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Abstract

Ensemble weather forecasts often under-represent uncertainty, leading to over-

confidence in their predictions. Multi-model ensemble (MME) forecasts com-

bining several individual ensembles have been shown to display greater skill

than single-ensemble forecasts in predicting temperatures, but tend to retain

some bias in their joint predictions. Established postprocessing techniques may

be able to correct bias and calibration issues in univariate forecasts, but are

generally not designed to handle multivariate forecasts (of several variables or

at several locations, say).

This thesis proposes a flexible multivariate Bayesian postprocessing frame-

work, based on a directed acyclic graph representing the relationships between

the ensembles and the weather quantity of interest. The posterior forecast is

inferred from available ensemble forecasts and an estimate of the shared model

error, obtained from a collection of past forecast-observation pairs.

Further contributions of the thesis address the problem of improving the

estimate of this shared discrepancy, in order to obtain a more accurate and

better calibrated posterior forecast. The first of these focuses on the selection

of appropriate training cases from which to estimate the required correction,

using analogues selected on the basis of a low-dimensional representation of

the prevailing weather regime predicted by each ensemble. The second is

motivated by reducing the uncertainty about the discrepancy, by combining

two sources of information through Bayes linear updateing. The second-

order exchangeability representation underpinning Bayes linear statistics is

extended and used to derive a fully multivariate linear adjustment that is
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able to approximate probabilistic Bayesian inference and is flexible enough to

accommodate a judgement of non-zero excess marginal kurtosis.

The new methods are evaluated on their performance in postprocessing

operational forecasts winter surface air temperatures over selected regions of

the UK.



Impact Statement

This thesis considers the problem of how weather forecasts from multi-model

ensemble (MME) prediction systems might be combined into a single prob-

abilistic forecast in a principled way. The first contribution of the thesis is

a Bayesian framework for postprocessing of such forecasts, developed from a

graphical model of the structure of the MME forecasting system which rep-

resents the relationships between the available forecasts and the unobserved

quantities of interest, and so allows inference to be carried out on the veri-

fying observation. The framework is flexible enough to be of potential use

in applications other than the mid-term weather forecasting considered here.

The most obvious candidate application is in longer-term forecasting (such as

at the subseasonal-to-seasonal scale), where the problem is less of prediction

of the weather conditions at a particular time on a particular day, and more

of forecasting statistical properties of the weather at a particular time scale.

It is also likely that estimation of the required forecast adjustments using

weather regime analogues, which are derived from pressure fields that may

reflect longer-term atmospheric trends, may produce more skilful forecasts at

these leadtimes than either moving window training cases, which may be several

months removed from the forecast verification dates, or direct analogues, which

are typically based on surface weather quantities that tend towards climatology

at these time scales. However, the proposed method is also widely applicable in

fields outside of meteorology and the environmental sciences: it may be of use

in any situation where several competing probabilistic or ensemble forecasts

are available, along with an archive of previous verifying observations from
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which the required correction may be estimated, such as in financial modelling

or astrostatistics.

Likewise, the extension to Bayes linear covariance adjustment proposed in

this thesis may be adopted anywhere that Bayes linear methods are already

used to understand and predict the behaviour of complex systems existing

applications are as diverse as assessing medical risks, estimating crop yields,

and parametrising galaxy formation, suggesting that, like the Bayesian MME

postprocessing framework, the multivariate Bayes linear adjustment may be

suitable for a wide range of applications.
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Chapter 1

Introduction

1.1 Motivation
Operational weather forecasts are generated by complex numerical models

designed to replicate the key features of the atmospheric processes that affect

the weather. Uncertainty about the forecast issued by each model is assumed

to be reflected by the spread of an ensemble consisting of multiple model

runs, each initialised with slightly different starting conditions. Each weather

forecasting centre runs its own model, each with its own error characteristics;

however, the models may also retain some common biases, due to shared model

characteristics such as the model resolution, approaches to parametrisation

of unresolved quantities, and so on. Combining several competing ensemble

forecasts into a single prediction that incorporates all elements of the associated

uncertainty is therefore not a straightforward task. Some established approaches

to this problem may ignore the structure of the multi-model ensemble, treating

the individual ensembles as if they were independent; others fail to take into

account all of the sources of uncertainty in the forecasts.

This thesis will address the question of how the output from several models

might be combined into a single coherent forecast, in which the contributions of

all elements of the model are explicitly represented. It takes as its starting point

a Bayesian framework for quantifying the uncertainty in MMEs of projections

of future climate, introduced in Chandler (2013), in which the relationships
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between the ensembles and the quantity they aim to predict are explicitly

represented. The contributions of this thesis are motivated by the challenges

of applying this methodology to the slightly different problem of correcting

bias and calibration errors in MMEs of operational weather forecasts. The

first of these challenges is to develop a framework similar to that proposed in

Chandler (2013) to represent the relationships between the forecast ensembles

and the verifying observation; later developments are motivated by questions

around how estimation of the required corrections might be improved. The

contributions of the thesis are outlined in the next section.

1.2 Thesis statement
The first contribution of this thesis is to adapt the Bayesian framework intro-

duced in Chandler (2013), in order to postprocess weather forecasts produced

by multi-model ensemble (MME) prediction systems. The relationship between

the MME and the observed weather is represented by a directed acyclic graph,

and the conditional relationships encoded by the graph are combined with an

estimate of the forecast error to obtain a posterior forecast which explicitly

incorporates the full forecast uncertainty. The proposed Bayesian approach is

used to postprocess operational forecasts of winter surface temperatures over

the UK.

Any statistical postprocessing method requires a training set consisting

of prior forecast-observation pairs, from which corrections to the forecast of

interest can be estimated. The second major contribution of the thesis is

a novel approach to selection of such a training set, by identifying forecast

instances that predict similar weather regimes to the forecast of interest. In

the postprocessing of weather forecasts, training cases are most commonly

selected from the period immediately preceding the date of issue of the forecast,

implicitly assuming that forecast errors during the training period will persist.

Less frequently, the forecast error is assumed to be dependent on characteristics
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of the forecast itself, and the training set is constructed from forecasts similar to

the instance to be postprocessed. The selected cases are known as analogues to

the current forecast instance, and are usually selected on the basis of a distance

metric applied over the variable or variables to be postprocessed. However, the

quality of the analogues selected tends to deteriorate as the dimension of the

selection space increases.

The method proposed here uses principal component analysis of pressure

fields, which are known to be closely related to prevailing weather regimes, to

obtain a low-dimensional representation of the synoptic conditions for each

forecast. Analogue training cases are then selected based on their closeness to

the current forecast in this low-dimensional space, rather than in the potentially

higher-dimensional space of the variables to be postprocessed.

In many applications, the dominant source of uncertainty in the posterior

forecasts may arise from uncertainty about the discrepancy between the forecasts

and observations. An improved estimate of the expectation and variance of

this discrepancy may be obtained by using Bayesian inference to update prior

estimates of these quantities with more recent information. However, natural

conjugate inference typically constrains the parametric form of the distribution

of the variable of interest, which may not always be appropriate; more flexible

models, on the other hand, can be computationally costly, particularly when the

forecasts to be postprocessed are of high dimension. Bayes linear adjustment

is proposed as a flexible alternative, allowing second-order approximation

of non-Gaussian symmetric distributions, but remaining quick and cheap to

compute.

The third contribution of this thesis is to extend the second-order exchange-

ability representation underpinning Bayes linear statistics, to accommodate

cross-products of residuals from quantities that are themselves second-order

exchangeable; and to use this representation to derive a novel multivariate

adjustment for covariance matrices. The proposed covariance adjustment can
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be specified using the same parametrisations as in the scalar case, and is shown

to be able to closely approximate the posterior distribution obtained using the

natural conjugate normal-inverse-Wishart prior, while also accommodating a

judgement of non-zero excess marginal kurtosis.

In addition to these three contributions already listed, two new approaches

to the verification of multivariate forecasts are suggested. The first of these is

a modification of the band depth rank histogram, a tool originally proposed

to diagnose issues in the joint calibration of forecasts issued in the form of

ensembles of deterministic forecasts. The proposed modification removes the

need to draw a synthetic ensemble from the predictive density when computing

the band depth rank for probabilistic forecasts, thus avoiding introducing an

additional source of uncertainty. The second innovation is a gridplot designed

to visualise the joint distribution of a pair of histograms, each of which may

individually capture some but not all issues with the dependence structure of

the multivariate predictive density.

1.3 Thesis outline
Chapter 2 introduces the numerical weather prediction (NWP) methods used

to produce operational weather forecasts, and reviews a number of commonly

used postprocessing methods. The limitations of these methods with respect

to the evaluation of multi-model ensemble (MME) forecasts are discussed.

Section 2.2 introduces the first major contribution of the thesis, adapting the

framework proposed by Chandler (2013) to postprocess multi-model ensemble

weather forecasts. The second contribution of the thesis, a novel method for

the selection of training cases to be used in postprocessing, is presented in

Section 2.3.

The forecast verification methods required for evaluation of the postpro-

cessed forecasts are reviewed in Chapter 3, where two new approaches – a

semiparametric band depth rank and a method of jointly evaluating two mea-

sures of multivariate calibration – are suggested. In Chapter 4 the proposed
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Bayesian framework is used to postprocess forecasts of nighttime surface tem-

peratures over thirteen regions across the UK, using a multi-model ensemble

combining predictions from three operational weather centres.

Chapter 5 begins by reviewing the Bayes linear framework described in

Goldstein and Wooff (2007), before extending the second-order exchangeability

representation and developing a fully multivariate adjustment of the covariance

matrices and mean vectors of all variables jointly in Section 5.3. In Section

5.4 the Bayes linear adjustment is shown, under certain parametrisations, to

produce an asymptotic approximation to conjugate Bayesian inference. In

Chapter 6 the Bayes linear adjustment is used to refine the postprocessed

forecasts previously considered in Chapter 4, and a detailed investigation of the

effect of varying the parameters used in the adjustment is carried out. Finally,

the findings of this thesis and areas of particular interest for future research

are discussed in Chapter 7.



Chapter 2

Multi-model ensemble

forecasting

This chapter presents two of the major contributions of the thesis: the develop-

ment of a Bayesian framework for the statistical postprocessing of multi-model

ensemble weather forecasts, based on a model originally proposed by Chandler

(2013) to combine and correct climate projections; and a novel method for se-

lecting appropriate training cases for use in estimating the required corrections.

The chapter begins with an overview of methods used in weather forecasting,

and a review of some of the methods commonly used to postprocess raw forecast

ensembles. The new postprocessing framework is introduced in Section 2.2,

and the proposed method of selecting relevant training cases in Section 2.3.

An application of the new methods to postprocessing operational forecasts of

surface air temperatures will be presented in Chapter 4.

Much of the content in this chapter and Chapter 4 is expanded from work

already published in Barnes et al. (2019).

2.1 Current methods in weather forecasting
Operational weather forecasts looking more than a few hours ahead are gener-

ated by numerical weather prediction (NWP) systems: mathematical models

which simulate the evolution of a large number – typically millions – of weather

variables on a three-dimensional grid over the surface of the globe, representing
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the physical processes of the atmosphere through a system of coupled partial

differential equations.

In the simplest case a single sequence of forecasts is produced, in which

each forecast is initialised using a ‘best guess’ approximation to the current

atmospheric state known as the analysis (Bannister, 2017). Analyses are

produced at regular time intervals – typically every 6-12 hours – by running a

short-range ‘background’ forecast initialised using the previous analysis state,

and adjusting this model output to more closely reflect observations made in

the intervening hours. This ongoing process, known as data assimilation (DA),

is represented in the schematic in Figure 2.1.

Figure 2.1: Schematic of the data assimilation (DA) cycle used to obtain initial
conditions for medium-range forecasts (forecasts of weather up to 15
days ahead). Based on a similar representation in Garcia-Moya et al.
(2016).
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DA methods vary between weather centres: however, all are based on a represen-

tation of the relationship between the model state vector x and the observation

vector y at time t (Carrassi et al., 2018). This relationship has the form

yt =Ht(xt) +εt, (2.1)

where Ht(·) is a nonlinear function, known as the observation operator, that

maps the model state xt to observational space; and εt is an error term

representing the discrepancy between the model state (after mapping into the

same space as the observations) and the observations. This discrepancy accounts

for the presence of observational errors, errors in the observation operator Ht(·),

and errors arising from the model’s representation of the physical processes
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involved. The DA process is then formulated as a problem in Bayesian inference:

given the new observations, what is the posterior distribution of the model

state? Using Bayes’ theorem, this can be expressed as

p(x|y) = p(y|x)p(x)
p(y) , (2.2)

with the prior forecast distribution p(x) provided by the background forecast,

and p(y) assumed to be constant; p(y|x) is determined by (2.1). In order to

render this problem computationally tractable, all of the distributions involved

are typically assumed to be Gaussian (Whitaker et al., 2008; Carrassi et al.,

2018). Due to the huge number of variables involved, finding the full probability

distribution of (2.2) remains computationally infeasible; instead, the DA process

aims to find the posterior mean or mode.

The approaches used to solve (2.2) can generally be classified into two

groups: variational methods, which minimise the difference between the model

and the observations by minimising a cost function over all of the new ob-

servations simultaneously to find the mode of the distribution; and methods

based on Kalman filtering and smoothing, which assimilate the observations in

chronological order, ‘nudging’ the forecast trajectory with each new observation

to find the posterior mean. A detailed discussion of these two families of

methods is beyond the scope of this thesis: discussion of the underlying theory

and recent developments can be found in, for example, Bannister (2017) and

Carrassi et al. (2018). However, all of these methods share a need to estimate

the discrepancy between the latest forecast and the observations, along with co-

variance matrices representing the uncertainty around the background forecast,

and the observational uncertainty. Given estimates of these matrices, and the

operator H(·), the model state x is optimised to find the best fit between the

background forecast and the new observations. This optimal model state given

the observations – the analysis – provides the initial conditions from which the

next short-range background forecast will be produced, along with operational

forecasts that will be run for longer periods before being issued. The model
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is then again integrated forwards through time, and ‘snapshots’ of the model

state at specified times after initialisation are stored and used to predict the

corresponding weather states in the real world (Wilks, 2011).

2.1.1 Ensemble forecasts
NWP models are deterministic, but highly nonlinear: small differences in the

initial conditions can lead to very different model states relatively quickly

(Kalnay, 2003). To understand the variability resulting from uncertainty

about the ‘true’ initial state of the atmosphere, ensemble prediction systems

(EPSs) are employed. An EPS is constructed by perturbing the initial analysis

conditions that are propagated through the model, in order to create an

ensemble that samples – at least, to some extent – the uncertainty about

the true state of the atmosphere. Although, as with the data assimilation

process, different forecasting centres design these perturbations in different

ways, they are constructed in such a way that they are consistent with the

uncertainties in the observations. The change in the spread of the ensemble as

the trajectories of the individual members develop then reflects the changing

uncertainty about the weather state over time. In recent years some operational

forecasting centres have begun to use ensemble data assimilation methods

or hybrid methods combining variational and ensemble elements to obtain

an ensemble of initial conditions (Bonavita et al., 2012; Bowler et al., 2016;

Carrassi et al., 2018); however, this makes little difference to the subsequent

treatment of the forecasts, so the details of these methods are not considered

here in detail.

An idealised two-dimensional schematic of the development of an ensemble

forecast is presented in Figure 2.2. As the NWP simulation runs, each ensemble

member follows its own trajectory through the model’s state space, reflecting

the ways in which the initial atmospheric state has been transformed by the

dynamics of the model.

Epstein (1969) noted that, as in Figure 2.2, the behaviour of the ensemble

mean differs from the behaviour of the ensemble member initialised with the
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Figure 2.2: Schematic of the development of an ensemble forecast over time. The
filled circle represents the ensemble member whose initial state repre-
sents the analysis, the ‘best guess’ at the current atmospheric conditions.
Unfilled circles represent perturbations of the analysis state, forming
an ensemble that approximates the probability distribution represented
by the ellipse at each time step.

Initial time

Intermediate leadtime

Final leadtime

best estimate of initial conditions, and concluded that the best forecast provided

by an ensemble is not given by the single member initialised with the best guess

at the initial conditions. Intuitively, forecast users might have more confidence

that the ensemble mean is close to the the eventual state of the atmosphere if

the dispersion of the ensemble is small: if the ensemble members are all very

different from each other, or if there is a bifurcation in the ensemble, the future

state of the atmosphere is less certain (Wilks, 2011). However, quantifying

this intuition with regards to an ensemble forecast is often not straightforward;

furthermore, the problem of predicting the weather is sufficiently complex

that this kind of simple intuition may be misleading. A common approach,

particularly when the quantities being forecast are continuous, is to treat the

ensemble members as if they were independent and identically distributed

samples drawn from some underlying probability distribution with a known

form, and to estimate the parameters of that distribution using summary

statistics of the ensemble members (Wilks, 2011). In this way the salient

features of the ensemble forecast can be expressed in an efficient, tractable

and easily interpreted way, albeit at the cost of some detail. This approach

relies on the implicit assumption that the realised value will be drawn from the

estimated distribution.
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2.1.2 Operational forecasts used in this thesis
An example of a collection of ensemble forecasts of surface temperature from

three NWP models is shown in Figure 2.3. These ensemble forecasts were

produced by three operational weather forecasting centres: the European

Centre for Mid-term Weather Forecasting (ECMWF), National Centre for

Environmental Prediction (NCEP) and UK Met Office (UKMO), which have

50, 20 and 23 perturbed members respectively. The methods described in this

thesis will be evaluated in Chapters 4 and 6 using ensemble forecasts issued

by these three centres of surface temperatures at midnight during the winter

period (December-January-February, excluding leap days, giving 90 days of

forecasts per year) during the seven years from December 2007 to February

2014. The forecasts were downloaded from the TIGGE archive (Bougeault

et al., 2010), with these particular models selected for inclusion because they

are among the largest of the ten ensembles for which data are consistently

available during the study period. The study period was initially chosen as a

pilot study, but could not be extended due to damage to the tapes storing the

data at ECMWF (ECMWF, 2021e).

Figure 2.3: Two-day-ahead ensemble predictions of temperatures in Kirkcaldy
and Glasgow, issued on 30 January 2010 by the European Centre
for Medium-Range Weather Forecasting (ECMWF, 50 members), the
UK Met Office (UKMO, 23 members), and the National Centers for
Environmental Prediction (NCEP, 20 members).
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The forecasts used in the applications discussed in Chapters 4 and 6 are issued
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at 24-hour intervals, at leadtimes of 0 to 15 days, with the 0-day-ahead forecasts

corresponding to the initial conditions provided by the analysis. The term

‘forecast instance’ will be used to refer to forecasts issued on a single day for

a given leadtime, and at a particular synoptic time: 7× 90 = 630 forecast

instances are available at each leadtime.

The forecasts were downloaded on a 1◦ latitude-longitude grid covering

the British Isles, from 50 to 60◦N and 6◦W to 2◦E. The study area consists

of forecasts at 13 ‘locations’: alternating grid cells over the land mass of

Great Britain (Figure 2.4). This choice was made to limit the size of the data

set for ease of processing and interpretation, while still including relatively

heterogeneous climatologies. The observed value of the weather corresponding

Figure 2.4: Regions included in the study. Each cell is labelled with the name of
the largest city within its boundaries for easier reference.
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to a particular forecast instance is known as the verifying observation. However,

observations in the real world are taken at precise geographical locations, and

so cannot be compared directly to the gridded forecasts produced by NWP

models. For this reason, weather forecasts are usually evaluated against gridded

datasets known as reanalysis products. A meteorological analysis is a gridded

dataset produced by assimilating historical observations of the real atmospheric

state into a ‘hindcast’ – a forecast of historical weather – produced by a model

similar to the operational NWP model. Throughout this thesis, forecasts will

be evaluated against the ERA-Interim reanalysis of surface air temperatures at

the same grid resolution as the ensemble forecasts (Dee et al., 2011). The term
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‘verifying observation’ will be used for convenience, although strictly speaking,

the forecasts are verified against reanalyses, rather than observations.

It should be noted that it is possible that the ECMWF ensemble forecasts

may perform better than the other two ensembles in this respect, since these

forecasts are produced by a similar model to the reanalysis. However, the

relative performance of different combinations of contributing ensembles is

outside of the scope of this thesis.

The example shown in Figure 2.3 is a two-day-ahead forecast of the temper-

ature in two locations, showing the members of the three ensembles described

above along with the verifying reanalysis. The temperature predictions are

strongly correlated within each of the ensembles: each ensemble’s members are

tightly clustered, indicating a high degree of confidence in the forecast, although

there is no overlap between the three ensembles, and only the UKMO ensemble

is actually close to the verifying observation, with the NCEP ensemble predict-

ing temperatures 1-2 degrees higher, and the ECMWF ensemble predicting

temperatures 2-5 degrees lower. While this example was chosen as a particularly

clear illustration of the specific issues discussed here, it is not difficult to find

similar examples of forecasts in which some or all of the ensembles do not

overlap. An immediate consequence of this is that the assumption that the

verifying observation is sampled from the ensemble distribution has been shown

to be incorrect – or, at the very least, to be possibly true of only one of the

ensembles.

2.1.3 Multi-model ensemble forecasts
If uncertainty about the initial system state were the only source of uncertainty

in the forecasts, a single ensemble of predictions could be treated as a sample

from the probability distribution describing the atmospheric state, and used

to make probabilistic predictions about the weather; if this were the case, the

ensembles in Figure 2.3 would overlap. However, further uncertainty arises

from modelling choices like boundary conditions and parametrisations, as well

as processes at unresolved scales. In consequence, the ensemble spread tends
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to underestimate the forecast error, with this underdispersiveness becoming

worse at longer leadtimes (Weigel et al., 2008). Weather quantities that depend

primarily on physical processes, such as pressure fields, are typically well

represented in the models; however, the surface weather quantities that are of

greatest interest to many users, such as surface temperatures, precipitation, and

wind, are more sensitive to the precise formulation of the model and numerical

schemes for solving the associated equations, and model biases are known to

be particularly prevalent in these surface weather quantities, as can be seen in

Figure 2.3.

Many NWP systems now include schemes to partially sample this model

uncertainty, perturbing not only the initial conditions for each ensemble member

but also the parameters used to represent unresolved atmospheric processes

such as cloud formation and precipitation. These stochastic parametrisations

aim to address errors arising from the choice of parametrisation algorithms

(Baker et al., 2014; Palmer et al., 2009). However, no single forecast ensemble

is able to fully represent the uncertainty due to errors and approximations in

the model (Whitaker et al., 2008; Johnson and Swinbank, 2009; Carrassi et al.,

2018).

One approach to understanding and incorporating this source of uncertainty

is to construct a multi-model ensemble (MME) that is able to combine the

output of several EPSs into a single forecast. Ideally, an MME should include

models with different model physics and dynamics, in order to explore as much

of the spectrum of model solutions as possible (Fritsch et al., 2000; Hagedorn

et al., 2005; Sansom et al., 2021). Some of the key features of the three models

introduced in Section 2.1.2 are summarised in Table 2.1 (ECMWF, 2021a).

The details of the schemes used to generate the initial perturbations and to

perturb the model physics are not discussed here; the purpose of the comparison

is merely to illustrate that the three models chosen use different methods to

perturb both the initial conditions and the model physics, and so might be

expected to explore quite different regions of the parameter space.
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Table 2.1: Key features of the three operational weather forecasting models in the
MME considered in this thesis during the study period from 2007-2013:
ensemble size, spatial and temporal resolution, and methods used to
assimilate observations and to perturb initial conditions and physical
parametrisations. In these models, data assimilation is carried out us-
ing either 4DVar (Rawlins et al., 2007) or an ensemble Kalman filter
(Houtekamer and Mitchell, 1998, EnKF). The initial perturbations are
generated by either singular vectors (Palmer, 1995, SV); EnKF; or an
ensemble transform Kalman filter (Bowler and Mylne, 2009, ETKF).
Model physics are perturbed by stochastic perturbed parameterisation
tendencies (Lock et al., 2019, SPPT), stochastic kinetic energy backscat-
ter (Tennant et al., 2011, SKEB), or a random parameter scheme (Bowler
et al., 2008, RP).

No. of Horizontal Integration
Model members resolution timestep
ECMWF 50 16km∗ 20mins∗

NCEP 23 25km 7.5mins
UKMO 20 21km 7.5mins

Data Initial Perturbed
Model assimilation perturbations physics
ECMWF 4DVar SV SPPT, SKEB
NCEP EnKF EnKF SPPT, SKEB
UKMO 4DVar Scaled ETKF SKEB, RP

∗After ten days the ECMWF model changes to 32km horizontal resolution with an integration
timestep of 45 minutes.

2.1.3.1 The pooled MME ‘superensemble’ forecast

Several studies have shown that even a very simple MME forecast obtained

by unweighted averaging of all available member forecasts can, in the long

run, outperform even the best of its constituent models (Hagedorn et al., 2005;

Doblas-Reyes et al., 2005; Matsueda et al., 2007; Weigel et al., 2008; Johnson

and Swinbank, 2009; Weigel et al., 2009). Moreover, the spread of the pooled

ensemble members has been shown to better reflect the true forecast uncertainty

than that of any single component ensemble, with the improvements shown

to be due to extra information in the additional ensembles, and not simply to

increased ensemble size (Hagedorn et al., 2005): Johnson and Swinbank (2009)

attribute this improvement to the various models exploring different regions of

the phase space.
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Figure 2.5 shows a bivariate example of this ‘superensemble’ forecast

derived from the MME example shown in Figure 2.3, along with the verifying

reanalysis. The individual ensembles show a roughly elliptical scatter; this is

typical of short- and medium-range forecasts of surface temperatures, which

are therefore commonly characterised by multivariate normal distributions

(Wilson et al., 1999; Wilks, 2002, 2011). Similarly, the superensemble forecast

is characterised by a multivariate normal distribution, using the mean vector

and covariance matrix from the pooled ensemble members. The ellipse defines

a region containing 95% of the predictive density, and is much larger than

the spread of any single ensemble. The three ensembles in this MME are not

balanced, having 50, 20 and 23 members; because of this, the superensemble

mean is shifted toward the mean of the largest ensemble – which, in this

instance, happens to be the furthest from the verifying observation. As a result,

this superensemble predictive distribution places a lot of probability in the

bottom-left corner of the plot, far from any ensemble members and from the

temperature actually observed.

Figure 2.5: Superensemble derived from the MME forecast shown in Figure 2.3.
The ellipse defines a 95% prediction region calculated from a bivariate
normal distribution with the same mean and covariance matrix as the
pooled superensemble.
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The rationale behind this approach relies on an implicit assumption that the

multi-model ensembles are all centred on the ‘true’ distribution of the verifying

observation that they aim to forecast, so that any biases displayed by the
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individual ensembles will cancel one another out (Hagedorn et al., 2005). If

this were the case, then a MME constructed from a sufficiently large number

of ensembles – or indeed a single sufficiently large ensemble – should be able to

reduce the forecast uncertainty to almost zero. However, there is no guarantee

that the individual ensembles will not share similar biases, perhaps due to the

use of similar representations of physical processes, similar grid resolutions, or

similar parametrisations of unresolved processes. As a result, there are limits

to the improvements that can be achieved by simply adding more ensembles:

this only produces an improved estimate of the MME consensus. Some form of

bias correction is therefore necessary to account for the discrepancy between

the MME consensus and the quantity (or quantities) that the MME intends

to predict. Furthermore, if a forecast is to be useful to support planning

and decision making, it is important not only to correct any biases in the

deterministic forecast, but to accurately quantify the associated uncertainty

(Wilks, 2011). Some form of postprocessing of the MME forecast is therefore

required in order to correct for biases, and if necessary, to adjust the spread of

the forecast to reflect the true uncertainty.

2.1.4 Forecast postprocessing
Forecast postprocessing is the process of converting the raw model output

from the ensemble members into a form that can be used to issue probabilistic

forecasts, while accounting for model biases and providing a defensible assess-

ment of uncertainty. In statistical postprocessing, the necessary corrections

are estimated using a training set of previous forecast-observation pairs, each

consisting of a forecast issued by the same NWP model (or models) as the

forecast of interest, along with its verifying observation; approaches to selecting

an appropriate training set are considered in Section 2.3.

Many methods have been proposed for postprocessing the output from

a single EPS (Vannitsem et al., 2018, §3). Commonly employed approaches

include regression-based approaches (Glahn and Lowry, 1972; Jewson et al.,

2004; Gneiting et al., 2005; Scheuerer and Hamill, 2015a; Hess, 2020), analogue
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ensembles (Hamill and Whitaker, 2006; Hamill et al., 2006; Sperati et al., 2017;

Hu et al., 2020), Bayesian Model Averaging (BMA) (Raftery et al., 2005),

the adjustment of rank histograms to the desired uniformity (Hamill and

Colucci, 1997; Eckel and Walters, 1998), ‘dressing’ forecasts with historical

error statistics (Roulston and Smith, 2003), Kalman filtering (Delle Monache

et al., 2011; Pelosi et al., 2017), quantile regression methods (Bentzien and

Friederichs, 2012; Taillardat et al., 2016), and more recently, machine learning

methods (Rasp and Lerch, 2018; Scher and Messori, 2018; Taillardat and Mestre,

2020). However, few of these methods have been extended to accommodate

the postprocessing of MME forecasts. This is perhaps because MMEs are less

commonly employed in weather prediction than in climate modelling, where –

due to the relatively small numbers of runs available from each model – MMEs

are often constructed in such a way that they can be treated as a single ensemble

with exchangeable members (Rougier et al., 2013; Abramowitz et al., 2019;

Sansom et al., 2021), rather than with the clustered structure seen in MMEs of

weather forecasts.

Bayesian Model Averaging has been implemented for MME weather fore-

casts (Fraley et al., 2007, 2010), but the resulting predictive distributions are

mixtures, which are not as straightforward to interpret as parametric predictive

distributions, and so may be less appealing to end users; furthermore, the

method rests on an implicit assumption that one of the models under consider-

ation is in fact the model from which the verifying observation is drawn, which

is a difficult claim to defend. Regression-based postprocessing – commonly

known in the meteorological literature as Model Output Statistics, or MOS

(Glahn and Lowry, 1972) – is a well-established approach commonly used in

the postprocessing of operational forecasts (Wilks, 2011; Hess, 2020), and is

easily adapted to accommodate MME forecasts, as will be shown in Section

2.1.4.1. For this reason, in this thesis MOS-based postprocessing will be used

as a benchmark with which to compare the novel Bayesian method introduced

in Section 2.2.



2.1. Current methods in weather forecasting 20

2.1.4.1 Nonhomogeneous Gaussian regression

Model Output Statistics (MOS; Glahn and Lowry, 1972) is the name given by

weather forecasters to a family of postprocessing methods that use NWP model

output as the covariates in a regression model. MOS postprocessing methods

are well established in operational forecasting (Mylne et al., 2002; Glahn et al.,

2009; Hess, 2020). The exact form of MOS applied will vary according to the

weather quantities to be predicted; techniques based on different parametric

forms have been developed to obtain probabilistic forecasts of wind speed

(Thorarinsdottir and Gneiting, 2010) and precipitation (Scheuerer, 2014). In

the case of the surface temperatures considered here, where the ensemble

forecasts are generally assumed to have approximately Gaussian distributions,

MOS typically takes the form of a nonhomogeneous Gaussian regression (NGR;

Gneiting et al., 2005; Hagedorn et al., 2008, 2012; Junk et al., 2015). The NGR

MME postprocessing model proposed by Gneiting et al. (2005) is described in

some detail here, in part to motivate elements of the Bayesian framework in

Section 2.2.

2.1.4.1.1 NGR for a univariate MME forecast

NGR was originally proposed as a technique to postprocess a single ensemble

forecast of a univariate quantity, using all of the ensemble members as predictors.

Because the members of a single ensemble are obtained by randomly perturbing

the initial conditions, they are exchangeable: the joint probability distribution

of the ensemble members does not change when the order of the ensemble

members is permuted (De Finetti, 1992; Bröcker and Kantz, 2011). Jewson

et al. (2004) and Gneiting et al. (2005) recommend that, in such cases, groups

of exchangeable individuals should be replaced by their mean value. Therefore,

given a multi-model ensemble forecast from p models, let ȳ1, ... , ȳp denote the

ensemble means for the forecasts of some weather quantity Y , and let s̄2 denote
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the sample variance of these means,

s̄2 = 1
p−1

p∑
i=1

(ȳi− ȳ)2 , where ȳ = 1
p

p∑
i=1

ȳi. (2.3)

The value of Y to be predicted is denoted Y0. Here, upper case indicates a

random variable, while lower case denotes realised values of those random

variables.

In nonhomogeneous Gaussian regression – so called because the predictive

variance is not fixed, but depends on the inter-ensemble variance s̄2 for each

forecast instance – the predictive distribution is determined from the quantities

ȳ1, ... , ȳp and s̄2, with

Y0 ∼N
(
a+ b1ȳ1 + · · ·+ bpȳp, c+ds̄2

)
. (2.4)

The coefficients a,b1, ... , bp, c,d are estimated either by maximising the likelihood

(Jewson et al., 2004) or by minimising the continuous ranked probability score

(CRPS; Gneiting et al., 2005) over a training set of previous forecast-observation

pairs; the CRPS, which will be discussed in detail in Section 3.2.1, is a metric

commonly used to evaluate the skill of probabilistic and ensemble weather

forecasts. In order to ensure that the NGR variance is strictly positive, the

estimators ĉ and d̂ are constrained to be greater than zero (Gneiting et al.,

2005).

The fitted coefficients b̂1, ... , b̂p can be interpreted as weights applied to each

member of the MME depending on their relative skill in predicting the verifying

observations in the training set, with â providing a simple bias correction to the

weighted mean forecast thus obtained. When (as in Figure 2.5, for example)

several of the ensembles are highly collinear, the estimates of b̂1, ... , b̂p are likely

to be unstable, and negligible weights may be assigned to all but the single most

skilful ensemble member (Gneiting et al., 2005). The weights should therefore

not be interpreted as direct measures of the relative skill of each ensemble.

The variance component of (2.4) is intended to capture the fact that a
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systematic relationship is expected to exist between the magnitude of the

forecast errors and the spread of the ensembles producing them (Gneiting et al.,

2005). The strength of the spread-error relationship within the training data is

reflected in d̂, with larger values indicating a stronger relationship; when d̂= 0,

the spread and error are essentially independent, and the resulting distribution

is reduced to a linear regression, with the ensemble variance inflated by ĉ to

replicate the variance of the errors in the training data.

2.1.4.1.2 NGR for multivariate forecasting

NGR is a univariate postprocessing method, estimating regression coefficients

for a single variable. In weather forecasting, applications typically require

joint forecasts of several variables simultaneously, whether of multiple weather

quantities; of a single weather quantity at successive time steps; of a single

weather quantity at several sites; or some combination of these. In principle,

direct multivariate MOS methods are possible, but these require simultaneous

estimation of large numbers of parameters even when the number of predictands

is relatively low (Berrocal et al., 2007; Schuhen et al., 2012; Pinson, 2012; Wilks,

2015). Because of this, a more commonly used approach is to postprocess each

of the m marginal forecasts independently, where m in this case denotes the

number of locations; to concatenate the postprocessed forecast means into a

single vector µngr; and to combine this vector with a correlation matrix R

defining the joint dependence structure, in order to produce a multivariate-

normal joint predictive density

Y0 ∼MVN
(
µngr,V

1/2
ngrRV1/2

ngr

)
, (2.5)

where Vngr is the m×m diagonal matrix of NGR marginal predictive variances

(Berrocal et al., 2007; Feldmann et al., 2015; Schefzik, 2016).

The method used to estimate R can be chosen depending on the context:

time series or spatial correlation structures may be used if appropriate, but if the

predictands are genuinely multivariate without a clear underlying temporal or
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spatial structure then an unstructured correlation matrix can also be used. If the

training datasets are large enough to support the estimation of an unstructured

covariance matrix, this will usually be quicker and more straightforward than

fitting a structured covariance matrix, a process that would typically involve

either the fitting of multiple competing options to identify the best fit, or

the manual inspection of sample correlation matrices to identify plausible

candidates.

Equation (2.5) suggests that R should be the correlation matrix of the

observed residuals after regressing out the effects of the raw forecasts. However,

estimation of the dependence structure based on the forecast errors is not

commonly used when postprocessing weather forecasts. Instead, R is typically

estimated using one of two methods.

One is to use the correlation matrices of the raw forecasts that are under-

going postprocessing: this approach was originally proposed for postprocessing

of forecasts issued in the form of discrete ensembles, and is known as Ensemble

Copula Coupling (ECC; Schefzik et al., 2013; Schefzik, 2016). Alternatively,

R may be estimated from a long series of historical observations; this method

is usually known as the Schaake Shuffle (Clark et al., 2004). The rationale

behind this choice is that, if the dependence structure is expected to depend

on the prevailing atmospheric conditions, then an empirical copula based on

the raw ensembles might be expected to yield better forecasts than one based

on an unconditional climatology; however, if the raw ensembles fail to capture

a realistic dependence structure, then estimation from historical observations

may be expected to result in better joint calibration (Wilks, 2015). Several

studies have found that forecast skill is improved when the dependence struc-

ture is estimated instead from forecasts that are similar, in some sense, to the

current forecast (Junk et al., 2015; Schefzik, 2016; Lerch and Baran, 2017),

essentially conditioning the climatological sample on the prevailing weather

state of the forecasts. Such forecasts are known as analogues to the current

forecast instance, and will be discussed further in Section 2.3. In the application
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in Section 4.2 the correlation matrix R will be estimated using the sample

correlation matrix of the verifying observations corresponding to the training

cases used to estimate the coefficients of the marginal predictive distributions.

2.1.4.1.3 Limitations of the NGR approach

Nonhomogeneous Gaussian regression offers an intuitive approach to simultane-

ously correct a multi-ensemble forecast and assess the relative performance of

the constituent ensembles. However, NGR methods fail to exploit the full range

of information provided by the available ensemble forecasts. By working with

only the ensemble mean forecasts, information about the spread (or confidence)

within each ensemble is lost; and by potentially discarding whole ensembles

in the weighted average, information from the full spread of the MME is lost

– although this was found to be a key part of the success of superensemble

forecasts in Hagedorn et al. (2005) and Weigel et al. (2009), where even less

skilful ensembles were able to contribute to a well-calibrated combined forecast

by increasing the forecast spread and exploring additional regions of the phase

space. Furthermore, NGR fails to account for uncertainty in the coefficient

estimates, which would usually be accounted for in a linear regression by issuing

predictions of new observations in the form of a t-distribution with inflated

variance.

The next section presents an intuitive and easily applied framework de-

signed to incorporate all of the available information about the forecast of

interest, and produce a properly calibrated, bias-corrected multivariate multi-

ensemble forecast.

2.2 A new approach to MME postprocessing
This section describes a novel approach to the postprocessing of multivariate

forecasts produced by multi-model ensemble prediction systems. A graphical

representation of the relationships between the ensembles is used to derive an

expression for the posterior distribution of the weather quantities of interest in a
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Bayesian framework. Sources of uncertainty about each element of the forecast

are explicitly quantified in a way that is easy to understand and interpret.

The section begins by introducing the conceptual MME framework, before

developing a model for the postprocessing of quantities such as surface temper-

atures, which can be treated as having an approximately multivariate normal

distribution.

2.2.1 Conceptual representation of the MME
The framework is developed from that proposed in Chandler (2013) to combine

and correct climate projections. A key difference here is that, while climate

projections aim to make statements about the statistical properties of future

weather such as regional or global mean temperatures over a long period of

time, the aim in the current weather forecasting context is to forecast the

actual weather quantities themselves. The framework aims to accommodate

the relationships not only between the ensemble members and the ensembles

themselves, but also explicitly accounts for the fact that, due to shared elements

of model design such as similar resolutions and parametrisations, the ensembles

are likely to be more similar to each other than they are to the real world

(Wilks, 2011).

For a single forecast instance, the aim of the postprocessing is to ob-

tain a probabilistic prediction of the collection of weather quantities Y =[
Y1 · · · Ym

]
, say, where m denotes the number of weather quantities to be

postprocessed simultaneously. Let Y0 denote the value of Y against which the

prediction is to be verified.

The MME consists of p ensembles, with the ith ensemble having ni ex-

changeable members. The jth member of the ith ensemble is labelled Yij .

Reflecting the tendency (as seen in Figure 2.3) of the members of one ensemble

to be more similar to each other than to the members of another ensemble,

the members of the ith ensemble are centred on an ensemble-specific mean

µi. These ensemble means are themselves centred on an unobserved MME

‘consensus’, ξ, reflecting the fact that the ensembles may resemble each other
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more closely than they resemble reality. This consensus can be thought of

as the centre of the population of possible ensembles; if it were possible to

sample an ensemble from each of an infinite collection of models for a particular

forecast instance, the mean of the infinite sample of µis would lie not at Y0

but at ξ.

The discrepancy between the ensemble consensus and the value of Y0 actu-

ally observed is labelled ∆; this quantity explicitly accounts for the possibility

that if, for example, one EPS predicts too low a temperature, the other EPSs

will display a similar tendency.

The relationships between these quantities are represented in the schematic

in Figure 2.6. The ensemble members {Yij} are represented by filled circles,

indicating that these quantities are known at the time the forecast is issued.

Quantities that are unknown, but either are of direct interest (the future value

Y0) or are required to fully specify the MME model (the ensemble means {µi}

and consensus ξ) are represented by hollow nodes.

Figure 2.6: Schematic representation of the relationships between the elements of
the multi-model ensemble forecasting system. Quantities known at the
time of issuing the forecast are shown as filled nodes, with unknown
quantities represented by open nodes. The covariance matrices relating
to each quantity are not shown.
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The arrows linking the nodes encode conditional independence relation-

ships: if there is no path between point A and point B without passing through

point C, then A and B are conditionally independent, given C. Thus, since

there is no path from Yi1 to Yi2 that does not pass through µi, Yi1 and Yi2 are

independent, given µi. This assumption seems intuitively reasonable if the ini-
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tial conditions of each ensemble member are sampled independently. Likewise,

if the location of the ‘consensus’ node ξ is given, knowledge of the position of

one ensemble mean µ1 provides no additional information about the position

of the ensemble mean µ2. Without conditioning on the MME consensus ξ,

µ1 and µ2 are not independent, because knowing the mean forecast of one

ensemble would provide some information about the likely value of the other.

The conditional independences implied by this graph will be exploited in the

subsequent derivations.

2.2.2 Postprocessing the MME
In the application described in Section 2.1.2, Y contains surface temperatures

at each of the m= 13 grid cells shown in Figure 2.4, for which a multivariate-

normal representation is appropriate. The members {Yij} of the ith ensemble

are assumed to be exchangeable, and to be independent conditional on the

ensemble’s population mean µi, so that

Yij |µi ∼MVN(µi,Ci) , (2.6)

where Ci denotes the ensemble covariance matrix. The individual ensemble

mean forecasts µi are themselves assumed to be dispersed around a mutual

consensus, ξ, and to be independent of one another only conditional on this

consensus,

µi|ξ ∼MVN(ξ,Σ) . (2.7)

where Σ is the covariance matrix capturing the relationships between the

ensemble means µi. The MME consensus ξ can be decomposed into the

‘true’ value, Y0, plus a shared discrepancy ∆ about which there is also some

uncertainty, as

ξ = Y0 +∆ where ∆∼MVN(η,Λ) (2.8)
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Equations (2.6) to (2.8) correspond to the arrows in the schematic in Figure

2.6. Figure 2.7 represents the elements of the MME in Figure 2.3 in terms of

the quantities defined in (2.6) and (2.7).

Figure 2.7: The MME forecast in Figure 2.3, represented in terms of the distri-
butions described in (2.6)-(2.8). The coloured ellipses represent the
individual covariance matrices C1, C2 and C3 while the black dotted
ellipse represents the covariance matrix Σ.
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2.2.2.1 Simplification of the MME structure

The structure in Figure 2.6 – and hence the derivation of the posterior – can be

simplified by exploiting the fact that, having obtained Ci, only the ensemble

means Yi are required to represent all of the information contained in the

ensemble. This means that, without loss of information, the individual members

{Yij} of ensemble i can be replaced by the ensemble mean Yi, and (2.6) can

be replaced with

Yi|µi ∼MVN
(
µi,n

−1
i Ci

)
. (2.9)

The proof of the equivalence of (2.6) and (2.9) is derived in Appendix A.2. This

simplified form can in turn be combined with (2.7), and used to deduce that

the sampled ensemble means
{
Yi

}
are independent of each other conditional
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on the ensemble consensus ξ, with

Yi|ξ ∼MVN
(
ξ,Σ+n−1

i Ci

)
. (2.10)

To further simplify the notation, (2.10) can be written as

Yi|ξ ∼MVN(ξ,Di) where Di = Σ+n−1
i Ci. (2.11)

The graph corresponding to this simplified structure is shown in Figure 2.8.

All of the information contained in the {Yij} is now captured by the sample

ensemble means
{
Yi

}
, with associated uncertainty n−1

i Ci. The unobserved

nodes corresponding to the ensemble population means {µi} are no longer

required for the inferential calculations, forming part of the unique path from

ξ to each Yi, and so can be removed from the graph structure.

Figure 2.8: Simplified schematic representation of the relationships between the
elements of the multi-model ensemble forecasting system. Quantities
known at the time of issuing the forecast are shown as filled nodes, with
unknown quantities represented by open nodes. Dotted lines indicate
redundant nodes that have been bypassed.
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An important difference between this representation and NGR is that the latter

approach uses only the sample variance of the ensemble means (the diagonal

elements of Σ), discarding the additional information on within-ensemble

spread.
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2.2.2.2 The posterior distribution of Y0

Having specified parametric forms for the quantities represented in Figure 2.8

and the conditional relationships between them, it is now possible to derive

the distribution of Y0. As in Chandler (2013), this is most conveniently done

in a Bayesian framework which also allows the incorporation of additional

knowledge about Y0 via a prior distribution. To ensure a tractable form for

the posterior distribution, a multivariate normal prior is used, with

Y0 ∼MVN(α,Γ) . (2.12)

It can be shown, using arguments adapted from those in Chandler (2013), that

the posterior distribution of Y0, conditioned on the set of all ensemble forecasts

{Yij}, is itself multivariate-normal, with

Y0|{Yij} ,η,Λ∼MVN(τ ,S) (2.13)

with posterior precision

S−1 = Γ−1 +
( p∑

i=1
D−1
i

)−1

+Λ

−1

(2.14)

and posterior expectation

τ = S

Γ−1α+
( p∑

i=1
D−1
i

)−1

+Λ

−1
( p∑
i=1

D−1
i

)−1 p∑
i=1

D−1
i yi−η


 ,
(2.15)

where p is the number of ensembles in the MME. The derivation of the posterior

expectation and covariance is given in Appendix A.3. In the expressions above,

the expectation η and covariance matrix Λ of the discrepancy are considered to

be known quantities; their estimation, and the estimation of the other required

quantities, will be discussed subsequently.
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2.2.2.3 Interpretation of the elements of the posterior distribution

of Y0

Expressions (2.14) and (2.15) can be rewritten to clarify the contribution of

each source of information to the posterior mean and covariance.

From (2.11), the term
(∑p

i=1D
−1
i

)−1
is the inverse of the total precision

of the sample estimates of the
{
Yi

}
, conditional on ξ: this covariance matrix

captures the uncertainty about the true position of the unobserved MME

consensus ξ, given the observed ensembles. The posterior form may be simplified

by writing this quantity as

ΣD =
( p∑
i=1

D−1
i

)−1

, (2.16)

say. The first term inside the braces {} in (2.15) is the weighted average of the

sample ensemble means {yi}, where the weights are determined by the relative

precisions ΣDD−1
i of the sample means. This is the sample estimate of the

MME consensus,

ξ̂ = ΣD

p∑
i=1

D−1
i yi. (2.17)

(2.14) and (2.15) can therefore be written in the simpler forms

S−1 = Γ−1 + (ΣD+Λ)−1 , (2.18)

τ = S
[
Γ−1α+ (ΣD+Λ)−1{ξ̂−η}] . (2.19)

It is now clear that the posterior precision matrix S−1 is the sum of the prior

precision Γ−1 and the precision (ΣD+Λ)−1 of the estimate of the bias-corrected

sample consensus, ξ̂−η, which is represented by the term in braces {} in (2.19).

Likewise, the posterior mean vector τ is a weighted sum of terms repre-

senting the prior expectation α and the vector ξ̂−η inferred from the ensemble

forecasts adjusted by the expected bias. The weights given to these two compo-
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nents are determined by the covariance matrices of the prior distribution and

the bias-corrected consensus, Γ and ΣD+Λ respectively.

The elements of the MME postprocessing framework are summarised in

Table 2.2. Figure 2.9 shows the various components of the postprocessed MME

forecast for the example shown in Figure 2.3, with the mean and covariance of

the prior distribution estimated from a sample climatology using the observa-

tions from the week centred on the forecast verification date in the ten years

prior to the forecast issue year, and η and Λ estimated using the sample mean

and covariance matrix of the errors of the 2-day-ahead forecasts verified in the

25 days prior to this forecast being issued.

Figure 2.9: Elements of the posterior distribution of Y0 obtained from the MME
forecast in Figure 2.3. Covariance matrices are represented by ellipses
containing 95% of the respective distributions.

(a) The sample MME consensus ξ̂, adjusted by the
bias correction η with uncertainty Λ.
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(b) The bias-corrected consensus ξ̂ − η combined
with the prior α to obtain the posterior mean τ
and covariance matrix S, using (2.18) and (2.19)
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It is worth noting that even if the assumption of multivariate normality

were not deemed reasonable, the same posterior form would be obtained by

treating the problem as a form of Bayes linear analysis in which our prior

expectations of the mean and variance of the temperature are adjusted by

the forecasts and discrepancy: the posterior mean is then the optimum linear

combination of the forecast information, and the posterior covariance matrix
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Table 2.2: Summary of the elements of the proposed post-processing framework

Y0 Verifying observation: the quantity to be forecast
α Prior expectation of Y0
Γ Prior covariance of Y0

Yij jth member of ith ensemble
ni Number of members in ith ensemble
µi Expectation of ith ensemble
Yi Sample mean of ith ensemble
Ci Covariance matrix of members {Yij} of ith ensemble
Di Covariance matrix of sample ensemble mean Yi given ξ
ξ̂ Estimated MME forecast consensus
Σ Covariance matrix of ensemble means {µi}
ΣD Uncertainty about MME consensus
∆ Discrepancy between MME consensus ξ and verifying observation Y0
η Expected value of ∆
Λ Covariance of ∆
τ Posterior expectation of Y0
S Posterior covariance of Y0

is a valid summary of the uncertainty in this optimum linear combination

(Chandler, 2013).

2.2.2.4 Estimation of the required covariance matrices

When implementing the framework, each Ci may be estimated using the sample

covariance matrix of the forecasts from the ith ensemble, and Σ using the

sample covariance matrix of the ensemble means. This estimate of Σ will be

singular when the number of ensembles p is smaller than the dimension m of

the data, as occurs in the case study considered here and in later chapters.

However, Σ appears in the posterior only as part of Di = Σ+n−1
i Ci, which is

invertible as long as Ci is: this is always the case when the ensemble size ni
used to estimate Ci is larger than the dimension m. This requirement is fulfilled

by the MME considered here, but should be kept in mind when designing other

applications of the method.

Strictly speaking, this estimate of Σ will be biased due to the use of the

sample means Yi in place of the underlying means µi, tending to overestimate
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the uncertainty by the average of the covariance matrices of the ensemble

sample means, 1
p

∑p
i=1n

−1
i Ci. If the ensembles are of moderate size then this

bias will be very small unless the {Ci} are very large, and correcting it will

have minimal impact on the postprocessed forecast variance. If the bias is not

small, then the simplest approach to correcting it is to subtract it, to obtain

the bias-corrected estimate

Σ̃ = Σ− 1
p

p∑
i=1

n−1
i Ci. (2.20)

However, Σ̃ is not guaranteed to be positive definite, and therefore may produce

singular estimates of the {Di}. In an experiment not presented here, the

Bayesian postprocessing reported in Section 4.2 was repeated with this simple

bias correction; at all but the shortest leadtimes, an invalid posterior was

obtained in around 4% of forecast instances (25-35 cases out of the 630 at each

leadtime), and the forecast skill of the remaining cases was unchanged. For this

reason, no bias correction of Σ is included in the results reported subsequently.

An alternative approach would be to carry out the suggested bias correction

and to use generalised inverses throughout the analysis to avoid the problem

of non-invertibility; this approach has not been explored further due to time

constraints.

The expectation and covariance matrix η and Λ of the discrepancy ∆

for a given forecast instance can be estimated directly using the mean and

covariance matrix of an appropriate training set of past forecast-observation

pairs. As with the estimate of Σ, this approach will tend to overestimate the

value of Λ because it is based on the sample forecast consensus ξ̂ rather than

the population consensus ξ; and, once again, a simple bias correction risks

producing an estimate of Λ that is not positive definite, so no bias correction

is included here. Approaches to selection of an appropriate training set from

which to estimate η and Λ are considered in detail in Section 2.3. A more

sophisticated method to estimate these quantities, using a linear approximation
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to Bayesian inference, is introduced in Chapter 5.

It is also worth noting here the links between the Bayesian forecast postpro-

cessing approach and the data assimilation (DA) process described in Section

2.1. The two problems are inverses of each other: while DA attempts to infer

the model state from the observations, the postprocessing procedure infers

the likely value of the observations from the model state. Both estimate a

model discrepancy in order to do this; however, the DA process focuses on

adjusting the initial conditions for the forecast, whereas postprocessing at-

tempts to correct the subsequent trajectory of the forecasts, so no real-time

observations are available from which to do so, and the error must be estimated

from training data. If the method were in use operationally, it is possible

that some information about the individual model errors and their associated

covariances, and about the spread of each ensemble, could be obtained from the

corresponding matrices used in the DA process; although the between-ensemble

covariance matrix Σ would still need to be estimated for the MME as a whole.

2.2.3 Choosing a prior distribution for Y0

If no prior assumptions are to be made about the distribution of Y0, a non-

informative prior can be used by setting Γ−1 = 0. Such a prior will contribute

nothing to the final posterior forecast covariance and expectation in (2.18) and

(2.19), which will reduce to

S = ΣD+Λ, τ = ξ̂−η. (2.21)

Two approaches to setting an informative prior are suggested below. However,

an informative prior may be estimated from any subset of the available historical

observations, with the proviso that the subset should be selected without

reference to the forecast instance being postprocessed: the prior must not use

any of the information used to construct the posterior.
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2.2.3.1 Climatological prior

Perhaps the simplest informative prior is a climatological one, constructed from

an archive of past observations for the time of year and time of day that the

forecast will be verified (Vannitsem et al., 2018, §3.4). A typical approach to

estimation of a climatological prior distribution for a forecast instance with

verification calendar date d and year y, say, would be to select the verifying

observations on days d−3 to d+ 3 and years y−n to y−1. The sample mean

and covariance matrix of this climatological sample are taken as estimates of

α and Γ respectively. A climatological prior reflects a prior belief that the

realised temperature will be close to the average for the time of year. However,

this approach fails to account for the prevailing weather at the time the forecast

is issued, or the conditions predicted by the ensembles themselves.

2.2.3.2 Sequential postprocessing

The Bayesian framework introduced here provides an opportunity for informa-

tion from an earlier forecast of the weather at a particular time t to be used in

the postprocessing of any new forecasts issued for the same verification time, in

a process similar to the sequential data assimilation approach shown in Figure

2.1.

In the data set presented in Section 2.1.2 and used throughout this thesis,

forecasts of the weather at time t are issued at one-day intervals, and are

first issued 15 days in advance. For this initial forecast, no particular prior

information is assumed, so these forecasts should be postprocessed using either

a climatological or noninformative prior. The next day, a 14-day-ahead forecast

is issued for the weather at time t; a natural choice for the prior distribution

of the weather at time t is the 15-day-ahead posterior forecast distribution

obtained one day previously. In this way, the forecasts for each verification

date are postprocessed sequentially: for each new forecast issued for time

t, the previous posterior forecast is used as the prior distribution, until the

forecast verification date is reached. A schematic of the final stages of this



2.3. Selection of a training set for statistical postprocessing 37

prior-to-posterior sequential approach is shown in Figure 2.10.

Figure 2.10: Schematic of the sequential forecasting process for forecasts of the
weather at time t, and its relationship with the data assimilation (DA)
process.
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It is important to note that, for ensembles initialised using data assimilation as

described in Section 2.1, the assimilation procedure can be regarded as partially

updating the forecasts in the same way, at each time step using the posterior

distribution of the previous background forecast (the analysis) as the prior for

the analysis used to initialise the new background forecasts. This potentially

complicates the postprocessing analysis; the effect of this will be explored in

Section 4.1, when examining the postprocessing results obtained using different

prior specifications.

2.3 Selection of a training set for statistical

postprocessing
Statistical postprocessing methods like Model Output Statistics (Section 2.1.4.1)

and the Bayesian framework introduced in Section 2.2 require a set of training

cases consisting of past forecast-verification pairs, from which the necessary

quantities can be estimated for each forecast instance. The more similar the
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errors of the training case are to those of the current forecast instance, the

better the estimate of the necessary adjustment will be, and the more skilful

the postprocessed forecast will be. Forecast errors will depend to some extent

on the time of day (also known as synoptic time), the time of year, or the state

of the atmosphere at the time that the forecast is issued (Eckel and Mass, 2005;

Greybush et al., 2008; Ferranti et al., 2015), so it is advisable to select training

cases from forecasts verified at the same synoptic time and time of year as the

forecast of interest.

2.3.1 Climatological training cases
As when setting a prior distribution for Y0, one possible approach to selecting

training cases that are likely to have error characteristics similar to those of

the current forecast instance is to choose previous forecasts that were verified

at the same time of year – perhaps from the same day of the year, or a small

window on either side (Hagedorn et al., 2008; Hamill, 2012) – to estimate

the climatological forecast error. This may – depending on the length of the

available archive of historical forecasts – offer a large set of training cases to

choose from; however, climatology-based correction does not take into account

the state of the atmosphere at the time that the current forecast is issued.

Another issue is that operational weather forecasting models are updated fairly

regularly: if this changes the typical biases of the models, then simply using

historical forecast-observation pairs to estimate the correction risks introducing

a new source of error.

2.3.2 ‘Moving window’ training cases
An alternative is to use forecasts verified in the days prior to the forecast issue

date to estimate the required correction (Gneiting et al., 2005). This ‘moving

window’ approach limits the number of available training cases, but has the

advantage of ensuring that, except for a handful of instances when a model

change is implemented, the current forecast instance will have been generated

by the same NWP model that was used to produce the forecasts in the training
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set: however, it should also be noted that recent observation errors have already

been incorporated into the individual forecasts, through the data assimilation

process used to obtain the analysis with which the forecast is initialised (Section

2.1). Postprocessing using a ‘moving window’ training set will be successful if

the forecast error characteristics persist until the current forecast is verified;

however, as the forecast leadtime increases, forecasts within a moving window

will become less relevant to the forecast discrepancy eventually observed, and

choosing a long moving window risks including training cases that are not

informative about the forecast instance of interest. Furthermore, the elements

of a moving-window training set are autocorrelated: the information content of

such a training set is therefore smaller than if the members of the training set

were independent.

More pertinent information may be obtained by selecting a training set

of forecasts that predict similar weather to that anticipated by the current

forecast. The next section discusses the concept of selecting a training set based

on some measure of similarity to the current forecast instance, and introduces

the second major contribution of this thesis: a method for selecting a training

set based on the similarity of the prevailing weather regime to that of the

current forecast instance.

2.3.3 Analogues to the forecast of interest
Forecasts selected on the basis of some measure of similarity to the current

forecast instance are known as analogues to the current forecast. The idea of

postprocessing using analogues is by no means new (Toth, 1989; Van den Dool,

1989; Sievers et al., 2000), but the approach to identifying analogues presented

here is new.

When using analogues as training cases, the size of the training set is no

longer limited by temporal proximity to the forecast of interest, so potentially

much larger training sets can be constructed. However, while surface temper-

atures and other variables such as surface wind speeds may be successfully

postprocessed using relatively small training sets of 20-30 members (Hagedorn
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et al., 2008; Delle Monache et al., 2013; Junk et al., 2015), postprocessing of

precipitation requires a very long archive of forecasts in order to provide enough

candidate examples of extreme events (Hamill and Whitaker, 2006), and the

use of too short an archive can lead to selection of analogues of poor quality

(Hu et al., 2020).

Using well-chosen analogues as training cases should ensure that the

corresponding weather states are relevant to the forecast of interest – more so

than by simply filtering on season and synoptic time to sample the climatology,

as suggested in Section 2.3.1 – and so should produce a better estimate of η

and Λ.

2.3.3.1 Identifying analogues to the current forecast instance

Analogues to the current forecast are identified by first selecting a vector of

summary statistics to characterise each forecast instance (perhaps the forecast

values themselves, or some more compact summary of them, such as the

ensemble means); and computing this vector of summary statistics for both

the forecast instance of interest and for each potential analogue. Denoting

the values for the forecast and a potential candidate by F and C respectively,

analogues are selected on the basis of distance metric, typically

‖F,C‖=

√√√√√ m∑
i=1

(
F (i)−C(i)

σi

)2
(2.22)

where F (i) and C(i) are the ith elements of F and C respectively, each

normalised by its climatological standard deviation σi (Delle Monache et al.,

2013), computed over all potential candidates {C}. Those candidates with the

smallest values of ‖F,C‖ are selected as analogues to F, to be used as training

case in postprocessing. Typically a fixed number of the closest analogues is

selected (Delle Monache et al., 2013; Junk et al., 2015).
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2.3.3.2 Analogue selection by weather regime

When the dimension m is not large, the vectors F and {C} typically contain

elements corresponding to all of the forecast quantities of interest. However,

when m is large, particularly if the forecasts have a large spatial domain, finding

analogues that are close in all variables simultaneously may be difficult. As a

result, the quality (or relevance) of the selected analogues is likely to fall as

m increases, since the aggregated distance metric (2.22) cannot discriminate

between (for example) candidates with a high proportion of moderate outliers,

and candidates with only a single large outlier. In this situation, and in the

context of forecasting simultaneously at multiple spatial locations, Hamill and

Whitaker (2006) suggests selecting local analogues for each location, based on

the corresponding subsets of F and {C} . However, this approach requires a

further postprocessing step to combine the independently postprocessed local

forecasts into a single spatially continuous forecast. An alternative approach is

therefore proposed here: to reduce the dimension of the vectors F and {C} for

all locations and variables simultaneously, by defining them as low-dimensional

summaries of the forecast pressure fields.

Dimension reduction techniques such as principal component analysis

(PCA, often also known as Empirical Orthogonal Function (EOF) analysis in

the climate and meteorological literature) have long been applied to pressure

fields in order to characterise prevailing weather conditions (Jenkinson and

Collison, 1977; Jones et al., 1993), and to obtain indices of large-scale synoptic

structure (Wilks, 2011). Patterns of variation in mean sea level pressure fields,

obtained using PCA, are used to classify forecasts into climatological weather

regimes in the Met Office’s operational weather forecasting (Neal et al., 2016;

Richardson et al., 2020). Previous studies have found that incorporating regime-

dependent errors derived from pressure fields can result in more skilful forecasts

(Greybush et al., 2008; Allen et al., 2020). Pressure fields are at the core

of the NWP models, and as such are almost always provided in the model

output; furthermore, pressure fields are physical quantities that are directly
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modelled in NWP models (unlike parametrised quantities like precipitation and

surface temperatures, which suffer from greater model biases). As such, they

are generally well predicted, and so form a robust basis in which to identify

analogues.

2.3.3.2.1 Finding the modes of spatial variability

The first step in the proposed scheme is to carry out a spatial principal

component analysis on a long archive of historical data to identify the principal

modes of spatial variation in the pressure fields. Here, the entire archive

of ERA-Interim mean sea level pressure (MSLP) reanalyses from 1979 to

2018 was used. Because the focus of the applications in this thesis is on

winter temperatures observed at midnight, only reanalyses issued for midnight

during the meteorological winter period (December, January and February)

are included, giving a total of 3420 time points.

The efficiency of the PCA dimension reduction is such that the spatial

domain need not be restricted to the forecast area of interest; in fact, since

synoptic weather systems in the surrounding area are known to affect the

weather over the UK (Scaife et al., 2014), MSLP fields for processing forecasts

covering the UK and northern Europe should cover the entire North Atlantic

European region and central Europe (35◦ to 70◦N, 30◦W to 20◦E; shown in

Figure 2.11) (Neal et al., 2016). Other studies have recommended this domain

as being appropriate for purposes such as reconstructing surface temperatures

from MSLP-derived regime classifications (Beck et al., 2016). Each MSLP field

therefore contains 1836 values, arranged on a regular 1◦ latitude-longitude grid.

Following standard practice, the MSLP fields are first reweighted to ac-

count for differences in the areas covered by grid cells at each latitude θ, by

multiplying the cell values by cos(θπ/180) (North et al., 1982; Wilks, 2011).

The climatological mean field is found by averaging all of the latitude-weighted

MSLP fields over time; this mean field is then subtracted from the daily fields

to obtain a daily MSLP anomaly a. Spatial PCA is carried out on these daily
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anomaly fields; the resulting eigenvectors (EOFs) represent the dominant modes

of spatial variation, with the corresponding normalised eigenvalues indicating

the proportion of the data’s total variance explained by each eigenvector.

As suggested by Jolliffe (2011), only the first q eigenvectors are retained,

where q is the smallest number of eigenvectors required to capture at least

90% of the variance in the anomalies. In the dataset used here, the first six

eigenvectors are retained; plots of the spatial patterns represented by these

eigenvectors are shown in Figure 2.11. The retained modes of variation have

fairly straightforward interpretations. The first is associated with the North

Atlantic Oscillation, a large-scale pressure system known to be one of the key

drivers of variability in the weather over the UK, particularly in winter (Scaife

et al., 2014); the second captures situations in which a high- or low-pressure

system is located to the south-west of the UK; the third reflects east-west

pressure gradients over the UK, and so on. Higher-numbered modes display

patterns of increasing complexity. The resulting (L× q) matrix of principal

eigenvectors is denoted E; the climatological modes that it represents need

only be computed once from the reanalysis data, and updated whenever the

climatological archive is updated.

2.3.3.2.2 Selecting analogues

Vectors of principal component scores are now computed for each forecast

instance by projecting the latitude-adjusted MSLP anomalies af of the ensemble

mean MSLP field onto the eigenvector matrix E, to obtain a q-length vector

uf , defining the coordinates of the forecast in the basis defined by E:

uf = E′af . (2.23)

When a new forecast instance requires postprocessing, it is only necessary to

obtain its anomaly field af and apply (2.23) to obtain the vector of principal

component scores. Analogues to the instance of interest are selected in the
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Figure 2.11: Spatial plots of the elements of the first six eigenvectors of the ERA-
Interim winter archive of MSLP fields, with the percentage of variance
explained by each eigenvector. Cumulative percentages of variance
explained are given in parentheses.
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(b) Second eigenvector:
23% (61%)
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(c) Third eigenvector:
17% (78%)

 −
15

 

 −10 

 −10 

 −5 

 0
 

 5 

 10 

−30 −20 −10 0 10 20

35
40

45
50

55
60

65
70

Longitude

La
tit

ud
e

(d) Fourth eigenvector:
7% (84%)
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(e) Fifth eigenvector:
4% (88%)
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(f) Sixth eigenvector:
3% (91%)
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q-dimensional principal component case using the distance metric

∥∥∥uf ,uc∥∥∥=

√√√√ q∑
i=1

(
uf (i)−uc(i)

)2
, (2.24)

where uf and uc are the vectors of scores for the forecast and candidate,

respectively. Because they are not normalised to have unit variance, the elements

of uf and uc will have magnitudes proportional to the amount of variance

explained by the corresponding eigenvectors, and will contribute proportionally

more to the total sum of squares, ensuring that the distance
∥∥∥uf ,uc∥∥∥ prioritises

forecasts that are most similar in terms of the most important spatial patterns
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of variation. After postprocessing, the principal component scores uf can

be added to the archive of potential candidate scores, to be searched when

postprocessing the next forecast instance.

Where the forecast to be postprocessed is produced by an MME, principal

component scores can be obtained separately for each ensemble by projecting

the p ensemble mean fields onto E; the joint state of the p-ensemble forecast

is therefore represented by a vector of length q× p, where q and p are both

small, and analogues are selected on the basis of the Euclidean distance (2.24)

calculated over this state space.

Unlike analogues identified in forecast variable space, the weather-regime

candidate archive need not be recalculated if the forecast domain changes,

either in terms of spatial extent or of the variables included: the analogues

chosen will remain the same for any choice of surface weather variables, and

for any locations for which the synoptic domain remains appropriate. This

means, for example, that subsets of forecasts in north-western Europe could be

postprocessed independently using the same weather regime analogues, and

the resulting forecasts would be mutually consistent and coherent.

Training cases selected using the weather regime analogue method proposed

in this section are used to postprocess forecasts of surface temperature in Section

4.3.

2.4 Summary and discussion
This chapter presents two of the major contributions of this thesis: in Section

2.2, a new framework for the postprocessing of multi-model ensemble forecasts;

and in Section 2.3, a novel approach to the selection of training cases for use in

statistical postprocessing of weather forecasts. An application of both methods

to postprocessing the medium-range forecasts of surface air temperatures

described in Section 2.1.2 is presented in the next chapter.

The MME postprocessing framework is derived from a graphical represen-

tation of the relationships between the quantity of interest – in the example
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used here, the vector of temperatures Y0 – and the collections of individual

forecasts issued by several EPSs. Unlike competing postprocessing methods,

the Bayesian framework is able to accommodate information about the prior dis-

tribution of Y0, offering the possibility of producing sequentially postprocessed

forecasts.

Although the framework was motivated by situations where the shared

discrepancy is due to the approximations inherent in all NWP models, it could

in principle be used to postprocess forecast ensembles where other potential

sources of shared discrepancies are present, for example as a means of adding

detail to low-resolution forecasts, with discrepancies estimated from a training

set matching past low-resolution forecasts to higher-resolution verifying obser-

vations. In this case, the low resolution can itself be regarded as a source of

shared discrepancies in the forecast ensembles due to unresolved processes, so

that the same conceptual framework applies.

One further limitation of the framework in its present form is its scalability:

as described here, the approach can only be applied to relatively small spatial

domains, due to the difficulty of estimating the required covariance matrices

from the relatively small forecast ensembles available. When the dimension

m is greater than the number of members of any of the individual ensembles,

the estimate of the corresponding covariance matrix Ci will be singular, and

the posterior cannot be evaluated. In this setting, structured covariance

models would be needed for the estimation of the required covariance matrices.

Likewise, as discussed in Section 2.2.2.4, the between-ensemble covariance

matrix Σ is estimated from only p points for each forecast instance, and so may

be estimated imprecisely. In principle, this parameter uncertainty could itself

be incorporated into the posterior distribution, although this is non-trivial and

the computational complexity would increase dramatically. However, in the

application presented in the next chapter, the contribution from Σ was found

to be very small compared to both ΣD and Λ, so this source of uncertainty is

not considered further here.
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The second contribution introduced in this chapter is the proposed method

for selecting analogues to the forecast of interest on the basis of their similarity

in terms of the dominant patterns in the forecast mean sea level pressure

(MSLP) fields. The proposed method allows analogues to be identified in a

relatively low-dimensional space representing key aspects of the shape of the

MSLP fields over a region known to affect the prevailing weather patterns

over the UK. Analogues with similar patterns of MSLP fields may be expected

to have similar prevailing weather regimes, and so to have similar forecast

errors, to the forecast of interest; estimation of the discrepancy ∆ from such

a training set may therefore be expected to produce a better estimate, and

therefore more skilful postprocessed forecasts, than estimation using a moving-

window or climatological approach. Choosing analogues on the basis of weather

patterns over a large spatial domain has the added advantage that the training

cases identified will be relevant for forecasts of all surface weather quantities

throughout the domain. This is in contrast to the ‘direct analogue’ method

described in Section 2.3.3.1, in which analogues are chosen according to their

similarity to the current instance in terms of the variables to be postprocessed.

Such an approach may require postprocessing of forecasts at each location

using local analogues, in order to keep the dimension of the search space small

enough to identify relevant instances.

One caveat when selecting analogues in any domain is that, ideally, a very

large archive of forecasts from the same model configuration are required. For

this reason, many operational centres now issue reforecasts (forecasts using the

latest model initialised with historical observations) whenever the the NWP

models undergo a major update, in order to provide just such an archive of

relevant training cases for use in postprocessing. Constructing an archive of

reforecasts for a multi-model ensemble, where models are updated on different

dates, is particularly challenging, so the method may be more appropriate for

use in the postprocessing of single-ensemble forecasts, where such a lengthy

archive is more readily available.



Chapter 3

Review of forecast verification

methods

Forecast verification is the process of evaluating how well weather forecasts are

able to predict the quantity of interest. This chapter reviews the verification

metrics that will be used to evaluate the forecast skill of probabilistic forecasts

issued in the form of probability density functions, like those produced by the

Bayesian framework and other postprocessing methods described in Chapter 2.

Equivalent metrics for assessing ensemble forecasts are also presented; using

these the skill of forecasts issued as an ensemble of point forecasts – such as

the raw output from an ensemble prediction system or the forecasts in the

simulation study in Section 6.3 – can be assessed and compared directly to

that of the probabilistic forecasts.

Section 3.1 defines measures of forecast accuracy, bias and sharpness. More

general scoring rules, which provide a scalar measure of the overall quality of

probabilistic and ensemble forecasts, are considered in Section 3.2. Finally, in

Section 3.3, tools to diagnose particular types of forecast error in the marginal

and joint forecasts are discussed.

Two innovations are described in this chapter. First, in Section 3.3.2.2,

the extension of the band depth rank histogram to more efficiently evaluate

the joint calibration of forecasts issued in the form of a predictive density; and

second, in Section 3.3.2.3, a graphical tool to facilitate the joint evaluation of
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two types of calibration histogram.

3.1 Measures of bias, accuracy and sharpness
Forecast quality is typically summarised using one or more scalar verification

measures. Among the simplest of these are measures describing particular

attributes of forecast quality (Wilks, 2011; Jolliffe and Stephenson, 2012).

Forecast bias and accuracy are both characteristics of a point forecast such as

the mean of a forecast distribution, or the value obtained from a deterministic

forecast system. The forecast bias is a measure of the average difference between

a point forecast and the corresponding observation; for a collection of forecast

distributions at times t= 1, ... ,n with means {µt} and verifying observations

{yt}, this is the mean error (ME),

ME = 1
n

n∑
t=1

(µt−yt) = µ− ȳ. (3.1)

Clearly, the smaller the bias, the better. Forecast bias is distinct from forecast

accuracy, which quantifies the degree of correspondence between individual

forecasts and their verifying observations. Accuracy is typically measured using

either the mean absolute error (MAE) or the root mean squared error (RMSE).

MAE = 1
n

n∑
t=1

∣∣∣µt−yt∣∣∣ , RMSE =
√√√√ 1
n

n∑
t=1

(µt−yt)2. (3.2)

Both of these metrics are expressed in the same units as y, and can be interpreted

as the typical magnitude of the forecast error; both will be zero if the forecasts

are perfect, but the RMSE is more sensitive to large errors than the MAE.

In evaluating the applications in Chapters 4 and 6, the MAE will be used to

quantify the accuracy of the forecasts. The MAE is frequently used for the

verification of operational forecasts (Wilks, 2011) and is typically presented

alongside the Continuous Ranked Probability Score (Section 3.2.1), to which it

generalises when forecasts are issued as predictive distributions, rather than

point forecasts.
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Forecast bias and accuracy are properties of point forecasts with respect to

their verifying observations: for probabilistic forecasts, another useful quantity

is the variance of the predictive distribution, which can be regarded as a

measure of confidence in the forecast. In the context of forecast verification, the

predictive variance is characterised in terms of the forecast sharpness; forecast

distributions with a low variance are considered to be sharp, while forecast

distributions with high variance lack sharpness. Marginal forecast sharpness

is typically expressed via the forecast standard deviation, while the overall

sharpness of a d-variate forecast with covariance matrix Σ is quantified using

the determinant sharpness (Gneiting et al., 2008),

DS = |Σ|1/2d , (3.3)

Sharpness is a property of the forecasts alone, measured without reference

to the verifying observations; sharpness is a desirable quality in a forecast

only to extent that the confidence of the forecast reflects the true uncertainty

about its prediction. A forecast distribution that correctly characterises the

uncertainty about the observed outcome is said to be well calibrated, or

reliable: for a well-calibrated probabilistic forecast of a continuous variable,

the verifying observation is indistinguishable from a random draw from the

predictive distribution. Given two sets of well-calibrated forecasts, the sharper

set should be preferred (Gneiting et al., 2008).

Unlike measures of accuracy and sharpness, calibration is a property that

cannot be meaningfully evaluated for a single forecast instance, because only a

single verifying observation is available for each forecast. Section 3.2 defines

some more general scoring rules that measure the quality of probabilistic fore-

casts, taking into account both accuracy and sharpness; methods for diagnosing

particular aspects of miscalibration of a collection of forecasts are considered

in Section 3.3.
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3.2 Measures of overall forecasting skill:

proper scoring rules
A scoring rule can broadly be defined as any function of the forecast distribution

and the observed weather quantity that provides a scalar measure of the overall

quality – or skill – of the forecast. Typically, smaller values of the score indicate

more skilful forecasts, and many common scores take non-negative values, so

that a ‘perfect’ forecast achieves a score of zero. Scoring rules are sometimes

also referred to as omnibus scoring rules, meaning that they measure the quality

of several aspects of the forecast simultaneously (Gneiting et al., 2008).

A scoring rule is considered to be ‘proper’ if a forecast probability dis-

tribution has an optimal expected score when the verifying observation is, in

fact, drawn from that probability distribution, and is considered to be ‘strictly

proper’ if no other forecast distribution achieves this optimal expected score

(Bröcker and Smith, 2007; Gneiting and Raftery, 2007). Propriety in a scoring

rule is needed to ensure that honest forecasts are issued: a proper score rewards

forecasters who issue predictions reflecting their true beliefs, while the use of an

improper scoring rule may motivate the forecaster to issue a different forecast

in an attempt to ‘game’ the system and obtain a better score (Murphy and

Winkler, 1987). Some strictly proper scoring rules taking into account multiple

aspects of forecast skill for probabilistic forecasts are now defined.

3.2.1 Continuous ranked probability score
The continuous ranked probability score (CRPS) generalises the MAE for prob-

abilistic forecasts (Wilks, 2011). It is a measure of the difference between the

predictive and empirical cumulative distribution functions (CDFs), expressed

in the same units as the variable of interest (Hersbach, 2000). In the context

of weather forecast verification, where there is only a single observation y, the
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empirical CDF is 1{x≥y} and, for a predictive distribution P with CDF F (x),

CRPS(P,y) =
∫ ∞
−∞

[
F (x)−1{x≥y}

]2
dx. (3.4)

Equation (3.4) may be difficult to evaluate for forecasts of arbitrary form;

however, for forecasts issued in the form of a normal distribution with mean µ

and variance σ2, the CRPS can be evaluated exactly as

CRPS(µ, σ2,y) = σ

{
y−µ
σ

[
2Φ
(
y−µ
σ

)
−1

]
+ 2φ

(
y−µ
σ

)
− 1√

π

}
, (3.5)

where Φ(·) and φ(·) are, respectively, the CDF and PDF of the standard normal

distribution (Gneiting et al., 2005).

The CRPS can also be evaluated for an M -member ensemble forecast

by replacing the parametric forecast CDF F (x) in (3.4) with the empirical

ensemble CDF defined by the piecewise constant function

Fe(x) = 1
M

M∑
i=1

1{x≥xi}, (3.6)

where xi is the deterministic forecast issued by the ith ensemble member

(Hersbach, 2000).

The CRPS is one of the most commonly used scoring rules in weather

forecast verification, and is often cited as a measure of calibration, because

it takes into account the whole predictive distribution. However, as Peirolo

(2011) points out, the CRPS is known to strongly favour forecasts with a

concentration of probability around the step function that jumps from 0 to

1 at the observation y: this characteristic is known as sensitivity to distance

(Matheson and Winkler, 1976, §2). As a result, the CRPS tends to penalize lack

of accuracy of the mean forecast vector more heavily than poor probabilistic

calibration. The effect of this ‘preference’ can be seen in Figure 3.1, which

shows the expected values of the CRPS when the observation is drawn from a

standard normal distribution and the forecast distribution is normal, with mean
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µ and standard deviation σ. The contours denoting pairs of forecast parameters

with the same expected CRPS are elliptical, having a much shallower gradient

as σ increases than as µ moves away from the correct value (3.1a): a forecast

in which the standard deviation is correct, but the mean is misspecified by

one unit, receives the same CRPS as a forecast in which the mean is correct,

but the standard deviation is too high by a factor of three (Figures 3.1b and

3.1c). The expected CRPS is also not symmetric in σ, with underconfident

forecasts being penalised more harshly than overconfident ones: a forecast with

a predictive standard deviation that is double the correct value has a higher

expected CRPS than a forecast with a predictive standard deviation that is

half of the correct value (Figure 3.1c). Furthermore, Bröcker (2012) shows

that ensemble forecasts calibrated by minimising the CRPS are not expected

to produce the flat rank histograms usually expected from a well calibrated

forecast (as discussed in Section 3.1), and Wilks (2018) demonstrates that the

CRPS may reward sharper forecasts in preference to well calibrated ones; when

comparing two imperfect forecasts, any claim that a lower CRPS score indicates

a forecast with better calibration should therefore be treated with caution.
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Figure 3.1: Expected value of the CRPS when forecasting the value of a stan-
dard normal random variable using a N(µ,σ2) forecast distribution,
estimated over 10000 synthetic ‘observations’ drawn from a standard
normal distribution. The black dot indicates the parameters of the
observation distribution.
In panels (b) and (c), the red lines indicate errors in the mean and
standard deviation that receive the same CRPS. In panel (c), the blue
lines indicate the CRPS for forecasts with a standard deviation of half
and double the correct value.
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(b) Expected CRPS for σ = 1 and varying µ
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3.2.1.1 The energy score

The CRPS is a univariate scoring rule; the multivariate generalisation of the

CRPS is the energy score, defined as

ES(P,y) = EP‖X−y‖−
1
2EP‖X−X

′‖, (3.7)

where ‖ ·‖ denotes the Euclidean norm, y is the vector of verifying observations,

P is the forecast distribution, and X and X′ are independent random vectors

with distribution P . Gneiting and Raftery (2007) showed that for univariate

forecasts, the representation in (3.7) is equivalent to (3.4).

No closed form is available for the energy score, so following Gneiting et al.

(2008), the energy score for a single forecast instance with realising observation

y is evaluated over a random sample {Xi : i= 1, ... ,10000} of size k = 10000
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from the multivariate forecast density P , using the Monte Carlo approximation

ES(P,y) = 1
k

k∑
i=1
‖Xi−y‖−

1
2k2

k∑
i=1

k∑
j=1
‖Xi−Xj‖ . (3.8)

The energy score is often presented alongside the CRPS in forecast verification

studies as a measure of the overall calibration of a multivariate forecasting

method. However, Pinson and Tastu (2013) showed that, analogously to the

CRPS, the energy score has extremely limited sensitivity to the covariance

structure of the forecasts, and is strongly dominated by the forecast mean

vector, particularly in higher dimensions. For this reason, the energy score

should be viewed primarily as a measure of forecast accuracy, and more sensitive

methods should be used to diagnose forecast calibration.

3.2.2 The logarithmic score
The CRPS and energy score may be best interpreted as a measure of whether a

forecast is ‘close enough’ to the verifying observation (Peirolo, 2011), penalising

errors in location more heavily than errors in spread. For a member of the

public wanting to check whether to plan a picnic at the weekend, a forecasting

method that consistently achieves a low CRPS is likely to be useful. Where

forecasts are to be used in more precisely defined decision making, the opposite

may be true: in applications that are sensitive to temperatures only beyond

some critical threshold, a forecast that consistently places too little or too much

probability on this threshold being reached is of little use, regardless of how

close the mean forecast is to the truth.

One way of resolving this issue is by considering scoring rules that explicitly

consider the probabilities assigned to the verifying observations. Any scoring

rule that only takes into account the probability assigned to the verifying

observation – that is, any scoring rule under which equal scores are given

to forecasts that assign the same probability of occurrence to the verifying

observation y – is known as a local scoring rule. Bernardo (1979) showed that

any scoring rule for continuous variables that is smooth, proper, and local is
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an affine function of the logarithmic or log score,

logS(P,y) =− logf(y) (3.9)

where f(y) is the predictive probability density function evaluated at the

verifying observation. The unit of the log score depends on the base of the

logarithm used and may be interpreted either in information-theoretic terms

(Roulston and Smith, 2002; Peirolo, 2011) or in terms of betting returns

(Hagedorn and Smith, 2009). The log score rewards forecasts that place a lot

of probability density at the realised value, and heavily penalises forecasts for

which the verifying observation falls in regions of low probability. For two

forecasts p(x) and q(x), the difference in log score has a direct interpretation,

indicating that the forecast p places elogp(y)−logq(y) times as much density at

the observation y as the forecast q.

When P takes the form of a normal distribution with mean µ and variance

σ2, the logarithmic score is

logS(µ,σ2,y) =
ln
(
2πσ2

)
2 + (y−µ)2

2σ2 , (3.10)

where the first term rewards sharpness in the predictive distribution, and

the second term is proportional to the square of the standardised error of

the deterministic forecast µ. The log score is not defined for raw ensemble

forecasts, although it may be computed for a parametric distribution fitted to

the ensemble (Siegert et al., 2019; Krüger et al., 2020).

When the predictive distribution P is a multivariate normal distribution

with mean vector µ and covariance matrix Σ, (3.9) is a linear transformation

of the Dawid-Sebastiani score (DSS; Dawid and Sebastiani, 1999):

DSS(µ,Σ,y) = ln |Σ|+ (y−µ)′Σ−1(y−µ). (3.11)

Again, the first term rewards forecast sharpness, while the second is the squared
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Mahalanobis distance of the verifying observation y with respect to the forecast

distribution. The DSS can be used to measure the quality of any multivariate

forecast distribution with finite first and second moments, for which it is a

proper scoring rule; it is strictly proper for forecast distributions that, like

the multivariate normal distribution, are fully characterised by their first and

second moments (Gneiting and Raftery, 2007). Like the log score, the DSS may

be computed for an ensemble forecast by estimating the mean vector µ and

covariance matrix Σ from the ensemble forecast. However, unless the ensemble

is substantially larger than the dimension of the data, sampling errors typically

render this score unstable (Feldmann et al., 2015; Scheuerer and Hamill, 2015b);

for this reason, the DSS is not reported in Chapters 4 and 6.

3.3 Diagnosing particular issues in forecast

calibration
Scoring rules like those described in Section 3.2 give a single measure of the

overall skill of a forecasting method, which can be used to identify which of

several competing methods produces predictive distributions most like the

generating distribution of the observations. However, it is also of interest to

understand the particular strengths and weaknesses of each method, and scoring

rules cannot provide much information about the nature of the forecast errors

from which differences in skill arise. To understand the error characteristics of

a given forecasting method, specific diagnostic tools are required.

3.3.1 Marginal calibration
As mentioned in Section 3.1, a forecasting system is considered to be well

calibrated if the verifying observations are indistinguishable from random draws

from the corresponding forecast distributions. To establish this, it is helpful

to start by transforming the verifying observations in such a way that the

transformed values should all be drawn from the same distribution. Specifically,

suppose that a probabilistic forecast is issued with continuous CDF Ft. If
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the observation yt is indeed drawn from a distribution with CDF Ft, then the

Probability Integral Transform (PIT)

PITt = Ft(yt) (3.12)

is distributed as U(0,1) (Dawid, 1984; Diebold et al., 1998).

The PIT can be thought of as mapping each observation from its position

within the corresponding forecast distribution onto the interval (0,1); the

calibration of the collection of forecasts as a whole can thus be evaluated by

considering any deviations of the PITs {Ft(yt)} from uniformity. The PIT is

closely related to the coverage of a forecast: if PITt is in the interval (0.05,

0.95) then the verifying observation falls within the central 90% interval of the

predictive distribution, and if a collection of forecasts is well calibrated, 90% of

the corresponding observations should fall within this interval.

In weather forecasting, calibration is frequently assessed visually, by con-

structing histograms of the PITs for a collection of forecast instances (Gneiting

et al., 2007; Jolliffe and Stephenson, 2012). These provide a useful diagnostic

tool for understanding the marginal error characteristics of the forecasts, with

different types of error resulting in different types of non-uniformity in the

histograms. A ∪-shaped histogram indicates that the verifying observations

fall too frequently in the tails of the predictive distribution, indicating that

the forecasts are generally underdispersive, or overconfident. Conversely, a

∩-shaped histogram indicates overdispersion: the forecasts are under-confident,

and the observation falls too often in the centre of the forecast distribution.

Systematic bias in the forecasts will result in a skewed histogram, with the

direction of the skew providing information about the direction of the bias:

where the forecast mean is too high, the observation will fall towards the lower

tail of the forecast distribution, and the leftmost bins of the histogram will be

overpopulated, with the rightmost bins overpopulated when the forecast mean

is too low.

A similar approach is used to evaluate the calibration of forecasts issued
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in the form of ensembles: in that case, the rank of the verifying observation

within the ordered ensemble members is used, rather than the PIT (Hamill,

2001). The interpretation of these verification rank histograms is exactly the

same as that of PIT histograms.

3.3.1.1 Numerical summaries of histogram shapes

Histograms have long been used to visually assess the calibration of competing

weather forecasting methods (Anderson, 1996; Hamill and Colucci, 1997).

However, this is subjective, and quickly becomes impractical when assessing

the marginal calibration of high-dimensional multivariate forecasts, or when

comparing calibration between two or more collections of forecasts. It is

therefore useful to be able to produce an objective numerical summary of the

shape of the data used to construct the histogram. Deviations from uniformity

may be quantified using Pearson’s χ2 statistic to compare the expected and

observed number of PITs in each bin of the histogram (Wilks, 2017), but

this does not provide any information about the nature of the miscalibration.

Instead, the skewness and dispersion of the PITs may be used to characterise

the histogram in an easily interpretable way.

Any non-central tendencies in the histogram are summarised using the

sample skewness, with symmetric histograms obtaining a perfect score of 0.

Positive skewness indicates that the forecasts are, on average, too high, and

negative skewness that the forecasts are too low.

The extent of any under- or over-dispersion in the histogram data is

quantified by comparing the variance of the PITs to that of the uniform

distribution that would be obtained if the forecasts were perfectly calibrated,

which has variance 1/12 (Casella and Berger, 2002). A dispersion index for the

PITs of n forecasts can therefore be defined as

disp(PIT ) = 12
n−1

n∑
t=1

(
PITt−PIT

)2
, where PIT = 1

n

n∑
t=1

PITt. (3.13)

While the variance of the PITs could be used directly to compare the relative
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dispersion characteristics of two competing forecasting methods, the dispersion

index has the advantage of being equal to one when the forecasts are perfectly

calibrated, while a symmetric, ∪-shaped histogram will have a dispersion index

greater than one, and a ∩-shaped histogram will have a dispersion index of less

than one.

3.3.2 Joint calibration of multivariate forecasts
A forecasting method that is well calibrated for one variable in a single location

may be sufficient for some limited applications. However, many weather

forecasting applications require multivariate forecasts, consisting of predictions

of one or more weather quantities at multiple locations or time steps. Even if

a forecasting method is marginally well calibrated, the dependencies between

weather quantities, locations or times must also be well predicted if the forecast

is to be useful for decision making in these situations.

3.3.2.1 Box Ordinate Transform histograms

Gneiting et al. (2008) proposed the use of the Box Ordinate Transform (BOT)

histogram to evaluate the multivariate calibration of forecasts issued as a

predictive density. When the predictive density is a d-variate normal distribution

with mean vector µ and covariance matrix Σ, with verifying observation y, the

BOT is defined as

u= 1−χ2
d

(
(y−µ)′Σ−1(y−µ)

)
, (3.14)

where χ2
d(·) denotes the CDF of a chi-squared distribution with d degrees

of freedom, evaluated at the standardised observation (Box, 1980). If the

predictive density F has a multivariate-normal distribution and y is drawn

from F , then u will be uniformly distributed on the interval (0,1); a histogram of

the BOTs for a collection of well-calibrated forecasts will therefore be uniform.

Interpretation of deviations from uniformity in the BOT histograms is less

straightforward than interpretation of the PIT histograms. The BOT reflects
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the centrality of the observation within the forecast distribution, with outlying

observations being assigned low BOT values, and central observations assigned

values close to one. Thus, a skewed histogram with too many high BOT values

indicates an overdispersive forecast, with too many observations falling close

to the centre of the distribution and too few in regions of low probability, as

in Figure 3.2b. A preponderance of BOTs in the leftmost bins, indicating

a high proportion of observations falling far from the centre of the forecast

distribution, may indicate either that the forecasts are underdispersive, as in

Figure 3.2c, that there is a bias in the forecast mean, as in Figure 3.2d, or that

the forecasts are overcorrelated, as in Figure 3.2e. Undercorrelated forecasts

produce ∪-shaped BOT histograms, as shown in Figure 3.2f.

It is clear from Figure 3.2 that, while the BOT histograms are particularly

sensitive to underdispersiveness or overcorrelation in the forecast distributions,

a BOT histogram in isolation cannot be used to distinguish between these

types of miscalibration and biases in the forecasts: BOT histograms should

therefore be interpreted in conjunction with the marginal PIT histograms or

PIT summary statistics, which will reveal any significant marginal biases or

dispersion issues that should be taken into account when diagnosing issues with

joint calibration (Scheuerer and Hamill, 2015b).
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Figure 3.2: Contours of predictive bivariate normal densities F and points rep-
resenting 100 simulated ‘observations’ y, with corresponding BOT
histograms constructed from 1000 such observations. Contours indicate
the values of the BOT at intervals of 0.1, corresponding to the bins
used to construct the histograms.
Under- and over-correlated distributions have mean vector 0 and
marginal variance 1, with forecast correlation ρf and observation corre-
lation ρy.
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ρf = 0.7
ρy = 0
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3.3.2.2 Band Depth Rank histograms

A nonparametric alternative to the BOT histogram is the Band Depth Rank

(BDR) histogram, proposed as a diagnostic tool for multivariate calibration

by Thorarinsdottir et al. (2016). Like the BOT, the BDR is a measure of the

centrality of an observation within a multi-dimensional forecast (López-Pintado

and Romo, 2009). However, unlike the BOT, the BDR operates on forecasts

represented as M -member ensemble forecasts, rather than on a predictive

density having a known parametric form.

The band depth ranks are obtained as follows. Let Z denote the set of

d-dimensional vectors {z1, ...,zM+1}= {y,x1, ...,xM} , where x1, ...,xM are the

M members of an ensemble forecast and y is the verifying observation. The

lth component zl of each vector z is assigned a marginal rank among all of the

lth components in Z,

rankZ (zl) =
M+1∑
i=1

1{zil≤zl}, (3.15)

and each vector z is assigned a prerank, based on the average of a quadratic

function of the marginal ranks:

r(z) = 1
d

d∑
l=1

(M − rankZ (zl))(rankZ (zl)−1) +M −1. (3.16)

The preranks r(z) measure the centrality of each element in Z with respect

to the marginal axes, with more central elements attaining higher ranks, and

extreme outlying elements attaining the lowest (Thorarinsdottir et al., 2016;

Wilks, 2017). The band depth rank of the observation y= z1 is the rank of r(z1)

in {r(z1), ..., r(zM+1)}, with ties broken at random. For ease of interpretation,

the ranks are normalised to lie between 0 and 1 by subtracting 1 and dividing

by M before plotting. As with the BOT histograms, a histogram of BDRs

from well-calibrated forecasts will be uniform (Thorarinsdottir et al., 2016).

Band depth ranks can be computed using the depthTools package in R (Lopez-
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Pintado and Torrente., 2021).

The BDR histogram was originally proposed as a means to evaluate

the joint calibration of multivariate forecasts issued as ensembles; in order to

compute the BDRs for forecasts issued as probability densities using the method

outlined above, it is necessary to simulate an ensemble from the predictive

distribution in order to obtain the marginal ranks rankZ (zl), introducing

sampling uncertainty into the estimation of the BDR. However, as noted in

Section 3.3.1, the verification rank of an observation within an ensemble is

directly equivalent to the PIT of the observation with respect to a forecast

density. When the forecast is issued as a predictive distribution, therefore,

the marginal PITs can be computed directly, instead of using the verification

ranks defined in (3.15). Thus, replacing M − rankZ (zl) with 1−PIT(zl) and

rankZ (zl)−1 with PIT(zl) in (3.16), and omitting the term M−1, which does

not affect the ordering of the preranks, results in the exact parametric pre-rank

function

r∗(z) = 1
d

d∑
l=1

[
1−PIT(zl)

]
PIT(zl) . (3.17)

To obtain a fully parametric equivalent to the band depth rank, it would

be necessary to derive the distribution of r∗(z) under the joint predictive

density; this is outside the scope of this thesis, and is left as future work.

Instead, a semiparametric band depth rank can be computed by drawing a

synthetic ensemble from the multivariate predictive density and computing

the exact prerank (3.17) for all ensemble members and for the observation;

the semiparametric band depth rank is the rank of the prerank r∗(y) of the

observation within that simulated population of pre-ranks.

Figure 3.3 shows the contours of the BDR ‘surface’ for each of the synthetic

bivariate normal forecasts examined in Figure 3.2, and the corresponding BDR

histograms. The shape of the BDR contours remains fairly stable regardless

of the form of the underlying forecast distribution, with the distance between

the contours representing 10% intervals of the band depth rank changing to
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reflect different changes in the forecast specification. Increasing or reducing

the marginal variances stretches or compresses the entire surface, moving

the contours further from or closer to the centre of the forecast distribution.

Increasing the strength of the correlations decreases the gradient of the surface

and pushes the contours apart, moving the most central bands towards the

centre of the distribution and moving the outermost bands further away. The

BDR, which is based on a function of the marginal depths in (3.15), is more

sensitive to marginal misspecification than to errors in the forecast correlation

structure: the difference between the BDR contours in Figures 3.3a and 3.3e,

which show the effects of a substantial change in correlation, is much smaller

than the difference between the contours in Figures 3.3a and 3.3b or 3.3c, which

show the effects of a change in marginal variance.

As with the BOT, a well-calibrated forecast will have a uniform BDR

histogram, while an overdispersive forecast will have more values in the right-

most bins, and biased or underdispersive forecasts will produce in more values

in the leftmost bins. When the forecast distribution is overcorrelated, as in

Figure 3.3e, the band depth rank histogram will have a slight ∩-shape, while

undercorrelated forecasts produce ∪-shaped histograms.

3.3.2.3 Joint interpretation of the BOT and BDR

The example histograms in Figures 3.2 and 3.3, each reflecting only a single

type of specification error, display fairly clear patterns and are easy to interpret.

However, this is not generally the case in real applications, where a collection

of forecasts may display a combination of calibration errors, which can make

interpretation of the resulting histograms difficult. In order to fully understand

the nature of any joint miscalibration, it is generally advisable to consider

multiple diagnostic methods together, as recommended by Wilks (2017).

Figure 3.4 shows an example of a situation where this is not only advisable,

but necessary: both the BOT and BDR histograms are right-skewed, suggesting

that the forecasts must be either underdispersive or biased.
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Figure 3.3: Contours of band depth ranks for predictive bivariate normal densities
f and points representing 100 simulated ‘observations’ y, with the cor-
responding BDR histograms constructed from 1000 such observations.
Contours are drawn at intervals of 0.1, corresponding to the bins used
to construct the histograms.
Under- and over-correlated distributions have mean vector 0 and
marginal variance 1, with forecast correlation ρf and observation corre-
lation ρy.
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(c) Underdispersive:
F ∼N(0,0.5In)
y∼N(0,In)

 0.1 

 0.2 

 0.3 

 0.4  0.5 

 0.6  0.7 

 0.8 

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

BDR

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

3.
0

(d) Biased:
F ∼N (0.5,In)
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(e) Overcorrelated:
ρf = 0.7
ρy = 0
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(f) Undercorrelated:
ρf = 0
ρy = 0.7
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The forecasts are indeed marginally underdispersive – something that

could be diagnosed by considering the PIT histograms or the PIT dispersion
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Figure 3.4: An example of two different types of miscalibration, where the BOT and
BDR histograms individually cannot clearly diagnose the underlying
issue.
Observations are simulated from a 5-dimensional standard normal
distribution.
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indices – but forecast f2 is also over-correlated, something that is not obvious

from the histograms alone.

In cases like this, diagnosis of errors in the forecast dependence structure

may be facilitated by considering the joint distribution of the two depth

measures. Figure 3.5 displays this joint distribution in the form of a grid plot,

with each cell showing the count of observations falling in the corresponding

intervals of the BOT and BDR histograms. Unlike the histograms, the two grids

show quite distinct patterns: in Figure 3.5a, most of the counts are clustered

around the diagonal, whereas there is less agreement between the two depth

measures in Figure 3.5b. Here, points in the leftmost column, corresponding to

points in the leftmost bin of the BOT histogram, are spread among the four

lowest cells, corresponding to the three leftmost bins of the BDR histogram.

Experiments suggest that this pattern is typical of over-correlated forecasts,

a calibration error that is often masked in the BOT and BDR histograms by

marginal misspecifications.

Figure 3.6 shows gridplots for five-dimensional forecasts displaying the

same types of miscalibration presented in Figures 3.2 and 3.3. Counts are

more likely to fall in particular regions of the gridplot under different types of

misspecification; the gridplots may therefore reveal patterns within the joint
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Figure 3.5: Gridplots showing the joint distribution of the BOT and BDR for the
misspecified forecasts f1 and f2, aggregated over the intervals used to
construct the histograms in Figure 3.4.
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distribution of the BOT and BDR histograms that cannot be identified by

examining the histograms alone. For a well calibrated forecast, roughly equal

counts are observed in the neighbourhood of the diagonal, with slightly higher

counts in the extreme top-right and bottom-left cells. When the forecast is

overdispersive, counts tend to cluster in the top-right corner of the grid, and

for underdispersive forecasts, in the bottom-left corner. A similar pattern is

observed for biased forecasts; these two calibration errors are easily distinguished

by considering the marginal PITs. When the correlation between the forecast

variables is too strong, counts tend to move left from the diagonal, accumulating

in the lower half of the leftmost column. When the forecasts are undercorrelated,

counts tend to move down and to the right from the diagonal, and tend to

cluster in the top-right and bottom-left corners of the grid, indicating that

too many observations are falling either very close to or very far from the

centre of the joint forecast distribution. While bias and dispersion errors are

easily diagnosed from the marginal PIT histograms, consideration of the joint
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distribution of the BOT and BDR histograms can therefore reveal issues in the

dependence structure that would otherwise be concealed by marginal calibration

issues.

Figure 3.6: BOT and BDR histograms, and gridplots of the joint distribution of the
BOT and BDR, under the five-dimensional forecast f of 1000 simulated
observations y∼N (0,T(0.5)), where T(ρ) is a Toeplitz matrix with
top row

[
1 ρ ρ2 . . .

]
.
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(d) Biased:
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Figure 3.7 shows gridplots for forecasts where both the correlation strength

and the marginal variance are misspecified, to varying degrees. In the top
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row, the forecast correlations are too weak, while the bottom row suffers from

too-strong forecast dependences. The marginal variance increases from left to

right, being too low in the leftmost column and too high in the rightmost. In

the top row, although it is possible to detect concentrations of values in the

top-right and bottom-left of the grid when the variance is correctly specified,

the pattern is not qualitatively different to that obtained when the forecasts

are jointly well calibrated, as in Figure 3.6a; moreover, even this slight effect

is masked when there is marginal over- or underdispersion. A stronger signal

can be detected in the bottom row, where counts in the leftmost column are

clustered a few cells up from the bottom of the grid. The peak in the leftmost

column is shifted down towards the bottom corner when the forecast variance

is too low, and up towards the middle of the BDR range when the forecast

variance is too high; this clustering can be detected even under quite extreme

misspecification of the marginal variance.

Figure 3.7: Gridplots showing the effect of compound misspecification, when fore-
casts have either variance, correlation, or both misspecified. The
observations are drawn from y∼N

(
0,T0.5

)
, where Tρ is a Toeplitz

matrix with top row
[
1 ρ ρ2 ρ3 ρ4

]
. Forecasts have the form

f ∼N(0,vTρf ).
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The examples shown here are constructed from synthetic data in order to

display the patterns characteristic of each type of error. In practice, it is unlikely
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that a collection of forecasts will suffer from only one type of misspecification:

any single forecast may suffer from compound miscalibration, while a collection

of forecasts may display a mixture of miscalibration types. Considering the

joint distribution of the BOT and BDR in this way can provide clearer patterns

for diagnosis than a direct comparison of two histograms. In Chapters 4 and

6, BOT-BDR gridplots are used to diagnose miscalibration in the dependence

structure that would otherwise be masked by marginal calibration issues. The

simulations presented here suggest that the diagnostic patterns in the BOT-

BDR grids are consistent, although further work is required to understand

the expected joint distribution of the BOT and BDR under various types of

forecast misspecification, and to consider whether plots of the joint distribution

of other pairs of depth scores might be more informative about other types of

miscalibration.

3.4 Summary
This chapter reviews verification methods appropriate for the evaluation of

forecasts issued in the form of a predictive density or in the form of an ensemble

of deterministic forecasts. The scoring rules and diagnostic tools described here

will be used to quantify and compare the skill of forecasts postprocessed using

competing methods in Chapters 4 and 6.

While this chapter is primarily a review of existing forecasting methods,

it also introduces two potentially useful innovations. The first of these is a

semiparametric equivalent to the band depth rank histograms proposed as

a diagnostic tool to identify joint calibration issues by Thorarinsdottir et al.

(2016). This PIT-based band depth rank exploits the fact that, when a forecast

is issued in the form of a parametric density, the exact marginal band depths

can be computed, removing the sampling variability introduced by using an

ensemble approximation – although some sampling variability remains, due

to the need to use simulation to obtain the final joint ranks. Further work is

required to understand the joint distribution of the marginal PITs, and so to
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remove this second source of uncertainty.

The second innovation introduced in this chapter is the gridplot used to

visualise the joint distribution of the BOT and BDR. While the idea of using

two or more depth histograms to diagnose joint calibration is by no means

new (Wilks, 2017), the gridplots reveal certain patterns of behaviour in the

two depth measures, which can provide useful information about the joint

calibration of the forecasts beyond that available from the histograms alone.

Again, further work is needed to understand the expected joint distribution of

the BOT and BDR, which will vary not only with different types of forecast

misspecification, but also with different parametric forms for the predictive

distribution; and to understand whether plots of the joint distribution of

other depth measures might provide more information about other types of

dependence misspecification.



Chapter 4

Application of MME

postprocessing to temperature

forecasts

In this chapter, the Bayesian postprocessing framework proposed in Section

2.2 is used to produce posterior predictive distributions for winter surface

temperatures over the UK. The raw forecasts are operational forecasts issued

by the ECMWF, Met Office and NCEP weather centres, and downloaded from

the TIGGE archive, as described in Section 2.1.2. The skill of the resulting

forecasts is evaluated with respect to the ERA-Interim reanalysis dataset, using

the measures of forecast skill and calibration described in Chapter 3. The

chapter expands on the results presented in Barnes et al. (2019).

Section 4.1 examines the effect of the choice of prior distribution discussed

in Section 2.2.3; this aspect of the problem is considered first so that the

best-performing choice of prior can be used in subsequent analyses. Section 4.2

compares the skill of the Bayesian posterior forecasts to that of forecasts using

a simple superensemble and the Nonhomogeneous Gaussian Regression method

described in Section 2.1.4. The relative skill of forecasts postprocessed using

training sets chosen using analogue methods rather than a moving window, as

described in Section 2.3, is considered in Section 4.3.

Only forecasts verified during the meteorological winter months (December,
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January and February) are postprocessed and evaluated, but training cases

were also drawn from forecasts verified in October and November. All of the

forecast postprocessing was carried out using 25 training cases per forecast

instance. Training sets of 25-30 instances are commonly used in postprocessing

short- to medium-range weather forecasts like the ones in this study (Raftery

et al., 2005; Hagedorn et al., 2008, 2012; Junk et al., 2015; Zamo et al., 2021);

a preliminary sensitivity analysis indicated that the exact size of the training

set made no difference to the relative performance of any of the postprocessing

methods discussed here. The sensitivity analysis is not presented in detail, in

order to keep the focus on the relative skilfulness of the different postprocessing

approaches given the same set of candidate training cases.

4.1 Effect of choice of prior
One of the potential advantages of the Bayesian framework over the nonhomoge-

neous Gaussian regression (NGR) described in Section 2.1.4.1 is the possibility

to incorporate a prior distribution for the weather quantity of interest. In this

section, the forecasts are postprocessed with several different choices of prior,

and with η and Λ estimated from a 25-day moving window prior to the forecast

issue date. The prior that produces the most skilful posterior forecasts will

be retained in subsequent sections when comparing the performance of the

Bayesian postprocessed forecasts with competing methods, and when comparing

the relative skill of forecasts postprocessed with discrepancies estimated from

training sets selected using different methods.

As a baseline, the noninformative prior obtained by setting Γ = 0 was used.

Next, the forecasts were postprocessed using a climatological prior constructed

for each forecast instance by taking the sample mean and covariance matrix

of the observations within a seven-day window centred on the verification

date, from the ten years prior to the year in which the forecast was issued, as

described in Section 2.2.3.1. The skill of these forecasts is compared to that

of forecasts postprocessed using the sequential approach described in Section
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2.2.3.2, with a noninformative prior used for the initial 15-day-ahead forecast.

The forecasts were also postprocessed using a twenty-year climatology,

which resulted in very similar performance to those using a ten-year climatology;

likewise, the results for forecasts postprocessed sequentially using a ten-year

climatological prior for the first forecast issued were very similar to those using

a noninformative prior for the first forecast. These variants are not discussed

further.

4.1.1 Forecast accuracy, sharpness and skill
Figure 4.1a shows the distribution of the Bayesian postprocessed forecast

errors (the difference between the observation and the mean of the posterior

forecast distribution) for all 630 forecast instances and all 13 study regions. At

the shortest leadtimes, forecasts using a noninformative prior typically have

slightly smaller errors than those using a climatological prior or sequential

postprocessing, although at longer leadtimes, all three approaches produce a

similar spread of errors. The forecasts using a climatological prior retain a

slight warm bias increasing from 0.2◦C at the shortest leadtimes to 0.5◦C at

the longest; those using a sequential or noninformative prior typically have a

very small cold bias of less than 0.1◦C at all leadtimes.

The mean absolute errors (MAE) for each choice of prior are shown in

Figure 4.1b. At the shortest leadtimes, the sequentially postprocessed forecasts

have higher MAE, reflecting the wider spread of the errors for those forecasts;

the forecasts using a climatological prior have a slightly smaller spread and so

achieve a somewhat lower MAE than those that are sequentially postprocessed,

despite the residual bias already mentioned. Perhaps surprisingly, the most

accurate forecasts at all leadtimes are those for which no informative prior is

provided. Possible reasons for this are considered in Section 4.1.4.

The MAEs of the three methods are closely reflected by the CRPS and its

multivariate extension, the energy score (ES), shown in Figure 4.2a. At all but

the longest leadtimes the sequentially postprocessed forecasts perform somewhat

worse than those obtained using either of the other approaches. Similar median
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Figure 4.1: Distribution of Bayesian postprocessed forecast errors and MAE over
all 630 forecast instances for all 13 locations when forecasts are post-
processed with different prior distributions. Forecast errors are shown
at leadtimes of 2, 5, 7, 10, 12 and 15 days.
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scores are obtained when using either a climatological or noninformative prior,

although the climatological prior produces a wider range of scores at each

leadtime.

Figure 4.2: Distribution of continuous ranked probability score (CRPS) and its
multivariate extension, the energy score (ES), at selected leadtimes over
all 630 forecast instances for all 13 locations for forecasts postprocessed
using different prior distributions.
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The difference in forecast skill is more striking when evaluated in terms of

the logarithmic scoring rule, which rewards forecasts that place a high posterior

density on the temperature actually observed, and which are therefore likely

to be useful in threshold-based decision-making (Section 3.2.2). Figure 4.3a

shows the log scores for all forecast instances, truncated at 50 so that the

detail is visible; at all but the longest leadtime, the sequentially postprocessed

forecasts typically receive substantially higher log scores than those postpro-

cessed independently, indicating that the sequentially postprocessed forecasts
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place low probability on the outcome actually observed. The median log scores

of forecasts using a noninformative or climatological prior are again similar,

although the log scores of forecasts postprocessed using climatological priors

again have a wider spread than those using a noninformative prior, with the

worst-performing instances receiving substantially higher scores.

The reason for this striking difference in log scores is clear when the forecast

sharpness, shown in Figure 4.3b, is considered. The inclusion of any informative

prior immediately reduces the variance of the marginal posterior forecasts from

the variance that would be obtained with a zero-precision noninformative prior,

as discussed in Section 2.2.3.1; the use of sequential postprocessing, which takes

the previous posterior forecast as the new prior for each instance, propagates

this variance reduction through the forecasts as the verification date approaches.

As a result, the sequentially postprocessed forecasts are extremely sharp at

the shortest leadtimes, but with no corresponding improvement in predictive

accuracy to justify this increased confidence.

Figure 4.3: Distribution of logarithmic scores (LogS) and marginal forecast stan-
dard deviations at selected leadtimes over all 630 forecast instances
for all 13 locations, for forecasts postprocessed with different prior
distributions.
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4.1.2 Marginal forecast calibration
Figure 4.4 shows the PIT histograms for the three methods in two grid cells,

representing typical results for Scotland and southern England; histograms

for the remaining regions, shown in Figure B.1 in Appendix B, are broadly

similar in shape. The mean and range of the skewness and dispersion of the
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PIT histograms at each leadtime are summarised in Figure 4.5.

The histograms for the sequentially postprocessed forecasts are extremely

∪-shaped at all but the longest leadtime (for which a noninformative prior was

used, in the absence of an earlier posterior forecast for the same verification date);

this reflects the low forecast standard deviations noted in Figure 4.3b. As a

result, the sequentially-postprocessed forecasts have a very high dispersion index

at all leadtimes (Figure 4.5b), although the histograms are fairly symmetric.

The forecasts using a climatological prior typically are also somewhat

∪-shaped – more so at longer than shorter leadtimes – with the leftmost bin

typically containing more values than the rightmost, reflecting the residual

bias noted in Figure 4.1a, and resulting in positive skewness in the PITs at all

leadtimes (Figure 4.5a). The dispersion index is greater than 1 at all leadtimes,

reflecting this underdispersiveness, although the dispersion index is lower than

that of the sequentially postprocessed forecasts at all but the longest leadtimes

(Figure 4.5b).

At the shortest leadtimes the histograms for the forecasts using a non-

informative prior have a slight ∩ shape, indicating that they are slightly

underconfident. The peak of the histograms tends to fall slightly to the right

of the centre, reflecting the residual cold bias in the forecasts; however, this

bias is small, with the verifying observations tending to land in the 50th-70th

percentile of the predictive distribution, rather than in the tails. At longer

leadtimes this ∩-shape is no longer evident, with histograms either slightly

∪-shaped – indicating overconfidence in the forecasts – or generally flat. At all

but the shortest leadtimes, where the PITs have slight negative skewness, the

forecasts using a noninformative prior are generally well calibrated, with close

to zero skewness and dispersion indices close to one (Figure 4.5).

4.1.3 Joint forecast calibration
The univariate calibration issues just described are amplified in the depth

rank histograms used to assess multivariate calibration. The sequentially

postprocessed forecasts, which are marginally too sharp at all leadtimes, have
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Figure 4.4: PIT histograms showing the marginal calibration of postprocessed
forecasts of surface temperatures at selected locations in the north
and south of the UK at a range of leadtimes, using different prior
distributions for the observed temperature.
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(b) PIT histograms for forecasts in Kirkcaldy
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Figure 4.5: Characteristics of the PIT histograms at each leadtime. The lines
indicate the mean value across the thirteen grid cells, while the shaded
area shows the range of values. The dashed horizontal lines indicate
the ideal values of zero for skewness and one for dispersion.
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(b) PIT dispersion
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a high proportion of values in the leftmost bin of both the Box ordinate

transform (BOT) histograms (Figure 4.6) and the band depth rank (BDR)

histograms (Figure 4.7). The histograms for the forecasts postprocessed using

a climatological prior display a similar tendency, although to a lesser degree,

reflecting the better marginal calibration of those forecasts.

The BOT histograms for the forecasts postprocessed using a noninformative

prior also have a large proportion of values in the leftmost bin; however, a

small spike of values in the rightmost bin can also be detected at all leadtimes,

indicating a small group of observations falling too close to the centre of the

distribution. At shorter leadtimes, the BDR histograms for these forecasts
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are skewed in the opposite direction, with too many observations falling close

to the centre of the joint predictive distribution; this reflects the slight bias

visible in the ∩-shaped univariate PIT histograms. As the leadtime increases,

the skew in the BDR histograms for these forecasts shifts, reflecting the slight

underdispersiveness of the forecasts at longer leadtimes. The BDR histograms

for the noninformative forecasts are the closest to uniform of the three at all

leadtimes, indicating that those forecasts have better joint calibration.

The PIT and BDR histograms for the forecasts using a noninformative prior

do not reveal any substantial lack of either marginal or joint calibration, while

the BOT histograms indicate poor joint calibration; together, this suggests

that some aspect of the multivariate dependence structure is misspecified.

Gridplots of the joint distribution of the BOT and BDR for these forecasts are

shown in Figure 4.8. At shorter leadtimes, there is a cluster of observations

in the leftmost bin of the BOT histograms with BDRs between 0.3 and 0.4;

as discussed in Section 3.3.2.3, this suggests that the dependences between

the temperatures in different grid cells are typically overestimated by the

corresponding forecasts. At the same time, a large number of forecast instances

also fall in the top-right corner of the grid, indicating a group of forecasts for

which the verifying observations fall very close to the centre of the forecast

distribution. These two groups of instances are well separated in the gridplot,

suggesting that the distribution of the forecast errors may in fact be a mixture

of two different populations. Further work is required to determine whether

there really are two sub-populations of forecast errors (and so, by implication,

two sub-populations of forecast instances) within the set of winter temperature

forecast-observation pairs. With increasing leadtime, as the forecasts switch

from being generally overdispersive to generally underdispersive, the clusters

become less distinct.

4.1.4 Summary
Forecasts postprocessed using a noninformative or climatological prior generally

had similar marginal skill scores even though those using a climatological
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Figure 4.6: Box Ordinate Transform (BOT) histograms showing the joint calibra-
tion of postprocessed forecasts of surface temperatures using different
choices of prior.
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Figure 4.7: Band Depth Rank (BDR) histograms showing the joint calibration of
postprocessed forecasts of surface temperatures using different choices
of prior.
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Figure 4.8: Gridplots summarising the joint distribution of the BOT and BDR
histogram counts for forecasts postprocessed using a noninformative
prior at selected leadtimes.
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(b) Five-day-ahead forecasts
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(c) Ten-day-ahead forecasts
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prior retained a slight residual bias. Those using a climatological prior had

lower median, but higher mean CRPS and log scores than those using a

noninformative prior. This may be because the forecasts using a climatological

prior were sharper, improving the skill score for the majority of forecasts, but

incurring greater penalties in the worst-performing cases. In spite of this, the

forecasts using a noninformative prior had much better marginal and joint

calibration.

It is possible that forecasts with an informative prior component are less
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well calibrated than those with a non-informative prior (being sharper but

less accurate) because the discrepancy-adjusted forecasts are the best source

of information available when predicting the future weather. Adding further

information in the form of an informative prior reduces the posterior variance

but rarely brings a corresponding improvement in the accuracy of the mean

forecast. An alternative perspective is that because the forecasts are based on

dynamical data assimilation, they have already implicitly accounted for the

‘prior’ information, as described in Section 2.1.

At all leadtimes, the sequentially postprocessed forecasts were the least

accurate and least well calibrated of the three methods, having the highest MAE

and being far too sharp. This was an unexpected result: the noninformative

prior forecasts are fairly well calibrated, so using the n-day-ahead noninfor-

mative posterior as the prior for the n− 1-day-ahead forecasts is expected

to produce more skilful forecasts. The poor performance of the sequentially

postprocessed forecasts was initially suspected to be due to propagation of

errors from poor long-leadtime forecasts through to shorter leadtimes; however,

the same approach was tested starting from the five-day-ahead postprocessed

forecasts, and also using only the single preceding posterior obtained with a

noninformative prior at each leadtime, with similar results (not shown). This

suggests that the issue lies with the postprocessing framework – or with the

implementation of it used here – rather than with the quality of the prior

distribution used.

One fundamental issue in the simple sequential postprocessing approach

used here is that the framework implicitly assumes that the forecasts combined

are independent predictions of the future weather, when in fact – as Figure 2.10

shows – much of the information in the raw n-day-ahead forecasts is already

incorporated in the n−1-day-ahead forecasts through the data assimilation

process, along with more recent observations of the atmosphere. This suggests

that a possible improvement to the sequential postprocessing approach would

be to explicitly account for correlation between the prior and ensemble forecasts,
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and to adjust the posterior variance accordingly. However, although this may

be able to mitigate the calibration issues discussed in Section 4.1.2, it is unlikely

to resolve the lower accuracy of the sequential forecasts (Figure 4.1b).

4.2 Comparison of Bayesian postprocessing

with other methods
In this section, the skill of the Bayesian posterior forecasts is evaluated against

that of simple superensemble forecasts and forecasts postprocessed using nonho-

mogeneous regression (NGR). The Bayesian forecasts are postprocessed using

a noninformative prior, which was found in Section 4.1 to produce the most

well-calibrated forecasts.

The superensemble forecasts are obtained by taking the sample mean and

covariance matrix of all ensemble members as described in Section 2.1.3.1, with

no attempt made to correct for bias or dispersion errors; these provide a baseline

against which the improvements due to the other methods can be compared.

The marginal NGR forecasts are fitted by CRPS minimisation as described

in Section 2.1.4.1; for each forecast instance, the sample correlation matrix

of the verifying observations in the training dataset provides the dependence

structure of the joint forecasts, as discussed in Section 2.1.4.1.2. Each forecast

instance is postprocessed using the same 25 moving-window training cases for

both the NGR and Bayesian forecasts.

4.2.1 Forecast accuracy, sharpness and skill
Figure 4.9 shows the biases of the postprocessed forecasts in each of the grid

cells shown in Figure 2.41. The superensemble forecasts have a pronounced

cold bias, which tends to increase with latitude; this bias is almost completely

removed for all grid cells by postprocessing with either NGR or the Bayesian

method, although a very small cold bias does remain. However, the NGR-
1The jump in the biases between superensemble forecasts issued at 10- and 11-day

leadtimes is due to a reduction in both the spatial and temporal resolution of the ECMWF
model after 10 days of model time has elapsed (ECMWF, 2021b), as noted in Table 2.1.
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postprocessed forecasts show a greater improvement in overall MAE (Figure

4.10a), particularly at longer leadtimes; as Figure 4.10b shows, the spread

of the errors from the Bayesian-postprocessed forecasts is similar to that of

the superensemble forecast, while the errors from the NGR forecasts have a

narrower distribution. This can be ascribed to the fitting of the regressions

by minimising the CRPS, a metric known to reward accuracy in the mean

forecasts, as described in Section 3.2.1.

Figure 4.9: Regional biases for forecasts produced by each postprocessing method
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(b) NGR forecasts
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(c) Bayesian forecasts
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Figure 4.10: Mean absolute error (MAE) and distribution of forecast errors at
selected leadtimes over all 630 forecast instances and all 13 locations,
for forecasts produced by different postprocessing methods.
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(b) Distribution of forecast errors
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A similar pattern of performance can be seen in the CRPS and ES, shown

in Figure 4.11. The entire distribution of the scores for the NGR forecasts

is slightly closer to zero than that of either the superensemble or Bayesian

forecasts, suggesting that the method is able to improve the skill of both the

best- and worst-performing superensemble forecasts. At shorter leadtimes the

Bayesian-postprocessed forecasts achieve broadly similar scores to the NGR

forecasts, but at longer leadtimes, there is no clear improvement in CRPS or

ES over the superensemble forecasts.



4.2. Comparison of Bayesian postprocessing with other methods 85

Figure 4.11: Distribution of continuous ranked probability score (CRPS) and its
multivariate extension, the energy score (ES), at selected leadtimes
over all 630 forecast instances for all 13 locations, for forecasts pro-
duced by different postprocessing methods.
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Figure 4.12a shows the distribution of logarithmic scores achieved by each

postprocessing method; as noted in Section 3.2.2, this metric may be of more

relevance than the CRPS in applications where the probability placed on the

observed outcome is of primary interest. Again, the distribution of scores is

generally fairly similar for the Bayesian and superensemble forecasts at all but

the shortest leadtimes; while the NGR-postprocessed forecasts often achieve

very low or even negative log scores, indicating a very high level of probability

placed on the observed outcome, they also receive the highest log scores at

most leadtimes. This is because, as Figure 4.12b shows, the NGR forecasts

are generally rather sharper than the Bayesian posterior or superensemble

forecasts at all leadtimes. The least confident Bayesian-postprocessed forecasts

are somewhat sharper than the least confident superensemble forecasts at all

leadtimes, but the difference in average sharpness is small, particularly at

shorter leadtimes.

4.2.2 Marginal calibration
Inspection of the PIT histograms gives a more detailed understanding of the

calibration of the postprocessed forecasts than the summary scores can. Fig-

ure 4.13 shows PIT histograms for forecasts in the cells containing Kirkcaldy

and Bristol, which are typical of the histograms of other regions in, respec-

tively, Scotland and northern England, and the south of the study area. PIT
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Figure 4.12: Distribution of logarithmic scores (LogS) and marginal forecast stan-
dard deviations at selected leadtimes over all 630 forecast instances
at all 13 locations, for forecasts produced by different postprocessing
methods.
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(b) Marginal forecast standard deviations
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histograms for the other regions can be found in Figure B.2 in Appendix B.

Figure 4.13: PIT histograms showing the marginal calibration of forecasts of surface
temperatures in selected regions, postprocessed using various methods.
A 25-day moving window was used as a training set for the NGR and
Bayesian postprocessors. The dashed line indicates the ideal uniform
distribution.

(a) PIT histograms for forecasts in Kirkcaldy
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(b) PIT histograms for forecasts in Bristol
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The histograms for the uncorrected superensemble forecasts show signifi-

cant negative skew in Scotland, reflecting the persistent substantial cold bias

noted in Figure 4.9; the skewness in the histograms for Bristol is less pro-

nounced, but still have a peak of values at around 0.7-0.9, reflecting the local

bias in that region. As noted in Section 4.2.1, the NGR and Bayesian forecasts,

which estimate a separate bias and calibration correction for each location,

are able to remove this systematic regional bias almost completely, producing

histograms that are much closer to uniformity than those of the superensemble

forecasts. The slight residual bias manifests in a slight ∩-shape at around the
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70th percentile of the transformed values, indicating that the bias is small with

respect to the spread of the forecast errors, and is slightly more pronounced in

the Bayesian histograms, reflecting the slightly higher accuracy of the NGR

forecasts.

The histograms for the Bayesian and NGR forecasts are generally similar

in shape, although at the shortest leadtimes the Bayesian forecasts have too

few scores in the outermost bins, indicating that the forecasts are slightly

overdispersive, or underconfident. The opposite is true of the forecasts at the

longest leadtimes, when there are too many observations falling in the tails of the

Bayesian forecasts, suggesting that they are somewhat underdispersive. Figure

4.14 summarises the histogram characteristics for each method at each leadtime:

the shaded areas indicate the spread of values across all thirteen regional

histograms for each method, with the lines indicating the mean values. The

width of the blue bands reflects the widely differing skill of the superensemble

forecasts; after postprocessing with either the NGR or Bayesian methods, the

bands are much narrower, indicating that all regions have similar calibration.

Figure 4.14b highlights the trend in dispersiveness of the Bayesian postprocessed

forecasts: at shorter leadtimes the forecasts are somewhat overdispersive, while

at longer leadtimes they are rather underdispersive. The NGR forecasts, on

the other hand, have dispersion indices close to one at all leadtimes, indicating

marginally well-calibrated forecasts.

4.2.3 Joint calibration
Joint calibration is assessed by considering the BDR and BOT histograms in

Figures 4.15 and 4.16. The BDR histograms tend to reflect the overall marginal

calibration, as discussed in Section 3.3.2.2. For the biased superensemble

forecasts (shaded yellow in the histograms), this means that the BDR histograms

have too many values in the leftmost bins, particularly at the shortest leadtimes.

At the longest leadtimes, although the superensemble forecasts have regional

biases of approximately the same magnitude as they did at leadtime 2, the

BDR histograms are almost flat: this is because the overdispersiveness of the
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Figure 4.14: Characteristics of the PIT histograms for each postprocessing method
at each leadtime. The lines indicate the mean value across the thirteen
histograms, while the shaded area shows the range of values. The
dashed horizontal lines indicate the ideal values of zero for skewness
and one for dispersion.
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(b) PIT dispersion
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forecasts at these longer leadtimes is, to some extent, masking the bias.

The shape of the BDR histograms for the less biased Bayesian forecasts

(outlined in black) is dominated by the marginal dispersion characteristics,

with the overdispersive forecasts at short leadtimes having too many values

in the rightmost bins, and the underdispersive forecasts at longer leadtimes

having too many values in the leftmost. For the NGR forecasts, which are

marginally well calibrated, the BDR histograms are somewhat ∩-shaped at

shorter leadtimes, indicating that the variables are too strongly correlated in the

predictive distributions. At longer leadtimes this effect can barely be detected.

However, the dependence structure of the NGR forecasts is determined by

the correlations between the observations in the 25 days prior to the forecast

issue date and is therefore independent of the forecast leadtime: if the forecast

distributions at shorter leadtimes are over-correlated, the distributions at longer

leadtimes must also be over-correlated. This suggests that the issue is masked

at longer leadtimes by the slight underdispersiveness of the marginal forecasts,

as seen in Figure 4.14b, highlighting the importance of considering multiple

diagnostic histograms when diagnosing joint calibration. That the issue can be

diagnosed at all from the BDR alone at the shortest leadtimes is partly due to

the absence of marginal calibration issues, which would otherwise dominate

the BDR; and partly due to the severity of the correlation misspecification.
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Figure 4.15: Modified Bank Depth Rank (BDR) histograms showing the joint
calibration of forecasts of surface temperatures using different post-
processing methods. The dashed line indicates the ideal uniform
distribution.
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This suspicion is supported by the BOT histograms in Figure 4.16; as

noted in Section 3.3.2.1, the BOT histogram is known to be particularly

sensitive to misspecifications of the predictive dependence structure and other

distributional assumptions. The histograms for the NGR forecasts at all

leadtimes are dominated by a large spike in the leftmost bin; in the absence of

marginal calibration issues, this is indicative of too-strong correlations between

variables in the predictive distributions. The Bayesian-postprocessed forecasts

have a smaller spike in the leftmost bin at all leadtimes; as discussed in Section

4.1.3, there is some evidence that the correlations in the Bayesian predictive

distributions are too strong, but to a lesser extent than those used to construct

the multivariate NGR forecasts.

Figure 4.16: Box Ordinate Transform (BOT) histograms showing the joint calibra-
tion of forecasts of surface temperatures using different postprocessing
methods. The dashed line indicates the ideal uniform distribution.
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With the exception of the shortest leadtimes – where the histograms are

skewed as a result of the marginal biases and overdispersiveness – the BOT

histograms for the superensemble forecasts are ∪-shaped, with spikes in both

the leftmost and rightmost bins. Given that these forecasts are already known

to have substantial marginal biases and to be marginally overdispersive, it would

be hard to justify concluding that this shape has arisen from underestimation

of the correlations in the forecast distributions, rather than from the combined
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effect of these two marginal issues.

It is, however, possible to separate the effect of the dependence structure

from the effect of marginal calibration using (2.5), by combining the marginal

NGR predictive distributions with correlation matrices R taken from the

corresponding superensemble and Bayesian postprocessed forecasts to obtain

hybrid forecast distributions for each forecast instance. BDR histograms for

these hybrid forecasts – in which all three forecasts have identical marginal

calibration, and differ only in terms of their joint calibration – are shown in

Figure 4.17. The corresponding BOT histograms are, like those in Figure

4.16, too heavily skewed to be easily interpreted, and so are not shown. The

BDR histograms produced by the hybrid forecasts using the superensemble

and Bayesian dependence structure are almost flat at all but the longest

leadtime, indicating improved joint calibration; at the shortest leadtimes, the

superensemble hybrids produce slightly peaked histograms, but the difference

in joint calibration between the superensemble and Bayesian hybrids is very

small. At the longest leadtimes, where the marginal NGR forecasts are slightly

underdispersive, the histogram is slightly skewed for all three sets of forecasts.

The original NGR forecasts took their dependence structures from the verifying

observations in the training set, as described in Section 2.1.4.1.2: this method

of estimating correlations is known as the Schaake Shuffle (Clark et al., 2004).

In contrast, the superensemble forecasts take their correlation structure from

the MME forecast ensemble members, and so use a form of ensemble copula

coupling, as described in Section 2.1.4.1.2; the dependence structure of the

Bayesian postprocessed forecasts is derived partly from the correlations within

the raw ensemble, through ΣD, and partly from the correlations between

the forecast errors in the training set, through Λ. Both of these methods of

estimating the dependence structure improve on the joint calibration obtained

by using the Schaake Shuffle, which produced forecasts that are jointly too

sharp.
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Figure 4.17: Modified Bank Depth Rank (BDR) histograms showing the joint
calibration of hybrid forecasts of surface temperatures with identical
marginal calibration, but using different postprocessing methods to
estimate the dependence structure. The dashed line indicates the
ideal uniform distribution.
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4.2.4 Summary
The Bayesian postprocessing method is able to remove the regional biases at all

leadtimes, and improves on the accuracy and forecast skill of the superensemble

forecasts at leadtimes of up to nine days. However, at the longest leadtimes

the Bayesian forecasts have similar accuracy, and a similar spread of errors, to

the superensemble forecasts. This may be because the Bayesian bias correction

simply shifts the consensus mean by η, the mean discrepancy between the

forecasts verified in the 25 days prior to the current instance being issued and

their verifying observations. As the leadtime increases, the relevance of those

25 training cases to the present instance decreases, and so the accuracy of the

resulting forecasts is lessened, although the overall bias is still well accounted

for. Choosing a training set that is tailored to the forecast of interest may

be expected to improve performance when using the Bayesian postprocessing

method; two approaches to doing so are tested in the next section.

The NGR forecasts are both more accurate and sharper than the Bayesian

postprocessed forecasts, despite using the same training data as the Bayesian

correction, achieving a fairly constant improvement of 0.6◦C in accuracy and

around 0.3◦C in CRPS over the superensemble forecasts at all leadtimes. This

can partly be ascribed to the fact that the NGR forecasts were fitted by

minimising the CRPS, a method known to maximise the accuracy of the

forecasts as described in Section 3.2.1; but the fact that the NGR forecasts

achieve a consistent level of improvement at even the longest leadtimes is likely

due to the fact that the NGR approach is based on a model of the relationship
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between the forecasts and the observed temperatures. Even if the average

error in the training set is not representative of the error in the forecast of

interest, the relationship between the forecasts and the observations is evidently

stable enough to produce consistent improvements. Further work is required

to understand how this relationship might be exploited within the Bayesian

postprocessing framework.

One difference between the Bayesian and NGR postprocessing methods

not reported in the results above is the difference in computational cost. NGR

requires numerical optimisation and is therefore relatively slow: marginally

postprocessing the full dataset of 630 forecasts of temperatures at 13 locations

at each of 16 leadtimes using the ensembleMOS package in R took around 21

minutes, while jointly postprocessing the same forecasts using the Bayesian

framework (including estimation of the discrepancy for each forecast instance)

took around two minutes. The NGR predictive distribution is estimated

independently at each location, so this computational cost will increase directly

in proportion to the dimension of the data. While the time taken to carry out

the Bayesian postprocessing also increases linearly with the dimension of the

data, experiments indicate that the increase is of the order of 4-5 seconds per

additional dimension, suggesting that the Bayesian method will scale much

more readily to the problem of postprocessing higher-dimensional forecasts.

4.3 Effect of training set selection
In this section, the effect of the choice of training set on the performance of

the Bayesian postprocessed forecasts is considered. Each forecast instance is

postprocessed using a training set consisting of 25 forecast-observation pairs

selected by one of several methods, and using a zero-precision noninformative

prior. As a baseline, the moving-window (MW) training cases already discussed

in Sections 4.1 and 4.2 are used; the skill of these forecasts is compared to that of

training sets chosen according to the two analogue selection methods described

in Section 2.3.3. Direct analogues (DA) are those that have the shortest
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Euclidean distance to the forecast of interest in normalised temperature space,

as described in Section 2.3.3.1, while weather regime (WR) analogues are the

most similar to the forecast of interest in terms of the principal components of

their MSLP fields, as described in Section 2.3.3.2.

To maximise the usefulness of the relatively short (7-year) available forecast

archive, analogues are selected using a modified cross-validation approach

(Wilks, 2011), rather than from past candidates in the strictly chronological

sense. For each instance, candidates for the current year are excluded from the

search, with the exception of the 25 days immediately preceding the forecast

issue date; each method (including the moving-window approach) therefore has

access to candidates drawn from 6 winters, plus 25 days immediately prior to

the date on which the forecast was actually issued, ensuring parity between

the three training sets.

Each selection method was found to produce quite different collections

of forecast-observation pairs, with training sets having on average around 2-3

members in common with their counterparts.

4.3.1 Forecast accuracy, sharpness and skill
All three training sets produce forecasts with very similar error distributions,

as Figure 4.18a shows; at the shortest leadtimes, the forecasts postprocessed

using weather regime analogues have slightly higher MAE than those using

moving window or direct analogue training sets, although the difference is

very small. However, at longer leadtimes – after around 9 days – both sets of

analogue-postprocessed forecasts are more accurate, on average, than those

using recent forecasts to estimate the required correction. This trend is directly

reflected in both the CRPS and energy scores, shown in Figure 4.19, and the

log scores, shown in Figure 4.20a. All three sets of postprocessed forecasts have

similar sharpness at shorter leadtimes (Figure 4.20b); at longer leadtimes, both

sets of analogue-postprocessed forecasts are less sharp, on average, than those

using a moving window to estimate η and Λ.



4.3. Effect of training set selection 94

Figure 4.18: Distribution of forecast errors and MAE at selected leadtimes over
all 630 forecast instances for all 13 locations when forecasts are
postprocessed with different training sets.
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Figure 4.19: Average continuous ranked probability score (CRPS) and energy score
(ES) over all 630 forecast instances at all 13 locations when forecasts
are postprocessed with different training sets.
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(b) Energy score
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Figure 4.20: Mean of logarithmic scores (LogS) and distribution of marginal forecast
standard deviations at selected leadtimes over all 630 forecast instances
at all 13 locations, for forecasts postprocessed with different training
sets.
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(b) Marginal forecast standard deviations
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4.3.2 Marginal calibration
PIT histograms for forecasts using the three training sets are shown for selected

regions in Figure 4.21, and for the remaining study regions in Figure B.3 in
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Appendix B. Given the similarity of the skill scores obtained by the three

sets of postprocessed forecasts, it is unsurprising that the corresponding PIT

histograms are, for the most part, also similar in shape; however, in regions

in southern and central England, the histograms for forecasts postprocessed

using moving-window training cases tend to have a small spike of values in the

leftmost bin at the longest leadtimes, which does not appear in the histograms

for the forecasts using analogues to estimate the discrepancy.

The skewness and dispersion characteristics of the histograms for each

method are summarised in Figure 4.22. All three methods have slight negative

skewness – reflecting a very small residual cold bias, as noted in Section 4.1.2 –

but have close to zero skewness at all but the shortest leadtimes. The PITs

of forecasts postprocessed using weather regime analogues are generally more

symmetrically distributed than those of using a moving window at the shortest

leadtimes and than those using direct analogues at leadtimes of five to ten

days, but the difference is small. At leadtimes of up to six days, the three

training sets all produce histograms with similar dispersion indices, with the

predictive distributions tending to overdispersion. At longer leadtimes, the

dispersion indices of forecasts postprocessed using a moving-window training

set continue to increase with leadtime as the forecasts become more and more

underdispersive: those using analogues are closer to one, indicating improved

marginal calibration, with the forecasts using direct analogues achieving the

best calibration overall.

4.3.3 Joint calibration
Like the PIT histograms, the BDR histograms for the three sets of forecasts

are broadly similar in shape (Figure 4.23). At all leadtimes, the forecasts

postprocessed using analogues to estimate the discrepancy are slightly closer

to the ideal uniform shape than those using a moving window to estimate the

discrepancy, reflecting the improved marginal calibration noted in Section 4.3.2:

at shorter leadtimes, the forecasts using weather-regime analogues in particular

have fewer values in the rightmost bin, reflecting the small improvement to
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Figure 4.21: PIT histograms showing the marginal calibration of forecasts of surface
temperatures in selected regions, postprocessed using various training
sets to estimate the discrepancy. The dashed line indicates the ideal
uniform distribution.
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(b) PIT histograms for forecasts in Bristol
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Figure 4.22: Characteristics of the PIT histograms at each leadtime for forecasts
postprocessed using different training sets. The lines indicate the
mean value across the thirteen histograms, while the shaded area
shows the range of values. The dashed horizontal lines indicate the
ideal values of zero for skewness and one for dispersion.

(a) PIT skewness

0 5 10 15

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

P
IT

 s
ke

w
ne

ss

Leadtime

Moving window
Direct analogues
WR analogues

(b) PIT dispersion
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the bias correction; and at longer leadtimes, the histograms for both sets of

analogue-corrected forecasts have fewer values in the leftmost bin at longer

leadtimes than those of the moving-window-corrected forecasts, reflecting the

improved marginal dispersion.

Figure 4.23: Modified Bank Depth Rank (BDR) histograms showing the joint
calibration of forecasts of surface temperatures postprocessed using
different training sets. The dashed line indicates the ideal uniform
distribution.
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The BOT histograms for forecasts postprocessed using all three training

sets remain very skewed, with a large spike in the leftmost bin indicating a high

proportion of the observations falling in regions of very low predicted probability

(Figure 4.24); this spike is slightly smaller for both of the analogue-corrected

sets of forecasts at longer leadtimes, with the direct analogues producing the

least poorly calibrated forecasts according to this metric.

Figure 4.24: Box Ordinate Transform (BOT) histograms showing the joint calibra-
tion of forecasts of surface temperatures postprocessed using different
training sets. The dashed line indicates the ideal uniform distribution.
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In Figure 4.8 , it was noted that gridplots showing the joint distribution

of the BOT and BDR of the forecasts using a noninformative prior and a

discrepancy estimated using training cases from a moving window showed

two clusters of points: one in the leftmost column, with BDRs between 0.3

and 0.5, indicating forecasts distributions specifying too-strong correlations

between the variables; and a second in the top-right corner of the gridplots,

indicating a group of very overdispersive forecasts. The same gridplots are

presented alongside their equivalents for the analogue-corrected forecasts in

Figures 4.25 and 4.26. The two clusters are still apparent in the gridplots for the

analogue-postprocessed forecasts; for the direct analogues, there is still a peak

between 0.3 and 0.5, but for the weather regime analogues, the values are more

evenly distributed across all of the bins of the BDR histograms. This suggests

that postprocessing using analogues chosen according to the similarity of the

prevailing weather patterns results in forecasts with slightly lower correlations

between the variables – and therefore slightly improved joint correlation – than

using direct analogues.
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Figure 4.25: Gridplots summarising the joint distribution of the BOT and BDR
histogram counts for forecasts postprocessed using different training
sets at leadtime 2.
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Figure 4.26: Gridplots summarising the joint distribution of the BOT and BDR
histogram counts for forecasts postprocessed using different training
sets at leadtime 5.
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4.3.4 Summary
The method by which training cases for the estimation of the forecast discrep-

ancy were selected has a relatively small effect on the forecast skill in this study.

At the shortest leadtimes, marginal forecasts using all three methods achieved

a similar level of skill under all of the metrics considered, while the analogue-

postprocessed forecasts showed small improvements in joint calibration. For

forecasts issued more than six days in advance, using either of the analogue

methods to select training cases produced forecasts with better marginal calibra-

tion than the moving-window training cases, being both slightly more accurate

and less underdispersive at long leadtimes. However, the difference in skill

between the three methods remains small.
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The lack of any substantial improvement in forecast skill when using

analogues to estimate the discrepancy may be due to the use of an insufficiently

long archive of candidate forecasts from which analogues could be selected.

Due to constraints on data availability (ECMWF, 2021e), the dataset used

for the application contains only seven years of data, of which only six were

used as potential candidates for each forecast instance, as described in Section

4.3. Even with the inclusion of the 25 ‘moving window’ candidates candidates,

this offers only 565 candidates for each forecast instance; as noted by Hu et al.

(2020), even the best analogues selected from such a short archive of candidates

will tend to be mediocre. This problem is compounded by the fact that the

forecasts are provided by a multi-model ensemble: candidate forecasts should

be issued by the same model configuration as the forecast of interest, but the

forecasts in the TIGGE archive used in this study are issued by operational

NWP models, which underwent (sometimes substantial) updates during the

study period. This will further reduce the effective size of the pool of suitable

candidates for each forecast instance.

Model changes may have a greater impact on the quality of the weather

regime analogues than on that of the direct analogues. This is because model

changes are more likely to affect the way in which surface weather quantities

like the temperature – which are known to be sensitive to the precise model

formulation – than pressure fields, which form part of the core of the model

and are governed by physical processes that are generally represented by well-

established model physics. Thus, if a model undergoes a revision, the pressure

fields used to select weather regime analogues may be largely unaffected: but

the relationship between those pressure fields and the temperature predicted

by the model may be changed. In this situation, a weather regime analogue

produced by a different model version is likely to provide a poor estimate

of the error in the forecast of interest, even if the pressure fields are almost

identical. When using analogues chosen on the basis of similarity in terms of

the predicted temperatures, on the other hand, the effective size of the archive
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of suitable candidates will be reduced, as candidates produced by a different

model version are likely to be filtered out as poor matches during the selection

process. However, this approach will still identify relevant analogues to the

current instance – albeit from a reduced pool of candidates – while selection by

weather regime analogues may select training cases with entirely different error

characteristics. Further work is planned to test whether postprocessing using

weather regime analogues might be more successful when using an archive of

true reforecasts, perhaps using the subseasonal-to-seasonal forecasts produced

by the S2S project (Vitart et al., 2017).

Despite the lack of a long archive of reforecasts from which to draw

analogues, both of the analogue selection methods tested here produced forecasts

with skill comparable to or slightly better than the moving window training

sets; furthermore, using weather regime analogues produced forecasts with skill

comparable to that of forecasts postprocessed using analogues selected using the

established method. The most appropriate approach to use is therefore likely

to depend on the application. The moving-window training set is convenient

to obtain, requiring no additional archive of candidate forecasts from which

to select analogues; for the postprocessing of forecasts in a relatively small

area, at leadtimes of less than a week, it most likely remains the best choice.

However, if the forecast area is increased, a larger training set will be required

for estimation of the necessary covariance matrices: simple increasing the

length of the moving window used to select the training cases will eventually

result in a reduction in forecast skill, due to the increasing remoteness of the

training cases from the forecast of interest. Similarly, when postprocessing

forecasts over a larger region, selection of direct analogues is likely to produce

lower-quality training cases due to the corresponding increase in the dimension

of the candidate vectors, as discussed in Section 2.3.3.2; this is not a problem

when selecting analogues using the proposed weather regime method, because

the dimension of the candidate search space remains small, regardless of the

dimension of the forecast vectors themselves. Perhaps most usefully, if the
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forecast domain changes slightly (within the bounds of the region to which

the PCA was applied), there is no need to identify new analogues; forecasts

postprocessed using weather regime analogues will not be changed substantially

if they are recalculated as part of a different geographical domain, or with

additional weather quantities incorporated in the forecast vector.

4.4 Summary of chapter
One of the potential benefits of the Bayesian postprocessing framework is the

scope to include an informative prior. However, in Section 4.1, forecasts using

a zero-precision noninformative prior were found to be more skilful than those

using a climatological prior, or a sequential postprocessing approach. The

sequential forecasts performed particularly poorly despite being initialised with

a relatively well-calibrated forecast, suggesting that substantial modifications to

the framework may be needed in order to successfully incorporate information

from a previous forecast. The development of a framework to produce correctly

calibrated sequences of forecasts is planned for future work.

In Section 4.2, the skill of forecasts postprocessed using the new Bayesian

approach was compared to that of forecasts corrected using nonhomogeneous

Gaussian regression (NGR). While the Bayesian method was able to outperform

the raw ‘superensemble’ forecasts at shorter leadtimes, the NGR forecasts

were both sharper and more accurate at all leadtimes, with better marginal

calibration. A particular problem for the Bayesian forecasts was marginal

calibration, with forecasts at shorter leadtimes being consistently overdispersive,

and forecasts at longer leadtimes being consistently underdispersive. However,

when combined with the marginal NGR forecasts, the correlation matrices

produced by the Bayesian postprocessing method resulted in better joint

calibration than matrices estimated using either the Schaake Shuffle or ensemble

copula coupling methods described in Section 2.1.4.1.2. Moreover, the Bayesian

postprocessed forecasts are computationally much cheaper than the NGR

forecasts, taking around one-tenth of the time that NGR required to postprocess
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the full dataset.

Finally, in Section 4.3, forecasts postprocessed using weather regime ana-

logues, selected using the new approach proposed in Section 2.3.3.2, were found

to have predictive skill comparable to or better than those using the established

a moving-window or direct analogue approaches. Selection of training cases

using the new approach may be particularly beneficial where a large number of

locations or variables are to be postprocessed simultaneously, in which case the

dimension of the candidate search space for direct analogues may become too

large to reliably identify high-quality analogues. It should also be noted that

forecasts postprocessed using analogues had skill comparable to those using

a moving window approach, despite the fact that the archive of candidates

consisted of past forecasts rather than reforecasts; the two analogue methods

may be expected to perform better when an archive of true reforecasts, pro-

duced by the same model configuration as the forecast instances, is available.

Further work is planned to investigate whether this is the case using forecasts

and reforecasts from the S2S database (Vitart et al., 2017).

From (2.21), when a noninformative prior is used, the posterior variance

reduces to the sum of ΣD, the uncertainty about the position of the unobserved

MME consensus, and Λ, the covariance matrix of the discrepancy. Figure 4.27

shows the contributions of these two quantities to the posterior variance S for

forecasts postprocessed using the Bayesian framework with a noninformative

prior and moving-window training cases.

The dominant contribution to the posterior variance S is from Λ, which

increases steadily with leadtime, while the average sharpness of ΣD remains

constant at the longest leadtimes, as the ensemble forecasts all tend towards a

common climatology. It is very likely that if a better estimate of the discrepancy

uncertainty Λ can be obtained, the overall calibration of the Bayesian postpro-

cessed forecasts will be improved, particularly at longer leadtimes; likewise, an

improved estimate of η would result in higher forecast accuracy, and therefore

overall skill. A method to improve the estimation of both η and Λ, using a
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Figure 4.27: Distribution of all regional marginal standard deviations and deter-
minant sharpnesses of ΣD, the uncertainty about the position of
the unobserved MME consensus, Λ, the covariance matrix of the
discrepancy, and S, the posterior covariance matrix, for forecasts
postprocessed using the Bayesian framework, with a noninformative
prior and discrepancy estimated using training cases from a moving
window of 25 days.
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linear approximation to Bayesian inference, is proposed in the next chapter.



Chapter 5

Multivariate Bayes linear

adjustment of the forecast

discrepancy ∆

5.1 Motivation
The skill of the forecasts produced by the Bayesian framework depends on how

well the discrepancy ∆ is estimated. The implementation described in Chapter

4 and Barnes et al. (2019) uses a simple moment-based approach, taking the

sample mean of a set of training forecast errors as the estimate of the expected

discrepancy η and the sample variance-covariance matrix of the same forecast

errors as the estimate of the variance of the discrepancy, Λ.

It seems likely that the estimate of the discrepancy might be improved –

and hence the forecasts made more skilful – by applying a more sophisticated

approach. In Section 4.3, corrections using errors from recently-verified forecasts

tended to perform well at the shortest leadtimes; corrections using the errors

from analogue forecasts, with local or synoptic weather regimes – and therefore

errors – similar to those of the forecast to be postprocessed, tend to do better

at longer leadtimes. This suggests that some advantage may be gained, at least

at some leadtimes, by somehow combining the two different estimates of the

forecast error.



5.1. Motivation 105

Aside from this point, there is some evidence that a distribution with

heavier tails may better represent the distribution of observed surface tempera-

tures than the Gaussian model that is commonly used by default. Gneiting

et al. (2005) remark that fitting the NGR parameters via minimisation of the

CRPS is preferable to maximising the likelihood because the latter approach

tends to favour overdispersive forecast PDFs, due to the greater sensitivity

of the log score (LS) to outliers – although, as noted in Section 3.2.1, the

CRPS tends to favour underdispersive forecasts, rather than well-calibrated

ones. However, as Gebetsberger et al. (2018) point out, both the CRPS and

LS should produce consistent estimators of the parameters – and therefore

very similar regression coefficients – as long as the parametric form of the

distribution is correctly specified. They argue that the very fact that NGR

coefficients fitted using CRPS minimisation tend to differ substantially from

those fitted using LS minimisation indicates that the Gaussian model is in

fact not appropriate. In that paper, heavier-tailed parametric forms – both

Student-t and logistic distributions – were generally found to produce similar

parameter estimates when fitted by minimising either the LS or CRPS, while

coefficients fitted using a Gaussian regression differed. Forecasts fitted using

nonhomogeneous Student-t regression also had better calibration than those

using nonhomogeneous Gaussian regression.

A natural way to combine two sources of information and obtain a predictive

t distribution with slightly heaver tails than those of a normal distribution

would be to perform Bayesian inference on the forecast error. The simplest

approach would be to specify a normal-inverse-Wishart joint distribution for the

expectation and covariance of ∆, and to infer the distribution of the discrepancy

after observing a second sample of forecast errors which are also assumed to have

a Gaussian distribution; this would result in a Student-t posterior density for

the discrepancy mean vector η and an inverse-Wishart posterior density for the

discrepancy covariance matrix Λ, satisfying the requirement that the forecast

discrepancy be assumed to have heavier tails than a normal distribution.
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However, this leads to a new problem. The Bayesian framework described

in Section 2 produces simple closed-form expressions for the postprocessed

mean and covariance of the forecast because the ensemble forecasts, the multi-

ensemble system as a whole, and the forecast discrepancy are all assumed to

be approximately normally distributed. This means that all of the information

that they provide can be captured by those two quantities; because the nor-

mal distribution is closed under summation, the mean and covariance of the

postprocessed distribution can be calculated analytically. However, there is no

simple way to compute the expectation and variance of the sum of a normal

distribution and a t-distribution, so computationally intensive Monte Carlo

techniques would be required to approximate the distribution of the posterior

forecast. A further consideration is that, unless the sample size and the degrees

of freedom of the Wishart prior used in the inference are very small, the degrees

of freedom of the posterior t-distribution will be large enough that the density

will closely approximate a normal distribution anyway, and the benefit of the

heavy-tailedness will be minimal.

The approach proposed here makes use of Bayes linear statistics, which

represents quantities of interest through their expectations and variances rather

than full probabilistic specifications, and so produces adjusted expectations and

variances that can be plugged directly into the Gaussian framework described

in Section 2.2; the proposed method is also able to accommodate an assumption

of heavier (or indeed lighter) tails in the observed forecast errors. The Bayes

linear adjustment is carried out in two stages: first, the prior expectation and

variance of the population covariance matrix are adjusted by the observed

sample covariance matrix; this updated assessment of the variances is then

used in the adjustment of the prior expectation and variance of the population

mean by the observed sample mean.

Bayes linear adjustment of covariance matrices is typically presented in

terms of geometric projection of matrices into a Hilbert space (Wilkinson, 1995;

Goldstein and Wilkinson, 2001; Williamson et al., 2012); while this approach
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allows a great deal of flexibility, it may greatly increase the complexity and

cost of both specifying and computing the required quantities. Goldstein

and Wooff (2007) suggest two simple heuristics as an alternative: either the

marginal variances should first be adjusted independently, then combined with

an estimate of the dependence structure in order to obtain a ‘semi-adjusted’

residual variance matrix; or the prior and observed covariance matrices should be

weighted and averaged directly. This chapter proposes an alternative approach,

extending the second-order exchangeability representation underpinning much

of Bayes linear statistics to derive a fully multivariate adjustment of the

covariance matrix, specification of which requires little more effort than these

heuristic approaches.

Section 5.2 reviews the concepts of Bayes linear statistics, and existing

approaches to Bayes linear adjustment of covariance matrices. The derivation

of the multivariate adjustment in Section 5.3 depends on several special matrix

operations and identities, which are reviewed in Appendix C.

The accuracy of the Bayes linear approximation to natural conjugate

inference is examined in Section 5.4. Practical issues concerning implementation

of the Bayes linear adjustment of the forecast discrepancy are discussed in

Chapter 6, where an application to postprocessing forecasts of winter surface

temperatures is presented.

5.2 Review of Bayes linear statistics
Unlike classical Bayesian statistics, Bayes linear statistics does not represent

underlying populations in terms of probability distributions: instead, models are

constructed from expectations of quantities that are judged to be exchangeable.

Uncertainty about the values of quantities of interest is expressed in terms of

mean vectors and variance-covariance matrices, which are specified according

to the user’s subjective beliefs and updated as additional data is observed.

Suppose that two quantities of interest, X and Y, are to be observed in

that order at two different time points, and that learning about Y is expected to
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provide some information about X. Bayes linear analysis begins by specifying

prior beliefs about the expectation E[Y] and variance V[Y] of the random

variable Y; the expectation E[X] and variance V[X] of the random variable

X; and C[X,Y], the covariance between X and Y. As in standard Bayesian

inference, these prior beliefs should be specified using information that is

independent of the observations that will be used to update them.

The relationship between X and Y can now be exploited to obtain an

improved forecast for X. In Bayes linear statistics this is done by constructing

a linear estimate for each element of X from the elements of Y, of the form

c0 +∑
k ckYk, and by choosing the coefficients c∗0, ..., c∗k that minimise the prior

expected squared error loss E
[
E[Xi] − (c0 +∑

k ckYk)
]2
. The estimator

EY[Xi] = c∗0 +
∑
k

c∗kYk (5.1)

is known as the adjusted expectation for Xi given Y; Goldstein and Wooff

(2007, §1.4.5) show that the adjusted expectation of X given Y is

EY[X] = E[X] +C[X,Y]V[Y]−1 (Y−E[Y]) . (5.2)

If V[Y]−1 has been specified in such a way that it is singular, the Moore-

Penrose generalised inverse should be used; following Goldstein and Wooff

(2007, §1.4.11), no distinction is made here between the handling of full rank

and singular variance matrices.

The residual variance not explained by the observed Y is referred to as

the adjusted variance of X given Y, which can be shown to be

VY[X] = V[X]−C[X,Y]V[Y]−1C[Y,X] . (5.3)

Goldstein and Wooff (2007, §1.4.5) show that VY[X] is the mean squared error

of the estimator EY[X], and can therefore be most usefully interpreted as a

linear estimate of how much of the stated prior uncertainty about X remains
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after the variability accounted for by Y is removed.

The adjusted expectation and variance of X are identical to the conditional

mean and variance of a partitionY of a joint multivariate normal distribution for

Y and X, given a partition Y (Gelman et al. (2013), see also Krzanowski (2000),

§7.2) – however, the Bayes linear framework can be applied and interpreted

without reliance on any Gaussian probabilistic assumptions.

5.2.1 Second-order exchangeability
The intention in the proposed application is not to use observations of one

quantity to predict another, as in the general approach outlined above; instead,

observations of the multivariate forecast discrepancy will be used to adjust the

prior expectation η and variance Λ of the forecast discrepancy, in order to

obtain an improved estimate to be used in forecast postprocessing. Henceforth,

X will be used to denote the quantity of interest in order to focus on the

theoretical developments rather than the application.

Most statistical analysis proceeds from the assumption that a collection of

observations {x} are exchangeable – meaning that the relationships between

them can be expressed as a joint probability density p(x1,x2, ... ,xn) that is

invariant to the ordering of the xi (Gelman et al., 2013). Under the Bayes linear

framework, full probability distributions are not specified for the underlying

population, only expectations and variances; so only the slightly weaker as-

sumption of second-order exchangeability is asserted. Following Goldstein and

Wooff (2007, §6.4), a collection of vectors {x1,x2, ...} is defined as second-order

exchangeable if the first-and second-order belief specifications for the sequence

of vectors are unaffected by any permutation of the order of the vectors. This

means that all individuals share the same mean vector and variance matrix,

and that the covariance matrix between any two different individuals is the

same. This leads to the following representation theorem for second-order

exchangeable random vectors.
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5.2.1.1 Exchangeability representation for an infinite sequence of

second-order exchangeable random vectors

If {X1,X2, ...} is an infinite second-order exchangeable sequence of random

vectors with common mean E[Xi] = µ and common variance V[Xi] = Σ then

{X} may be expressed in terms of the population mean vector M(X) and

the infinite sequence of individual residual vectors {R1(X),R2(X), ...}, which

satisfy the following properties.

1. For each individual i,

Xi = M(X) +Ri(X). (5.4)

2. The mean and variance for M(X) are

E[M(X)] = µ, V[M(X)] = Γ. (5.5)

3. The collection {R1(X),R2(X), ...} is second-order exchangeable, with

each individual i having

E[Ri(X)] = 0, V[Ri(X)] = Σ−Γ, C[Ri(X),Rj(X)] = 0. (5.6)

4. Each Ri(X) is uncorrelated with M(X).

Strictly speaking, by analogy with De Finetti’s theorem (De Finetti, 1992),

this representation demands that the observations {x} can be plausibly thought

of as a subset of an infinitely exchangeable sequence. However, following

Rougier et al. (2013), the infinitely exchangeable representation is used here as

a tractable representation of finite exchangeability.

5.2.2 Bayes linear sufficiency and belief separation
In a fully Bayesian analysis, posterior distributions are derived by constructing

conditional probability densities. Two variables A and B are said to be



5.2. Review of Bayes linear statistics 111

conditionally independent given C if the conditional distribution of B given

both A and C is the same as the conditional distribution of B given C alone.

Conditional independence plays an important role in Bayesian inference, in

particular by guaranteeing that the posterior distribution depends on the sample

data only via sufficient statistics (Dawid, 1979).

In the Bayes linear framework, beliefs are adjusted not by conditioning but

by minimising the squared loss function. Thus, instead of relying on conditional

independence, Goldstein and Wooff (2007, §5.15) introduce the concept of

belief separation, a generalised conditional independence property. For three

collections of random quantities A, B and C, C is said to be Bayes linear

sufficient for A for adjusting B if EC∪A[B] = EC[B]. Equivalently, C can be

said to separate A and B; this belief separation is written as

bA⊥⊥Bc/C. (5.7)

This property simplifies the adjustment of expectations and variances: when

bA⊥⊥Bc/C, it follows immediately that

EC∪A[B] = EC[B] , VC∪A[B] = VC[B] . (5.8)

In particular, if {C} ⊆ {A} then

EA[B] = EC[B] , VA[B] = VC[B] .

These relationships will be exploited in the next section when adjusting the

prior expectations and variances by a collection of observations.

5.2.3 Updating the expectation and variance of the

population mean
Under the exchangeability representation described in Section 5.2.1.1, Xi =

M(X)+Ri(X), where the population meanM(X) and residualsRi(X), Rj(X)



5.2. Review of Bayes linear statistics 112

are mutually uncorrelated. As a consequence,

bXi ⊥⊥Xjc/M(X) for i= 1, ... ,n;j > n (5.9)

and it is clear that M(X) induces belief separation between X1:n and Xj ,

where j > n. Furthermore, by writing

X = 1
n

n∑
i=1

Xi = M(X) + 1
n

n∑
i=1

Ri(X), (5.10)

(Goldstein and Wooff, 2007, §6.10) show that the sample mean vector X is

Bayes linear sufficient for X1:n for adjusting M(X), and hence for adjusting

beliefs over future observations Xj when j > n.

From the definition of Xi given in Section 5.2.1.1, the prior expectations,

variances and covariances of Xi and Xj can be expressed in terms of the

population mean and residuals as

E[Xi] = E[M(X) +Ri(X)] = E[M(X)] (5.11)

V[Xi] = V[M(X) +Ri(X)] = V[M(X)] +V[Ri(X)] (5.12)

C[Xi,Xj ] = C[M(X) +Ri(X),M(X) +Rj(X)] = V[M(X)] , (5.13)

whence it follows that

E
[
X
]

= M(X), V
[
X
]

= V[M(X)] + 1
n
V[Ri(X)] , C

[
X,M(X)

]
= V[M(X)] .

This determines all of the elements required to update the expectation and

variance of the population mean M(X) and of future observations Xj . Substi-

tuting these terms into the generic forms (5.2) and (5.3) gives the following

form for the Bayes linear adjusted expectation and variance of the population
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mean M(X) after updating by the sample mean X of n observations:

EX[M(X)] = E[M(X)] +C
[
M(X),X

]
V
[
X
]−1 (

X−E
[
X
])

= E[M(X)] +V[M(X)]
(
V[M(X)] + 1

nV[Ri(X)]
)−1(

X−E[M(X)]
)

(5.14)

and

VX[M(X)] = V[M(X)]−C
[
M(X),X

]
V
[
X
]−1

C
[
X,M(X)

]
= V[M(X)]−V[M(X)]

(
V[M(X)] + 1

nV[Ri(X)]
)−1

V[M(X)] .

(5.15)

The Woodbury matrix identity (Woodbury, 1950) states that

A−1−A−1U
(
C−1 +VA−1U

)−1
VA−1 = (A+UCV)−1 (5.16)

and (5.15) has the form of the left-hand side, with U=V= I, A−1 = V[M(X)],

and C−1 = 1
nV[Ri(X)]. Hence

VX[M(X)] =
(
V[M(X)]−1 +nV[Ri(X)]−1)−1

, (5.17)

and it is apparent that the adjusted variance of M(X) is simply the inverse of

the sum of the precision of M(X) and the precision of n residuals.

5.2.4 Updating the expectation and variance of the

population variance (scalar case)
Thus far, the prior expectations have only been adjusted by the observed

sample mean; this is analogous to carrying out Bayesian inference with a

variance assumed to be known a priori, which is not generally a realistic

assumption. To determine how to adjust the prior variance by the observed

sample variance, the exchangeability representation must be extended to include
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higher-order exchangeability. The following exchangeability representation for

scalar variances is taken from Goldstein and Wooff (2007, §6.4), and will be

extended to the multivariate case in Section 5.3.

5.2.4.1 Exchangeability representation for an infinite sequence of

second-order exchangeable squared residuals

Let {R1(X)2,R2(X)2, ...} be the squared residuals from an infinite second-order

exchangeable sequence of scalar random quantities {X1,X2, ...} as defined in

Section 5.2.1.1.

Suppose that the sequence {R1(X)2,R2(X)2, ...} is also second-order ex-

changeable, with common mean E
[
Ri(X)2

]
and common variance V

[
Ri(X)2

]
.

Then the squared residuals {R(X)2} may be expressed in terms of the popula-

tion variance M(V ) and the infinite sequence of individual residual-variance

vectors {R1(V ), R2(V ), ...}, which satisfy the following properties.

1. For each individual i,

Ri(X)2 = M(V ) +Ri(V ). (5.18)

2. The population variance M(V ) has expectation and variance

E[M(V )] = VR, V[M(V )] = VM . (5.19)

3. The collection {R1(V ),R2(V ), ...} is second-order exchangeable, with

each individual i having

E[Ri(V )] = 0, V[Ri(V )] = VR(V ), C[Ri(V ),Rj(V )] = 0. (5.20)

4. Each Ri(V ) is uncorrelated with M(V ).
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5.2.4.2 Updating the population variance when the population

mean is known

Suppose that the population meanM(X) is known; this means that the squared

residuals Ri(X)2 = (Xi−M(X))2 are observable.

Just as the sample mean was Bayes linear sufficient for all of the Xi

for adjusting M(X), the sample mean squared residual X̄(2) = 1
n

∑n
i=1(Xi−

M(X))2 is Bayes linear sufficient for all of the Ri(X)2 = (Xi−M(X))2 for

adjusting M(V ), with

E
[
X̄(2)

]
= E

[
1
n

n∑
i=1

(
M(V ) +Ri(V )

)]
= E[M(V )] , (5.21)

V
[
X̄(2)

]
= V

[
1
n

n∑
i=1

(
M(V ) +Ri(V )

)]
= V[M(V )] + 1

n
V[Ri(V )] ,

(5.22)

C
[
M(V ), X̄(2)

]
= C

[
M(V ), 1

n

n∑
i=1

(
M(V ) +Ri(V )

)]
= V[M(V )] . (5.23)

The expectations and variances specified in Section 5.2.4.1 can therefore be

combined with the update equations (5.2) and (5.3), giving the following

equations for the adjustment of the variance of X by the sample squared

residuals X̄(2):

EX̄(2) [M(V )] = E[M(V )] +C
[
M(V ), X̄(2)

]
V
[
X̄(2)

]−1 (
X̄(2)−E

[
X̄(2)

])
= E[M(V )] +V[M(V )]

(
V[M(V )] + 1

nV[Ri(V )]
)−1 (

X̄(2)−E[M(V )]
)

= VR+VM
(
VM + 1

nVR(V )
)−1 (

X̄(2)−VR
)

=
VM X̄

(2) + 1
nVR(V )VR

VM + 1
nVR(V )

, (5.24)
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and from (5.3),

VX̄(2) [M(V )] = V[M(V )]−C
[
M(V ), X̄(2)

]
V
[
X̄(2)

]−1
C
[
X̄(2),M(V )

]
= VM −VM

(
VM + 1

nVR(V )
)−1

VM

=
1
nVMVR(V )
VM + 1

nVR(V )
. (5.25)

5.2.4.3 Updating the population variance when the population

mean is not known

In the more realistic case when the population mean M(X) is not known, the

‘true’ squared residuals Ri(X)2 are not observable. Instead, the observable

quantities are the sample squared residuals (Xi− X̄)2, which are standardised

to give the sample variance s2 = 1
n−1

∑n
i=1(Xi− X̄)2.

In order to define and exploit the relationship between the sample variance

and the quantities to be adjusted, an expression for s2 is required in terms of

the quantities specified in Section 5.2.4.1. First, by expanding the sample sum

of squares,

(n−1)s2 =
n∑
i=1

(
Xi− X̄

)2

=
n∑
i=1

(
[Xi−M(X)] +

[
M(X)− X̄

])2

=
n∑
i=1

(
Xi−M(X)

)2
−n

(
1
n

n∑
i=1

(
Xi−M(X)

))2
. (5.26)

Now s2 can be expressed in terms of the unobserved ‘true’ residuals Ri(X) =
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Xi−M(X)

)
as

(n−1)s2 =
n∑
i=1

Ri(X)2− 1
n

(
n∑
i=1

Ri(X)
)2

=
n∑
i=1

Ri(X)2− 1
n

n∑
i=1

Ri(X)2 +
∑
j 6=i

Ri(X)Rj(X)


= n−1

n

n∑
i=1

Ri(X)2− 2
n

∑
k<j

Rj(X)Rk(X) (5.27)

and so

s2 = 1
n

n∑
i=1

Ri(X)2− 2
n(n−1)

∑
k<j

Rj(X)Rk(X). (5.28)

This quantity can also be represented as s2 = M(V ) +T , where T captures

the portion of the variance not attributable to the population variance M(V ).

Recall from (5.18) that M(V ) = [Ri(X)]2−Ri(V ), and so

T = 1
n

n∑
i=1

Ri(X)2− 2
n(n−1)

∑
k<j

Rj(X)Rk(X)− 1
n

n∑
i=1

(
[Ri(X)]2−Ri(V )

)

= 1
n

n∑
i=1

Ri(V )− 2
n(n−1)

∑
k<j

Rj(X)Rk(X). (5.29)

Goldstein andWooff (2007, §8.2) introduce the further assumption that products

of pairs of residuals Ri(X)Rj(X) satisfy certain fourth-order uncorrelated

properties - analogous to defining these quantities as mutually independent in

a classical treatment - such that

C[M(V ),Ri(X)Rj(X)] = 0 for i 6= j, (5.30)

C[Ri(V ),Rj(X)Rj(X)] = 0 when i 6= j 6= k, (5.31)

C[Ri(X)Rj(X),Rw(X)Ru(X)] = 0 for i > j,w > u, unless i= w and j = u.

(5.32)

From Sections 5.2.1.1 and 5.2.4.1, E[Ri(V )] = 0 and E[Ri(X)Rj(X)] = 0 for
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i 6= j, so it can immediately be seen that E[T ] = 0.

To complete the specification, the variance of T is required. From

Section 5.2.4.1, we have V[Ri(V )] = VR(V ), and (5.31) tells us that

C[Ri(V ),Rj(X)Rk(X)] = 0 when i 6= j 6= k, as is the case here. For

V[Rj(X)Rk(X)],

V[Rj(X)Rk(X)] = C
[
Rj(X)2,Rk(X)2

]
+(

V[Rj(X)] +E[Rj(X)]2
)(

V[Rk(X)] +E[Rk(X)]2
)
−

(C[Rj(X),Rk(X)] +E[Rj(X)]E[Rk(X)])2 . (5.33)

Note that C
[
Rj(X)2,Rk(X)2

]
= VM , and so

V[Rj(X)Rk(X)] = VM + (VR+ 0)(VR+ 0)−02 = VM +V 2
R . (5.34)

The variance of T is therefore

V[T ] = 1
n
VR(V ) +

2
(
VM +V 2

R

)
n(n−1) = VT , say. (5.35)

And, since T is independent of M(V ), it is also true that C[M(V ),T ] = 0.

The expectation and variance of the sample variance s2 can therefore be

expressed in terms of quantities about which belief specifications can be made

under the exchangeability representation in Section 5.2.4.1, with

E
[
s2
]

= E[M(V ) +T ] = VR, (5.36)

V
[
s2
]

= V[M(V ) +T ] = VM +VT , (5.37)

C
[
s2,M(V )

]
= C[M(V ) +T,M(V )] = VM . (5.38)

5.2.4.3.1 Adjusted expectation and variance of M(V )

All of the quantities required to carry out Bayes linear adjustment of the

expectation and variance of M(V ) by the sample variance s2 have now been
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determined. Using (5.2),

Es2 [M(V )] = E[M(V )] +C
[
M(V ), s2

]
V
[
s2
]−1 (

s2−E
[
s2
])

= VR+VM (VM +VT )−1 (s2−VR
)

= VMs
2 +VTVR

VM +VT
, (5.39)

and

Vs2 [M(V )] = V[M(V )]−C
[
M(V ), s2

]
V
[
s2
]−1

C
[
M(V ), s2

]
= VM −VM (VM +VT )−1VM

= VMVT
VM +VT

. (5.40)

5.2.4.3.2 Variance-modified Bayes linear assessments

The adjusted expectation (5.39) of M(V ) is treated as an updated estimate

of the residual variance of Xi. V[Ri(X)] can therefore now be replaced by

Es2 [M(V )] in equations (5.14) and (5.15) to obtain the variance-modified

adjusted expectation and variance,

Ex[M(X)] = E[M(X)] +V[M(X)]
(
V[M(X)] + 1

nEs2 [M(V )]
)−1(

X̄−E[M(X)]
)
,

(5.41)

and

Vx[M(X)] = V[M(X)]−V[M(X)]
(
V[M(X)] + 1

nEs2 [M(V )]
)−1

V[M(X)]

=
(
V[M(X)]−1 +nEs2 [M(V )]−1)−1

. (5.42)

The notation Ex[M(X)] reflects the fact that the adjustment of M(X) incor-

porates both the sample mean and sample variance of the data x.
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5.2.5 Priors for higher-order quantities
The representation derived in Section 5.2.4.3 enables the creation of update

equations for the expectation E[M(V )] and variance V[M(V )] of the squared

residuals. The next step in carrying out the adjustment is to specify priors on

each of the required components.

Under the representation given in Section 5.2.4.1, V[X] = M(V ) +Ri(V ),

where E[Ri(V )] = 0, and so E[M(V )] = V[X] = VR. Specifications are still

required for two quantities: for VR(V ), which expresses judgements about the

shape of X, in the sense of whether X is expected to have particularly heavy or

light tails, and represents the fourth-order moments of X; and also for VM , the

variance of the population variance, which reflects confidence in the prior VR.

5.2.5.1 Expressing kurtosis through VR(V )

In specifying VR(V ), Goldstein and Wooff (2007, §8.3) propose that the popula-

tion variance M(V ) be treated as a scale parameter acting on the standardised

residuals Zi = (Xi−M(X))/
√
M(V ), so that

Ri(X) =
√
M(V )Zi (5.43)

where

E[Zi] = 0, V[Zi] = 1, C[Zi,Zj ] = 0, C[M(V ),Zi] = 0. (5.44)

It follows from equation (5.18) that

Ri(V ) = M(V )(Z2
i −1). (5.45)



5.2. Review of Bayes linear statistics 121

From (5.20), E[Ri(V )] = 0; therefore V[Ri(V )] = E
[
Ri(V )2

]
−E[Ri(V )]2 =

E
[
Ri(V )2

]
, and so

VR(V ) = V[Ri(V )] = E
[
M(V )2(Z2

i −1)2
]

= E
[
M(V )2

]{
V
[
Z2
i −1

]
+E

[
Z2
i −1

]2}
=
(
V[M(V )] +E[M(V )]2

)
V
[
Z2
i

]
=
(
VM +V 2

R

)
V
[
Z2
i

]
. (5.46)

Thus VR(V ) can be determined by quantities specified elsewhere, and the variance

V
[
Z2
i

]
of the standardised squared residuals.

5.2.5.1.1 V
[
Z2
i

]
and excess kurtosis

An appropriate choice of values for V
[
Z2
i

]
can be determined by appealing to

distribution theory. Following Kendall and Stuart (1969), let Kur [X] denote

the excess kurtosis of Xi with respect to a normal distribution, defined in terms

of the fourth and second moments of Xi as

Kur [X] = µ4
µ2

2
−3 = E


Xi−M(X)√

M(V )

4−3 = E
[
Z4
i

]
−3, (5.47)

where µr denotes the rth central moment of Xi. Note that Goldstein and

Wooff (2007, §8.3) use the raw kurtosis Kur [X] + 3 in their derivation: the

two formulations are interchangeable, but parametrising in terms of the excess

kurtosis will result in a more direct interpretation of the effect of the adjustment

in later sections.

This fourth-order moment of Zi can be expressed in terms of the standard-

ised residuals Zi as

E
[
Z4
i

]
= E

[(
Z2
i

)2]
= V

[
Z2
i

]
+E

[
Z2
i

]2
. (5.48)

By construction, E
[
Z2
i

]
is equivalent to the second standardised moment µ2/σ2,
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which is always one, and so

Kur [X] =
(
V
[
Z2
i

]
+ 1

)
−3 = V

[
Z2
i

]
−2. (5.49)

V
[
Z2
i

]
can now be specified according to the prior judgement about the shape

of the distribution. Setting V
[
Z2
i

]
= 2 implies that Kur [X] = 0, hence that the

residuals are approximately Gaussian; larger values of V
[
Z2
i

]
imply an increas-

ingly heavier-tailed distribution, while negative values imply a distribution

with lighter tails than a normal distribution.

A natural approach to eliciting an appropriate value for V
[
Z2
i

]
to indicate

heavier-than-normal tails is to proceed as though the residuals follow a Student-

t distribution, as suggested by Goldstein and Wooff (2007, §8.3). Let Tν have

a t distribution with ν > 4 degrees of freedom. Then V[Tν ] = ν/(ν− 2); to

standardise this to have unit variance, define the standardised residuals as

Zi =
√
ν−2
ν

Tν (5.50)

so that the squared residuals are F distributed as

Z2
i ∼

ν−2
ν

F (1,ν) with V
[
Z2
i

]
= 2(ν−1)

ν−4 , (5.51)

and, using (5.49), the corresponding kurtosis is

V
[
Z2
i

]
−2 = 2(ν−1)−2(ν−4)

ν−4 = 6
ν−4 . (5.52)

For lighter-tailed distributions, Goldstein and Wooff (2007, §8.3) note that the

excess kurtosis of any regular unimodal symmetric distribution cannot be less

than -1.2 (Stuart et al., 1994); from (5.49), therefore, a choice of V
[
Z2
i

]
> 0.8

will be appropriate.

With VR(V ) =
(
VM +V 2

R

)
V
[
Z2
i

]
defined in this way, with V

[
Z2
i

]
=Kur [X]+



5.2. Review of Bayes linear statistics 123

2, (5.35) can be written as

VT =

(
VM +V 2

R

)
n

{
V
[
Z2
i

]
+ 2
n−1

}

=

(
VM +V 2

R

)
n

{
Kur [X] + 2n

n−1

}
. (5.53)

Increasing V
[
Z2
i

]
to represent heavier tails thus increases VT ; as a result, the

prior variance VR receives slightly more weight relative to the sample variance

s2 in (5.39).

5.2.5.2 Expressing confidence through VM

The remaining term to be specified is VM = V[M(V )], the prior uncertainty

about the population variance. Small values indicate a relatively high level of

confidence in the assessment of E[M(V )], with larger values indicating that it

would not be surprising to find substantial changes to the prior variance after

observing a large sample.

Rather than attempt to specify VM directly - which would involve somehow

quantifying and articulating the user’s uncertainty about the variance - Gold-

stein and Wooff (2007, §8.3) propose setting VM = cV 2
R , and instead choosing

some value of c > 0 that reflects the user’s beliefs about the value of the prior

information.

The scaling parameter c has no interpretable units, and so it is not imme-

diately obvious how to specify a sensible value for c to reflect prior beliefs about

the relationship between VM and VR. Goldstein and Wooff (2007, §8.3) suggest

that the exact value for c be determined by the size n of the observed sample

from which s2 is estimated, the kurtosis parameter V
[
Z2
i

]
, and a parameter

m denoting the notional size of sample from which VR might be considered to

have been estimated, with these four quantities related by

c= κn

m(n−1)−κn, where κ= 1
n

{
(n−1)V

[
Z2
i

]
+ 2

}
(5.54)
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is a term introduced by Goldstein and Wooff (2007, §8.3) for convenience.

Setting VM = cV 2
R in (5.53), this definition of c leads to

VT = c+ 1
n

{
V
[
Z2
i

]
+ 2
n−1

}
V 2
R = (c+ 1) κ

n−1V
2
R , (5.55)

while from (5.46),

VR(V ) = (c+ 1)V
[
Z2
i

]
V 2
R . (5.56)

Substituting (5.55) and (5.56) into (5.39), the adjusted expectation of M(V ) is

Es2 [M(V )] =
cV 2
R s

2 + (c+ 1) κ
n−1V

2
RVR

cV 2
R + (c+ 1) κ

n−1V
2
R

=
cs2 + (c+ 1) κ

n−1VR

c+ (c+ 1) κ
n−1

=
κns2 +m(n−1) κ

n−1VR

κn+m(n−1) κ
n−1

= ns2 +mVR
n+m

. (5.57)

Similarly, from (5.40), the adjusted variance of M(V ) is

Vs2 [M(V )] =
cV 2
R (c+ 1) κ

n−1V
2
R

cV 2
R + (c+ 1) κ

n−1V
2
R

=
c(c+ 1) κ

n−1V
2
R

c+ (c+ 1) κ
n−1

=
κnκm

(m(n−1)−κn)2

κn+κm
m(n−1)−κn

V 2
R

= κnm

(m(n−1)−κn)(n+m)V
2
R . (5.58)

Specifying c in this way fixes the relationship between the prior and observed

sample sizes in such a way that, once both m and n are specified, changes to

the kurtosis parameter V
[
Z2
i

]
have no effect on the adjusted expectation of the

population variance, but are effectively absorbed by c. Given that c itself has

no physical interpretation, it is hard to justify the effort of carefully specifying
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V
[
Z2
i

]
when using this approach, and it seems likely that many users would

simply dispense with this step altogether as a result.

An alternative approach to the specification of c is proposed in the next

section, which separates the effect of adjusting the notional sample size from

that of adjusting the kurtosis, and in so doing allows direct interpretation of

the effect of changes to the kurtosis on the weights assigned to the prior and

observed sample variances.

5.2.5.2.1 Specification of the relationship between VM and VR

In order to separate the effect of sample size from that of the kurtosis parameter,

c should be defined in such a way that the relationship between VM and VR
is affected only by the sample size. This can be achieved by borrowing from

a commonly-used parametric form for the prior on the population variance

M(V ). Suppose that M(V ) is assumed to behave as if it were the variance of

a normally distributed random variable, say X, thus fixing the excess kurtosis

Kur [X] at zero. The natural conjugate choice for the implied prior distribution

of M(V ) would then be the scaled inverse-Chi-squared distribution with ν

degrees of freedom. Under this parametrisation,

E[M(V )] = ντ2

ν−2 , V[M(V )] =
2
(
ντ2

)2

(ν−2)2(ν−4) (5.59)

where τ2 denotes a scaling parameter; hence, with c= VM/V
2
R ,

c= V[M(V )]
E[M(V )]2

= 2
ν−4 . (5.60)

The user remains free to specify VR however they wish; however, the relationship

between VM and VR is now fixed in terms of the degrees of freedom ν. Under

this specification,

VM = 2
ν−4V

2
R , VT = ν−2

(ν−4)n

{
V
[
Z2
i

]
+ 2
n−1

}
V 2
R . (5.61)
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The adjusted expectation of M(V ) is now

Es2 [M(V )] =
2

ν−4V
2
R s

2 + ν−2
(ν−4)n

{
V
[
Z2
i

]
+ 2
n−1

}
V 2
RVR

2
ν−4V

2
R + ν−2

(ν−4)n

{
V
[
Z2
i

]
+ 2
n−1

}
V 2
R

=
2(n−1)s2 + ν−2

n

{
(n−1)V

[
Z2
i

]
+ 2

}
VR

2(n−1) + ν−2
n

{
(n−1)V

[
Z2
i

]
+ 2

} . (5.62)

Note that this can be written in terms of κ, the quantity used in (5.54) by

Goldstein and Wooff (2007, §8.3) to capture the effect of the kurtosis on the

adjustment, as

Es2 [M(V )] = 2(n−1)s2 +κ(ν−2)VR
2(n−1) +κ(ν−2) . (5.63)

Setting V
[
Z2
i

]
= 2, reflecting a belief that there is no excess kurtosis in the

residuals, gives κ = 2 from (5.54); so when there is no excess kurtosis, the

weights on the observed and prior sample variances are governed directly by

the observed and notional sample sizes, as in (5.57). Any increase in the

kurtosis, expressed via V
[
Z2
i

]
> 2, will lead to a greater weight on the prior,

while reducing the kurtosis by setting V
[
Z2
i

]
< 2 will increase the weight on

the observations.

It is also informative to express the above in terms of Kur [X] = V
[
Z2
i

]
−2,

the excess kurtosis with respect to a normal distribution. Substituting this into

(5.61),

VT = ν−2
(ν−4)n

{
Kur [X] + 2n

n−1

}
V 2
R , (5.64)

from which

Es2 [M(V )] =
(n−1)s2 + (ν−2)

{ (n−1)Kur[X]
2n + 1

}
VR

(n−1) + (ν−2)
{ (n−1)Kur[X]

2n + 1
} . (5.65)

Expressed in this form, it is easy to see that if Kur [X] = 0 then the weights
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on s2 and VR are proportional to n−1 and (ν−1)−1 respectively, as before.

Furthermore, the effect of changing the kurtosis can immediately be quantified

in terms of the cost in terms of the number of additional samples required to

balance the effect on the weights: an increase of one unit of kurtosis has the

effect of adding [(ν−2)(n−1)/2n] to the notional prior sample size.

5.2.6 Bayes linear adjustment of covariance matrices
While the exchangeability representation used in Section 5.2.3 permits ad-

justments to the whole mean vector simultaneously, the scalar framework for

variance adjustments reviewed above only permits adjustments to one variable

at a time. Goldstein and Wooff (2007, §8.11-8.13) suggest that this method

might be extended to a multivariate setting by either applying the weighting

scheme used in (5.57) to the prior and observed variance-covariance matrices; or

by carrying out scalar adjustments to the variances of interest, and combining

those adjusted marginal variances with a weighted sum of prior and observed

correlation matrices. This heuristic approach may provide an adequate ad-

justment in cases where the variances are of interest only insofar as they are

informative about the mean vector; however, in a weather forecasting context,

well-calibrated variances and covariances are necessary in order to issue skilful

multivariate probabilistic forecasts, so it is worth considering a more rigorous

approach. Goldstein and Wooff (2007) also provide a more formal alternative

for the multivariate setting, based on geometrical considerations.

Recall from Section 5.2.4.3 that s2 = M(V ) +T , where M(V ) is the pop-

ulation variance and T describes the portion of the sample variance attributed

to individual variability within each sample. The multivariate analogues of

these quantities are the sample covariance matrix S, population covariance

matrix M(V), and excess variation matrix T. These quantities are discussed in

more detail in Section 5.3; for now, a key observation is that by direct analogy

with the scalar case we can write S = M(V) +T with E[T] = 0, and with all

elements of M(V) uncorrelated with those of T.

The starting point for the geometric approach of Goldstein and Wooff (2007,
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§8.11) is rooted in the work of Goldstein (1981), who provided a geometrical

interpretation for Bayes linear adjustment by considering the various uncertain

quantities as elements of a vector space of random variables, with inner products

defined by covariances. In the present context, the extension to covariance

matrices considers the space (H, say) spanned by S and M(V) with inner

product defined by

〈P,Q〉= tr
(

(P−E[P]) (Q−E[Q])
)

(P,Q ∈H) (5.66)

Strictly speaking, this is not a true inner product: it satisfies the properties

〈P,Q〉 = 〈Q,P〉, 〈aP+ bQ,R〉 = a〈P,R〉+ b〈Q,R〉 and 〈P,P〉 ≥ 0, but the

subtraction of expectations means that there may be more than one element

P such that 〈P,P〉 = 0. As noted in Goldstein (1981), this can be resolved

by considering equivalence classes: this is not necessary for the level of de-

tail considered here, however, and the issue does not affect the subsequent

development.

With the inner product defined by (5.66), the norm of P ∈H is

‖P‖=
√
〈P,P〉=

√∑
ij

V[Pij ] (5.67)

where Pij is the (i, j)th element of P.

In the scalar-valued case, Goldstein (1981) demonstrates that the Bayes

linear update of prior judgements based on data can be regarded as a projection

of the random variable of interest onto the subspace spanned by the data.

In the present context, the analogue of this is to project the random matrix

M(V)−E[M(V)] into the subspace spanned by S−E[S]. This projection is

α (S−E[S]), where

α = 〈M(V),S〉
〈S,S〉

= 〈M(V),S〉
‖S‖2

. (5.68)
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Rearranging, this suggests an adjustment of M(V) by S as

E[M(V)] +α (S−E[S]) . (5.69)

Now, as noted above, we have S = M(V) +T, with E[T] = 0. Therefore

S−E[S] = S−E[M(V)], which, on substitution into (5.69), yields

E[M(V)] +α (S−E[S]) = αS+ (1−α)E[M(V)] . (5.70)

This is a weighted average of the sample covariance matrix and prior expectation

of M(V), with the weights determined by (5.68). An explicit expression for

these weights is obtained by noting that, as will be shown in Section 5.3.3.2,

all elements of M(V) are uncorrelated with those of T, and so 〈M(V),T〉= 0.

Hence

〈M(V),S〉= 〈M(V),M(V) +T〉= 〈M(V),M(V)〉= ‖M(V)‖2 (5.71)

and

〈S,S〉= 〈M(V) +T,M(V) +T〉= ‖M(V)‖2 +‖T‖2 . (5.72)

Therefore, from (5.67),

α =
∑
ijV[M(V )ij ]∑

ijV[M(V )ij ] +∑
ijV[Tij ]

, (5.73)

where V[M(V )ij ] and V[Tij ] are the scalar variances and covariances associated

with the (i, j)th elements of, respectively, M(V) and T.

Extensions of this geometrical approach have been developed by Wilkinson

and Goldstein (1995), who aim to provide more flexible updating schemes by

decomposing the covariance matrices into component parts using orthogonal

basis representations, and updating each component separately. This allows, for

example, separate updating schemes for the diagonal and off-diagonal elements.
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However, the additional flexibility offered by this approach comes at the cost

of having to specify prior expectations and covariances for all of the relevant

components individually: this is not trivial, although examples are given by

Wilkinson and Goldstein (1996), Wilkinson (1997) and Williamson et al. (2012).

In the next section an alternative to these existing approaches to the

adjustment of covariance matrices is proposed. The method is derived from

a second-order exchangeability representation for vectors of cross-products

of residuals from quantities that are themselves second-order exchangeable:

this representation is directly analogous to the scalar representation already

discussed and requires specification of the same parameters that are used in

the scalar adjustment, greatly simplifying elicitation.

5.3 Multivariate Bayes linear adjustment of

the population variance
In this section, the exchangeability representation reviewed in Section 5.2.4.1

is extended to accommodate second-order exchangeability between cross prod-

ucts of vectors of residuals from quantities that are themselves second-order

exchangeable. This representation provides the basis for the development of the

multivariate Bayes linear covariance matrix adjustment, which will be shown

not only to be a generalisation of the scalar variance adjustment, but also to

closely approximate the posterior distribution that would be obtained by prob-

abilistic Bayesian inference using the natural conjugate normal-inverse-Wishart

prior distribution.

The development makes extensive use of various matrix identities and

operations, which are reviewed in Appendix C. In particular, when dealing

with variances of the elements of a matrix A, say, the standard approach is to

transform the matrix into a vector. This makes it possible to define the matrix

of variances and covariances between the elements of A, which does not exist

when A is in matrix form. This operation is carried out using the vec operator:

given any m×n matrix A, vec
(
A
)
denotes the mn× 1 vector obtained by
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stacking the columns of A one underneath the other (Schott, 2016).

5.3.1 A multivariate exchangeability representation
Let {R1(X)R1(X)′,R2(X)R2(X)′, ...} be the residual cross-product matrices

from an infinite second-order exchangeable sequence of random quantities

{X1,X2, ...}, where each Xi is an m× 1 vector as defined in Section 5.2.1.1.

Denote by vec
(
Ri(X)Ri(X)′

)
the m2× 1 vector obtained by stacking the

columns of Ri(X)Ri(X)′ one underneath the other.

Suppose that the sequence {vec
(
R1(X)R1(X)′

)
,vec

(
R2(X)R2(X)′

)
, ...}

is also second-order exchangeable, with common m2 × 1 mean vector

E
[
vec

(
Ri(X)Ri(X)′

)]
= vec

(
V[Ri(X)]

)
and common m2 × m2 variance-

covariance matrix V
[
vec

(
Ri(X)Ri(X)′

)]
.

Then vec
(
Ri(X)Ri(X)′

)
may be expressed in terms of the m2×1 vector of

population variances vec
(
M(V)

)
, and the infinite sequence of individual m2×1

residual vectors
{
vec

(
R1(V)

)
,vec

(
R2(V)

)
, . . .

}
, which satisfy the following

properties.

1. For each individual i,

vec
(
Ri(X)Ri(X)′

)
= vec

(
M(V)

)
+vec

(
Ri(V)

)
, (5.74)

hence

Ri(X)Ri(X)′ = M(V) +Ri(V). (5.75)

2. The population variance vec
(
M(V)

)
has expectation and variance

E
[
vec

(
M(V)

)]
= vec

(
VR

)
, V

[
vec

(
M(V)

)]
= VM (5.76)

where vec
(
VR

)
is an m2×1 vector and VM is an m2×m2 matrix.

3. The collection {vec
(
R1(V)

)
,vec

(
R2(V)

)
, ...} is also second-order ex-



5.3. Multivariate Bayes linear adjustment of the population variance 132

changeable, with each individual i having

E
[
vec

(
Ri(V)

)]
= 0, (5.77)

V
[
vec

(
Ri(V)

)]
= VR(V ), (5.78)

C
[
vec

(
Ri(V)

)
,vec

(
Rj(V)

)]
= 0 (5.79)

where eachRi(V) is anm×mmatrix, andVR(V ) and C
[
vec

(
Ri(V)

)
,vec

(
Rj(V)

)]
are both m2×m2 matrices.

4. All elements of each vec
(
Ri(V)

)
are uncorrelated with those of

vec
(
M(V)

)
.

The additional fourth-order properties introduced in (5.30)-(5.32) in the uni-

variate setting also hold between all elements of the vectors of residuals for

different individuals, so that

C
[
vec

(
M(V)

)
,vec

(
Ri(X)Rj(X)′

)]
= 0 for i 6= j, (5.80)

C
[
vec

(
Ri(V)

)
,vec

(
Rj(X)Rk(X)′

)]
= 0 for i 6= j,j 6= k, i 6= k

(5.81)

C
[
vec

(
Ri(X)Rj(X)′

)
,vec

(
Rw(X)Ru(X)′

)]
= 0 for i 6= j,w 6= u,

unless i= w and j = u,

(5.82)

where all of these are m2×m2 matrices.

As in the univariate case, VR, VM and VR(V ) are quantities that will be

specified by the user to reflect their prior beliefs about the dispersion and shape

of X. VR is assumed to be a valid covariance matrix; that is, it is assumed to

be a symmetric positive definite matrix of full rank. Specification of VM and

VR(V ) will be considered subsequently.
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5.3.2 Adjusting the population variance matrix when

the population mean vector is known
Suppose that the population mean M(X) is known, so that the residual cross-

product matrices Ri(X)Ri(X)′ = [Xi−M(X)][Xi−M(X)]′ are observable.

As in the scalar case presented in Section 5.2.4, the vectorised sample mean of

the residual cross-product matrices, vec
(
X(2)), is Bayes linear sufficient for all

of the vec
(
Ri(X)Ri(X)′

)
for adjusting vec

(
M(V)

)
, with

E
[
vec

(
X(2))]= E

[
vec

(
M(V)

)]
= vec

(
VR

)
, (5.83)

V
[
vec

(
X(2))]= V

[
vec

(
M(V)

)]
+

V
[
vec

(
VR(V )

)]
n

= VM +
VR(V )
n

, (5.84)

C
[
vec

(
M(V)

)
,vec

(
X(2))]= V

[
vec

(
M(V)

)]
= VM . (5.85)

This specification can be used in the update equations (5.2) and (5.3) to obtain

expressions for the adjustment of the vector of variances of X by the sample

mean of the residual cross-product matrices, X(2),with one small adjustment:

because X(2) is a symmetric matrix, vec
(
X(2)) will contain duplicated elements,

so V
[
vec

(
X(2))] will be singular, and the matrix inverses A−1 in (5.2) and

(5.3) must be replaced by the generalised inverses A†.

E
X(2)

[
vec

(
M(V)

)]
= E

[
vec

(
M(V)

)]
+

C
[
vec

(
M(V)

)
,vec

(
X(2))]V[vec(X(2))]†(vec(X(2))−E

[
vec

(
X(2))])

= vec
(
VR

)
+VM

(
VM + 1

n
VR(V )

)†(
vec

(
X(2))−vec

(
VR

))
, (5.86)
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V
X(2)

[
vec

(
M(V)

)]
= V

[
vec

(
M(V)

)]
−

C
[
vec

(
M(V)

)
,vec

(
X(2))]V[vec(X(2))]†C[vec(X(2))

,vec
(
M(V)

)]

= VM −VM
(
VM + 1

n
VR(V )

)†
VM , (5.87)

where vec
(
VR

)
and vec

(
X(2)) are m2×1 column vectors, and VM and VR(V )

are m2×m2 matrices.

5.3.3 Adjusting the population variance matrix when

the population mean vector is unknown
As in the scalar case reviewed in Section 5.2.4.3, the formulation above must

be adapted to account for the more realistic case when the population mean

M(X) is not known. The residuals Ri(X) are now not observable; instead, the

observable quantities are the sample residual cross-product matrices

(
Xi−X

)(
Xi−X

)′
=
(
Ri(X)− R̄

)(
Ri(X)− R̄

)′
, (5.88)

where R̄ = 1
n

∑n
i=1Ri(X). Instead of adjusting vec

(
M(V)

)
by vec

(
X(2)

)
, the

adjustment will be by the observed residual cross-product matrices, which are

standardised in the usual way to obtain the vectorised sample variance matrix,

vec
(
S
)

= vec
(

1
n−1

n∑
i=1

(
Xi−X

)(
Xi−X

)′)
. (5.89)

5.3.3.1 Representation of the sample variance matrix S

In order to determine how the observed sample variance can be used in the

Bayes linear adjustment, S must first be expressed in terms of the quantities

described in Section 5.3.1. The first step in this process is to expand the sample

sum of squares, via a multivariate generalisation of the derivation in Section
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5.2.4.3:

(n−1)S =
n∑
i=1

(Xi−X)(Xi−X)′

=
n∑
i=1

(
[Xi−M(X)] +

[
M(X)−X

])(
[Xi−M(X)] +

[
M(X)−X

])′
=

n∑
i=1

(
Xi−M(X)

)(
Xi−M(X)

)′
−

n

(
1
n

n∑
i=1

Xi−M(X)
)(

1
n

n∑
i=1

Xi−M(X)
)′
. (5.90)

Now writing Ri(X) = Xi−M(X),

(n−1)S =
n∑
i=1

Ri(X)Ri(X)′− 1
n

(
n∑
i=1

Ri(X)
)(

n∑
i=1

Ri(X)
)′

=
n∑
i=1

Ri(X)Ri(X)′− 1
n

n∑
i=1

Ri(X)Ri(X)′+
∑
j 6=i

Ri(X)Rj(X)′


= n−1
n

n∑
i=1

Ri(X)Ri(X)′− 1
n

n∑
i=1

∑
j 6=i

Ri(X)Rj(X)′ (5.91)

and so

S = 1
n

n∑
i=1

Ri(X)Ri(X)′− 1
n(n−1)

n∑
i=1

∑
j 6=i

Ri(X)Rj(X)′, (5.92)

where Ri(X)Rj(X)′ denotes the cross product of the residuals from any two

individuals.

By analogy with the scalar case, it is helpful to rewrite this expression

in terms of the population variance M(V): thus S = M(V) +T, where T

represents the additional variation due to sampling. From the second-order

multivariate exchangeability representation (5.75),

M(V) = Ri(X)Ri(X)′−Ri(V)
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for each i, whence M(V) is also equal to 1
n

∑n
i=1 (Ri(X)Ri(X)′−Ri(V)), so

T = S− 1
n

n∑
i=1

{
Ri(X)Ri(X)′−Ri(V)

}

= 1
n

n∑
i=1

Ri(V)− 1
n(n−1)

n∑
i=1

∑
j 6=i

Ri(X)Rj(X)′. (5.93)

For the subsequent development, the expectation and variance of S are required:

however, because S is a matrix, V[S] is not defined. Instead, the expectation

and variance of vec
(
S
)
will be used.

5.3.3.2 Expectation and variance of vec(S)

First, vectorising S = M(V) +T and taking expectations,

E
[
vec

(
S
)]

= E
[
vec

(
M(V) +T

)]
= E

[
vec

(
M(V)

)]
+E

[
vec

(
T
)]
. (5.94)

From (5.76) in the exchangeability representation, E
[
vec

(
M(V)

)]
= vec

(
VR

)
,

where VR is specified by the user. From (5.93), the second term is

E
[
vec

(
T
)]

= E

 1
n

n∑
i=1

vec
(
Ri(V)

)
− 1
n(n−1)

n∑
i=1

∑
j 6=i

vec
(
Ri(X)Rj(X)′

)
= 1
n

n∑
i=1

E
[
vec

(
Ri(V)

)]
− 1
n(n−1)

n∑
i=1

∑
j 6=i

E
[
vec

(
Ri(X)Rj(X)′

)]
.

(5.95)

Also from the exchangeability representation, E[Ri(V)] = 0 (5.77), and from

(5.6), E[Ri(X)] = 0 and C[Ri(X),Rj(X)′] = 0, so

E
[
Ri(X)Rj(X)′

]
= E[Ri(X)]E[Rj(X)]′+C[Ri(X),Rj(X)] = 0, (5.96)

and E
[
vec

(
T
)]

= 0. Hence

E
[
vec

(
S
)]

= E
[
vec

(
M(V)

)]
= vec

(
VR

)
. (5.97)
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Turning now to the variance of vec
(
S
)
: from (5.76), V

[
vec

(
M(V)

)]
= VM .

For now, let V
[
vec

(
T
)]

= VT ; this expression will be expanded in Sec-

tion 5.3.4. From property 4 in the exchangeability representation (Section

5.3.1) and the fourth-order uncorrelated property (5.80), the elements of

M(V) are uncorrelated with those of Ri(V) and Ri(X)Rj(X)′, so that

C
[
vec

(
M(V)

)
,vec

(
T
)]

= 0. The expectation and variance of vec
(
S
)
can

therefore now be expressed in terms of specifiable quantities, with

E
[
vec

(
S
)]

= vec
(
VR

)
, (5.98)

V
[
vec

(
S
)]

= VM +VT , (5.99)

C
[
vec

(
S
)
,vec

(
M(V)

)]
= VM . (5.100)

5.3.3.3 Adjusted expectation and variance of vec(M(V))

The expectation and variance of vec
(
S
)
defined above are required in order

to carry out Bayes linear adjustment of the prior covariance specifications by

the observed residual cross products. Using (5.100) in the update equations

(5.2) and (5.3), the adjusted expectation of vec
(
M(V)

)
given the vectorised

observed sample variance matrix vec
(
S
)
is therefore

ES
[
vec

(
M(V)

)]
= E

[
vec

(
M(V)

)]
+

C
[
vec

(
M(V)

)
,vec

(
S
)]

V
[
vec

(
S
)]† (

vec
(
S
)
−E

[
vec

(
S
)])

= vec
(
VR

)
+VM (VM +VT )†

(
vec

(
S
)
−vec

(
VR

))
=
(
Im2−VM (VM +VT )†

)
vec

(
VR

)
+VM (VM +VT )†vec

(
S
)

= VT (VM +VT )†vec
(
VR

)
+VM (VM +VT )†vec

(
S
)
,

(5.101)
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with corresponding adjusted uncertainty

VS
[
vec

(
M(V)

)]
= V

[
vec

(
M(V)

)]
−

C
[
vec

(
M(V)

)
,vec

(
S
)]

V
[
vec

(
S
)]†

C
[
vec

(
S
)
,vec

(
M(V)

)]
= VM −VM (VM +VT )†VM . (5.102)

Again, the inverse of V
[
vec

(
S
)]

does not exist due to the duplication of elements

in vec
(
S
)
, so the generalised inverse is used. The matrices VT and VM will be

defined in the coming sections.

5.3.3.4 Variance-modified Bayes linear adjustments

Having carried out the multivariate adjustment of E
[
vec

(
M(V)

)]
and

V
[
vec

(
M(V)

)]
by the observed sample variance S, the Bayes linear adjusted

expectation and variance of M(X) are modified by using ES[M(V)] as an
updated estimate of the residual variance of Xi. V[Ri(X)] is replaced by
ES[M(V)] in (5.14) and (5.15), to give the variance-modified adjusted ex-
pectation and variance, after adjustment by the observed sample mean and
covariance matrix:

EX[M(X)] = E[M(X)] +V[M(X)]
(
V[M(X)] + 1

n
ES[M(V)]

)−1(
X−E[M(X)]

)
(5.103)

and

VX[M(X)] = V[M(X)]−V[M(X)]
(
V[M(X)] + 1

n
ES[M(V)]

)−1
V[M(X)]

=
(
V[M(X)]−1 +nES[M(V)]−1

)−1
. (5.104)

We now turn to expanding VT = V
[
vec

(
S
)]
−V

[
vec

(
M(V)

)]
, the term intro-

duced in Section 5.3.3.2 to account for the variance of the additional uncertainty

in the sample covariance matrix, in terms of specifiable quantities.



5.3. Multivariate Bayes linear adjustment of the population variance 139

5.3.4 Variance of the residual sampling variance

vec(T) = vec(S−M(V))
In Section 5.3.3, expressions for the adjusted expectation and variance of

the vectorised sample variance vec
(
S
)
were derived in terms of the matrices

VR = E[M(V)], VM = V
[
vec

(
M(V)

)]
, the observed sample covariance matrix

S and the matrix VT , which represents the sampling uncertainty of S. The

problem of expressing VT = V
[
vec

(
S−M(V)

)]
in terms of the quantities

introduced in Section 5.3.1 is now considered. From (5.93),

VT = V
[
vec

(
T
)]

= V

 1
n

n∑
i=1

vec
(
Ri(V)

)
− 1
n(n−1)

n∑
i=1

∑
j 6=i

vec
(
Ri(X)Rj(X)′

) . (5.105)

First, note that the double summation in the second term can be expanded

into

n∑
i=1

∑
j 6=i

vec
(
Ri(X)Rj(X)′

)
=

n∑
i=1

∑
j<i

vec
(
Ri(X)Rj(X)′

)
+
∑
j>i

vec
(
Ri(X)Rj(X)′

)
=

n∑
i=1

∑
j>i

{
vec

(
Ri(X)Rj(X)′

)
+vec

(
Rj(X)Ri(X)′

)}
.

(5.106)

The following steps require the use of special matrices known as commutation

matrices (see Appendix C.4), defined as

Km,m =
m∑
i=1

n∑
j=1

eie′j⊗eje′i, (5.107)

where eiej is an m×m matrix with only one nonzero element, a one in the

(i, j)th position. This matrix has the useful property that, for any m×m matrix
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A, vec
(
A
)

= Km,mvec
(
A′
)
, which allows us to write (5.106) as

n∑
i=1

∑
j 6=i

vec
(
Ri(X)Rj(X)′

)
=

n∑
i=1

∑
j>i

{
vec

(
Ri(X)Rj(X)′

)
+Km,mvec

(
Ri(X)Rj(X)′

)}

=
n∑
i=1

∑
j>i

(Im2 +Km,m)vec
(
Ri(X)Rj(X)′

)

=
n∑
i=1

∑
j>i

2Nmvec
(
Ri(X)Rj(X)′

)
, (5.108)

where Nm = 1
2(Im2 +Km,m) as defined in (C.25). The original expression for

VT = V
[
vec

(
T
)]

in (5.105) can therefore be written as

VT = V

 1
n

n∑
i=1

vec
(
Ri(V)

)
− 2
n(n−1)

n∑
i=1

∑
j>i

Nmvec
(
Ri(X)Rj(X)′

) .
(5.109)

This change of summation is analogous to that carried out in (5.27) in the

scalar case.

Next, from (5.74) in the exchangeability representation we know that

C
[
vec

(
Ri(V)

)
,vec

(
Ri(X)Rj(X)′

)]
=

C
[
vec

(
Ri(X)Ri(X)′

)
−vec

(
M(V)

)
,vec

(
Ri(X)Rj(X)′

)]
.

In conjunction with the fourth-order uncorrelated properties listed in (5.80)-

(5.82), this shows that the covariance between the two terms on the right-hand

side of (5.109) is zero, hence

VT = 1
n2

n∑
i=1

V
[
vec

(
Ri(V)

)]
+ 4
n2(n−1)2V

 n∑
i=1

∑
j>i

Nmvec
(
Ri(X)Rj(X)′

) .
(5.110)

Also from (5.82), cross-product residual matrices from different (i, j) pairs
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of individuals are uncorrelated; thus

V

 n∑
i=1

∑
j>i

vec
(
Ri(X)Rj(X)′

)=
n∑
i=1

∑
j>i

V
[
vec

(
Ri(X)Rj(X)′

)]
,

so that

VT = 1
n2

n∑
i=1

V
[
vec

(
Ri(V)

)]
+ 4
n2(n−1)2

n∑
i=1

∑
j>i

V
[
Nmvec

(
Ri(X)Rj(X)′

)]
= 1
n
VR(V ) + 2

n(n−1)NmV
[
vec

(
Ri(X)Rj(X)′

)]
Nm, (5.111)

where VR(V ) = V
[
vec

(
Ri(V)

)]
as defined in Section 5.3.1. Specification of

VR(V ) will be considered in Section 5.3.5.3.

5.3.4.1 Variance of vec(Ri(X)Rj(X)′)

The aim of this section is to express VT – and hence ultimately the adjusted

expectation and variance of vec
(
M(V)

)
derived in Section 5.3.3.3 – solely in

terms of the specifiable elements described in Section 5.3.1. In order to achieve

this, an expression for V
[
vec

(
Ri(X)Rj(X)′

)]
, the variance of the cross product

of residuals from two different individuals in (5.111), is still required, and will

now be derived. This derivation again makes use of matrix identities reviewed

in Appendix C.

Using the identity V[Y] = E
[
YY′

]
−E[Y]E[Y]′ gives

V
[
vec

(
Ri(X)Rj(X)′

)]
= E

[(
vec

(
Ri(X)Rj(X)′

))(
vec

(
Ri(X)Rj(X)′

))′]
−

E
[
vec

(
Ri(X)Rj(X)′

)]
E
[
vec

(
Ri(X)Rj(X)′

)]′
.

From (5.96), E
[
vec

(
Ri(X)Rj(X)′

)]
= 0 for i 6= j.

Hence, using the identities vec
(
xy′

)
= y⊗ x, (A⊗B)′ = A′⊗B′ and

(A⊗B)(C⊗D) = AC⊗BD for vectors x and y and matrices A,B,C and D
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– respectively, equations (C.2), (C.4) and (C.8) in Appendix C – we have

V
[
vec

(
Ri(X)Rj(X)′

)]
= E

[(
vec

(
Ri(X)Rj(X)′

))(
vec

(
Ri(X)Rj(X)′

))′]
= E

[(
Rj(X)⊗Ri(X)

)(
Rj(X)⊗Ri(X)

)′]
= E

[
Rj(X)Rj(X)′⊗Ri(X)Ri(X)′

]
. (5.112)

Each term in the Kronecker product now describes the residual cross-product

matrix for a single individual. This means that (5.112) can be decomposed

using the exchangeability representation (5.74) into

V
[
vec

(
Ri(X)Rj(X)′

)]
= E

[{
M(V) +Rj(V)

}
⊗
{
M(V) +Ri(V)

}]
= E[M(V)⊗M(V)] +E[M(V)⊗Ri(V)]+

E[Rj(V)⊗M(V)] +E[Rj(V)⊗Ri(V)] . (5.113)

Again from the exchangeability representation in Section 5.3.1, E[Ri(V)] =

E[Rj(V)] = 0 and C[Ri(V),M(V)] = C[Rj(V),M(V)] = C[Ri(V),Rj(V)] =

0, so that the second, third and fourth terms are all zero, and

V
[
vec

(
Ri(X)Rj(X)′

)]
= E[M(V)⊗M(V)] . (5.114)

Hence the expression for VT derived in (5.111) can be written as

VT = 1
n
VR(V ) + 2

n(n−1)NmE[M(V)⊗M(V)]Nm. (5.115)

From (C.29) we have Nm (B⊗B)Nm = Nm (B⊗B), so this expression can be

further simplified to

= 1
n
VR(V ) + 2

n(n−1)NmE[M(V)⊗M(V)] . (5.116)

The expectation E[M(V)⊗M(V)] is not easily expressed directly in terms

of the quantities VR, VM and VR(V ) about which belief statements can be
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made. However, using the identities given in Appendices C.3 and C.4, it can

be shown that the elements of M(V)⊗M(V) are a permutation of those of

vec
(
M(V)

)
vec

(
M(V)

)′
, the expectation of which is easily expressed in terms

of these quantities as

E
[
vec

(
M(V)

)
vec

(
M(V)

)′]
= V

[
vec

(
M(V)

)]
+E

[
vec

(
M(V)

)]
E
[
vec

(
M(V)

)]′
= VM +vec

(
VR

)
vec

(
VR

)′
. (5.117)

Let VM∗ denote the unique permutation of the elements of VM – the details of

which are derived in Appendix D.1 – such that

E[M(V)⊗M(V)] = VM∗+VR⊗VR. (5.118)

Equation (5.116) can now be expressed in terms of the specifiable quantities

VR, VM and VR(V ) as

VT = 1
n
VR(V ) + 2

n(n−1)Nm (VM∗+VR⊗VR) . (5.119)

No further simplification of this expression is possible at present. However,

recall from Section 5.3.3.3 that the expectation and variance of vec
(
M(V)

)
adjusted by S are, respectively,

ES
[
vec

(
M(V)

)]
= VT (VM +VT )†vec

(
VR

)
+VM (VM +VT )†vec

(
S
)

(5.120)

and

VS
[
vec

(
M(V)

)]
= VM −VM (VM +VT )†VM . (5.121)

With VT defined as in (5.119) the adjusted expectation and variance of

vec
(
M(V)

)
can now be written in terms of the observed sample covariance S

and quantities VR, VM and VR(V ), where VR = E[M(V)] is a valid covariance
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matrix specified by the user; VM is the prior variance of vec
(
M(V)

)
; and

VR(V ) = V
[
vec

(
Ri(X)Ri(X)′−M(V)

)]
is the variance of the residual vari-

ance for any one individual. Appropriate specifications for VR(V ) and VM are

considered in the next section.

5.3.5 Specifying higher-order priors
In the univariate case described in Section 5.2.5.2.1, specification of the fourth-

order priors is relatively straightforward: the marginal kurtosis is controlled

through the parameter V
[
Z2
i

]
in VR(V ) = V

[
Z2
i

]
(VM +V 2

R ), with confidence in

the prior variance reflected in VM = 2
ν−4V

2
R through the degrees of freedom

ν. This approach is now generalised to the multivariate setting, as part of a

framework that suggests a tractable form for V
[
vec

(
ziz′i

)]
, the multivariate

extension of V
[
Z2
i

]
, and also generalises the relationship between VM and VR,

while retaining the same intuitive parameterisations used in the univariate

setting.

5.3.5.1 A convenient paradigm: elliptical distributions

In the univariate setting, following Goldstein and Wooff (2007, §8.3), a value

of V
[
Z2
i

]
was chosen to reflect the kurtosis of known parametric distributions:

in Section 5.2.5.1.1, the normal and t distributions were suggested as possible

templates for elicitation of a specific value. Both of these distributions and

their multivariate (vector-variate) and matrix-variate forms are members of the

broader class of elliptical distributions.

The random variable X is a member of the class of multivariate elliptical

distributions if its characteristic function – the Fourier transform of its probabil-

ity density function – has the form φ(t) = eit
′µψ(t′Σt) (Kelker, 1970; Muirhead,

2009). The class of multivariate elliptical distributions is parameterised by the

location µ, spread matrix Σ and function ψ; a variable X having a distribution

of this form is denoted by X∼ E (µ,Σ,ψ).

Informally, multivariate elliptical distributions are a class of symmetric

distributions whose contours of equal density have the same elliptical shape as
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those of the multivariate normal distribution, and whose marginal distributions

all have the same functional form. They have a number of convenient properties

(Bentler, 1983; Muirhead, 2009):

1. Provided the first moment exists, E[X] = µ.

2. Provided the second moment exists, V[X] = αΣ, where

α =−2ψ′(0) ψ′(0) = dψ(t′Σt)
dt′Σt

∣∣∣∣∣
t′Σt=0

(5.122)

3. The marginal distributions of X all have zero skewness.

4. The marginal distributions of X all have the same excess kurtosis, which

can be expressed in terms of a kurtosis parameter κ as

3κ= Kur [X] =

(
ψ′′(0)−ψ′(0)2

)
ψ′(0)2 , ψ′′(0) = d2ψ(t′Σt)

dt′Σt2

∣∣∣∣∣
t′Σt=0

(5.123)

where Kur [X] denotes the excess kurtosis with respect to a normal

distribution, as defined in Section 5.2.5.1.1. Note that κ here is unrelated

to the quantity defined in (5.54).

5. All fourth-order central moments are determined by κ and the second-

order moments, with

E[(Xp−µp)(Xq−µq)(Xr−µr)(Xs−µs)] = α2 (κ+ 1)
(
σpqσrs+σprσqs+σpsσqr

)
,

(5.124)

where Xp is the pth element of X and σpq is the (p,q)th element of Σ.

From the properties above, it is clear that the first four moments of any

multivariate elliptical distribution are fully determined by µ, Σ and the scalar

parameters α and κ. This is extremely useful in the Bayes linear framework,

because a fourth-order approximation of any elliptical distribution can be made

by appropriate choices of α and κ. The fourth-order moments can be written
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in matrix form as

E
[
YY′⊗YY′

]
= α2(κ+ 1)

{
vec

(
Σ
)
vec

(
Σ
)′

+ 2Nm (Σ⊗Σ)
}

= (κ+ 1)
{
vec

(
V[Y]

)
vec

(
V[Y]

)′
+ 2Nm

(
V[Y]⊗V[Y]

)}
(5.125)

and the variance of vec
(
YY′

)
as

V
[
vec

(
YY′

)]
= α2

{
κvec

(
Σ
)
vec

(
Σ
)′

+ 2(κ+ 1)Nm (Σ⊗Σ)
}

= κvec
(
V[Y]

)
vec

(
V[Y]

)′
+ 2(κ+ 1)Nm (V[Y]⊗V[Y]) .

(5.126)

Derivations of these matrix forms are given in Appendix D.2.

These results will now be used to extend the second-order exchangeability

representation used in Section 5.2.5.2.1 to specify the scalar quantities VM
and VR(V ) to their multivariate analogues, VM = V

[
vec

(
M(V)

)]
and VR(V ) =

V
[
vec

(
Ri(X)Ri(X)′−M(V)

)]
.

5.3.5.2 Representing confidence: VM

In the univariate case presented in Section 5.2.5.2.1, uncertainty about the

population variance was specified by treating VR and VM as the expectation

and variance of a scaled inverse Chi-squared random variable; this implies that

VM = cV 2
R , with c= 2/(ν−4) determined by the degrees of freedom ν used in

estimating VR.

The same approach to specifying the relationship between VR and VM is

used here, with M(V) treated as though it were a sample covariance matrix

estimated from β observations of a vector random variable Yi
iid∼ E(0,Ψ,ψ),

where Ψ is a symmetric positive semi-definite scaling matrix. Then

VM = V
[
vec

(
M(V)

)]
= V

vec
 1
β

β∑
i=1

YiY′i

= 1
β
V
[
vec

(
YiY′i

)]
, (5.127)
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and obtaining V
[
vec

(
YiY′i

)]
from (5.126),

VM = α2

β

{
κvec

(
Ψ
)
vec

(
Ψ
)′

+ 2(κ+ 1)Nm (Ψ⊗Ψ)
}

= 1
β

{
γvec

(
VR

)
vec

(
VR

)′
+ 2(γ+ 1)Nm (VR⊗VR)

}
, (5.128)

say, where VR = αΨ = V[Yi]. The parameter γ will be used to denote the

excess marginal kurtosis in the particular case where the specification of VM is

being considered, to avoid confusion with the user-specified kurtosis parameter

κ that will be introduced shortly.

Having expressed VM in this form, it is now possible to express the

permuted matrix VM∗ introduced in (5.3.4.1) similarly in terms of vec and

Kronecker products of VR:

VM∗ = 1
β

{
γ (VR⊗VR) + (γ+ 1)vec

(
VR

)
vec

(
VR

)′
+ (γ+ 1)Km,m (VR⊗VR)

}
.

(5.129)

The full derivation of this form is given in Appendix D.1.2.

(5.128) could be used to specify VM to emulate the variance of the covari-

ance matrix of a sample drawn from any multivariate elliptical distribution, by

expressing prior beliefs about the shape of the population variance in terms of

the marginal kurtosis parameter γ and a notional sample size β. However, as in

the scalar specification in Section 5.2.5.2.1, when specifying VM it is convenient

to separate the effect of sample size from that of the marginal kurtosis, which

will be specified through VR(V ) in the next section.

This separation is achieved by treating M(V) as though it were the covari-

ance matrix of a multivariate normal distribution, and adopting the form of the

natural conjugate prior. The relationship between VR and VM , respectively

the prior expectation and variance-covariance matrix of vec
(
M(V)

)
, is then

specified as if the random variance matrix M(V) were believed to have an

inverse-Wishart distribution with ν degrees of freedom and scatter matrix Ψ
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(Mardia et al., 1979), so that

VR = E[M(V)] = 1
ν−m−1Ψ (5.130)

and the covariance between the (i, j)th and (k, l)th elements of M(V) is

C[M(Vij),M(Vkl)] =
2ψijψkl+ (ν−m−1)

(
ψikψjl+ψilψjk

)
(ν−m)(ν−m−1)2(ν−m−3) . (5.131)

It is fairly straightforward, following the steps used in the derivation of the
fourth-order moments of Y in Appendix D.2 to obtain the matrix of fourth-
order moments, to arrange these covariances into matrix form, and so to show
that

VM = V
[
vec
(
M(V)

)]
=

2vec
(
Ψ
)
vec
(
Ψ
)′+ 2(ν−m−1)Nm (Ψ⊗Ψ)

(ν−m)(ν−m−1)2(ν−m−3) (5.132)

=
2vec

(
VR

)
vec
(
VR

)′+ 2(ν−m−1)Nm (VR⊗VR)
(ν−m)(ν−m−3) . (5.133)

This has the same form as (5.128), with β = ν−m, γ = 2/(ν−m− 3), and
(implicitly) α = 1/(ν−m−1); but requires that the user specify only a single
scalar parameter, ν, with ν−m reflecting the notional equivalent sample size
β from which M(V) was considered to be estimated in (5.128). Applying the
same parametrisation to (5.129) gives the slightly less elegant form

VM
∗ =

2(VR⊗VR) + (ν−m−1)vec
(
VR

)
vec
(
VR

)′+ (ν−m−1)Km,m (VR⊗VR)
(ν−m)(ν−m−3) .

(5.134)

Interpretation of ν using this specification is relatively simple. Larger values of

ν correspond to greater confidence in the prior estimate of the expected value

of M(V), resulting in smaller values for all elements of VM . A more precise

interpretation, which can be used to support elicitation, will be given in Section

5.3.6.1.



5.3. Multivariate Bayes linear adjustment of the population variance 149

5.3.5.3 Representing marginal kurtosis in the residuals: VR(V )

The higher-order moments of elliptical distributions derived in Section 5.3.5.1 are

also instrumental in specifying prior beliefs about VR(V ) = V
[
vec

(
Ri(V)

)]
, the

term controlling the shape of the residuals Ri(X). Recall that in Section 5.2.5,

following the approach used by Goldstein and Wooff (2007, §8.3), this quantity

was specified as V[Ri(V )] =
(
VM +V 2

R

)
V
[
Z2
i

]
, where V

[
Z2
i

]
represents the

marginal excess kurtosis. This expression was derived by treating the residuals

Ri(X) as the product of the population variance M(V ) with standardised

residuals Zi. This approach is now extended to the multivariate case.

Let the m× 1 vector of standardised residuals for the ith observation

be Zi = M(V)−1/2(Xi−M(X)), where Xi
iid∼ E(0,Ψ,ψ) and M(V)1/2 is the

symmetric square root of M(V), so that

E[Zi] = 0, V[Zi] = Im, C[Zi,Zj ] = 0, (5.135)

where Zi is independent of the value of M(V); hence Ri(X) = M(V)1/2Zi.

From (5.74) in the exchangeability representation in Section 5.3.1,

vec
(
Ri(X)Ri(X)′

)
= vec

(
M(V)

)
+vec

(
Ri(V)

)
, so

vec
(
Ri(V)

)
= vec

(
Ri(X)Ri(X)′−M(V)

)
= vec

([
M(V)1/2Zi

][
M(V)1/2Zi

]′
−M(V)

)
= vec

(
M(V)1/2ZiZ′iM(V)1/2′−M(V)

)
= vec

(
M(V)1/2

(
ZiZ′i− Im

)
M(V)1/2′

)
. (5.136)

Also from Section 5.3.1, E
[
vec

(
Ri(V)

)]
= 0, so VR(V ) = V

[
vec

(
Ri(V)

)]
=

E
[
vec

(
Ri(V)

)
vec

(
Ri(V)

)′]
, and

VR(V ) = E
[
vec
(
M(V)1/2 (ZiZ′i− Im

)
M(V)1/2′

)
vec
(
M(V)1/2 (ZiZ′i− Im

)
M(V)1/2′

)′]
.

(5.137)
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Each of the vectors in this expectation has the form vec
(
ABC

)
: using the

identity vec
(
ABC

)
=
(
C′⊗A

)
vec

(
B
)
given in (C.9), these can be written as

vec
(
M(V)1/2

(
ZiZ′i− Im

)
M(V)1/2′

)
=
(
M(V)1/2⊗M(V)1/2

)
vec

(
ZiZ′i− Im

)
,

whence

VR(V ) = E
[(

M(V)1/2⊗M(V)1/2
)
vec
(
ZiZ′i− Im

){(
M(V)1/2⊗M(V)1/2

)
vec
(
ZiZ′i− Im

)}′]
= E

[(
M(V)1/2⊗M(V)1/2

)
vec
(
ZiZ′i− Im

)
vec
(
ZiZ′i− Im

)′(M(V)1/2⊗M(V)1/2
)′]

.

(5.138)

Because Zi is independent of the value of M(V), by the law of iterated
expectation (5.138) is equivalent to

E
[(

M(V)1/2⊗M(V)1/2
)
E
[
vec
(
ZiZ′i− Im

)
vec
(
ZiZ′i− Im

)′](M(V)1/2⊗M(V)1/2
)′]

.

(5.139)

Expanding the inner expectation over ZiZ′i,

E
[
vec

(
ZiZ′i− Im

)
vec

(
ZiZ′i− Im

)′]
=

E
[
vec

(
ZiZ′i

)
vec

(
ZiZ′i

)′]
−vec

(
E
[
ZiZ′i

])
vec

(
Im
)′
−

vec
(
Im
)
vec

(
E
[
ZiZ′i

])′
+vec

(
Im
)
vec

(
Im
)′
. (5.140)

Recall that by definition, E[Zi] = 0 and V[Zi] = Im: hence E
[
ZiZ′i

]
= V[Zi] +

E[Zi]E[Zi]′ = Im. The first term in (5.140) is therefore

E
[
vec

(
ZiZ′i

)
vec

(
ZiZ′i

)′]
= V

[
vec

(
ZiZ′i

)]
+E

[
vec

(
ZiZ′i

)]
E
[
vec

(
ZiZ′i

)]′
= V

[
vec

(
ZiZ′i

)]
+vec

(
Im
)
vec

(
Im
)′
, (5.141)
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while

vec
(
E
[
ZiZ′i

])
vec

(
Im
)′

= vec
(
Im
)
vec

(
E
[
ZiZ′i

])′
= vec

(
Im
)
vec

(
Im
)′
,

(5.142)

and therefore

E
[
vec

(
ZiZ′i− Im

)
vec

(
ZiZ′i− Im

)′]
= V

[
vec

(
ZiZ′i

)]
. (5.143)

Substituting this into the expression for VR(V ) in (5.138) gives

VR(V ) = E
[(

M(V)1/2⊗M(V)1/2
)
V
[
vec
(
ZiZ′i

)] (
M(V)1/2⊗M(V)1/2

)′]
. (5.144)

Recall that in (5.126) a general expression was given for V
[
vec

(
YY′

)]
for

elliptically distributed Y in terms of V[Y]. Here, we require V
[
vec

(
ZiZ′i

)]
,

where V[Zi] = Im. Hence

V
[
vec

(
ZiZ′i

)]
= κvec

(
Im
)
vec

(
Im
)′

+ 2(κ+ 1)Nm (Im⊗ Im)

= κvec
(
Im
)
vec

(
Im
)′

+ 2(κ+ 1)Nm. (5.145)

All of the required elements are now available to define VR(V ), the term

controlling the shape of the residuals Ri(X). Combining (5.144) and (5.145),

VR(V ) = E
[(

M(V)1/2⊗M(V)1/2
)(
κvec

(
Im
)
vec

(
Im
)′

+

2(κ+ 1)Nm

)(
M(V)1/2⊗M(V)1/2

)′]
. (5.146)

For the contribution from the first component in the central term of (5.146),

the identity (C′⊗A)vec
(
Im
)

= vec
(
AC

)
from (C.9) is again required:

κE
[(

M(V)1/2⊗M(V)1/2
)
vec

(
Im
)
vec

(
Im
)′ (

M(V)1/2⊗M(V)1/2
)′]

= κE
[
vec

(
M(V)

)
vec

(
M(V)

)′]
. (5.147)
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Because M(V)1/2 is symmetric, the contribution from the second component in

the central term has the form (B⊗B)Nm(B⊗B); from (C.30), an expression

of this form is equal to Nm(A⊗A) where A = BB′, so

2(κ+ 1)E
[(

M(V)1/2⊗M(V)1/2
)
Nm

(
M(V)1/2⊗M(V)1/2

)′]
= 2(κ+ 1)NmE

[
M(V)⊗M(V)

]
. (5.148)

Combining (5.147) and (5.148), the required expectation is

VR(V ) = κE
[
vec
(
M(V)

)
vec
(
M(V)

)′]+ 2(κ+ 1)NmE
[
M(V)⊗M(V)

]
. (5.149)

Expressions for both E
[
vec

(
M(V)

)
vec

(
M(V)

)′]
and E

[
M(V)⊗M(V)

]
were

given in terms of VR, VM and the permuted matrix VM∗ in equations (5.117)
and (5.118) in Section 5.3.4.1. Substituting those expressions into (5.149) gives

VR(V ) = κ
(
VM +vec

(
VR

)
vec
(
VR

)′)+ 2(κ+ 1)Nm

(
VM
∗+ (VR⊗VR)

)
. (5.150)

5.3.5.4 Expressing VR(V ) in terms of VR, ν and κ

Recall from (5.133) and (5.134) in Section 5.3.5.2 that VM and VM∗ can
be expressed in terms of VR, the expectation of M(V), and the confidence
parameter ν: hence it is now possible to write VR(V ), the dispersion of the
individual residual cross-product matrices, in terms of VR and ν, plus the
marginal kurtosis parameter κ and dimension m, as

VR(V ) = κ
ν−m−1
ν−m−3

{
vec
(
VR

)
vec
(
VR

)′+ 2Nm (VR⊗VR)
}

+

ν−m−1
ν−m

{ 2
ν−m−3vec

(
VR

)
vec
(
VR

)′+ ν−m−1
ν−m−3 2Nm (VR⊗VR)

}
.

(5.151)
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By gathering all terms involving κ, it is possible to gain some intuition about

the expected behaviour of VR(V ) for different values of κ:

VR(V ) = κ
ν−m−1
ν−m−3

{
vec

(
VR

)
vec

(
VR

)′
+ 2Nm (VR⊗VR)

}
+ (ν−m−1)VM .

(5.152)

Recall that setting κ= 0 indicates a judgement that the marginal distributions

are assumed to have no excess kurtosis with respect to a normal distribution.

When κ= 0 the first term in (5.152) is zero, and VR(V ), the dispersion of the

individual residual cross-product matrices, is proportional to VM , the prior

dispersion of the population variance. Setting κ < 0 will reduce VR(V ) from

this baseline, while setting κ > 0 will increase it.

5.3.5.5 Relationship between scalar & multivariate parameters

The multivariate terms VM and VR(V ) are exact multivariate extensions of the

scalar terms VM and VR(V ), although they are parameterised differently. In the

scalar case in Section 5.2.5.2,

VM = cV 2
R , and VR(V ) = (c+ 1)V

[
Z2
i

]
V 2
R ,

where c= 2/(ν−4); the multivariate equivalents given in (5.133) and (5.152)

are

VM = 1
ν−m

{
2

ν−m−3vec
(
VR

)
vec

(
VR

)′
+ 2(ν−m−1)

ν−m−3 Nm (VR⊗VR)
}
,

VR(V ) = ν−m−1
ν−m−3κ

{
vec

(
VR

)
vec

(
VR

)′
+ 2Nm (VR⊗VR)

}
+ (ν−m−1)VM .
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Suppose now that m= 1, so that VM and VR are scalar variances, denoted by

VR and VM respectively, and 2Nm = 2. Then

VM = 1
ν−1

{
2

ν−4V
2
R + 2(ν−2)

ν−4 V 2
R

}

= 1
ν−1

{2ν−2
ν−4

}
V 2
R

= 2
ν−4V

2
R , (5.153)

where 2/(ν−4) is the kurtosis parameter γ = 2/(ν−m−3) that was used to fix

the inverse-Wishart relationship between VM and VR in Section 5.3.5.2; hence

γ is the multivariate analogue to the scalar parameter c, with c = γ exactly

when m= 1.

Substituting VR for VR in VR(V ) along with (5.153),

VR(V ) = ν−2
ν−4κ

{
V 2
R + 2V 2

R

}
+ (ν−2) 2

ν−4V
2
R = ν−2

ν−4 (3κ+ 2)V 2
R . (5.154)

Again, (ν−2)/(ν−4)≡ c+ 1, so the remaining term must be

V
[
Z2
i

]
= 3κ+ 2 = Kur [Xi] + 2, (5.155)

and it is clear that, although the derivation and final form for VM and VR(V )

are very different in the multivariate case, the multivariate parameters γ

(determined via ν) and 3κ are in fact direct analogues of the scalar parameters

c (determined, again, by ν) and V
[
Z2
i

]
.

5.3.5.6 Expressing VT in terms of VR, ν and κ

It is now also possible to write the expression derived for VT in (5.119) in terms

of VR, the confidence parameter ν, kurtosis parameter κ, dimension m and
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observed sample size n as

VT = κ(ν−m−1)
n(ν−m−3)

{
vec

(
VR

)
vec

(
VR

)′
+ 2Nm (VR⊗VR)

}
+ ν−m−1

n−1 VM .

(5.156)

Recall that VT is the variance of vec
(
T
)

= vec
(
S−M(V)

)
, and captures the

sampling variance of S. When κ = 0, VT is again proportional to VM , the

prior variance of the population variance vec
(
M(V)

)
: for positive κ, VT will

increase, and for negative κ, it will decrease.
From (5.101) and (5.102) the adjusted expectation and variance of

vec
(
M(V)

)
are, respectively,

ES
[
vec
(
M(V)

)]
= VT (VM +VT )†vec

(
VR

)
+VM (VM +VT )†vec

(
S
)

(5.157)

and

VS
[
vec

(
M(V)

)]
= VM −VM (VM +VT )†VM . (5.158)

In the case where κ = 0 and VT ∝ VM , the adjusted expectation of M(V)

simplifies to a scalar-weighted sum of VR and S, while the adjusted variance

is proportional to VM . It will now be shown that, in fact, this is true of

ES
[
vec

(
M(V)

)]
for any value of κ; and that VS

[
vec

(
M(V)

)]
has the same

form as VM for any value of κ.

5.3.6 The adjusted expectation and variance of

vec(M(V)), revisited
Recall from (5.133) and (5.156) that VM and VT are, respectively,

VM =
2vec

(
VR

)
vec

(
VR

)′
+ 2(ν−m−1)Nm (VR⊗VR)

(ν−m)(ν−m−3)
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and

VT = κ(ν−m−1)
n(ν−m−3)

{
vec

(
VR

)
vec

(
VR

)′
+ 2Nm (VR⊗VR)

}
+ ν−m−1

n−1 VM .

Both of these expressions – and therefore also VM +VT – can be rearranged

into the form

VM = d1Nm

{
VR⊗VR+d2vec

(
VR

)
vec

(
VR

)′}
(5.159)

VT = f1Nm

{
VR⊗VR+f2vec

(
VR

)
vec

(
VR

)′}
(5.160)

VM +VT = c1Nm

{
VR⊗VR+ c2vec

(
VR

)
vec

(
VR

)′}
, (5.161)

where

d1 = 2(ν−m−1)
(ν−m)(ν−m−3) , (5.162)

d2 = 1
ν−m−1 , (5.163)

f1 = 2(ν−m−1) [κ(n−1)(ν−m) +n(ν−m−1)]
n(n−1)(ν−m)(ν−m−3) , (5.164)

f2 = κ(n−1)(ν−m) + 2n
2[κ(n−1)(ν−m) +n(ν−m−1)] , (5.165)

c1 = d1 +f1, (5.166)

c2 = d1d2 +f1f2
d1 +f1

. (5.167)

The generalised inverse of an expression of this form is derived in Appendix

C.5.2: in particular, the generalised inverse of (5.161) is

(VM +VT )† = 1
c1
Nm

{
V−1
R ⊗V

−1
R −

c2
1 + c2m

vec
(
V−1
R

)
vec

(
V−1
R

)′}
. (5.168)
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This generalised inverse can now be used to obtain explicit terms for the

matrices VM (VM +VT )† and VT (VM +VT )† in (5.157) and (5.158). First,

VM (VM +VT )† = d1
c1
NmNm

{(
VR⊗VR

)(
V−1
R ⊗V

−1
R

)
+

d2vec
(
VR

)
vec

(
VR

)′ (
V−1
R ⊗V

−1
R

)
−

c2
1 + c2m

(
VR⊗VR

)
vec

(
V−1
R

)
vec

(
V−1
R

)′
−

c2d2
1 + c2m

vec
(
VR

)
vec

(
VR

)′
vec

(
V−1
R

)
vec

(
V−1
R

)′}
.

(5.169)

As shown in Section C.5, Nm is idempotent, so NmNm =Nm; and from (C.27),

we have Nmvec
(
VR

)
= vec

(
VR

)
. Using identities (C.8)-(C.10),

(
VR⊗VR

)(
V−1
R ⊗V

−1
R

)
= Im2 , (from C.8)

vec
(
VR

)
vec

(
VR

)′ (
V−1
R ⊗V

−1
R

)
= vec

(
VR

)
vec

(
V−1
R

)′
, (from C.9)(

VR⊗VR
)
vec

(
V−1
R

)
vec

(
V−1
R

)′
= vec

(
VR

)
vec

(
V−1
R

)′
, (from C.9)

vec
(
VR

)
vec

(
VR

)′
vec

(
V−1
R

)
vec

(
V−1
R

)′
=mvec

(
VR

)
vec

(
V−1
R

)′
,

(from C.10)

and so

VM (VM +VT )† = d1
c1

{
Nm+ d2− c2

1 + c2m
vec

(
VR

)
vec

(
V−1
R

)′}
. (5.170)

Similarly,

VT (VM +VT )† = f1
c1

{
Nm+ f2− c2

1 + c2m
vec

(
VR

)
vec

(
V−1
R

)′}
. (5.171)
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5.3.6.1 The adjusted expectation ES
[
vec

(
M(V)

)]
as a scalar-

weighted sum

Using (5.171) and (C.10), the first term in (5.157) can now be written as

VT (VM +VT )†vec
(
VR

)
= f1
c1

{
Nm+ f2− c2

1 + c2m
vec

(
VR

)
vec

(
V−1
R

)′}
vec

(
VR

)
= f1
c1
vec

(
VR

)
+ f1
c1

(
f2− c2
1 + c2m

)
tr
(
V−1
R VR

)
vec

(
VR

)
= f1
c1
vec

(
VR

)
+ f1
c1

(
f2− c2
1 + c2m

)
mvec

(
VR

)
. (5.172)

Similarly, the second term is

VM (VM +VT )†vec
(
S
)

= d1
c1

{
Nm+ d2− c2

1 + c2m
vec

(
VR

)
vec

(
V−1
R

)′}
vec

(
S
)

= d1
c1

vec
(
S
)

+ d1
c1

(
d2− c2
1 + c2m

)
tr
(
V−1
R S

)
vec

(
VR

)
.

(5.173)

Thus the adjusted expectation of M(V) (5.157) can be expressed as a scalar-
weighted sum of vec

(
VR

)
and vec

(
S
)
as

ES
[
vec
(
M(V)

)]
= d1
c1

vec
(
S
)

+

f1
c1

+
f1 (f2− c2)m+d1 (d2− c2)tr

(
V−1
R S

)
c1 (1 + c2m)

vec
(
VR

)
.

(5.174)

From (5.162)-(5.167), d1(d2−c2) =−f1(f2−c2), so this can be further simplified

to

ES
[
vec

(
M(V)

)]
= d1
c1

vec
(
S
)

+

f1
c1

+
f1 (f2− c2)

[
m− tr

(
V−1
R S

)]
c1 (1 + c2m)

vec
(
VR

)
.

(5.175)

This means that it is no longer necessary to vectorise the elements of VR and

S: instead, the adjusted variance-covariance matrix can be obtained directly
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using

ES[M(V)] = d1
c1
S+

f1
c1

+
f1 (f2− c2)

[
m− tr

(
V−1
R S

)]
c1 (1 + c2m)

VR. (5.176)

By replacing c1, c2, d1, d2, f1 and f2 with (5.162)-(5.167), the adjusted expecta-

tion can be obtained in terms of the parameters used to specify the adjustment:

then the adjusted expectation of M(V) is

ES[M(V)] = w1S+
{

(1−w1) +w2
[
m− tr

(
V−1
R S

)]}
VR, (5.177)

where

w1 = n(n−1)
κ̃+nν̃

and w2 = n(n−1)(ν−m−3)κ̃[
κ̃+nν̃

][
(m+ 2)(ν−m−1)κ̃+ 2(ν−1)nν̃

] ,
(5.178)

with κ̃= κ(n−1)(ν−m) and ν̃ = (ν−m−1)+(n−1). The adjusted expectation

therefore consists of a weighted average of S and VR, with an additional

contribution from VR when κ is non-zero. As noted in Section 5.3.5.4, when

κ= 0 the adjusted expectation of the population variance reduces to

ES[M(V)] = n−1
ν̃

S+ ν−m−1
ν̃

VR (5.179)

and the effect of changing the notional prior sample size ν−m becomes clear: if

ν−m is equal to the observed sample size n, then the prior and observed covari-

ance matrices are given equal weight in the adjusted expectation. Increasing ν

to reflect greater confidence in the prior beliefs expressed in VR means that

VR is given greater weight in the adjusted expectation, while setting ν−m< n

means that S is given greater weight.

Selection of appropriate non-zero values for κ will be considered in Section

5.3.7.
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5.3.6.2 Simplifying the adjusted variance VS
[
vec

(
M(V)

)]
A similar approach can be used to expand (5.158), the adjusted variance of

vec
(
M(V)

)
, without the need to explicitly compute the generalised inverse.

First, note that

VS
[
vec

(
M(V)

)]
= VM −VM (VM +VT )†VM

= VT (VM +VT )†VM , (5.180)

so that, using using (5.171),

VS
[
vec

(
M(V)

)]
= f1
c1

{
Nm+ f2− c2

1 + c2m
vec

(
VR

)
vec

(
V−1
R

)′}
VM . (5.181)

Now, using the fact that Nmvec
(
VR

)
= vec

(
VR

)
from (C.27) and the idempo-

tence of Nm, along with the definition of VM from (5.133), we see that

NmVM = Nm


2vec

(
VR

)
vec

(
VR

)′
+ 2(ν−m−1)Nm (VR⊗VR)

(ν−m)(ν−m−3)


=

2vec
(
VR

)
vec

(
VR

)′
+ 2(ν−m−1)Nm (VR⊗VR)

(ν−m)(ν−m−3)

= VM . (5.182)

To expand vec
(
VR

)
vec

(
V−1
R

)′
VM , we again make use of identities (C.10) and

(C.9), along with (C.27), to see that

vec
(
VR

)
vec

(
V−1
R

)′
vec

(
VR

)
vec

(
VR

)′
= vec

(
VR

)
tr
(
V−1
R VR

)
vec

(
VR

)′
=mvec

(
VR

)
vec

(
VR

)′
(5.183)

and

vec
(
VR

)
vec

(
V−1
R

)′
Nm (VR⊗VR) = vec

(
VR

)
vec

(
VRV−1

R VR
)′

= vec
(
VR

)
vec

(
VR

)′
. (5.184)
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Hence

vec
(
VR

)
vec

(
V−1
R

)′
VM =

2mvec
(
VR

)
vec

(
VR

)′
+ 2(ν−m−1)vec

(
VR

)
vec

(
VR

)′
(ν−m)(ν−m−3)

=
2(ν−1)vec

(
VR

)
vec

(
VR

)′
(ν−m)(ν−m−3) , (5.185)

and (5.181) can be written as

VS
[
vec

(
M(V)

)]
= f1
c1
VM + f1

c1

f2− c2
1 + c2m

2(ν−1)vec
(
VR

)
vec

(
VR

)′
(ν−m)(ν−m−3) . (5.186)

Comparing this to (5.176), the adjusted expectation of M(V), we see that the

scalar coefficients involving c1, c2, f1 and f2 are the same, and so the adjusted

variance of M(V) can be written as

VS
[
vec

(
M(V)

)]
= (1−w1)VM +

2w2(ν−1)vec
(
VR

)
vec

(
VR

)′
(ν−m)(ν−m−3) , (5.187)

where

w1 = n(n−1)
κ̃+nν̃

and w2 = n(n−1)(ν−m−3)κ̃[
κ̃+nν̃

][
(m+ 2)(ν−m−1)κ̃+ 2(ν−1)nν̃

] ,
with κ̃= κ(n−1)(ν−m) and ν̃ = (ν−m−1)+(n−1), as in (5.178). As already

noted, w2 = 0 when κ= 0, implying that the second term captures fourth-order

variability due to excess kurtosis; in this case, the adjusted variance can be

simplified significantly to

VS
[
vec

(
M(V)

)]
= ν−m−1
ν−m−1 +n−1VM , (5.188)

and the adjusted variance of M(V) is simply the prior variance scaled by a

factor determined by the prior and observed sample sizes.
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5.3.7 Accommodating non-zero kurtosis in the

adjusted expectation of M(V)
A critical part of the Bayes linear framework is its ability to incorporate a

judgement of non-zero marginal kurtosis in the adjustment of the population

variance, through the scalar parameter κ. Recall from (5.177)-(5.178) that the

adjusted expectation of M(V) is

ES[M(V)] = w1S+
{

(1−w1) +w2
[
m− tr

(
V−1
R S

)]}
VR, (5.189)

where

w1 = n(n−1)
κ̃+nν̃

and w2 = n(n−1)(ν−m−3)κ̃[
κ̃+nν̃

][
(m+ 2)(ν−m−1)κ̃+ 2(ν−1)nν̃

] , (5.190)

with κ̃ = κ(n− 1)(ν−m) and ν̃ = (ν−m− 1) + (n− 1). Changing the value

of κ modifies both of the scaling factors w1 and w2, and so alters the relative

contributions of the priorVR and the observed sample covariance matrix vSn to

ES[M(V)], as well as adjusting the value of VS
[
vec

(
M(V)

)]
given by (5.177).

In this section a range of plausible values for κ are identified, and the

implications of particular choices of the parameter are considered.

5.3.7.1 A plausible range for κ

The role of κ is essentially to allow for potentially surprising values of X in the

observed sample: setting κ > 0 can be interpreted as a judgement that there is

likely to be a high proportion of outliers in the data, while setting κ < 0 reflects

a belief that the observations are unlikely to fall very far from the mean or

very close to it. Elicitation of κ may be simplified by considering the expected

shape of the residuals in terms of known parametric distributions, and choosing

the appropriate value of κ accordingly. Table 5.1 shows a range of plausible

candidate distributions, together with their excess marginal kurtoses Kur [X]

and corresponding κ values; as described in Section 5.3.5.1, κ= Kur [X]/3.

The range of plausible values of κ is fairly small. It has been shown that
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any regular unimodal symmetric distribution has excess kurtosis no smaller

than -1.2 (Stuart et al., 1994), suggesting that an operational lower bound for

κ should be around -0.4. For positive κ, setting κ= 2 implies a judgement that

the tails of X are as heavy as those of a Student-t distribution with five degrees

of freedom. As κ increases beyond 2, the tails of X may be considered to

resemble those of a Student-t distribution with degrees of freedom approaching

arbitrarily close to four; κ is undefined for a t distribution with four or fewer

degrees of freedom.

Table 5.1: Selected values of κ and the equivalent marginal kurtosis specification,
expressed in terms of representative parametric distributions.

X∼ U N t10 t7 t6 t5

Kur [X] −1.2 0 1 2 3 6
κ −0.4 0 1

3
2
3 1 2

Increasing the value of κ decreases the scaling factor w1 applied to S in (5.189),

as Figure 5.1a shows, with a corresponding increase in the contribution from

VR in the second term. Changes in κ also affect the adjusted expectation of

M(V) through w2 in the third term in (5.189), which is non-zero only for

κ 6= 0.

Figure 5.1b shows the scaling factor w2 as a function of κ when n = 25,

m = 13, and ν = 13 + 25; these are, respectively, the observed sample size,

dimension and confidence parameter (notional sample size + dimension) used

in the application in Chapter 6, but the shape of the function will be similar

for any choices of these values. For positive κ, w2 initially increases fairly

rapidly to its maximum, after which it begins to decay slowly. The exact value

that maximimises w2 can be found by differentiating the expression given in

(5.190) with respect to κ; for the chosen parameters, the maximum of w2 is

reached at κ ≈ 0.9. The change in w2 around this maximum is very small;

for example, with the parameters used here, setting 0.24 ≤ κ ≤ 3.46 results

in 0.01 ≤ w2 ≤ 0.015. w2 is negative for κ < 0, and decreases rapidly as κ

decreases; Figure 5.1b is truncated for clarity at κ=−0.2, but for the minimum



5.3. Multivariate Bayes linear adjustment of the population variance 164

permissible value of κ=−0.4, w2 is close to -1.4.

Figure 5.1: Scaling factors w1 and w2 given by (5.190) as a function of κ. These val-
ues are calculated with n= 25, m= 13, and ν = 13+25, the dimensions
and sample sizes used in the application in Chapter 6.
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5.3.7.2 Interpreting the trace tr
(
V−1
R S

)
Depending on the value of κ chosen to reflect the user’s prior beliefs about the

marginal kurtosis of X, w2 may be very small, as Figure 5.1b shows. However,

the third term in (5.189) may still be large, depending on the magnitude of[
m− tr

(
V−1
R S

)]
. This term reflects the dispersion of the observed residuals

compared with the prior expected dispersion described by VR.1

Recalling that S = 1
n−1

∑n
i=1(xi−x)(xi−x)′, the trace can be expressed

as

tr
(
V−1
R S

)
= 1
n−1

n∑
i=1

(xi−x)′V−1
R (xi−x), (5.191)

which is the squared Mahalanobis distance of the n observations from the

sample mean with respect to VR, averaged over the n− 1 available degrees

of freedom. When X is normally distributed with covariance matrix VR,

the Mahalanobis distance has a chi-squared distribution with m degrees of

freedom (Hardin and Rocke, 2005) and expectation m: the expected value of
1In fact, as shown in Section 5.3.6.1, the trace arises from VM (VM + VT )†vec

(
S
)
in

(5.173), where VM is the prior variance of the population variance and VT reflects sampling
variation: it may therefore more accurately be interpreted as reflecting the magnitude of S
with respect to the prior variance of M(V). However, since both VM and VT are ultimately
specified in terms of VR, the direct interpretation given here is preferred.
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tr
(
V−1
R S

)
, if the observations x are drawn from a normal distribution with

mean x and covariance matrix VR, is therefore nm/(n−1). When n is large,

this expected value is approximately m, and the expectation of the third term[
m− tr

(
V−1
R S

)]
VR is approximately zero: therefore, if the prior is consistent

with the data the third term in (5.189) may be relatively unimportant.

The Mahalanobis distance is often used to identify outliers in a data set,

and tr
(
V−1
R S

)
can be interpreted similarly as a summary of the dispersion

of the observed residuals xi−x with respect to the prior expected covariance

matrix VR. If the observations are very dispersed or contain a high proportion

of outliers, the trace will be large; small values of the trace (less than the

expected value, which is approximatelym) indicate that the sample observations

are generally less dispersed than they would be if they were drawn from a

multivariate-normal distribution with covariance matrix VR. The trace can

therefore be viewed as a proxy for the kurtosis in the observed sample, measured

with respect to the prior expectation VR of the population variance.

5.3.7.3 Effect of the third term in the adjusted expectation of M(V)

The prior specification of κ has specific implications in the event of differences

between the prior dispersion VR and observed dispersion S. Setting κ >

0 reflects a judgement that extreme values in the observations should be

interpreted as outliers, rather than indicating a highly dispersed distribution.

For κ > 0, w2 is also positive, and typically very small, as shown in Figure 5.1b.

When the observed trace is larger than m, the term in square braces will be

negative, and may be quite large; the effect of the third term will therefore

be to reduce the adjusted expectation of the variance from the weighted sum

w1S+ (1−w1)VR that would be obtained if κ= 0. Heuristically, the adjusted

expectation of M(V) is reduced to reflect the judgement that extreme values

in the observations are outliers, rather than evidence of high variability per se.

The converse interpretation holds when κ < 0.

If the observed trace is smaller than m - indicating that S is smaller than
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VR - there is no evidence that there are any outliers in the observations. In this

case, the contribution from the third term will typically be very small for both

positive and negative κ. Figure 5.2 shows the scaling factors w2
[
m− tr

(
V−1
R S

)]
obtained in the application presented in Section 6.2.4 in each of these scenarios.

Figure 5.2: Distribution of the scaling factor w2
[
m− tr

(
V−1
R S

)]
over all leadtimes

for positive and negative κ, for the application considered in Chapter 6.
These values are computed using κ= κlt with nearest-κ replacement,
as described in Section 6.2.4.
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5.3.7.4 A constraint on the value of κ

The left-hand side of (5.189) is an expectation taken over a population of

covariance matrices, and so must be positive semidefinite. Assuming that VR is

a valid covariance matrix, this is guaranteed to be the case when κ= 0, because

the adjusted expectation is reduced to a nonnegative linear combination of

VR and S. If κ > 0 and tr
(
V−1
R S

)
�m, or if κ < 0 and tr

(
V−1
R S

)
<m, the

adjusted expectation is no longer guaranteed to produce a valid covariance

matrix. This occurs when the observed value of S disqualifies the joint prior

choices for κ and VR, and may be regarded as a diagnostic warning of a conflict

between the observed data and the prior specifications.

It is possible to identify a range of values of κ for which the right-hand

side of (5.189) is guaranteed to be positive semidefinite, by finding those values

of κ for which the term in braces {} in that equation is nonnegative. This
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involves solution of the quadratic inequality aκ̃2 + bκ̃+ c≥ 0, where

a= (m+ 2)(ν−m−1),

b= n(n−1)(ν−m−3)
[
m− tr

(
V−1
R S

)]
+n(ν−m−1)2(m+ 2) + 2(ν−1)nν̃,

c= 2n2(ν−m−1)(ν−1)ν̃.

Since m is the dimension of X, and ν−m is the notional sample size from

which M(V) is considered to be estimated (see Section refsec:VM), both ν−m

and m are positive; thus a is strictly positive, and the quadratic expression

aκ̃2 + bκ̃+ c has a unique minimum at −b/2a. The right-hand side of (5.189) is

therefore guaranteed to be positive semidefinite for κ̃ in the set

κ̃≤ −b2a −
√
b2−4ac

4a2 ∪ κ̃≥ −b2a +
√
b2−4ac

4a2

 . (5.192)

The only coefficient actually affected by the data is b, through tr
(
V−1
R S

)
. An

example of valid values of κ for a range of values of this trace is shown in

Figure 5.3. When tr
(
V−1
R S

)
≤m, only large negative values of κ are excluded;

when tr
(
V−1
R S

)
is slightly larger than m, any value of κ is deemed compatible

with the data. However, when tr
(
V−1
R S

)
�m, implying that the observations

are much more dispersed than was expected a priori, κ must be either close

to zero or very large: recall from Table 5.1, for example, that κ= 2 suggests

excess marginal kurtosis of 6, equivalent to that of a Student-t distribution

with 5 degrees of freedom. The discontinuity in the range of valid values of κ

may be interpreted as reflecting two competing explanations when the sample

covariance matrix S is observed to be much larger than the prior expectation

VR, leading to tr
(
V−1
R S

)
�m. Setting κ close to zero implies a judgement that

the observed sample will not contain many outliers: under this assumption, if

tr
(
V−1
R S

)
�m, the implication is that the sample is much more dispersed than

was expected a priori. Choosing a relatively high value of κ implies the opposite

judgement, that we would not be surprised to see a very high proportion of
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outliers in the observed sample, and consequently that we would not be very

surprised to observe tr
(
V−1
R S

)
�m.

Figure 5.3: Regions of valid κ values given by (5.192) as a function of tr
(
V−1
R S

)
when n= 25, m= 13, and ν = 13+25, as in the application in Chapter
6. The blue shaded area is the region for which (5.189) is guaranteed
to produce a valid covariance matrix, while the hatched area is the
region κ <−0.4 excluded by the minimum possible κ for a unimodal
symmetric distribution, as described in Section 5.3.7.1.
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Because the invalid range depends on a scalar summary statistic - the trace - of

a matrix product, the bounds on ‘permissible’ values of κ are not exact limits

in the sense that, depending on the particular instances of VR and S, some

‘forbidden’ values of κ close to the threshold may still result in a valid covariance

matrix. However, selecting values of κ based on (5.192) will guarantee that

the right-hand side of (5.189) is a nonnegative linear combination of VR and

S, and so will produce a valid covariance matrix. In this sense, the limits in

(5.192) define a sufficient condition for the right-hand side of (5.189) to be a

valid covariance matrix; further work is required to identify a range of κ̃ that

defines a necessary condition.

Although the prior covariance VR and marginal excess kurtosis parameter

κ are set before any data is observed, this provides a useful check that the

specified VR and κ are compatible with the sample actually obtained. Where

the resulting adjusted matrix is found not to be a valid covariance matrix, the
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bounds given by (5.192) may also be used to suggest alternative values for κ that

are guaranteed to produce a valid covariance matrix. In particular, choosing the

closest valid value of κ to the original proposal provides a guaranteed positive

definite matrix that is in some sense close to the invalid adjusted expectation.

Practical issues around implementing this substitution are considered in Section

6.2.4.

5.3.8 Summary and discussion
This section extends the second-order exchangeability representation used in

Bayes linear adjustment – reviewed in Section 5.2 – to accommodate multivariate

adjustment of covariance matrices in a principled but relatively straightforward

framework. While the derivations presented require extensive matrix manip-

ulation, it is not necessary for a user to understand these operations before

applying the method: they need only specify the matrix VR of prior variances

and covariances, the notional sample size ν−m reflecting how confident they

are in their estimate of VR, and the marginal kurtosis parameter κ, indicat-

ing whether the data are believed to have a greater or lesser propensity to

outliers than a normal distribution. The parameters ν and κ can be obtained

directly from the parameters used in the scalar case, with c = 2/(ν−m− 3)

and V
[
Z2
i

]
= 3κ+ 2.

Goldstein and Wooff (2007, §8.13) remark that specifying a full set of

variances and covariances between all elements of S and all elements of M(V)

requires a more detailed level of specification than may be reasonable, a concern

echoed by Wilkinson and Goldstein (1995), who note that the effort required

for both specification and computation may increase significantly for large

covariance matrices if an enriched projection space is to be used, as described

in Section 5.2.6. The heuristic solution proposed by Goldstein and Wooff (2007)

is either to weight the prior and observed covariance matrices by their relative

sample sizes and average them, or to perform independent adjustments of the

scalar quantities, and to combine these marginal adjusted expectations and

variances with a correlation matrix obtained by averaging a prior correlation
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matrix and the sample correlation matrix, with the resulting matrix referred

to as the semi-adjusted residual variance matrix. However, having specified all

of the quantities required to obtain this semi-adjusted residual variance matrix,

it is no more difficult to instead combine the prior marginal expectations and

variances with the prior correlation matrix to give VR, and proceed with the

multivariate adjustment as presented above; all of the required covariances are

then fully specified in terms of this prior variance matrix and the parameters κ

and ν.

Furthermore, considering the full matrix of variances and covariances

between all variables forces the user to consider an appropriate value for

each element: simply carrying out univariate variance adjustments implies a

judgement that the variances are independent, which is not generally likely to

be the case - particularly when the adjustment is of highly dependent variables

such as spatial data. It is still perfectly possible to encode an assumption of

independence between some or indeed all variables, by setting the relevant

covariances to zero - but by doing so in the multivariate framework, the

judgement is considered and made explicit, rather than assuming independence

by default.

5.4 Bayes linear adjustment as an

approximation to Bayesian inference
The original motivation for using a Bayes linear adjustment was to develop a

framework to combine information from two sources in an approximation to

Bayesian inference, while retaining a tractable form that is easily assimilated

into the Bayesian postprocessing framework of Chapter 2. This approximation

can only be checked directly when a closed-form solution to the probabilistic

Bayesian analysis is available; this is most easily achieved in the conjugate

setting, when the quantity of interest is assumed to be Gaussian. It will

be shown that in this case, Bayes linear adjustment produces asymptotic

approximations to the posterior expectation and variance of the population
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mean that would be obtained using a natural conjugate joint prior.

5.4.1 Conjugate Bayesian inference for the parameters

of a multivariate normal distribution
When the data x are assumed to have a multivariate normal distribution,

the natural conjugate form for simultaneously expressing prior beliefs about

the distributions of the population mean µ and variance Σ is a joint prior

distribution with the same normal-inverse-Wishart form as the joint likelihood

(O’Hagan and Forster, 2004). Under this specification, µ is assumed to be

normally distributed conditional on Σ, with prior expectation and variance

E[µ|Σ] = µ0, V[µ|Σ] = 1
β

Σ, (5.193)

say, where β is a scaling parameter defining the relationship between the variance

of µ and the population variance Σ. Σ is assumed to have an inverse-Wishart

distribution, with prior expectation and variance (Mardia et al., 1979)

E[Σ] = SS0
ν0−m−1 (5.194)

and

V
[
vec

(
Σ
)]

=
2vec

(
SS0

)
vec

(
SS0

)′
+ 2(ν0−m−1)Nm (SS0⊗SS0)

(ν0−m)(ν0−m−1)2(ν0−m−3) , (5.195)

where SS0 is a scale matrix and ν0 denotes the prior degrees of freedom.

The joint posterior density of µ and Σ, conditional on the observed data

x, is also a normal-inverse-Wishart density. The posterior distribution of Σ is

inverse-Wishart (O’Hagan and Forster, 2004), with posterior expectation

E[Σ|x] =
SS0 +SSx+ βn

β+n (µ0−x)(µ0−x)′

ν0 +n−m−1 = SSn
νn−m−1 , (5.196)

say, where n is the size of the observed sample, x = 1
n

∑n
i=1xi is the observed
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sample mean, and SSx = ∑n
i=1(xi−x)(xi−x)′ denotes the observed sum of

squares; SSn denotes the posterior sum of squares, and νn the posterior degrees

of freedom. The posterior variance is then

V
[
vec

(
Σ
)
|x
]

=
2vec

(
SSn

)
vec

(
SSn

)′
+ 2(νn−m−1)Nm (SSn⊗SSn)

(νn−m)(νn−m−1)2(νn−m−3) .

(5.197)

The marginal posterior distribution of µ, conditional on the observed data, is

obtained by integrating Σ out of the joint posterior distribution. The resulting

distribution is a multivariate Student-t distribution with νn degrees of freedom,

with expectation and variance

E[µ|X] = βµ0 +nx
β+n

= µn, (5.198)

and

V[µ|X] = SSn
(β+n)(ν0 +n−m−1) = SSn

(κn)(νn−m−1) . (5.199)

5.4.2 Bayes linear adjustment as an approximation to

inference using the natural conjugate prior
The multivariate Bayes linear adjustment described in Section 5.3 is now used to

update the prior specifications used in Section 5.4.1 with the observed sample

mean and covariance matrix, and the resulting expectations and variances

compared to those obtained using a fully probabilistic prior specification.

The population variance M(V) that appears in the Bayes linear exchange-

ability representation is directly analogous to the quantity Σ in the Bayesian

inference carried out above, with prior expectation VR = E[Σ] and prior vari-

anceVM =V[Σ] as set out in (5.194) and (5.195). Because the data are assumed

to be Gaussian, the kurtosis parameter κ is 0, so that the prior beliefs are

updated using equations (5.179) and (5.188) respectively. First using (5.179),
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the adjusted expectation of the population variance is

ES[M(V)] = n−1
ν0−m−1 +n−1S+ ν0−m−1

ν0−m−1 +n−1VR

= (SSx+SS0)
ν0 +n−1−m−1

= SS∗n
ν∗n−m−1 , (5.200)

say, where S is the observed sample covariance matrix. This has the same

form as the expectation E[Σ|X] obtained in (5.196), but has one less degree of

freedom in ν∗n, and lacks the term in the numerator of (5.196) reflecting the

discrepancy between the prior expectation and observed value of the mean.

However, as n increases, SSn and SS∗n will both be dominated by the sample

sum of squares SSx, and so the Bayes linear adjusted expectation of the

population variance will asymptotically approach that obtained from Bayesian

inference with a natural conjugate prior.

However, this asymptotic equivalence no longer holds when considering

the Bayes linear adjusted variance of the population variance. From (5.188),

when κ= 0,

VS
[
vec

(
M(V)

)]
= ν0−m−1
ν0−m−1 +n−1VM . (5.201)

The adjusted variance of M(V) is simply a scaled version of the prior variance,

with no contribution from the data, and so may be quite different to the

Bayesian posterior variance of Σ given in (5.197).

The Bayes linear population mean M(X) is directly equivalent to µ in

the Bayesian inference above. Under the joint conjugate prior specification, the

prior distribution of µ was specified conditional on the population variance Σ;

an analogous Bayes linear prior belief specification gives the prior expectation

and variance of M(X) in terms of the updated beliefs about M(V) captured
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in (5.200), with

E[M(X)] = µ0 (5.202)

and

V[M(X)] = 1
β
ES[M(V)] . (5.203)

Then from (5.103),

EX[M(X)] = E[M(X)] +V[M(X)]
(
V[M(X)]− ES[M(V)]

n

)−1
(x−E[M(X)])

= µ0 + ES[M(V)]
β

([
1
β

+ 1
n

]
ES[M(V)]

)−1
(x−µ0)

= µ0 + n(x−µ0)
β+n

= µn. (5.204)

From (5.104), the adjusted variance of M(X) is

VX[M(X)] = V[M(X)]−V[M(X)]
(
V[M(X)] + ES[M(V)]

n

)−1
V[M(X)]

= ES[M(V)]
β

− ES[M(V)]
β

([
1
β

+ 1
n

]
ES[M(V)]

)−1 ES[M(V)]
β

= ES[M(V)]
β+n

= 1
β+n

SS∗n
ν∗n−m−1 . (5.205)

Thus the Bayes linear adjusted expectation of the population mean is identical

to that obtained by Bayesian inference, and the Bayes linear adjusted variance

asymptotically approaches the posterior variance V[µ|x], as discussed in Section

5.4.2.
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5.5 Summary of chapter
This chapter presents one of the major contributions of the thesis, a multivariate

extension of the variance adjustment for second-order exchangeable quantities

laid out in Goldstein and Wooff (2007). This extension was motivated by

the need to find a more flexible alternative to conjugate inference that would

accommodate a judgement that the quantity of interest may not be normally

distributed, without the use of computationally costly simulation to find the

full posterior distribution.

The chapter begins by reviewing the Bayes linear statistical methodology

presented by Goldstein and Wooff (2007). In Section 5.2.5.2.1 an adjustment is

made to the parametrisation of higher-order quantities through the kurtosis

parameter V
[
Z2
i

]
and the notional sample sizem, which have a fixed relationship

in the original framework: by allowing these two quantities to act independently

of one another, greater flexibility and interpretability of the adjustment are

obtained.

Section 5.3 derives the multivariate extension to the Bayes linear adjust-

ment. Although Goldstein and Wooff (2007) argue that specifying all of the

variances and covariances required to carry out a full multivariate adjustment

may be an unreasonably complex task – particularly when working with the

geometric representation described in Section 5.2.6 (Wilkinson, 1997) – the

multivariate adjustment presented here requires specification only of the prior

covariance matrix VR and the scalar parameters κ and ν, which can be ob-

tained from the parameters used in the scalar adjustment. This approach is,

arguably, simpler than the copula-based multivariate adjustment suggested as

an alternative by Goldstein and Wooff (2007), particularly where VR can be

obtained empirically, because the dependence structure does not need to be

estimated separately.

Where the assumption of common marginal kurtosis across all variables is

reasonable, the multivariate adjustment is very efficient, reducing to a scalar-

weighted sum of the prior and observed covariance matrices. The motivating
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application for this work required Bayes linear adjustment of the covariance

matrix of a single variable at multiple locations; as will be seen in Chapter 6,

the assumption of common (or, at least, similar) kurtosis across all regions is

indeed a reasonable one, and the question of how to handle different marginal

kurtoses is not addressed here. It is possible that the framework could be

extended to use a kurtosis matrix, K say, rather than the scalar parameter;

investigation of this possibility is left as further work. Instead, if common

kurtosis can only be assumed to apply for a subset of the variables, multivariate

Bayes linear adjustment should be carried out for each subset that can be

assumed to be approximately homogeneous, and may be used to construct

the ‘semi-adjusted residual variance matrix’ proposed by Goldstein and Wooff

(2007, §8.13) to facilitate adjustment of covariance matrices, or to determine

appropriate submatrices with which to enhance the projection space (Wilkinson

and Goldstein, 1995; Williamson et al., 2012).

In Section 5.4 it was shown that, with an appropriate choice of parametri-

sation, Bayes linear adjustment can produce a second-order approximation to

the posterior distribution of µ, and a first-order approximation to the posterior

distribution of Σ, obtained using fully probabilistic inference with the natural

conjugate normal-inverse-Wishart prior.

More practical questions concerning the implementation of the multivariate

Bayes linear adjustment are addressed in the next chapter, where the method

is used to obtain an updated estimate of the forecast discrepancy used in the

postprocessing of temperature forecasts in Chapter 4.



Chapter 6

Bayes linear adjustment of UK

temperature forecasts

In Chapter 4, the forecasts of surface temperature described in Section 2.1.2

were postprocessed using simple empirical estimates of the expectation and

covariance matrix of the forecast discrepancy. This chapter evaluates the

benefits gained by instead using Bayes linear adjustment to determine the

discrepancy correction required to postprocess the forecasts. Prior beliefs about

η and Λ are updated with later information using the multivariate second-order

Bayes linear adjustment described in Chapter 5, and these updated beliefs are

used to postprocess weather forecasts of surface temperatures.

In the postprocessing framework described in Chapter 2, all available

information about the forecast discrepancy ∆ is assumed to be captured by

the mean discrepancy vector η and discrepancy covariance matrix Λ; these

quantities are equivalent to the population meanM(X) and population variance

M(V) introduced in the Bayes linear framework in Sections 5.2.1.1 and 5.3.

For clarity, this chapter will use η and Λ to refer to the population mean and

covariance of the forecast discrepancy ∆. Observed forecast discrepancies are

denoted by δ rather than X, with δ̄ and Sδ denoting the sample mean and

covariance, respectively, of the forecast errors in a training dataset; these terms

are summarised for easy reference in Tables 6.1 and 6.2.

Section 6.1 describes the general form of the Bayes linear update used to
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Table 6.1: Table of notation used for general Bayes linear adjustment in Chapter 5
with corresponding terms used for adjustment of forecast discrepancy in
this chapter.

General Discrepancy
adjustment adjustment

Forecast consensus discrepancy X ∆
Observed forecast errors x δ
Expected value of consensus discrepancy M(X) E[∆] = η
Covariance of consensus discrepancy M(V) V[∆] = Λ
Kurtosis parameter κ= Kur[X]/3 κ= Kur[∆]/3

Table 6.2: Prior and adjusted expectations and covariance matrices of η and Λ,
and scalar quantities used in the adjustment.

Expectation η Covariance Λ
Prior expectation E[η] E[Λ] = VR

Prior covariance V[η] V[Λ] = VM

Sample estimator δ̄ Sδ
Adjusted expectation Eδ[η] ESδ [Λ]
Adjusted covariance Vδ[η] VSδ [Λ]
Dimension m m
Confidence parameter ν ν
Size of observed sample n n
Size of sample used to set prior E[η] z z

obtain adjusted expectations and covariances of η and Λ throughout this chap-

ter. In Section 6.2, Bayes linear adjusted expectations of η and Λ are plugged

directly into the Bayesian postprocessing model described in Section 2.2, and

the skill of the resulting forecasts is evaluated against forecasts postprocessed

using only the ‘prior’ or ‘observed’ estimates of η and Λ. Each of the parame-

ters in the Bayes linear adjustment is varied in turn in order to investigate the

sensitivity of forecast skill to various choices of prior specification. In Section

6.3, uncertainty about η and Λ is incorporated into the postprocessed forecasts

through simulation, in order to evaluate the effect on forecast skill.

6.1 Bayes linear adjustment of the forecast

discrepancy ∆
Throughout this chapter, Bayes linear adjusted expectations of η and Λ are used

in place of direct empirical estimates of η and Λ in the Bayesian postprocessing

framework described in Section 2.2. Sections 6.2.1 – 6.2.4 explore the effect
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of varying the user-specified parameters, while Section 6.3 includes additional

parameter uncertainty: all of these experiments use the same approach to

specifying the prior expectations of η and Λ, and to estimating the sample

means δ̄ and sample covariances Sδ used in the adjustment, as outlined below.

As in classical Bayesian statistics, the priors should be specified before ob-

serving any data – that is, before the new forecasts that are to be postprocessed

have been issued. The priors should correspond as closely as possible to the

distribution of discrepancies that might be expected at the time the forecast are

issued; one way to achieve this is to use a moving window (MW) training set to

estimate the prior expectation and variance of the forecast errors, as described

in Section 2.3.2, since these data are available before the new forecasts have

been generated. Throughout this chapter, the prior expectations E[η] and E[Λ]

for each forecast instance are the sample mean and covariance of the forecast

errors in 25 MW training cases.

After the forecasts are issued, they can be used to identify similar forecasts

from a historical archive, as described in Section 2.3.3.1; a second training set

drawn from the closest of these analogues to the forecast instance of interest will

be treated as the observed sample. In this way, information about persistent

errors from recent forecasts is combined with information about flow-dependent

errors from the analogues. The observed sample mean δ̄ and sample covariance

Sδ used to adjust the prior beliefs for each forecast instance are estimated

from 25 analogues, obtained using the method described in Section 2.3.3.11:

similar results were obtained when using analogues selected on the basis of the

prevailing weather regime, as discussed in Section 2.3.3.2.

The prior quantities derived from the MW training cases are updated by

the sample mean and covariance matrix of the AN training cases to obtain the

necessary Bayes linear adjusted quantities, as described in Section 5.3. From
1The selection of analogues in this chapter differs from the implementation in Chapter 4,

in that analogues here are selected from all years excluding the year in which the forecast
was issued: this is to avoid the possibility of any training cases appearing in both the MW
and AN sets for any given forecast instance, and so being used to determine both prior and
observed expectations and variances.
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(5.177) and (5.178), and using the notation of this chapter as defined in Table

6.2, the adjusted expectation of Λ given Sδ is

ESδ [Λ] = w1Sδ+
{

(1−w1) +w2
[
m− tr

(
E[Λ]−1Sδ

)]}
E[Λ] (6.1)

where

w1 = n(n−1)
κ̃+nν̃

and w2 = n(n−1)(ν−m−3)κ̃
[κ̃+nν̃] [(m+ 2)(ν−m−1)κ̃+ 2(ν−1)nν̃] , (6.2)

with κ̃= κ(n−1)(ν−m) and ν̃ = ν−m−1+n−1. As noted in Section 5.3.6.1,

when κ= 0, this can be simplified to

ESδ [Λ] = n−1
ν̃
Sδ+ ν−m−1

ν̃
E[Λ] . (6.3)

Similarly, from (5.103) and (5.104),

Eδ[η] = E[η] +V[η]
(
V[η] + 1

n
ESδ [Λ]

)−1 (
δ̄−E[η]

)
(6.4)

and

Vδ[η] =
(
V[Λ]−1 +nESδ [Λ]−1)−1

. (6.5)

The effect of varying the prior specifications of V[η], ν and κ is considered in

the next section.

6.2 Postprocessing with ‘plug-in’ Bayes

linear adjusted estimate of ∆
Recall from (2.13) in Section 2.2 that the posterior distribution of the weather

quantity Y0 is

Y0|{Yij} ,∆∼MVN(τ ,S) (6.6)
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where from (2.18) and (2.19),

S−1 = Γ−1 + (ΣD+Λ)−1 , (6.7)

τ = S
[
Γ−1α+ (ΣD+Λ)−1 (ξ̂−η)] , (6.8)

where ξ̂ is the sample ensemble forecast consensus, with associated uncertainty

ΣD, and α is the prior expectation of Y0, with associated covariance matrix Γ.

This distribution is conditional on the observed ensemble members {Yij} via

the multi-model ensemble consensus ξ and associated covariance matrix ΣD,

as described in Section 2.2.1; and the expectation η and covariance matrix Λ

of the forecast discrepancy ∆ are treated as known quantities.

In this section, η and Λ will be replaced in (6.7) and (6.8) with their

Bayes linear adjusted expectations Eδ[η] and ESδ [Λ] to obtain the conditional

posterior distribution of Y0, parametrised by

S−1 = Γ−1 +
(
ΣD+ESδ [Λ]

)−1
, (6.9)

τ = S
[
Γ−1α+

(
ΣD+ESδ [Λ]

)−1 (
ξ̂−Eδ[η]

)]
. (6.10)

This approach essentially treats Eδ[η] and ESδ [Λ] as if there is no uncertainty

about their values, and so allows a direct comparison with the postprocessed

forecasts obtained in Chapter 4 using plug-in estimates. The effect of in-

corporating additional sources of uncertainty in the posterior distribution is

investigated in Section 6.3.

In all instances, the posterior forecast is obtained using a noninformative

prior with precision Γ−1 = 0 for the temperature Y0, as suggested in Section

4.1. The forecast skill of the postprocessed forecasts is compared using the

metrics for density forecasts described in Chapter 3; forecasts are judged to

have greater skill if they are more accurate and, subject to good probabilistic

calibration, sharper.

Throughout this chapter, the skill of forecasts postprocessed using Bayes

linear adjusted expectations of η and Λ in (6.9) and (6.10) is compared to that
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of the MW-postprocessed and AN-postprocessed forecasts already discussed in

detail in Section 4.3. In the notation of this chapter, the MW-postprocessed

forecasts use E[η] and E[Λ] in place of Eδ[η] and ESδ [Λ] in (6.9) and (6.10),

while the AN-postprocessed forecasts use δ̄ and Sδ. This enables a direct

comparison of the skill of forecasts corrected using the two sources of information

with the skill of forecasts using only one source.

6.2.1 Bayes linear adjustment when κ= 0
In Section 5.4 it was shown that Bayes linear adjustment can be used to

approximate the joint posterior distribution of η and Λ that would be obtained

using a fully probabilistic Bayesian inference with a normal-inverse Wishart

prior, by setting V[η] = z−1ESδ [Λ], where z denotes the notional sample size

used to determine the prior expectation of η, with κ= 0 and ν = z+m. This

specification provides a useful baseline against which to measure the effect of

alternative specifications in later sections.

Recall from Section 5.3.5.2 that ν controls the relationship between VR =

E[Λ] and VM = V[Λ], and so reflects the user’s degree of confidence in their

prior beliefs about η: where, as here, E[Λ] is estimated empirically from a set

of z samples, the natural choice is to set ν = z+m, so that the notional sample

size reflects the actual sample size used. Such a judgement is appropriate if

both the MW and AN training sets are believed to be sampling independently

from the same population of forecast errors as the current instance; the effect

of reducing z to indicate reduced confidence in the prior will be considered in

Section 6.2.2.

As well as the the MW- and AN-postprocessed forecasts, the skill of

forecasts postprocessed using the Bayes linear adjusted expectations of η and

Λ is compared to that of forecasts postprocessed using the sample mean and

covariance of the larger sample obtained by simply ‘pooling’ the MW and AN

training cases into a single set, in order to understand the benefits of using

Bayes linear adjustment to estimate the discrepancy, rather than this simpler

approach.
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6.2.1.1 Bayes linear adjusted estimates of η and Λ

Under the specification used here, Bayes linear adjustment produces the same

estimate of η as would be obtained by simply taking the sample mean of

the z = 25 MW forecast errors and the n = 25 AN forecast errors: with

V[η] = z−1ESδ [Λ], the adjusted expectation of the population mean discrepancy

η given by (6.4) is

Eδ[η] = z

z+n
E[η] + n

z+n
δ̄ (6.11)

and where, as here, z = n, this is the unweighted average of the MW and

AN-adjusted forecast errors. When κ= 0 and with ν = z+m, the Bayes linear

adjusted expectation of Λ given by (6.3) is

ESδ [Λ] = 1
z+n−2 {(n−1)Sδ+ (z−1)E[Λ]} , (6.12)

which is the standard estimate of the common variance of two samples.

It is worth highlighting the difference between postprocessing using the

Bayes linear expectations of η and Λ, and using empirical estimates from

the pooled MW and AN training cases, which may seem like an appealing

alternative. In particular, the variance Λ̂pooled of the pooled training sets is

divided by one less degree of freedom, so if the prior E[η] is sufficiently close

to δ̄, the estimate of Λ obtained from the pooled training sets will be slightly

sharper than that obtained by the baseline Bayes linear adjustment, although

the improvement is bounded at z+n−1
z+n−2ESδ [Λ]. However, a large discrepancy

between E[η] and δ̄ will increase Λ̂pooled, in which case the pooled variance will

typically be somewhat larger than ESδ [Λ].

6.2.1.2 Forecast accuracy and sharpness

Because the pooled and Bayes linear adjusted estimates of η are the same under

this specification, postprocessing with either results in identical deterministic
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(mean) forecasts. Figure 6.1 shows the distribution of the differences in absolute

error between the forecasts postprocessed using the Bayes linear adjusted and

MW/AN-only estimates, for all forecasts in selected regions of the study. A

similar pattern appears in all regions, with the majority of forecast errors

differing by less than 1◦C even at the longest leadtimes. The distribution

of differences is almost symmetric about zero; this occurs because the MW-

adjusted forecasts are more accurate (having smaller absolute errors) than the

AN-adjusted forecast in about 50% of all forecast instances across all leadtimes

and all regions. Averaging the two sources of information therefore results in

roughly equal numbers of forecast instances with better and worse accuracy,

and an overall change in MAE close to zero. Although the improvement is small,

the Bayes linear adjusted forecasts achieve the lowest MAE at all leadtimes,

with MAE around 0.1-0.2◦C lower than the MW-adjusted forecasts at longer

leadtimes (Figure 6.1b).

Figure 6.1: Distributions (over 630 forecast instances) at selected leadtimes of
differences in absolute marginal errors in selected regions when using
Bayes linear adjusted expectation of η to postprocess forecasts in place
of the MW or AN estimates; and overall mean absolute marginal error
for each method. Negative differences indicate that the Bayes linear
adjusted forecasts were more accurate, having smaller absolute errors.
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Figure 6.2 shows the difference in log scores and CRPS for each estimation

method compared to the Bayes linear adjusted forecasts. The average log scores

are almost the same for all methods, although relatively large changes in skill are

seen for some individual forecasts. The distribution of differences between the

AN-adjusted and Bayes linear adjusted forecasts is generally symmetric about
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zero, while the MW-adjusted forecasts are more likely to have a higher log score,

and the pooled-adjustment forecasts often have a slightly lower logarithmic

score than the Bayes linear adjusted forecasts, particularly at longer leadtimes.

Figure 6.2: Distributions (over 630 forecast instances for each location) at selected
leadtimes of differences in CRPS and logS when using Bayes linear
adjusted η to postprocess forecasts in place of the MW, AN or pooled
estimate. Negative changes indicate that the Bayes linear adjusted
forecasts were more skilful, having lower CRPS/logS.
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(b) Difference in log score
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As noted in Section 4.3, the MW-adjusted forecasts are sharper than the

AN-adjusted forecasts in roughly half of all instances at lead times of a week

or less, rising to 60% of all instances at longer leadtimes. As a result, forecast

sharpness is insensitive to the choice of Λ at shorter leadtimes, while at eight

days or longer, the Bayes linear adjusted foreasts tend to be somewhat sharper

than the AN-adjusted forecasts, but less sharp than the MW-adjusted forecasts

(Figure 6.3a).

Pooling the two training sets to estimate the discrepancy produces a

forecast of comparable sharpness to Bayes linear adjustment in roughly half of

all of the forecast instances at all leadtimes and in all regions (Figure 6.3b). In

the remaining instances, differences between the means of the AN and MW

training sets mean that the Bayes linear adjusted expectations of Λ are typically

somewhat sharper, as discussed in Section 6.2.1.1; as a result, the Bayes linear

adjusted forecasts are slightly marginally sharper on average. Overall, as

Figure 6.3a shows, forecast sharpness varies more between regions than between

estimation methods, and the difference in average forecast sharpness is very

small at all but the longest leadtimes.
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Figure 6.3: Spread of average marginal sharpness in each region, where the lines
indicate the mean value across the thirteen regions, while the shaded
area shows the range of values; and distribution of changes in marginal
sharpness of postprocessed forecasts across all regions at selected lead-
times, expressed as the ratio of each forecast standard deviation to
that of the Bayes linear adjusted forecast. Values greater than one
indicate that the Bayes linear adjusted forecasts were sharper than the
competitor.
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(b) Distribution of changes in marginal sharpness
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6.2.1.3 Marginal forecast calibration

Figure 6.4 shows examples of PIT histograms for forecasts at two locations

at selected leadtimes, with the PIT skewness and dispersion across all regions

shown in Figure 6.5. Histograms for the remaining regions can be found in

Figure B.4 in Appendix B.

The PIT histograms tend to have slight negative skewness at all leadtimes,

suggesting that the forecasts retain a slight cold bias regardless of the method

used to estimate the discrepancy, and with the magnitude of the bias varying

somewhat between regions. The bias is small compared to the spread of the

forecasts; even at the shortest leadtimes, when the skewness is most pronounced,

observations are more likely to fall in the 50th-80th percentile of the forecast

distributions than in the extreme tail. All estimation methods produce PIT

histograms with dispersion indices well below one at these leadtimes, reflecting

a degree of overdispersiveness in the marginal forecast distributions, with the

pooled and Bayes linear adjusted forecast having the lowest dispersion indices.

At leadtimes of greater than a week the MW-corrected forecasts have PIT

dispersion indices somewhat greater than one, with too many observations

falling in regions of low forecast probability; the AN, pooled, and Bayes linear
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adjusted forecasts, which tend to have higher variances at these leadtimes, all

have similar dispersion indices that are closer to one, indicating better marginal

calibration.

Figure 6.4: PIT histograms showing the marginal calibration of postprocessed
forecasts of surface temperatures at selected locations in the north and
south of the UK at a range of leadtimes, for forecasts postprocessed
using either direct, Bayes linear adjusted or pooled estimates of the
discrepancy ∆. The dashed line indicates the ideal uniform distribution.
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(b) PIT histograms for forecasts in Kirkcaldy
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Figure 6.5: Characteristics of the PIT histograms at each leadtime. The lines
indicate the mean value across the thirteen regions, while the shaded
area shows the range of values. The dashed horizontal lines indicate
the ideal values of zero for skewness and one for dispersion.
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(b) PIT dispersion
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6.2.1.4 Joint forecast calibration

The marginal calibration performance shown in the PIT histograms is reflected

and amplified in the Band Depth Rank (BDR) histograms in Figure 6.6.

At the shortest leadtimes, the rightmost bins of the histograms are heavily

overpopulated for all forecasting methods, indicating that the forecasts are
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jointly overdispersive; the pooled and Bayes linear forecasts, being marginally

less sharp than the MW and AN-adjusted forecasts, suffer more from this

issue. As the leadtime increases, more observations begin to fall too often

in the leftmost bins, indicating that the forecasts are too narrow. This issue

particularly affects the MW-adjusted forecasts at longer leadtimes, with the

histograms for AN-adjusted forecasts being closer to uniform at the longest

leadtimes than either the Bayes linear adjusted or pooled forecasts.

Figure 6.6: Band Depth Rank (BDR) histograms showing the joint calibration of
postprocessed forecasts of surface temperatures at a range of leadtimes.
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Figure 6.7 shows histograms of the Box Ordinate Transforms of the ob-

servations under each set of forecast distributions. The histograms for the

MW and AN-adjusted forecasts at all leadtimes are dominated by spikes in

the leftmost bins, indicating a high number of observations falling far from the

centre of the forecast distribution, indicating that the forecast distributions are

both overdispersive and over-correlated.

The BOT histograms for the Bayes linear adjusted and pooled forecasts

at the same leadtimes have a more symmetric ∪ shape, with a high proportion

of the observations falling in either the centre or the extreme tails of the

distribution. However, this pattern does not indicate that the forecasts are

consistently underestimating the correlations between variables (as, for example,

in Figure 3.2f in Section 3.3.2.3). As in the results presented in Section 4.1.3,

consideration of the joint distribution of the binned BDRs and BOTs in Figures

6.8c and 6.9c reveals a cluster of observations falling into the leftmost bin

of the BOT histograms with BDRs between 0.2 and 0.6, indicating that the

dependences between variables are actually typically overestimated by the

corresponding forecasts. At the same time, a large number of forecast instances

also fall in the top-right corner of the grids for all postprocessing methods,
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indicating a group of forecasts for which the verifying observations fall very

close to the centre of the forecast distribution.

These two sets of instances remain well separated in the gridplot, suggesting

that the distribution of the forecast errors may in fact be a mixture of two

different populations. However, the clusters of counts indicating forecasts

with too-strong correlations are less pronounced for the Bayes linear adjusted

forecasts than for the corresponding MW and AN forecasts, indicating a

reduction in the number of overcorrelated forecasts compared to both the

MW-adjusted and AN-adjusted forecasts at all leadtimes.

Figure 6.7: Box Ordinate Transform (BOT) histograms showing the joint calibra-
tion of postprocessed forecasts of surface temperatures at a range of
leadtimes. BOTs for pooled-dispersion forecasts are not shown, but
typically have a very similar distribution to those of forecasts with
Bayes linear adjusted discrepancies.
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Figure 6.8: Gridplots summarising the joint distribution of the BOT and BDR
histogram counts at leadtime 2. Plots are not shown for the pooled
forecasts, but closely resemble those of the Bayes linear (BL) adjusted
forecasts.
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Figure 6.9: Gridplots summarising the joint distribution of the BOT and BDR
histogram counts at leadtime 10. Plots are not shown for the pooled
forecasts, but closely resemble those of the Bayes linear (BL) adjusted
forecasts.
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6.2.1.5 Summary

When using the baseline specifications applied here, the Bayes linear adjusted

estimates of η and Λ are simple averages of the ‘prior’ MW estimates and

the ‘observed’ AN estimates. Using either of these sources of information in

isolation to postprocess the forecasts results in similar levels of overall forecast

accuracy, and as a result, forecasts postprocessed using all four estimates of η

and Λ have similar forecast accuracy on average, although the MW-adjusted

forecasts have slightly higher MAE at longer leadtimes.

Likewise, at shorter leadtimes all four methods produce forecasts of broadly

similar sharpness, being generally overdispersive; the MW- and AN-adjusted

forecasts, each being slightly sharper than the Bayes linear adjusted forecasts

on average, tend to have better marginal calibration at these leadtimes. At

longer leadtimes, the Bayes linear adjusted forecasts are somewhat sharper than

the AN-adjusted and pooled-adjustment forecasts, but less sharp than the MW-

adjusted forecasts. The BOT-BDR grids in Figures 6.8 and 6.9 indicate that

the Bayes linear adjusted forecasts better represent the dependences between

variables.

Simply averaging the two available sources of information – whether by
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Bayes linear adjustment or simply pooling – has only a small effect on forecast

skill in this case, largely because the difference in skill between forecasts adjusted

by either source in isolation is small. In particular, it cannot correct biases or

calibration errors that are shared by both the MW and AN training sets, such

as the tendency to issue forecasts that are overdispersive at shorter leadtimes

and underdispersive at longer leadtimes.

6.2.2 Alternative specifications of V[η]
The ‘baseline’ forecasts in Section 6.2.1 used V[η] = z−1ESδ [Λ] with z = n= 25,

which means that equal weight is given to the two sources of information when

adjusting the expectation of η, which is therefore the mean of the prior E[η] and

the observed sample mean δ̄. In this section, the skill of the baseline forecasts

is first compared to that of forecasts in which less confidence is placed in the

prior estimate of η; this judgement is reflected by reducing z, the notional

sample size used to set the priors. Setting z to a smaller value reflects reduced

confidence in the prior expectation E[η], corresponding to a judgement that the

MW training set may not be sampling from the same population of errors as the

current forecast instance, or that – due to autocorrelation between the forecast

errors on consecutive days – the MW training set may have a lower information

content than would an independent sample from that population. This reduces

the weight on the prior, so forecasts postprocessed using η estimated with

a smaller notional sample size z will tend to more closely resemble the AN

‘observed’ forecasts. Results are presented here for z = {19,13,7} to illustrate

the effect of reducing the notional sample size by a range of values.

An alternative approach is to set V[η] based only on the information

provided by the ‘prior’ MW training set, and to treat η as if it were a sample

mean estimated from z independent observations; then the sampling distribution

of η has variance z−1Λ. Although Λ itself is unknown, V[η] may be considered

to be proportional to the prior expectation of Λ. Under this specification –

and indeed any specification where V[η] is not proportional to ESδ [Λ] – the

weights placed on E[η] and δ̄ in the adjusted expectation are no longer scalar,
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as can be seen by writing (6.4) as

Eδ[η] = 1
n
ESδ [Λ]

(
V[η] + 1

n
ESδ [Λ]

)−1
E[η] +V[η]

(
V[η] + 1

n
ESδ [Λ]

)−1
δ̄. (6.13)

Generally, if ESδ [Λ] is larger than V[η] then more weight will be placed on the

prior E[η] in the adjusted expectation; otherwise, the sample mean discrepancy

δ̄ will dominate.

Note that, in the particular case where κ = 0, V[η] = z−1E[Λ], and

z = n, the adjusted expectation of Λ given by (6.3) simplifies to ESδ [Λ] =

(E[Λ] +Sδ)/2, and (6.13) becomes

Eδ[η] =
(
E[Λ] +Sδ

)(
3E[Λ] +Sδ

)−1
E[η] + 2E[Λ]

(
3E[Λ] +Sδ

)−1
δ̄. (6.14)

Under this specification, if Sδ is larger than E[Λ], more weight will be placed

on the prior expectation of η than on the observations; conversely, more weight

is placed on the observed sample mean δ̄ if Sδ is smaller than E[Λ]. Setting

V[η] ∝ E[Λ] and expressing equal confidence in both the ‘prior’ MW and

‘observed’ AN training sets therefore places more weight on whichever source

of information about η has the greater precision, which may be a desirable

property, particularly if forecast accuracy is expected to be strongly positively

correlated with forecast precision. Results are also presented here for this

particular case.

6.2.2.1 Bayes linear adjusted estimates of η and Λ

Changing the specification of V[η] has no effect on the adjusted expectation of

Λ in (6.1), but changes the weights assigned to the prior E[η] and observed

sample mean δ̄ in the adjusted expectation of η (6.4). All changes in forecast

skill in this section therefore occur only through changes in the forecast accuracy,

and forecast sharpness is not discussed.

The distribution of changes in Eδ[η] under each of the alternative spec-

ifications for V[η] is shown in Figure 6.10a. The first three variants use
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V[η] = z−1ESδ [Λ], with z reduced by an additional six degrees of freedom in

each variant. The distribution of changes is almost symmetric about zero in all

cases, so that the average change remains very close to zero.

The fourth variant in the plots uses V[η] = z−1E[Λ], and so scales the

contribution from the prior and observed sample means according to their

respective sample precisions. This specification typically produces a wider

spread of changes particularly at the longest leadtimes, with the majority of

instances having slightly cooler Eδ[η] than the corresponding baseline forecasts.

This occurs because, particularly at longer leadtimes, the ‘prior’ MW estimates

of Λ typically have lower marginal variances, and so more weight is placed on

the MW estimates of η, which are typically slightly cooler than their ‘observed’

AN counterparts, as discussed in Section 4.3. The result is that forecasts

postprocessed with this specification tend to have a larger negative mean

discrepancy η than either the baseline Bayes linear adjusted forecasts or the

MW or AN-adjusted forecasts alone, so are likely to predict slightly warmer

temperatures.

Figure 6.10: Distribution of changes from baseline Eδ[η] when using alternative
specifications of V[η], and corresponding change in absolute forecast
error. Results are shown for all regions at selected leadtimes .
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6.2.2.2 Forecast accuracy & skill

Figure 6.10b shows the change in absolute error for forecasts postprocessed

using Bayes linear adjustments with alternative specifications of V[η]. For

forecasts using V[η] proportional to ESδ [Λ], which place more weight on the
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‘observed’ AN training data in Eδ[η] as the notional sample size z is reduced,

the distribution of changes in absolute error closely resembles the distribution

of changes in η. For the forecasts using V[η] proportional to E[Λ] instead –

represented by the rightmost bars at each leadtime in Figures 6.10a and 6.10b

– the MAE changes by somewhat less than the estimate of η itself. These

changes in MAE are reflected in the changes in the CRPS and logS, shown in

Figure 6.11.

Figure 6.11: Distributions (over 630 forecast instances and thirteen locations)
of differences in CRPS and logS at selected leadtimes when using
alternative specifications of V[η] in place of the baseline z−1E[Λ].
Negative changes indicate that the forecasts with alternative V[η] were more
skilful than the baseline forecasts, having lower CRPS/logS.
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6.2.2.3 Marginal forecast calibration

Figure 6.12 shows the PIT histograms produced using V[η] = z−1E[Λ], where

z = 25, overlaid with those obtained using V[η] = z−1ESδ [Λ] with the lowest

value of z = 7 and the highest of = 25; all values of z intermediate between the

two produced very similar histograms, and so are not shown. The skewness

and dispersion of the PIT histograms are summarised in Figure 6.13. There is

almost no change in PIT skewness even for the smallest choice of z tested, while

histograms for forecasts using V[η] = z−1E[Λ] have slightly lower negative

skewness at longer leadtimes, suggesting that the slightly larger negative

discrepancies have somewhat offset the residual cold bias noted in Section

6.2.1.3. PIT dispersion indices, which are more sensitive to changes in the

forecast variance than the forecast mean, are almost unchanged at all leadtimes.
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Figure 6.12: PIT histograms showing the marginal calibration of postprocessed
forecasts of surface temperatures at selected locations in the north
and south of the UK at a range of leadtimes.
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(b) PIT histograms for forecasts in Kirkcaldy
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Figure 6.13: Characteristics of the PIT histograms at each leadtime for forecasts
using alternative specifications of V[η]. The lines indicate the mean
value across the thirteen regions, while the shaded area shows the
range of values. The dashed horizontal lines indicate the ideal values
of zero for skewness and one for dispersion.

(a) PIT skewness

0 5 10 15

−
0.

5
−

0.
4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1

P
IT

 s
ke

w
ne

ss

Leadtime

Baseline
z = 7
V(η) = z−1E(Λ)

(b) PIT dispersion
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Because changing the specification of V[η] makes no difference to the

adjusted expectation of Λ, there will be no changes to the BOT and BDR

histograms that cannot be explained in terms of the marginal forecasts already

considered. Results for joint calibration are therefore not presented here.

6.2.2.4 Summary

In the current study, changing the prior variance of the population mean V[η]

has a minimal effect on the overall skill of the forecasts, although the mean

vectors of individual forecasts may change by up to 2◦C at longer leadtimes

when z is much smaller than n, or when V[η] = z−1E[Λ]. If one method of
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estimating the mean discrepancy η were known to consistently outperform

the other in terms of forecast accuracy, there would be a greater justification

for adjusting the value of z to take advantage of the fact. Likewise, if there

is expected to be a strong relationship between forecast precision & forecast

accuracy in both the prior and observed sources of information, it would be

advisable to use V[η]∝E[Λ], so that the sharper forecasts place more weight on

the more accurate source of information. However, the two sets of forecasts used

in this case are generally sufficiently similar, and insufficiently well calibrated,

that changing the specification of V[η] has almost no effect on the average

forecast skill.

6.2.3 Sensitivity to choice of ν
When deriving the Bayes linear update in Section 5.3.5.2, the relationship

between E[Λ] = VR and V[Λ] = VM was specified by treating the population

variance Λ = M(V) as if it were a random covariance matrix with an inverse-

Wishart distribution with ν degrees of freedom and scatter matrix Ψ, so that

E[Λ] = 1
ν−m−1Ψ (6.15)

and

V
[
vec

(
Λ
)]

=
2vec

(
Ψ
)
vec

(
Ψ
)′

+ 2(ν−m−1)Nm (Ψ⊗Ψ)
(ν−m)(ν−m−1)2(ν−m−3) .

=
2vec

(
E[Λ]

)
vec

(
E[Λ]

)′
+ 2(ν−m−1)Nm (E[Λ]⊗E[Λ])

(ν−m)(ν−m−3) (6.16)

In this way, confidence in the prior expectation of Λ can be expressed through

the scalar parameter ν, with ν−m reflecting the notional equivalent sample

size z used to determine E[Λ]. While higher values of ν could, in theory,

be specified to increase the weight on the prior, it would be hard to justify

placing greater confidence in the prior expectation than the actual sample size

would suggest. Decreasing ν to reflect a lack of confidence that the prior MW
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training set is sampled independently from the same population as the current

forecast instance is a more defensible choice, although the degrees of freedom

must be greater than m+ 1 in order that the expectation of Λ be defined;

similarly, the covariance matrix of an inverse-Wishart random variable is not

defined when ν ≤m+ 3. A reasonable range of values for ν is therefore to set

m+ 4≤ ν ≤ z+m.

In this section, Bayes linear adjustments are carried out using ν = z+m;

ν = z, reflecting moderate confidence in the prior; and ν = m+ 4, reflecting

extremely low confidence in the prior. Reducing ν in this way reduces the

weight assigned to the prior E[Λ] in the adjusted expectation of Λ; as a result,

the Bayes linear adjusted expectation will more closely resemble the estimate

of Λ derived from the AN training set as ν decreases. All other quantities are

defined as in Section 6.2.1.

The confidence parameter ν only plays a role in adjusting the expected

value of Λ: the adjusted expectation of η is the same for all values of ν.

Consequently, the accuracy of the deterministic postprocessed forecasts with

varying ν is not discussed here.

6.2.3.1 Forecast skill, sharpness & calibration

The differences in CRPS and log score resulting from reducing ν from the

baseline of z+m are shown in Figure 6.14: both sets of changes are of small

magnitude and broadly symmetric about zero, with the average forecast skill

almost unchanged from the baseline case.

Decreasing the prior degrees of freedom to reflect reduced confidence in

the prior does not necessarily result in a higher adjusted variance: instead,

more weight is given to the ‘observed’ sample variance Sδ obtained from the

AN-adjusted forecasts, so reducing the prior degrees of freedom will result in a

lower combined variance only where Sδ is sharper than the ‘prior’ E[Λ]. At

leadtimes greater than a week, the MW-adjusted forecasts used to set E[Λ] are

typically significantly sharper than the AN-adjusted forecasts used to adjust
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Figure 6.14: Distribution of differences in CRPS and logS when ν is changed from
the baseline of ν = z+m. Differences are shown for all regions at
selected leadtimes. Negative changes indicate that the forecasts with
smaller ν have lower scores, indicating greater skill.
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the variance, and so reducing ν tends to result in a slight increase, on average,

in forecast variance at these leadtimes, as shown in Figure 6.15a. However,

the effect is very small, with only around a 2% increase in variance when ν is

reduced from z+m to m+ 4 (Figure 6.15b).

Figure 6.15: Distribution of changes in marginal sharpness of postprocessed fore-
casts when ν is reduced from the baseline of ν = z+m, across all
regions at selected leadtimes, expressed as the ratio of each fore-
cast standard deviation to that of the Bayes linear adjusted forecast,
where values greater than one indicate that the Bayes linear adjusted
forecasts were sharper than the alternative; and spread of average
marginal sharpness in each region for each choice of ν, where the lines
indicate the mean value across the thirteen regions, while the shaded
area shows the range of values.
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Because the changes in forecast variance due to reducing ν are generally

very small, the effect on the marginal calibration is negligible, with PIT

histograms for all values of ν having almost the same PIT skewness and

dispersion even at the longest leadtimes (Figure 6.16). Similarly, the BDR
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histograms shown in Figure 6.17 are almost identical for all values of ν.

Figure 6.16: Characteristics of the PIT histograms at each leadtime for forecasts
using alternative specifications of ν. The lines indicate the mean value
across the thirteen regions, while the shaded area shows the range of
values. The dashed horizontal lines indicate the ideal values of zero
for skewness and one for dispersion.
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(b) PIT dispersion
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Figure 6.17: BDR histograms showing the joint calibration of postprocessed fore-
casts of surface temperatures at a range of leadtimes when Λ is
estimated using a range of values of ν.

BDR

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 2 days ahead

BDR

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 5 days ahead

BDR

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 10 days ahead

BDR

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0 15 days ahead

z+m
z
m+4

Interestingly, a somewhat larger change can be observed in the BOT

histograms in Figure 6.18; while forecasts using ν = z+m and ν = z produce

almost identical BOT histograms at all leadtimes, histograms of forecasts with

ν =m+ 4 display a small but distinct shift, with lower counts in the rightmost

bin – indicating fewer observations in the centre of the joint distribution – and

higher counts in the leftmost bin, indicating more observations falling in regions

of very low forecast probability. The change is small, but suggests that the

dependence structure of forecasts with lower ν and correspondingly greater

contribution from the ‘observed’ AN-adjusted forecasts is too strongly specified.

This supports the conclusion in Section 6.2.1.4 that the correlation structure is

better represented when the two sources of information are combined.
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Figure 6.18: BOT histograms showing the joint calibration of postprocessed fore-
casts of surface temperatures at a range of leadtimes when Λ is
estimated using a range of values of ν.
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6.2.3.2 Summary

The mean forecast vectors are unaffected by changes in ν, and although the

change in weighting between MW and AN-adjusted forecasts may have a large

impact on the variance of individual forecasts, the average change in forecast

calibration over all instances is very small. In an operational setting it may be

useful to vary ν across leadtimes based on the earlier performance of the prior

and observed datasets; however, the change in forecast skill is so small in this

data set that such an approach is unlikely to yield any substantial benefits, so

is not investigated further here.

6.2.4 Effect of specifying non-zero κ

This section investigates the effect of increasing or decreasing the kurtosis

parameter κ= Kur [X]/3 to reflect a prior belief that the forecast errors δ are

drawn not from a normal distribution but from a heavier- or lighter-tailed

distribution – meaning that any sample of forecast errors will tend to contain

a higher or lower proportion of outliers than would a sample drawn from a

normal distribution. Bayes linear adjustment of Λ is initially carried out using

a fixed value of κ at all leadtimes. Results are then presented for the skill of

forecasts using more realistic approaches, either by using the sample kurtosis

of the training sets used to determine the other prior quantities, or by using

the sample kurtosis over the full archive at each leadtime.

With the exception of κ, all adjustments in this section use the same

specifications that were used in Section 6.2.1, with V[η]∝ ESδ [Λ], ν = z+m,

and z = 25. The adjusted expectation of η is therefore the same as (6.11),
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and Eδ[η] is unaffected by the choice of κ. Forecast accuracy is therefore not

reported here, and any changes in forecast skill can be directly attributed to

the change in κ alone.

It is worth noting that changing the kurtosis parameter κ modifies the

adjusted expectation of the covariance matrix Λ, but does not change the shape

of the Bayes linear adjusted distribution as it would in a fully probabilistic

Bayesian analysis: all quantities are still assumed to be fully specified by their

expectations and covariance matrices.

6.2.4.1 Effect of κ on adjusted expectation of Λ

From (6.1) and (6.2), the adjusted expectation of Λ can be written as

ESδ [Λ] = w1Sδ+
{

(1−w1) +w2
[
m− tr

(
E[Λ]−1Sδ

)]}
E[Λ] (6.17)

where

w1 = n(n−1)
κ̃+nν̃

and w2 = n(n−1)(ν−m−3)κ̃
[κ̃+nν̃] [(m+ 2)(ν−m−1)κ̃+ 2(ν−1)nν̃] ,

(6.18)

where κ̃ = κ(n− 1)(ν −m) and ν̃ = ν −m− 1 + n− 1. Using the baseline

specifications of z = n= 25, m= 13, and ν = z+m= 38, w2 varies with κ as

shown in Figure 6.19a, with positive κ producing positive values of w2, and

negative choices of κ producing negative w2. In the dataset used in this study,

tr
(
E[Λ]−1Sδ

)
was typically larger than m; when this is the case, positive

values of κ will result in a negative contribution from w2
[
m− tr

(
E[Λ]−1Sδ

)]
and so in lower adjusted variances than would using κ = 0, while negative

values of κ will produce forecast distributions with higher variances than the

baseline. w2 is maximised by setting κ to approximately 0.9, as described in

Section 5.3.7.1: Bayes linear adjustments using κ≈ 0.9 are therefore expected

to produce the sharpest possible forecasts, although the difference in sharpness

is likely to be small for values of κ moderately close to this value unless
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m− tr

(
E[Λ]−1Sδ

)]
E[Λ] is very large.

This expected pattern of behaviour is clearly reflected in Figure 6.19b,

which shows the sharpness of the Bayes linear adjusted forecast discrepancies

for a single region under a range of arbitrarily chosen values of κ. The same

pattern is found in all regions and at all leadtimes, with the difference between

the baseline and κ-adjusted estimates generally being larger at longer leadtimes,

when E[Λ] is typically larger.

Figure 6.19: Values of w2 in the third term in (6.17) with n = 25, m = 13, and
ν = 38, and the distributions (over all 630 forecast instances and all
thirteen regions, at selected leadtimes) of the resulting Bayes linear
adjusted marginal standard deviations for several choices of κ. The
Y -axis of (b) is truncated to show the detail.
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In Section 6.2.1.3 it was observed that forecasts using κ= 0 are typically

under-confident at shorter leadtimes and over-confident at longer leadtimes,

suggesting that using a fixed value of κ in the Bayes linear adjustment at all

leadtimes will result in significantly worse forecast calibration at either longer

or shorter leadtimes, and therefore worse forecast skill overall. Better results

may therefore be expected if the kurtosis is allowed to vary with the forecast

leadtime, and perhaps with the forecast instance.

6.2.4.2 More realistic estimates of κ

The value of κ may be set separately for each forecast instance by evaluating

the kurtosis of the corresponding training set directly; however, estimates

of kurtosis from such a small sample are likely to be very variable (Fisher,

1930). Figure 6.20a shows distributions of sample kurtoses for all available
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25-member MW training sets within the forecast archive described in Section

2.1.2; particularly at the shortest leadtimes, a wide spread of values is obtained,

both within and between regions. Higher sample kurtosis values tend to be

observed at shorter leadtimes, with most training sets at longer leadtimes

having slightly negative kurtosis. For operational purposes, the distributions of

sample kurtoses at each leadtime are fairly similar across the regions.

Figure 6.20: Marginal kurtosis of forecast errors at each leadtime and region

(a) Distribution of sample kurtosis of each 25-
member MW training set in each region for
selected leadtimes
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0 5 10 15

0
2

4
6

U

N

t5

t6

t10M
ar

gi
na

l e
xc

es
s 

ku
rt

os
is

Leadtime

0

1

3

1

2

K
ur

to
si

s 
pa

ra
m

et
er

 κ

Bristol
Southampton
Swansea
Birmingham
London
Liverpool
Sheffield

Leeds
Carlisle
Glasgow
Fort William
Kirkcaldy
Forres

Where a large archive of previous training cases is available, a more stable

estimate of the common kurtosis parameter κ at each leadtime may be obtained

by computing the kurtosis over all available training cases for each region, and

averaging over the m regions. Figure 6.20b shows the marginal kurtosis of the

630 forecast errors at each leadtime and each region in the study archive. The

plot suggests that it would be appropriate to set κ> 0 for forecasts at leadtimes

of up to roughly a week, with errors in most regions having marginal excess

kurtosis between 1 and 3 at up to four days ahead, and of less than 1 at four

to five days ahead; at longer leadtimes the excess kurtosis is again negative.

Here, two practical approaches to the estimation of κ are investigated. In

the first, values of κ are estimated independently for each forecast instance as

one-third of the excess kurtosis Kur [δ] of the discrepancies in the ‘prior’ MW

training set, with the parameter estimated in this way denoted by κts (recall

from Section 5.3.5 that κ= Kur [X]/3, where Kur [X] is the excess kurtosis of

the quantity of interest X). The second approach adjusts all forecast instances

at a given leadtime using the same value of κ, denoted κlt, where κlt is one-third
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of the excess kurtosis of the 630 training cases in the archive at that leadtime.

Note that the subscripts ‘ts’ and ‘lt’ are not indices, but merely indicate which

of the methods was used to estimate κ for each set of forecasts.

6.2.4.3 Replacing invalid κ

The Bayes linear adjusted expectation obtained using (6.17) is not guaranteed

to be positive-semidefinite when κ 6= 0, as discussed in Section 5.3.7.4. A

potential solution to this problem is to replace the proposed value of κ with

one that will result in a valid covariance matrix in (5.177). The range of values

of κ for which ESδ [Λ] is guaranteed to be positive-semidefinite was found in

Section 5.3.7.4 to be
κ̃≤ −b2a −

√
b2−4ac

4a2 ∪ κ̃≥ −b2a +
√
b2−4ac

4a2

 , (6.19)

where

a= (m+ 2)(ν−m−1),

b= n(n−1)(ν−m−3)
[
m− tr

(
E[Λ]−1Sδ

)]
+n(ν−m−1)2(m+ 2) + 2(ν−1)nν̃,

c= 2n2(ν−m−1)(ν−1)ν̃.

Where the proposed value of κ does not fall within this set, a replacement must

be chosen. Reasonable candidates include the closest valid κ to the proposed

value, or the value of κ that produces the most similar value w2 to that given

by the proposed κ.

Figure 6.21 shows the replacement values of κ corresponding to each of

these methods of replacement: κl is the largest valid value of κ such that

κ̃≤ −b2a −
√
b2−4ac

4a2 , and κu the smallest value of κ such that κ̃≥ −b2a +
√
b2−4ac

4a2 .

Where the proposed value of κ falls within the blue shaded region, κl will

be chosen as the replacement value; where the proposed value falls within

the yellow region, the replacement value will be κu. Where the closest value

of w2 is used to choose the replacement, there is a range of invalid choices
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of κ where w2(κl)< w2(κ)< w2(κu), denoted by the orange region in Figure

6.21b, for which there is always a replacement value greater than κu that

matches w2(κ) exactly: this potentially much larger replacement value of κ

would always be chosen under this strategy, suggesting that it may result in

physically implausible choices for κ.

This assertion is supported by the empirical evidence from this study: in

the dataset used here, 991 proposed values of κts (out of 630× 16 = 10080

forecast instances) resulted in invalid ESδ [Λ]; in 984 of these cases the closest

valid κ to these proposals was κl, while κu was selected in only seven instances,

suggesting that the proposed values of κ were generally quite close to zero.

When the replacement was chosen by matching the closest value of w2 κ, κu
was selected in 748 of the 991 cases. In the 243 remaining cases where the

proposed κ was very close to κl, the replacement values were larger than κu,

and 143 of these were greater than two, the largest of the plausible values of

κ suggested in Table 5.1. This supports the assertion made above that the

closest-w2 approach is likely to result in physically implausible choices for κ.

Figure 6.21: Example of the likely values of κ chosen by each replacement method.
κl and κu denote the closest valid values of κ to proposals in the
shaded region.
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Replacing the proposed κ with either κl or κu will set the term in braces

{} in (6.17) to zero, removing any contribution from E[Λ] to the adjusted

expectation of Λ. In this case, ESδ [Λ] = w1Sδ, where from (6.18), w1 is also
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determined by κ, with

w1 = n(n−1)
κ(n−1)(ν−m) +n(ν−m−1 +n−1) . (6.20)

This quantity, illustrated in Figure 6.22a, has the value 0.5 when κ = 0 and

decays with increasing κ: if κl is chosen as the replacement, w1 will be close

to 0.5, while if κl is chosen as the replacement, w1 will be somewhat smaller.

When – under the nearest-w2 strategy – κ > κu is used as a replacement for

the proposal, w1 will be smaller still, although E[Λ] will also make a non-zero

contribution to ESδ [Λ]. Either approach to choosing a replacement value of κ

will therefore result in a relatively small adjusted variance matrix.

Figure 6.22: Scaling factors assigned to Sδ and E[Λ] in (6.17) for a range of κ
when ν−m= n; in this example, tr

(
E[Λ]−1Sδ

)
= 98, but the shape

of the curve will be the same regardless of the value of tr
(
E[Λ]−1Sδ

)
.
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Figure 6.23 illustrates this, showing the distribution of the determinant

sharpness (DS) of the postprocessed forecasts under various specifications of κ.

The left-hand boxplot for each leadtime shows the distribution of DS for that

subset of forecasts for which the original value of κ produced a valid covariance

matrix, indicating the range of sharpness that might be considered reasonable

under the original specifications. The remaining boxplots at each leadtime

show the distribution of DS for those forecast instances for which the original

choice of κ was replaced: either with κ= 0, with the nearest valid value of κ,

or with the value of κ giving the closest value of w2 to that obtained using the

original choice of κ.
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Figure 6.23: Distribution of forecast determinant sharpness (DS) at each leadtime
when invalid κ is replaced with an alternative.
Black boxplots show the distribution of DS for the subset of forecasts
where no replacement was necessary; coloured boxplots show the
distribution of DS for the subset of forecasts where κ was replaced with
an alternative. Fewer observations appear in the coloured boxplots at
longer leadtimes because the proposed κ is less frequently invalid at
these leadtimes.

(a) Original κ is κts.
Plot is truncated at DS=3 for clarity.
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Regardless of whether κts or κlt was originally proposed, setting κ = 0

is a conservative choice of replacement: for every forecast instance, replacing

the proposed value of κ with zero resulted in forecast distributions that were

less sharp than if a non-zero replacement was used. The DS of forecasts

postprocessed using the closest value of κ tend to fall in the lower tail of the

distribution of DS of the forecasts for which the original κ was valid, but still

fairly close to the centre of the distribution, suggesting that this choice most

closely replicates the desired behaviour under the original specifications. When

κ is replaced with the value giving the closest valid w2, the DS of the adjusted

forecasts is typically lower still, frequently falling outside the range of DS for

the ‘uncorrected’ forecasts, and indicating that this approach often produces

very over-confident forecasts. Because of this tendency, coupled with the fact

that choosing the nearest-w2 κ generally produces a value of κ that is very far

from that originally proposed, and which may be extremely large, choosing the

nearest-w2 replacement for the proposed κ is not recommended.

In what follows, for any instance where the adjusted expectation ESδ [Λ]

was not positive definite, the adjustment was carried out again using the closest

valid κ, and that estimate of Λ used instead, ensuring that valid postprocessed
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covariance matrices were obtained for all forecast instances. This approach

to replacing κ ensures the greatest possible consistency with the original

proposed values, and as shown in Figure 6.23, produces more plausible adjusted

expectations of the covariance matrix.

Figure 6.24a shows the range of values of κ used to carry out the Bayes linear

adjustments. The values of κts estimated for each training set are generally

lower than those of κlt estimated across all training cases at each leadtime,

although a few forecast instances received substantially higher estimates. At

the shortest leadtimes, κlt is close to the sharpness-maximising value of κ= 0.9;

as a result, κlt was replaced with the nearest valid κ in around 30% of all

forecast instances (Figure 6.24b), while the lower κts estimates were more

likely to produce a valid variance-covariance matrix. At longer leadtimes both

methods usually produced an estimate of κ close enough to zero that the

resulting adjusted expectation of Λ was positive-semidefinite, with κlt always

producing valid covariance matrices at leadtimes of eight or more days. Note

also that forecasts postprocessed using the proposed κts were much more likely

to produce very large adjusted expectations, and therefore to produce forecasts

with large determinant sharpness in Figure 6.23, while those using κlt produced

less variable adjusted expectations

Figure 6.24: Distribution of values of κ used to produce valid adjusted expectations
of Λ at each leadtime. For κlt a single value of κ was originally
proposed at each leadtime; the boxes and whiskers therefore indicate
the spread of replacement values.

(a) Values of κ used in Bayes linear adjustment.
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6.2.4.4 Forecast sharpness and skill

Figure 6.25a shows the spread of the marginal standard deviations of the

postprocessed forecasts, with the mean sharpness and spread across all regions

in Figure 6.25b. At the very shortest leadtimes, forecasts using non-zero kappa

are typically sharper than not only the baseline forecasts using κ= 0, but also

the forecasts postprocessed using Λ estimated from the MW or AN training

sets alone; in Section 6.2.1 the baseline forecasts and those adjusted using only

the MW or AN training sets were found to be insufficiently sharp, on average,

at these leadtimes, so this change might be expected to result in consistently

better-calibrated forecasts. At leadtimes of five days ahead, the median value

of κts is less than zero, and as a result, the forecasts using κts tend to be less

sharp than those using κlt. The κlt forecasts, on the other hand, remain sharper

on average than the baseline forecasts or those using MW or AN estimates of

Λ alone.

At longer leadtimes, where κts and κlt are generally both less than zero,

both estimates of κ generally result in less sharp forecasts than the baseline.

These are the leadtimes at which the AN-adjusted, baseline and particularly

the MW-adjusted forecasts tend to be over-confident, so increasing the variance

to some extent may be expected to result in improved calibration. However,

due to the extremely low values of κ estimated from the training data the

variance of κts forecasts is often much higher than that of the κlt or baseline

forecasts, which is likely to result in a different form of miscalibration.

Figure 6.26 shows the difference in CRPS and logarithmic score when

κ = 0 is replaced with either κts or κlt in the Bayes linear adjustment. The

κlt-adjusted forecasts achieve similar CRPS to the baseline forecasts at all

leadtimes. However, while the κts-adjusted forecasts receive similar scores at

the shortest leadtimes, their performance becomes increasingly variable with

increasing leadtime, with some instances receiving substantially worse CRPS

under this specification than with κ = 0; the effect is large enough that the

mean CRPS for the κts forecasts is 0.2◦C higher at longer leadtimes, suggesting
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Figure 6.25: Distribution of marginal standard deviations of all 630 postprocessed
forecasts in all regions at selected leadtimes, and spread of regional
mean standard deviation for selected discrepancies: the lines indicate
the mean value across the thirteen regions, while the shaded area
shows the range of values.
The model acronyms in the legend denote forecasts corrected using
a discrepancy estimated directly from the MW or AN training sets
(MW only, AN only); and forecasts corrected using a Bayes linear
adjusted discrepancy with κ set to zero (BL κ0), estimated per MW
training set for each instance (BL κts), and estimated per leadtime
(BL κlt). In instances where the proposed κts or κlt were found to be
invalid, the nearest valid κ was used.
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that the κts forecasts should be considered to be particularly poorly calibrated.

The logarithmic scores display a slightly different pattern: at the shortest

leadtimes, both κts and κlt-adjusted forecasts are more likely to be less skilful

than the baseline forecasts when evaluated by this metric, while at longer

leadtimes, they are likely to be more skilful. The mean logarithmic score for

the κts-adjusted forecasts is approximately 6% higher than that of the baseline

forecasts at the longest leadtimes, while the κlt-adjusted forecasts have a similar

mean logarithmic score to the baseline forecasts at all leadtimes.

6.2.4.5 Marginal forecast calibration

The effect of the changing forecast sharpness can be clearly seen in the PIT

histograms in Figure 6.27; histograms for regions not shown in the main text

can be found in Figure B.5 in Appendix B.

Figure 6.28 summarises the characteristics of the PIT histograms for

all regions; the PIT skewness is broadly similar for all three methods at all
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Figure 6.26: Distribution of differences in CRPS and logS when realistic values of
κ are used in Bayes linear adjustment instead of the baseline κ= 0.
Results are presented for all regions. Negative differences mean that
the forecasts with non-zero κ achieved a better score.

(a) Differences in CRPS

−
2

0
2

4
6

−
2

0
2

4
6

2 5 7 10 12 15

Leadtime

D
iff

er
en

ce
 in

 C
R

P
S

BL kTS
BL kLT

(b) Differences in logarithmic score

−
5

0
5

10
−

5
0

5
10

2 5 7 10 12 15

Leadtime

D
iff

er
en

ce
 in

 lo
gS

BL kTS
BL kLT

leadtimes because all three sets of forecasts have the same mean vectors. At

shorter leadtimes, observations are slightly more likely to fall in the outer

regions of the slightly sharper kurtosis-adjusted forecasts, with the κlt forecasts

having dispersion indices slightly closer to one than either the baseline or κts
forecasts. For five-day-ahead forecasts, the κts forecasts are, on average, less

sharp than the baseline forecasts, and the resulting PIT dispersion index is

slightly lower than that of the baseline forecasts. κlt forecasts at the same

leadtime are generally sharper than the baseline, and tend to produce well-

calibrated PIT histograms with dispersion indices close to one. Furthermore,

comparing the PIT dispersion indices for the κlt forecasts to those of the MW-

and AN-only forecasts in Figure 6.28b indicates that the κlt forecasts have

substantially better marginal calibration than forecasts using either single

source of information at shorter leadtimes.

At longer leadtimes, when the excess kurtosis was typically estimated to be

negative, the PIT histograms for the κts forecasts are visibly peaked, suggesting

that the resulting forecasts are typically overdispersive. The κlt forecasts also

suffer from this underconfidence, but to a lesser degree than the κts forecast.

6.2.4.6 Joint forecast calibration

The lack of marginal calibration of the κts forecasts is reflected in the BDR

histograms presented in Figure 6.29. At the shortest leadtimes, the difference in
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Figure 6.27: PIT histograms showing the marginal calibration of forecasts postpro-
cessed using Bayes linear adjusted discrepancies with different choices
of κ at selected locations in the north and south of the UK, at a range
of leadtimes. The dashed line indicates the ideal uniform distribution.

(a) PIT histograms for forecasts in Bristol
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(b) PIT histograms for forecasts in Kirkcaldy
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Figure 6.28: Characteristics of the PIT histograms at each leadtime for Bayes linear
adjusted forecasts using realistic choices for κ. The lines indicate the
mean value across the thirteen regions, while the shaded area shows
the range of values. The dashed horizontal lines indicate the ideal
values of zero for skewness and one for dispersion.
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(b) PIT dispersion
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marginal calibration between the three sets of forecasts is relatively small, with

all three having too many observations falling in the centre of the marginally

overdispersive forecast distributions; however, this tendency persists at all

leadtimes for the κts forecasts, reflecting the tendency to marginal overdisper-

siveness already noted. Fewer observations fall in the rightmost bins of the

BDR histograms for the κlt forecasts at the shortest leadtimes, but by leadtime

five, there is a small spike in the leftmost bin, indicating that the forecasts

are jointly slightly underdispersive at this leadtime, with a high proportion of

observations falling in regions of extremely low forecast probability. At longer
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leadtimes, where the baseline forecasts are themselves slightly underdispersive,

the κlt forecasts are again slightly overdispersive, reflecting the pattern of

marginal calibration.

All three methods produce highly ∪-shaped BOT histograms (Figure 6.30),

indicating that the κ-adjusted forecasts still overstate the dependence between

the temperatures in each region.

Figure 6.29: Band Depth Rank (BDR) histograms showing the joint calibration of
postprocessed forecasts of surface temperatures at a range of leadtimes.
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Figure 6.30: Box Ordinate Transform (BOT) histograms showing the joint calibra-
tion of postprocessed forecasts of surface temperatures at a range of
leadtimes.
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6.2.4.7 Summary

Adjusting the kurtosis parameter κ has a larger effect on the forecast variance –

and so on the forecast skill – than adjusting any of the other prior specifications.

In particular, setting κ > 0 at shorter leadtimes, when the forecast errors have

been shown to have positive marginal excess kurtosis, tends to improve forecast

skill not only against the baseline forecasts with κ= 0, but also against either

the MW or AN-adjusted forecasts alone. However, setting κ < 0 at longer

leadtimes does not generally improve on the forecast skill obtained by the

baseline forecasts with κ= 0.

Estimating the kurtosis parameter independently for each forecast instance

generally produces lower estimates of κ than estimating across all instances

for a single leadtime. In particular, at the longest leadtimes – when forecasts
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tend to be very close to the observed climatology – this method of estimating κ

frequently produced large negative values, which massively inflates the variance

of the postprocessed forecasts. This suggests that a sample size of 25 is too small

to adequately estimate the true rate of outliers in the underlying population;

more reliable estimates of κ were obtained when all available data were used.

6.2.5 Forecast skill of Bayes linear adjusted forecasts

compared to NGR-postprocessed forecasts
In Section 4.2 forecasts were postprocessed using the Bayesian framework laid

out in Section 2.2, with η and Λ estimated empirically from a single training

set. The skill of those forecasts was compared to that achieved by forecasts

postprocessed using nonhomogeneous Gaussian regression (NGR). The NGR-

postprocessed forecasts were generally found to be more accurate (having

lower MAE) and sharper, which results in better probabilistic calibration at

shorter leadtimes, but may produce too-sharp forecasts at longer leadtimes. In

this section, the skill of NGR forecasts trained using the MW training sets is

compared to that of forecasts postprocessed using the Bayesian framework with

η and Λ obtained by Bayes linear adjustment using the baseline specifications,

first with κ= 0 and then with κ= κlt.

6.2.5.1 Forecast accuracy

The distribution of the difference in mean absolute error (MAE) between the

NGR and Bayes linear adjusted forecasts at each leadtime is shown in Figure

6.31; results are only shown for the baseline Bayes linear adjusted forecasts,

because the mean forecast vector is the same regardless of the value of κ used

in the adjustment.

Forecasts postprocessed using NGR have slightly lower MAE than forecasts

using the Bayesian framework with Bayes linear adjusted η and Λ; however,

as Figure 6.31 shows, the average improvement is very small compared to

the spread of forecast errors at all leadtimes, which is very similar for both

postprocessing methods. In fact, the Bayes linear adjusted forecasts are more
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accurate than the NGR forecasts in around 40% of all cases at all leadtimes and

in all regions, with colder temperatures remaining particularly poorly predicted

by both methods.

Figure 6.31: Forecast errors for Bayes linear adjusted and NGR-postprocessed
forecasts.

(a) Difference in mean absolute error in each of the
13 study regions. Positive differences indicate
that the Bayes linear adjusted forecasts are less
accurate.
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6.2.5.2 Forecast sharpness and calibration

Figure 6.32b shows the distribution of the marginal standard deviations of the

postprocessed forecasts in Bristol for all three postprocessing approaches. At

all leadtimes, NGR postprocessing is able to produce extremely sharp forecasts;

at longer leadtimes, the NGR forecasts tend to span a wider range of variances

than the Bayes linear adjusted forecasts, particularly those using the baseline

specifications, suggesting that they may be better able to capture the full spread

of variability in the forecasts. On average, the NGR forecasts are substantially

sharper than the Bayes linear adjusted forecasts at all leadtimes, even when

the kurtosis adjustment is applied at shorter leadtimes.

The NGR forecasts have slightly lower CRPS and logS overall than the

Bayesian postprocessed forecasts, with mean CRPS around 0.1-0.2◦C lower and

mean logS between 0.05 and 0.25 lower, corresponding to between 5% and 30%

more density placed at the verifying observation by the NGR forecasts. However,

as Figure 6.33 shows, this improvement is not consistent across all forecast

instances. In particular, while the median difference in log score is close to zero,
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Figure 6.32: Distribution of marginal standard deviations of all 630 postprocessed
forecasts in all regions at selected leadtimes, and spread of regional
mean standard deviation, for forecasts postprocessed using NGR,
Bayesian postprocessing with Bayes linear adjusted discrepancy with
zero marginal kurtosis in the forecast errors, and Bayesian postpro-
cessing with Bayes linear adjusted discrepancy with marginal kurtosis
estimated separately for each leadtime. In instances where the pro-
posed κlt was found to be invalid, the nearest valid κ was used. The
lines in (b) indicate the mean value across the thirteen regions, while
the shaded area shows the range of values.
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the distribution of logS differences in Figure 6.33b is quite asymmetric; the

NGR forecasts sometimes receive much higher log scores than their Bayes linear

adjusted counterparts (represented by large negative differences), indicating

NGR forecasts that assign very low probability to the outcome that actually

occurred.

Figure 6.33: Distributions of differences in CRPS and log score between NGR
and Bayes linear adjusted forecasts. Positive scores mean that the
Bayesian postprocessed forecasts were less skilful.
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Figure 6.34 shows PIT histograms for forecasts in regions in the north and

south of the UK for all three methods. At the shortest leadtimes, histograms

for the NGR-postprocessed forecasts are more uniform than those using the
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Bayesian framework to carry out postprocessing, with fewer observations falling

between the 40th and 80th percentiles of the forecast distributions, and more

falling in the extreme tails, indicating better forecast calibration. At longer

leadtimes the NGR forecasts are slightly underdispersive, with PIT dispersion

indices greater than one (Figure 6.13); the Bayes linear adjusted forecasts using

κ= κlt are generally overdispersive at these leadtimes, while the Bayes linear

adjusted forecasts using κ= 0 – while still slightly underdispersive – tend to

achieve better probabilistic calibration, with dispersion indices closer to one.

Figure 6.34: PIT histograms showing the marginal calibration of postprocessed
forecasts of surface temperatures at selected locations in the north
and south of the UK at a range of leadtimes.
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(b) PIT histograms for forecasts in Kirkcaldy
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Figure 6.35: Characteristics of the PIT histograms at each leadtime for forecasts
using alternative specifications of V[η]. The lines indicate the mean
value across the thirteen regions, while the shaded area shows the
range of values. The dashed horizontal lines indicate the ideal values
of zero for skewness and one for dispersion.
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The joint calibration of the NGR-postprocessed forecasts is determined
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by the choice of dependence structure used to combine the marginal forecasts

into a multivariate distribution. The effect of this choice has already been

considered in Section 4.2.3, so joint calibration is not discussed further here.

6.2.5.3 Summary

As in Section 4.2, the NGR-postprocessed forecasts are both sharper and more

accurate than those obtained using the Bayesian postprocessing framework

regardless of the approach used to estimate the discrepancy ∆, although the

improvement in average accuracy is small compared to the magnitude of the

errors that remain. As a result of these improvements, the NGR forecasts

have better marginal probabilistic calibration than the Bayes linear adjusted

forecasts at shorter leadtimes, reflected in slightly improved CRPS skill and

more uniform PIT histograms. At longer leadtimes, while the NGR forecasts

remain slightly more accurate on average, the baseline Bayes linear adjusted

forecasts achieve comparable or slightly better marginal calibration overall.

This suggests that, if forecast accuracy could be improved, the Bayes linear

adjusted forecasts could be competitive with the NGR forecasts at longer

leadtimes, although in order to compete at shorter leadtimes the forecasts

would need to be sharper even than those incorporating an assumption of

positive kurtosis.

6.3 Postprocessing with full assessment of

uncertainty
In Section 6.2, the postprocessed forecasts were the posterior distributions of

the weather quantity Y0 conditional on the observed ensemble members {Yij}

and the expectation η and covariance Λ of the forecast discrepancy. However,

by simply ‘plugging in’ the values of η and Λ, this approach fails to account

for any uncertainty about their true values. The posterior distribution of Y0

conditioned only on the observed ensemble members {Yij} would be obtained
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by integrating the joint posterior distribution over η and Λ:

π (Y0|{Yij}) =
∫
π (Y0|{Yij} ,η,Λ)π (η,Λ)dηdΛ (6.21)

where π(·) denotes a probability density function, and π (η,Λ) denotes the

joint distribution of η and Λ after Bayes linear adjustment. Obtaining a closed

form for this posterior distribution is not trivial, so simulations are used in this

section to provide an approximation to the posterior distribution, in order to

evaluate the impact on forecast skill of omitting this source of uncertainty in

the original forecasts.

Due to the computing time needed to sample even a moderately-sized

ensemble from the full posterior distribution of Y0|{Yij}, results are only

presented here for forecasts postprocessed using the baseline adjustment con-

sidered in Section 6.2.1, using V[η] = z−1ESδ [Λ], κ= 0, and ν = z+m; and for

the same adjustment with κ = κlt presented in Section 6.2.4. This choice of

prior for V[η] results in an adjusted variance of η that depends on the adjusted

expectation of Λ, effectively replicating the effect of a joint distribution for η

and Λ.

6.3.1 Simulation of uncertainty about η and Λ
Although the Bayes linear approach does not provide a joint posterior for η and

Λ from which to sample the discrepancy ∆, it does provide for each forecast

instance the adjusted expectation and variance of the mean discrepancy η,

along with the adjusted expectation of the covariance Λ. A natural approach to

simulating an approximation to the joint posterior distribution of ∆ is therefore

to draw samples from a normal-inverse-Wishart distribution with parameters

determined by these quantities and the scalar parameters ν, z and n used in

the adjustment of Λ and η.

Simulation is carried out for each forecast instance by first sampling an

instance Λi, say, of Λ from the inverse-Wishart distribution with expectation

ESδ [Λ] and (ν+n−1) degrees of freedom. This parametrisation ensures that,
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in the baseline forecasts, the scale matrix Ψ is

Ψ = (ν−m−1 +n−1)ESδ [Λ] = (n−1)Sδ+ (ν−m−1)E[Λ] , (6.22)

consistent with the natural conjugate specification that the baseline Bayes

linear adjustment was shown to approximate in (5.200) in Section 5.4.2.

An instance ηi of η is then sampled from the normal distribution with

mean vector Eδ[η] and covariance matrix Λi/(z+n); these realisations are then

used in (6.8) to obtain the corresponding mean vector τ i and covariance matrix

Si of the forecast distribution. Finally, a single realisation Y(i)
0 is sampled from

this conditional distribution. This process is repeated 100 times for each forecast

instance, providing a 100-member sample from the posterior distribution (6.21).

The verification tools described in Chapter 3 as suitable for the evaluation

of ensemble forecasts are used to obtain measures of forecast accuracy and

calibration that can be compared directly to those already presented in Sections

6.2.1 and 6.2.4 for the normally distributed ‘plug-in’ forecasts.

6.3.1.1 Forecast accuracy and sharpness

Figure 6.36 shows the distribution of differences in absolute error and CRPS

between the simulated forecasts and their ‘plug-in’ equivalents. At all leadtimes

the change in MAE due to simulation is very close to zero, although changes

of up to 1◦C for individual forecasts are fairly common. The change in MAE

is reflected almost exactly in the distribution of the CRPS. The log score is

not computed for these nonparametric ensemble forecasts, because this would

require some assumptions regarding the underlying parametric form of the

distribution, as discussed in Section 3.2.2.

The change in forecast sharpness resulting from the additional source of

uncertainty is shown in Figure 6.37, expressed as the ratio of the standard

deviations of the simulated forecasts to the standard deviations of their ‘plug-in’

equivalents. The distribution of the proportional changes in forecast sharpness

is constant at all leadtimes, and forecasts with simulated uncertainty are as
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Figure 6.36: Distribution of changes in forecast accuracy when Y0 is simulated,
compared to forecast accuracy of corresponding ‘plug-in’ estimate.
Changes are shown for all regions.
Negative values indicate greater skill (lower MAE/CRPSS) from the
forecasts with simulated uncertainty.
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likely to be sharper than their plug-in counterparts as they are less sharp.

This suggests that the random variations introduced by simulating from Λ

are responsible for the majority of the change in sharpness for individual

forecasts, masking the smaller increase that might be expected as a result of

sampling the uncertainty about η. Figure 6.37b shows that such an increase

does indeed occur, with the marginal standard deviations of simulated forecasts

being around 1% larger, on average, than those of forecast distributions not

incorporating this additional source of uncertainty.

Figure 6.37: Distribution of changes in forecast sharpness when Y0 is simulated,
compared to forecast accuracy of corresponding ‘plug-in’ estimate.
Values less than one indicate that the forecasts with simulated un-
certainty are sharper (having a lower standard deviation) than the
forecasts using ‘plug-in’ adjustment.

(a) Ratio of marginal standard deviations for sim-
ulated forecasts to corresponding ‘plug-in’ fore-
casts, for all regions.
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(b) Mean ratio of simulated forecast standard devi-
ations to ‘plug-in’ standard deviations for each
region.
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6.3.1.2 Forecast calibration

Figure 6.38 shows the changes in marginal calibration resulting from the

additional uncertainty about η and Λ. The PITs of the plug-in forecasts are

directly analogous to the verification ranks (VR) of the simulated ensemble

forecasts. Because the changes to the forecast error are essentially symmetric,

the skewness of the PIT/VR (not shown) is almost unchanged by the addition

of simulated uncertainty, while the PIT/VR dispersion indices are inflated

by around 2% on average, reflecting the mean increase in marginal standard

deviation.
Figure 6.38: Dispersion of the verification rank (VR) and PIT histograms for

forecasts with and without simulated parameter uncertainty, and with
zero and non-zero kurtosis included in the Bayes linear adjustment
of ∆; and ratio of PIT/VR dispersion with and without simulated
uncertainty for each choice of κ.

(a) PIT/VR dispersion.
The lines indicate the mean value across the thir-
teen regions, while the shaded area shows the
range of values. The dashed horizontal lines in-
dicate the ideal value of one.
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(b) Ratio of PIT/VR dispersion of forecasts with
simulated uncertainty to ‘plug-in’ forecasts for
each choice of κ.

0 5 10 15

0.
85

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

LeadtimeLeadtime

R
at

io
 o

f P
IT

 d
is

pe
rs

io
n 

in
di

ce
s

Baseline
κlt

This blanket increase in marginal variance means that the observations

will generally fall slightly closer to the centre of the joint forecast distributions,

and manifests as a slight decrease in the skewness of the BDR histograms at all

leadtimes (Figure 6.39). However, the BOT histograms in Figure 6.40 show that

the number of observations falling in regions of low probability have increased.

This is because the BOT is based on an assumption that the joint distribution

is close to multivariate normal (3.14); the simulated forecasts are expected to

have heavier tails than those of a normal distribution, and as such, a higher

proportion of points should be expected to be classified as outliers by the BOT
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for the simulated forecasts than for the plug-in forecasts. The BOT-BDR grids

in Figure 6.41 reflect this tendency, but are otherwise similar to those of the

plug-in forecasts, suggesting that the calibration of the dependence structure is

unaffected by the simulation.

Figure 6.39: Band Depth Rank (BDR) histograms showing the joint calibration of
postprocessed ‘baseline’ forecasts of surface temperatures at selected
leadtimes, with and without simulated uncertainty. A similar pattern
of changes is observed in the histograms for forecasts with κ= κlt.
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Figure 6.40: Box Ordinate Transform (BOT) histograms showing the joint cali-
bration of postprocessed forecasts of surface temperatures at selected
leadtimes, with and without simulated uncertainty. A similar pattern
of changes is observed in the histograms for forecasts with κ= κlt.
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Figure 6.41: Gridplots summarising the joint distribution of the BOT and BDR
histogram counts at leadtime 2.
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6.3.1.3 Summary

Including a fuller representation of the uncertainty about the true values of

η and Λ results in slightly wider forecast intervals than when the mean and
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variance of the discrepancy are treated as known quantities, although the effect

on calibration is small in this application. Failing to incorporate this source of

uncertainty is unlikely to qualitatively alter any conclusions drawn or decisions

made, while the cost of simulating the additional values of η and Λ may be

rather large.

However, it is possible that simulating the estimation uncertainty will have

a larger effect on forecast calibration in other settings. The effect of simulating

– or failing to simulate – the additional uncertainty can be approximately

quantified by using the law of total variance to decompose the uncertainty

about the forecast discrepancy ∆ as

V[∆] = E
[
V[∆|δ]

]
+V

[
E[∆|δ]

]
= ESδ [Λ] +VX[η] (6.23)

where δ is the set of observed forecast errors. The adjusted expectation of

Λ is already incorporated in the ‘plug-in’ postprocessed forecasts; however,

the uncertainty about η is omitted. The ratio of the missing variance VX[η]

to the adjusted expectation ESδ [Λ] is approximately the amount by which

the plug-in variance will, on average, be inflated when simulation is used to

capture this missing source of variability, although this approximation still fails

to take into account the fact that the simulated forecasts will also have heavier

tails than their multivariate-normal ‘plug-in’ equivalents. In the examples

presented here, where the prior is V[η] = z−1ESδ [Λ], the adjusted variance of

η is VX[η] = (z+n)−1ESδ [Λ] using (5.104), with z = n= 25; so the additional

uncertainty due to incorporating VX[η] into the postprocessing is expected to

be around 2%, as seen in Figure 6.37b; this change in the marginal variances

corresponds to a change in the marginal standard deviations of around 1%.

In any situation where the ratio is small, as here, the user may judge that

the additional uncertainty is unlikely to have a meaningful impact in the final

analysis.
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6.4 Summary & discussion
The parameters used in Bayes linear adjustment can be tailored to reflect

the user’s level of confidence in each aspect of their prior judgements. The

distribution of weights assigned to the prior and observed mean when adjusting

the expected value of η is controlled by the prior variance V[η]; setting V[η] =

z−1ESδ [Λ] and decreasing z will shift weight directly from the prior to the

observations when adjusting the expected value of η, while setting V[η] =

z−1E[Λ] allows the weighting to depend on the relative precisions of the prior

and sample estimates of Λ. Similarly, reducing the notional prior sample

size ν will shift weight from the prior to sample variance when adjusting the

expectation of Λ. By changing these two specifications, the user can assign

different levels of confidence to the expectation and variance of the two sources

of information: so, if one training set was known to result in very accurate

but over-confident forecasts, and the other in less accurate but less confident

forecasts, a high value of z and low value of ν could be used, to allow the

adjusted forecast to be dominated by the mean vector of the first and the

variance-covariance matrix of the second. This flexibility is supplemented by the

kurtosis parameter κ, which provides a mechanism to account for particularly

high or low expected numbers of extreme values in the data, scaling the

covariance matrix to accommodate the assumed frequency of contamination by

or absence of outliers.

In the temperature data analysed here, the MW-adjusted forecasts used

to specify the prior expectation and variance of the forecast error ∆ are more

accurate than the ‘observed’ AN-adjusted forecasts in roughly half of all cases,

and sharper in roughly half of all cases at leadtimes up to seven days, and

around 60% of all cases thereafter. Both methods have fairly similar forecast

skill, although the MW-adjusted forecasts are consistently less well calibrated

at longer leadtimes as a result of the increased sharpness. Because of this,

Bayes linear adjustment typically results in roughly equal numbers of forecasts

with improved and degraded forecast skill under most metrics, with the net
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effect being a very small change in overall skill. However, improvements in

average forecast skill are still possible: in particular, combining the two sources

of forecast information results in an improved estimate of the forecast spread

at longer leadtimes, when either single source would underestimate the true

uncertainty. Changes to V[η] and ν, which reflect confidence in the prior

expectations of η and Λ respectively, resulted in very minor changes to forecast

skill.

The largest change in forecast skill was obtained by setting κ 6= 0, in

order to accommodate the marginal sample kurtosis at each leadtime. At

leadtimes of eight days or shorter, the kurtosis was estimated to be greater

than zero, with the effect that the Bayes linear adjusted expectation of the

discrepancy variance Λ was sharper than when kurtosis was not accounted for,

significantly improving forecast calibration. At longer leadtimes, using negative

kurtosis – thereby generally increasing the adjusted variance – produced slightly

overdispersive forecasts, which were less well calibrated. These results lend

support to the findings of Denholm-Price (2003) and Gebetsberger et al. (2018)

that better-calibrated forecasts might be obtained by using a postprocessing

method that is able to accommodate heavier tails in the forecast distribution

at shorter leadtimes.

Forecasts obtained using the Bayesian postprocessing framework have

slightly worse accuracy than those obtained by the NGR postprocessing method

described in Section 2.1.4.1, which use only a single source of training data

(in this case, the MW training set used to specify the priors for the Bayes

linear adjustment). The NGR forecasts have good marginal calibration at all

leadtimes, although the Bayes linear adjusted forecasts using κ= 0 have slightly

more uniform PIT histograms at the longest leadtimes, indicating slightly

improved marginal calibration despite the larger forecast errors. This indicates

that better calibration may be achieved at longer leadtimes by combining the

two sources of information; however, further work is required to improve the

accuracy of the forecasts.



Chapter 7

Discussion

7.1 Summary
The work in this thesis was motivated by the problem of how weather forecasts

from multi-model ensemble (MME) prediction systems might be combined into

a single forecast in a principled way. Established approaches to the problem

tend to ignore the relationships between the component ensembles, treating

them as if they were mutually independent and failing to account for the fact

that some or all models may, in fact, share common biases and calibration

errors.

The first contribution of this thesis, presented in Section 2.2, is the modifi-

cation of the framework proposed by Chandler (2013), which combines climate

projections from multiple models into a single predictive density, to accommo-

date the slightly different problem of weather forecasting: this requires a model

that issues predictions of the actual weather quantities, rather than of the

statistical properties of the future weather. The mathematical representation

of the problem is developed from a graphical model of the structure of the

MME weather forecasting system, which represents the relationships between

the available ensemble forecasts and the unobserved quantities of interest, and

so allows inference to be carried out on the verifying observation. Unlike the

competing postprocessing methods reviewed in Section 2.1.4, the Bayesian

framework is able to incorporate the user’s prior beliefs about the quantity
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of interest, offering the possibility of generating sequentially postprocessed

forecasts, although the ‘posterior-to-prior’ sequential postprocessing approach

tested in Section 4.1 was unsuccessful: plans for further work in this area

are discussed in Section 7.2.2. Several alternative approaches to specifying an

informative prior, and to selecting an appropriate training set for the estimation

of the necessary correction, were also considered.

A comparison of Bayesian postprocessed forecasts with the raw ‘su-

perensemble’ forecasts and forecasts postprocessed using nonhomogeneous

Gaussian regression (NGR) showed that, while the Bayesian method was able

to outperform the superensemble forecasts at shorter leadtimes, the NGR

forecasts were both sharper and more accurate overall, although this improved

skill comes at considerable computational cost due to the numerical optimisa-

tion required to estimate the NGR parameters. A particular problem for the

Bayesian forecasts is marginal calibration, with forecasts at shorter leadtimes

being consistently overdispersive, and forecasts at longer leadtimes being con-

sistently underdispersive. This may be partially attributable to the method of

estimating Λ, the variance of the forecast discrepancy, which contributes most

of the uncertainty in the posterior covariance matrix S, and which increases

with leadtime. This suggests that improving the estimates of η and Λ may be

the most straightforward way to improve the skill of forecasts postprocessed

using the Bayesian method.

The second contribution of the thesis concerns a new approach to selecting

an appropriate training set for the estimation of the correction. Many studies

simply use a ‘moving window’ of training cases to correct the forecast of interest;

however, especially at longer leadtimes, this risks including training cases that

are not particularly relevant to the current forecast instance. The use of

analogues to the current instance – forecasts that are, in some sense, similar

to the current forecast – is expected to produce more relevant training cases,

and so to produce a better estimate of the forecast discrepancy. The proposed

method uses principal component analysis (PCA) as a dimension reduction
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technique to obtain low-dimensional summaries of the forecast mean sea level

pressure fields, which are known to be well predicted by the numerical weather

prediction models, and are commonly used to characterise prevailing weather

conditions and to classify weather forecasts into climatological weather regimes.

The skill of forecasts postprocessed using analogues selected on the basis

of these low-dimensional summaries was found to be comparable to or better

than that of forecasts postprocessed using analogues that were similar in

terms of their predicted temperatures, and that of forecasts postprocessed

using a moving-window approach. Greater improvements may be achievable

when postprocessing higher-dimensional forecasts, or when a longer archive of

high-quality candidate forecasts is available.

The third and final contribution of the thesis is a coherent multivariate

framework for Bayes linear adjustment, proposed in Section 5.3. This extends

the second-order exchangeability assumptions used in the Bayes linear variance

adjustment described in Goldstein and Wooff (2007) to handle Bayes linear

adjustment of the both the expectations and covariance matrices of multivariate

random quantities. The resulting method is parametrised by a prior covariance

matrix VR and scalar parameters ν and κ reflecting, respectively, the user’s

confidence in their estimate of VR and the degree to which the data are believed

to have a greater or lesser propensity to outliers than a normal distribution.

These parameters are shown to be directly analogous to the parameters used in

the scalar case, and the multivariate adjustment is shown to closely approximate

the posterior distribution that would be obtained using Bayesian inference with

a conjugate normal-inverse Wishart prior and normally distributed data.

Chapter 6 presents a detailed investigation of the skill of forecasts again

postprocessed using the Bayesian postprocessing method, but now with η and

Λ obtained using Bayes linear adjustment, rather than estimated directly from

the training data. The impact on forecast skill of changing the parameter

specifications was generally small – due, in part, to the similar skill levels of

the two sets of forecasts being combined – with the largest change in forecast
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skill obtained by varying the scalar parameter κ to reflect an assumption of

non-zero excess marginal kurtosis. In particular, forecasts postprocessed using

the Bayesian method with Bayes linear adjusted estimates of η and Λ using

realistic estimates of the marginal excess kurtosis for each leadtime were found

to be better calibrated than NGR forecasts at longer leadtimes. This suggests

that this method may be competitive with NGR postprocessing over slightly

longer-term forecasts, perhaps in the medium to subseasonal range from 15

days’ leadtime onwards.

7.2 Future work
A number of areas of further interest have been highlighted throughout this

thesis. These are summarised below.

7.2.1 Improved verification metrics for parametric

probabilistic forecasts
The review of verification methods in Chapter 3 introduced two potentially

useful innovations. The first of these is a semiparametric equivalent to the band

depth rank, which is used to construct histograms that can be used to diagnose

various types of miscalibration in a collection of joint forecast distributions.

The original approach, proposed by Thorarinsdottir et al. (2016), was designed

to evaluate the joint calibration of ensemble forecasts, and depends on the

ordering of a quantity known as the ‘prerank’ (3.16), which depends in turn on

the marginal ranks of the verifying observation and the ensemble members.

Where the forecast is issued as a predictive density with a known parametric

form, the marginal ranks can be replaced by the PITs when computing the

prerank function; however, the ordering of the prerank of the observation

within the ensemble is still estimated by drawing a synthetic ensemble from the

multivariate predictive density. In order to obtain a fully parametric equivalent

to the band depth rank, it will be necessary to derive the distribution of the

parametric pre-rank function (3.17).

The second innovation suggested in this chapter is the use of grid plots of
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the joint distribution of the BOT and BDR in order to more precisely diagnose

calibration issues in the joint forecast distribution. A simple extension to

this suggestion would be to consider whether plots of the joint distribution of

other pairs of depth scores (for example, the minimum spanning tree depth

or average marginal rank, both of which are used by Wilks (2017) to evaluate

joint calibration) might be more informative about other types of calibration

misspecification.

The grid plots showing different types of misspecification presented in

Section 3.3.2.3 are based on synthetic data with various error characteristics; in

order to fully understand how to interpret the patterns that might arise in these

plots, it will be necessary to derive the expected joint distribution of the BOT

and BDR for various types of forecast misspecification. For forecasts issued as

a multivariate normal predictive density, this will likely be much simplified if

the fully parametric band depth rank function is first derived.

7.2.2 Sequential forecast postprocessing
In Section 4.1, the sequentially postprocessed forecasts were the least accurate

and least well calibrated of the methods compared, having the highest MAE

and being far too sharp. This was an unexpected result: the noninforma-

tive prior forecasts are reasonably well calibrated, so using the n-day-ahead

noninformative posterior as the prior for the (n−1)-day-ahead forecasts was

expected to produce more skilful forecasts. Experiments with sequential post-

processing starting from a shorter leadtime – or only using one sequential step –

produced similar results, suggesting that the problem is most likely to do with

the sequential postprocessing model, rather than with the quality of the prior

distribution.

One potential improvement to the sequential postprocessing approach

tested here would be to explicitly account for correlation between successive

forecasts, rather than treating the prior and MME forecasts as if they were

independent. This may be able to counter the increasing sharpness seen in the

sequentially postprocessed forecasts with decreasing leadtime, and so improve
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calibration.

7.2.3 Testing weather regime analogues on a longer

dataset
One of the contributions of this thesis was the method of selecting analogues to

the forecast of interest on the basis of principal component scores reflecting the

dominant modes of spatial variability in the forecast mean sea level pressure

fields, which are known to be closely related to the prevailing weather conditions.

In Section 4.3, forecasts postprocessed using analogue training sets were found

to perform as well as or better than those postprocessed using recent training

cases, although the improvements in forecast skill were relatively modest.

It is known that a critical requirement of any analogue selection method

is the availability of a sufficiently long archive of candidate forecasts to provide

a large enough number of high-quality analogues (Hu et al., 2020). These

candidate forecasts should be produced by the same model – or configuration

of models – that issued the forecast of interest; ideally, the archive would

consist of reforecasts, issued by the current operational model(s) and initialised

using historical data. The analogues in the application presented in Section

4.3 were drawn from a relatively small archive of 565 candidates, consisting

of six full winters of ninety days each (ie. omitting from the full seven-year

dataset the winter in which the forecast of interest was issued) plus the 25-day

moving window immediately preceding the forecast issue date. Not only does

the short length of the archive mean that there may be a dearth of high-quality

analogues – particularly when predicting extreme weather events – but, because

the forecasts were issued operationally, it is known that the model configuration

changed several times throughout the study period (ECMWF, 2021b,d,c).

The results presented in Section 4.3 demonstrate that forecasts post-

processed using the proposed weather regime analogues are able to achieve

skill comparable to those postprocessed using analogues selected by the usual

method, and that both analogue methods were able to improve on the skill

of forecasts using moving-window training cases, despite this disadvantage.
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However, it is likely that the analogue-postprocessed forecasts will be more

successful when analogues are selected from an archive of reforecasts produced

by the same model configuration as the forecast of interest. No such archive is

available for the TIGGE forecasts, but an archive of weather forecasts including

reforecasts at subseasonal to seasonal time scales is available through the S2S

project (Vitart et al., 2017). This dataset provides forecasts at leadtimes of

up to 65 days, along with up to twenty years of reforecasts accompanying

each forecast instance, from eleven forecasting centres: so it should provide

an ideal test case to investigate the potential improvements in forecast skill.

One caveat is that many of the models are only run two or three times each

week, with different forecasting centres initialising the model on different days;

as a result, constructing a multi-model ensemble from the S2S dataset is not

straightforward. Nonetheless, the archive of reforecasts offers an opportunity

to compare the skill of forecasts postprocessed using weather regime analogues,

traditional analogues and a moving window training set, albeit only for a

single-model ensemble.

7.2.4 Improving the treatment of nonzero kurtosis in

Bayes linear adjustment
A key element of the multivariate Bayes linear variance adjustment described in

Section 5.3 is the facility to incorporate a judgement of non-zero marginal excess

kurtosis. However, care must be taken when specifying the kurtosis parameter

κ to ensure that the resulting adjusted covariance matrix is indeed a valid

covariance matrix. The positive semidefiniteness of the adjusted expectation of

M(V) given in (5.177) depends not only on κ but on the prior and observed

covariance matrices, VR and S: as noted in Section 5.3.7.4, if κ > 0 and

tr
(
V−1
R S

)
�m, or if κ < 0 and tr

(
V−1
R S

)
< m, the adjusted expectation of

M(V) is no longer guaranteed to be a positive semidefinite matrix. A range of

values of κ has been identified for which the adjusted expectation of M(V) is

guaranteed to be positive semidefinite; however, the bounds of this range are

fuzzy, in the sense that, depending on the particular matrices VR and S, some
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‘invalid’ values of κ that are close to the threshold may still result in a valid

covariance matrix. Further work is required to define the exact range of κ that

will produce a valid adjusted covariance matrix.

7.3 Conclusions
This thesis considered the problem of improving forecasts of surface tempera-

tures over the UK: temperature forecasts were chosen because they are fairly

well represented by Gaussian distributions, meaning that analytical expressions

could be found for all of the required quantities; and the geographical region

was limited to a relatively small number of grid cells in order to ensure that all

of the required covariance matrices could be estimated empirically. In principle,

there is no reason that this approach could not be extended to postprocessing

over a much larger spatial domain, although this would require a different

approach to estimation of the required covariance matrices: the size of the

matrices that can be estimated using the empirical approach suggested here is

limited not only by the size of the training set, but by the size of the forecast

ensembles. With increasing spatial domain it is likely that estimating the

forecast discrepancy using weather regime analogues, rather than a moving

window or direct analogues, will produce more skilful forecasts.

Extending the Bayesian postprocessing framework to variables other than

surface temperatures may prove more complicated. The framework could be

used without significant modifications to the current implementation for any

variable that could reasonably be considered to have a multivariate-normal

distribution, perhaps after a suitable transformation. It would also be rela-

tively straightforward to implement the method using other parametric forms,

although the parameters of the resulting posterior distributions would need to

be found using computational methods. A similar approach has been applied

to the forecasting of fish stocks (Spence et al., 2018), based on the climate

modelling framework originally proposed by Chandler (2013); however, this

increased computation time may render this approach impractical if postpro-
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cessed forecasts need to be issued very rapidly after the raw forecasts are

issued. Furthermore, it is not immediately clear how the framework should be

adapted to handle the forecasting of precipitation, a variable often represented

as comprising two components: a binary variable indicating the presence or

absence of any precipitation, and a continuous variable representing the amount

of precipitation to be expected. This remains a potential limitation of the

method, albeit one shared by most postprocessing techniques.

Despite this limitation, the Bayesian MME postprocessing framework

proposed here is flexible enough to be of potential use in applications other

than the mid-term weather forecasting presented here. As already noted,

the approach may be useful in longer-term forecasting, for example at the

subseasonal-to-seasonal scale, where the focus is less on prediction of the

weather conditions on a particular day and more on statistical properties of

the weather over a short period of time. It is also likely that estimation

of the required forecast adjustments using weather regime analogues, which

are derived from pressure fields that may reflect longer-term atmospheric

trends, may produce more skilful forecasts at these leadtimes than either

moving window training cases, which may be several months removed from

the forecast verification dates, or direct analogues, which are typically based

on surface weather quantities that tend towards climatology at these time

scales. However, the postprocessing method is also widely applicable in fields

outside of meteorology and the environmental sciences: it may be of use in

any situation where several competing probabilistic or ensemble forecasts are

available, along with an archive of previous verifying observations from which

the required correction may be estimated, such as in financial modelling or

astrostatistics.

Likewise, the multivariate Bayes linear adjustment proposed here may be

adopted anywhere that Bayes linear methods are already used to understand

and predict the behaviour of complex systems. The suggested joint adjustment

requires no input from the user beyond that already required for the semi-
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adjusted variance assessments proposed by Goldstein and Wooff (2007), so

could be implemented immediately anywhere that the standard Bayes linear

method could be: existing applications are as diverse as assessing medical

risks (Gosling et al., 2013), estimating crop yields (Makowski, 2017), and

parametrising galaxy formation (Bower et al., 2010), suggesting that, like

the Bayesian MME postprocessing framework, the multivariate Bayes linear

adjustment may be suitable for a wide range of applications.



Appendix A

Derivation of the posterior

density of Y0

A.1 The generic posterior
The derivation of the posterior density given here follows similar arguments

to those in the supplement to Chandler (2013), and is expanded from the

supplement to Barnes et al. (2019). The derivation is based on the graphical

representation of the MME structure presented in Figure 2.6 and reproduced

in Figure A.1. This directed acyclic graph represents the system of ensemble

forecasts described in Section 2.2.1; as noted in the main thesis, the arrows

linking the various nodes can be taken to represent conditional probability dis-

tributions, with each ‘child’ node being modelled by a distribution conditioned

on its ‘parent’. The structure encodes assumptions of conditional independence;

that is to say, if there is no path connecting nodes A and B that does not pass

through C en route, then A and B are conditionally independent given C. So,

for example, there is no path from Y11 to Y12 that does not pass through

µ1, which means that those forecasts are independent of one another given

the value of µ1. In other words, if µ1 is known then Y11 cannot give us any

new information about the position of Y12. It is possible to derive a Bayesian

posterior density to infer the true value of the weather quantity of interest, Y0

from the available information, using the conditional independence structure
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implied by Figure A.1 as a framework.

Figure A.1: Schematic representation of the relationships between the elements of
the multi-model ensemble forecasting system, originally introduced in
Figure 2.6. Quantities known at the time of issuing the forecast are
shown as filled nodes, with unknown quantities represented by open
nodes.
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The necessary calculations are simplified by shifting the distribution of

Y0 by the expected value of the discrepancy ∆, and performing inference over

Ỹ0 = Y0 +η, with ∆̃ = ∆−η; the posterior forecast can then be recovered by

subtracting the added discrepancy from the posterior mean of Y0. This device

ensures that the framework and derivation are conceptually identical to those

derived in the supplement to Chandler (2013).

Generically, the posterior density forecast is the product of a prior dis-

tribution describing beliefs about Y0 before any forecasts are made, and a

likelihood function describing the evidence obtained from the forecasts. Let

π(·) denote any probability density function (pdf), and π(a|b,c) the density of

a conditional upon the values of b and c. Let lower-case yi and y0 indicate

realisations of the corresponding random variables Yi = n−1
i

∑
jYij and Y0.

All covariance matrices specified as part of the MME framework are assumed

to be nonsingular.

Using Bayes’ Theorem, the posterior distribution of Y0 conditional on the
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ensemble members {Yij} is

π
(
ỹ0|y11, ... ,ypnp

)
=
π(ỹ0)π

(
y11, ... ,ypnp

|ỹ0
)

π
(
y11, ... ,ypnp

) . (A.1)

Any terms not containing the quantity of interest, ỹ0, can be absorbed

into an arbitrary normalising constant, the sole function of which is to ensure

that the posterior density integrates to one. The posterior distribution can

therefore be written as

π
(
ỹ0|y11, ... ,ypnp

)
∝ π(ỹ0)π

(
y11, ... ,ypnp

|ỹ0
)
. (A.2)

The second term on the right-hand side of this expression can be written as an

integral,

π
(
y11, ... ,ypnp

|ỹ0
)

=
∫
π
(
y11, ... ,ypnp

,µ1, ... ,µp|ỹ0
)
dµ1, ... ,dµp (A.3)

which, under the conditional assumptions encoded by Figure A.1, can be

factorised as

∫
π
(
y11, ... ,ypnp

|µ1, ... ,µp
)
π
(
µ1, ... ,µp|ỹ0

)
dµ1, ... ,dµp

=
∫ p∏
i=1

np∏
j=1

π
(
yij |µi

)
π
(
µ1, ... ,µp|ỹ0

)
dµ1, ... ,dµp. (A.4)

The posterior (A.2) can therefore be expressed as

π
(
ỹ0|y11, ... ,ypnp

)
∝ π(ỹ0)

∫ p∏
i=1

ni∏
j=1

π
(
yij |µi

)
π
(
µ1, ... ,µp|ỹ0

)
dµ1, ... ,dµp.

(A.5)

A.2 A simplified Gaussian posterior
In (2.2.2), all elements of the MME are described by multivariate normal

distributions. In particular, from (2.6), each ensemble member Yij is assumed
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to be normally distributed conditional on the ensemble population mean µi,

with expectation µi and covariance matrix Ci, so that

π
(
yij |µi

)
∝ exp

{
−1

2
(
yij−µi

)′
C−1
i

(
yij−µi

)}
(A.6)

and

ni∏
j=1

π
(
yij |µi

)
∝ exp

−1
2

ni∑
j=1

(
yij−µi

)′
C−1
i

(
yij−µi

) . (A.7)

By adding and subtracting the ensemble sample mean yi = n−1
i

∑
j yij , and

noting that ∑j

(
yij−yi

)
= 0, the exponent of (A.7) can be expanded as

−1
2

ni∑
j=1

(
yij−yi

)′
C−1
i

(
yij−yi

)
− ni2 (yi−µi)

′C−1
i (yi−µi) . (A.8)

Again, any factors not involving µi, on which the distribution is conditioned,

can be subsumed into the normalising constant, leaving

ni∏
j=1

π
(
yij |µi

)
∝ exp

{
−ni2 (yi−µi)

′C−1
i (yi−µi)

}
. (A.9)

This is the kernel of the multivariate normal density of yi|µi, which has mean

µi and covariance matrix n−1
i Ci. This is directly equivalent to ∏ni

j=1π
(
yij |µi

)
because the sample mean yi is a sufficient statistic for the population mean in a

multivariate normal distribution (Cox and Hinkley, 1974). The posterior (A.5)

can therefore be simplified, without loss of information, to a representation

based on the schematic in Figure 2.8 and reproduced in Figure A.2, which uses

the ensemble means rather than the ensemble members:

π
(
ỹ0|y11, ... ,ypnp

)
∝ π(ỹ0)

∫ p∏
i=1

π(yi|µi)π
(
µ1, ... ,µp|ỹ0

)
dµ1, ... ,dµp.

(A.10)
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Figure A.2: Simplified schematic representation of the relationships between the
elements of the multi-model ensemble forecasting system, originally
introduced in Figure 2.8. Quantities known at the time of issuing the
forecast are shown as filled nodes, with unknown quantities represented
by open nodes. Dotted lines indicate redundant nodes which have
been bypassed.

µ1

Y1 µ2

Y2

µ3

Y3

ξ

Y0
∆

Yi Ensemble sample means
µi Ensemble population means
ξ MME consensus

Y0 Observed temperature
∆ Consensus discrepancy

A.3 Obtaining the posterior mean &

covariance of Y0

The value of the integral in (A.10) can be found without carrying out the

integration explicitly. In Sections 2.2.2.1 and 2.2.2.2, the remaining model

components were specified as in Table A.1, with Ỹ0 and ∆̃ obtained from Y0

and ∆ by adding and subtracting η as described above. All of the components

Table A.1: Multivariate-normal distributions of the components of the reduced
MME framework in Figure 2.8

Yi|µi ∼MVN
(
µi,n

−1
i Ci

)
(A.11)

µi|ξ ∼MVN(ξ,Σ) where ξ = Ỹ0 +∆̃ (A.12)

∆̃∼MVN(0,Λ) (A.13)

Ỹ0 ∼MVN(α+η,Γ) (A.14)

are multivariate normal quantities, so the joint density π({yi}|ỹ0) represented

by the integral in (A.10) will also be multivariate normal, and can be fully

specified by its mean and covariance.
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From (A.11), because Yi is independent of Ỹ0 and ∆̃ given µi,

E
[
Yi|µi,Ỹ0

]
= E

[
Yi|µi

]
= µi; and from (A.12) and (A.13), E

[
µi|Ỹ0

]
= Ỹ0.

Thus, by the law of iterated expectation,

E
[
Yi|Ỹ0

]
= E

[
E
[
Yi|µi,Ỹ0

]]
= Ỹ0. (A.15)

From the graph in Figure 2.8, the ith ensemble mean can be written as

Yi =
[
Ỹ0 +∆̃

]
+
[
µi−

(
Ỹ0 +∆̃

)]
+
[
Yi−µi

]
, (A.16)

where each of the terms in square brackets is independent of the others. Thus

for any two ensembles i and j,

C
[
Yi,Yj |Ỹ0

]
=

Λ+Σ+n−1
i Ci for i= j

Λ for i 6= j
(A.17)

The joint forecast distribution of the MME system as a whole, conditional

on Ỹ0 +∆̃, is obtained by concatenating all of the ensemble forecasts into a

single m×p vector Ξ̂ =
[
y1 . . . yp

]
. For notational convenience, let Di = Σ+

n−1
i Ci; then from (A.15) and (A.17), Ξ̂ has a multivariate normal distribution,

with expectation Ξ =
[
ỹ0 . . . ỹ0

]
and covariance matrix



D1 +Λ Λ . . . Λ

Λ D2 +Λ . . . Λ
... ... . . . ...

Λ Λ . . . Dp+Λ


= K, say. (A.18)

(A.4) is therefore proportional to

exp
{
−1

2
(
Ξ̂−Ξ

)′
K−1

(
Ξ̂−Ξ

)}
. (A.19)
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A.3.1 The likelihood of the MME forecasts
To find an explicit expression for the matrix inverse K−1, note that K can be

decomposed as K = D+LV, where D is a block-diagonal matrix with Di in

the ith block, L is the mp×m matrix
[
Λ Λ . . . Λ

]′
, and V is the m×mp

matrix
[
Im Im . . . Im

]
, where p denotes the number of ensembles in the

MME, and m the dimension of Y0. Using this decomposition of K, the inverse

can be computed using the Woodbury matrix identity (Woodbury, 1950; Press

et al., 1996), which states that for conformable matrices A, U, C and V,

(A+UCV)−1 = A−1−A−1U
(
C−1 +VA−1U

)−1
VA−1. (A.20)

Setting A = D, U = L, C = Im, and V = V as defined above, the precision

matrix K−1 is

(D+LV)−1 = D−1−D−1L
(
Im+VD−1L

)−1
VD−1. (A.21)

Because D is block diagonal, its inverse is also block diagonal, with the ith

non-zero block given by D−1
i . The matrix product VD−1L is therefore

VD−1L =
[
Im Im . . . Im

]


D−1
1 0 . . . 0

0 D−1
2 . . . 0

... ... . . . ...

0 0 . . . D−1
p





Λ

Λ

. . .

Λ


=

p∑
k=1

D−1
k Λ.

(A.22)
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Now (A.21) becomes

(D+LV)−1 = D−1−D−1



Λ

Λ

. . .

Λ


Im+

p∑
k=1

D−1
k Λ

−1 [
Im Im . . . Im

]
D−1.

(A.23)

Note that

Im+
n∑
k=1

D−1
k Λ

−1

=
Λ−1 +

n∑
k=1

D−1
k

Λ

−1

= Λ−1
Λ−1 +

n∑
k=1

D−1
k

−1

(A.24)

and so

Λ

Im+
p∑

k=1
D−1
k Λ

−1

=
Λ−1 +

p∑
k=1

D−1
k

−1

, (A.25)

whence

K−1 = D−1−D−1





Im
Im
. . .

Im


Λ−1 +

p∑
k=1

D−1
k

−1 [
Im Im . . . Im

]

D−1.

(A.26)

The matrix product enclosed in braces {} is a mp×mp block matrix, with each

block containing (A.25). Because D−1 is a block diagonal matrix, the (i, j)th

block of K−1 can therefore be written as

K−1
ij = D−1

ij −
p∑
q=1

p∑
r=1

D−1
iq

Λ−1 +
p∑

k=1
D−1
k

−1

D−1
rj

 , (A.27)
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where (with a slight abuse of notation in the case where i 6= j) D−1
ij = D−1

i

when i = j and 0 otherwise; D−1
iq = D−1

i when q = i and 0 otherwise; and

D−1
rj = D−1

j when r = j and 0 otherwise. The term in square brackets will

therefore be zero unless q = i and r = j; hence

K−1
ij = 1{i=j}D−1

i −D
−1
i

Λ−1 +
p∑

k=1
D−1
k

−1

D−1
j , (A.28)

where 1{i=j} = 1 if i= j, and 0 otherwise.

The matrix product in the likelihood function (A.19) can now be expressed as

a summation over the blocks of K−1,

(
Ξ̂−Ξ

)′
K−1

(
Ξ̂−Ξ

)
=

p∑
i=1

p∑
j=1

(
yi− ỹ0

)′
K−1
ij

(
yj− ỹ0

)

=
p∑
i=1

(
yi− ỹ0

)′
D−1
i

(
yi− ỹ0

)
−

p∑
i=1

p∑
j=1

(
yi− ỹ0

)′
D−1
i

Λ−1 +
p∑

k=1
D−1
k

−1

D−1
j

(
yj− ỹ0

)
. (A.29)

Finally, because the matrix product is distributive with respect to matrix

addition, this can be rearranged into

p∑
i=1

(
yi− ỹ0

)′
D−1
i

(
yi− ỹ0

)
−

p∑
i=1

(
yi− ỹ0

)′
D−1
i

Λ−1 +
p∑

k=1
D−1
k

−1 p∑
j=1

D−1
j

(
yj− ỹ0

)
.

(A.30)

This expansion of the exponent of the likelihood function (A.4) can now be

used to write an expression proportional to the posterior density of Ỹ0, in order

to identify the corresponding posterior expectation and variance.
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A.3.2 The posterior expectation and covariance of Y0

Let τ denote the posterior expectation of Y0, and S the posterior covariance;

the posterior density of Ỹ0 can therefore be written as

π
(
ỹ0|y11, ... ,ypnp

)
∝ exp

{
−1

2
(
ỹ0− (τ +η)

)′
S−1

(
ỹ0− (τ +η)

)}
. (A.31)

It has already been shown that the likelihood (A.4) is proportional to (A.19),

and hence to the exponential of (A.30). The posterior density is therefore

proportional to

exp
{
− 1

2

[(
ỹ0− (α+η)

)′
Γ−1

(
ỹ0− (α+η)

)
+

p∑
i=1

(
yi− ỹ0

)′
Di
−1
(
yi− ỹ0

)
−

p∑
i=1

(
yi− ỹ0

)′
D−1
i

Λ−1 +
p∑

k=1
D−1
k

−1 p∑
j=1

D−1
j

(
yj− ỹ0

)]}
.

(A.32)

The posterior covariance matrix S is obtained by equating the quadratic

terms in ỹ0 between (A.31) and (A.32):

S−1 = Γ−1 +
p∑
i=1

D−1
i −

p∑
i=1

D−1
i

Λ−1 +
p∑

k=1
D−1
k

−1 p∑
j=1

D−1
j . (A.33)

Since ∑p
i=1D

−1
i =∑p

j=1D
−1
j =∑p

k=1D
−1
k , the Woodbury formula (A.20) can

again be applied, this time with A−1 =∑p
i=1D

−1
i , C−1 = Λ−1, and U=V= I,

to obtain

S−1 = Γ−1 +
Λ+

( p∑
i=1

D−1
i

)−1−1

. (A.34)

BecauseY0 is simply Ỹ0 shifted by a known constant η, this is also the posterior

covariance of Y0. For notational compactness, let ΣD =
(∑p

i=1D
−1
i

)−1
, a

quantity describing the inverse of the total precision of the sampled
{
Yi

}
and
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representing the uncertainty about the position of the consensus ξ, given the

observed ensemble means yi. The posterior precision matrix S−1 is therefore

the sum of the prior precision Γ−1 and the precision of the discrepancy-adjusted

consensus ξ−η:

S−1 = Γ−1 +
[
Λ+ΣD

]−1
(A.35)

Similarly, the posterior expectation of Ỹ0 is obtained by equating the

coefficients of ỹ0 in (A.31) and (A.32):

S−1(τ +η) = Γ−1(α+η) +
p∑
i=1

D−1
i yi−

p∑
i=1

D−1
i

Λ−1 +
p∑

k=1
D−1
k

−1 p∑
j=1

D−1
j yj

= Γ−1(α+η) +

I−
p∑
i=1

D−1
i

Λ−1 +
p∑

k=1
D−1
k

−1
p∑
j=1

D−1
j yj .

(A.36)

The term inside the braces {} is another occurrence of the Woodbury formula

(A.20), this time with A = V = I, C = Λ, and U = ∑p
i=1D

−1
i = ∑p

k=1D
−1
k ;

hence

S−1 (τ +η) = Γ−1 (α+η) +
(
I+

p∑
i=1

D−1
i Λ

)−1 p∑
j=1

D−1
j yj , (A.37)

and the posterior expectation of Ỹ0 is

τ +η = S

Γ−1 (α+η) +
(
I+

p∑
i=1

D−1
i Λ

)−1 p∑
j=1

D−1
j yj

 . (A.38)

Removing the translation by η, the posterior expectation of Y0 is therefore

τ = S

Γ−1 (α+η) +
(
I+

p∑
i=1

D−1
i Λ

)−1 p∑
j=1

D−1
j yj

−η. (A.39)
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A.3.2.1 A more interpretable form for the posterior expectation

Interpretation of the contribution of each element of the framework to the

posterior expectation in (A.39) is not straightforward. However, it is possible

to rearrange this expression into a weighted sum of the contributions from the

prior and likelihood.

First, note that from (A.35), S =
(
Γ−1 + [Λ+ΣD]−1)−1

has the form(
A−1 +B−1

)−1
, with A = Γ and B = Λ + ΣD. This expression can be ex-

panded as

(
A−1 +B−1

)−1
=
(
B−1AA−1 +B−1BA−1

)−1

=
(
B−1 [A+B]A−1

)−1

= A(A+B)−1B, (A.40)

whence

S = Γ(Γ+Λ+ΣD)−1 (Λ+ΣD) (A.41)

and

S−1 = (Λ+ΣD)−1 (Γ+Λ+ΣD)Γ−1. (A.42)

Bringing η inside the square brackets in (A.39) and using this expansion of

S−1,

τ = S

Γ−1 (α+η) +
(
I+

p∑
i=1

D−1
i Λ

)−1 p∑
j=1

D−1
j yj−S−1η


= S

Γ−1 (α+η) +
(
I+

p∑
i=1

D−1
i Λ

)−1 p∑
j=1

D−1
j yj− (Λ+ΣD)−1 (Γ+Λ+ΣD)Γ−1η

 .
(A.43)

The term
(
I+∑p

i=1D
−1
i Λ

)−1
can be written as

(
I+Σ−1

D Λ
)−1

= (Λ+ΣD)−1 ΣD,
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so that

τ = S

Γ−1 (α+η) + (Λ+ΣD)−1 ΣD

p∑
j=1

D−1
j yj− (Λ+ΣD)−1 (Γ+Λ+ΣD)Γ−1η


= S

Γ−1 (α+η) + (Λ+ΣD)−1
ΣD

p∑
j=1

D−1
j yj− (Γ+Λ+ΣD)Γ−1η




(A.44)

Now by expanding and gathering terms involving Γ−1,

τ = S

Γ−1α+Γ−1η+ (Λ+ΣD)−1
ΣD

p∑
j=1

D−1
j yj−ΓΓ−1η− (Λ+ΣD)Γ−1η




= S

Γ−1α+Γ−1η+ (Λ+ΣD)−1
ΣD

p∑
j=1

D−1
j yj−η

−Γ−1η


= S

Γ−1α+ (Λ+ΣD)−1
ΣD

p∑
j=1

D−1
j yj−η


 . (A.45)

The term summing the
{
yj
}
can be considered as an estimate of the MME

consensus,

ξ̂ = ΣD

p∑
j=1

D−1
j yj . (A.46)

This term is a weighted average of the ensemble means, with weights propor-

tional to the precision of each estimated yj ; ΣD =
(∑p

i=1D
−1
i

)−1
is the inverse

of the total precision of the sampled yi over all ensembles. The posterior mean

τ is thus a weighted sum of contributions from the prior distribution with

expectation α and covariance matrix Γ, and the bias-corrected MME consensus

ξ̂−η, with combined covariance matrix ΣD+Λ.



Appendix B

PIT histograms for regions not

shown in the main text
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Figure B.1: PIT histograms accompanying those in Figure 4.4 showing the marginal
calibration of forecasts of surface temperatures at a range of leadtimes,
postprocessed using the Bayesian method with different prior distri-
butions for the observed temperature. The dashed line indicates the
ideal uniform distribution.

(a) PIT histograms for forecasts in Southampton
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(b) PIT histograms for forecasts in Swansea
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(c) PIT histograms for forecasts in Birmingham
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(d) PIT histograms for forecasts in London
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(e) PIT histograms for forecasts in Liverpool
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(f) PIT histograms for forecasts in Sheffield
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(g) PIT histograms for forecasts in Leeds
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(h) PIT histograms for forecasts in Carlisle
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(i) PIT histograms for forecasts in Glasgow
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(j) PIT histograms for forecasts in Fort William
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(k) PIT histograms for forecasts in Forres
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Figure B.2: PIT histograms accompanying those in Figure 4.13 showing the
marginal calibration of postprocessed forecasts of surface tempera-
tures at a range of leadtimes, using different postprocessing methods.
The dashed line indicates the ideal uniform distribution.

(a) PIT histograms for forecasts in Southampton
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(b) PIT histograms for forecasts in Swansea
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(c) PIT histograms for forecasts in Birmingham
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(d) PIT histograms for forecasts in London
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(e) PIT histograms for forecasts in Liverpool
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(f) PIT histograms for forecasts in Sheffield
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(g) PIT histograms for forecasts in Leeds
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(h) PIT histograms for forecasts in Carlisle
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(i) PIT histograms for forecasts in Glasgow
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(j) PIT histograms for forecasts in Fort William

PIT

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

2 days ahead

PIT

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

5 days ahead

PIT

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

10 days ahead

PIT

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0
0

1
2

3
4

15 days ahead

Superensemble
NGR
Bayesian

(k) PIT histograms for forecasts in Forres
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Figure B.3: PIT histograms accompanying those in Figure 4.21 showing the
marginal calibration of forecasts of forecasts of surface temperatures
at a range of leadtimes, postprocessed using the Bayesian method with
different training sets. The dashed line indicates the ideal uniform
distribution.

(a) PIT histograms for forecasts in Southampton
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(b) PIT histograms for forecasts in Swansea
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(c) PIT histograms for forecasts in Birmingham
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(d) PIT histograms for forecasts in London
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(e) PIT histograms for forecasts in Liverpool
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(f) PIT histograms for forecasts in Sheffield
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(g) PIT histograms for forecasts in Leeds
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(h) PIT histograms for forecasts in Carlisle
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(i) PIT histograms for forecasts in Glasgow
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(j) PIT histograms for forecasts in Fort William
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(k) PIT histograms for forecasts in Forres
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Figure B.4: PIT histograms accompanying those in Figure 6.4 showing the marginal
calibration of postprocessed forecasts of surface temperatures at a range
of leadtimes, for forecasts postprocessed using either direct, Bayes
linear adjusted or pooled estimates of the expectation and variance
of the discrepancy ∆. The dashed line indicates the ideal uniform
distribution.

(a) PIT histograms for forecasts in Southampton
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(b) PIT histograms for forecasts in Swansea
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(c) PIT histograms for forecasts in Birmingham
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(d) PIT histograms for forecasts in London
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(e) PIT histograms for forecasts in Liverpool
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(f) PIT histograms for forecasts in Sheffield
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(g) PIT histograms for forecasts in Leeds
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(h) PIT histograms for forecasts in Carlisle
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(i) PIT histograms for forecasts in Glasgow
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(j) PIT histograms for forecasts in Fort William
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(k) PIT histograms for forecasts in Forres
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Figure B.5: PIT histograms accompanying those in Figure 6.27 showing the
marginal calibration of forecasts postprocessed using Bayes linear ad-
justed discrepancies with different choices of κ at a range of leadtimes.
The dashed line indicates the ideal uniform distribution.

(a) PIT histograms for forecasts in Southampton
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(b) PIT histograms for forecasts in Swansea
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(c) PIT histograms for forecasts in Birmingham
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(d) PIT histograms for forecasts in London
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(e) PIT histograms for forecasts in Liverpool
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(f) PIT histograms for forecasts in Sheffield
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(g) PIT histograms for forecasts in Carlisle
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(h) PIT histograms for forecasts in Glasgow
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(i) PIT histograms for forecasts in Fort William
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(j) PIT histograms for forecasts in Forres
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Appendix C

Review of some key concepts in

matrix algebra

C.1 The vec operator
When dealing with variances of the elements of a matrix A, say, the standard

approach is to transform the matrix into a vector. This makes it possible

to define the matrix of variances and covariances between the elements of A,

which does not exist when A is in matrix form. This operation is carried out

using the vec operator: given any m×n matrix A, vec
(
A
)
denotes the mn×1

vector obtained by stacking the columns of A one underneath the other (Schott,

2016). Products of vectorised matrices are conveniently expressed in terms of

their Kronecker products.

C.2 The Kronecker product
If A is an m×n matrix and B is a p× q matrix, then the Kronecker product

of A and B, denoted by A⊗B, is the mp×nq matrix

A⊗B =



a11B a12B . . . a1nB

a21B a22B . . . a2nB
... ... . . . ...

am1B am2B . . . amnB


. (C.1)
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The derivations in Section 5.3 make use of the following identities presented in

Schott (2016):

1. For two vectors x and y of any length,

vec
(
xy′

)
= y⊗x, (C.2)

xy′ = x⊗y′ = y′⊗x (C.3)

2. For matrices A and B of any size,

(A⊗B)′ = A′⊗B′ (C.4)

3. For square matrices A and B, if A⊗B is nonsingular then

(A⊗B)−1 = A−1⊗B−1. (C.5)

If A⊗B is singular, then for any generalised inverses A† and B† of A

and B,

(A⊗B)† = A†⊗B†. (C.6)

4. For matrices A, B, C, where B and C are of the same size,

A⊗ (B+C) = (A⊗B) + (A⊗C) (C.7)

5. For matrices A, B, C and D of sizes m× h, p× k, h× n and k× q

respectively,

(A⊗B)(C⊗D) = AC⊗BD (C.8)
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6. For matrices A, B and C of sizes m×n, n×p, and p× q,

vec
(
ABC

)
=
(
C′⊗A

)
vec

(
B
)

(C.9)

7. For m×n matrices A and B,

vec
(
A
)′
vec

(
B
)

= tr
(
A′B

)
. (C.10)

C.3 The position matrix eie′j
Let ei,m be the ith column of Im and ej,n be the jth column of In. Then ei,me′j,n
is an m×n matrix that has its only nonzero element, a one, in the (i, j)th

position. Any matrix can be expressed as a sum of its elements multiplied by

these position matrices: for example,

A =

a11 a12

a21 a22

= a11

1 0

0 0

+a12

0 1

0 0

+a21

0 0

1 0

+a22

0 0

0 1


=

2∑
i=1

2∑
j=1

aijei,me′j,n.

In general, for any m×n matrix A with (i, j)th element aij ,

A =
m∑
i=1

n∑
j=1

aijei,me′j,n (C.11)

A can equivalently be expressed as a sum of cross products of its columns

a1, ... ,an with the corresponding columns e1, ... ,en of the n×n identity matrix

(Magnus and Neudecker, 1979):

A =
n∑
j=1

aje′j,n, where aj =
m∑
i=1

aijei,m (C.12)

To simplify notation, the dimensions of ei and ej will henceforth be omitted,

but are implied by the limits of the respective summations.
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Equations (C.11) and (C.12) lead to some useful identities for the Kronecker

square, A⊗A, and for the cross product of a vectorised matrix with its

transpose, vec
(
A
)
vec

(
A
)′
.

C.3.1 Decomposition of the Kronecker square A⊗A
Decomposing A into its elements using (C.11), the Kronecker square can be

expressed as a sum of Kronecker products as

A⊗A =
m∑
i=1

n∑
j=1

aijeie′j⊗A. (C.13)

Using (C.12), (C.8), (C.4) and (C.2), the Kronecker square can also be decom-

posed into a sum of vectorised matrices, with

A⊗A =
m∑
i=1

n∑
j=1

aje′j⊗aie′i

=
m∑
i=1

n∑
j=1

(aj⊗ai)
(
e′j⊗e′i

)

=
m∑
i=1

n∑
j=1

vec
(
aia′j

)
vec

(
eie′j

)′
. (C.14)

C.3.2 Decomposition of the cross product

vec(A)vec(A)′

Using (C.11), the cross product of a vectorised matrix vec
(
A
)
with its transpose

can be expressed as

vec
(
A
)
vec

(
A
)′

=
m∑
i=1

n∑
j=1

vec
(
A
)
vec

(
aijeie′j

)′
. (C.15)



C.4. The commutation matrix Km,n 265

This can also be expressed as a sum of Kronecker products of column products

and position matrices by using (C.12), (C.2) and (C.8).

vec
(
A
)
vec

(
A
)′

=
m∑
i=1

n∑
j=1

vec
(
aie′i

)
vec

(
aje′j

)′
=

m∑
i=1

n∑
j=1

(ei⊗ai)
(
e′j⊗a′j

)

=
m∑
i=1

n∑
j=1

eie′j⊗aia′j . (C.16)

C.4 The commutation matrix Km,n

Magnus and Neudecker (1979) used a sum of Kronecker products of eie′j and

its transpose to define the mn×mn matrix

Km,n =
m∑
i=1

n∑
j=1

eie′j⊗eje′i. (C.17)

Hence, for example,

K2,2 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , K3,3 =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1



.

The matrix Km,n is known as a commutation matrix because it provides the

factors that allow a Kronecker product of vectors to commute. For vectors x

and y of length m and n respectively, and m×n matrix A,

Km,n(x⊗y) = y⊗x, Km,nvec
(
A
)

= vec
(
A′
)
. (C.18)
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Furthermore, for a matrix A with m rows, vectors x of length n and vector y

of arbitrary length,

y′⊗A⊗x = Km,n

(
xy′⊗A

)
. (C.19)

The commutation matrix satisfies the further properties

K′m,n = Kn,m, (C.20)

K−1
m,n = Kn,m, (C.21)

Km,nKn,m = Imn (C.22)

C.4.1 Decomposition of the commuted Kronecker

square of a symmetric matrix
Several steps in Section 5.3 require permutation of the blocks or columns of an

m×m symmetric matrix A into an alternative arrangement. In the particular

case where A is symmetric, (C.12) can be used to write

Km,m (A⊗A) = Km,m

(
A′⊗A

)
=

m∑
i=1

m∑
j=1

Km,m

(
aje′j⊗eia′i

)
.

Then, using (C.19) and (C.3),

m∑
i=1

m∑
j=1

Km,m

(
aje′j⊗eia′i

)
=

m∑
i=1

m∑
j=1

ei⊗aje′j⊗a′i

=
m∑
i=1

m∑
j=1

ei⊗e′j⊗aj⊗a′i

=
m∑
i=1

m∑
j=1

eie′j⊗aja′i. (C.23)



C.5. The N matrix 267

This can also be expressed as a sum of vector cross products by applying (C.18)

to (C.14):

Km,m (A⊗A) =
m∑
i=1

m∑
j=1

Km,mvec
(
aia′j

)
vec

(
eie′j

)′
=

m∑
i=1

m∑
j=1

vec
(
aja′i

)
vec

(
eie′j

)′
. (C.24)

C.5 The N matrix
The square commutation matrix Km,m appears in several matrix moment

formulas through terms of the form

Nm = 1
2 (Im2 +Km,m) . (C.25)

Thus, for example,

N2 =


1 0 0 0
0 0.5 0.5 0
0 0.5 0.5 0
0 0 0 1

 , N3 =



1 0 0 0 0 0 0 0 0
0 0.5 0 0.5 0 0 0 0 0
0 0 0.5 0 0 0 0.5 0 0
0 0.5 0 0.5 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0.5 0 0.5 0
0 0 0.5 0 0 0 0.5 0 0
0 0 0 0 0 0.5 0 0.5 0
0 0 0 0 0 0 0 0 1



Using (C.18) it follows that

Nmvec
(
A
)

= 1
2vec

(
A+A′

)
, (C.26)

and so when A is symmetric,

Nmvec
(
A
)

= vec
(
A
)
, (C.27)

Nm is singular, and so the inverse N−1
m does not exist. However, since both
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Im2 and Km,m are symmetric and real-valued, Nm also shares these properties;

furthermore, it is straightforward to show that Nm is idempotent using (C.25)

and (C.22), since

NmNm = 1
4 (Im2 +Km,m)(Im2 +Km,m)

= 1
4 (Im2Im2 +Km,mIm2 + Im2Km,m+Km,mKm,m)

= 1
4 (2Im2 + 2Km,m)

= Nm. (C.28)

Being idempotent, symmetric and real-valued, Nm satisfies the four Moore-

Penrose criteria (Penrose, 1955), thus the generalised inverse of Nm is N†m =

Nm.

The N matrix enables a number of useful manipulations of Kronecker

products. From Schott (2016, Theorem 8.31), for A = BB′ where A and B are

both m×m matrices,

Nm (B⊗B)Nm = (B⊗B)Nm = Nm (B⊗B) , (C.29)

(B⊗B)Nm

(
B′⊗B′

)
= Nm (A⊗A) . (C.30)

C.5.1 Positive semi-definiteness of linear combinations

of vec and Kronecker products of symmetric

matrices
Section 5.3 will make extensive use of linear combinations of terms of the

form vec
(
A
)
vec

(
A
)′

and Nm (A⊗A), where A is a symmetric m×m pos-

itive semidefinite matrix, to define the m2×m2 covariance matrices used in

multivariate Bayes linear variance adjustment. In order for the matrices so

defined to be valid covariance matrices, they must be both symmetric and

positive semidefinite.

For any matrix A, vec
(
A
)
vec

(
A
)′

is symmetric positive semidefinite. To
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see this, notice that each column is a multiple of vec
(
A
)
, and so vec

(
A
)
vec

(
A
)′

has rank one and has only one non-zero eigenvalue: when A is an m×m matrix,

this is equal to tr
(
vec

(
A
)
vec

(
A
)′)

=∑m
i=1a

2
ii.

From Schott (2016, Theorem 8.5),the m2 eigenvalues of A⊗A are

{λiλj : i= 1, ... ,m;j = 1, ... ,m}, where λi denotes the ith eigenvalue of A;

hence, if A is positive semidefinite, A⊗A must be also. Furthermore, since Nm

is idempotent its eigenvalues are all either zero or one (Horn and Johnson, 1985);

thus Nm is also positive semidefinite. From (C.29), Nm (A⊗A) = (A⊗A)Nm;

thus Nm (A⊗A) must also be symmetric and positive semidefinite. Any ma-

trix constructed from a nonnegative linear combination of vec
(
A
)
vec

(
A
)′

and

Nm (A⊗A) must therefore also be both symmetric and positive semidefinite,

if A is positive semidefinite.

Such matrices are rank deficient, and so the inverse does not exist. However,

due to the special structure of these matrices, it can be shown that when A is

nonsingular, the generalised inverse can be written in terms of A−1, and has

the general form

[
Nm (A⊗A) +αvec

(
A
)
vec

(
A
)′]†

=

Nm

{
A−1⊗A−1− α

1 +αm
vec

(
A−1

)
vec

(
A−1

)′}
. (C.31)

The following proof of this statement is adapted from Magnus (1988), Theorem

4.16.
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C.5.2 Derivation of the generalised inverse of

Nm(A⊗A) +αvec
(
A
)
vec

(
A
)′

From (C.6) and (C.8), (A⊗A)†(A⊗A) = Im2 , so that

[
Nm (A⊗A) +αvec

(
A
)
vec

(
A
)′]

=
[
Nm (A⊗A) +αvec

(
A
)
vec

(
A
)′]

(A⊗A)† (A⊗A) ,

=
[
Nm (A⊗A)(A⊗A)†+αvec

(
A
)
vec

(
A
)′

(A⊗A)†
]

(A⊗A) ;

=
[
Nm+αvec

(
A
)
vec

(
A
)′ (

A†⊗A†
)]

(A⊗A) . (C.32)

Because A is invertible, A† = A−1, and from (C.9), vec
(
A
)′ (

A−1⊗A−1
)

=

vec
(
A−1AA−1

)′
= vec

(
A−1

)′
, so (C.32) is

=
[
Nm+αvec

(
A
)
vec

(
A−1

)′]
(A⊗A) . (C.33)

Finally, using (C.29) and (C.27), this is equivalent to

=
[
Im2 +αvec

(
A
)
vec

(
A−1

)′]
Nm (A⊗A) . (C.34)

The required generalised inverse is therefore now

{[
Im2 +αvec

(
A
)
vec

(
A−1

)′]
Nm (A⊗A)

}†
, (C.35)

which has the form (PQR)†, with P = Im2 +αvec
(
A
)
vec

(
A−1

)′
, Q = Nm,

and R = (A⊗A). It will now be shown that, in this case, (PQR)† = R†Q†P†.

First, it is necessary to obtain P†, Q† and R†. Note that P has the form

B+uv′. According to the Sherman-Morrison formula (Bartlett, 1951), a matrix

of this form is invertible if 1 +v′B−1u 6= 0, in which case

(
B+uv′

)−1
= B−1−B−1uv′B−1

1 +v′B−1u
. (C.36)
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Here, B = Im2 , and from (C.10), 1 +v′B−1u = 1 +vec
(
A−1

)′
vec

(
A
)

= 1 +

tr
(
A−1A

)
= 1 +m, so P is invertible, with

P† = P−1 = Im2−
αvec

(
A
)
vec

(
A−1

)′
1 +αm

. (C.37)

From Section C.5, Q† = N†m = Nm, and using (C.6), R† = (A⊗A)† = (A†⊗

A†) = (A−1⊗A−1).

C.5.2.1 Satisfying the Penrose conditions

Having obtained the generalised inverses of P, Q and R, it is now necessary to

show that the generalised inverse ofPQR also exists. The matrixM†= (PQR)†

is a pseudoinverse (and therefore a generalised inverse) of the matrixM=PQR)

if it satisfies the four Penrose conditions (Rao, 1972):

1. MM†M = M,

2. M†MM† = M†,

3.
(
MM†

)∗
= MM†,

4.
(
M†M

)∗
= M†M,

where M∗ denotes the conjugate transpose of M; here, M = PQR, where all

of the matrices concerned are real-valued, so M∗ is the transpose M′.

First, consider condition 4. Recall that P is invertible, so that PP−1 =

Im2 . Similarly, as noted earlier in this proof, (A⊗A)†(A⊗A) = Im2 , so

that RR† = Im2 . Nm is symmetric and idempotent (Section C.5), so that

QQ† = NmNm = Nm.
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Then, using (C.29) and (C.8),

M†M = R†Q†P†PQR =
(
A−1⊗A−1

)
N†mP−1PNm (A⊗A)

= (A⊗A)†N†mNm (A⊗A)

= (A⊗A)† (A⊗A)Nm

= Nm. (C.38)

Nm is symmetric, so M†M =
(
M†M

)′
, and the fourth condition is satisfied.

Similarly, for the third condition,

MM† = PQRR†Q†P† = PNm (A⊗A)(A⊗A)†N†mP−1

= PNmP−1. (C.39)

Using (C.27), which states that for symmetric A, Nmvec
(
A
)

= vec
(
A
)
and

vec
(
A
)′

= vec
(
A
)
Nm, it is possible to write

PNm =
[
Im2 +αvec

(
A
)
vec

(
A−1

)′]
Nm

=
[
Nm+Nmαvec

(
A
)
vec

(
A−1

)′
Nm

]
= Nm

[
Im2 +αvec

(
A
)
vec

(
A−1

)′]
= NmP, (C.40)

so that

MM† = NmPP−1 = Nm. (C.41)

Again, because Nm is symmetric, MM† =
(
MM†

)′
, and the third condition is

satisfied.

Now using (C.41) in condition 2, and this time using (C.27) to write
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NmP−1Nm = NmP−1,

M†
(
MM†

)
= R†Q†P†Nm = (A⊗A)†N†mP−1Nm

= (A⊗A)†N†mP−1 = R†Q†P†

= M†. (C.42)

Finally, applying the same approach to condition 1 gives

(
MM†

)
M = NmPQR = NmPNm (A⊗A) = PNm (A⊗A)

= M. (C.43)

All four Penrose conditions are therefore satisfied, proving that the gener-

alised inverse of Nm(A⊗A) +αvec
(
A
)
vec

(
A
)′

is

R†Q†P† = (A⊗A)−1Nm

[
Im2 +αvec

(
A
)
vec

(
A−1

)′]−1
. (C.44)

Using (C.37), and (C.29), this is

(A⊗A)−1Nm

Im2−
αvec

(
A
)
vec

(
A−1

)′
1 +αm


= Nm

(A⊗A)−1−
α (A⊗A)−1vec

(
A
)
vec

(
A−1

)′
1 +αm

 . (C.45)

Finally, using (C.5) and (C.9), (A⊗A)−1vec
(
A
)

=
(
A−1⊗A−1

)
vec

(
A
)

=

vec
(
A−1AA−1

)
= vec

(
A−1

)
, and the generalised inverse can be written as

[
Nm (A⊗A) +αvec

(
A
)
vec

(
A
)′]†

=

Nm

A−1⊗A−1−
αvec

(
A−1

)
vec

(
A−1

)′
1 +αm

 , (C.46)

as required.



Appendix D

Derivations relating to

multivariate Bayes linear

variance adjustment

D.1 Permuting VM into VM
∗

In Section 5.3.4.1 the permuted variance VM∗ was introduced, in order to

express the expectation E[M(V)⊗M(V)] in terms of specifiable quantities.

The exact form of the permutation is derived here. Recall that the unpermuted

variance is VM = V[M(V)], and that VR = E[M(V)].

D.1.1 Permutation of submatrices of VM
Let vi denote the ith column of M(V) and let ei denote the ith column of Im,

as defined in Section C.3. Then using (C.16),

E
[
vec

(
M(V)

)
vec

(
M(V)

)′]
= E

 m∑
i=1

m∑
j=1

eie′j⊗viv′i


=

m∑
i=1

m∑
j=1

eie′j⊗E
[
viv′i

]
, (D.1)
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while using (C.14),

E[M(V)⊗M(V)] = E

 m∑
i=1

m∑
j=1

vec
(
viv′i

)
vec

(
eie′j

)′
=

m∑
i=1

m∑
j=1

vec
(
E
[
viv′i

])
vec

(
eie′j

)′
. (D.2)

Now let Mij denote the (i, j)th m×m block of VM , so that

VM =
m∑
i=1

m∑
j=1

eie′j⊗Mij , (D.3)

and let ri denote the ith column of VR, so that the (i, j)th block of

E
[
vec

(
M(V)

)
vec

(
M(V)

)′]
can be written as

E
[
viv′i

]
= Mij + rir′j . (D.4)

Substituting (D.4) into (D.2) and again using (C.14), E[M(V)⊗M(V)] can

be written as

E[M(V)⊗M(V)] =
m∑
i=1

m∑
j=1

vec
(
Mij + rir′j

)
vec

(
eie′j

)′
=

m∑
i=1

m∑
j=1

{
vec

(
Mij

)
vec

(
eie′j

)′
+vec

(
rir′j

)
vec

(
eie′j

)′}

=
m∑
i=1

m∑
j=1

vec
(
Mij

)
vec

(
eie′j

)′
+VR⊗VR

= VM∗+ (VR⊗VR) , (D.5)

where

VM∗ =
m∑
i=1

m∑
j=1

vec
(
Mij

)
vec

(
eie′j

)′
. (D.6)
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D.1.2 Expressing VM∗ in terms of VR
With VM expressed in terms of VR as in Section 5.3.5.2, it is possible to derive

an explicit form for Mij , the (i, j)th m×m block of VM , and so to derive

an explicit form for VM∗, the permutation of VM required to complete the

specification of VT in (5.119). The derivation is carried out using the more

compact general elliptical notation used in (5.128).

Using (C.16)-(C.23), (5.128) can be written as

VM = 1
β

{
γvec

(
VR

)
vec

(
VR

)′
+ (γ+ 1)(VR⊗VR) + (γ+ 1)Km,m(VR⊗VR)

}

= 1
β

m∑
i=1

m∑
j=1

{
γ
(
eie′j⊗ rir′j

)
+ (γ+ 1)

(
rijeie′j⊗VR

)
+ (γ+ 1)

(
eie′j⊗ rjr′i

)}

=
m∑
i=1

m∑
j=1

eie′j⊗
1
β

{
γrir′j + (γ+ 1)rijVR+ (γ+ 1)rjr′i

}
, (D.7)

where rij denotes the (i, j)th element of VR and ri denotes the ith column of

VR. This has the form VM =∑m
i=1

∑m
j=1eie′j⊗Mij that was obtained in (D.3),

so it follows that

Mij = 1
β

{
γrir′j + (γ+ 1)rijVR+ (γ+ 1)rjr′i

}
. (D.8)

As noted in Section 5.3.1, VR is assumed to be a valid covariance matrix and

therefore of full rank; therefore each column ri is unique, and so each block

Mij has a unique value for any given VM . Now substituting these blocks into

the permuted form (D.6) and using (C.15)-(C.24), VM∗ can be expressed in

terms of specifiable quantities as

VM∗ =
m∑
i=1

m∑
j=1

vec
(

1
β

{
γrir′j + (γ+ 1)rijVR+ (γ+ 1)rjr′i

})
vec

(
eie′j

)′
= 1
β

m∑
i=1

m∑
j=1

{
γvec

(
rir′j

)
vec

(
eie′j

)′
+ (γ+ 1)vec

(
rijVR

)
vec

(
eie′j

)′
+

(γ+ 1)vec
(
rjr′i

)
vec

(
eie′j

)′}
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= 1
β

{
γ (VR⊗VR) + (γ+ 1)vec

(
VR

)
vec

(
VR

)
+ (γ+ 1)Km,m (VR⊗VR)

}
.

(D.9)

D.2 Fourth-order moments of a multivariate

elliptical distribution
The fourth-order central moments (5.124) of an m× 1 random variable

X ∼ E(µ,Σ,ψ) can be expressed in matrix form using the definition of

the Kronecker product given in (C.1). The covariances here are no longer

between individuals i and j, say, so the subscript i is omitted here; in-

stead, p and q refer to the elements of X. Also let Y = X−µ, so that

E[(X−µ)(X−µ)′⊗ (X−µ)(X−µ)′] can be expressed more compactly as

E
[
YY′⊗YY′

]
.

From (C.12), Y =∑m
p=1Ypep. Then by gathering the scalar elements over

which the expectation is taken,

E
[
YY′⊗YY′

]
= E

 m∑
p=1

m∑
q=1

m∑
r=1

m∑
s=1

(Ypep)(Yqeq)′⊗ (Yrer)(Yses)′


=
m∑
p=1

m∑
q=1

m∑
r=1

m∑
s=1

epe′q⊗ere′sE[YpYqYrYs] , (D.10)

and, taking E[YpYqYrYs] from (5.124),

E
[
YY′⊗YY′

]
= α2(κ+ 1)

m∑
p=1

m∑
q=1

m∑
r=1

m∑
s=1

epe′q⊗ere′s [σpqσrs+σprσqs+σpsσqr] .

(D.11)

This summation can be carried out separately for each element in the square

brackets.
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First, using (C.11),

m∑
p=1

m∑
q=1

m∑
r=1

m∑
s=1

epe′q⊗ere′sσpqσrs =
m∑
p=1

m∑
q=1

σpqepe′q⊗
m∑
r=1

m∑
s=1

σrsere′s

= Σ⊗Σ. (D.12)

For the second term, (C.12) is used to to sum over r and s, then using (C.16),

m∑
p=1

m∑
q=1

m∑
r=1

m∑
s=1

epe′q⊗ere′sσprσqs =
m∑
p=1

m∑
q=1

epe′q⊗
m∑
r=1

m∑
s=1

σprerσqse′s

=
m∑
p=1

m∑
q=1

epe′q⊗σpσ′q

= vec
(
Σ
)
vec

(
Σ
)′
, (D.13)

where σp denotes the pth column of Σ.

Finally, (C.12) is used again to rearrange the third term, this time as

m∑
p=1

m∑
q=1

m∑
r=1

m∑
s=1

epe′q⊗ere′sσpsσqr =
m∑
p=1

m∑
q=1

epe′q⊗
m∑
r=1

m∑
s=1

σqrerσpse′s

=
m∑
p=1

m∑
q=1

epe′q⊗σqσ′p. (D.14)

Then, using (C.23),

m∑
p=1

m∑
q=1

epe′q⊗σqσ′p = Km,m (Σ⊗Σ) . (D.15)

Combining (D.12), (D.13) and (D.15), the matrix of fourth-order central

moments can be expressed as

E
[
YY′⊗YY′

]
= α2(κ+ 1)

{
vec

(
Σ
)
vec

(
Σ
)′

+ (Im2 +Km,m)(Σ⊗Σ)
}

= α2(κ+ 1)
{
vec

(
Σ
)
vec

(
Σ
)′

+ 2Nm (Σ⊗Σ)
}
. (D.16)
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D.2.1 Variance of the second-order moments of a

multivariate elliptical distribution
E
[
YY′⊗YY′

]
can be used to obtain V

[
vec

(
YY′

)]
because, using (C.8) and

(C.2),

E
[
YY′⊗YY′

]
= E

[(
Y⊗Y

)(
Y⊗Y

)′]
= E

[
vec

(
YY′

)
vec

(
YY′

)′]
, (D.17)

and so, since E[Y] = 0,

V
[
vec

(
YY′

)]
= E

[
vec

(
YY′

)
vec

(
YY′

)′]
−E

[
vec

(
YY′

)]
E
[
vec

(
YY′

)]′
= E

[
YY′⊗YY′

]
−vec

(
V[Y]

)
vec

(
V[Y]

)′
. (D.18)

From property 2 in Section 5.3.5.1, V[Y] = αΣ, so

V
[
vec

(
YY′

)]
= α2(κ+ 1)

{
vec

(
Σ
)
vec

(
Σ
)′

+ 2Nm (Σ⊗Σ)
}
−vec

(
αΣ

)
vec

(
αΣ

)′
= α2

{
κvec

(
Σ
)
vec

(
Σ
)′

+ 2(κ+ 1)Nm (Σ⊗Σ)
}

= κvec
(
V[Y]

)
vec

(
V[Y]

)′
+ 2(κ+ 1)Nm (V[Y]⊗V[Y]) .

(D.19)
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