)
SELE (66655) SPP2 (24338) MASP2 (75702) TXN (11737) ATIC (64616)
PRG4 (151061) SOD3 (25851) VCAMI (81276) CYCS (11749) MSN (67820)
LMO?7 (192696) APOE (36154) FGA (94973) IL5 (15238) HSPA8 (70898)
DKK3 (38390) ITIH2 (106463) EPO (21307) UBC (77039)

PGK1 (44615) A2M (163291) FGF21 (22300) CAPN2 (79995)
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Unique in plasma Common between plasma and urine Unique in urine
SERPINA3 (47651) C3(187148) DCXR (25913) HSP9OAB1 (83264)
TUBA4A (49924) PGAM1 (28804) APP (86943)
HPX (51676) TOLLIP (30282) NCAM1 (94574)
SERPINF2 (54566) IL1B (30748) NEFM (102472)
PLD3 (54705) TNNT3 (31825) NLRP3 (118173)
SERPING 1 (55154) ANXA2 (38604) TEK (125830)
ICAM1 (57825) MAPK12 (41940) COL4A2 (167553)
PKM (57937) NDRG1 (42835) COL6A3 (343669)
PPP3CB (59024) SERPINA1 (46737)

The proteins detected in both matrices were investigated for a linear relationship using
Pearson correlation. Significant positive correlations were identified in MASP2, APOE,
BCHE, PTGDS and ICAM1. CST3 demonstrated a significant negative correlation, the
protein expression in urine decreasing with increasing expression in plasma. Figure 7-1
shows the Pearson correlation coefficients for the proteins identified in both plasma and

urine.
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Figure 7-1. Pearson correlation between plasma and urine protein expression. The significant correlations are
represented by filled bars and the non-significant by striped bars. The proteins with negative correlation coefficients
were negatively correlated between the matrices, while the proteins with positive correlation coefficients were positively
correlated.

As mentioned in Chapter 6, roughly 307 of the proteins found in urine originate from
blood where they are filtered from plasma through the kidney | 316,317 |, however, there is
limited scientific literature describing the correlation between the protein expression in
plasmaand urine. A study specifically investigating the levels of inflammatory cytokinesin
urine and plasma found poor correlations between the matrices and concluded that the

protein levels in urine and plasma were largely independent of each other 389 |. Another
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study related urine and plasma proteomics and hypothesised that plasma, urine, and the
kidney could be considered as a system where plasma is the input and urine the output
with the kidney as the process midpoint. The authors suggested that the function of the
kidney may be deseribed as a black box where certain proteins are blocked, permitted to
pass, or secreted | 388 . Moreover, a study from 2014 of existing plasma, urine and kidney
protcomic datascts found that the correlation between the plasmaand kidney protcomes,
and the urinc and kidney protcomes, were greater than the corrclation between the

plasmaand urinc protcomes 390 .

Investigating the cellular locations of the proteins identified in the matrices, the proteins
uniquely discovered in plasma and urine, and the common proteins identified in both
matrices, were analysed utilising Ingenuity Pathway Analysis and the cellular locations
were extracted. The results from the IPA search are shown in Figure 7-2. The proteins
uniquely identified in plasma were categorised as originating from the extracellular space,
and one from the cytoplasm. The largest proportion of the proteins identified in both
urine and plasma were classified as originating from the extracellular space, and to alesser
degree from the plasma membrane and cytoplasm. In the proteins uniquely detected in
uring, the distribution of proteins suggested to originate from the extracellular space and

the cytoplasm were relatively equally distributed.
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Houw do the different proteomic studies relate to each other and what additional

DETECTED IN PLASMA DETECTED IN URINE AND PLASMA DETECTED IN URINE
32 proteins, 6 unique 52 proteins 59 proteins, 33 unique

ADIPOQ: 1

Extracellular space

Plasma membrane

ﬁﬁcv_ asm

MNucleus

Figure 7-2. Venn diagram of the proteins detected in plasma and urine, and the proteins detected in both matrices. (=) unigue to plasma, (m ) detected in both plasma and
urine, and (m) unique to urine. The cellular locations of the proteins (represented by gene names) were generated form Ingenuity Pathway Analysis. The proteins were classified as
originating from the extracellular space, the plasma membrane, the ¢ytoplasm, or the nucleus. The arrows indicate if the protein was up- or down-regulated in de novo PD patients
compared to healthy controls. FDR adjusted p-value significances are denoted by asterisks, where *** p < 0.0001 ***p < 0.001, ™ p< 0.0L *p < 0.05, and NS = not significant.
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The significantly differentially expressed proteins from the targeted urine and plasma
studies were visualised ina network created in Cytoscape | 330 | where the proteins were
modeclled according to p-valuc significance and fold changes, in their respective studics,
for de novo PD, iRBD and other ncurological disorders versus healthy controls. As
demonstrated by the network in Figure 7-3, DKK3 and SPP2 had the same direction of
expression change between controls and de novo PD patients in both the urine and
plasma studics, with DKI3 bcing downregulated in the PD patients and SPP2
upregulated. Four other proteins were detected and significantly differentially expressed
between PD patients and controls in the two matrices, with fold changes in opposite
directions - these proteins were PPP3CB, HSPAI1L, SERPINA3 and SERPINF2. In the
comparison of patients with other neurological diseases and controls, CST3 was
identified in both matrices — downregulated in OND patients’ urine and upregulated in

their plasma.
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Figure7-3. Network representation of the results from the targeted study of urine and plasma from the analysis
ofhealthy controls,de novo PD,iRBD and other neurological disorders. 1Ve network shows the proteins which were
significantly different when comparing the patient groups to healthy controls in their respective matrix. The line width
represents the p-value significance, wider linewith higher significance, and line colour represents up- or downregulationin
the patient groups, with = downregulated, and m upregulated.

The reasonfor the expression differences between the two matrices isa complex question
and further experiments, specifically aimed at disentangling this explicit query, would
have been neeessary to determine the reasons and the mechanisms responsible for the
divergence. Cystatin C (CST3 has been utilised as a marker of renal damage and there is
literature describing the relationship between its expression in plasma and urine. A study

of acute kidney injury in rats found changes in urinary CST3, however this was not
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replicated in plasma CST3 levels 391]. No specific studies relating the levels of the

remaining four proteins in urinc and plasma could be identified in the literature.

The main findings from the studics do not necessarily contradict cach other, and it is of
great valuc to complement the plasma study with the lower abundant protcins identified
inurine. Theidentification of CCL2and MAPK12in urine make valuable contributions to
the set of proteinsidentified in plasma and it is further interesting that downregulation of
the Wit signalling promoter DKK3, which was the major finding in the plasma study, was
also observedin urine. Poor correlation between plasma and urine protein expression has
been reported previously and thus does not invalidate the findings. The reason for the
discrepancy between the two matrices may be due to the kidney’s filtering system,
however - this can only be speculated, and further studies would need to be performed to
fully understand the inverse expression observed for the proteins CST3, PPP3CB,
HSPA1L, SERPINA3 and SERPINF2in the matrices. We suggest that both biofluids have
merit and that they complement cach other in terms of the proteins that can be detected

in cach matrix.

1
9

7.2 TARGETED DENOVO PD PLASMA STUDY
COMPARED TO TARGETED CENTENARIAN
PLASMASTUDY

In this thesis, two targeted studies were performed utilising plasma samples and the same
analytical mass spectrometric method described in Chapter 2, section 2.9. The
centenarian study from Chapter 4 sought to find markers of healthy ageing and longevity
by comparing centenarians to controls and centenarian offspring. In Chapter 5, the aim
was to find blood-based biomarkers for Parkinson’s discase by studying the protein
expression in newly diagnosed PD patients, healthy controls, patients with iRBD, and a
positive control group consisting of patients with other, non-PD, neurological disorders.
The comparison of these two cohorts is noteworthy as age is the greatest risk factor of
developing Parkinson’s disease. The centenarians included in our study did not exhibit
marked cognitive decline or overt signs of neurodegeneration, therefore, we hypothesised
that the resolution and interpretation of the two studics could be improved by comparing
the protein expressions from the two plasma studies and thus posed the following

questions:

o Dothe Parkinson’ disease patients exhibit any signs of accelerated ageing?

o Dothe centenarians demonstrate a protein expression indicating less susceptibility to
neurodegeneration and neuroinflammation?
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Theproteins DKIX3, PPP3CB,SPP2and SELE were not detected in the centenarian study
and SERPINA1 was not detected in the de novo PD study, therefore no additional
information couldbe extracted for these proteins by the comparative analysis. The rcason
for the failure to quantify these proteins was duc to technical challenges, with levels below
the limit of detection, and severe retention time drift for SERPINA1 in the de novo PD
study. Out of the 33 protcins identificd and quantificd in the targeted protcomic studics,

28 proteins were successtully quantified in both.

Reiterating the conclusions from the two targeted plasma studies, in the centenarian
study it was proposed that the expression of the proteins could be divided into three
groups; one group with protective functions and connections to longevity, one risk group
related to ageing and increased risk of mortality, and one pleiotropic group including
proteins that related to both risk and protective functions. The proteins and their

expressionin the centenarians were divided into these groups as follows:

e Protectiveand assumed linked to longevity: A2M (1), ADIPOQ(1),SOD3(1),C3
1,PKM/ | andITIH2(|

e Riskandassumedlinked to ageing risk of mortality: SAA1 (1), MASP2 (1), VCAM1
1,ICAMI (1), SERPINF2( | and BCHE (|

e Pleiotropic: PTGDS, CST3, SERPINA3, FABPsand PRG4

In the de novo PD study, the major conclusions were that the PD patients demonstrated
disrupted Wit signalling as demonstrated by lower levels of DKK3 and PPP3CB,
increased complement-mediated inflammation, increased unfolded protein response as
indicated by clevated levels of 1SPA3 and HSPA1L, and decreased neuroprotection

through lower levels of GRN.

As discussed in Chapter 4, the centenarian study is limited by the lack of suitable controls.
It was here hypothesised that by comparing the protein expressions from the two studics,
it could be possible to tease out which proteins were related to normal ageing  the control
samples), pathological ageing (the PD, iRBD and OND samples), and longevity (the
centenarian samples . Since the targeted assay was sct up as an explorative rather than
absolutcly quantitative assay, the possibility of dircet comparisons between different
analytical runs has limitations. Moreover, the assay was not subjected to any validation
procedures, it is therefore not known how stable the peptides are over time, or how much
diffcrent collection centres, sample collection procedures, temperature and time of

storage affect the results. With this in mind, some caution needs to be taken when



How do the different proteomic studies relate to each other and what additional
information can be gained by comparing their results?
comparing the different sample cohorts directly as unknown factors may affect the results

and thus lcad to crroncous interpretations.

7.2.1 Indirect comparison of the protein expression in the studies of
centenarians and newly diagnosed PD patients

Initially, the results from the two studies were compared indirectly by investigating their
individual expression profiles to each other. In both the centenarians and the de novo PD
paticnts, the protcins A2M, ADIPOQ), PTGDS and SERPINA3 were upregulated at a
significant level when compared to their respective control groups. None of the proteins
were significantly downregulated in both studies. Interestingly, a few proteins
demonstrated differences in expression between the two studies. C3 and SERPINF2
were  significantly upregulated in the de novo PD patients and significantly
downregulated in the centenarians, while MASP2 was significantly upregulated in the
centenarians and significantly downregulated in the de novo PD patients. Morcover,
several proteins were strongly up-or downregulated in one of the studies while expressing
no difference in the other study. The results from the comparison of centenarians to
offspring/control, and of de novo PD patients to healthy controls are presented as a
network in Figure 7-4, showing fold change direction and p-value significance level of each

protein.
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How do the different proteomic studies relate to each other and what additional
information can be gained by comparing their results?

7.2.1.1  Diverging protein expression between centenarians and newly
diagnosed PD patients

The diverging expression of C3 between the de novo PD patients and centenarians when
compared to their respective controls supports the conclusions drawn in Chapters 4 and
5, suggesting inflammation and complement activation in the de novo PD and iRBD
paticnts, whilc in the centenarians the downregulation of C3 is suggested to constitute
part of a protective expression contributing to reducing complement mediated

inflammation in the centenarians.

SERPINF2 was found upregulated in the de novo PD and iRBD patients, while
downregulated in the centenarians. As mentioned in Chapter 4, SERPINF2 is known to
decrease with age, thus it is y = 0.7822x-0.0122

_ R? = 0.6007
conceivable  that  the lower

SERPINF2 levels observed in the

o o
c Q0 ..~
centenarians are mainly relatedto 2 o
2 6] °
their advanced age. However, this 3
[0
explanation does not account for g
. g 5
the incrcased SERPINF2 levels £ 8
™~
[
observed in the de novo PDand £
o
L
w

iRBD  patients compared to

healthy controls. DNA

C3 (normalised abundance)

] . - 4l Bl D 1 ac - - .
mcthylation of SERPINF2 has Figure 7-5. Corrclation between C3 and SERPINF2 in the
targeted plasma protcomics studics of centenarians and newly
diagnosed PD patients. The correlation between the normalised

302 but a recent studv of abundance of the proteins is shown.

SERPINF2methylationin Parkinson’s disease found no differences between PD patients

beenlinked to Alzheimer’s discase

and healthy controls thus suggesting that epigenctic changes in the gene are not related to
PD pathology 393 . SERPINF2 is involved in the clotting cascade where it is a major
inhibitor of plasmin, which is responsible for breaking down fibrin clots and several other
plasma protcins. Thus, upregulation of SERPINF2 could be hypothesised tobe correlated
with increased blood clotting, and lower levels with decreased ability of clotting.
Moreover, it is well-known that interplay exists between the clotting and coagulation
cascadces, thus suggesting that they may modulate cach other’s activity | 394 . In our data,
wefoundastrong positive correlationbetween C3and SERPINF2 withan R2 valuc of 0.6
(Figure 7-5), thereby suggesting that the two proteins co-vary in our studies and indicate
an ovcrall clevated state of inflammation in the de novo PD and iRBD paticents, and lower

levels of complement-mediated inflammation in the centenarians.
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The downregulation of MASP2 in the de novo PD patients and upregulation in the
centenarians was inverse to the expression of C3 in both studies. In the complement
cascade, MASP2 cancleave C2and C4and produce C3[ 395 . It couldbe hypothesised that
MASP2 is being consumed during activation in the Lectin pathway in the de novo PD
patients,but without performing functional studies to explore thisinverse relationship, no

certain conclusions can be drawn.

7.2.1.2 Converging protein expression in centenarians and newly diagnosed
PD patients

The proteins ADIPOQ, A2M, SERPINA3 and PTGDS were upregulated in both the de

novo PD patients and the centenarians when compared to controls. Upregulation of

ADIPOQ and A2M was proposed to contribute to a protective protein expression in the

centenarian study, whereas SERPINA3 and PTGDS were categorised as belonging to the

group of pleiotropic centenarian proteins.

A2Mand ADTPOQ act anti-inflammatory, albeit through different mechanisms. A2Misa
protease inhibitor, known to reduce inflammation in cartilages and is therefore used as a
treatment against arthritis 200 |. ADIPOQ) is known to be a systemic anti-inflammatory
factor and elevated levels are associated with lower body-mass-index, reduced risk of
diabetes, cardiovascular disease, and an overall inverse correlation has been reported
between ADIPOQ) and inflammatory markers 396 . In the centenarian study, it was
stipulated that elevation of A2Mand ADIPOQ contributed to the centenarians’longevity.
A2M has been identified as a component of both Lewy bodies in PD and senile plaques in

AD 397]. This connection has led to numerous studies of A2M’s involvement in the two

diseases and at least one A2M gene polymorphism has been suggested to be associated
with PD 398 . Upregulation of A2M in AD is proposed to aid in the solubility of senile
plaques, thus alleviating the effect of the discase. It is possible that a similar mechanism
could occur in the Lewy bodies of PD, although no study proving this was encountered.
The role of ADIPOQ in neurodegenerative discase has been investigated but remains
poorly understood. A review from 2020 concluded that although ADIPOQ may be
involved in various protective mechanisms in the brain, its function remains largely
unknown. Some studies have found the protein upregulated in neurodegenerative disease
while others have found it downregulated. In PD, it has been suggested that ADIPOQ
could play a rolc in lipid rafts and may allow for diffcrentiation between alpha-

synucleinopathicsand PSP 399 .
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SERPINA3, upregulated in both centenarians and newly diagnosed PD patients when
compared torespective controls,isa protease inhibitor and a positive acute phase protein.
SERPINA3Z has been implicated in AD and PD, where variants have been identified in
paticnts| 400 . SERPINA3 has also been correlated with ageing, where it has been found
upregulated with age in the brains of healthy aged individuals compared to younger
controls. This study morcover found that SERPINA3Z was uprcgulated in brains from

patients with neurodegeneration compared to healthy controls of the same age

401 .

PTGDS was upregulated in the centenarian and PD groups when compared to their
respective controls. As mentioned in Chapter 4, PTGDS is an inhibitor of platelet
aggregation and has been suggested to enhance the anti-inflammatory action of
astrocytes in the brain together with the PD-related gene DJ-1. Moreover, a study of
PTGDS-immunoreactive isoforms found them to appear in many neurodegenerative

disorders, including PD. The same study found no differences in the PTGDS-isoforms

over anage-range of 19 to 97 vears | 402 .

7.2.2 Direct comparison of the centenarian and de novo Parkinson’s
disease patients

As stated previously, comparing studies run at different time points from a non-validated
assay requiresafairamountof caution toavoid interpreting eventual technical aspects not
accounted for as biological variation. Aiming to compare the two studies directly, the
normalised data from the two plasma studies were initially z-scored to equalise the
variances and centre the averages around zero. The reason for doing this was to remove
the effect of small differences in intensity of the variables measured in the two studies,
which might otherwise have affected the interpretation. Non-age and sex adjusted data

from both studics were utilised.

The data were initially modelled by PCA to obtain an overview of how the groups
compared to cach other. The PCA score plot is shown in Figure 7-6. As demonstrated by
the plot, the control and offspring samples from the different studies distributed close to
each other, while the PD and other neurological disorder patient samples distributed
closer to the centenarians. The iIRBD patient samples were located between these two

major clusters.
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Figure 7-6. PCA scores from the z-scored centenarian and de novo P studics modclled together. Principal
components1and 2t 1;andt 2]) areshown. it is demonstrated that the control and offspring samples fromthe two studies
cluster, while the centenarians, PD and other neurological disorder patients distribute close to each other. The iRBD
patient samples are found between the two major clusters.

In conclusion, the initial PCA suggested that there was a shared protein expression
between the control and offspring samples from the two studies and that the
centenarians, PD patients and other neurological disorder patients had a degree of

similarity in protein expression.

Investigating differences between the two centres, the full dataset was modelled by
OPLS-DA, with centre (Bologna versus Gottingen ) set as the dependent variable. The
model was non-significant (p - 1), thereby demonstrating that no large, overall centre-to-
centre differences existed between the two studies. Next, the offspring samples and
controlsfrombothstudies were comparedinan OPLS-DA. This model proved significant
(p = 5E), thus demonstrating that there was a difference between the control samples
from the two studies. The Gottingen controls were attributed with higher levels of GRN
and ICAM1, while the Bologna controls had higher levels of SERPINF2, C3 and
SERPINA3, among others. No expression differences could be detected for the proteins
ADIPOQ, SOD3, PLD3, A2M, FABP5, APOE, FGA, SAA1, PTGDS, VCAM1, CST3,
L.MO7 and MASP2. The reason for the differences between the controls from the two
centres cannot be explained by any known factors in the studics and may thereforebe due
to technicalaspeets such as differences in sampling, fasting duration, frecze-thaw cycles or

storage duration, or other unknown factors.
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The centenarians and the newly diagnosed PD patients were compared in an OPLS-DA
model. This model was significant (p 2.7 1512 and demonstrated that the centenarians
had significantly higher levels of CST3, PTGDS, VCAM1 and ICAM1, while the PD
paticnts had significantly higher levels of TIPX, PRGy, PIKM, ITII 2, BCIIE, C3 and
SERPINF2. The remaining proteins did not express any difference between the two
groups. The protcins not expressing a difference between the two groups arce of special
intcrestas they may pinpoint proteins which couldindicate potentially aceclerated ageing
in the PD patients. To investigate this, the non-differentially expressed proteins from the
PD versus centenarian OPLS-DA model were extracted. The proteins differentially
expressed in OPLS-DA models between PD and controls, and centenarian versus
controls offspring were moreover extracted. The rationale behind the selection was that
proteins demonstrating no difference between centenarians and PD patients, but a
difference when comparing PD patients and centenarians to their respective controls,
may indicate accelerated aging in the PD patients or other common mechanisms between

the two groups. The proteins were illustrated ina Venn diagram ( Figure 7-7 .

NO DIFFERENCE BETWEEN DE
(A) Different expression in centenarians versus controls, NOVO PD AND CENTENARIANS

but not between centenarians and PD patients

(B) | Different expression between centenarians, PD
patients and their respective controls, but no

d.rlflerrme between centenarians and PD SAAl APOE
patiens LMO7 PLD3
(C) Different expression between PD patients SOD3 FABP5

and controls, but no difference between PD
patients and centenarians, or between
centenarians and controls

A\ GRN
(D) Difference between centenarians and \A) PGK] ((lT)) (C)
controls, and between PD and (B)
controls (1) MASP2 HSPATL (1)
HSPAS (1)

(1) A2M (1) TUBA4A (1)
(1) ADIPOQ (1) FGA (1)
(1) SERPINA3 (1)

(1) SERPING1 (1)

(1) CST3 (1) HPX (1)
(1) PTGDS (1)
(1) VCAMI (1)
(1) SERPINF2* (1)
(1) ITIH2* (1)
(1) €3* (1)

DIFFERENCE BETWEEN CENTENARIANS D)
AND CONTROL/OFFSPRING PD AND CONTROL

Figure 7-7. Venn diagram of the proteins from discriminant OPLS-DA analyses expressing no difference
between centenarians and PD patients, and of the proteins expressing a difference in the comparison of PD
versus control, and centenarians versus control. Difference centenarians/controls (), difference PD/controls (m),
and no difference centenarians/PD (w ). Direction of change in the centenarians and PD patients compared to their
respective controls is represented by red arrows on the left for the centenarians, and blue arrows on the right for the PD
patients. The proteins which did not change in the same divection in the PD patients and the centenarians are denoted by
an asterisk after the gene name.
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The Venn diagram demonstrated the following:

o Vennregion A: MASP2 was upregulated in the centenarians but demonstrated no
difference between PD patients and centenarians,and alsono difference between
PDand healthy controls. This regionis proposed as not being related to a protein

expression relevant for PD.

e Venn region B: Four protcins were common in the three comparisons (A2M,
ADIPOQ), SERPINA3 and SERPING1 ), expressing no difference between the
PD patients and the centenarians, but a difference between the groups when
compared to their respective controls. These proteins are strongly related to
accelerated ageing in the Parkinson’s disease patients, or to another common
factor with the centenarians which would differentiate the protein expression
between PD patients and healthy controls.

e Vennregion C: Theproteins differentially expressed between PDand controls, but
not between PD and centenarians, or between centenarians and controls were
GRN, PGK1, HSPA1L, HSPA3, TUBA4A and FGA. These proteins are suggested
to be related to Parkinson’s disease but not longevity in the centenarians

e Venn region D: The proteins differentially expressed between PD and controls,
and between centenarians and controls, but also between centenarians and PD
patients, were CST3, PTGDS and VCAM1 - all upregulated, and SERPINF2,
I'TTH2 and C3 - downregulated in the centenarians and upregulated in the PD
patients. These last three, diverging proteins may therefore differentiate between
an expression related to longevity or extremely advanced age in the centenarians
compared to the Parkinson’s patients, or to mechanisms unique for the PD
patients.

The four proteins identified in Venn region B as putatively indicating accelerated ageing
in the PD patients, or describing other common mechanisms between the two groups,
were input to DAVID Bioinformatics Resources 6.8 and the GO terms were extracted.
Although the number of proteins used for enrichment annotations were few and thereby
limiting the interpretability of the analysis, the GO annotations still provide insightsabout
the pathway involvement and processcs of the proteins. As demonstrated by the GO
enrichment p-values, platelet degranulation was the most significant biological process
(FDR p  0.007 . Platelet degranulation encompasses the release of compounds from
granules within platelets. The granules contain a plethora of different molecules, both
mctabolites and proteins, and arc scereted in response to vascular and endothelial injury

and to regulate immune response 403, 404 . Platelet alteration has been studied in
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relation to neurodegenerative disease and it has been suggested that alternative platelet
activation pathways may be associated with brain function 405|. Platelets have been
reported to deercase in count but inercasc in reactivity after the age of 70. It is suggested
that the platclet activation in aged individuals may partially be driven by an upregulation
of reactive oxygen species and that thatincreased platelet activity couldbe associated with
age-related discases such as cardiovascular discase, ncurodegencrative discases and an
overall clevated inflammatory state [ 406 |. The common expression of proteins related to
platelet degranulation between PD patients and centenarians thus provides a plausible
indication of an clevated state of inflammation in the two groups - in the centenarians

caused by ageing, and in the Parkinson’s disease patients related to disease.

SERPINF2 and C3 from the three between-group diverging proteins in Venn region D
were discussed previously insection 7.2.1.1, where it was concluded that the lower levels of
SERPINF2 in the centenarians are likely due to their extremely advanced age, and that
downregulation of C3 in the centenarians may be part of a longevity-promoting protein
expression, protecting the centenarians from the detrimental effects of excessive
complement-mediated inflammation. As mentioned in Chapter 4, ITIH2 has been
reported to decrease in expression with older age (178, thus correlating with our
observation in the centenarians. The upregulation of C3 observed in the Parkinson’s
discase patients was stipulated to contribute to increased levels of inflammation in
Chapter 5. In section 7.2.1.1, we showed a positive correlation between C3and SERPINF2
and concluded that this could suggest an overall increased inflammatory state in the PD
patients. Unlike the vastmajority of the significant proteins, I'TIH2 was found upregulated
in the PD patients in the OPLS-DA model only, and not in the FDR-adjusted univariate
analysis, signifying thatalthough I'TIT12 contributed to the OPLS-DA separationbetween
PD and controls, its difference between the two groups may be subtle. ITITH2 was also
found upregulated in the pre-PD twins in the discovery study performed in Chapter 3.
I'TTH2 hasbeen suggested to be involved ininflaimmation[ 407, although its potential role

in Parkinson’s disease pathology remains unexplained.

Returning to the questions posed in the beginning of the section:

o Dothe Parkinson’ disease patients exhibit any signs of accelerated ageing?

o Dothe centenarians demonstrate a protein expression indicating less susceptibility to
neurodegeneration and neuroinflanimation?

It cannot be proven beyond doubt that the Parkinson’s disease patients exhibit signs of

accclerated ageing. Their protein expression does however indicate that they have

increased levels of inflammation. Inflammation is also indicated in the centenarians, albeit
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not by an expression of identical proteins. The downregulation of the central
complement protein C3 implies that complement-mediated inflammation is not present
in the centenarians, while upregulation in the PD patients suggests that it is present in this
group. Given the poteney of the complement system, this downregulation in the
centenarians may offer protection from the detrimental effects an uncontrolled
complement-responsc can causc. In order to be able to elucidate any eventual aceclerated
ageing caused by ncurodegencration in the Parkinson’s discasc paticnts an additional,
well-defined, group of patients with advanced Parkinson’s disease or another

neurodegenerative disease, such as Alzheimer’s disease, shouldideally have beenincluded.

7.3 SUMMARY AND CONCLUSIONS

The comparison of the protein expression in plasma and urine from section 7.1 showed
that the correlation between the two matrices was poor for the majority of the proteins.
Although scientific literature on the subject was found limited, the lack of co-expression
between the matrices in our study correlated with other studies. Thus, the plasma and
urine studies were seen as complementary to each other, urine having the advantage of

allowing for a greater protein coverage due to aless complex sample matrix.

In the comparison of plasma from centenarians and newly diagnosed PD patients, it was
found that the two groups shared upregulation of four proteins when compared to their
respective control samples. These proteins were A2M, ADIPOQ, PTGDS and
SERPINA3. Moreover, an analysis of the proteins demonstrating no difference between
centenarians and de novo PD patients, in conjunction with the proteins differing in cach
group when compared to their own controls highlighted upregulation of the proteins
A2M, ADIPOQ, SERPINA3and SERPING1. This group of proteins is thus hypothesised
to represent a shared expression between centenarians and PD patients, different from
controls. Enrichment analysis suggested that platelet degranulation could be an affected
pathway, including the proteins A2M, SERPINA3 and SERPING1. Although no certain
proof of accclerated ageing could be determined in the de novo PD patients, both the

centenarians and the PD patients exhibit a protein expression suggesting inflammation.
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8.1 DISCUSSION

8.1.1 A brief background and summary of the studies presented in this
work

Parkinson’s discasc is the sccond most common ncurodegenerative disorder and affects
approximatcly 12 of the population after the age of 65,and 3/ after theage of 8590 . The
disease phenotype is highly heterogenous but commonly manifests as tremor, and stift
and slowing movement, and also apathy, anxicty and depression [ 95 ]. The majority of the
cascs arc idiopathic, without any known gencetical component and advanced age is
recognised as the most important risk factor for non-hereditary Parkinson’s disease.
Although tremendous efforts have gone into finding PD specific biomarkers they remain
clusiveand thus, the diagnosisis sct clinically witha misdiagnosisratcupto 242[ 408 . The
most common misdiagnosis is confounding with other parkinsonian disorders such as
progressive supranuclear palsy, multiple system atrophy and Lewy-body dementia, to
mention a few. The misdiagnosis frequency is generally higher in the carly stages of
disease 408,409 . Given therelatively late display of symptoms, diagnosisis oftensetata
relatively advanced stage of the disease, when a large proportion of the dopaminergic
neurons have already been lost. It is therefore imperative to find a way of diagnosing
patients carlier and with increased accuracy. It was in this context the experiments

presented in this thesis were carried out.

The overall aim was to identify specific proteins which were differentially expressed
between PD patients and healthy controls. Utilising untargeted mass spectrometry, we
performed three discovery studies in individuals not yet diagnosed with PD, and in
patients with PD: two blood-based and one in urine, and additionally one blood-based
study of cognitively healthy centenarians. The PD patient studies were aimed at
identifving potential biomarker targets, and the centenarian study at discriminating
between proteins related to longevity and normal ageing. The discovery studies
concluded that a number of proteins were altered in the PD patients and in the
centenarians, and also suggested that several pathways — the majority related to
inflammation — were affected. Table 8-1 shows the top cariched pathways for cach

discovery study and the proteins sclected for targeted analysis.



Final discussion, conclusions and future work

264

Table 8-1. Toppathways,andprotcinssclected for targeted verification based on the results from the discovery
analysis of PD patients and centenarians versus controls. Tte pathways in which up- or downregulation were
determined are denoted by 1 for upregulation and |, for downregulation. In the cases up- or downregulation could not be
determinedonasignificantlevel anasterisk ™ has beenadded. The pathwayswhichweresignificantly enriched, but where
up-or dozwnregulation could not be established are denoted by §. The proteins are annotated by gene names.

Discovery study

Top enriched pathways

Proteins selected for targeted
analysis

Newly diagnosed, treatment-
naive PD patients and healthy
controls (plasma)

Homozygous twin pairs,
discordant for developing PD
4.6 = 1.7 years from the time
of sampling (serum)

Idiopathic PD patients,
symptomatic and asymptomatic
LRRK2 mutation carriers, and
healthy controls (urine)

Cognitively healthy
centenarians and healthy
controls (plasma)

Complement system?, acute phase
response signalling®, glucocorticoid
receptor signalling’, ER stress pathway?,
superoxide radicals degradation®

Rheumatoid arthritis®, bladder cancer
signalling®, Wnt/B-catenin signalling?,
prostanoid biosynthesis®, osteoarthritis
pathway®

LXR/RXR activation (1*), FXR/RXR
activation®, 14-3-3-mediated
signalling®, apoptosis signalling (1),
axonal guidance signalling®

Acute phase response signalling (1*),
LXR/RXR activation (1), complement
system (1%), FXR/RXR activation®,
coagulation system (1*)

ANXAT, GOLMT, HSPAS, NRP1,
UHRF1BP1TL, SERPINA3, PRG4,
DKK3, C150rf62, SPP2, BCHE,
TNNT3, CSFIR, MMP3, PTGDS,
ITIH2 and NCAM1

RAGNAPT, TUBA4A, MAPK12,
APOE, FGA, HSPAS8, PPP3CB,
PLAU, COL4A, THY1, CYCS,
CTHRCT1, ATIC, CAPN2, DKK3,
EFNAS, ENDOU, HBET, MASP2,
MUC5B, NDRGT, SOD3 and
TOLLIP

A2M, ADIPOQ, CST3, CTHRCT,
FGA, HBE1, PTGDS, SOD3,
CSF1R, DKK3, PKM, SAATand
SERPINAT

In the targeted validation phase, the 45 proteins from the discovery studies were

developed into a targeted test where several inflammatory proteins from the literature

were also included. Here, three studies were performed - one in plasma from newly

diagnosed PD patients,onein urine fromnewly diagnosed PD patients, and one in plasma

from centenarians. All targeted studies were matched with controls. In the PD studies,

iRBD patients and patients with other (non-PD neurological disorders were moreover

included. In the centenarian study, an additional group of centenarian offspring samples

were included. Table 8-2 summarises the top ten significantly altered proteins from each

study, and also the major findings.
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Table 8-2. Top tenaltered proteins, based on p-value significance, and major findings from the targeted analysis
of plasma from centenarians, and urine and plasma from newly diagnosed PD patients. 1 indicates upregulation,
and |, indicates downregulation in PDjcentenarians compared to respective controls. The proteins are denoted by gene
names.

Targeted study Top ten altered proteins Maijor findings

Centenarians,
offspring and

control (pla

De novo PD,

iRBD, other

neurological
disorders and

PTGDS (1), CST3 (1), VCAMI (1),
SERPINF2 (J), BCHE (1), ITIH2 (1),
sma)  PKM (1), A2M (1), SERPINA3 (1) and

PRG4 (])

GRN (1), DKK3 (}), C3 (1),

PPP3CB (}), HPX (1), SERPINF2 (1),
SERPINA3 (1), SERPING1(1), SELE ({)
and HSPA5 (1)

e Indication of increased inflammation in the

centenarians

Protection against oxidative stress?
Reduced complement mediated
inflammation?

Predictive SVM/LDA machine learning
models classified samples as PD and control
with 100% accuracy

Indication of increased inflammation in the

control (plasma) PD patients

e Suggested involvement of Wnt signalling and
unfolded protein response

De novo PD, ICAMT (1), CCL4 (]), TNNT3 (1), e  Predictive LDA machine learning model
iRBD, other SPP2 (1), COL6A3 (1), NEFM (1), classified samples as PD and control with
neurological UBC (), PGAM1(]), SERPINF2 ({) 85.1% accuracy

disorders and and CAPN2 (1) .

control (urine)

Indication of increased inflammation in the
PD patients

e Upregulation of NEFM suggests neuronal
damage

In summary, the explorative targeted study verified several proteins identified in the
discovery phase. In the centenarian plasma study A2M, ADIPOQ, CST3, PTGDS, PKM,
SAA1and SERPINA1were confirmed altered with the same expression directionasin the
discovery study. In the PD plasma study, HSPA35, SERPINA3 and SPP2 were altered in the
same direction as in the discovery study while DKI3 and PTGDS were significantly
differentially expressed in the opposite direction compared to the discovery study. In the
PD urine study, MAPK12, PPP3CB, CAPN2 and NDRG1 were confirmed, while DKIK3
was expressed in the opposite direction compared to the discovery study. Apart from
these confirmatory proteins, several others were also found differentially expressedin the

targeted study. Below, the findings from our studies will be discussed.

8.1.2 Inflammation in early Parkinson’s disease and ageing

Signs of clevated inflammation were identified in the plasma from centenarians, with
higher levels of several pro-inflammatory proteins compared to controls. In the PD
patients’ plasma, the central complement cascade protein C3 was strongly upregulated
(p = 1.7 E9), thus indicating complement activation. C3 is a central molecule in the
complement cascade; it is formed regardless of the initiating pathway (classical,
alternative or lectin ). The involvement of complement in neurodegenerative disease is

not a new concept but has been identified in several studics. In Parkinson’s discasc,
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complement activation has been associated with the formation of Lewy bodies, where
also deposits of iC3b and C9 have been identified| 297 |. Region-specific neuron loss and
cognitive decline were reported decercased in a C3 knockout study of mice 410 .
Morcover, C3 hasbeenidentified to be involved in the complement-mediated climination
of redundant synapses in the central nervous system, a necessary process, but one that
may become detrimental if overactive and may Icad to pathological synapsc loss and
ncuronal death 411 This is indeed interesting and relevant also in the context of the
cognitively healthy centenarians, where C3 was found significantly downregulated
(p=5.2E%). The complement system makes part of a healthy immunc system, where it is
activated to mediate a response to pathogens. However, it is also a system prone to
“friendly fire”, where it can become a self-amplifying loop, fuelling inflammation. This
harmful complement activation has been reported to become more pronounced with
ageing 207, while downregulation of C3 has been identified in studies of centenarians

209, 412 . The discrepancy in C3 expression between Parkinson’s disease patients and
cognitively healthy centenarians may therefore suggest that the complement system is
involved in both neurodegeneration and longevity, downregulation being protective and
promoting healthy ageing, and upregulation potentially contributing to inflammation
amplification and neuronal cell death in neurodegenerative disease. Moreover, the
expression of the protein SERPINF2 was found to correlate positively with the
expression of C3 in our study (section 7.2.1.1 . In the centenarians, it was downregulated
(p = 11 E13), and in the Parkinson’s discase patients upregulated (p = 1.7 E9). As
mentioned previously, SERPINF2 is involved in the clotting cascade where it is a major
inhibitor of plasmin, which is responsible for breaking down fibrin clots and several other
plasma proteins. It has more recently been implicated in cerebrovascular and
cardiovascular discase, where higher levels of SERPINEF2 have been found associated with
high risk and or poor outcome. High SERPINF2 levels have also been found to increase
the risk of ischemic stroke, and to enhance the expression of the neuroinflammatory

protein MMP9, contributing to worse brain injury

413, 414 . It has been strongly
suggested that the complementand coagulation cascades may be linked and that they may
modulate cach other’s activitics [415 . It could therefore be hypothesised that in
Parkinson’s discasc, these pathways contributce to activating cach other and inercasing the

inflammatory response, while in the centenarians downregulation may act protective.

The expression of proteins related to platelet degranulation in centenarians and
Parkinson’s discasc paticnts (identificd in Chapter 7, section 7.2.2 suggests that thereis a
common inflammatory component inboth groups. Although the centenarians were used

as amodel of healthy ageing in this work, they are approximately 40 - 50 vears older and
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known todemonstrateincreasedlevels of low-gradeinflammation (inflammageing ) 187 .
The platelet degranulation-related proteins were upregulated in both groups compared
to their respective controls while expressing no difference between the groups. The FDR-
adjusted p-values when comparing the groups to controls were - for centenarians and PD
patients, respectively: SERPINA3:p 1.8 E7,p 4,519, SERPINGL:p 98E3,p 7618,
and A2M: p = 90 E9 p = 57 E5 The involvement of platclet altcration in
ncurodegencrative discase has been investigated in other studics, where it has been
suggested that alternative platelet activation pathways may be associated with brain
function[ 405]. Inrclationtoagcing, platclets have been reported to deercasc in count, but
increase in reactivity after the age of 70. The activation has been suggested to be caused
partly by an upregulation of reactive oxygen species and to be associated with an overall
elevated inflammatory state 406 . It is conceivable that the proteins SERPINA3 and
SERPING1 are not related to a longevity-promoting protein expression in the
centenarians, as both proteins have been identified to increase with chronological age in
other studies. SERPINA3 has been found upregulated with age in the brains of healthy
aged, non-centenarian, individuals compared to younger controls,and also upregulated in
brains from patients with neurodegeneration compared to healthy controls of the same
age 401 |. SERPING1 expression has been demonstrated to correlate positively with
chronological age and is therefore suggested to not be related to the longevity of
centenarians [ 416, 417 . As both proteins are known to be upregulated in normal, non-
centenarian ageing, their upregulation in the centenarian groupis likely a reflection of the
extreme age of these individuals and not related to their longevity. The PD patients were
compared against controls in the same age range, and thus, the upregulation of
SERPINA3 and SERPING1 in the Parkinson’s discase group indicates increased
inflammation and possibly accelerated ageing or perhaps the concept of “accelerated

brain ageing”.

The shared upregulation of A2M and ADIPOQ between the PD patients and the

centenarians (alsoidentified in Chapter 7, section 7.2.2  is discussed below; in section 8.1.3.
8.1.3  Adiponectin and A2M — protective or detrimental?

As per the direct comparison of plasma from PD patients and centenarians in Chapter 7,
ADIPOQ and A2M were two out of four proteins significantly upregulated in both
centenarians and PD patients and thus hypothesised to indicate inflammation and
potentially accelerated ageing in the PD patients, or another common mechanism
between the two groups. The FDR-adjusted p-values when comparing the groups to their

respective controls were, for ADIPOQp 5.0 E7inthe centenariansandp 1.5 E+inthe
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PD patients, and for A2M as reported in section 8.1.2. These results were somewhat
surprising as the two proteins had been proposed to contribute to a protective and

longevity-promoting protein expression in the centenarians in Chapter 4.

ADIPOQ is known to be a systemic anti-inflammatory factor and clevated levels arc
associated with lower body-mass-index, reduced risk of diabetes, cardiovascular disease,
andanoverallinverse correlation hasbeenreported between ADIPOQ and inflammatory
markers 396]. Several studics have found clevated ADIPOQ) expression in centenarians
and firmly suggested that it is associated with longevity 418, 419|. Therefore, the
upregulation of ADIPOQ observed in the centenarians in our study was ascribed as
longevity-promoting. However, the role of ADIPOQ in neurodegenerative discase
remains poorly understood. Mice models have suggested that ADIPOQ may be
neuroprotective as ADIPOQ deficiency promoted Alzheimer’s disease-like symptoms,
synapsc loss and neuroinflammation 420 . A review from 2020 concluded that although
ADIPOQ may be involved in various protective mechanisms in the brain, its function
remains largely unknown 399|. A study of adiponectin concentrations in (non-age
matched) PD patients, morbidly obese patients and healthy controls found no difference
between PD and the control group, but identified a difference between PD and the
morbidly obese patients, with higher adiponectinlevelsin the PD patients 421 |. Itis well-
established that adiponectinlevelsincrease withlower body-mass-index 422 |. Thebody-
mass-indices of the individuals included in our studies are not known, and thus we cannot
explore if the ADIPOQ) expression had a relationship with this parameter. It is therefore
concluded that while ADIPOQ likely exerts longevity-promoting effects in the

centenarians, its role in Parkinson’s discase remains unknown.

A2M is an acute phase protein which can inhibit cytokines and disrupt inflammatory
cascades| 423 |. Innormal ageing, it has been found to significantly decrease withage, while
longevity studies in the long-lived naked-mole rat found it overexpressed, attributing
A2M properties responsible for cancer-protection 168,199 . A2M has been identified as
acomponcnt of both Lewy bodics in PD and scnile plaques in AD, where upregulation of
A2Min AD hasbeen proposed to aid in the solubility of senile plaqucs, thus alleviating the
effect of the disease [397]. Relevant for Parkinson’s disease - A2M has moreover been
reported to have theability to bind misfolded proteins, including alpha-synuclein, thereby
reducing its neurotoxicity 424 It is thus plausible that the upregulation of A2M
observed in the Parkinson’s disease patients, and also in the centenarians, makes part of a
protective responsc - in the PD patients to bind alpha-synuclein oligomers in an attempt

to clear the misfolded proteins, and in the centenarians continuously clearing misfolded
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proteins and potentially also inhibiting inflammatory processes such as the complement

cascadce.

8.1.4  Endoplasmic reticulum stress and the unfolded protein response

In plasma from the Parkinson’s disease patients, the upregulation of HSPA5 (p - 2.115°6)
and HSPA1L (p 1254 when compared to healthy controls, indicated endoplasmic
reticulum stress and activation of the unfolded protein response. In the centenarians,

HSPA5and HSPA1L were unchanged compared to the control joffspring group.

The endoplasmic reticulum folds proteins into their correct conformations, adds post-
translational modifications and sorts the proteins for their intended destination.
Incorrectly folded proteins are detected by the endoplasmic reticulum’s quality control
system and are sent to the ER-associated degradation pathway for refolding or
degradation | 298,299 . If the ER becomes overloaded by excessive amounts of unfolded
proteins, the unfolded protein response is activated by HSPA3 (also known as
BiP/GRP78), a key regulator of the unfolded protein response, binding to unfolded
proteins. This is a response attempting to restore homeostasis by reducing the influx of
proteins to the ER andincreasing the protein folding capacity | 301 . The unfolded protein
response must balance the folding capacity and the secretory requirements of the cell.
Prolonged endoplasmic reticulum stress may induce neuronal cell death through a
number of not fully understood processes, where, among others, calpains appear to act
detrimentally and HSPA3 protectively 425, Given the well-established pathology
hallmark of alpha-synuclein oligomerisation in Parkinson’s discase, indications of ER
stress and unfolded protein response activation are not unexpected and there are several
studies confirming a link between these pathways and Parkinson’s disease pathology

304
roleinreducing ER stress. A rat model of Parkinson’s discase found that alpha-synuclein-

. The unfolded protein response has been targeted in PD studies, investigating its

induced neurotoxicity decreased when overexpressing HSPA3 and attributed this to
11SPA3’s modulation of the unfolded protein response, acting to downregulate ER stress,
thereby reducing apoptosis, and promoting survival of dopamincergic ncurons | 426 . Itis
conceivable that the unfolded protein response acts protectively in Parkinson’s disease.
However, the upregulation of HSPA11.,a component of the ERAD complex, may suggest
that ER stress is still present. Moreover, in the targeted urine study, we found the calpain
protein CAPN2 significantly upregulated in the PD patients (p = 2.4 113, Calpain is
implicated in IR stress-induced neuronal cell death and has also been found upregulated
inmicroglia, astrocytes,and ncurons| 351, 425 |. Prolonged ER stress can morcover induce

production of pro-inflammatory cytokines 427 |,andin urine from PD patients, we found
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CCL2upregulated (p 2.41:2. CCL2isinvolved inimmune regulation and inflammatory
processes which bring upon a strong response 361|. CCL2 has been suggested to

contribute to neuroinflammationin PD 362 .

In the centenarians, the lack of expression difference for 1ISPAS and TTISPA1L when
compared to controls suggests that the centenarians’ endoplasmic reticulum is not
affected or protected against mis- or unfolded proteins. There may exist a link to the
upregulation of A2M in the centenarians, possibly clearing aggregated proteins more

cfficiently and thereby protecting them from neurodegencration.
8.1.5 Wit signalling in Parkinson’s discase

In plasma from newly diagnosed PD patients, we found the protein DKK3 strongly
downregulated (p - 5.5 E'° when compared to healthy and age-matched controls. We
also found the protein PPP3CB strongly downregulated in the same comparison
(p-1.7E9). Inthe centenarians, DKK3 and PPP3CB could notbe quantitated as they were
below the detection limit or potentially due to other reasons, such as the proteins being

labile.

DKK3 is a modulator of the canonical Wnt/3-catenin signalling pathway, and PPP3CB
(also known as calcincurin A2 is a component of the Wnt/Ca? signalling pathway. Wit
signalling encompasses a sct of complex pathways involved in several aspects of cell
development | 307, 308 . In the adult brain, Wnt signalling governs a range of crucial
functions, including neuronal survival, synapse formation, neurogenesis and regeneration

312 . Wnt signalling is vital for the development and maintenance of dopaminergic
neurons and it has been suggested that activation of the pathway could provide an
important protective role, possibly preventing the loss of dopaminergic neurons [293 .
Indeed, this makes the pathway highly relevant for Parkinson’s disease. Given the putative
potential of restoring dopaminergic neurons’ functions, Wnt signalling has been the
attention of a number of studies in recent years 311]. Downregulation of Wnt signalling
hasbeen proposed to foster dysfunction and or death of dopaminergic neurons, however,
amiccstudy demonstrated that the dopaminergic ncurons could be restored by activating
f3-catenin in situ 313 . In another mice study, neural stem cells were transplanted to the
substantia nigra of medically PD-induced mice, re-expression of Wnt signalling

promoters and repair of dopaminergic neurons could be noticed 314 .

Uprcgulation of DIKIK3 activates the Wit §3-catenin signalling pathway [ 311, which in

theory acts protectively on the dopaminergic neurons. It is therefore interesting that the
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newly diagnosed Parkinson’s patients express significantly lower levels of this potentially
PD-protective protein, and of the Wnt/Ca>* component PPP3CB, compared to the
healthy controls. Our results thus suggest that Wit signalling may be disrupted in the
carly stages of Parkinson’s discasc, potentially acting detrimental on the survival of the
dopaminergic neurons. As previously stated, to our knowledge, this is the first time a
targeted protcomic study of Parkinson’s discase finds DKK3 expression significantly

downregulated in patients.

Apart from its role in neurogenesis and maintenance of neurons in the brain, Wnt
signalling is also proposed to modulate neuroinflammation. Studies have suggested that
Wnt/f3-catenin signalling isactivated after injury to the brain, acting neuroprotective[ 428,
429 . It has been suggested that components of the Wit signalling pathway (Wnt1) can
reduce oxidative stress and repress pro-inflammatory microglial activation, possibly
through crosstalk between Wit and inflammatory signalling pathways | 430 . We found
the pro-inflammatory matrix metalloprotcase MMP3 and the pro-inflammatory cytokine
CCL2 significantly upregulated (p - 53 E3and p - 2.4 2 respectively | in urine from PD
patients when compared to healthy controls. These proteins are known to be involved in
neuroinflammation, with MMP3 inducing cytokine release from microglia, and CCIL2
being a potent chemoattractant, recruiting white blood cells 431,432 . Moreover, we also
found the protein MAPK12 significantly upregulated in the PD patients’ urine compared
to controls(p - 9.0 E3. MAPK12isoncof four proteinsin the p38 MAP kinase family. The
p38 MAPK proteins are activated by a range of stress stimuli, including cytokines, such as
CCL2,and oxidative stress; the p38 pathway increases production of cytokines andis also
involved in apoptosis [381, 383 . Increased p38 signalling may furthermore inhibit Wnt
signalling by promoting the expression of one of its inhibitors, as have been reported in
cancerstudies 433,434 . This wouldindicateaself-amplifving loop of neuroinflammation
- with increased production of pro-inflammatory species by microglia in conjunction

with downregulation of the neuroprotective Wnt pathway.

It would have been beneficial to the study to compare the expression of the Wit proteins,
CCL, MMP3 and MAPKi12 between the Parkinson’s patients and the centenarians but as
the Wnt proteins could not be detected in the centenarian study potentially due to
technical restraints, and CCL2, MMP3 and MAPK12 were only detected in uring, this was

not possible.

In summary, the protein expression observed in our studies demonstrates that although

there is a degree of similarity between the newly diagnosed Parkinson’s patients and the
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centenarians, a number of proteins and pathways differ, and may thus better the
understanding of why some individuals develop neurodegenerative disease as they age,
and some do not. Our results suggest that the Parkinson’s discasc paticnts may be
negatively affected by complement activation and may suffer from prolonged
endoplasmic reticulum stress and neuroinflammation. They may moreover be subjected
to disrupted or downregulated Wit signalling, possibly aggravating ncuroinflammation
and reducing their capacity to protect dopaminergic ncurons from cell death. In the
centenarians, we suggest that a reduced or lower level of complement activation may
promote longevity. The upregulation of A2M may protect the centenarians from
accumulation of mis- and unfolded proteins, as suggested by the lack of ER stress and
unfolded protein response indications. Upregulation of ADIPOQ may further exert an
overallanti-inflammatory and longevity-promoting influence on the centenarians. Figure

8-1provides an overview of the observed protein expression and possible implications for

the two groups.
ﬁ CENTENARIANISM ONGEVITY
Complement mediated neuronal cell death? AGEING ® Complement not activated
Increased inflammation through 4 c3 l Known to increase

complement cascade’s “friendly fire”2 with nermal ageing

Increased inflammation T — SERPINA3 and SERPINGT —— T ® Inflammageing?

Accelerated ageing?

r o — T Protective response, hindering the

Raeo G ks accumulation of mis/unfolded profeins2
- 2
dlpha-synuclein oligomers? ™ Endoplasmic reticulum stress ___| —
® Indicates no overloading of the ER

ER overloaded

" Unfolded protein response P . (0 el Byt el
Protective response to
alleviate ER stress

T ——  ADIPOQ ——m T ® Anti-inflammatory, longevity promoting
Neuronal cell death?

Wnt [li

Reduced protection for ¥ o signating

dopaminergic neurons?

— p38 signalling

Neuroinflammation

Figure 8-1. Observed proteins, involvement in pathways and possible implications of the protein expression
from the studies of centenarians and newly diagnosed Parkinson’s discase patients. Inz the middle of the plot,
proteins and pathiays ave shown, and their expression in the Parkinson’s patients (v : and in the centenarians (w ) when
compared to their respective control group are represented by arrows, where T upregulated, | downregulated, and < no
difference. C3 was downregulated in the centenarians, indicating no complement activation, and upregulated in the PD
patients thus indicating activation andpossible involvement in complement mediated neuronal cell death. SER PINA3 and
SERPING! were upregulated in both groups, putatively indicating inflammageing in the centenarians and increased
inflammation/accelerated ageing in the PD patients. A2M was upregulated in both groups and may act to clear mis- or
unfolded proteins. Signs of endoplasmic reticulum str cobserved inthe PD patients but not in the centenarians. The
centenarians did not demonstrate indications of the unfolded protein response being activated, while the PD patients did.
The longevity promoting ADIPOQ was upregulated in the centenarians and in the PD patients. The role of ADIPOQ in
Parkinson’s disease remains unclear. The PD patients showed signs of decreased Wt signalling and increased p38
MAPK signalling, the pathways possibly modulating each other and aggravating neuroinflammation and promoting
neuronal cell death.
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8.1.6 General considerations and study limitations

There arc a few considerations and study limitations to recognisc in this work. Firstly, as
discussed in Chapter 4, the lack of suitable controls in the centenarian study docs contain
a caveat as there is no entirely certain approach for determining if the centenarians’
protein expression is related to their extremely advanced age, their longevity, or the fact
that they have lived through different times than their younger controls. Our solution for
identifying proteins putatively linked to longevity despite this constraint was to study the
centenarians’ protein expression in conjunction with the available literature from
previous protcomic studics on normal ageing and longevity. Another possible solution for
differentiating between protein expression related to normal ageing and longevity would
have been to generate models of protein expression related to age from the control group,
and then predict the centenarians to determine if their protein expression indicated them
as younger or at their biological age. This was attempted in Chapter 4, section 4.3.2.3, but
as the age-range of the control offspring group was too narrow (mean age - 70.6 = 6.8

years, range: 54 - 89 years ), the strategy was not feasible.

Another consideration is the need for further validation of the proteins identified in the
targeted phase. The targeted methodology in this work consisted of a fusion between a
strictly validatory and an explorative targeted assay. We included targets from several
studies of neurodegeneration, and also pro- and anti-inflammatory proteins from
literature, and applied this to all the targeted cohorts. The rationale behind setting the
targeted assay upin this fashion, rather than as separate validation studies only monitoring
the putative biomarkers form cach separate study, was to allow for measurement of low-
abundant inflammatory proteins from literature, which might not have been detected in
the discovery phase. It was further to allow for comparison of the protein expressions
between the studies, something which would not have been possible in a strict validation
methodology as the same proteins would not have been measured across the different
cohorts. Thanks to this strategy, we were able to identify new putative targets also in the
targeted phase which would not have been discovered if we had performed a strict
validation study. I lowever, this conscquently infers that another validation study will need

to be performed to confirm the newly identified targets.

The machine learning models developed in Chapters 5and 6 could classify samples as PD
or control with exceptional accuracy in plasma and with good accuracy in urince. The
models have the distinct advantage of being trained on newly diagnosed and treatment-

naive Parkinson’s disease patients, thereby closely resembling the conditions for the
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individuals they would be used to classify. Models trained on patients with advanced PD,
on treatment, may have limited utility for screening patients for PD as they are based ona
statc which may notbe representative forindividualsin very carly stages of the discascand
not on trecatment. [However, as discussed previously, the sclectivity of the models was
deemed lacking as they could not adequately separate the group of other neurological
disorders from Parkinson’s discasc. This was largely scen as a result of the protein
expression between the other neurological disorders and the PD groups being very
similar for a number of the proteins included in the models. Further work would need to
be undertaken to improve the sclectivity and specificity, but we arguc that the modcls are
nonctheless highly useful as they could be used to screen individuals for Parkinson’s

disease as a starting point and be followed up by clinical evaluation to verify the diagnosis.

8.2 CONCLUSIONS

The overarching aim of the three studies herein presented, was to find novel biomarkers
for Parkinson’s disease and to identify proteins and pathways related to healthy ageing in
centenarians. In the two Parkinson’s disease studies of urine and plasma, a number of
proteins was found which, when modelled as a panel, separated Parkinson’s patients from

control with very good accuracy. The models could successtully predict 1007 of the

samples as Parkinson’s discase or control in plasma and 85.1% in urine. In the centenarian
study, it was hypothesised that the centenarians displayed a protein expression related to
both risk and protective mechanisms. Comparing the protein expression between
Parkinson’s discase patients and centenarians, proteins and pathways putatively involved
in the divergence between neurodegeneration and healthy ageing were identified.
Without performing functional studies to validate the presented theories, we can only
hypothesise about theroles of the differentially expressed proteins, howeveritis clear that
several of the findings correlate with the pathology observed in Parkinson’s disease. In

conclusion, the protein expression from our experiments suggests the following:

e Complement C3 may be involved in Parkinson’s disease, and in longevity.
The upregulation in PD paticents indicates complement activation and may
also contributc to synapsc climination. The downregulation in the
centenarians suggests that reduced complement activation may promote

longevity.

e Upregulation of A2M is a protective response in the early stages of
Parkinson’s disease, and promotes longevity in centenarians. A\2M can
bind misfolded proteins and is hypothesised to, in the PD patients, attempt to
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bind and clcar alpha-synuclein oligomers. In the centenarians, it isbelieved to
continuously be clearing misfolded proteins and inhibit inflammatory

processes such as the complement cascade.

e Endoplasmic reticulum stress and activation of the unfolded protein
response are present in Parkinson’s disease but not in centenarians. The
unfolded proteinresponse is likely a protective response in the early stages of
Parkinson’s disease, however the upregulation of HSPA1L, CAPN2 and
CClL2 indicate that IR stress is still present. Possibly due to efficient
clearance of unfolded proteins through the upregulation of A2M, the
centenarians do not exhibit signs of ER stress or activation of the unfolded

protein response.

o Wit signalling may be downregulated in Parkinson’s disease. The strong
downregulation of the Wnt signalling activating protein DKIK3 in PD
patients suggests that the Wit pathway may be downregulated or disrupted.
Wnatsignalling is theorised to act protectively on dopaminergic neurons, and
therefore, dysregulation of the pathway would be detrimental to Parkinson’s
disease. Moreover, Wit signalling may protect against neuroinflammation
and thus, downregulation of the pathway would act to aggravate the PD
pathology. In our study, the upregulation of the neuroinflammatory proteins
MMP3,CCL2and CAPN2 supports this. p38 signalling may further suppress
Wt signalling, as indicated by the upregulation of the p38 protein MAPIK12
inour study.

8.3 FUTURE WORK, STUDIES AND PERSPECTIVES

Although the presented studies have identified promising mechanisms and biomarker
targets for Parkinson’s discase, there are further experiments necessary to verify the
validity of the proteomic biomarkers. Therefore, the proposed future work and studies

arc:

Validate the protein panels in larger sample cohorts. Biomarker studies, especially for non-
hereditary neurodegenerative diseases, have often been described as “one hit wonders”
where findings from the discovery phase do not validate in targeted analyses of larger
samplc cohorts. Our approach to the targeted study following the discovery phasc was a
hybrid between a validatory and an explorative assay, as we included targets identified in
all the different discovery studies in one targeted assay, and also included inflammatory
markers from literaturc. This augmented assay was applicd to all validation sample
cohorts, and we identificd new targets in the validation phasc. For this rcason, the new

findings which ecmerged from the targeted phase would need to be verified ina new study.



Final discussion, conclusions and future work

Analyse urine samples from LRRK2 mutation carriers. At the time of analysis of the targeted
urine validation study, collection of urine samples from LRRIK2 mutation carriers was still
ongoingand thercfore this group was notincludedin the validation phasc. A large number
of LRRK2 mutation carricr samples arc currently being collected by Dr Mic Rizig
(Institute of Neurology, UCL ) as part of a grant resulting from the work presented in this

thesis and will be analysed in late 2022.

Translate the validated proteins into a clinical assay. The protcins which are confirmed in the
extended validation phase need to be translated into a clinical assay. For the clinical assay
to be applicable to large-scale patient screening, it should ideally be rapid to prepare, run
and analyse the samples. The sample preparation procedure may thus need to be refined
toallow for speedy sample processing and to ensure that low-abundant compounds, such
as DKK3, are easily detectable. One option for sample preparation may be utilising a
polyclonal antibody pull out, specific for the monitored peptides. This would leave the
samples containing only the pulled-out peptides, thus highly enriched and without
possible interfering species. Moreover, the required time of digestion may be evaluated
and possibly shortened, thereby reducing the sample preparation time. Stable isotope
labelled peptides should be used as internal standards for each peptide, ensuring accurate
quantitation. Method development will further need to be undertaken to create an
analytical LCMS method whichis as rapid as possible, while not compromising sensitivity
and specificity. This work will moreover include validating the assay thoroughly to set up
suitable calibration curve ranges for all peptides and determine limit of detection and limit
of quantitation. A suitable quality control system must also be set up to ensure that
robustness between runs is maintained. Stability studies need to be undertaken to
determine the effects of different anti-coagulants used for plasma samples, the difference
between plasma and serum, the influence of sample storage and freeze-thaw cvcles, and
the peptides’ stability over time. A suitable machine learning model may be developed
from the proteins in the assay and this model needs to be trained and assessed to set limits

for sample classification.

Investigate the role of Wit signalling and newroinflammation in Parkinson’s discase. The
possible link to reduced Wnt signalling and neuroinflammation is exceptionally
intcresting and relevant to Parkinson’s discase and would thus benefit from further
exploration. This could be examined in cell or animal models, where neurons might be co-
cultured with microgliaand the effect of the levels of DIXIK3 on the neuronal and microglial
expressions cvaluated. The identification of proteins that arc clevated or reduced could

be studics further by using chemical inhibitors, gene editing or by silencing techniques.
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CHAPTER 8

The ability to enhance or inhibit proteomic pathways observed in this thesis and examine
if some phenotypes are observed in the models would go a long way to confirming the
hypotheses why some people develop Parkinson’s discase and some live extraordinarily

long lives.
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Supplementary table 1. Significantly different proteins from discovery proteomics study of centenarians
which was used for the pathway analysis in IPA. The table shows the p-values and the fold changes for the proteins
(denoted by gene names

Gene p-value Fold change

PZP 1.94E-05 1.684701
SERPINAT 6.17E-05 1.73181
ITIH3 7.62E-05 1.708078
CLEC3B 0.000298 -1.65156
LRG1 0.000467 1.527141
CTBS 0.000988 1.768556
CD5L 0.001642 1.760714
SERPINA4 0.001675 1.555738
OAF 0.002554 1.586098
CHIT1 0.002974 1.601173
CD14 0.004617 1.542748
DKK3 0.004811 1.558184
UGT2B7 0.004896 1.422519
CIRL 0.005041 1.489035
c9 0.005087 1.5195
CACNB3 0.005574 -1.6446
A1BG 0.006678 1.468933
GFAP 0.006889 1.517302
HYI 0.007417 1.544166
PI16 0.007772 1.450476
C220rf15 0.007945 1.477272
PKM 0.008547 -1.37904
SAAT 0.009027 1.448169
AMBP 0.009468 1.421611
CP 0.009814 1.502154
STX11 0.010424 -1.45947
LMNA 0.011123 -1.4286
CFD 0.011455 1.448416
SERPINA3 0.011601 1.478006
A2M 0.011729 1.431837
ORMI1 0.012515 1.390967
NoGene_04 0.013317 -1.59076
METTL4 0.014453 1.470671
TGFBI 0.015632 1.439106
AMPD3 0.015927 1.423705
ADIPOQ 0.016633 1.511633
B2M 0.017582 1.441804
SPARCL1 0.018008 1.419579
AZGP1 0.018094 1.410957
SOD3 0.018419 1.494747
FAM184A 0.018426 1.35335
ITIH4 0.018635 1.368747
APMAP 0.01868 1.407449
HBE1 0.018863 1.429083

C1QB 0.019699 1.43234
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Gene p-value Fold change

TPM2 0.020764 -1.44907
DYTN 0.021606 1.355401
KIF7 0.023071 1.376944
PTGDS 0.024648 1.428652
KLKB1 0.026836 1.329518
PPBP 0.027282 1.436044
OLFMI1 0.027748 1.364223
DOCK10 0.027983 1.398321
CST3 0.028926 1.423519
GSN 0.031905 1.386684
KNG1 0.032963 1.363328
ORM2 0.033104 1.367543
Cc7 0.033771 1.409285
FHL5 0.034531 1.360578
ciQC 0.03576 1.379908
SRFBP1 0.035972 -1.54587
ERICHé6B 0.037066 1.409262
RAB40AL 0.037917 1.374689
S100A9 0.038328 -1.49063
C4BPA 0.040151 1.339755
FBLN1 0.040687 1.373487
Cé 0.042612 1.320121
FGA 0.043262 1.398148
PROCR 0.045712 1.298981
CD163 0.046332 1.343045
BTD 0.048208 1.339022
VCL 0.048623 1.298372
CFI 0.049081 -1.61582
ALB 0.049706 -1.47564
NRP1 0.049734 -1.52566
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Supplementary table 2. Beta coefficients resulting from the regression analysis of the discovery protecomics
study of centenarians and controls, relating protein expression and age. The table shows the beta coefficients and the
p-value significance of the regression for the groups (7 all, (i centenarians, and (i) controls. NS p > 0.03, * p< 0.05, ¥ p -

0.0L **p< 0.001 and *** p < 0.0001

(i) All (ii)Centenarians (iii) Controls

Beta coefficient  p-value Beta coefficient p-value Beta coefficient  p-value
PZP 76.9 ok 12.6 NS 18.4 NS
SERPINAT 423 ok 6.6 NS -8.1 NS
ITIH3 37.7 o 8.0 * -4.2 NS
CLEC3B -26.1 ok -1.2 NS 2.8 NS
LRG1 28.1 ok 6.3 ** 0.1 NS
CTBS 38.7 * 6.2 * -9.6 NS
CD5L 294 Hx 2.9 NS 9.3 NS
SERPINA4 60.1 o 11.7 NS 1.9 NS
OAF 30.5 * 0.0 NS 6.4 NS
CHIT1 26.1 ** -2.0 NS 6.0 NS
CD14 39.0 * 7.6 NS -6.4 NS
DKK3 15.3 * -0.3 NS 2.3 NS
UGT2B7 47.8 * 2.3 NS 18.6 NS
CIRL 26.8 * 1.5 NS 0.0 NS
c9 484 * 9.6 NS 0.8 NS
CACNB3 -8.4 * -1.2 NS 0.7 NS
A1BG 43.2 o 11.5 x -4.4 NS
GFAP 38.5 * 0.1 NS -6.0 NS
HYI 31.8 * 0.1 NS -17.9 NS
P16 47.7 o 2.0 NS 8.1 NS
C220rf15 87.6 ok 25.3 ok 29.6 NS
PKM -33.2 * -6.5 * -4.9 NS
SAAT 38.9 o 7.4 NS -3.6 NS
AMBP 29.5 * 6.6 * -0.4 NS
CP 38.5 * 7.5 NS -3.6 NS
STX11 -9.5 * -1.6 NS 1.3 NS
LMNA -42.7 * -2.5 NS -13.3 NS
CFD 27.6 * 0.5 NS 2.6 NS
SERPINA3 28.4 o 52 * -1.6 NS
A2M 27.6 * 1.7 NS -1.5 NS
ORMI1 22.6 o 3.4 NS 3.5 NS
A6NIZ1 -10.7 * -0.4 NS 1.9 NS
METTL4 34.4 o 8.6 * 1.3 NS
TGFBI 43.3 * 2.5 NS 2.2 NS
AMPD3 42.1 * 6.2 NS 2.0 NS
ADIPOQ 16.9 * 2.6 * 2.8 NS
B2M 17.5 * 2.9 NS -5.0 NS
SPARCL1 28.0 * -2.0 NS -2.0 NS
AZGP1 31.7 o 8.4 > 2.2 NS
SOD3 21.3 * 4.5 x 0.8 NS
FAM184A 21.4 * 5.8 o -0.4 NS

ITIH4 43.5 * 13.5 o -6.2 NS
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(i) All (i)Centenarians (iii) Controls

Beta coefficient p-value Beta coefficient p-value Beta coefficient p-value
APMAP 44.7 * -1.5 NS 2.9 NS
HBE1 20.2 * 3.4 NS -2.8 NS
C1QB 33.8 * 1.7 NS -1.4 NS
TPM2 -10.9 * 2.5 NS 0.4 NS
DYTN 15.1 o 2.9 * 3.7 NS
KIF7 30.1 * 8.0 * -0.6 NS
PTGDS 24.7 * 6.1 NS 1.0 NS
KLKB1 35.0 * 8.8 * 3.8 NS
PPBP 1.7 * -0.8 NS -1.5 NS
OLFM1 19.7 * 1.2 NS -0.8 NS
DOCK10 45.8 o 9.3 * 13.1 NS
CST3 37.6 * 7.2 * 6.7 NS
GSN 83.1 * 6.4 NS 9.0 NS
KNG1 441 * 13.3 * 2.0 NS
ORM2 22.0 * 5.3 * 2.3 NS
c7 36.5 NS -3.0 NS 2.9 NS
FHL5 22.0 * 1.4 NS 1.7 NS
C1QC 42.7 * 5.0 NS 3.3 NS
SRFBP1 -8.2 NS -1.6 NS 1.5 NS
ERICH6B 45.3 NS -6.5 NS -8.8 NS
RAB40AL 12.3 * 1.9 NS -0.7 NS
S100A9 -21.1 * -1.9 NS -0.2 NS
C4BPA 26.4 * 2.5 NS 0.4 NS
FBLN1 30.5 * 55 NS 2.3 NS
Cé 47.2 * 11.6 * 6.3 NS
FGA 32.4 NS 3.4 NS -4.4 NS
PROCR 30.5 * 1.2 NS 10.3 NS
CD163 22.3 * 3.5 NS 3.5 NS
BTD 36.6 NS 8.8 NS -28.0 *
VCL 30.6 NS 10.4 o -7.5 NS
CFI -22.3 NS -5.5 NS 1.5 NS
ALB -8.0 NS -0.2 NS 0.3 NS
NRP1 -12.0 * -1.7 NS -0.6 NS
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Supplementary table 3. Outlier values detected in the targeted centenarian study at ten median absolute
deviations. The highest outlier values are observed for SAALin the female centenarians, apart from this, the outliers were
observed to be randomly distributed among the samples. M = male, and F = female

™
2 2 = 0 < =
3 . s = 5 5 8 3 8 3§ 3
n o %] < n w T o D st >
Control F 82 10.6
Control M 71 32.6
Offspring F 56 4.0
Offspring F 67 11.8
Offspring F 68 10.4
Centenarian F 101 145.3
Centenarian F 102 130.1
Centenarian F 103 11.3
Centenarian F 105 4.4 675.1
Centenarian F 107 12.0
Centenarian F 107 12.9
Centenarian F 109 142.9
Centenarian M 100 7.5 6.6
Centenarian M 100 10.5
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Supplementary figure 1. Significance of differentially expressed proteins between de novo PD and controls

samples and males only. (B Significantly different in the comparison beteeen DNP and control inall samples. (€
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Supplementary table 4. Outlier values from the targeted plasma proteomics study of healthy controls,de novo
PD,iRBD patients and patients with other neurological disorders. Outliers were mainly detected in SAAL possibly
indicating a severe inflammatory response, and in SOD3. M = male, and I = female

Sample group Sex Age FABP5 PLD3 PPP3CB SAAT SOD3
Control F 60 33.0
De novo PD F 77 7.7 21.2
De novo PD F 61
De novo PD M 81 42.1
De novo PD F 72 11.4
De novo PD F 53 9.5
De novo PD F 75 13.1
De novo PD F 66 10.2
De novo PD M 64 28.1
OND M 80 34.5
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Supplementary figure 2. Coefficients in the predictive plasma PD Ridge classifier model. The size of the
cocfficients are represented by circle radii. The coefficient with the greatest absolute values have the largest influence on the

classifier model

Supplementary table 5. Pathway analysis results from the urine discovery analysis of idiopathic Parkinson’s
discase patients versus healthy controls. The table shows the significantly enriched pathways, the -log,, p-value of the
enrichment, the z-score denoting activation 2 1 or deactivation (< 2), and the proteins in the pathway

(s

Ingenuity Canonical Pathways -logio p-value  z-score  Proteins

LXR/RXR Activation 4.76 1.63  AGT, VIN, TNFRSF1A, FGA,
APOE, HPX

FXR/RXR Activation 4.68 AGT, VTN, MAPK12, FGA,
APOE, HPX

Glycerol Degradation | 3.71 GK2, GPD1

Gap Junction Signalling 3.66 EGF, PPP3CB, TUBA4A,
PLCG1, ACTAT,
TUBA3C/TUBA3D

14-3-3-mediated Signalling 3.53 TNFRSF1A, MAPK12,

TUBA4A, PLCGT,
TUBA3C/TUBA3D
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Ingenuity Canonical Pathways -logio p-value  z-score  Proteins

Apoptosis Signalling 3.16 2.00 TNFRSF1A, PLCGT1, CYCS,
CAPN2

Axonal Guidance Signalling 3.06 EGF, PPP3CB, EFNA5,
TUBA4A, PLCG1, ACE,
EPHA7, TUBA3C/TUBA3D

FAK Signalling 3.01 EGF, PLCG1, ACTAT,
CAPN2

Acute Phase Response Signalling 3.01 2.24  AGT, TNFRSF1A, MAPK12,
FGA, HPX

Germ Cell-Sertoli Cell Junction Signalling 3.01 TNFRSF1A, MAPK12,
TUBA4A, ACTAT,
TUBA3C/TUBA3D

Sertoli Cell-Sertoli Cell Junction Signalling 2.97 TNFRSF1A, MAPK12,
TUBA4A, ACTAT,
TUBA3C/TUBA3D

Sirtuin Signalling Pathway 2.77 -1.63  SOD3, MAPK12, NDRGT,
TUBA4A, NDUFB11,
TUBA3C/TUBA3D

Renin-Angiotensin Signalling 2.67 AGT, MAPK12, PLCG1, ACE

Parkinson's Signalling 2.64 MAPK12, CYCS

Clathrin-mediated Endocytosis Signalling 2.63 EGF, HSPA8, PPP3CB,
ACTA1, APOE

Calcium-induced T Lymphocyte Apoptosis 2.61 PPP3CB, PLCG1, CAPN2

Induction of Apoptosis by HIV1 2.61 TNFRSFT1A, MAPK12, CYCS

Remodelling of Epithelial Adherens 2.49 TUBA4A, ACTAT1,

Junctions TUBA3C/TUBA3D

Phagosome Maturation 2.46 CTSH, TUBA4A, ACE,
TUBA3C/TUBA3D

EGF Signalling 2.45 EGF, MAPK12, PLCG1

Epithelial Adherens Junction Signalling 2.41 EGF, TUBA4A, ACTAT,
TUBA3C/TUBA3D

UDP-N-acetyl-D-galactosamine 2.35 GALE,

Biosynthesis |

Regulation of IL-2 Expression in Activated 2.27 MAPK12, PPP3CB, PLCG1

and Anergic T Lymphocytes

Death Receptor Signalling 2.09 TNFRSF1A, ACTAT, CYCS

Hepatic Fibrosis / Hepatic Stellate Cell 2.03 AGT, EGF, TNFRSF1A,

Activation COL4A2

Dendritic Cell Maturation 2.02 1.00 TNFRSF1A, MAPK12,
IGHGT, PLCG1

ErbB Signalling 2.02 EGF, MAPK12, PLCG1

Coagulation System 1.97 PLAU, FGA

Production of Nitric Oxide and Reactive 1.96 1.00 TNFRSF1A, MAPK12, PLCGT,

Oxygen Species in Macrophages APOE

Complement System 1.95 MASP2, CFH

UVA-Induced MAPK Signalling 1.93 MAPK12, PLCG1, CYCS

Role of Macrophages, Fibroblasts and 1.93 DKK3, TNFRSF1A, PPP3CB,

Endothelial Cells in Rheumatoid Arthritis IGHGT, PLCG1

Type | Diabetes Mellitus Signalling 1.91 TNFRSFTA, MAPK12, CYCS

Glycerol-3-phosphate Shuttle 1.87 GPDT,

Inosine-5'-phosphate Biosynthesis |l 1.87 ATIC,

Neuroprotective Role of THOP1 in 1.86 AGT, ENDOU, ACE

Alzheimer's Disease

Leukocyte Extravasation Signalling 1.86 1.00 MAPK12, PLCG1, ACTAT,
THY1

Role of PKR in Interferon Induction and 1.84 TNFRSF1A, CYCS

Antiviral Response

Glucocorticoid Receptor Signalling 1.76 AGT, PLAU, HSPAS8,
MAPK12, PPP3CB

Phagosome Formation 1.75 VTN, IGHGT1, PLCG1
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Ingenuity Canonical Pathways

-logo p-value

Z-score

Proteins

nNOS Signalling in Neurons

TNFR1 Signalling

CD28 Signalling in T Helper Cells
Iron homeostasis signalling pathway

Role of Osteoblasts, Osteoclasts and
Chondrocytes in Rheumatoid Arthritis

Amyloid Processing

Galactose Degradation | (Leloir Pathway)
CD27 Signalling in Lymphocytes

Nur77 Signalling in T Lymphocytes
autophagy

Regulation of Cellular Mechanics by
Calpain Protease

Huntington's Disease Signalling
Ephrin A Signalling

PCP pathway

Superoxide Radicals Degradation

Agrin Inferactions at Neuromuscular
Junction

Chemokine Signalling

Mitochondrial Dysfunction

Glioma Invasiveness Signalling

Myc Mediated Apoptosis Signalling

Tec Kinase Signalling

Caveolar-mediated Endocytosis Signalling
Ephrin Receptor Signalling

Toll-like Receptor Signalling

GDNF Family Ligand-Receptor Interactions
IL-15 Signalling

Non-Small Cell Lung Cancer Signalling

Neuroinflammation Signalling Pathway

Purine Nucleotides De Novo Biosynthesis |l

UDP-N-acetyl-D-galactosamine
Biosynthesis |l

IL-17A Signalling in Airway Cells

1
1
1

74
71
71
71
71

.68
.65
.64
.63
.61

1.6

1.6

53
53
45
44

.43
42
41
41

1.4

.39
.37
.35
.34

.34
.33
.33

.32
.32

.32

PPP3CB, CAPN2
TNFRSF1A, CYCS
MAPK12, PPP3CB, PLCG1
EGF, HPX, HBE1

DKK3, TNFRSFTA, MAPK12,
PPP3CB

MAPK12, CAPN2
GALE,

MAPK12, CYCS
PPP3CB, CYCS
CTSH, ACE

EGF, CAPN2

EGF, HSPA8, CYCS, CAPN2
EFNAS5, EPHA7

CTHRC1, MAPK12

SOD3,

MAPK12, ACTA1

MAPK12, PLCG1
MAPK12, CYCS, NDUFB11
VTN, PLAU

MAPK12, CYCS
MAPK12, PLCG1, ACTAI
EGF, ACTAI

EGF, EFNA5, EPHA7
MAPK12, TOLLIP
MAPK12, PLCG1
MAPK12, PLCG1

EGF, PLCG1

TNFRSF1A, MAPK12,
PPP3CB, PLCG1

ATIC
GALE

MAPK12, MUC5B
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Supplementary figure 3. PCA of the creatinine normalised targeted urine protcomics analysis of de novo PD
yhg 8 Y
paticnts. The PCA shows that six samples are extreme outliers.
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Supplementary table 6. Outliers detected at ten median absolute deviationsin the targeted proteomics analysis
of the de novo PD urine cohort. Iz fotal, 37 outlier values were detected in 27 different proteins. DKIK — healthy controls,
DNP=denovo PD, and OND = other neurological disorders. M =male, F = female, and NA =not available

SERPINAT

Sample
Sex

Age
A2M
APOE
ATIC
BCHE
C3
CAPN2
CYCS
CST3
DKK3
FABP5
FGA
FGF21
HPX
HSPA8
ITIH2
MAPK12
MMP3
MSN
NEFM
PKM
PPP3CB
TEK
TXN
TOLLIP
TUBA4A
UBC

DKK

(€,
N
x

DKS

DNP
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Supplementary table 7. Benjamini-Hochberg FDR-adjusted p-values from the comparison of control to de
novo PD,iRBD and other, non-PD, neurological disorders in the targeted urine proteomics study

Profein ( ) Control versus vs  Control Control versus other
rofein igene de novo PD versus iRBD  neurological disorders
Intercellular adhesion molecule 1
(ICAMT) 9.1E-04 5.8E-01 5.6E-02
C-C motif chemokine 4 (CCL4) 9.2E-04 7.9E-01 7.0E-01
Troponin T3, fast skeletal type (TNNT3) 1.1E-03 6.5E-01 3.4E-03
Secreted Phosphoprotein 2 (SPP2) 1.1E-03 4.3E-02 6.1E-03
Collagen alpha-3(Vl) chain (COL6A3) 1.1E-03 2.6E-01 6.0E-02
Neurofilament medium polypeptide
INEFM] 1.1E-03 5.8E-01 1.9E-02
Polyubiquitin-C (UBC) 1.1E-03 1.7E-03 1.9E-02
Phosphoglycerate mutase 1 (PGAM1) 1.2E-03 7.4E-01 1.9E-01
Alpha-2-antiplasmin (SERPINF2) 1.3E-03 7.9E-01 1.7E-04
Calpain-2 catalytic subunit (CAPN2) 2.4E-03 1.0E+00 8.8E-03
Fibroblast growth factor 21 (FGF21) 2.6E-03 6.5E-01 6.8E-02
Neural cell adhesion molecule 1
(NCAMD) 3.5E-03 3.7E-01 5.9E-01
N-myc downstream regulated 1
(NDRG1) 5.3E-03 5.0E-01 2.0E-02
Matrix metallopeptidase 3 (MMP3) 5.3E-03 1.0E+00 6.7E-02
Mitogen-activated protein kinase 12
(MAPK12) 9.0E-03 1.0E4+00 8.4E-03
C-C motif chemokine 2 (CCL2) 2.4E-02 1.7E-03 1.9E-02
Heat shock protein HSP 90-beta
(HSPOOABT) 2.4E-02 2.7E-01 3.1E-01
Serine/threonine-protein phosphatase
2B catalytic subunit (PPP3CB) 3.08-02 8.8£.01 e
Cholinesterase (BCHE) 3.6E-02 7.6E-01 5.6E-02
Interleukin-5 (IL5) 4.3E-02 2.6E-01 5.4E-01
Alpha-1-antichymotrypsin (SERPINA3) 4.4E-02 7.9E-01 6.7E-02
Dickkopf WNT signaling pathway
inbibiier 3 (DKK3) 4.4E-02 3.9E-01 5.7E-01
Heat shock 70 kDa protein 1-like
(HSPATL) 5.0E-02 3.5E-01 1.7E-02
Plasma protease C1 inhibitor
(SERPING1) 9.5E-02 6.5E-01 6.8E-01
Cystatin-C (CST3) 9.5E-02 7.3E-01 3.4E-03
C-C motif chemokine 17 (CCL17) 1.0E-01 1.0E4+00 5.9E-01
Heat shock cognate 71 kDa protein
(HSPAS) 1.0E-01 6.0E-01 1.8E-01
Interleukin-1 beta (IL1B) 1.1E-01 6.5E-01 8.5E-01
Angiopoietin-1 receptor (TEK) 1.3E-01 7.1E-01 6.2E-01
NACHT, LRR and PYD domains-
containing protein 3 (NLRP3) 1.4E-01 6.08-01 59801
Amyloid-beta precursor protein (APP) 1.4E-01 3.1E-03 4.1E-01
L-xylulose reductase (DCXR) 3.1E-01 1.0E4+00 9.4E-01
Erythropoietin (EPO) 3.6E-01 9.9E-01 5.9E-01
Thioredoxin (TXN) 3.8E-01 6.0E-01 8.5E-01
Inter-alpha-trypsin inhibitor heavy chain
2 (ITIH2) 4.0E-01 8.8E-01 5.9E-01
Annexin A2 (ANXA2) 4.0E-01 5.8E-01 7.6E-01
Tubulin alpha-4A chain (TUBA4A) 4.0E-01 9.4E-01 9.0E-01
Hemopexin (HPX) 4.1E-01 6.5E-01 8.9E-01
Alpha-2-macroglobulin (A2M) 4.4E-01 6.5E-01 2.4E-01
Apolipoprotein E (APOE) 5.5E-01 1.1E-01 4.9E-01
60 kDa heat shock protein,
mitochondrial (HSPD1) 56801 6.58.01 8.98.01
Collagen alpha-2(IV) chain (COL4A2) 5.7E-01 1.0E4+00 7.6E-01
Prostaglandin-H2 D-isomerase (PTGDS) 5.7E-01 8.5E-01 5.7E-01

Pyruvate kinase M (PKM) 5.7E-01 1.0E+00 8.5E-01
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Profein (gene) Control versus vs  Control Control versus other
'n g de novo PD versus iRBD  neurological disorders
Phospholipase D Family Member 3
(PLD3) 5.7E-01 5.5E-02 9.2E-01
Alpha-1-antitrypsin (SERPINAT) 5.7E-01 6.8E-01 8.5E-01
Extracellular superoxide dismutase [Cu-
Zn] (SOD3) 5.7E-01 6.5E-01 6.2E-01
Fatty acid binding protein 5 (FABP5) 6.2E-01 6.5E-01 5.7E-01
Bifunctional purine biosynthesis protein
PURH (ATIC) 6.2E-01 3.7E-01 8.5E-01
Phosphoglycerate kinase 1 (PGK1) 6.9E-01 6.8E-01 3.4E-01
Toll-interacting protein (TOLLIP) 7.0E-01 7.1E-01 5.9E-01
Endoplasmic reticulum chaperone BiP
(HSPAS) 7.0E-01 5.0E-01 7.2E-01
Cytochrome C (CYCYS) 7.0E-01 7.9E-01 8.9E-01
Urokinase-type plasminogen activator
(PLAU) 7.5E-01 1.1E-01 4.7E-01
Mannan binding lectin serine peptidase
2 (MASP2) 8.6E-01 1.0E+00 8.8E-02
Fibrinogen alpha chain (FGA) 8.6E-01 5.0E-01 9.0E-01
Complement C3 (C3) 8.6E-01 1.9E-01 8.9E-01
Vascular cell adhesion protein 1
(VCAMT) 9.0E-01 8.7E-01 6.8E-01
Moesin (MSN) 9.7E-01 6.5E-01 9.0E-01
iy =
H_u

PPPaCE_P

Supplementary figure 4. Pearson correlation matrix of the targeted proteomic studies of de novo PD patients,
healthy controls,iIRBD paticnts and paticnts with other neurological disorders.



