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Abstract

The covalent modification of RNA nucleotides is a powerful layer of post-

transcriptional control of gene expression across the tree of life. Historically, only

abundant modifications on abundant RNAs such as tRNA and rRNA could be stud-

ied, due to methodological limitations. In the past decade, leaps forward in bio-

chemistry and high throughput sequencing methods have enabled mapping of RNA

modifications across all RNA species. In particular this thesis focuses on the most

abundant internal modification of mRNA, N6-methyladenosine (m6A), and how

RNA binding proteins (RBPs) interact with RNA modifications to impact RNA life

cycle. Alongside these experimental developments have come new computational

challenges. Integration of many datasets must be approached carefully, with a view

to extract as much biological information as possible. Throughout this work I de-

scribe the development of open source computational tools for the analysis and

visualisation of CLIP data. A computational pipeline based on hierarchical pre-

mapping steps enables accurate quantification of non-coding RNAs from individual

nucleotide resolution crosslinking and immunoprecipitation (iCLIP) datasets. Us-

ing the pipeline I describe novel tRNA binding for the DEAH-box helicase DDX3X

and identify widespread binding of NSun2 and Trmt2A to pre-tRNAs. In collabo-

ration with the lab of Prof. Folkert van Werven, I integrate m6A miCLIP with

m6A-reader protein iCLIP data, alongside functional datasets in WT and methyl-

transferase deletion conditions in order to uncover the role of m6A in early bud-

ding yeast meiosis. Surprisingly, we find that the sole yeast m6A-binding pro-

tein, Pho92p, binds in both an m6A-dependent and an m6A-independent manner.

m6A-dependent Pho92p binding partners are implicated in mRNA decay coupled
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to translation. Taken together I present powerful computational tools that will be of

use to the wider community, alongside the interesting biological insights they have

already enabled.



Impact Statement

Broadly, the study of RNA binding proteins (RBPs) and their RNA partners, along-

side the understanding of how RNA nucleotide modifications contribute to these

binding networks, is a rich field, producing insights which will certainly have appli-

cations to many medical fields in the long-term. In the course of my doctoral work

I have developed and contributed to several pieces of software that will help re-

searchers more effectively analyse data produced to identify RNAs bound by RNA

binding proteins, and RNAs containing modified nucleotides, and to present the

results of such analyses.

Understanding how m6A reader proteins function is of particular importance to

the field of cancer research. m6A is dysregulated in a staggering number of cancers

(X.-Y. Chen et al., 2019). A small molecule inhibitor of the methyltransferase has

been pursued as a treatment for Acute myeloid leukaemia (AML) (Yankova et al.,

2021). Furthermore, YTH reader proteins are themselves also being explored as

targets to modify the cross-presentation of tumour antigens and activation of CD8+

T cells and to selectively kill AML cells (Han et al., 2019; Paris et al., 2019). Work

in model systems, such as budding yeast, allows us to come to a more detailed

understanding of complex molecular mechanisms, which is crucial for interpreting

the effects of interventions targeting complex human pathways.

From an academic perspective, I describe my contributions to four

manuscripts. One is a review describing the advances in technologies to map

m6A transcriptome-wide, which I weave into my thesis introduction (Capitanchik

et al., 2020). Another describes my work in collaboration with the group of Prof.

Folkert van Werven to uncover the mechanisms of m6A-dependent RBP networks
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in budding yeast meiosis (Varier et al., 2022). In my final results chapters I touch

upon my work with Dr. Lisa Strittmatter to develop the analysis methods for a vari-

ant CLIP protocol focused on identifying helicase binding sites in spliceosomes of

defined conformation (Strittmatter et al., 2020). Further, I briefly present how this

led to a collaboration with Dr. Anob Chakrabarti to produce a computational tool

that enables researchers to effectively visualise and normalise many CLIP samples

in one plot, with additional annotations (Chakrabarti et al., 2021). Manuscripts

describing the tRNA binding of DDX3X, my ncRNA-aware CLIP pipeline and the

interactive CLIP peak caller Clippy are all in preparation.

The further impact of the computational tools described in this work

will be felt when they are integrated into the web analysis platform iMaps

(imaps.goodwright.com), where they will be made available as part of a wider

suite of tools. The user-friendly platform will allow integrative analysis across

many datasets, with the aim of increasing the pace of biological insight in the face

of potentially overwhelming amounts of data.
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Chapter 1

Introduction

You are not obligated to complete

the work, but neither are you free to

desist from it.

Rabbi Tarfon, Pirke Avot 2:21

The life of an RNA molecule begins at transcription and from that very mo-

ment it’s existence is negotiated through complex and dynamic networks at the co-

and post-transcriptional level. RNA processing mechanisms act to change the in-

formation content of mRNA, for example by alternative splicing or RNA editing,

or to modulate the volume of this information by controlling rates of RNA syn-

thesis, processing, degradation and translation. The life of an RNA is hectic as it

passes through the hands of many RNA-binding proteins (RBPs) all acting together

to achieve the miraculous: delivering said RNA to the right place at the right time.

A growing body of evidence suggests that an important player in fine-tuning

gene expression is the language of covalent modifications of RNA nucleotides

(Roignant & Soller, 2017). Both the RNA nucleotide base and sugar-phosphate

backbone can harbour modifications. Such modifications are evolutionarily ancient,

with many being present from the very beginnings of life in the RNA world. In fact,

many tRNA methyltransferases can be traced back to the last universal common

ancestor (LUCA), signifying their importance for life on this planet (Becker et al.,

2018; Rana & Ankri, 2016; Weiss et al., 2018). It’s compelling to imagine an early
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primordial soup, abuzz with chemical reactions, atoms traded to form all possible

nucleotide variations—the useful ones staying with us. The same modifications can

be found in Eukarya, Eubacteria and Archaea, although the amounts, locations and

functions of specific modifications differ from organism to organism, suggesting

that RNA modification is an attractive substrate for evolution.

1.1 Introduction to eukaryotic RNA modifications

1.1.1 RNA modifications in the process of gene expression

The process of protein-coding gene expression requires recruitment of RNA Poly-

merase II (RNAPII) to genes to catalyse the transcription of DNA into messenger

RNA (mRNA). pre-mRNA must be processed into mature mRNA through capping,

splicing and polyadenylation to enable correct translation of the coding RNA se-

quence into protein in the cytoplasm (Figure 1.1).

In general, RNA modifications participate in eukaryotic gene expression from

start to finish. The moment the first pre-mRNA nucleotide exits the RNA Poly-

merase II (RNAPII) exit tunnel several enzymes engage to catalyse the addition

of a methylated guanosine nucleotide (m7G) (Martinez-Rucobo et al., 2015). This

process, called capping, protects the pre-mRNA from 5’-exonucleases and later fa-

cilitates translation initiation. The first and second transcribed nucleotides are addi-

tionally methylated at the 2’O position of the ribose sugar (2’-Ome), these methy-

lations are important in mammals for designating mRNAs as “self” in comparison

to invading viral RNAs (Hyde & Diamond, 2015). Where this first nucleotide is an

adenosine, 2’-Ome can be combined with N6-methyladenosine (m6A) modification

by PCIF1/CAPAM, to form m6Am, which is proposed to enhance translation of

such transcripts (Akichika et al., 2019).

As transcription progresses, U1 snRNP bound to RNAPII waits in the wings

for signs of the first intron, so that it can bind to the 5’ splice site (5’SS), an event

which triggers the process of pre-mRNA splicing to excise intronic sequences (Z.

Zhang et al., 2021). This splicing process is catalysed by a dynamic molecular
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Figure 1.1: The process of protein-coding gene expression. pre-mRNA is tran-
scribed in the nucleus by RNAPII. The pre-mRNA is capped, spliced
and polyadenylated. During this process the RNA may also be mod-
ified in several different ways, and possibly edited. Mature mRNA is
packaged and exported to the cytoplasm where it is translated by the
ribosome.
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machine called the spliceosome, which contains structural RNAs which themselves

are modified.

On some transcripts, as RNAPII reaches somewhere around about the stop

codon, m6A is catalysed and how and why this happens is the subject of much

discussion in this thesis. As RNAPII reaches the end of the gene, the mRNA will

be cleaved, somewhere in between a highly conserved AAUAAA hexamer and a

downstream U/GU-rich sequence element. Poly(A) polymerase (PAP) catalyses the

addition of the poly(A) tail, which is rapidly bound by poly(A) binding protein

(PABP). In the cytoplasm, this poly(A)-PABP complex binds to eIF4G scaffold

protein to stimulate translation initiation (Gallie, 1991).

1.1.2 Modification of structural RNAs

Two critical processes in gene expression are presided over by complex RNA-

protein machines. Splicing is performed by the spliceosome, which contains struc-

tural RNAs called small nuclear RNAs (snRNAs). Translation of mRNA to protein

is catalysed by the ribosome, which contains highly structured ribosomal RNAs and

is aided by transfer RNAs which are loaded with the required amino acids.

Spliceosomal snRNAs contain many modifications: their caps are trimethy-

lated, several uridines are converted to a 5-ribosyl isomer (pseudouridine, Ψ) and

they, too, harbour 2’-Ome. Mammalian U6 snRNA contains a single m6A in the

sequence that recognizes the 5’SS (ACm6AGA); this seems especially important

for splicing of introns where this snRNA adenosine meets the intron also at an

adenosine, with work suggesting that methylation of the snRNA improves the ther-

mostability of the intron-snRNA duplex in this context (Ishigami et al., 2021).

Translation of proteins needs to happen at the right time, in the right place

and with fidelity. The most well understood function of RNA modifications is

in the safeguarding of accurate translation, which follows as tRNAs are the most

highly modified RNAs in the cell (Figure 1.2). RNA modifications which ster-

ically block Watson-Crick base pairing are important for maintaining the open

loops in tRNA structure, for example m1G in the anticodon loop and m1A in
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the T loop. m1G37 adjacent to the anticodon wobble position is also impor-

tant for preventing frameshifts, in fact other bulky modifications at the Watson-

Crick interface are also used for this purpose at this position, including cyclic N6-

threonylcarbamoyladenosine (Björk et al., 1989; Klassen et al., 2017). Certain mod-

ifications are crucial for binding of ions, m5C in tRNAs promotes distant binding

of Mg2+ which stabilises stem structure, and is required for ribosome binding (Y.

Chen et al., 1993; Dao et al., 1994).

The ribosome structure itself also requires stabilising RNA modifications

which are deposited during ribosome biogenesis, for example pseudouridines en-

hance base stacking interactions leading to more stable structure (Davis, 1995).

Not only this, but rRNA modifications are enriched in functional areas of the ribo-

some that could impact translation, for example 60% of yeast rRNA modifications

occur in functional regions such as the large subunit A, P and E sites, the pep-

tidyl transferase active site and polypeptide exit tunnel (Decatur & Fournier, 2002).

Over the past decade a growing body of research suggests the existence of “spe-

cialised ribosomes” differing in sequence, expression, localisation and interestingly

modification content, opening up the possibility of previously unrealised layers of

translational control (Xue & Barna, 2012).

1.1.3 Modification of mRNAs

mRNA itself can be modified in ways other than capping. m6A is often described

as “the most abundant internal modification of mRNA”. This statement contains

several caveats: “of mRNA” is included because pseudouridine, the first discov-

ered RNA modification, is the most abundant modification in the cell (Machnicka

et al., 2013) and “internal” is included because of the previously discussed 5’ cap-

ping modifications invariably present on mRNAs. Behind m6A in terms of abun-

dance is adenosine to inosine deamination, catalysed by ADAR enzymes, which is

more often termed “RNA editing”, it is most abundant in brain mRNAs where it

is estimated to be present at a rate of 1 in every 17,000 nucleotides (Paul & Bass,

1998). The distinction between modification and editing is generally between mod-
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Figure 1.2: tRNAs are the most highly modified RNA in the cell. Shown are hu-
man cytoplasmic tRNA modifications with abbreviations as set in the
MODOMICS database (Machnicka et al., 2013). Figure modified from
(Suzuki, 2021).
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ifications which cannot change the resulting protein sequences, and so-called edits

which can. In the case of inosine, if present in a coding sequence it will be “read”

by tRNAs as a cytosine rather than adenosine. When this changes the amino acid

it can have functional consequences for the protein. Other internal modifications

of mRNA are present at much lower frequencies and therefore have proved trou-

blesome to accurately detect and map. Mass spectrometry approaches to detecting

rare RNA modifications in poly(A)+ purified RNA are often hampered by persistent

rRNA contamination and many sequencing approaches face high false positive rates

(Anreiter et al., 2021). Pseudouridine is estimated to occur on 89-1929 transcripts

and there is one validated m1A site in ND5 mRNA (Carlile et al., 2014; Safra et

al., 2017; Schwartz et al., 2014). Also suggested to occur in mRNA are 2’-Ome

of ribose (particularly of uridine nucleotides), m7G, m5C, hydroxy-m5C, m3C and

N4-acetylcytidine (Anreiter et al., 2021).

1.1.4 History of m6A research

m6A was first described in the 1970’s: in HeLa cell poly(A)+ RNA m6A was found

to be present at an average rate of 1 in every 1000 adenosine nucleotides (Wei et al.,

1975). More recent measurements by quantitative mass spectrometry of total RNA

from post-mortem human tissues agree suggesting that 0.11–0.23% of adenosines

are modified with m6A (J. Liu, Li, et al., 2020). There is some evidence that m6A

levels change substantially in cancer, whilst this is mostly inferred from expression

of methyltransferases, mass spectrometry measurements in circulating tumour cells

vs. whole red blood cells were found to be consistently doubled, although it’s no-

table no measurement rose above ∼0.3% (W. Huang et al., 2016). Interestingly,

m6A levels in budding yeast meiosis echo these measurements, being ∼0.15-0.2%

of adenosines (Varier et al., 2022). In Drosophila m6A peaks in early develop-

mental stages, but never reaches above 0.1% in mRNAs (Kan et al., 2017; Lence

et al., 2016). Such a narrow range possibly hints at metabolic constraints within

eukaryotic cells, or perhaps a very deleterious impact of levels much higher than

this.
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Long before any m6A sites were mapped to specific residues, or the enzymes

involved were known, the consensus sequence motif was deduced by chromatog-

raphy methods to be N-(G/A)-m6A-C-N, in mouse RNA, with the 5’ nucleotide

being G ∼75% of the time and A ∼25%. The 5’ N was determined to be G or A

90% of the time and the 3’ N was rarely a G (Schibler et al., 1977). This motif

is commonly referred to as DRACH (D=G/A/U,R=G/A, H=A/C/U) or occasionally

RRACH. Fascinatingly, it was already proposed in this early work that m6A was

installed in mRNA in the nucleus, due to the same sequences being identified in

heterogenous nuclear RNA and mRNA fractions (Schibler et al., 1977).

For decades the only known precise positions of m6A on mRNA were on

the highly abundant bovine prolactin mRNA and in the Rous sarcoma virus RNA

genome. m6A was localised to 108nt in the prolactin mRNA 3’UTR (Horowitz

et al., 1984) and seven sites of m6A were identified at single nucleotide resolution

in the 3’ half of the Rous sarcoma virus genome (Kane & Beemon, 1985). It was

determined that modification of Rous sarcoma virus genome was not constitutive,

which seems to be a general feature of m6A- that individual mRNA molecules in

a population will be heterogenous at modification sites. Second, authors noted the

clustering of m6A in specific regions, where multiple sites would be in close prox-

imity (Kane & Beemon, 1985). To this day it’s unclear what this says about the

kinetics of m6A or what consequences this might have for function.

1.1.5 Components of the m6A-methylating complex and their as-

sembly on RNA

In mammals, m6A is installed by a Mettl3/Mettl14 heterodimer, with Mettl3 being

the catalytically active enzyme (Schöller et al., 2018). The binding interface be-

tween Mettl3 and Mettl14 creates a groove for RNA contacts, and N-terminal Mettl3

zinc finger motifs also contribute to RNA binding with some apparent recognition

of RNA secondary structure (Meiser et al., 2020; Śledź & Jinek, 2016). Wilms’

tumor 1-associating protein (WTAP) is also required for in vivo mRNA modifi-

cation and is thought to recruit the Mettl3/Mettl14 complex to nuclear speckles
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(Ping et al., 2014). In mammalian cells, Mettl3, Mettl14 and WTAP all Co-IP with

RNAPII and H3K36me3 modified chromatin (Huang et al. 2019). Additionally, the

same m6A marks are seen in chromatin-associated and nuclear mRNA fractions as

in whole cell purified mRNAs, suggesting m6A is installed in nascent RNAs, po-

tentially co-transcriptionally (Ke et al. 2017). Further proteins are also required

for in vivo methylation, making the mRNA m6A-methylating complex a large

seven-component molecular machine, including Zc3h13, Virilizer (also known as

KIAA1429 or VIRMA), Hakai and Rbm15 (Patil et al., 2016; J. Wen et al., 2018;

Yue et al., 2018).

In mammals, there are at least three other m6A methlytransferases. METTL5-

TRMT112 methyltransferase complex installs the m6A modification at position

1832 of human 18S rRNA (van Tran et al., 2019), whilst ZCCHC4 installs m6A

at position 4220 in 28S rRNA (Ma et al., 2019). Further, Mettl16 methylates U6

snRNA, MAT2A and various other ncRNAs in highly conserved hairpin loops of

specific sequence (Pendleton et al., 2017; Shima et al., 2017; Warda et al., 2017).

1.2 Methods for mapping m6A across transcriptomes

Note that the following section is adapted from my review article (Capitanchik et

al., 2020).

In order to understand the general principles of m6A-mediated mRNA regula-

tion, first we need to discern which adenosines are methylated on which transcripts

in a given cell or tissue at a given time. Over the past decade there have been

many leaps forward in technologies measuring m6A, starting with antibody-based

approaches, and more recently branching out into enzymatic, metabolic and direct

RNA sequencing methodologies; all of which are discussed in the following section

(Figure 1.3).
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Figure 1.3: A summary of methods for mapping m6A across transcriptomes. Figure
updated from (Capitanchik et al., 2020).

1.2.1 Antibody-based methods

In 2012, two groups simultaneously published the first methods to map m6A

transcriptome-wide, m6A-seq and MeRIP-seq, utilising antibodies that bind m6A to

perform RNA immunoprecipitation, followed by high-throughput sequencing (Do-

minissini et al., 2012; K. D. Meyer et al., 2012). The resolution of m6A-seq is lim-

ited to the length of RNA fragments, with no objective way of determining where

in the fragment the modification occurred.

Greater resolution was achieved by UV-crosslinking the antibody to RNA, fol-

lowing the principles of the CLIP protocol (J.-H. Lee et al., 2021). Such approaches

were simultaneously developed in the laboratories of Samie Jaffrey and Robert Dar-

nell, named miCLIP and m6A-CLIP respectively (Ke et al., 2015; Linder et al.,

2015). Here, purified RNA is incubated in vitro with an m6A antibody. The poly-

clonal Abcam and Synaptic System antibodies were determined to be most efficient



1.2. Methods for mapping m6A across transcriptomes 35

at enriching for m6A and gave the most predictable mapping signatures; as a result,

they remain the most commonly used antibodies in subsequent miCLIP publica-

tions. Following immunoprecipitation, the antibody is digested with proteinase K,

leaving an amino acid adduct attached to the RNA base. During preparation of the

cDNA library, the reverse transcriptase either reads through this crosslinked adduct,

causing a substitution or deletion mutation, or is stopped, resulting in cDNA trunca-

tion. These signals can be analysed computationally to give near single nucleotide

resolution of the modification site (Haberman et al., 2017).

m6A-CLIP is conceptually similar, but slightly different: the protocol exclu-

sively uses the Synaptic Systems antibody which optimises for cDNA truncations

rather than mutations, RNA fragments are size-selected prior to immunoprecipita-

tion and cDNAs are purified using BrdU. There are also differences in the starting

RNA-to-antibody ratios - miCLIP uses an excess of RNA, whereas m6A-CLIP uses

an excess of antibody.

Since then, an adaptation of the eCLIP protocol was introduced, called m6A-

eCLIP (meCLIP) which uses the Abcam m6A antibody. The analysis focuses en-

tirely on C-to-T conversions and filters for DRACH motifs in the resulting data

(Roberts et al., 2021; Van Nostrand et al., 2016). More recently, miCLIP2 improved

on previous protocols with several experimental optimisations, choosing to opti-

mise cDNA truncations using the Synaptic Systems antibody (Körtel et al., 2021).

Namely, bead-based cDNA size selection is performed as opposed to gel based in

miCLIP, saving time. Prior to this, a first PCR of six cycles means that cDNA

molecules lost in the size selection are still part of the final library. Further, longer

unique molecular identifiers (UMIs) ensures that they do not become saturated at

high coverage positions. Finally, as opposed to the original iCLIP-style adapter liga-

tion which required circularisation of the molecule before relinearisation, miCLIP2

directly ligates the 3’ sequencing adaptor to the 3’ end, which minimises loss of the

sample. Taken together, these improvements result in higher complexity libraries

that can be produced using less input material. Additionally, an adaptive boosting

machine learning model was trained on WT vs. Mettl3 KO data, which can be
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used to call sites of m6A modification from miCLIP2 data to remove non-specific

background signal (Körtel et al., 2021).

Despite these advances the promiscuity of m6A antibodies is still a significant

drawback, they are known to have additional preference for unmodified poly(A)

stretches and m6Am (Schwartz et al., 2013). Studies generally tackle this issue

by only reporting sites found within the consensus DRACH motif or by perturb-

ing methyltransferase activity. Neither is optimal: DRACH-only reporting prevents

discovery of m6A in non-canonical motifs, whereas knockout or knockdown con-

trols exclude sites that can be modified by another methyltransferase. Furthermore,

disrupting the m6A machinery may introduce global changes in RNA abundance

that are difficult to account for, except with the careful use of input libraries and

spike-ins (J. Liu, Dou, et al., 2020).

Methods that rely on crosslink-induced mutations as the readout require higher

read coverage to call sites than those based on truncation detection. Additionally,

for all strategies integrating multiple control datasets (methyltransferase depletion,

RNA input, etc) the increased variance may reduce the statistical power to call sites.

In summary, though antibody-based methods have been fundamental to paving the

way for transcriptomic analysis of m6A, and remain the most common way to sur-

vey the modification, issues with antibody specificity make the development and

use of orthogonal approaches desirable.

1.2.2 Enzymatic methods

The known biases in antibody-based mapping have led to the development of alter-

native methods. DART-seq employs the in vivo expression of an m6A-recognising

YTH protein domain fused to the APOBEC1 enzyme which deaminates cytosine

to uracil (K. D. Meyer, 2019). Thus, this construct deaminates cytosine residues

nearby to m6A sites bound by YTH, which can be subsequently quantified as mu-

tations in sequencing. Chromatography studies suggest that m6A is invariably fol-

lowed by cytosine (Wei et al., 1976) meaning individual m6As could theoretically

be identified at single nucleotide resolution, although in practise ∼80% of identified
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sites are >20 nucleotides away from the nearest miCLIP site. On the otherhand, as

the YTH-APOBEC1 construct can be transiently expressed in cells, library prepa-

ration is more straightforward than either the antibody or enzyme-based methods,

because no post-extraction treatment of the RNA is required. Likely for this reason,

libraries can be produced with as little as 10ng of total RNA. One concern is that

using APOBEC1 alone as a control might introduce false negatives, as it also has

3’UTR preference and 70% of APOBEC1-only deaminated cytosines are preceded

by an adenosine.

The discovery of MazF endoribonuclease, an enzyme that cuts preferentially at

ACA over m6A-CA sites, led to the development of two new methods: MAZTER-

seq and m6A-REF-seq (Garcia-Campos et al., 2019; Imanishi et al., 2017; Z. Zhang

et al., 2019). mRNA treated with Mazf produces fragments flanked by ACA se-

quences, therefore any internal ACA within a fragment is reasoned to be m6A

modified. By carefully characterising the biases of MazF the authors were able

to calculate stoichiomtetric information, which is missing from many of the de-

scribed methods. Clearly, the limitation of the MazF enzyme to ACA sites and the

extensive filtering requirements on the resulting datasets do mean that MazF-based

methods alone cannot provide a full transcriptome-wide map of m6A. Nevertheless,

these methods offer valuable complementary information.

More recently, the m6A-SEAL approach exploited unstable reaction interme-

diates produced by the human m6A demethylase FTO to enable labelling of m6A-

containing RNA fragments (Y. Wang et al., 2020). RNA was purified from cells

then incubated with recombinant human FTO protein in conditions conducive to

oxidation at the m6A methyl group, creating N6-hydroxymethyladenosine (hm6A).

This hydroxyl group could then be thiolated using dithiothreitol (DTT) to become

N6-dithiolsitolmethyladenosine (dm6A). At this point the RNA is then biotin la-

belled and enriched using streptavidin pulldown and RNA fragments are prepared

into sequencing libraries. Due to the many enzymatic/chemical processing steps,

5ug of poly(A)+ RNA is required as starting material, also the reproducibility be-

tween replicates is quite poor. Additionally, the resolution is lower than other non-
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antibody methods as fragments are ∼100nt long.

1.2.3 Metabolic approaches

m6A-label-seq is an innovative approach relying on feeding cells with Se-allyl-L-

selenohomocysteine instead of methionine, which means the methyl group on the

SAM cofactor is replaced with an allyl group, and therefore that allyl-SAM will be

used instead of SAM in the methylation reaction leading to N6-allyladenosine (a6A)

instead of N6-methyladenosine (Shu et al., 2020). RNA is purified and fragmented,

and a6A-containing fragments are enriched using a commercial antibody. The a6A

is then cyclysed using iodination and in reverse transcription this nucleotide is con-

verted to a T,C or G which can be detected as a mutation after high throughput

sequencing. Due to the many manipulations the method requires 5ug of poly(A)+

RNA, however it does offer true single nucleotide resolution. Another drawback

is that treatment with allyl-SAM does cause many gene expression changes in the

cell, including in the m6A machinery components themselves.

1.2.4 Direct RNA sequencing methods

The ideal scenario would be to read m6A from transcripts with no enzymatic or

metabolic manipulation, or antibody enrichment at all. Direct RNA Nanopore se-

quencing has proved a popular way to try and achieve this aim. As RNA five-mers

move through the immobilised protein pore, changes in current and pore dwell time

are used to identify bases. Theoretically, modified bases should look different to

their unmodified counterparts. However, in practise deconvolving the raw signal

to measure m6A sites is not so straightforward. Investing in optimising Nanopore

methods is worthwhile, because with little RNA preparation single molecule infor-

mation is available. This makes it possible to study the combinatorics of m6A sites

on the same transcripts—something impossible by any other means. It should also

be possible to study multiple different kinds of modification simultaneously in one

experiment.

The first Nanopore m6A transcriptome was produced for yeast mRNA (H. Liu
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et al., 2019). A Support Vector Machine (SVM) called EpiNano was trained on

Nanopore sequencing data of synthetic transcripts containing m6A residues in ev-

ery possible five-mer combination to identify the most informative signals that dis-

tinguish m6A from other nucleotides. The raw current intensities alone were found

to be poor predictors of methylation status; instead, the selected training features

included mean per-base quality, mismatch frequency and deletion frequency. The

model achieved 90% prediction accuracy for the training dataset. It was then used

to recover 363 previously identified, high-confidence m6A sites, previously identi-

fied using m6A-seq, which it was able to do with 87% accuracy.

An alternative approach, MINES (m6A Identification using Nanopore Se-

quencing), was applied to produce the first human m6A Nanopore transcriptome

(Lorenz et al., 2019). This method applied Tombo, a program that was previously

developed to detect de novo modifications in Nanopore DNA sequencing data us-

ing the base-calling error rate (Oxford Nanopore Technologies, 2018). The authors

trained random forest models using the Tombo modification values to classify the

m6A status of four RGACH motifs. Those RGACH sites overlapping with HEK293

miCLIP and HeLa m6A-CLIP sites (Ke et al., 2017; Linder et al., 2015) were la-

belled as true positives in the training data, and the models achieved an average

accuracy of 79%, identifying 35% of m6A sites identified with CLIP-based meth-

ods (in part due to the motif restriction).

A further approach is NanoCompore (Leger, Amaral, Pandolfini, Capitanchik,

et al., 2019a), which compares Nanopore signals between two datasets and there-

fore does not require a training dataset. Specifically, this is achieved by contrasting

the median current intensities and dwell times of kmers between the experiment

and a control with perturbed modifications (e.g. wildtype vs. knockdown, or in

vitro modified vs. unmodified controls). For this reason, NanoCompore isn’t re-

stricted to m6A and can be readily extended to other modifications which have a

reliable control. Another approach, xPore, is conceptually similar (Pratanwanich

et al., 2021). A major advantage is that it avoids being biased by the accuracy of

previous mapping methods (ie. CLIP) to assign modification sites, as site identi-
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fication is instead determined by the sensitivity to a specific modification enzyme.

Of course, the dependence on a comparison between samples is also a limitation,

as reliable controls are currently unavailable for many modifications and biological

systems, and specific sites or RNA species are often modified by distinct enzymes.

As a result, there is probably a reduced risk of false positive site assignment at the

cost of sensitivity.

Interestingly, a much simpler comparative approach was used to map the Ara-

bidopsis thaliana m6A transcriptome (Parker et al., 2020), in which the base-calling

error rate was used as the sole input. Signals were compared between a vir-1 (Ara-

bidopsis m6A methyltransferase) mutant and a vir-1 restored line, m6A was as-

signed where the error rate was two-fold greater in the control line compared to mu-

tant. Taking this approach 66% of identified m6A sites fell within five nucleotides

of a miCLIP peak.

The above methods demonstrate that direct RNA sequencing can be used to

detect m6A. A common limitation pertains to the resolution and accuracy of mod-

ification assignment for transcripts with low sequencing depth. As five nucleotides

move through the pore at a time it can be hard to determine the exact site of modifi-

cation. However, with third-generation sequencing technologies developing rapidly,

the benefits of using direct sequencing to map RNA modifications are likely to push

the boundaries of the field.

1.2.5 The best way to map m6A across transcriptomes

Currently, antibody-based CLIP approaches, alongside powerful predictive algo-

rithms such as m6aboost, are still likely to provide the most “bang for your buck” in

an experiment aimed at mapping m6A generally in a single condition, or in making

comparisons across conditions. Whilst the false positive rate is high, the coverage

of m6A sites is high across a range of RNA input amounts, and a broad range of

sequence contexts can be detected. Furthermore, the method doesn’t require any

genetic editing which can be difficult in many systems. That being said, the fu-

ture of m6A mapping is likely to exist in a combination of chemical and Nanopore
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approaches. Efforts to chemically modify m6A residues to a bulkier modification

that can create a reliable reverse transcription signature currently have high speci-

ficity, but relatively low efficiency. Optimising the efficiency of such chemical re-

actions could allow us to achieve similar or better m6A coverage than miCLIP, with

a much lower false positive rate. I think that the ideal approach would combine

these efficient chemical reactions with high depth Nanopore sequencing. Currently

Nanopore-based methods still also face issues with specificity, but again in this

context converting m6A to a bulkier modification could aid detection by creating

a more distinctive signature as the nucleotide moves through the pore. Nanopore-

based methods also still have a problem with low coverage transcriptome-wide that

will hopefully be alleviated in the years to come.

1.3 m6A readers and function

Knowing the sites of m6A modification is only the first step to understanding func-

tion. It is becoming increasingly apparent that in order to understand the functions

of m6A modification, we need to understand the principles guiding RBPs that bind

to or interact with m6A sites. Only through these proteins are m6A impacts on

mRNA fate made possible.

1.3.1 YTH proteins: canonical m6A readers

In mammals, there are five proteins containing YT521-B homology (YTH)

domains—these domains confer m6A-binding capacity. Some organisms, such

as S. cerevisiae, have only one YTH protein, whilst A. thaliana has eleven (Arribas-

Hernández, Rennie, Köster, et al., 2021; Schwartz et al., 2013). m6A is bound in a

highly conserved hydrophobic aromatic cage, as determined by crystal structures of

m6A-modified RNA oligonucleotides and the YTH domains of human YTHDC1

(Xu et al., 2014), human YTHDF2 (T. Zhu et al., 2014), human YTHDF1 (Xu et

al., 2015), Zygosaccharomyces rouxii MRB1 (ZrMRB1) and S. cerevisiae Pho92p

(Xu et al., 2015). However, reported in vitro affinities of this interaction suggest
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it might not be very stable, and may require additional interactions to stabilise the

RNA-protein contact (Patil et al., 2018). iCLIP of A. thaliana YTH protein ECT2

identified crosslinking to both m6A motifs and upstream U-rich motifs, which were

determined to represent contacts of low complexity regions of the protein stablising

the YTH domain interaction (Arribas-Hernández, Rennie, Schon, et al., 2021). In

mammals, three of the YTH proteins are paralogs, resulting from two gene dupli-

cation events - these form the YTH domain-containing family (YTHDF). Whilst

all three share a high degree of sequence similarity, a C-terminal YTH domain and

mostly cytoplasmic cellular localisation, YTHDF1 and YTHDF3 are more closely

related than YTHDF2.

Figure 1.4: Domain structures of YTH domain-containing proteins in mammals.
Figure adjusted from (Patil et al., 2018), with permission from Else-
vier.

The remaining YTH proteins, YTHDC1 and YTHDC2 are very different—

both from each other and the YTHDF proteins (Figure 1.4). YTHDC1 is larger

than the YTHDF proteins, has an internal YTH domain and is localised to the nu-

cleus. YTHDC2 is a swiss-army knife of a protein with a C-terminal YTH domain,

but also domains consistent with its designation as a member of the DEAH/RNA

helicase A (RHA) helicase family (DEXDc, HELICc, OB-fold) (Jain et al., 2018).

Additionally, it contains an R3H domain involved in nucleotide binding (Grishin,

1998) and ankyrin repeats (ANK) which are usually involved in protein-protein in-

teractions (J. Li et al., 2006). In some organisms, such as D. melanogaster and C.

elegans the YTH domain has been lost from YTHDC2 - note that C. elegans has

no m6A in mRNA, but Drosophila does (Jain et al., 2018). Structural and in vitro
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work suggests that the YTHDC1 and YTHDC2 YTH domains have less affinity for

m6A than the YTHDF family domains, where Tyr260 is replaced by a Leu in the

YTHDC proteins (Luo & Tong, 2014). All five proteins have predicted low com-

plexity disordered regions which may contribute to RNA and protein interactions.

One might suppose that specificity of m6A function could be guided by differ-

ent sequence preferences of different YTH proteins directing mRNAs to different

fates. However, this doesn’t appear to be the case. In vitro work subjecting purified

YTH domains to isothermal titration calorimetry (ITC) suggests that different YTH

domains recognise different DRACH motifs with similar affinity, with the exception

of the YTHDC1 YTH domain which shows some preference for GG-m6A-CU over

GA-m6A-CU (Xu et al., 2015). Interestingly, Drosophila YTHDC1 and YTHDF

proteins prefer A-rich DRACH motifs, which correlates with Drosophila bias in

m6A sequence contexts (Kan et al., 2021).

1.3.2 Non-canonical m6A readers/interactors

Alongside YTH proteins, several other proteins have been proposed to read or

interact with m6A, although the structural basis of these interactions mostly re-

mains to be determined. The most well characterised “non-canonical” group of

reader proteins are insulin-like growth factor-2 mRNA-binding proteins 1, 2, and

3 (IGF2BP1–3). These proteins use their third and fourth KH domains (KH3–4)

to interact with m6A, along with some flanking sequences; however, the exact na-

ture of this interaction is unclear, as many RBPs contain KH domains but do not

specifically recognise m6A (H. Huang et al., 2018). Despite this, IGF2BP1–3 seem

to bind m6A specifically in UGG-m6A-C context to stabilise m6A-containing tran-

scripts (H. Huang et al., 2018).

A common technique to identify novel m6A readers is to incubate cell lysate

with an m6A-modified bait oligo and compare pull down of proteins using the bait

vs. an unmodified oligo of the same sequence. By using this method with neuronal

cell lysate (HT-22 cells), Proline rich coiled-coil 2A (Prrc2a) and Prrc2c were iden-

tified. Interestingly, PAR-CLIP suggested Prrc2a has a similar binding preference



1.3. m6A readers and function 44

to IGF2BP (UGGAC) and might also perform a similar function in stablising tran-

scripts as Prrc2a m6A-binding appears to stabilise the Olig2 transcript (R. Wu et al.,

2019). This is despite Prrc2a not having any annotated KH domains.

A further validated non-canonical binder of m6A is the translation initiation

factor complex eIF3, which binds to m6A in DRACH sequence context. In vivo, this

promotes cap-independent translation of certain transcripts containing m6A in their

5’UTR. The m6A binding capacity could not be assigned to a specific subunit alone,

leading the authors to conclude that the m6A recognition occurs at a multi-subunit

interface, representing yet another mechanism of m6A binding (K. D. Meyer et al.,

2015). Determining the structural basis of these non-canonical m6A interactions

will be critical in the design of future studies, as being able to target mutations

that abolish m6A-reading ability will enable us to fully untangle the contribution of

m6A to the function of these RBPs.

In 2012, an m6A-bait mass spectrometry screen identified HuR/ELAVL1 as

an m6A reader too (Dominissini et al., 2012). Through further research it was

established that HuR is actually binding to U-rich regions adjacent to m6A sites (K.

Chen, Lu, et al., 2015; Y. Wang et al., 2014). In the paper the authors conclude that

HuR is increasing RNA stability due to blocking microRNA targeting (Y. Wang et

al., 2014), however I think it’s possible that HuR binding inhibits YTHDF binding,

because the U-rich sequences are required for stabilisation - meaning that these

transcripts are no longer targeted for decay.

m6A can also change RBP binding in more indirect ways: m6A modification at

hairpin loops can melt RNA secondary structure to reveal single stranded HNRNPC

binding sites (N. Liu et al., 2015)

1.3.3 Role of YTH proteins in translation and decay

In human HeLa cells, siRNA knockdown of YTHDF1 resulted in reduced transla-

tional efficiency of shared YTHDF1/2 target transcripts (identified by PAR-CLIP),

but no change in mRNA half-life (X. Wang et al., 2015). Conversely siRNA knock-

down of YTHDF2 resulted in a longer half-life but no change in translational ef-
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ficiency, suggesting a differing role for the two proteins (X. Wang et al., 2014; X.

Wang et al., 2015). siRNA knockdown of YTHDF3 in HeLa cells reduced transla-

tion efficiency of target transcripts, but interestingly tethering of YTHDF3 alone to

a luciferase reporter didn’t increase its translation, but tethering both YTHDF1 and

YTHDF3 to the reporter increased its translation more than just YTHDF1 alone (Shi

et al., 2017). Flag-tagged Co-IP of the YTH proteins suggest they interact with each

other in an RNA-independent manner. Depletion of YTHDF3 led to more associa-

tion of YTHDF1/2 with non-specific targets, whereas depletion of YTHDF1/2 led

YTHDF3 to bind less to RNA, suggesting YTHDF3 recruitment to RNA is some-

what dependent on YTHDF1/2. The authors also suggest YTHDF3 works with

YTHDF2 to promote mRNA decay as triple YTHDF1/2/3 depletion led to more

m6A accumulation than YTHDF1/2 depletion (Shi et al., 2017).

Mouse knockout of YTHDF1 leads to mice with learning and memory defects,

with experiments suggesting that YTHDF1 promotes translation in hippocampal

neuron cell culture, especially in response to potassium chloride depolarization (Shi

et al., 2018). Further evidence demonstrated that YTHDF1 and m6A sites in the

Robo3.1 mRNA were required for correct neuronal development in mice (Zhuang

et al., 2019). In mouse embryonic fibroblasts, reprogramming to iPSCs is hin-

dered by shRNA knockdown of YTHDF2/3, but not YTHDF1 (J. Liu, Gao, et al.,

2020). Results of Co-IP experiments and combinatorial knockdowns suggested that

YTHDF2 mediates RNA decay through the CCR4-NOT complex, whilst YTHDF3

recruits the PAN2-PAN3 hetero-multimeric complex (Du et al., 2016; J. Liu, Gao,

et al., 2020).

Despite these experiments other work in HEK293, mouse embryonic stem cell

development, arabadopsis and zebrafish development suggests that the binding sites,

and function in mRNA decay, of the YTHDF proteins is almost entirely overlapping

(Arribas-Hernández, Rennie, Schon, et al., 2021; Kontur et al., 2020; Lasman et al.,

2020; Zaccara & Jaffrey, 2020). I would suggest that in light of the previously

detailed work, and differing expression of YTHDF1/2/3 across cell types and de-

velopmental stages that the reality is more nuanced, and that whilst perhaps there
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may be cellular contexts in which the three proteins are interchangeable, there are

probably details that mean this is somehow sub-optimal for cells. For example in

mouse gametogenesis YTHDF2 knockout is lethal compared to YTHDF1/3 knock-

out which has no impact, due to differences in spatial localisation and abundance

(Lasman et al., 2020). Its unclear if YTHDF1/3 could rescue the defect if their

spatial localisation and abundance were matched, or if these factors are intrinsically

linked to the YTHDF2 sequence in some way.

Certainly, context is key and an interesting area of future work will be to study

the impact of post-translational modifications of YTH proteins. For example, its

been shown that YTHDF2 can be SUMOylated in response to hypoxia in human

cell lines, leading to increased mRNA affinity (Hou et al., 2021).

1.4 The Mettl3 network in cell fate choices across the tree

of life

Across species m6A is utilised in different ways, but one unifying theme seems to

be use of m6A in dynamic cellular transitions, especially during development (Frye

et al., 2018). It’s possible that m6A is an attractive evolutionary substrate for these

processes where rapid mRNA turnover is required.

Mettl3 knockout in mouse and human embryonic stem cells prevents exit from

pluripotency, which correlates with increased abundance of pluripotency transcripts

such as Nanog (Batista et al., 2014; Geula et al., 2015). In zebrafish, YTHDF2

knockout results in delayed decay of maternal transcripts, leading to delayed embry-

onic development overall (Zhao et al., 2017). Further, endothelial cells in zebrafish

embryos treated with Mettl3 morpholino failed to differentiate to hematopoietic

lineages, again seemingly due to loss of YTHDF2 mediated decay of endothelial

markers (C. Zhang et al., 2017). Disruption of MTA (METTL3) expression in Ara-

bidopsis thaliana has recessive embryo-lethality (Zhong et al., 2008).

In flies, methyltransferase (Ime4) knockout leads to adult flies that cannot fold

their wings correctly or fly (Haussmann et al., 2016; Kan et al., 2017). Addition-
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ally, Ime4 knockout and knockout of YTH protein, YT521-B, leads to a reduced

female population due to increased inclusion of a male-specific exon in the sex-

determination factor Sex lethal (Sxl). This causes erroneous upregulation of X chro-

mosome transcripts, leading to incorrect gene dosage in affected females (Hauss-

mann et al., 2016; Kan et al., 2017).

In honey bees, hypermethylation of caste-specific transcripts encourages

worker bee development, and inhibition of m6A leads to larvae with queen-like

features (M. Wang et al., 2021). In the malaria parasite Plasmodium falciparum,

m6A is dynamic and peaks at 30 hours post-infection with m6A levels as high as

0.7% of all adenosines, however its unclear what function this has in the parasite

life cycle (Baumgarten et al., 2019). The parasite Toxoplasma gondii uses m6A

to regulate polyadenylation of transcripts, where methyltransferase knockout leads

to run-on transcription into developmental stage-specific repressed genes (Farhat et

al., 2021).

However, all this is not to say that there is a universal requirement for mRNA

m6A in eukaryotic development - C. elegans for example, have only rRNA and

snRNA m6A methlytransferases and no detectable m6A in mRNA (Sendinc et al.,

2020).

1.5 CLIP methodologies help us to study protein-RNA in-

teractions

Many of the existing insights into RBP readers of m6A have relied at least in part on

crosslinking and immunoprecipitation technologies, which have allowed compre-

hensive mapping of m6A sites through miCLIP and reader protein binding through

iCLIP or related variants. In this section I will give a more detailed description

of the iCLIP experimental method and analysis of the resulting data, highlighting

where this contrasts with miCLIP.
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1.5.1 (m)iCLIP experimental Principles

In iCLIP and related methods, cells are first exposed to UV-C (254 nm) irradiation,

resulting in in vivo covalent protein-RNA crosslinking (Figure 1.5, (F. C. Y. Lee

& Ule, 2018)). In the case of PAR-CLIP, or 4sU-iCLIP, cells are first incubated

with uridine analog 4-thiouridine (4sU), or in yeast, 4-thiouracil (4tU) and treated

instead with UV-A (365 nm). This can increase crosslinking efficiency for some

RBPs, interestingly YTH proteins seem to be among them.

After crosslinking, cells are lysed and RNA is fragmented in the cellular lysate

using RNase I (König et al., 2010). In PAR-CLIP a second round of RNase diges-

tion is performed on beads. In irCLIP all RNase digestion is performed on beads

using nuclease S1 which leaves a 3’ OH group on RNA fragments, such that an

additional phosphatase step can be skipped - the downside is that this digestion is

less efficient (Zarnegar et al., 2016). The RNase digestion step must be carefully

optimised to prevent overdigestion which leads to biases that impact binding site

identification (Haberman et al., 2017) and underdigestion which could lead to poor

resolution and retention of larger complexes.

In the case of miCLIP, there is no in vivo crosslinking. RNA is first purified

from cells, it can be poly(A)+ selected or depleted of rRNA at this stage, before

being chemically fragmented by zinc(III)-mediated RNA cleavage.

Following RNA fragmentation, immunoprecipitation (IP) is performed on

beads. In the miCLIP protocol at this point the m6A antibody of choice is

crosslinked to RNA fragments (Figure 1.5 (4)). Due to the crosslinking, protein-

RNA complexes can be washed more stringently than in a traditional RNA-IP ap-

proach, using ionic detergents and high salt buffers. The SeqRv adapter is ligated to

fragmented RNA, which later provides sequence complimentarity to the RT primer.

Subsequently, the protein-RNA complexes are eluted from the beads and run

on an SDS-PAGE gel and transferred to a nitrocellulose membrane, where the trans-

fer helps to remove unbound RNAs due to the poor RNA-binding capacity of nitro-

cellulose. Typically the SeqRv adapter is intercalated with an infared dye so that

protein-RNA complexes can be visualised on the membrane (Zarnegar et al., 2016).
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Figure 1.5: A schematic of the iCLIP protocol. Figure reproduced from (F. C. Y.
Lee & Ule, 2018).

Some protocols, such as eCLIP, omit this visualisation and cut blindly from the

membrane based on an estimated size range. Visualisation should show a distribu-

tion of fragment sizes above the expected molecular weight of the RBP. The mem-

brane is then cut and the crosslinked RBP is digested with proteinase K to leave a

small amino acid adduct at the crosslink position (Figure 1.5 (7)).

Following this the reverse transcription reaction is performed. The RT primer

anneals to the SeqRv sequence. The RT primer contains an experimental barcode

so many experiments can be combined into the same library for sequencing. An-

other important feature of the RT primer is the unique molecular identifier (UMI)

which contains a sequence of random nucleotides of defined length that can be used

later in the analysis to remove PCR duplicates. Use of different RT enzymes and

conditions can result in truncation, mutation or small deletions at the crosslink site,

every approach will also result in differing proportions of readthrough events (Fig-

ure 1.6). For the iCLIP and miCLIP methods used in this thesis, truncation events

are optimised (Haberman et al., 2017).
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Figure 1.6: Possible reads produced from different CLIP approaches. Reverse tran-
scription events resulting from a nucleotide-amino acid adduct are rep-
resented. iCLIP protocols maximise truncation events, whereas PAR-
CLIP protocols encourage mutations at crosslink sites. Other pro-
tocols such as HITS-CLIP rely on analysis of readthrough cDNAs,
where a short deletion may occur at the crosslink site. Adapted from
(Chakrabarti et al., 2018).

cDNAs must then be purified, either by gel or beads-based approach to remove

free RT primers or adapters, that could end up dominating sequencing libraries.

Following the final adapter ligation step, a test PCR is performed to determine how

many cycles are required for the final library amplification. A lower number of

PCR cycles generally suggests a higher quality, more complex, library. Once indi-

vidual samples are multiplexed the libraries are submitted for short read sequencing.

Single-end sequencing is sufficient for most CLIP protocols, but paired-end can be

required in protocols where the UMI/experimental barcode is split between 5’ and

3’ cDNA ends.

1.5.2 Analysis of (m)iCLIP data

Once the libraries are returned from sequencing the process of computational anal-

ysis begins. Reads are first demultiplexed into separate samples based on the ex-
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perimental barcode, the 5’ barcode is removed and the UMI is moved into the fastq

header, using a tool such as Ultraplex (Wilkins, Capitanchik, et al., 2021). Individ-

ual fastq files are then run through FastQC to assess sequencing quality and adapter

contamination (Andrews et al., 2010). Some analysis pipelines remove PCR dupli-

cates at this stage based on read identity and UMIs (Flynn et al., 2015), however

removing them later after mapping allows for more stringent removal.

The 3’ Illumina sequencing adapter can be trimmed using cutadapt, or a wrap-

per such as Trim Galore! (Krueger, 2017; Martin, 2011). It’s prudent to subse-

quently run the trimmed reads through FastQC again, to be certain that adapters

have been completely removed.

Trimmed reads are then mapped to the reference genome or transcriptome de-

pending on the protein to be analysed (Figure 1.7(1)). Where one is especially inter-

ested in RBPs binding to mature transcripts at positions that may cross exon-exon

junctions, then transcriptome mapping can be more useful, but this also excludes

the vast majority of peak callers from use. An optional step here is pre-mapping to

an index comprised of tRNA and rRNA, to prevent them from contaminating the

genomic mapping - this is discussed in more detail in Chapter 2. In the case of

genome mapping, spliced alignment is important and so a splicing-aware aligner

should be used such as STAR (Dobin et al., 2013). Also important is consideration

in the mapping step of the type of crosslinking events that should be most abun-

dant in the dataset at hand. Where iCLIP preserves information about the precise

crosslink position at 5’ cDNA start position for example, then it is important that

soft-clipping of the 5’ end of the read is disabled. Where there is an expectation of

a high mutation rate, the inherent penalties of the aligner may need to be adjusted.

At this point, PCR duplicates can be removed by collapsing of reads that have

identical UMIs and cDNA start positions, either through custom scripting or a soft-

ware such as UMI-tools (T. Smith et al., 2017)(Figure 1.7(2)). Crosslinking po-

sitions from iCLIP are defined as the cDNA start position minus one nucleotide.

Mutation-based protocols such as PAR-CLIP require mismatch calling, with care-

ful SNP filtering, to identify crosslink sites (Corcoran et al., 2011).
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Once crosslink sites have been extracted, peaks can be called depending on

the desired downstream analysis, this is covered in great detail in Chapter 4 (Figure

1.7(3)). Following peak calling a large number of downstream analyses are possible

depending on the research question. Commonly, researchers will want to know the

binding motif of the RBP, whether for quality control of the dataset or because it

is unknown. This is typically performed by an expectation maximisation algorithm

such as STREME/DREME from the MEME software suite (Bailey, 2021). Alter-

natively, a tool such as PEKA can be used where every kmer present in the binding

sites is given an enrichment score against kmer frequency in a background set de-

rived from crosslinks not in peaks (Kuret et al., 2021). This is an especially useful

approach to control for sequences that represent crosslinking biases, which should

be present more frequently in the background set, it does however require strictly

defined genomic annotations due to analysis in distinct genomic regions.

Integration of orthogonal functional data such as quantification of splicing or

alternative polyadenylation events from RNA-Seq of RBP knockdown can be a

powerful way to explore the position-dependent principles of RNA regulation by

the RBP or RNA modification of interest (Rot et al., 2017).



1.5. CLIP methodologies help us to study protein-RNA interactions 53

Figure 1.7: Overview of CLIP data processing. First reads are aligned to a reference
genome or transcriptome, PCR duplicates are removed and crosslink
sites are extracted (represented by x). Peaks can be called and taken
for further downstream analysis including motif finding, or RNA maps
where orthogonal functional data is integrated with CLIP peaks to iden-
tify positional principles of regulation. Adapted from (Chakrabarti et
al., 2018).
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1.6 Outline and Aims

The cellular functions of m6A are predominantly facilitated by RNA binding pro-

teins which recognise the modification and recruit other machineries. miCLIP and

iCLIP allow us to identify the sites of modification and RBP binding respectively,

thus offering valuable insights into potential molecular mechanisms governing in-

teractions between m6A and RBPs. When integrated with additional functional

data, we are able to explore the functional relevance of these RNA modification

dependent RBP-networks. Whilst crucial for our understanding of these processes,

such analyses present complex computational challenges which are the focus of the

current work.

In chapter two, I describe a novel, reproducible computational pipeline for

analysing miCLIP and iCLIP data with a focus on the accurate quantification of

repetitive non-coding RNA species. tRNAs, rRNA and snRNA are highly modified,

but are commonly inappropriately quantified or ignored in CLIP analyses. This is

due to their repetitive nature in the genome which makes assignment of short reads

to specific genes difficult. I examine multiple options for resolving such reads and

settle on a comprehensive pre-mapping approach guided by the logic of RNA abun-

dance. Different categories of ncRNA are quantified and summarised in different

ways informed by our prior biological knowledge. I focus especially on tRNAs, and

describe an approach that uses the reads themselves to define clusters of tRNA iso-

types that can be accurately resolved. Using this pipeline I am able to discern that

RNA methylases NSun2 and Trmt2A bind extensively to pre-tRNAs. Furthermore,

in collaboration with Dr. Aleksej Drino in the lab of Prof. Matthias Schaefer, I use

my pipeline to characterise the previously unrecognised tRNA-binding of DEAH-

box helicase DDX3X from publically available iCLIP datasets.

In chapter three, I collaborate with Dr. Radhika Varier and Dr. Dora Sideri in

the lab of Prof. Folkert van Werven to investigate m6A-dependent RBP interactions

in budding yeast meiosis. Yeast meiosis is a powerful model through which to

understand the role of m6A and YTH proteins in cellular differentiation, due to the

tight time window in which m6A is present in budding yeast and also the relative
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simplicity of the system, having one m6A writer and one YTH protein. We set out

to use iCLIP and miCLIP methods to understand the function of m6A and potential

readers in yeast meiosis, and therefore to elucidate general rules of m6A networks

that could inform studies in other organisms. By careful analysis of RBP iCLIP

in WT vs. methyltransferase deletion genetic backgrounds and integration of m6A

miCLIP data alongside public m6A datasets, I confirm the m6A-dependence of

budding yeast’s only YTH protein—Pho92p. By means of such analysis, I am also

able to reject the hypothesis that a high scoring hit in a mass spectrometry screen,

Gis2p, binds RNA in an m6A-dependent manner. I discover a surprising amount

of m6A-independent binding in our Pho92p datasets, which is located at the 3’ end

of transcripts in a similar manner to m6A-dependent binding, but is not dependent

on the consensus m6A sequence motif. Further, by integration of publicly available

ribosome profiling data and RNA-Seq datasets produced in the van Werven lab, I

explore the potential function of Pho92p binding of m6A. I also make a surprising

finding of Pho92p binding sites which increase in binding upon methyltransferase

deletion, with a specificity for mRNAs encoding proteasomal components.

Finally, in chapter four I describe two valuable software tools that bring data

visualisation to the forefront of CLIP analyses, with a focus on ease of use and inter-

pretation for the user. The second of which, Clippy, I used extensively in the yeast

meiosis project. Such data visualisation will be essential to the field at large mov-

ing forwards, as computational biologists and bench scientists alike aim to glean

biological insights from complex bioinformatics datasets. I describe how the first

tool, clipplotr, developed with Dr. Anob Chakrabarti, was born out of a need to

visualise many CLIP datasets in one plot and the considerations one must make

when condensing data into such a format. The resulting tool simplifies the process

of producing such visualisations and has been widely used by bench scientists and

bioinformaticians in our lab alike. The second tool, Clippy, developed with Dr.

Marc Jones, is an interactive peak caller for CLIP data addressing several issues

with peak calling of bioinformatics datasets; namely, the ‘black box’ nature of peak

calling, that can make it hard for users to understand why some regions are called
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as peaks and others are not. Clippy shines light on the process of choosing param-

eters for your dataset by means of an interactive visualisation tool that is launched

in the user’s browser. We demonstrate that in addition to this novel feature, Clippy

performs comparably or better than existing state of the art CLIP peak callers.

Taken together, I present a suite of computational tools that will improve the

performance and accessibility of CLIP analysis, as well as describing the valuable

biological insights that have already resulted from the application of such tools in a

variety of scenarios pertaining to the understanding of RNA modification-dependent

RBP networks.



Chapter 2

Software development for iCLIP and

miCLIP analysis of structural and

repetitive ncRNAs with multiple

genomic copies

2.1 Introduction

2.1.1 The Problem

RNA modification is highly prevalent among rRNA and tRNA, where tRNA has the

highest known proportion of modified nucleotides of any RNA species (Machnicka

et al., 2013). snRNAs are also modified, and study of RBP-snRNA interactions are

of interest to the research community, because of their importance to the process of

pre-mRNA splicing. However, rRNA, tRNA and snRNA are highly repetitive in the

genome, which makes the reads from these experiments difficult to accurately map.

tRNAs for example, are infamously hard to resolve using short-read sequencing

data for this reason: of 433 high confidence tRNA genes identified in GtRNAdb

for humans, 172 are exact duplicate copies at another genomic location and the

rest can be highly similar (Chan & Lowe, 2009). Consequently, in sequencing
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libraries, reads derived from these non-coding RNAs will often map to multiple

places in the genome. This is a challenge for RNA-Seq experiments where the goal

is quantification at the level of gene or transcript, but even more challenging for

miCLIP where the goal is to identify exact sites of RNA modification and iCLIP

where the goal is to identify protein binding sites. The high modification content of

tRNAs also makes them difficult for reverse transcriptase enzymes to navigate. For

example, modifications that cause steric hindrance to Watson-Crick base pairing

can result in cDNA truncation, mutations or short deletions.

Further to wanting to quantify repetitive non-coding RNAs, we also do not

want repeat-derived reads to contaminate results on mRNAs. For example, tR-

NAs and snRNAs can be encoded within introns of protein coding genes - with-

out proper classification one can mistakenly attribute tRNA and snRNA reads to

the protein coding genes themselves. This famously occurred in the case of m1A,

where researchers originally misattributed hundreds of mRNA m1A sites. Many of

these sites were called due to bioinformatics errors, like assigning a tRNA site to

an mRNA, because it resided in the pre-mRNA intron (Schwartz, 2018). This is

mostly a problem for tRNA and rRNA which are not (fully) included in the main

genomic annotation files that are used.

Common approaches to dealing with multimapping in other bioinformatics do-

mains are to randomly assign multimappers or to split the score of multimappers

between all locations. However, considering the example of tRNAs, it becomes ap-

parent that such techniques will be inaccurate. Where distinct groups of tRNAs are

more similar than others, these specific groups will be penalised by such strategies,

likewise regions of tRNAs that are more similar will have fewer counts by these ap-

proaches. In the realms of RNA-Seq and CLIP several computational tools provide

more sophisticated solutions to help resolve and quantify such repetitive non-coding

RNAs, however fall short of providing all the functionality one would like. In this

chapter I pay specific attention to resolving as much tRNA information as possible,

given that tRNAs are the most heavily modified RNAs in the cell. In the present

section I will describe existing solutions, followed by a description and character-



2.1. Introduction 59

isation of a reproducible ncRNA-aware CLIP pipeline I developed and finally, the

application of this pipeline to several relevant datasets.

2.1.2 Technical features of a good bioinformatics pipeline

Before embarking on the description of various pipelines I will address: what makes

a good bioinformatics pipeline or software in general? The issue has been the sub-

ject of much discussion in the past decade, as attitudes and standards in bioinformat-

ics software have shifted rapidly towards more reproducible, sustainable choices.

Famously in 2009 a team of analysts aimed to reproduce the analysis of microarray

datasets from 18 papers published in Nature Genetics (Ioannidis et al., 2009). At

this time none of the processing code from any of the 18 papers had been published

to a public code repository such as GitHub, meaning the analysts wrote code based

on the written method descriptions. For over half the articles the analysis was not re-

producible, half of these were due to unavailable data, but the other half was due to

unavailable software, insufficient method descriptions or incorrect results reached

when using the given method descriptions. It is notable that although the authors

conclude that code should be made available as a standard, they highlight that:

”We should caution that even a detailed code would not make a novel

and complicated analysis trivial to reproduce, nor would it totally elim-

inate the possibility for bias...It is not necessary for the code trail to

be given in each minute detail, but important decision nodes should be

described.”

This is a nuance that in practice is hard for journals to police - most journals in 2022

require software/code to be deposited in a public repository such as GitHub, but the

extra detail in this assessment is that as well as being available, code needs to be

interpretable and relatively easy to run.

One way this has been addressed, especially in the pre-processing of bioin-

formatics data, is with the renaissance of workflow languages such as common

workflow language (CWL), workflow description language (WDL), Snakemake and
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Nextflow (Wratten et al., 2021). For reproducible downstream analyses popular

choices are code notebooks, such as Jupyter notebooks for Python and R notebooks

for R. With these tools, code and resulting tables, graphs and commentary text are

weaved together such that code is easily connected to key results. Code notebooks

are such a useful format that journal eLife is developing Executable Research Arti-

cles inspired by them (Tsang & Maciocci, 2020). Workflow languages facilitate the

handling of several important aspects of reproducibility:

• Readability. By laying out analysis as a series of steps with separated in-

puts, outputs and parameters, all workflow languages simplify the process of

interpreting other people’s code.

• (Some) error checking. Workflow languages will check that expected inputs

and outputs are available or generated in the pipeline. For example, Snake-

make does this by compiling a graph of processes before running a workflow,

whereas Nextflow does this at run time of the individual processes.

• System portability and scalability. Many workflow languages include facil-

ities to make a workflow portable to any computational environment, for

example different operating systems, or to transfer from local execution, to

high-performance cluster or cloud execution. This means the same code can

be used to analyse one dataset, or millions of datasets.

• Code portability. Modularisation of the processes in workflows makes writ-

ing workflows even faster and easier. In this case, a module is written for

one process, for example Bowtie read alignment, and then it can be re-used

at multiple points in the same pipeline or in different pipelines. This pre-

vents errors introduced by code duplication, which frequently occur when a

change needs to be made in many places rather than just one place. Further,

community repositories of modules, such as Nextflow’s nf-core project, mean

that the modules are tested by many more users, so they are more likely to be

more robust to error.
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• Containerisation. A painful part of reproducing any analysis involving a large

number of software packages is installing the correct versions of the packages

and also resolving any clashing dependencies between them. Containers are

units of software that contain an entire runtime environment and any software

packages installed by the author. In practice, Docker and Singularity are com-

monly used to create and manage containers (Yuen et al., 2021). The benefit

of having a container for a pipeline is that the user no longer has to install

any of the required software or resolve any software conflicts. Moreover, if

the pipeline is run in a container then the author doesn’t have to worry about

accommodating differences in how operating systems work, for example Ma-

cOS vs. Linux, because code run within the container is running within the

container’s operating system. Containers become even more powerful when

combined with modules, as having individual containers for individual mod-

ules means the author doesn’t have to manage many clashing software pack-

ages.

• Version control. A common situation for a bioinformatician is going to re-

produce an analysis from a paper and realising that the code in the public

repository is now quite different from the time of publication. This is where

version control is very important. GitHub is the main way to maintain version

control as versions of your repositories can be published at any point in time

and labelled - allowing, for example, for a version to be associated with a pub-

lication. Knowing the versions of software used in an analysis is also quite

critical as newer releases of software frequently introduce breaking changes.

While workflow languages do not enforce any version control as such, the

communities around them are pushing for these standards. Nextflow nf-core

workflows are all strictly version controlled. Most workflow languages offer

ways to integrate with containers, which themselves are version controlled,

or with conda - a package manager. The simplest way to specify software

versions is with a conda environment specification written in YAML, this

presents a step up from simply listing required software versions in documen-
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tation because an environment can be generated from the YAML specification

directly.

2.1.3 Existing CLIP solutions

At the present time of writing there are three CLIP-specific solutions available for

the problem of repetitive ncRNA mapping. Two, the eCLIP Family Aware pipeline

(referred to as eFAP from now on) and FAST-iCLIP, represent end-to-end data pro-

cessing pipelines for eCLIP and iCLIP data respectively (Van Nostrand, Pratt, Yee,

et al., 2020; Zarnegar et al., 2016). On the other hand, CLAM (CLIP-seq Analy-

sis of Multi-mapped reads) specifically takes multimapped BAM files as input and

returns the user with a new BAM file with reassigned multimappers (Z. Zhang &

Xing, 2017). CLAM uses an expectation maximisation approach to assign mul-

timapping reads to the loci which have most unique read mappings in the surround-

ing area, which is a useful logic to bias towards RNAs that are most likely expressed.

In practice the approach is very computationally demanding, and therefore only ap-

propriate in the case of small datasets where multimapping represents only a small

portion of the library, and therefore is not useful in the case of RNA modifica-

tion data containing a high percentage of tRNA and rRNA. A useful characteristic

however, is that crosslinks can be subsequently derived from the processed BAM,

therefore CLAM is agnostic to the library preparation protocol.

eFAP is written in common workflow language, a workflow management

language based on JSON and YAML. The pipeline consists of two steps: first,

Bowtie2 is used to map paired-end CLIP reads to a manually curated set of re-

peat elements from RepBase, Ensembl annotations, GtRNAdb and rRNA from

NCBI. The reads mapped to this custom database are resolved to the level of re-

peat families - any read mapping between two repeat families is not taken fur-

ther for analysis. Second, the repeat family resolved reads and uniquely map-

ping genomic reads are merged such that the best mapping for each read is cho-

sen. Such a strategy is sensible and clearly retrieves a lot of information lost

by standard mapping approaches (Van Nostrand, Pratt, Yee, et al., 2020). The
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main issues for my analysis are: production of the ncRNA database is not fully

described, the treatment of tRNAs is not ideal and the code-base is not very ac-

cessible to an outsider. tRNA sequences from both RepBase and GtRNADB are

mapped to together; as the RepBase sequences are usually fragments of tRNA

pseudogenes it is likely that reads could multimap between the genuine tRNA and

the RepBase fragments, which would not be resolved by the pipeline. Whilst the

pipeline is technically written in CWL, it is mostly calling custom perl scripts

that can run up to 1795 lines long with few comments (in the case of “dupli-

cate removal inline paired.count region other reads masksnRNAs andreparse SE-

andPE 20201210 simple.pl”). Therefore, to edit or adjust the analysis to suit a spe-

cific purpose presents a major challenge to the outsider. Further, currently only the

human genome is supported.

FAST-iCLIP is a pipeline originally written to accompany the Fully Automated

and Standardized iCLIP (FAST-iCLIP) protocol (Flynn et al., 2015), with a focus on

including viral sequences in mapping to enable study of host-pathogen RBP-RNA

interactions. The code was subsequently updated on the release of the infrared-

CLIP (irCLIP protocol), mostly to improve the speed (Zarnegar et al., 2016). It is

predominantly written in python, but does not use a workflow language, so the steps

in the pipeline are not modular, and thus require considerable work to edit or mod-

ify parameters. Similarly, debugging the pipeline is frustrating because the entire

pipeline must be run from scratch each time to debug, whereas popular workflow

managers auto-detect steps that have already been successful.

Mouse and human prepared annotation databases are provided, but there are no

instructions or facilities for creating such databases for other organisms. This is a

problem because the sequences included are undocumented so it is near impossible

to know their origin. The GitHub repository states “We will release details of gener-

ating annotation files for other genomes shortly in future.”, but the last update was in

2017. At the present time of writing Bowtie2 is used for all mapping steps in default

mode - where a random alignment is chosen in the case of multiple best alignments

(Langmead & Salzberg, 2012). This can create randomness in some quantifications
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- if a read maps between different repeat families it becomes random whether its

count is attributed to one or the other, which is undesirable. Additionally Bowtie2

has been superseded by more modern aligners when it comes to mapping spliced

reads, which in the case of RBPs binding mature mRNA transcripts, we might ex-

pect quite a few. The TopHat, HISAT and HISAT2 aligners makes use of Bowtie2 in

their underlying algorithms, but STAR has been found to outperform them (Dobin

et al., 2013; Kim et al., 2015). Therefore, for the genome alignment step STAR

should be used - notes in the GitHub repository suggest this was planned but not

implemented.

Further, PCR duplicates are removed before mapping, which is a valid strategy,

but in this instance only accounts for duplicates which are exact sequence matches

- in other CLIP pipelines PCR duplicates are removed after mapping based on start

position and UMI - which means reads that contains mismatches to each other can

still be removed as PCR duplicates. This allows for the capture of those duplicates

where, for example, one read may have acquired a point mutation during Illumina

sequencing.

To summarise, in its current iteration FAST-iCLIP is now dated, and not opti-

mal to use for the purpose of general ncRNA analysis in CLIP. The mapping order

of reads to indexes: exogenous virus sequences → repeat sequences → endovirus

sequences → tRNA → genome, is inflexible and does not make sense for the major-

ity of available CLIP data, but will be useful for those specifically studying RBPs

in the context of host-virus interactions.

2.1.4 Existing RNA-Seq solutions to quantifying tRNAs

Arguably more efforts have been made towards improving quantification of tR-

NAs from an abundance (RNA-Seq) standpoint, than from an RBP binding (CLIP)

standpoint. Innovations of both the experimental and computational variety have

improved tRNA abundance estimates dramatically. From an experimental stand-

point, efforts to remove RNA modifications from tRNAs can improve the proces-

sivity of first-strand synthesis, and therefore resulting sequencing libraries. In 2015,
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DM-tRNA-seq introduced the use of a combination of wildtype E. coli AlkB and

a D135S mutant, to remove m1A, m3C and m1G respectively (Zheng et al., 2015).

The second innovation was to use thermostable group II intron reverse transcrip-

tase (TGIRT; InGex) with high processivity to accommodate passage through both

remaining modifications and stable tRNA structures. Subsequently, Hydro-tRNA-

seq took a different approach, using alkaline hydrolysis to produce shorter RNA

fragments (Gogakos et al., 2017). This results in the disruption of structures and

opening up the more 5’ regions of tRNAs for sequencing, that may have previously

been “blocked” by modifications in the body of tRNAs which could interrupt first-

strand synthesis primed from only the 3’ end of the tRNA molecule. The downside

is that shorter reads are harder to resolve at the computational level. A further in-

vention in YAMAT-Seq involves the use of a hybridised Y-shape adapter which is

ligated to tRNA molecules by bacteriophage T4 RNA Ligase 2 (Rnl2) - this takes

advantage of the base pairing between 5’ and 3’ tRNA ends in full length mature

tRNAs (Shigematsu et al., 2017). In 2020, QuantM-tRNAseq introduced a further

variation, using a splint adapter ligation strategy to the 3’ terminal CCA of mature

tRNAs and processive SuperScript IV reverse transcriptase. Importantly the authors

compared the tRNA isotype abundances quantified with QuantM-tRNAseq against

all previous methods and found that it most faithfully replicated abundances found

via tRNA microarray (Pinkard et al., 2020). Most recently, in 2021, mim-tRNAseq

presented a further improved approach, from both an experimental and bioinfor-

matics perspective (Behrens et al., 2021). On the experimental side, the authors

returned to TGIRT, which was previously abandoned due to low priming efficiency

and bias resulting from its template switching mechanism. To address these issues,

DNA adapters were added to tRNA 5’ and 3’ ends and reverse transcription was per-

formed at a lower temperature in a low salt buffer for a longer time period. Under

these conditions TGIRT had increased processivity and could read-through modifi-

cations with low fidelity, resulting in consistent mutations at these sites which could

be later analysed.

From a computational angle, mim-tRNAseq maps reads to mature tRNA tran-
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script sequences using GSNAP aligner (Behrens et al., 2021). GSNAP is provided

with data of tRNA modifications downloaded from the MODOMICS database, such

that positions of tRNA modification are not counted by the alignment algorithm as

mismatches. A first round of mismatch-lenient mapping is made to add any fre-

quently mismatched bases to the modification index, ready for a stringent second

round of mapping. Mature tRNA sequences were clustered using usearch at the iso-

type level, although sequences within an isotype group could have multiple clusters

if their identity was less than 95%. The final mapping is performed to the repre-

sentative centroid cluster sequences. Reads are then further deconvolved if they

contain a base that is only present in one sequence of the cluster, otherwise they

remain assigned to the centroid sequence.

Previously, MINTmap was the computational standard for tRNA-seq mapping,

especially suited to the mapping of tRNA fragments (Loher et al., 2017). With this

approach, every possible tRNA fragment is annotated with all possible originating

tRNAs; reads are then assigned to these fragments. The downside to the approach

is that it does not perform more higher level summaries (e.g. at isotype level), so

this is left to the user to resolve if desired.

More recently, another mapping method involving clustering of tRNA se-

quences was proposed. Consensus sequences were produced by collapsing non-

redundant tRNA sequences at an arbitrary Levenshtein distance threshold and

uniquely mapping reads were quantified to the consensus reference sequences (Pi-

chot et al., 2021). The difficulty with this method is setting the distance threshold,

although the authors describe ways to go about this it requires some optimisation.
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2.2 Structural and repetitive ncRNA-aware CLIP pipeline

development

2.2.1 iCLIP testing datasets

In order to develop and characterise my pipeline, I tested it with iCLIP (or iCLIP-

like) data for 8 different proteins. I chose two datasets where I expected high tRNA

enrichment: miCLIP of NSun2, an m5C methyltransferase targeting the majority

of tRNAs at positions C48, C49 in the variable loop junction (Blanco et al., 2014;

Hussain et al., 2013) and miCLIP of Trmt2A, which catalyses methylation of tRNA

U54 (Carter et al., 2019). As described in the introduction, the miCLIP in this

context refers to iCLIP of NSun2/Trmt2A with a mutation that stabilises a covalent

bond between the protein and RNA during the methylation reaction. For this reason,

UV-C irradiation is not required in these library preparations.

I chose two datasets specifically for their enrichment of snRNAs, namely

spliceosome iCLIP (SmB iCLIP) under mild washing conditions (Briese et al.,

2019) and Prpf8 iCLIP (as Prpf8 is a protein at the spliceosomal core, it makes

many contacts with snRNAs (Blazquez et al., 2018)). I then chose hnRNPC iCLIP,

because I expected to see enrichment of Alu elements (Zarnack et al., 2013; Zarne-

gar et al., 2016). Finally, I chose three proteins which have good iCLIP data and that

to my knowledge have not been exhaustively analysed in this way before: Ptbp1,

Tia1 and Tdp-43 (Haberman et al., 2017; Rot et al., 2017; Z. Wang et al., 2010). I

expected that these three proteins would have little enrichment for repetitive non-

coding RNAs, serving predominantly as a negative control set. This is because

described functions of these proteins are mostly related to pre-mRNA processing,

all three are involved in pre-mRNA splicing, and Tia1 and Tdp-43 are involved in

alternative polyadenylation decisions (Linares et al., 2015; Rot et al., 2017; Toller-

vey et al., 2011; Z. Wang et al., 2010). That being said, I expected Ptbp1 and Tia1

iCLIP data to have enrichment of some transposable elements, as they have previ-

ously been reported to bind LINEs (Attig et al., 2018).
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2.2.2 Pre-mapping or post-hoc assignment of genomic multimap-

pers?

To assign reads mapping to repetitive non-coding RNAs, all reads could be first

pre-mapped to different categories of ncRNAs before being mapped to the genome.

Alternatively, all reads could be mapped to the genome allowing many multimap-

pers and then assigned post-hoc to repetitive ncRNA families based on available

annotations (Figure 2.1A). To help decide between the two strategies I checked

whether pre-mapping or genomic mapping captured the most tRNA and snRNA-

derived reads in the chosen CLIP datasets (Figure 2.1B,C). For this test I used

Bowtie for pre-mapping and STAR for genomic mapping (Dobin et al., 2013; Lang-

mead, 2010).

I assume for known tRNA and snRNA binders that if a read can be assigned

to tRNA or snRNA respectively then it should be, as this likely reflects the bio-

logical reality. In general there are three possible sources of reads being assigned

as tRNA/snRNA: 1) reads that represent genuine RBP binding to tRNA/snRNA, 2)

reads that represent contamination in the CLIP library of unbound tRNA/snRNA

sequences or 3) reads that have sequences similar to tRNA/snRNA, but are actually

derived from another RNA type, that have been bioinformatically mis-assigned as

tRNA/snRNA - these could be genuinely bound by the RBP or not.

I found that the pre-mapping strategy recovered more snRNA and tRNA reads

for the known snRNA and tRNA binders than the genome strategy. This difference

could be quite substantial, with pre-mapping increasing the percentage of reads

mapping to tRNA/snRNA by as much as 20% in the case of NSun2 tRNA and

15% in the case of Prpf8 snRNA (Figure 2.1B,C). This likely has consequences

for downstream quantification of different tRNA/snRNA types. The reads lost by

the genome strategy will be those that map equally well to other positions in the

genome, which are likely to be unannotated copies or fragments of tRNA/snRNA.

These unannotated regions will likely be biased towards certain groups of tRNA/s-

nRNA.

I also checked the assignment of tRNA/snRNA for a group of proteins un-
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known to be tRNA/snRNA binders as a form of negative control. Generally, the

pre-mapping strategy did assign more reads as tRNA/snRNA. I propose that this is

mostly representing the reality of where these reads came from for several reasons:

1) Generally, the unknown snRNA binders with the most pre-mapped snRNA sig-

nal, Tdp-43 and Tia1, also have higher signal from the genomic strategy, similar for

the unknown tRNA binders. 2) The NSun2 replicate 1 library is of poorer quality to

NSun2 replicate 2 - it contains only 250,954 reads compared to the second replicate

11,527,392, so where the first replicate contains many more assigned snRNA reads

than the second, I propose this is from experimental contamination of the data.

In the FAST-iCLIP pipeline the pre-mapping strategy is used. In the eFAP

pipeline, the best mapping is chosen - whether it is genomic or pre-mapped, and

where there is a tie the pre-mapped is preferred. In the end it partially becomes a

theoretical argument - if a read maps to tRNA with two mismatches, and equally

well or better to somewhere else in the genome - which mapping is more reliable?

I would argue that tRNA is highly abundant within cells and that it is more likely

such a read is genuinely tRNA-derived. Therein lies the logic of hierarchical pre-

mapping, where the order of mapping steps is based on decreasing RNA abundance.

2.2.3 Choice of alignment algorithm

The choice of alignment algorithm and settings when aligning to non-coding RNAs

is important, because they are more modified than mRNAs one should allow for

more mutations - however there is a balance between allowing mutations and be-

ing too lenient. In the previous test I used Bowtie with an absolute maximum of

two mismatches allowed. In the mim-tRNAseq manuscript Bowtie is tested against

Bowtie2 and GSNAP for tRNA alignment (Behrens et al., 2021). There are some

differences between the use cases of CLIP and mim-tRNAseq - with mim-tRNAseq

tRNA modifications are also inputted to GSNAP such that mutations at these po-

sitions are not considered to be mismatches; this makes sense because of their op-

timised reverse transcription that promotes mutation at these positions. Reads in

mim-tRNAseq are often longer than CLIP reads because of this, and frequently span



2.2. Structural and repetitive ncRNA-aware CLIP pipeline development 70

Figure 2.1: Comparison of pre-mapping and genomic mapping strategies. A)
Schematic describing pre-mapping vs. genomic mapping strategies. B)
Percentage of all reads mapping to snRNAs by pre-mapping or genomic
mapping strategies for known snRNA binders and unknown snRNA
binders. C) Percentage of all reads mapping to tRNAs by pre-mapping
or genomic mapping strategies for known tRNA binders and unknown
tRNA binders.
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entire tRNAs (∼75nt). In iCLIP data I expect the mutation profile at RNA modifi-

cations to be less consistent so I opted for comparison of Bowtie vs. Bowtie2. The

advantage of Bowtie is that you can set a maximum number of mismatches, so you

have relatively fine grained control over what is considered a suitable mapping, it

may also perform better for reads <50nt in length. In Bowtie2 you have much less

control, but the advantage of short-gapped alignment and improved indel detection.

In the mim-tRNAseq manuscript the authors found a big improvement on

tRNA mapping for Bowtie2 vs. Bowtie, however I find little difference between the

two in the case of iCLIP data when I compared the tools for mapping to a mature

tRNA index over multiple iCLIP datasets (Figure 2.2). For iCLIP in fact, Bowtie

aligns more tRNA reads. Interestingly, this effect is more apparent for certain li-

braries over others, and it would be good in future to assess what qualities of the

libraries lead to this effect. It could potentially be due to more sensitive mapping of

shorter reads with Bowtie.

Figure 2.2: Comparison of Bowtie vs. Bowtie2 for iCLIP tRNA read assignment.
iCLIP reads were mapped to a mature tRNA index using either Bowtie
(yellow) or Bowtie2 (purple).

2.2.4 snRNA

Like tRNA, there are many annotated snRNA genes in the genome representing dif-

ferent sub-families (Table 2.1). U1, U2, U4, U5, U6, U4atac, U6atac, U11 and U12

are all spliceosomal RNAs which bind to protein partners to form small nuclear ri-

bonucleoproteins (snRNPs) that participate in the removal of pre-mRNA introns as
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part of the major and/or minor spliceosomes. U7 snRNA is a short distant relative

to the spliceosomal snRNAs, which participates in replication-dependent histone

mRNA 3’ end processing (Dominski & Marzluff, 1999). What about U3, U8 and

U13? The“U” RNAs were so named because these RNAs were found to be uridine-

rich when compared to rRNA or mRNAs (Hodnett & Busch, 1968; Reddy & Busch,

1988), later U3, U8 and U13 were distinguished as snoRNAs due to their localisa-

tion in the nucleolus, which is due to their essential role in rRNA processing (Reddy

et al., 1981; Reddy & Busch, 1988). Finally, 7SK snRNA forms a snRNP which

facilitates RNAPII-mediated pre-mRNA elongation, and also acts as a transcription

factor to promotes expression of many snRNA genes (Egloff et al., 2017).

snRNA Number of genes Number
proposed to be

functional

U1 145 8
U2 90 3
U4 97 2
U5 31 5
U6 1310 7
U7 156 NA
U4atac 19 3
U6atac 43 1
U11 6 1
U12 12 1
7SK 1 1

Table 2.1: Human snRNA genes annotated in Gencode v39. Number of proposed
functional genes taken from (Marz et al., 2008).

snRNA annotations represent many variants and copies, a minority are likely

to be functioning snRNA genes, whilst many more represent pseudogenes resulting

from gene duplication followed by mutation, or by some form of reverse transcrip-

tion and integration. An analysis of spliceosomal snRNA promoter structures sug-

gested the number of human spliceosomal snRNA genes which might be functional

(Table 2.1, (Marz et al., 2008)). A portion of the U6 pseudogenes are chimeric with

L1 long interspersed nuclear element (LINE) sequences which reflects their origin

from L1-mediated retrotransposition events (Buzdin et al., 2002). There is some ev-
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idence that variants of U1 snRNA are expressed, especially in stem cells, where they

might promote pluripotency (O’Reilly et al., 2013; Vazquez-Arango et al., 2016).

U5 snRNA variants have been shown to form variant spliceosomes, where five U5

snRNA variants (A,B,D,E,F) make up the majority of U5 snRNPs (Mabin et al.,

2021; Sontheimer & Steitz, 1992).

Alongside pre-mapping to all snRNA sequences, and post-genomic mapping

assignment of multimappers, another option would be pre-mapping to canonical

snRNA sequences. In the case of spliceosomal snRNAs for example, this might

help to prioritise functional sequences and also more precisely map the positions

of crosslinks on the RNA, because multimapping at different positions on slightly

different snRNA copies does not have to be resolved. In my testing I found that

mapping to canonical snRNA sequences reduced the amount of reads assigned to

snRNAs in comparison to pre-mapping to all snRNA sequences, in general leading

to a similar number of assigned reads as the genome strategy (Figure 2.1B). This

suggests that the extra reads assigned by mapping to all mature snRNAs come from

divergent sequences that are more likely to be represented elsewhere in the genome,

unannotated as snRNA sequences. For this reason I chose to use mapping to all

snRNA sequences to assign their abundance, but complemented this with mapping

to canonical snRNA sequences separately to give positional information.

Furthermore, I also investigated the assignment of snRNA reads to their gene

families. In both Prpf8 and SmB iCLIP libraries the majority of mapped cD-

NAs could be uniquely attributed to one snRNA gene family, despite the fact that

these cDNAs might map to many individual genes within these families (Figure

2.3A). These designations make sense, because Prpf8 is closely associated with U5

snRNA, while U1 snRNA is the most abundantly expressed in the cell so is expected

to dominate the SmB data. I checked to see if there was a bias towards multimap-

ping between certain snRNA gene familes, and found that the U6 category was most

likely to be mapped to by cDNAs which also map to other families (Figure 2.3B).

U6 has the largest number of genes/pseudogenes and I propose that its possible that

within this sequence space there are genes that contains sequences resembling other
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snRNAs, although this would require further closer investigation. I also noticed

that the amount of multimapping cDNAs between families was more for the SmB

libraries (as high as 10% of snRNA mapped cDNAs). I hypothesised this could be

due to shorter mapped cDNA lengths, and indeed I did find that the SmB data had

a peak of mapped cDNA length around 12 nt which was absent in the Prpf8 data,

which could be contributing to this increased multimapping (Figure 2.3C). Other

factors are likely important, such as where within the snRNAs the reads are derived

from, as some areas will be more unique than others and the Sm binding site is

likely more degenerate than Prpf8 snRNA contacts.

2.2.5 Resolving tRNAs at higher resolution

tRNAs can be divided into categories based on the amino acid that is loaded, the

anticodon that is decoded (isotype) and by the rest of the sequence (isodecoder).

Even at the isodecoder level, tRNAs which have exactly the same sequence might

be transcribed from many genomic loci (Figure 2.4).

The effect on short read mapping is that a given tRNA-derived read will often

map equally well to different tRNA genes, isodecoders, isoacceptors and less fre-

quently even to tRNAs in different amino acid categories. This makes quantification

troublesome as we would like to assign each read as a single count to a single gene.

My solution is to group tRNAs at some level of hierarchy and summarise counts

within those groups, however the question is then, how should these groups be de-

fined?

In all available CLIP pipelines (eFAP and FAST-iCLIP) groupings are made

at the level of isoacceptors and reads that are ambiguous at the isoacceptor level,

i.e. that map between two or more tRNA isoacceptors, are discarded. However I

observed that this could be a large proportion of reads. For example, in the case of

NSun2 miCLIP, whilst 99% reads mapped either singly or multiply within amino

acid tRNA families, around 20% multimapped between isoacceptor groups (Table

2.2). I hypothesised that multimapping between isoacceptor groups will be biased

to certain tRNA groups that are more similar in sequence, therefore by discarding
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Figure 2.3: snRNA cDNA assignment to snRNA gene families. A) cDNA assign-
ments to different snRNA gene families using only those cDNAs that
uniquely mapped to a gene family. Presented as percentage of all snRNA
mapped cDNAs. B) Gene families that were most frequently the source
of multimapping between families, here the y axis represents number of
multimapped alignments made to the gene family divided by the total
number of mapped snRNA cDNAs for the indicated sample. C) Density
plot of mapped cDNA alignments to snRNA for the indicated samples.
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Figure 2.4: Hierarchy of tRNA groupings adapted from (Loher et al., 2017).

reads that multimap between isotypes one could be biasing the count data against

certain tRNA isoacceptor groups. By calculating the Levenshtein distances between

consensus sequences from all human tRNA isoacceptor groups it is clear to see

that some have very few nucleotide differences, whilst others have many (Figure

2.5). For example, one might expect reads to commonly multimap between LeuTAG

and LeuAAG because on average genes in these groups have only one nucleotide

difference. One could create groupings based simply on a distance cutoff from this

heatmap, however this will cause a loss of resolution in certain data unnecessarily.

Consider the isoacceptors GlyGCC and GlyCCC: on average genes from these groups

will have four nucleotides different - if these nucleotides are close together such

that they are all contained within a 40nt CLIP read, then the CLIP data is able

to discriminate between the two groups. On the other hand, if these differentiating

nucleotides are not in a region where the protein is bound, then the CLIP data would

not be able to discriminate between the two groups. Therefore, I have opted to let

the data itself dictate the resolution at which the quantification is made.

To address the issue I wrote python code that would merge isotype groups
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Figure 2.5: Levenshtein distances between human tRNA isotype consensus se-
quences.

where reads were found to be frequently multimapping. To decide how many groups

should be made, I took a data-focused approach. The user sets a “fraction merged”

value such that isotype groups are merged until the fraction of reads that would be

lost to multimapping, are in fact recovered. In the present analysis I used a value

of 0.9 so that I required 90% of multimapped isotype reads to be recovered. In

my analysis of test data, I found that this threshold made sensible groupings, whilst

also minimising the diminishing returns of making larger tRNA groupings for the

sake of recovering fewer and fewer reads. The details of the tRNA mapping are

automatically generated and output in a summary statistics table, so that the user

of the pipeline can assess the assignment of reads easily, as shown for analysis of

NSun2 data (Table 2.2).
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By examining test m1A miCLIP produced in our lab by Dr. Paulo Gameiro,

I found that discarding reads that multimap between tRNA isotypes (as in FAST-

iCLIP and eFAP pipelines) can be misleading. For example for this particular mi-

CLIP data you can see that by discarding reads that multimap between Ser-TGA

and Ser-AGA you might be misled into thinking that position 67 is not modified in

Ser-AGA when in fact this is ambiguous because more reads multimap to that locus

between Ser-TGA and Ser-AGA than uniquely map to either isotype (Figure 2.6A).

The situation is similar between Leu-CAG and Leu-CAA (Figure 2.6B).

Figure 2.6: Misleading tRNA counts when discarding reads that multimap between
isotypes. A) m1A miCLIP read count data summarised per position
along tRNA transcript. Top panel shows the profile when isotypes Ser-
TGA and Ser-AGA are combined, bottom two panels show the results
of treating the isotypes as separate. B) Same as A, but for Leu-CAG
and Leu-CAA isotypes.

In contrast to RNA-Seq, CLIP data also contains positional information, there-

fore it is important to resolve the cDNA start positions. In the eFAP and FAST-

iCLIP pipelines the position of a multimapping tRNA read is set based on the map-

ping to the longest tRNA sequence. In my pipeline I have opted to take the mode of

all mapped positions, and where this is not possible a position is randomly chosen

based on a seed value. I also report the median and maximum distance discrepan-

cies between these ambiguous positions in the summary report, so that the user is

alerted if this difference is very large (Table 2.2).



Metric Value Sample name

Total mapped reads to trna 28852 NSUN2 HEK293T
Total single mapping reads to trna 12980 NSUN2 HEK293T
Number of reads that are ambiguous at amino acid level 292 NSUN2 HEK293T
Percentage of reads used for amino acid summary 0.99 NSUN2 HEK293T
Number of reads that are ambiguous at anticodon level 6192 NSUN2 HEK293T
Percentage of reads used for anticodon summary 0.79 NSUN2 HEK293T
The actual fraction of ambiguous reads that are recovered by
merging anticodons

0.92

The anticodons that were merged are Leu-CAA;Leu-CAG—Ser-
AGA;Ser-TGA—Glu-CTC;Glu-
TTC—Pro-AGG;Pro-CGG;Pro-

TGG—Thr-AGT;Thr-CGT—Val-
AAC;Val-CAC—Leu-AAG;Leu-

TAG—Gly-CCC;Gly-GCC

NSUN2 HEK293T

Number of reads that have an ambiguous position at anticodon
level

17 NSUN2 HEK293T

Median distance between ambiguous positions at anticodon level 2 NSUN2 HEK293T
Biggest distance between ambiguous positions at anticodon level 2 NSUN2 HEK293T

Table 2.2: Contents of ”tRNA summary stats.tsv” output.
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2.2.6 Immature sequences

To capture RBP binding to nascent snRNA and tRNA transcripts I also included an

“immature” category which is mapped to after the “mature” category. For snRNA

genes I included a 50nt flank upstream and downstream. In the case of tRNA genes

some have introns, which are included in the “immature” sequence set, in addition

to the 50nt flanking regions. Mature tRNA sequences also have an additional 5’ G

for histidine tRNAs, and a 3’ CCA added, where the “A” becomes the site of amino

acid attachment (Loher et al., 2017). To my knowledge, both FAST-iCLIP and eFAP

pipelines include immature and mature sequences in their mapping indexes, but do

not separate the two in their summaries.

2.2.7 Mitochondrial chromosome

I chose to map to the mitochondrial chromosome before the nuclear genome be-

cause much mitochondrial sequence is present in the human nuclear genome, with at

least 612 independent integrations (Woischnik & Moraes, 2002). It was found that

the human genome contains exact copies of several mitochondrial tRNAs (Telonis et

al., 2014). I reasoned that if an RBP binds to mitochondrial RNAs, then these reads

can be uniquely mapped if they are first mapped to the mitochondrial chromosome

before the nuclear genome, otherwise they could end up multimapped to the nuclear

genome in a way that is hard to resolve. Unfortunately it was not possible to test this

very well: because of the limitations of the datasets there was proportionately little

mitochondrial RNA mapping. I expected there might be some in the NSun2 data,

as NSun2 methylates both nuclear and mitochondrial-encoded tRNAs(Van Haute

et al., 2019). In the second replicate there were some mitochondrial mapped reads,

mostly to tRNA, which did increase when I mapped to the mitochondrial genome

before the nuclear genome (Figure 2.7).
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Figure 2.7: NSun2 mitochondrial mapped cDNAs. Green represents mapping to the
mitochondrial chromosome first, before mapping unmapped reads to the
nuclear genome, whereas purple represents mapping to both sequences
at the same time.

2.2.8 Repeats

Repeat elements, composed mostly of transposable elements, present an important

binding partner for some RBPs. Short interspersed nuclear elements (SINEs) rep-

resent ∼13% of the human genome, in primates these are mostly comprised of

Alu elements which are sequences derived from the 7SL signal recognition RNA

(Lander et al., 2001). HnRNPC binds to Alu elements within some coding gene

introns to prevent the deleterious exonisation of these Alu elements (Zarnack et

al., 2013). Long interspersed nuclear elements (LINEs), representing ∼21% of

the human genome (Lander et al., 2001), can also be bound by RBPs. For exam-

ple, MATR3 and PTBP1/2, alongside other repressive RBPs, prevent inclusion of

LINE-derived exons that are located within long introns (Attig et al., 2018). Such

repression of these elements allows them to persist in genomes without negative

impact on the host, giving the sequences an opportunity to evolve into functional
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exons (Attig & Ule, 2019).

Repeat elements are curated and annotated in Repbase, a database running

since the early 1990’s (Bao et al., 2015; Kojima, 2018). Transposable elements

are classified at the highest level as either DNA transposons, LTR retrotransposons

(such as endogenous retroviruses ERV1, etc.) or Non-LTR retrotransposons (LINEs

and SINEs). The classification becomes more detailed at the level of superfamilys/-

clades. In practice the classes present in the latest Repbase annotation (at time of

writing) are: DNA, LINE, Low complexity,LTR, RC, Retroposon, RNA, rRNA,

Satellite, scRNA, Simple repeat, SINE, snRNA, srpRNA, tRNA and a final Un-

known category, which consists of ultraconserved elements that are hard to classify

due to their age. Each class is then split into further categories I will refer to as

families. For example, the SINE class has 57 families including many Alus (eg.

AluJb, AluJo, AluJr, etc.). Within each family are further sequences, for example

in total the SINE class contains 72769 sequences.

I mapped reads from the miCLIP/iCLIP libraries to all the Repbase repeat se-

quences, removed PCR duplicates and then assigned reads to repeat classes. I was

surprised to find that even at this highest level of categorisation, consistently only

50% of repeat mapped cDNAs could be uniquely assigned to a class (Figure 2.8).

For now, the information of how many cDNAs can be uniquely assigned, and how

many are multimapped at the class level is printed to a log file and all repeat cD-

NAs are reported in the abundance summary. In future iterations of the pipeline it

would be useful to address this in a better way - however this is an improvement

on eFAP and FAST-iCLIP pipelines where reads multimapping between classes are

discarded without letting the user know.

2.3 Results

2.3.1 Pipeline Overview

In the end I split my pipeline into two separate Snakemake workflows:

prepare-annotation and analyse-samples, available at
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Figure 2.8: Assigning repeat-derived cDNAs to repeat classes. Column graph show-
ing the total number of cDNAs that could be uniquely assigned to a
single repeat class (dark blue) and those that multimapped between
repeat classes (light blue).

https://github.com/ulelab/ncawareclip. The prepare-annotation workflow

downloads and processes all of the annotation and sequence files from their original

web sources and creates necessary indexes and processed annotation files. This

process in eFAP and FAST-iCLIP is completely undocumented and users down-

load ”pre-prepared” annotation databases prepared by the authors. By maintaining

this connection to original sequences and annotation sources, every manipulation

of the files is recorded and therefore made accessible to those who might want to

tweak or edit the process for their own purpose. This also facilitates extending

the pipeline to any genome. A species-specific configuration file is passed to the

prepare-annotation workflow, for example the Human configuration file

looks like this:

# F i l e s f o r i n d e x g e n e r a t i o n and mapping #
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s p e c i e s : "Human_hg38"

# Sequences and a n n o t a t i o n f i l e s #

rDNA sequence: "--taxon human RNA45SN1,RNA5S1"

c a n o n i c a l s n R N A s e q u e n c e s : "--taxon human RNU1-1,RNU2-1,RNU4-1,RNU5A-1,RNU6-1"

mature tRNA sequence : "http://gtrnadb.ucsc.edu/GtRNAdb2/genomes/eukaryota/Hsapi38/

hg38-mature-tRNAs.fa"

mature snRNA sequence : "ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/

release_39/gencode.v39.transcripts.fa.gz"

immature tRNA bed: "http://gtrnadb2.ucsc.edu/genomes/eukaryota/Hsapi38/hg38-tRNAs.

tar.gz"

g e n o m e a n n o t a t i o n : "ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/

release_39/gencode.v39.primary_assembly.annotation.gtf.gz"

genome sequence : "ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/

release_39/GRCh38.primary_assembly.genome.fa.gz"

r e p e a t s : "http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/nestedRepeats.txt

.gz"

mito chromosome: "chrM"

Once the prepare-annotation pipeline has been run, the user can then

proceed to the analyse-samplesworkflow. Note that prepare-annotation

only needs to be run once per species. This is also set up using a configuration file,

here the user just needs to provide the paths to their demultiplexed fastq files - I

provide paths to the SmB and Prpf8 iCLIPs in the following example. There are

also two options that can be set as needed. remove duplicates ncRNA allows

users to decide whether to remove PCR duplicates over rRNA, tRNA, snRNA and

repeats. This option is included to allow for the analysis of historical data that may

have very short random barcodes - in this case the UMIs could become depleted

at highly crosslinked positions in these highly abundant RNAs. This option is also

useful if the user wants to compare iCLIP data mapped using the pipeline with

another data type that doesn’t have UMI information.

# De f i ne samples #

samples :

SMB human 1: / camp / home / c a p i t a c / c a p i t a c / n c a w a r e c l i p / Data /

Smb mild HEK293 rep1 ERR3450336 . fq . gz

SMB human 2: / camp / home / c a p i t a c / c a p i t a c / n c a w a r e c l i p / Data /

Smb mild HEK293 rep2 ERR3450337 . fq . gz

PRPF8 human 1: / camp / home / c a p i t a c / c a p i t a c / n c a w a r e c l i p / Data /

PRP8 Hela rep1 ERR2822467 . fq . gz
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PRPF8 human 2: / camp / home / c a p i t a c / c a p i t a c / n c a w a r e c l i p / Data /

PRP8 Hela rep2 ERR2822468 . fq . gz

# I n d e x e s g e n e r a t e d by p r e p a r e − a n n o t a t i o n workflow #

rRNA index: . . / p r e p a r e − a n n o t a t i o n / Human hg38 / rRNA / rRNA index / rRNA bowtie

rRNA index bowt ie2 : . . / p r e p a r e − a n n o t a t i o n / Human hg38 / rRNA / rRNA index / rRNA bowtie2

r R N A i n d e x s t a r : . . / p r e p a r e − a n n o t a t i o n / Human hg38 / rRNA / rRNA STAR index

mature tRNA index : . . / p r e p a r e − a n n o t a t i o n / Human hg38 / tRNA / a l l t R N A i n d e x /

a l l t R N A b o w t i e

m a t u r e t R N A i n d e x b o w t i e 2 : . . / p r e p a r e − a n n o t a t i o n / Human hg38 / tRNA / a l l t R N A i n d e x /

a l l t R N A b o w t i e 2

immature tRNA index: . . / p r e p a r e − a n n o t a t i o n / Human hg38 / tRNA / a l l i m m a t u r e t R N A i n d e x /

a l l i m m a t u r e t R N A b o w t i e

mature snRNA index: . . / p r e p a r e − a n n o t a t i o n / Human hg38 / snRNA / a l l s n R N A i n d e x /

a l l s n R N A b o w t i e

immature snRNA index: . . / p r e p a r e − a n n o t a t i o n / Human hg38 / snRNA /

a l l i m m a t u r e s n R N A i n d e x / a l l i m m a t u r e s n R N A b o w t i e

c a n o n i c a l s n R N A i n d e x : . . / p r e p a r e − a n n o t a t i o n / Human hg38 / snRNA / c a n o n i c a l s n R N A i n d e x

/ c a n o n i c a l s n R N A b o w t i e

m i t o i n d e x : . . / p r e p a r e − a n n o t a t i o n / Human hg38 / m i t o s e p a r a t e d / M i t o s t a r i n d e x

r e p e a t s i n d e x : . . / p r e p a r e − a n n o t a t i o n / Human hg38 / r e p e a t s / r e p e a t s i n d e x /

r e p e a t s b o w t i e

g e n o m e m i n u s m i t o i n d e x : . . / p r e p a r e − a n n o t a t i o n / Human hg38 / m i t o s e p a r a t e d /

g e n o m e M i n u s M i t o s t a r i n d e x

g e n o m e r e g i o n s : . . / p r e p a r e − a n n o t a t i o n / Human hg38 / f u l l g e n o m e / r e g i o n s . g t f . gz

# O p t i o n a l p a r a m e t e r s #

remove dup l i ca t e s ncRNA: True

f r a c t i o n t r n a i s o t y p e m e r g e : "0.9"

In analyse-samples input fastq files are first run through Trim Galore! to

trim reads for sequencing adaptors, sequencing quality (bases of less than Q=20

are trimmed from the 3’ end) and length, allowing a minimum length of 11nt

(Krueger, 2017). Fastq files are also run through FastQC to give an initial indi-

cation of sequencing quality (Andrews et al., 2010). Following this, reads are se-

quentially mapped to rRNA → mature tRNA → immature tRNA → mature snRNA

→ immature snRNA → mitochondrial chromosome → repeats → nuclear genome

(Figure 2.9). Each mapping step is performed using Bowtie, allowing two mis-

matches, aside from the mitochondrial and nuclear genome mapping which is per-

formed using STAR, allowing for spliced read mapping and soft clipping of the

3’ end of reads (Dobin et al., 2013; Langmead, 2010). PCR duplicates are then
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Figure 2.9: Flow diagram showing steps of the ncRNA-aware CLIP pipeline: specif-
ically the analyse-samples workflow.

removed using the UMI and mapped start position of reads. For steps without mul-

timapping enabled crosslinks are generated directly by taking the start position of

uniquely mapped cDNAs. Mitochondrial and nuclear genome mapped crosslinks

are annotated using the regions file outputted by iCount segment (König et al.,

2010)[https://github.com/ulelab/iCount-Mini]. Multimapped mature tRNA are pro-

cessed to give crosslink information at the level of roughly tRNA isotype, as pre-

viously described. Mature snRNA is processed to give crosslink abundance at the

level of snRNA family, canonically mapped snRNA crosslinks can then be used

to investigate positional information. Multimapped repeats are processed to give

crosslinks at the level of repeat class and separately repeat family, to give more

detailed information.

2.3.2 Pipeline run on test data

The pipeline accurately assigns cDNA abundances to the appropriate RNA types

(Figure 2.10). Increased proportions of snRNA are captured in the SmB and Prpf8
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iCLIP libraries and the high repeat content of HnRNPC, Tia1 and Ptbp1 libraries

is also captured. Tia1 has extensive 3’UTR binding which is well known and cor-

responds with its role in regulating alternative polyadenylation (Rot et al., 2017).

Especially interesting is the abundance of NSun2 and Trmt2A mapping to imma-

ture tRNA sequences. This is not without precedent - it was previously described

that a yeast orthologue of NSun2 requires an intron in vitro to methylate m5C34 in

tRNA-Leu-CAA (Brzezicha et al., 2006). In the case of Trmt2A, the E. coli enzyme

catalysing tRNA m5U54, TrmA, is required as a tRNA chaperone during its matura-

tion, hinting that possibly Trmt2A is catalysing m5U54 in pre-tRNA (Keffer-Wilkes

et al., 2020).

Figure 2.10: Final results of pipeline: RNA type abundance summary. The contents
of [sample] all cDNA abundance.csv is plotted for each sample.

TDP-43 and SmB iCLIP have the highest proportion of ribosomal RNA map-

ping, with over 25% for both proteins (Figure 2.10). To my knowledge there are no

reported interactions between SmB and ribosomes, furthermore it has been shown
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that SmB doesn’t co-sediment with polysomes (Aviner et al., 2017). This SmB data

was produced with mild washing conditions, so the most likely source of rRNA is

from contamination during sample preparation. Indeed, when harsher washing con-

ditions are used, the percentage of rRNA in the library decreases (Faraway, 2021).

The rRNA in the TDP-43 data is less likely to be a contaminant due to the

stringent washing conditions used and also some previous literature which suggests

some contact between TDP-43 and ribosomal proteins. TDP-43 has been shown

to co-IP with ribosomal protein subunits, and has been specifically found to asso-

ciate with stalled ribosomes in stress granules (Freibaum et al., 2010; Higashi et

al., 2013). This interaction may be mediated by the protein RACK1 (Russo et al.,

2017). More recently it’s been suggested that TDP-43 is an enhancer of translation

in specific mRNAs in a neuronal context (Neelagandan et al., 2019). However, it’s

difficult to determine if this is via direct interaction with ribosomes and potentially

rRNA, or an indirect effect related to TDP-43’s role in mRNA transport, for ex-

ample. On close inspection TDP-43 crosslinks are abundant at positions across all

ribosomal RNAs, which suggests the interaction identified by iCLIP is likely to be

non-specific (data not shown). To exclude cross-reactivity between TDP-43 anti-

bodies and ribsomal proteins it would be useful to perform mass spectrometry anal-

ysis of crosslinked protein-RNA samples prepared for iCLIP. Taken together, more

biochemical work is required to untangle the exact interactions enabling TDP-43’s

ability to impact translation.

2.3.3 Case Study: DDX3X is a novel tRNA binding protein

2.3.3.1 Background

tRNAs are well known for their role in mRNA translation, where they carry amino

acids to ribosome-mRNA complexes to facilitate synthesis of nascent polypeptide

chains. Alongside this essential role, it has become increasingly understood that

tRNAs can also be subject to tightly controlled fragmentation to produce tRNA-

derived small RNAs (tsRNAs). These tsRNAs participate in control of apoptosis,

inhibition of endogenous retrotransposon activity and intercellular communication
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including transgenerational epigenetic inheritance (J.-T. Wen et al., 2021). In mam-

mals, the most well understood mechanism of tsRNA biogenesis is mediated by

the endonuclease RNase A-family member Angiogenin (ANG). Under stress con-

ditions, ANG is post-translationally modified and becomes active, nicking tRNAs

in their anticodon loops, resulting in the production of 5’ and 3’ tRNA halves. The

5’ tsRNAs are seemingly more abundant and therefore hypothesised to be more

functionally relevant (Drino et al., 2020).

Dr. Aleksej Drino from the group of Prof. Matthias Schaefer was interested

in discovering novel regulators of the tsRNA biogenesis process and so designed

a screen to identify RBPs bound to 5’ tRNA halves. HEK293 cells were stressed

by exposure to inorganic sodium arsenite (iAs) followed by UV-crosslinking, pro-

tein extraction and chromatographic fractionation followed by mass spectrometry

of tsRNA-containing RNPs. 5’ tsRNA-containing RNPs were pooled and further

separated by ion exchange chromatography and fractions containing a positive sig-

nal ratio of 5’ tsRNA/tRNA were subjected to mass spectrometry to determine

the identity of co-migrating proteins. Since RNPs co-migrating with 5’ tsRNAs

contained full-length tRNAs, fractionation was also performed on protein extracts

that were not exposed to iAs as a control. Triplicate mass spectrometry analy-

ses of control RNPs as well as 5’ tsRNA-containing RNPs after enrichment from

stressed cells identified 114 proteins which were exclusively detected in 5’ tsRNA-

containing RNPs and not in the corresponding fractions originating from control

cells. Various proteins that were detected in 5’ tsRNA/tRNA-containing fractions

are well known known for their roles in tRNA biology (e.g. TRMT10C, RTCA,

RNAseT2, EIF2, EIF5A, EEF1G, TUFM, EEF2), which supported the notion that

fractions contained tRNA-interacting proteins. Notably, while no RNA exonucle-

ase was among the detected proteins, several highly conserved RNA helicases such

as eIF4A1/2, DDX5/17, DDX3X and DDX39A/B co-migrated in 5’ tsRNA/tRNA-

containing RNPs. After further biochemical characterisation, Dr. Aleksej Drino

found evidence of DDX5 and DDX3X binding to tRNAs. He hypothesised that

these helicases could have the potential to act on nicked tRNAs during the oxidative
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stress response and via their RNA unwinding activity, liberate the tsRNAs from the

full length tRNA. This would represent a critical missing step in our current view

of tsRNA biogenesis.

Fortunately, high quality FAST-iCLIP data was publicly available for FLAG

tagged DDX3X from a previous study, and so I collaborated with Aleksej to reanal-

yse this data through my pipeline, to see if we could characterise the tRNA binding

further (Oh et al., 2016).

2.3.3.2 DDX3X iCLIP analysis

Published DDX3X iCLIP was available in sodium arsenite vs. wild type conditions

and also with expression of a helicase-dead mutant (DDX3R534H) (Oh et al., 2016).

By reanalysing this data through my pipeline I found 15-20% of reads mapped to

tRNA - something which was surprisingly missed in the original manuscript, despite

the fact that the FAST-iCLIP pipeline was used for analysis (Figure 2.11).

Figure 2.11: DDX3X iCLIP biotype distribution. A) Analysis of RT stops as pre-
sented in (Oh et al., 2016). B) Read mapping distributions for all
DDX3X iCLIP samples processed through my ncRNA-aware mapping
pipeline.

Furthermore, I found that whilst the overall proportion of tRNA reads in stress

decreased in matched RNA-Seq from the original manuscript, the amount of tRNA

reads went up in DDX3X iCLIP under stress and this effect was abrogated in

the helicase-dead mutant iCLIP data (Figure 2.12A). This supports the idea that
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DDX3X is involved in processing tRNAs in response to stress, in a manner that is

dependent on its helicase activity. I was interested in the positioning of DDX3X on

tRNAs, so I produced a metaprofile of iCLIP and RNA-Seq signal over all tRNA

genes. I found that the iCLIP data was highly enriched at the anticodon loop (Figure

2.12B). This was not seen in the RNA-Seq, which gave me confidence that this was

not only due to RT stops at an RNA modification, e.g. m1A or m7G.

Figure 2.12: DDX3X binding under steady state and stress conditions. A) Changes
in DDX3X-mediated iCLIP-derived tRNA reads and in tRNA ex-
pression data obtained from duplicate experiments using DDX3X or
DDX3X (R534H) during steady-state conditions and after iAs expo-
sure. Normalized abundance of tRNA-derived reads from iCLIP (left
panel) or total RNA-sequencing experiments (right panel) are shown.
B) Metaplot depicting positional information of DDX3X-mediated
iCLIP signatures on tRNA sequences obtained from (Oh et al., 2016).
5’ most nucleotide positions from individual tRNA-derived reads were
determined and normalised against library size for individual samples
(red). As a comparison, tRNA-derived reads from total RNA-seq data
treated in the same way are shown (blue). Individual lines represent
replicate experiments. Letters indicate the positions of D-, anticodon-
(AC) and T- loops within tRNA sequences.

Finally I was interested in whether DDX3X exhibited any specificity to bind-

ing certain tRNA isotypes. Using my pipeline I was able to resolve the reads to near

isotype resolution (Figure 2.13). Interestingly, I found that the most abundant tRNA

isotype in the iCLIP data, LysUUU, was not the most abundant in the RNA-Seq data,

which suggested a specificity that was not simply guided by tRNA abundance (Fig-

ure 2.13 A,B). To validate that LysUUU was indeed a target of DDX3X, Dr. Aleksej
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Drino affinity purified tRNA-LysUUU from HEK293 cells and subjected it to an elec-

trophoretic mobility shift assay (EMSA) using MBP-DDX3X. The results showed

that increasing concentrations of MBP-DDX3X shifted tRNA-LysUUU to comple-

tion (Figure 2.13 C). From analysis of triplicate EMSA he was able to calculate

the dissociation constant (Kd) between MBP-DDX3X and tRNA-LysUUU as 25 ±

3.2 nM. This is similar to the affinity of S. cerevisiae Aspartyl-tRNA synthetase to

tRNA (Kd= 30nM) and much stronger than Methanocaldococcus jannaschii Trm5

binding to tRNA-Cys (Kd= 700nM) (Yang et al., 2013).

2.3.3.3 Conclusions

Further to demonstrating that DDX3X is a novel tRNA binding protein, this case

study highlights the utility of my pipeline in undertaking rigorous analysis of iCLIP

data, as the tRNA binding was missed in the initial DDX3X iCLIP manuscript.

An open question is the meaning of finding DDX3X crosslinks predominantly

in the anticodon loop of tRNAs. This means that reads extend into the 3’ half of

tRNAs, whilst DDX3X was enriched in mass spectrometry of 5’ tRNA halves. Ad-

ditionally, 15% of DDX3X iCLIP reads map to tRNA under steady state conditions

where little fragmentation is occurring. Whilst this increases to 20% upon stress

induction, the 5% increase in binding is to the same tRNA isotypes. One explana-

tion could be that DDX3X binds to full length tRNAs either 3’ or 5’ to where ANG

would nick once activated. Crosslinking is often preferential to single stranded

regions of RNA, so in this case crosslinks to the anticodon loop could represent

binding on either side. Perhaps once the nicking has occurred, the unwinding activ-

ity of DDX3X is fast, and therefore iCLIP mostly captures the steady state scenario

where DDX3X is poised at certain tRNAs. We must remember, also, that various

hybridisation studies have suggested that only 0.1–5% of a given tRNA isoacceptor

yield tsRNAs, even under stress conditions (Oberbauer & Schaefer, 2018; Yamasaki

et al., 2009). Therefore, the overall ratio of tsRNA to whole tRNAs is likely to be

very low even in the stress condition. It has been proposed that whilst the total

amount is low, the production is likely localised to certain places in the cell where a
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Figure 2.13: DDX3X isotype specificity. A) Ranking of DDX3X-derived iCLIP reads
obtained from (Oh et al., 2016) mapping to tRNAs according to their
normalized abundance. Individual rows at each tRNA isodecoder box
represent the proportion of tRNA reads among all mapped tRNA se-
quences. Individual grey bars represent individual iCLIP experiments.
B) As in A, but for matched total RNA-Seq data processed in the same
way. C) Representative EMSA performed by Dr. Aleksej Drino after
combining increasing molarities of MBP-DDX3X and 5’ end-labeled
tRNA-LysUUU (30 nM final). UV-crosslinked RNPs were separated
using nPAGE. Black arrowhead, non-bound tRNAs; grey arrowhead,
DDX3X-tRNA-LysUUU complexes.
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high local tsRNA concentration could exert function (Oberbauer & Schaefer, 2018).

This leads to a related question: what does binding enrichment of certain tRNA

isotypes in iCLIP actually mean? If the kinetics of unwinding is generally fast such

that we do not capture it with iCLIP, then binding enrichment in iCLIP could repre-

sent substrates that DDX3X struggles with. Similarly, the binding we see in iCLIP

could represent contacts that have nothing to do with tsRNA biogenesis. DDX3X

is involved in a staggering number of cellular processes, including some related

to translation (Mo et al., 2021). To uncover the true meaning of the binding we

detected will require further careful biochemical investigations.

2.4 Discussion

2.4.1 On tRNA resolution with iCLIP

In this chapter I have developed a ncRNA-aware CLIP analysis pipeline that ac-

curately reports cDNA abundance over a range of repetitive ncRNAs. One of my

main focuses setting out was to quantify tRNAs at the highest possible resolution

while discarding as few cDNAs as possible, which I achieved by grouping at the

level of tRNA isotype and then further merging groups on a case-by-case basis as

determined by the data itself.

One point to consider is theoretically how much tRNA information we can ex-

tract from iCLIP data. Because iCLIP data is produced using a reverse transcription

step that prioritises truncations at crosslink sites, we might expect that this process

would also favour truncation at RNA modifications at the Watson-Crick interface.

This could be problematic in two ways: 1) in the case where an RNA modifica-

tion “interrupts” reverse transcription towards a more 5’ crosslink event, resulting

in a cDNA product that is too short to map and 2) similarly to (1), but where the

cDNA is long enough to map, a site of RNA modification could be misinterpreted

as the crosslink site, when in reality the crosslink site would be somewhere 5’ to the

modification. One possible way to mitigate this experimentally could be to use the

approach introduced by DM-tRNA-seq and treat crosslinked, purified RNA in vitro
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with AlkB and a D135S mutant to remove m1A, m3C and m1G, before proceeding

to library preparation (Zheng et al., 2015).

Additionally, there could be an impact of structure on the in vivo crosslink-

ing. Crosslinking is more likely in single stranded regions so we might expect that

crosslinks would be more likely in the D, anticodon or T loops. As the T loop is

typically 15-20 nucleotides away from the 3’ end of the tRNA it might be harder to

get reads derived from this region - if they are much shorter they would be much

harder to map.

2.4.2 Further development

Currently the pipeline is written in Snakemake, and the analyse-samples and

prepare-annotation workflows have become quite unwieldy, with substan-

tial code duplication for all the Bowtie mapping steps for example. I would like to

port it to Nextflow to take advantage of the nf-core modules repository and general

modular DSL2 syntax, which would make the pipeline more readable and easier to

edit. Eventually it would be ideal that the ncRNA-aware steps become available

as a part of the official nf-core/clip-seq pipeline, which currently just removes tR-

NA/rRNA mapped reads. The second benefit to a switch to Nextflow DSL2 is that

currently my Snakemake pipeline is not containerised, meaning that people could

run into problems in other compute environments that would be impossible for me

to anticipate. Using Nextflow DSL2 each module is run in its own docker container,

this: a) makes the pipeline as a whole very portable, it should be able to be run in

any compute environment, b) makes the containerisation trivial to implement - for

nf-core modules it is already implemented, and for additional modules if the pro-

gram is available on BioConda, a Biocontainer is already automatically generated.

Porting into Nextflow will also allow the pipeline to be integrated into the iMaps

platform (imaps.goodwright.com), providing the pipeline with a graphical user in-

terface and therefore making it accessible to biologists without coding experience.

Further to these technical improvements, I found that consistently 50% of re-

peat element derived reads multimap between repeat families. Using these reads for



2.4. Discussion 96

quantification could drastically change how individual elements are quantified. It

would be useful to first determine what the distribution of read lengths is for these

remaining multimapped reads as it might be that they are too short to reliably map.

Further, it would be interesting to compare different alignment algorithms to de-

termine if any are better at aligning these reads uniquely. A simulation of reads

derived from repeat elements would help in this instance, to determine the accu-

racy of different algorithms. One possible solution could be to come back to the

CLAM approach, but only inputting the aligned regions that are relevant to these

multimapped repeat reads in order to reduce the memory requirements.



Chapter 3

N6-methyladenosine-dependent RBP

networks in Yeast Meiosis

3.1 Introduction

3.1.1 Budding yeast life cycle and entry into meiosis

Under nutrient-rich conditions the budding yeast Saccharomyces cerevisiae exists

in a diploid state. If the cell is nitrogen starved, but still has access to glucose, the

yeast will begin growing in a pseudohyphal state, where cells elongate and line up

end-on-end after mitotic divisions in an attempt to find a more hospitable location.

However, with a complete lack of nitrogen, sugar starvation, and additionally the

presence of a non-fermentable carbon source such as acetate, the yeast will undergo

meiosis (sporulation) to produce haploid gametes (Figure 3.1A) (Neiman, 2005;

Strudwick et al., 2010). These gametes, also called spores, are contained within a

sac called an ascus, which protects them from environmental insults. The process

of returning to the mitotic cell cycle is called germination. The first step of this

process, breakdown of the ascus, occurs once the yeast is exposed to glucose again,

although a full return to mitotic growth requires additional nutrients (Joseph-Strauss

et al., 2007).

At the molecular level, the transcription factor inducer of meiosis 1 (Ime1p)
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is the master regulator of the meiotic program (Figure 3.1B). Once induced Ime1p

binds to the DNA-binding protein Ume6p which triggers degradation of Ume6p,

a repressor which binds many early meiotic gene promoters where it recruits

the ISW2 chromatin remodelling complex and the Rpd3-Sin3 histone deacetylase

(Strudwick et al., 2010). An important Ume6p target is IME2, which is a serine-

threonine protein kinase, which itself phosphorylates Ime1p causing its degradation

(H. E. Smith & Mitchell, 1989). ime2-∆ cells can undergo another round of DNA

replication, suggesting the activity of Ime2p is critical for ensuring a transition to

the next stage of meiosis (Guttmann-Raviv et al., 2002).

Meiosis is tightly regulated to prevent cells making costly mistakes, for ex-

ample inducing a lethal meiosis in a haploid cell. In haploid cells, the induction

of upstream lncRNA IRT1 by transcription factor Rme1p, prevents transcription of

the downstream IME1 (van Werven et al., 2012). Similarly, expression of the yeast

m6A methyltransferase Ime4p, is inhibited by an antisense lncRNA at the IME4

(IME4-AS) locus in haploid cells (Figure 3.1B) (Hongay et al., 2006). When the

cell is ready to sporulate, the a1/α2 repressor complex silences IME4-AS and also

binds to sites in the RME1 promoter, to prevent its expression, therefore releasing

IME1 from transcriptional repression by IRT1.

3.1.2 m6A-networks in yeast meiosis

In yeast, m6A is catalysed by Ime4p, a Mettl3 ortholog. Ime4p is bound by Slz1p

and Mum2p, an ortholog to mammalian WTAP (Figure 3.2A). Together, these three

proteins are known as the MIS (Mum2p, Ime4p, Slz1p) complex (Agarwala et al.,

2012). Homozygous deletion of IME4 results in severe sporulation defects (Hon-

gay et al. 2006). DNA replication proceeds with wild type kinetics, but during

Anaphase I chromosome segregation is defective (Agarwala et al., 2012). Notably,

m6A has only been observed in yeast during early meiosis, peaking at roughly three

hours, coinciding with DNA replication (Figure 3.2B) (Agarwala et al., 2012). m6A

can also be induced by treating cells with rapamycin, which mimics nitrogen star-

vation (Bodi et al., 2015). Ime4p expression is detectable from the onset of meiosis,



3.1. Introduction 99

Figure 3.1: Transcriptional control of the Saccharomyces cerevisiae life cycle. A)
When exposed to nutrient rich conditions budding yeast will grow as a
diploid, upon severe starvation sporulation will occur. Upon return to
nutrients, the haploid spores will germinate and mate to create diploid
cells again. B) Glucose, nitrogen and RME1 all repress the expression of
IME1 in diploid yeast cells. Activation of yeast mating factor, removal
of glucose and nitrogen releases this repression. Ime1p binds to tran-
scriptional repressor Ume6p, which causes degradation of Ume6p and
release of repression at early meiotic genes including IME2. Similarly,
activation of yeast mating factor represses the antisense lncRNA repres-
sor of IME4, causing Ime4p expression. Figure adapted from (Strudwick
et al., 2010) to include information from (Hongay et al., 2006).
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with mRNA levels highest between hours 3—6, and transcriptional repression be-

ginning from hour 5 onwards as IME4-AS becomes detectable (Agarwala et al.,

2012). Interestingly, a catalytic dead mutant of Ime4p (ime4-D349A, W351A) has

an intermediate meiotic phenotype between ime4∆ and WT, suggesting that Ime4p

has both catalytic and non-catalytic functions in yeast meiosis. (Agarwala et al.,

2012).

Figure 3.2: m6A-dependent RBP networks in yeast meiosis. A) The MIS complex
methylates RNA in the nucleus, here suggested to occur at chromatin.
Pho92p binds to this m6A. B) Timeline of early meiosis indicating the
expression levels of Ime4p and the level of m6A as measured in (Agarwala
et al., 2012) and Pho92p as measured by Dr. Radhika Varier (data not
shown). Note that Pho92p is expressed under normal nutrient-rich yeast
conditions, but to a much lower level (Kang et al., 2014).
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It is likely that most m6A methylation of yeast mRNA occurs in the nucleus, as

in mammalian cells. Ime4p has been shown to co-localise with Slz1p and Mum2p in

the nucleus in a manner dependent on Slz1p and its N-terminal nuclear localisation

signal (Schwartz et al., 2013). However, Slz1p is not essential for m6A methylation

itself, as ectopic expression of Ime4p and Mum2p alone is sufficient for ∼75% of

methylation (Agarwala et al., 2012). This perhaps explains why MUM2 deletion

has a similar phenotype to IME4 deletion, whilst SLZ1 deletion has a less severe

phenotype—there is still a delay to chromosome segregation, but the final propor-

tion of asci containing the correct number of spores is similar to WT (Agarwala

et al., 2012).

Previously, several methods have been used to map the locations of m6A mod-

ifications in yeast meiosis. Results from thin layer chromatography (TLC) analy-

sis showed ∼1% of adenosines in poly(A)+ RNA are m6A modified in sporulating

yeast (Bodi et al., 2010). IME2 mRNA was the first yeast transcript to be discovered

as m6A-modified, as detected by m6A antibody pull down followed by RT-qPCR.

By protecting either end of the mRNA before performing TLC, the m6A was lo-

calised to the 3’ end of the transcript. IME1 and IME4 transcripts were also found

to be modified by the m6A IP followed by RT-qPCR approach (Bodi et al., 2010).

Following in the footsteps of m6A-Seq studies in mammalian cells, m6a-Seq

was subsequently performed on yeast mRNAs using the anti-m6A Synaptic Sys-

tems polyclonal antibody (Dominissini et al., 2012; Schwartz et al., 2013). m6A in

IME2 mRNA was validated by m6A-Seq and also by loss of m6A-Seq signal upon

mutation of the methylated adenosine, however sites in IME1 and IME4 were not

validated by m6A-Seq and so they weren’t checked by mutational analysis. Overall,

by comparing m6A-Seq performed in WT vs. ime4-∆ lines, 1308 m6A sites were

identified within 1183 genes. 711 of these sites contained a peak that was < 5nt

away from a consensus RGAC, and of these most conformed to an extended con-

sensus of ANRG(m6A)CNNU, suggesting a more constrained m6A motif in yeast

compared to mammals. m6A sites were enriched at the 3’ end of transcripts, as in

mammalian studies (Schwartz et al., 2013).
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With the advent of antibody-independent approaches to mapping m6A,

MAZTER-Seq was developed, utilising the m6A-sensitive endoribonuclease MazF.

MazF cuts RNA in an ACA sequence context with preference for unmethylated

ACA vs. (m6A)CA, which can be exploited in library preparation (Garcia-Campos

et al., 2019). Through application in SK1 sporulating yeast, a logistic regression

model was built capable of predicting stoichiometries of RRACA m6A sites from

cis regulatory information alone, with the top three most important predictors being

the identity of the +4, -2 and -4 nucleotides with respect to the m6A site. This led

the authors to conclude that m6A in yeast is genetically “hard-coded” and likely

only regulated by altering expression levels of the MIS complex. However, RRACA

sites represent an estimated 16%–25% of yeast m6A so the problem of yeast m6A

is still far from solved.

3.1.3 Pho92p is an m6A-reader

Pho92p, also known as MRB1p, is the sole YTH protein in S. cerevisiae, sharing

most sequence similarity with YTHDF2 (Kang et al., 2014). The YTH domain

shares extensive sequence similarity to all mammalian YTH domains and a crystal

structure shows that it binds m6A similarly, by encasing it in a hydrophobic aro-

matic cage (Xu et al., 2015). As well as the C-terminal YTH domain, Pho92p has

an N-terminal low complexity domain which hypothetically could also interact with

RNA. It has been suggested that the plant YTH ortholog ECT2, binds to poly(U)

and UNUNU via its IDR (Arribas-Hernández, Rennie, Schon, et al., 2021).

Ultimately the function of m6A methylation in yeast meiosis is poorly under-

stood, however whatever function it has is likely to be facilitated by RBP effectors.

Critically, the binding sites of Pho92p are as yet unknown, hindering our under-

standing of its function. Based on the known functions of other YTH orthologs it is

possible Pho92p could contribute to mRNA decay or translation. It has been shown

that m6A-modified yeast mRNAs are enriched in polysome fractions, suggesting a

role for m6A related to active translation (Bodi et al., 2010). A lower abundance

of m6A-modified target RNAs upon induction of m6A has also been reported, sug-
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gesting a role of m6A in mRNA decay (Schwartz et al., 2013).

Pho92p itself was originally characterised as part of the phosphate signal trans-

duction (PHO) pathway. It has been shown to co-immunoprecipiate with Pop2p of

the Pop2–Ccr4–Not deadenylase complex, to reduce the the stability of the PHO4

mRNA in phosphate rich conditions where its not needed (Kang et al., 2014). Ex-

pression of the Pho92p YTH domain alone did not regulate the stability of PHO4

mRNA, supporting that YTH proteins act via recruitment of other protein com-

plexes via N-terminal, non-YTH, regions.

3.1.4 Gis2 as a novel m6A-reader

To identify further m6A readers in yeast meiosis, Dr. Radhika Varier collaborated

with the group of Michiel Vermeulen to perform a pull down of yeast cell proteins

bound to either an m6A-modified bait RNA oligo (comprising four GG(m6A)CU

repeats) or a matched unmodified control bait (Figure 3.3) (Varier et al., 2022). The

experiment identified Pho92p as the most enriched protein bound to m6A-modified

oligos in early meiotic cell extracts, the second most enriched protein was Gis2p.

Gis2p is the S.cerevisiae ortholog of human CCHC-type zinc finger nucleic

acid-binding protein, CNBP, sharing 59% sequence similarity (Sammons et al.,

2011). Interestingly, under zinc-deficiency, expression of GIS2 is shut down by

run on transcription of an upstream RNA, potentially as a zinc-saving mechanism

by yeast cells. Gis2p has 7 CCHC-type zinc fingers, and therefore contains 7 zinc

molecules per protein - estimated to constitute 2–8% of the total zinc requirement of

the cell (Taggart et al., 2018). Neither Gis2p or CNBP protein has been implicated

in m6A-dependent networks previously.

Gis2p associates with polysomes, translation factors such as translation ini-

tiation factor eIF4G and poly(A) binding protein in a manner that is RNAse-

dependent, suggesting a role in translation that depends on binding to mRNAs rather

than protein-protein interactions (Rojas et al., 2012; Sammons et al., 2011). Fur-

thermore, ectopic expression of Gis2p in HEK293 cells with a reporter based on

human ornithine decarboxylase mRNA, which harbours an internal ribosome en-
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Figure 3.3: Mass spectrometry screen to identify m6A readers in early meiosis, per-
formed by Dr. Radhika Varier in collaboration with the group of Michiel
Vermeulen (Varier et al., 2022). Scatter plot displaying proteins iden-
tified in m6A consensus oligo pull down versus control. In short, cells
were grown in nutrient rich medium till saturation, shifted to nutrient
depleted media, and then induced to enter meiosis using CUP1 pro-
moter fused to IME1. Protein extracts were incubated using m6A and
control RNA baits bound to streptavidin beads. Eluted proteins were
differentially labelled with light and heavy dimethyl isotopes, mixed, and
proteins from forward and reverse label swap reactions were identified
by MS.

try site (IRES), demonstrated that Gis2p could facilitate cap-independent transla-

tion, similar to CNBP. Interestingly, spot dilution vegetative growth assays showed

no growth defect in gis2-∆, and no difference in growth to WT strains when cells

were treated with different translation inhibitors, suggesting Gis2p is not essential

in nutrient-rich conditions, even under translational stress (Sammons et al., 2011).

Despite this, Gis2p has been found to localise to p bodies and stress granules follow-

ing arsenite stress (Rojas et al. 2012). Additionally, vegetative gis2∆ cells do have

a larger size, and GIS2-overexpressing cells have a slight growth defect (Jorgensen

et al., 2002; Scherrer et al., 2011).

Identification of Gis2p RNA binding partners was previously performed from

yeast grown in nutrient rich media using an RNA affinity purification approach, fol-
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lowed by incubation of Gis2p affinity purified RNAs and input RNAs with a DNA

microarray (Scherrer et al., 2011). This methodology is likely to introduce some

false negatives and false positives as Gis2p could associate with different mRNAs

during the affinity purification procedure than it might in vivo. This is prevented

in the iCLIP protocol, where UV-crosslinking is performed in vivo prior to cell ly-

sis. Nevertheless, RNA-IP approach identified repeating GAN motifs as the main

sequence feature of Gis2p binding sites. The analysis also suggested most of these

GAN motif stretches occur in-frame and start from the first codon position in a

transcript. Different categories of Gis2p-bound transcripts changed differently in re-

sponse to gis2-∆ or GIS2-overexpression. Gis2p-bound nucleolar/rRNA biogenesis

related transcripts increased in abundance in gis2-∆ and correspondingly decreased

in abundance upon GIS2-overexpression. Bound transcripts related to chromatin ar-

chitecture functions were upregulated upon GIS2-overexpression, whilst GIS2 dele-

tion had little effect. The authors additionally find a lot of overlap between Gis2p

targets and the targets of other yeast RBPs, particularly ribosome-associated Gbp2p

and nucleolar protein Nsr1p, so the relative contributions of Gis2p and other RBPs

to yeast mRNA fate remains to be determined (Scherrer et al., 2011).

3.1.5 Aims of this chapter

In this chapter I analyse m6A miCLIP data produced at 4 hours into sporulation in

WT vs. ime4-∆ genetic backgrounds to establish a high confidence set of m6A sites

in early yeast meiosis. I then further analyse and integrate Pho92p 4TU-iCLIP and

Gis2 iCLIP in WT vs. ime4-∆ yeast to determine the binding sites of these RBPs

and whether their binding is dependent on Ime4p. I integrate the m6A miCLIP

data to corroborate whether Ime4p-dependence means m6A-dependence. Finally

I explore the RNA abundance and translational efficiency of these RBP targets to

address fundamental questions about the function of m6A in yeast meiosis.
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3.2 Materials and Methods

3.2.1 iCLIP/miCLIP pre-processing

iCLIP and miCLIP samples were prepared by Dr. Radhika Varier and Dr. Dora

Sideri using the improved iCLIP protocol (F. C. Y. Lee et al., 2021). Mock mi-

CLIP data was prepared by excluding the crosslinking step and subsequent IP with

anti-m6A antibody. This results in a library similar to standard RNA-seq, however

because it was generated using miCLIP-style library preparation any biases from

this process should be represented. Note that this could be referred to as input, but

I am hesitant to use this term as mock miCLIP is very different to input used in

ChIP-seq, a technique CLIP is conceptually related to, where signal is usually weak

due to IP with IgG and is used to determine binding regions that are false posi-

tives. In contrast, mock miCLIP datasets have coverage similar to RNA-seq and are

used only for normalisation of CLIP signal to transcript abundance in this particular

context. Note that both miCLIP and mock miCLIP were performed on poly(A)+

selected RNA.

Reads were demultiplexed using iCount demultiplex and subsequently

trimmed for adapter sequences and also for PHRED score >30 using Trim Galore!

(Krueger, 2017). Due to the high ncRNA content in miCLIP libraries, a sequential

mapping strategy was used for all libraries, which is available as a Snakemake

(Köster & Rahmann, 2012) pipeline from www.github.com/ulelab/ncawareclip.

Mapping was first to representative Saccharomyces cerevisiae snRNA and rRNA

sequences downloaded from NCBI (Pruitt et al., 2005), followed by mature

tRNA sequences (3’ CCA and 5’ G added) and the SacCer3 mitochondrial

chromosome before being mapped to the SK1 MvO genome (available from

http://cbio.mskcc.org/public/SK1 MvO/).

PCR duplicates were removed using the unique molecular identifiers (UMIs).

The start positions of uniquely mapping reads were taken as crosslinks. Detailed an-

notations were taken from (Chia et al., 2021). tRNA annotations were downloaded

from UCSC table browser, which sources the annotations from GtRNAdb (Chan &
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Lowe, 2016; Karolchik et al., 2004).

All genome browser screenshots display stranded crosslinks per million (CPM)

normalised bigWig files. Crosslinks at each position were divided by the total num-

ber of genomic crosslinks in the sample multiplied by one million.

3.2.2 iCLIP/miCLIP Differential Analysis

Peaks were called on iCLIP and miCLIP data with Clippy v1.2.0 (https://github.

com/ulelab/clippy/releases/tag/v1.2.0). Reproducible, high quality replicate sam-

ples were combined for peak calling and then individual sample coverage over these

peaks was calculated using bedtools map (Quinlan, 2014). Peaks were filtered

to have at least 5 cDNAs in 3 WT or 3 ime4-∆ replicates, to come to a preliminary

list of binding sites.

To determine Ime4p-dependence, WT vs. ime4-∆ samples for Pho92p iCLIP,

Gis2p iCLIP and m6A miCLIP were compared using DESeq2 (Love et al., 2014)

whilst controlling for gene expression changes by including measurements from

mock miCLIP samples as a contrast in the linear model. Genes with less than 20

cDNA counts across 3 replicates were discarded from the analysis. P values were

calculated using a likelihood-ratio test. A stringent threshold of log2FoldChange

≤ -2 and adjusted p value of < 0.001 was used to determine differentially bound

sites for Pho92p, Gis2p iCLIP. For m6A miCLIP a threshold of log2FoldChange ≤

-1 and adjusted p value of < 0.001 were used. Due to the high depth of the iCLIP

datasets, sites were further filtered based on a DESeq2 base mean > 200, which

is a measure of coverage in both iCLIP and mock iCLIP samples. The value is

calculated as the average of the normalized cDNA counts per peak from all samples,

divided by their size factors.

Peak assignment to transcriptomic regions was performed using the follow-

ing heirarchy to resolve any overlapping annotations: snoRNA > ncRNA > STOP

codon > 3’ UTR > 5’UTR > last 100nt CDS > first 100nt CDS > CDS > inter-

genic.

https://github.com/ulelab/clippy/releases/tag/v1.2.0
https://github.com/ulelab/clippy/releases/tag/v1.2.0
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3.2.3 Published m6A sites definition

To come to a group of published m6A sites to compare our data against, I took all

Mazter-Seq sites with confidence group > 1 and all m6A-Seq sites (Garcia-Campos

et al., 2019; Schwartz et al., 2013). In order to robustly map these sites to the MvO

SK1 genome assembly, I expanded all intervals to 150nt, retrieved the sequences

and used BLAST to get mappings (Ye et al., 2006). I filtered mappings to those that

were unique and in the case of Mazter-Seq, perfectly aligned to an “ACA” sequence.

To create a consensus list, any m6A-seq region that overlapped with Mazter-Seq

site(s) was removed, under the assumption that the signal was representing the sites

detected at higher resolution by Mazter-Seq - although it is possible that adjacent

non-ACA sequence context m6A sites would not be represented in the list. This

procedure resulted in a list of 1297 m6A regions.

3.2.4 Distance to nearest m6A

Distances between peak sets were calculated using bedtools closest with

parameters -s -t first -d (Quinlan, 2014).

3.2.5 GO term enrichment

Gene list enrichment analysis was performed using YeastEnrichr, specifically using

KEGG 2019 pathways (https://maayanlab.cloud/YeastEnrichr/) (H. C. Chen et al.,

2013; Kuleshov et al., 2016).

3.2.6 Motif analysis

Motifs were discovered in peak regions by resizing all peaks to 100nt and obtain-

ing their fasta sequences to submit to STREME (Bailey, 2021). Either shuffled

sequences or another peak set were used as background, as indicated in the main

text. Motifs were plotted around the centre of peaks using a custom script available

upon request.
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3.2.7 Metaprofiles

Bigwigs were generated from bedgraphs using UCSC BedGraphToBigwig (Kuhn

et al., 2013) and metaprofiles were generated around regions of interest using Deep-

Tools ComputeMatrix and PlotHeatmap (Ramırez et al., 2014). Further integration

and plotting was performed using R with ggplot2, dplyr, data.table, stringr and cow-

plot packages (Dowle et al., 2019; Wickham, 2010, 2016; Wickham et al., 2015;

Wilke et al., 2019).
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3.3 Results

3.3.1 iCLIP/miCLIP quality control

Replicates generally had good correlation as measured by Pearson’s correlation,

scatter plots and Principal Component Analysis (PCA) performed at the peak level

(Figure 3.4). Additionally, (m)iCLIP library sizes generally exceeded 1 million cD-

NAs (Figure 3.5). Poly(A) selection in the miCLIP and mock miCLIP libraries ap-

pears to have worked in enriching for non-rRNA RNAs (Figure 3.5 A,D). Notably,

smaller Pho92p iCLIP libraries, which we presume to be of lower quality, have a

higher proportion of non-coding and mitochondrial RNAs present, suggesting that

this signal is likely to be noise. The decision to exclude some replicates (indicated in

red) was based on a combination of the samples having fewer crosslinks compared

to other replicates (any sample with fewer than 1 million cDNAs was removed),

indicating variation in library preparation, and also clustering further away from

replicates in PCA and/or poorer correlation to other replicates.

It is interesting that the proportion of variance accounted for by genetic back-

ground was much less for Gis2p (34%) than for the miCLIP (80%) or Pho92p

(58%).

3.3.2 Differential CLIP analysis

Having chosen reproducible replicates, I wanted to determine the Ime4p-

dependence in all experiments. This required first defining binding sites, and

then calculating differential enrichment between WT and ime4-∆ conditions. It was

important to account for changes in gene expression between the two conditions,

otherwise it is impossible to distinguish loss of binding from reduced RNA abun-

dance and vice versa. Previously, differential iCLIP analysis has been performed

using DESeq2 and including expression data as a contrast in the linear model

(Zarnack et al., 2013). This method has also been used in differential analysis of

meRIP-Seq (McIntyre et al., 2020). Several packages have emerged to specifically

address such differential analysis in meRIP-Seq, which is conceptually similar to
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Figure 3.4: Correlation between iCLIP and miCLIP replicate samples, quantified at
the peak level. A) On the left, a correlation matrix showing all Pho92p
iCLIP experiments plotted against each other, in the top right quadrant
as scatter graphs and showing Pearson’s correlations in the bottem left.
On the right, a PCA plot with points coloured by yeast genotype and
whether the replicate was eventually excluded from further analysis. B)
As in A but for m6A miCLIP. C) As in A but for Gis2p iCLIP.
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Figure 3.5: cDNA count and library distributions for iCLIP and miCLIP. A) On the
left, regional distributions are shown for mapped cDNAs from miCLIP
libraries for different transcript types; on the right, the total cDNA
count for each library is displayed. Red colour indicates those replicates
excluded from further analysis. B) As in A but for Pho92p iCLIP li-
braries. C) As in A but for Gis2p iCLIP libraries. D) As in A but for
mock miCLIP libraries.
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the current analysis, the most up to date being the Quad Negative Binomial (QNB)

package (N. Liu et al., 2017). Even though DESeq2 does use the negative binomial

model to estimate over-dispersion, this estimate is based only on the (m)iCLIP

samples in this use case and not the control expression data, in this case the mock

miCLIP. In QNB, the over-dispersion in (m)iCLIP samples and mock control sam-

ples for each condition is separately accounted for. Therefore there were several

decisions to make regarding how to approach the differential binding/methylation

analysis.

I examined QNB vs. DESeq2 approaches and whether to use mock counts

summarised at the gene or peak level. I hypothesised that more differential sites

may be called when using gene level mock counts due to reduced variation com-

pared to peak level summarised counts. I found that the DESeq2 approach con-

sistently called more Ime4p-dependent peaks than QNB, and that using gene level

summarised mock counts vs. peak level counts doesn’t make much of a difference

for this specific dataset (in this analysis defined by log2 fold change < -1 and p

value < 0.05) (Figure 3.6A).

An increase in called peaks will be a mix of true and false positives. I wanted to

evaluate the likely ratios between the two. Due to a lack of ground truth I decided to

examine the proportion of RGAC motif-containing peaks in both Ime4p-dependent

and independent categories, using RGAC motif occurrence as a proxy for a ”true”

Ime4p-dependent Pho92p peak (Figure 3.6B).

Whilst QNB did produce a higher proportion of RGAC-containing Ime4p-

dependent peaks (40% vs. 36% for the gene level analysis), it also produced nearly

3X fewer Ime4p-dependent peaks (349 vs. 956), therefore on balance I chose to

procede with DESeq2. I chose to use gene level mock counts because it seemed

to make more sense conceptually, we are interested after all in the level of gene

expression, not really mock signal at a given position in the gene - however based

on these results I could have chosen peak level counts and I would have obtained

similar results.

Analysis using this strategy revealed that 642 Pho92p peaks in 507 genes
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Figure 3.6: Comparison of QNB vs. DESeq2 for differential CLIP analysis. A)
Fraction of total peaks called for each differential analysis strategy that
were defined as Ime4p-dependent with criteria log2 fold change < -1 and
p value < 0.05. Gene and peak refer to the level at which mock miCLIP
data was quantified as an expression control. B) Proportion of total
peaks retrieved in each differential analysis strategy which contained an
RGACmotif, with peaks split up into Ime4p-dependent and independent
as defined in A.

(16.7% of all detected peaks) were found to be reliably reduced in ime4-∆

(log2FoldChange <= -2, adjusted p value < 0.001) (Figure 3.7A). Using a less

stringent criteria I could designate up to 30% (1130/3823 peaks at log2FoldChange

<= 0, adjusted p value < 0.05) of detected Pho92p peaks as reduced in ime4-∆;

however, for subsequent analysis, I will refer to the 642 stringently defined peaks as

“Ime4p-dependent” Pho92p binding sites. This means that surprisingly, a large sub-

set of Pho92p binding sites do not decrease in ime4-∆ cells, indicating that Pho92p

can also bind transcripts in an Ime4p independent manner. In contrast, analysis of

Gis2p iCLIP revealed 3563 peaks, of which only 43 peaks in 24 genes were de-
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creased in ime4-∆ representing only 1.2% of all Gis2p peaks (log2FoldChange <=

-2, adjusted p value < 0.001) (Figure 3.7B).

Figure 3.7: Volcano plots describing differential iCLIP analysis. A) Pho92p iCLIP
peak volcano plot, showing log2 fold change in WT vs. ime4-∆ conditions
on the x axis and -log10(adjusted p value) on the y axis. Dotted lines
denote the log2FoldChange <= -2, adjusted p value < 0.001, threshold.
Peaks with increased signal in ime4-∆ are coloured in light pink, whereas
those that decrease are coloured in dark magenta. Identities of genes
harbouring several of the top downregulated binding sites are indicated
with labels. B) As in A but for Gis2p. The few up and downregulated
binding sites are coloured in light and dark blue respectively.

The most differentially bound transcript by Pho92p was ACS2 mRNA, which

encodes acetyl-coenzyme A synthetase 2 (Figure 3.7A). This is an ‘anaero-

bic’ isozyme of acetyl-coenzyme A synthetase, which is required for glucose

metabolism, which is limited during yeast meiosis, and so potentially m6A-bound

Pho92p plays a role in regulating the expression of this enzyme in early meiosis

(van den Berg et al., 1996). Other Ime4p-dependent Pho92p binding partners in-

cluded CTF4 and MCD1 mRNA, which both encode proteins important for sister

chromatid cohesion. Mcd1p is an essential subunit of the cohesin complex and

Ctf4p is a protein suggested to link DNA replication to sister chromatid cohesion as

it is also responsible for recruiting proteins to replication forks (Guacci et al., 1997;

Hanna et al., 2001). The timing of m6A deposition, coinciding with DNA repli-

cation, suggests these mRNAs could be very relevant meiotic targets of Pho92p

regulation.

I wanted to be confident that the peak categories defined by the DESeq2 anal-
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ysis reflected the raw data well, and so I plotted crosslink per million (CPM) nor-

malised representative samples of all (m)iCLIPs against their designated categories

(Figure 3.8). Reassuringly, for Pho92p and miCLIP Ime4p-dependent sites, there

is enriched WT iCLIP signal at Ime4p-dependent peaks and very little signal in

ime4-∆ (m)iCLIP samples (Figure 3.8 A,B). Gis2p signal also shows the same pat-

tern, however the scale of reduction in signal between WT and ime4-∆ is much less

dramatic (Figure 3.8 C). I also plotted mock miCLIP signal for the same peak cate-

gories (Figure 3.8 D-F). Interestingly, the genes containing Ime4p-dependent peaks

seem to be generally upregulated in ime4-∆. It is difficult to discern if this is a sta-

tistical issue - ie. if the fold changes are more extremely opposite in CLIP vs. mock

is an Ime4p-dependent peak more likely to be called? Or whether this in fact repre-

sents a biological truth - that transcripts containing m6A, Ime4p-dependent Pho92

or Gis2 binding are generally upregulated in ime4-∆. It is likely to be a mixture of

both.

3.3.3 Analysis of m6A miCLIP data

In order to determine if Ime4p-dependence is a suitable proxy for m6A-dependence,

I needed to process our miCLIP data to come to a list of m6A sites.

After peak calling, I filtered miCLIP peaks to have > 5 counts across all 3

WT miCLIP replicates, this left me with 9519 miCLIP peaks which I took for-

ward for DESeq2 analysis. I expected true m6A sites to decrease in signal in ime4-

∆. I found 1286 miCLIP peaks in 870 genes that were reduced in ime4-∆ cells

(log2FoldChange <= -1, adjusted p value < 0.001). To help me to understand

what thresholds to use to find true m6A sites, I examined the enrichment for RGAC

motifs within the peaks, reasoning that true m6A sites would be contained within

the canonical motif. Visualising as a volcano plot, it is reassuring that downregu-

lated miCLIP peaks also appear to contain more RGAC motifs (Figure 3.9A).

I followed this by testing for RGAC enrichment given different stringencies of

thresholding the miCLIP (Figure 3.9B). I calculated the background probability of

detecting an RGAC as follows:
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Figure 3.8: Metaprofiles of raw iCLIP signal over categories defined by DESeq2
analysis. A) Crosslinks per million normalised representative Pho92p
samples are plotted around Ime4p-dependent Pho92p binding sites as
characterised by DESeq2 analysis, pink denotes the WT sample and
grey denotes the ime4-∆ sample. B) As in A but for representative m6A
miCLIP samples over Ime4p-dependent m6A sites, green denotes the
WT sample and grey denotes the ime4-∆ sample. C) As in A but for
representative Gis2p iCLIP samples over Ime4p-dependent Gis2p bind-
ing sites, blue denotes the WT sample and grey denotes the ime4-∆
sample. D-F) Crosslinks per million normalised representative WT and
ime4-∆ mock miCLIP samples effectively showing gene expression over
the corresponding binding site categories: D) Ime4p-dependent Pho92p
binding sites, E) Ime4p-dependent m6A sites and F) Ime4p-dependent
Gis2p sites.
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P(RGAC) = F ∗ (m− (k−1))

where F = the proportion of RGAC kmers found in all SK1 gene sequences,

m = the median peak length of m6A miCLIP peaks and k = the length of the kmer,

in this case 4. To calculate F I used the EMBOSS compseq tool (http://emboss

.bioinformatics.nl/cgi-bin/emboss/compseq)(Rice et al., 2000). I was interested to

compare this to the enrichment of RGAC in Pho92p Ime4p-dependent and indepen-

dent peaks and also the Gis2p data.

Several interesting things emerge from this analysis. First, whilst increasing

stringency of thresholding improves the proportion of m6A miCLIP peaks contain-

ing RGAC, this hits a plateau, as there is no increase between ”high” and ”highest”

categories. Second, Pho92p Ime4p-dependent peaks have a higher RGAC enrich-

ment than the highest stringency m6A miCLIP thresholding. I suspect this is be-

cause the Pho92p data is of higher quality - we suspect more noise from the m6A

antibody. Third, Gis2p shows a very small enrichment for RGAC, which while

significant by chi-square test (p <0.001), the magnitude of enrichment suggests it

could be within the margin of error of my background estimate, which is a sim-

plification. Fourth, the m6A miCLIP data shows RGAC enrichment even with no

filtering for Ime4p-dependency which I interpret to mean that there are probably

true m6A sites in even the unfiltered category, which become false negatives in our

analysis. Finally, it appears that the thresholding for Pho92p Ime4p-dependent sites

is likely set in a good place, because Ime4p-independent sites have a similar RGAC

enrichment to the expected background level. Note the chi-square test (p <0.001)

even suggests mild depletion of RGAC in the Ime4p-independent sites, but again

this is likely within the margin of error of my background estimate.

I continued to study the positional enrichment of m6A miCLIP peaks. I plot-

ted the profile of high confidence Ime4p-dependent miCLIP peaks vs. Ime4p-

independent over genes (Figure 3.10A). The Ime4p-dependent peaks were more

3’ biased, which is expected based on the literature. The m6A antibodies are noto-

riously noisy, and so extensive Ime4p-independent signal is likely to represent bind-



3.3. Results 119

Figure 3.9: Testing thresholding of miCLIP data. A) A volcano plot of m6A miCLIP
data analysed with DESeq2. The x axis displays log2 fold change WT vs.
ime4-∆ samples and the y axis shows -log10(adjusted p value). Each dot
represents a miCLIP peak, where red means the peak contains at least
one RGAC motif and purple means there is not RGAC motif. Dotted
lines represent “medium” miCLIP thresholding with log2 fold change ≤
0.5 and adjusted p value < 0.05. B) Stacked bar graphs showing the
proportion of peaks containing RGAC at different levels of thresholding
for m6A miCLIP, Pho92p and Gis2p iCLIP. The numbers at the top
of the bars denote the number of peaks in the given category. “Exp.”
bars denote calculated expected RGAC enrichment based on frequency
of RGAC in SK1 transcripts.
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ing at non-m6A sites, such as sites with poly(A) stretches. Next, I assigned all peaks

to a specific transcriptomic region, finding nearly 50% of Ime4p-independent bind-

ing at the 3’ end of transcripts, but no bias towards overlapping the CDS or 3’UTR

(Figure 3.10B). As previously reported in mammals, there was an enrichment for

peaks overlapping the STOP codon. The STOP codon itself could hypothetically

be m6A-modified if it were UGA followed by a cytosine (UAG would not be modi-

fied, UAA is possible, but not canonical). To investigate this, I took the sequences of

STOP codons +1 nucleotide that overlapped either an Ime4p-dependent (130 STOP

codons) or independent miCLIP peaks (342 STOP codons), I found only 6 instances

of GAC motif in Ime4p-dependent peaks and 5 instances in the independent peaks

(Figure 3.10C). This suggests that whilst a UGA STOP followed by a cytosine is

enriched in Ime4p-dependent miCLIP peaks, the number is so few that it’s unlikely

that the STOP codon itself being methylated is of importance, but more the general

3’ end of the transcript region.

I further sought to determine if Ime4p-dependent miCLIP peaks would con-

tain the RGAC motif if I performed a search de novo. I used STREME to search

for enriched motifs in Ime4p-dependent miCLIP peak sequences resized to 100nt

intervals vs. shuffled dinucleotide-content-matched background sequences (Fig-

ure 3.10D). The top enriched motif was the canonical RGAC motif, as previously

identified. Further, the RGAC was contained within an extended sequence context

of -4 A and +4 U which validates previous findings (Schwartz et al., 2013). Of

the Ime4p-dependent miCLIP peak sequences containing such a motif, ∼80% con-

tained one, suggesting they contain one m6A, whereas ∼20% contained two (Fig-

ure 3.10E). The Ime4p-dependent miCLIP peaks range from 11—167 nucleotides

in width, with 77% being under 50nt (Figure 3.10F). I was curious to see how the

RGAC motif was positioned around peaks and so I plotted RGAC motif enrichment

around peak centers (Figure 3.10G). Whilst there was enrichment at peak centers,

the RGAC motif could also be further away, indicating it could be adjacent to the

miCLIP peak also, which I observed while studying genome browser tracks. I hy-

pothesised this is due to the m6A antibody crosslinking adjacent to m6A sites where
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Figure 3.10: Positional and motif enrichment of miCLIP data. A) Metagene profile
of miCLIP peaks over yeast genes, green indicates Ime4p-dependent
peaks and grey indicates Ime4p-independent. B) Stacked bar graph
showing peak annotations to different transcriptomic regions. C)
Stacked bar graph showing proportion of STOP codons overlapped by
a miCLIP peak that are encoded by UGA followed by a C (in green).
D) Sequence logo for top enriched Ime4p-dependent m6A motif. E)
Proportion of Ime4p-dependent m6A sites containing the motif in D,
which have 1 or more matches per peak sequence. F) Histogram distri-
bution of miCLIP peak lengths. G) Enrichment of RGAC motif around
Ime4p-dependent m6A sites (dark green) and the top 500 of these (light
green).
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there is a more favourable sequence for crosslinking, for example a poly(U) stretch.

Next I wanted to check if I identified m6A sites previously reported in the

literature. NAM8 and RAD54 transcripts were both validated to have m6A sites by

m6A-Seq (Schwartz et al., 2013). The three sites across the two genes are also

found by our miCLIP (Figure 3.11,3.12). Interestingly NAM8 mRNA is also bound

by Gis2p at the 5’ end, and upon further inspection there appears to be Ime4p-

dependent Pho92p binding at the NAM8 mRNA m6A site, although this wasn’t

captured in the full transcriptomic analysis due to stringent thresholding (Figure

3.11C).

Ideally, I would like to resolve the m6A sites to single nucleotide resolution.

However, the raw crosslinking data is not easy to parse in this regard. For exam-

ple, in NAM8 mRNA m6A peak region the actual RGAC motif has much fewer

crosslinks than other sequences within the peak (Figure 3.11B). The 5’ most dashed

box region of crosslinking may be explained by the multiple trinucleotide U’s, the

most 3’ dashed region also contains a U trinucleotide. The middle dashed box is

less obvious, but I suspect this might be due to the m6A antibody binding at poly(A)

stretches with higher affinity than m6A itself. Therefore, I decided to proceed with

peak regions at lower resolution to integrate with the iCLIP data; feeling confident

that due to all the metrics previously described, they were likely to represent true

m6A sites in the near vicinity.

After having validated the previously reported NAM8 and RAD54 transcript

m6As, I wanted to investigate the sites in IME1, IME2 and IME4. As previously

described, the IME2 site was identified in (Bodi et al., 2010) and validated by

(Schwartz et al., 2013), whereas IME1 and IME4 sites were identified by (Bodi

et al., 2010) but not found by (Schwartz et al., 2013).

Firstly, we did identify the m6A site in IME2 mRNA, falling into the medium

confidence category (log2FC=-0.6, padj= 0.007). IME1 mRNA was very interest-

ing, there was a clear Ime4p-dependent Pho92p site, however we did not detect an

m6A. Looking at the genome browser tracks it does seem possible that there is an

m6A in that position. The peak was quantified in my analysis, but after correcting
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Figure 3.11: Detailed study of the NAM8 gene. A) Genome browser screenshot
showing miCLIP and mock miCLIP representative sample crosslinks
over the NAM8 gene. Scale refers to crosslinks per million. Gis2p
binding site is indicated and high confidence Ime4p-dependent m6A
site. B) Zoom-in on the Ime4p-dependent m6A site showing miCLIP
crosslinks and the sequence at that region. Highlighted in orange is
the m6A consensus motif previously reported to be modified. Other
areas of high miCLIP crosslink signal in the WT sample are indicated
with dashed grey boxes. C) Representative Pho92p iCLIP samples are
shown over the NAM8 gene, Pho92p crosslinks that look to indicate
Ime4p-dependent binding are highlighted with an orange box and the
m6A site is shown below with a blue box.
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Figure 3.12: m6A sites in RAD54 mRNA. Genome browser screenshot showing
miCLIP and mock miCLIP representative sample crosslinks over the
RAD54 gene. Scale refers to crosslinks per million. High confidence
Ime4p-dependent m6A sites are shown below with blue boxes.

for the change in RNA abundance of IME1 the actual quantified log2fold change

was 0.15—a small increase in ime4-∆. Also interesting, is that by examining the

Gis2p crosslinks it looks like there could be a Gis2p binding site that only occurs

when Pho92p is absent - suggestive of competitive binding of the two proteins.

Again, this Gis2p binding site was not quantified by my analysis because overall

the Gis2p signal over the gene was very low. This case study highlights the lim-

its of detection in such an analysis; when both the RNA abundance and (m)iCLIP

signal decreases, it is hard to detect responsiveness to the condition. Likely, this

is exactly the same reason why (Schwartz et al., 2013) failed to identify the IME1

m6A site in their bioinformatics analysis, whilst it was detected by targeted m6A

IP followed by RT-qPCR (Bodi et al., 2010). To further validate that there was in

fact an m6A site in this region, I used Nanocompore data (Leger, Amaral, Pan-

dolfini, Capitanchik, et al., 2019b). I found that there was a high scoring kmer in an

AGACU sequence context within this region, suggesting that it is indeed a bonafide

m6A site. Note, that due to MAZTER-Seq only detecting m6A in an ACA sequence

context the IME1 site would also not be detected by MAZTER-Seq (Figure 3.13).
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Figure 3.13: A detailed study of IME1. Genome browser screenshot displaying m6A
miCLIP, Pho92p and Gis2p iCLIP crosslinks per million over IME1. An
Ime4p-dependent Pho92p binding site is present, mock miCLIP data
shows expression of IME1 in WT vs. ime4-∆ conditions. The bottom
track shows Nanocompore signal as -log10(p value), the consensus m6A
motif AGACU is indicated below.

I proceeded to overlap all our miCLIP-defined m6A sites with a curated list

of published m6A sites collated from m6A-Seq and MAZTER-Seq (See Methods

section 3.2.3, (Garcia-Campos et al., 2019; Schwartz et al., 2013)). Overall, the ma-

jority of m6A sites which did overlap, did so either exactly, or within 50nt (Figure

3.14A). 40% of published sites are within 50nt of a medium confidence m6A mi-

CLIP site. (Figure 3.14B). Taking all miCLIP peaks submitted to DESeq2 analysis,

we could capture a maximum 55% of published sites (Figure 3.14C).

Whilst the overlap was good, it was lower than I expected. I wondered if one

reason behind this could be that the gene expression between the different exper-

iments: our present work, m6A-Seq and MAZTER-Seq, might be different. The

protocol used in the present work to synchronise meiosis - induction of IME1 from

the CUP1 promoter, produces a much more synchronised cell population than the

method used in the m6A-Seq and MAZTER-Seq papers.

To investigate this possibility I investigated the expression levels of the three

categories of genes in our WT mock miCLIP data and reciprocally in WT input

sequencing data from (Schwartz et al., 2013), that is: genes identified as m6A-

modified in our miCLIP data alone, genes identified as m6A-modified in both our



3.3. Results 126

Figure 3.14: Overall agreement between miCLIP m6A sites and published sites. A)
Density plot of distance from published m6A site to nearest miCLIP-
defined m6A site. B) Venn diagram showing overlap between medium
confidence m6A miCLIP sites and published m6A sites. c) Venn dia-
gram showing overlap between all m6A miCLIP peaks and published
m6A sites.

miCLIP and published data, and genes that are identified only in the published data.

I was surprised to find that in fact, genes that were identified in published data alone

were more lowly expressed in both expression data from the present project, and the

matched published expression data (Figure 3.15).

This could be caused by discrepancies in data processing, for example, being

more stringent in my thresholding from the beginning. Alternatively, this could be

experimental - perhaps the stringency of the miCLIP experimental method, with UV

crosslinking and harsh washes, biases data towards detecting more highly expressed

genes compared to m6A-Seq or MAZTER-Seq. However, this wouldn’t explain
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Figure 3.15: Expression of genes containing published and/or miCLIP-defined m6A
sites. Violin plot with box plot overlay showing the normalised abun-
dance (TPM) of transcripts containing m6A defined by just miCLIP,
just the published data or by both datasets. The expression data is
divided into WT data from the present study (purple) and from the
m6A-Seq paper (green).

why the sites found only in miCLIP data, residing on more highly expressed genes,

were not identified in the published work.

Another possiblity is that the higher expression sites only found in miCLIP

are more likely to be noise—to investigate, I looked at the RGAC enrichment in

peaks found across expression deciles in the miCLIP data. In the raw m6A miCLIP

peaks, as the expression decile increases so do the proportion of peaks without

RGAC; however, this mostly seems to be corrected by the thresholding for Ime4p-

dependence (Figure 3.16).

Our miCLIP data might also differ from the published m6A-Seq because the

Abcam polyclonal m6A antibody (ab151230) was used as opposed to the Synaptic

Systems antibody used in the published work.
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Figure 3.16: RGAC content of miCLIP peaks stratified by transcript expression
decile. A) Transcripts containing at least one m6A miCLIP peak were
stratified by expression decile, then the proportion of RGAC-containing
peaks were calculated within the deciles. B) The same as A but for
medium confidence m6A miCLIP peaks.

3.3.4 Pho92p is an m6A-reader, whilst Gis2p is not

Having established our miCLIP data to be of sufficient quality, I returned to the

Pho92p and Gis2p data, to scrutinise the m6A-dependency of their binding to RNA.

I began by calculating the distance between Pho92p or Gis2p binding sites to the

nearest m6A. It is clear that most Pho92p sites that reduce in binding in ime4-∆,

either directly overlap with an m6A site, or are very near to one. In contrast those

Pho92p sites that increase binding, are widely distributed with respect to m6A, re-

gardless of whether miCLIP-defined m6A sites or published m6A sites are used

(Figure 3.17A,B). Gis2p binding sites have a less clear relationship to m6A posi-

tions - important in the interpretation is that the categories of differential binding

are much smaller for Gis2p.

Having concluded both that: a) there are few Gis2p binding sites which de-

crease in signal upon Ime4p deletion and b) the few that do decrease do not overlap

with m6A sites, I felt confident that Gis2p is not an m6A-binding protein.
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Figure 3.17: Distance to nearest m6A from Pho92p and Gis2p binding sites. A)
Pho92p peaks are split into those where binding increases in ime4-∆
(purple) and those where binding is reduced (green). A density plot
is shown of the distance from each binding site to the nearest m6A as
defined by miCLIP. B) The same as in (A) but defining m6A sites by
published data. C, D) The same as in (A, B), but for Gis2p binding
sites.

3.3.5 Characterising Pho92p binding to RNA

To further characterise Pho92p RNA binding, I looked at its positional enrichment

over transcripts. I found that Pho92p binds at the 3’ end of RNAs, regardless of

whether binding is Ime4p-dependent or not (Figure 3.18 A,B). I saw this effect in

my categorised peaks, but I also verified it in the raw crosslinking data (Figure

3.18 D). Consistent with m6A pattern at mRNAs, Pho92p binding was detected

predominantly at the 3’ end of transcripts, with 23% (145/642) of Ime4-dependent

binding sites directly overlapping a STOP codon (Figure 3.18 C). Whilst Ime4-

independent Pho92 sites also occurred predominantly at 3’ transcript ends, only

13% of these sites directly overlapped a STOP codon, suggesting it is possible m6A

is involved in this positioning.

Next I used STREME to search for enriched motifs in Ime4p-dependent

Pho92p peak sequences resized to 100nt intervals vs. shuffled dinucleotide-content-
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Figure 3.18: Pho92p binding site distribution over transcripts. A) Metagene profile
of Ime4p-dependent Pho92p binding site distribution over yeast genes
extended by 100bp upstream and 300bp downstream. A binding site
is denoted as 1, values intermediate between 1 and 0 are due to the
smoothing used to generate the heatmap image. B) As in A but for
Ime4p-independent Pho92p binding sites (those that are unchanged or
upregulated). C) Regional transcript distribution of Pho92p binding
sites separated into those which are downregulated, unchanged or up-
regulated in ime4-∆. D) Metagene profile of CPM-normalised iCLIP
crosslink signal over yeast genes, showing WT and ime4-∆ samples.
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matched background sequences. I found that the most enriched motif was almost

indistinguishable from the extended m6A consensus motif found in our miCLIP

data (Figure 3.19 A), with a similar distribution among peak sequences (Figure 3.19

B). Furthermore, by plotting the enriched RGAC motif around Pho92p peak centres

of different categories it was apparent RGAC enrichment was a feature of binding

sites that were downregulated in ime4-∆ and not in those that were upregulated or

unchanged (Figure 3.19 C). I also verified RGAC was not enriched in Gis2p bind-

ing, again supporting the idea that it is not an m6A binding protein. This directional

dependency on Ime4p is therefore present for Pho92p RGAC motif enrichment, but

not for the 3’ positional binding of Pho92p.

I was curious if there were any sequence features of Ime4p-independent

Pho92p binding, so I searched using STREME with the Ime4p-independent peak se-

quences as foreground and the dependent sequences as background. I found several

low complexity motifs, which all shared GU dinucleotides 3.19 D). To explore this

further I plotted the enrichment of these dinucleotides around different categories

of Pho92p binding site and also m6A sites. Interestingly there did appear to be

some enrichment of GU dinucleotides in the category of upregulated Pho92p bind-

ing sites, whereas such sequences were depleted around m6A, or m6A-dependent

binding 3.19 E).

3.3.6 Functional impact of Pho92p and m6A on RNA networks

Having identified and characterised sites of m6A and Pho92p binding, I next sought

to address what functional impact this has for yeast cells undergoing meiosis. To

understand the functional networks occupied by bound/modified genes, I first per-

formed a gene ontology enrichment analysis using YeastEnrichr, specifically using

KEGG 2019 pathways (https://maayanlab.cloud/YeastEnrichr/) (H. C. Chen et al.,

2013; Kuleshov et al., 2016). (Figure 3.20). The top enriched term for both high

confidence m6A sites and Ime4p-downregulated Pho92p binding was the MAPK

signalling pathway. Interestingly for Pho92p, meiosis was the second most enriched

term, but this did not appear in the top five terms for m6A sites, suggesting m6A
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Figure 3.19: Pho92p motif analysis. A) Sequence logo for most enriched motif in
Pho92p Ime4p-dependent binding sites, y axis displays information con-
tent. B) Of Pho92p Ime4p-dependent binding sites containing the mo-
tif in A, a bar graph displaying those binding sites with 1 or more
occurences of the motif. C) RGAC motif enrichment plotted around
Gis2p binding sites (left, blue) and different categories of Pho92p bind-
ing site (right, pink). D) Top three enriched motifs in Pho92p Ime4p-
independent binding sites, showing various attributes as calculated by
STREME. E) GU dinucleotide enrichment plotted around m6A sites
(left, green) and different categories of Pho92p binding site (right,
pink).
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function at meiotic genes is Pho92p-dependent. The MAPK pathway is highly im-

portant for yeast meiosis; in early meioisis, MAP kinases are important for nuclear

reorganisation (Stone et al., 2000) and in late meiosis MAP kinases are critical for

the formation of the spore walls (R. E. Chen & Thorner, 2007).
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Figure 3.20: Pho92p and m6A gene GO term enrichments. A) GO term enrichments
for transcripts containing Pho92p binding sites which decrease in ime4-
∆. The top six most enriched terms are shown, the x axis shows -
log10(adjusted p value). The black numbers on the bars denote the
number of genes identified out of the total number of genes in that
GO term category. B) As in A but for transcripts containing Pho92p
binding sites which increase in ime4-∆. C) As in A but for transcripts
containing high confidence m6A sites.

Interestingly, the majority of proteasomal genes (22/35) had Pho92p binding

that was upregulated in ime4-∆. Recycling proteins is critical during yeast meio-

sis, where there is no environmental nitrogen, so all amino acids for making new

proteins must be scavenged from existing proteins.

Next, I investigated the RNA abundance of Pho92p bound genes when PHO92
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or IME4 are deleted. I identified that Pho92p binding sites, specifically downreg-

ulated sites, are most enriched on transcripts that are upregulated in ime4-∆ and/or

pho92-∆, (Figure 3.21). Like the majority of Pho92p binding, such regulated bind-

ing is also at the 3’ end of transcripts. This result suggests that Pho92p might be

involved in the degradation of its bound transcripts. Given that it is Pho92p binding

sites that are downregulated in ime4-∆ (Figure 3.21 A,B) that are the most enriched

in transcripts that are upregulated upon loss of Ime4p and Pho92p, which suggests

that this is very likely to be m6A-dependent binding. Also interesting is that a subset

of genes which are downregulated in ime4-∆ have Pho92p binding sites which in-

crease in signal in the same condition (Figure 3.21 D), however this doesn’t appear

to be the case for downregulated genes in pho92-∆ (Figure 3.21 C), which suggests

this isn’t caused by a direct effect of Pho92p binding. Additionally, Pho92p binds

in an Ime4p-independent manner to genes that change in all directions in ime4-∆

RNA-Seq, suggesting again that ime4-∆ causes gene expression changes that have

an independent mechanism to Pho92p-bound m6A targeting.

I was also interested to examine whether Pho92p binding of transcripts had any

impact on their translation. To answer this question I integrated our data with pub-

lished measurements of translational efficiency as measured by ribosome profiling

during a meiotic time course (Brar et al., 2012). I found that m6A-modified tran-

scripts were generally more highly translated than other genes expressed at the same

time point (Figure 3.22 A). Furthermore, any form of Pho92p binding regardless of

Ime4p-dependence seemed to increase translation efficiency even further (Figure

3.22 B).

Spurred on by these preliminary insights into Pho92p and m6A function, Dr.

Radhika Varier performed an experiment to identify the fates of m6A-modified tran-

scripts under WT and pho92-∆ conditions at 4hrs into sporulation. By inhibiting

RNAPII with thiolutin, then measuring the relative amount of m6A in poly(A) puri-

fied RNA, she could monitor the decay of m6A-modified transcripts. Fascinatingly,

she found that the decay of m6A-modified transcripts was dependent on Pho92p,

as indicated by the RNA-Seq (Figure 3.22 C). Furthermore, by additionally treating
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Figure 3.21: Behaviour of Pho92p-bound genes in ime4-∆ and pho92-∆. Pho92p
metagene profiles split into genes that are downregulated, unchanged or
upregulated in ime4-∆ (B,D,F) and pho92-∆ (A,C,E) RNA-Seq. Meta-
genes are also stratified by Pho92p binding sites which decrease in
ime4-∆ (A,B), those which increase (C,D) and those which don’t change
(E,F).
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Figure 3.22: The role of m6A and Pho92p in meiotic translation. A) Boxplot show-
ing translational efficiency as calculated in (Brar et al., 2012) at dif-
ferent time points into meiosis. YPD refers to nutrient-rich Yeast Ex-
tract–Peptone–Dextrose media, whereas SPO indicates sporulation me-
dia with potassium acetate and raffinose. Transcripts are grouped by
Ime4p-dependent Pho92p binding and whether they are m6A modified.
As a control, genes not bound by Pho92p or m6A modified, but deemed
to be expressed at the 4hr time point, were taken. Note that genes could
be present in multiple groups. *p< 0.005,**p< 0.001, groups compared
to control using two-sided Welch’s t-test, p values were Bonferroni cor-
rected for multiple testing. B) As in A, but Pho92p binding is split into
categories based on Ime4p-dependence. C) WT and pho92-∆ cells were
treated with thiolutin at SPO 4hr to inhibit RNAPolII, and harvested
at 5 time points. Poly(A)+ RNA was extracted and m6A mass spec-
trometry was performed to measure the relative m6A/A ratio, shown
on the y axis. D) As in C, but cyclohexamide was added with thiolutin
at time 0 to additionally inhibit translation. The experiments in C and
D were conceptualised and performed by Dr. Radhika Varier.
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cells with cyclohexamide, and therefore blocking translational elongation, the effect

of Pho92p in enhancing RNA decay was lost (Figure 3.22 D). This suggests that the

decay of Pho92p-bound transcripts is dependent on active translation.

3.3.7 Characterisation of Gis2p RNA binding.

Having analysed Pho92p and m6A on transcripts, I returned to the Gis2p data, to

see if any conclusions could be made about the protein’s function in meiotic cells.

Generally, I found Gis2p binding to occur at any position along transcripts (Figure

3.23 A), with no specific preference, as noted by previous studies, for the beginning

of the CDS (Figure 3.23 B). Around half of transcripts bound by Gis2p had more

than one binding site (Figure 3.23 C), and these binding sites had a repeating GWW

motif context as previously reported, but with perhaps the most salient feature be-

ing repeated spaced out G’s (Figure 3.23 D, E). Such GWW motifs were clearly

enriched in Gis2p binding sites and absent, or even depleted, at m6A and Pho92p

binding sites (Figure 3.23 F).

I again, used YeastEnrichr, to find enriched KEGG 2019 pathways for Gis2p-

bound genes (Figure 3.24). All proteasomal genes are bound by Gis2p, as well

as approximately half of meiotic annotated genes and those involved in oxidative

phosphorylation. I would venture that probably most expressed genes are bound

by Gis2p - given that we identify over 2000 bound transcripts and at an estimate,

∼4000 are expressed at any given time (assuming some limits to our detection at

more lowly expressed transcripts). Despite this, the identification of every pro-

teasome annotated gene is noteworthy. I was interested especially because in my

Pho92p analysis I identified that 22/35 annotated proteasome genes had increased

Pho92p binding in ime4-∆.

This observation led me to examine the overlap between Pho92p and Gis2p

binding. I found roughly a quarter of Pho92p and Gis2p binding sites overlapped

(Figure 3.25 A). Consistent with my previous observation the most enriched GO

term for Gis2p and Pho92p bound genes was the proteasome, with 32/35 genes

bound by both proteins (Figure 3.25 B). I wanted to establish what the co-binding
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Figure 3.23: Gis2p binding characteristics. A) Gis2p metagene profile shown as
both a heatmap and line graph. Each nucleotide is designated 1 or 0
depending on whether a Gis2p binding site is present. Intermediate
values are a result of vector smoothing that occurs to generate the
image. B) Gis2p binding site annotations to transcript regions. C) The
number of Gis2p peaks per gene that contains at least one binding site.
D) Sequence logo for the most enriched motif by STREME analysis.
E) The number of occurrences of the motif in (D) per 100nt rescaled
Gis2 binding site sequences. F) Occurrence of GWW (W=A/U) motif
across Gis2p binding sites (blue), m6A sites (green) and Pho92p sites
(purple).
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Figure 3.24: Gis2p gene GO term enrichments taken from KEGG 2019 pathways.
The number on the bar indicates the number of genes bound by Gis2p
out of the total number of genes in the given category.

of these RBPs at proteosomal transcripts might mean for their fate. I compared

the abundance of proteasomal transcripts vs. those involved in oxidative phospho-

rylation, the second most enriched GO term, in a variety of deletion conditions

involving PHO92, GIS2 and IME4 (Figure 3.25 C, D). The RNA-Seq experiments

were performed in two batches with a degree of technical variance between exper-

iment 1 and experiment 2 as can be seen by comparing ime4-∆ from experiment 1

and 2, and also the triple deletion RNA-Seq experiment which was performed twice

(Figure 3.25 C, D). Despite this variance, we can make some conclusions. Deletion

of GIS2 alone appears to have little effect on proteasomal transcripts, whereas dele-

tion of PHO92 either alone, or in combination with GIS2 causes a small amount of

downregulation. The greatest impact is seen when deleting IME4, causing the tran-

scripts to be more substantially downregulated. Because we know that in ime4-∆

these transcripts are more bound by Pho92p, this might suggest that the increased

binding of Pho92p leads to some degradation. However, this could be some indirect

impact of ime4-∆. The small downward trend in such transcripts following single

PHO92 deletion would suggest a more complex relationship. Moreover, these re-

sults suggest that Gis2p is not impacting the RNA abundance of these transcripts.
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The relevance of these changes in proteasomal transcripts does seem significant

when compared to the transcripts encoding components of the oxidative phosphory-

lation pathway, which comparatively don’t change very much in any of the deletion

conditions (Figure 3.25 D).

I also returned to the translational efficiency dataset to ask if there was any

combinatorial impact of Gis2p and Pho92p binding on translation (Brar et al.,

2012). I found that in general, Gis2p binding alone on transcripts was correlated

with a slightly higher translational efficiency, which makes sense because it has

been previously found to interact with translation factors (Figure 3.25 E). Pho92p

binding alone correlated in a bigger boost to translational efficiency than Gis2p

alone. Transcripts that were bound by both did seem to have a higher translational

efficiency than transcripts with either protein bound alone, suggesting there may be

some combinatorial impact on translation.

To investigate whether there was any positional relationship between Gis2p

and Pho92p binding I studied the proteasomal bound genes in the genome browser

(Figure 3.26). Gis2p and Pho92p binding sites could be at either end of the tran-

script as in RPN2 mRNA (Figure 3.26 A). Binding sites could also be overlapping

as in PRE2 mRNA (Figure 3.26 B). There didn’t appear to be a clear relationship.

One point to note is that because these genes become downregulated in ime4-∆, it

would be hard for us to designate them as m6A modified, using the ime4-∆ control.

There is however, unfiltered m6A miCLIP signal in these genes, suggesting that

they could be m6A-modified (data not shown).
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Figure 3.25: Fate of transcripts bound by both Gis2p and Pho92p. A) Venn diagram
showing number of Gis2p and Pho92p sites within 100nt of each other.
B) GO term enrichments of genes bound by both Gis2p and Pho92p.
C) Violin plot with overlayed boxplot showing log2 fold change of pro-
teasomal genes in variety of deletion conditions, shown on the x axis.
D) Same as C but instead for genes involved in oxidative phospho-
rylation. E) Boxplot showing translational efficiency as calculated in
(Brar et al., 2012) at different time points into meiosis. Transcripts are
grouped by whether they are bound by Pho92p alone, Gis2p alone or
by both RBPs. As a control, genes not bound by Pho92p or Gis2p, but
deemed to be expressed at the 4hr time point, were taken.
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Figure 3.26: Pho92p and Gis2p iCLIP at proteasomal genes. A) Representative
Pho92p and Gis2p iCLIP samples at the RPN2 gene in WT and ime4-
∆ conditions. A Gis2p binding site can be seen at the 3’ end of the gene
and a Pho92p binding site is seen at the 5’ end in ime4-∆ condition only.
Mock miCLIP shows the gene expression. Signal is shown as crosslinks
per million. B) Genome browser track as in A but at the PRE2 gene.
At this gene both Gis2p and Pho92p binding occurs more at the 3’
end of the transcript. C) As in A but for the UMP1 gene, Gis2p
and Pho92p binding occurs at the 3’ end of the gene. Again, Pho92p
binding is increased in ime4-∆
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3.4 Conclusions

In this chapter, I aimed to understand the relationship between m6A, Pho92p and

Gis2p in yeast meiosis by analysing and integrating a combination of miCLIP,

iCLIP and functional genomics data. Whilst some conclusions are clear, a lot of

functional mechanistic details remain obscure and will require further investigation.

3.4.1 Pho92p couples mRNA decay to active translation

My analysis confirms previous work demonstrating Pho92p is a bonifide m6A

reader: roughly 30% of binding sites could designated as downregulated in ime4-∆;

these binding sites were mostly overlapping or near to m6A sites. When search-

ing for motifs de novo the extended m6A consensus motif was found and Pho92p

is positioned at the 3’ end of transcripts as m6A is. Given that the next most en-

riched protein in the original mass spectrometry assay was Gis2p, and there is no

other YTH-domain containing protein in the yeast genome, this suggests Pho92p

is likely the only m6A reader in yeast. However, it is possible that other proteins

could interact with m6A flanked by a different sequence context, or indirectly. By

integrating iCLIP-defined binding sites with RNA-Seq data I found that transcripts

with Pho92p binding sites which were downregulated in ime4-∆, were upregulated

in both ime4-∆ and pho92-∆, suggesting Pho92p is targeting bound transcripts for

degradation in an m6A-dependent manner.

Interestingly I found that Pho92p binding sites show striking 3’ end enrich-

ment regardless of whether binding is Ime4p-independent or at m6A sites, which

would suggest that the positioning is not entirely dependent on m6A. Dr. Rad-

hika Varier found by Co-IP and ChIP-qPCR that Pho92p accumulates at chromatin

over the course of gene transcription, in a manner that is dependent on polymerase-

associated factor 1 complex (Paf1C) (data not shown). This would suggest tran-

scription or chromatin factors contribute towards Pho92p positioning on transcripts,

which may explain why Ime4p-independent Pho92p binding does not need a strong

RNA sequence context. The question then, is why Pho92p binding that is Ime4p-



3.4. Conclusions 144

independent does not have the same impact on RNA abundance as Ime4p-dependent

binding, as I found in my integration of RNA-Seq data. A simple mechanism could

be that m6A locks Pho92p binding to RNA, which in turn allows the Pho92p-

mRNAs to make it intact to translating ribosomes, where they will be degraded.

It is likely that without m6A locking Pho92p in place, the protein-RNA interaction

is less stable, and Pho92p dissociates from the mRNA before the complex makes it

to the ribosome. Longer occupancy on transcripts could also give Pho92p more of

an opportunity to be post-translationally modified which could facilitate its interac-

tions with mRNA decay factors. This could be investigated by performing compar-

ative iCLIP of Pho92p from nuclear and cytoplasmic fractions - if this hypothesis

is true one would expect that Ime4p-independent binding sites will have more sig-

nal in the nuclear fraction vs. the cytoplasmic fraction, whereas Ime4p-dependent

binding will remain much the same between nucleus and cytoplasm.

An alternative hypothesis could be that transcripts with Pho92p-bound m6A

also have additional RBPs bound that help to facilitate the role in decay. This might

be supported by the fact that any Pho92p binding seemed to indicate a higher trans-

lation efficiency of the transcript, however this result is very correlatory and requires

validation. To explore the preliminary bioinformatic results from the translational

efficiency datasets, it would be useful to perform ribosome profiling with deletion

or depletion of Pho92p. Higher “translation efficiency” as measured by ribosome

profiling could also indicate ribosome stalling, so it might be worth performing

monosome vs. disome profiling to distinguish these possibilities (C. C.-C. Wu et

al., 2020). Infact, one mechanism of mRNA decay coupling to translation that has

previously been described involves ribosome collosions on mRNA, leading to ubiq-

uitination of the 40S ribosome subunit by E3 ubiquitin ligase Hel2p (ZNF598 in

mammals) . This chain of events instigates recruitment of the CCR4-NOT dead-

enylase complex.
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3.4.2 Regulation of proteasomal transcripts

Given that the proteasome may be involved in the coupling of mRNA translation and

decay, I was surprised to find that 22/35 proteasomal transcripts had Pho92p bind-

ing sites which increased in ime4-∆, these transcripts were also bound by Gis2p.

Whilst I couldn’t find any Ime4p-dependent m6A sites on these transcripts, this is

likely because they are downregulated in ime4-∆. I did find WT m6A miCLIP peaks

across these transcripts suggesting they could be m6A-modified, but this would re-

quire more validation. One possible reason why there might be m6A at proteasomal

transcripts, but that Pho92p binding goes up in ime4-∆ could be that the MIS com-

plex remains bound at these transcripts, blocking Pho92p binding when Ime4p is

present. Another RBP could also display this same behaviour. It would be inter-

esting to tag some of these transcripts, such as RPN2, PRE2 and UMP1 with MS2

loops, UV crosslink and pull them down, followed by protein mass spectrometry

to determine which other RBPs are bound at these transcripts in WT vs. ime4-

∆ conditions. Assembly of some elements of the proteasome is co-translational,

for example Rpt1p and Rpt2p are thought to interact as nascent polypeptides in

an ”assemblysome” also containing Not1p, the scaffold of the Ccr4–Not complex

(Panasenko et al., 2019). Pho92p has been shown to interact with the Ccr4-Not

complex. Taken together, the role of m6A, Pho92p and Gis2p in assembly of the

proteasome warrants further investigation. As a starting point, it would be interest-

ing to check proteasome assembly in ime4-∆, pho92-∆ and Ime4p catalytic mutant.

3.4.3 Gis2p is not an m6A reader

Prior to the present study Gis2p had never been investigated as an m6A reader. I

conclude that its discovery in the mass spectrometry data was likely an artefact for

the following reasons: a) very few Gis2p binding sites are downregulated in ime4-

∆, and unlike Pho92p or the miCLIP data, just as many sites are upregulated as

downregulated, b) of the sites that are downregulated few are close to m6A and c)

Gis2p binding sites show no enrichment for RGAC sequence context.

So, the question remains, why was Gis2p enriched in the original mass spec-
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trometry screen? I would posit that Gis2p is a highly abundant RBP in yeast cells,

which has a rather degenerate binding motif. In my motif analysis, one could con-

clude that the main feature is repeating spaced out G nucleotides which were present

on the RNA oligo probes. So, why enriched binding when m6A was present? I spec-

ulate that the non-modified probe could form some secondary structure between G

and C nucleotides, which melted with the addition of m6A, making the oligo more

accessible. It is also possible Gis2p was able to piggyback on Pho92p binding to

m6A oligos.

Previous studies have shown that whilst Gis2p is an abundant RBP, the only

observed impact in gis2-∆ is larger cells. I found that Gis2p binds the majority

of mRNAs, sometimes with multiple binding sites, suggesting it is a fundamental

component of mRNPs. Therefore, the lack of more extreme phenotype is surprising.

I found that transcripts bound by Gis2p seemed to have slightly higher translation

efficiency, and those occupied by both Pho92p and Gis2p have even higher trans-

lational efficiency (TE) than transcripts bound by either protein alone, suggesting

Gis2p is involved somehow in modulating translation. This perceived increase in

TE could again be indicative of ribosome collisions. GWW codons encode nega-

tively charged amino acids such as aspartate and glutamate, which have been shown

to impact ejection times from the ribosome exit tunnel (Sabi & Tuller, 2015), per-

haps Gis2p is involved in somehow mitigating this impact, or engaging with nascent

peptides that get stuck.

3.4.4 Limitations to the present analysis

Whilst we uncover useful information, there are limitations to the present analysis.

For all of the CLIP data there is a bias towards detection of binding/m6A on more

highly expressed genes, especially where differential analysis is performed that re-

quires some degree of peak coverage across several replicates. I also identified that

peaks on genes that increased in expression in ime4-∆ were more likely to be called

as downregulated. It is unclear how much of this effect is biological, because m6A

causes decay of transcripts, or somewhat technical in that peaks are more confi-
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dently called as downregulated when the gene expression changes in the opposing

direction. To assess the impact of technical bias it would be useful to simulate data

corresponding to different scenarios and run the same analysis.

In the case of m6A detection, antibody approaches remain imperfect due to

off-target antibody binding and crosslinking biases. Whilst we have mitigated this

somewhat by including the ime4-∆ control, it would be better to apply a more spe-

cific method in the first place. As described in the Introduction, methods that in-

volve chemically modifying the m6A residue, such as m6A-SAC-seq, are showing

promise and in the future may offer a more reliable way to map m6A in the tran-

scriptome (Hu et al., 2022).

Another limit to the detection of differential binding or m6A sites, is that ime4-

∆ causes widespread changes in gene expression. This increased variability reduces

our power to call differential peaks. It would be good to repeat some of the experi-

ments with the Ime4p catalytic mutant strain, which should have less dramatic gene

expression changes, which should improve the detection of differential peaks. Fur-

thermore, by doing RNA-Seq in this background we could determine which effects

are due to m6A, and which are due to other impacts of Ime4p on gene expression/-

translation.

3.4.5 Further investigations of the N6-methyladenosine dependent

regulatory network in yeast meiosis

To further investigate function, it would be ideal to produce Pho92p and Gis2p

degron-tagged yeast strains, such that effects could be monitored after rapid deple-

tion, as a lot of the present results rely on deletion strains which could have compen-

sated for intial defects in unpredictable ways. A common method to achieve this is

to use an auxin-inducible degron system (Nishimura et al., 2020). In the example of

Gis2p, where the function is unclear in deletion strains, perhaps surviving cells have

adapted to life without the RBP, but monitoring the phenotype after rapid depletion

might be more fruitful.

The results from the RNA-Seq data and thiolutin experiment suggest that
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it would be interesting to study transcriptome-wide RNA stability changes after

Pho92p depletion, either in pho92-∆ or a pho92-AID strain. This would be pos-

sible using a technique that involves metabolic labelling, for example SLAM-Seq,

although this might be difficult to achieve across the meiotic time course where

gene expression changes rapidly (Herzog et al., 2017). In the thiolutin experiment

it was only possible to monitor m6A-modified RNA; therefore, it would be good

to integrate m6A miCLIP data with the SLAM-Seq to deduce if the effect is really

specific to m6A-modified transcripts.



Chapter 4

CLIP Data Visualisation

As the cathedral is to its foundation

so is an effective presentation of

facts to the data.

Willard C. Brinton, Graphic

Methods For Presenting Facts.

(1914)

4.1 Introduction

With complex bioinformatics datasets it can be easy to hide behind the command

line and focus purely on tables of numbers. However visualisation is a critical part

of both the analysis process and also of conveying the findings of the analysis to a

broader audience.

In this chapter I describe two projects that highlight the importance of thought-

ful data visualisation. The first highlights different normalisation strategies for

CLIP data and ways to effectively condense many experiments into few graphs,

as well as how design choices can impact the interpretation of the reader. The sec-

ond focuses on visualisation in the analysis process for a step where visualisation is

commonly missing - describing a new peak caller with an interactive user interface

for testing parameters.
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4.2 psiCLIP and clipplotr

4.2.1 Background

Purified spliceosome iCLIP (psiCLIP) is a variant of the standard iCLIP protocol,

optimised in order to study the RNA binding sites of spliceosomal proteins in de-

fined stages of splicing (Strittmatter et al., 2020). psiCLIP is particularly useful for

capturing the binding of spliceosomal helicases, which are notoriously difficult to

map in electron cryo-microscopy (cryo-EM) structures, presumably due to the dy-

namic nature of their binding. Eight spliceosomal helicases safeguard the fidelity of

pre-mRNA splicing, and understanding their activity is critical to the understanding

of the splicing process as a whole (Cordin & Beggs, 2013). psiCLIP is performed

on in vitro-assembled spliceosomes which are stalled in the same manner as those

prepared for cryo-EM structures, offering the possibility to integrate the resulting

information.

This project produced an unprecedented volume of CLIP data - we published

93 individual samples, but in the course of developing and refining the methodology

probably analysed around double this number. The in vitro spliceosomes are assem-

bled on stereotyped splicing substrates, variants of the ACT1 and UBC4 pre-mRNA

transcripts, therefore we required a visualisation approach that would enable us to

make quick comparisons of multiple CLIP samples at once across these substrates,

and also a normalisation strategy that would make these comparisons as meaningful

as possible.

After developing such a visualisation in the course of the psiCLIP project,

I then worked alongside Dr. Anob Chakrabarti to produce a generalised tool

that could enable others, including those with limited bioinformatics expertise, to

quickly produce such visualisations for their own projects.

4.2.2 Smoothing CLIP data

iCLIP data across transcripts is most often presented as a column graph, with po-

sitions along the transcript on the x axis and cDNA counts at each position plotted
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on the y axis (Figure 4.1A). While nucleotide-resolution column graphs convey

precise positional information, they cannot be used to present data across multiple

experimental conditions on a single plot since overlapping bars would not be vis-

ible. Furthermore, it can be difficult to interpret the meaning of individual highly

crosslinked nucleotides - by presenting individual nucleotide crosslinking in such

plots we may be drawing attention to specific nucleotides in a way that an untrained

eye might construe to be especially biologically meaningful. For example, in this

particular plot, the eye is drawn to the individual crosslink around position +30

(Figure 4.1A). There are many reasons why a certain nucleotide in particular may

be highly crosslinked, for example this nucleotide might represent a position where

a “crosslinkable” amino acid comes into contact with a preferentially “crosslink-

able” RNA nucleotide - regardless of whether this nucleotide is used by the protein

in its recognition of the RNA. In an RNA with strong secondary or tertiary struc-

ture, crosslinking may also be constrained. As I found in Chapter 3 for miCLIP

data, crosslinking can sometimes occur in a U-rich tract adjacent to the suspected

binding/modification motif. For these reasons, a broader area of generally high

crosslinking is more reliably interpreted as corresponding to RBP binding, versus

focus on single highly crosslinked positions.

Therefore, I explored smoothing the data of individual psiCLIP helicase ex-

periments using Gaussian smoothing (Figure 4.1B). Curves with a window size of

ten nucleotides reflected the crosslinking profile well, and also agreed with the nine

nucleotides of RNA bound to the two RecA domains in structures of DEAH-box

helicases (He et al., 2017). The window of ten nucleotides will not always be ap-

propriate for every RBP - some may have more punctate, or others more spread out,

binding profiles.

4.2.3 Different normalisation for different purposes

Further to smoothing of the data, when presenting multiple replicate samples to-

gether one must consider how to appropriately normalise these datasets to make

comparisons between them meaningful. In the case of psiCLIP, different normali-
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Figure 4.1: Smoothing psiCLIP data. A) An example of Prp16 data mapped to
a spliceosomal substrate shown as a crosslink column graph. Position
along the spliceosomal substrate is represented as relative to the intron
branch point A nucleotide, here 0. B) The same data after Gaussian
smoothing using different window sizes.

sation strategies were used depending on the research question. Most common in

iCLIP analyses is to take a “crosslinks per million” approach where crosslinks at

a given position are divided by the total number of crosslinks in the library and

then multiplied by 1 million (See Figure 6 (Hallegger et al., 2021) for an exam-

ple). This is analogous to the reads per million (RPM) approach used in RNA-Seq,

but for CLIP approaches normalising for gene length is not appropriate as we are

interpreting single nucleotide positions (Mortazavi et al., 2008). For proteins that

do not crosslink very efficiently, variations in library complexity between replicate

samples can render the crosslinks per million approach still insufficient. In the case

where we are simply interested in changes in position of binding on a given RNA

sequence, rather than binding frequency or strength, we can normalise crosslinks

by dividing by the maximum number of cDNAs mapped to a single position, an

approach often referred to as “max peak”.

In the psiCLIP project we were interested in the binding position of helicase

Prp16 on the stereotyped splicing substrates ACT1 and UBC4. Prior to our work,

Prp16 was thought to bind at an invariant distance from the intronic branch point

adenosine, but we noticed that with longer distances between branch point and 3’

splice site the peak of Prp16 binding appeared to be further away from the branch

point. Simply normalising replicates by library size made it difficult to make com-

parisons (Figure 4.2A). Instead, to specifically answer the question of whether there

was a difference in the position of binding peak between UBC4 and ACT1 tran-
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scripts, I subtracted the untagged protein control signal from the UV-crosslinked

signal, smoothed the data further using a 20nt window and used max peak nor-

malisation. It was now much clearer that there was indeed a difference in binding

position, which I also confirmed to be statistically significant (p < 0.001, alpha =

0.05, Student’s unpaired two sided t test) (Figure 4.2B).
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Figure 4.2: Normalising psiCLIP data. A) Summary of 36 Prp16 psiCLIP sam-
ples across different substrates (UBC4 and ACT1, with both AG 3’
splice site and AC 3’ splice site) and also WT vs. mutant (dn for domi-
nant negative) Prp16 protein. Smoothed signal is plotted relative to the
branch point adenosine. Above each smoothed line graph the number
of crosslinks per UV-crosslinked sample is shown. Note that generally
larger libraries have more enriched binding. B) Here the 36 samples
are further condensed, the untagged control signal is subtracted from
the UV signal, a 20nt Gaussian smooth is used and ACT1 and UBC4
samples are plotted in the same graphs, but in different colours.
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4.2.4 Creating a user-friendly tool for plotting many CLIP replicates

Following my experiences with psiCLIP and the experiences of Dr. Anob

Chakrabarti with an iCLIP project involving visualisations of multiple iCLIP ex-

periments of different TDP43 mutants, we worked together to produce a general

tool that would enable researchers to visualise CLIP data across transcripts in a use-

ful way (Chakrabarti et al., 2021; Hallegger et al., 2021). The tool is written in R

using the R packages optparse, data.table, ggplot2, ggthemes, cowplot, patchwork,

zoo and smoother, and the Bioconductor packages rtracklayer and GenomicFeatures

(Dowle et al., 2019; Gentleman et al., 2004; Hamilton, 2015; Huber et al., 2015;

Lawrence et al., 2009; Wickham, 2011; Wilke et al., 2019). clipplotr is available

at www.github.com/ulelab/clipplotr where there is extensive documentation. The

code is primarily split into two halves: one half focuses on retrieving and visualis-

ing the relevant gene annotations for the user-specified region, whilst the other half

focuses on loading, normalising and smoothing the input datasets as required. Four

types of “tracks” can be plotted:

• the crosslink track represents CLIP datasets provided as bed or bedgraph files,

these can be grouped into different categories e.g. for replicate datasets of

different proteins. The samples can be normalised by library size (crosslink

per million), max peak or by size factors provided by the user. Smoothing

can be performed with either a rolling mean or Gaussian smooth, where the

smoothing window or span is given by the user.

• the auxiliary track is a way of providing any additional annotations, for ex-

ample repeat elements, SNPs or called peak regions.

• the coverage track enables plotting of orthogonal coverage-based data such

as ribosome profiling, or RNA-Seq, which again can be grouped in any way.

• the annotation track is provided by the user as a GTF file and represents

transcript annotations for the plotted region. The user can choose to plot the

annotation as ‘transcript’ or ‘meta-transcript’. With the transcript option, all
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transcripts in the region are plotted and coloured by gene. With the meta-

transcript option all transcripts for a given gene are condensed such that all

annotated exons are combined. This option is especially useful for when large

numbers of redundant transcripts clutter the annotation track.

The plot in Figure 4.3 is a reproduction of Figure 1C from (Zarnack et al.,

2013), produced with the following single line of code:

. / c l i p p l o t r \

−− x l i n k s ’hnRNPC_iCLIP_rep1_LUjh03_all_xlink_events.bedgraph.gz,

hnRNPC_iCLIP_rep2_LUjh25_all_xlink_events.bedgraph.gz,

U2AF65_iCLIP_ctrl_rep1_all_xlink_events.bedgraph.gz,

U2AF65_iCLIP_ctrl_rep2_all_xlink_events.bedgraph.gz,

U2AF65_iCLIP_KD1_rep2_all_xlink_events.bedgraph.gz,

U2AF65_iCLIP_KD2_rep1_all_xlink_events.bedgraph.gz’ \

−− l a b e l s ’hnRNPC 1,hnRNPC 2,U2AF2 WT 1,U2AF2 WT 2,U2AF2 KD 1,U2AF2 KD 2’ \

−− c o l o u r s ’#586BA4,#324376,#0AA398,#067E79,#A54D69,#771434’ \

−− gro up s ’hnRNPC,hnRNPC,U2AF2 WT,U2AF2 WT,U2AF2 KD,U2AF2 KD’ \

−− n o r m a l i s a t i o n l i b s i z e \

−− smooth ing r o l l m e a n \

−−smoothing window 50 \

−− a u x i l i a r y ’Alu_rev.bed.gz’ \

−− a u x i l i a r y l a b e l s ’reverse Alu’ \

−− c o v e r a g e ’ERR127306_plus.bigwig,ERR127307_plus.bigwig,ERR127308_plus.bigwig,

ERR127309_plus.bigwig,ERR127302_plus.bigwig,ERR127303_plus.bigwig,

ERR127304_plus.bigwig,ERR127305_plus.bigwig’ \

−− c o v e r a g e l a b e l s ’CTRL1 1,CTRL1 2,CTRL2 1,CTRL2 2,KD1 1,KD1 2,KD2 1,KD2 2’ \

−− c o v e r a g e c o l o u r s ’#A1D99B,#74C476,#31A354,#006D2C,#FDAE6B,#E6550D,#FC9272,#

DE2D26’ \

−− c o v e r a g e g r o u p s ’CTRL,CTRL,CTRL,CTRL,KD,KD,KD,KD’ \

−− g t f gencode . v 3 4 l i f t 3 7 . a n n o t a t i o n . g t f . gz \

−− r e g i o n ’chr1:207513000:207515000:+’ \

−− h i g h l i g h t ’207513650:207513800’ \

−− a n n o t a t i o n t r a n s c r i p t \

−− o u t p u t ’CD55.pdf’

Whilst the tool has been tested widely within multiple labs and used in several

publications (Hallegger et al., 2021; J.-H. Lee et al., 2021), the command to run

clipplotr still needs to be executed on the terminal, and the relevant software depen-

dencies must be installed. This requires a degree of technical expertise to operate.

In the near future we hope to integrate the tool with the online web server iMaps

(imaps.goodwright.com), so that clipplotr can be run from a graphical user interface
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(GUI) with no requirement for any programming from the end user.

Figure 4.3: Annotated view of clipplotr output. A figure generated by a clipplotr
command using data from (Zarnack et al., 2013) is inset in blue, demon-
strating all four types of data track. The input file formats required for
each track type is indicated to the left. On the right the customisable
parameters are annotated that can be specified in the single clipplotr
command. Figure is reproduced from (Chakrabarti et al., 2021).
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4.3 A new interactive peak caller: Clippy

4.3.1 Background

Peak calling is a crucial step in analysis of genomic and transcriptomic datasets.

For iCLIP data, peak calling of crosslinks serves multiple purposes: allowing re-

searchers to home in on interesting binding sites to further manipulate and validate

at the bench, whilst also enabling downstream bioinformatics analyses such as dif-

ferential binding and integration with other data types. Theoretically the perfect

peak caller would be able to distinguish true crosslink positions generated by tar-

get RBP-RNA contacts from background consisting of non-target protein crosslinks

and events that are not actually due to crosslinking, eg. single nucleotide polymor-

phisms (SNPs) in PAR-CLIP data, or truncations in iCLIP that are due to RNA

modifications, non-crosslinked reads, contamination of libraries, sequencing errors

etc. In practice, other considerations are important: ease of installation and use

(including parameter adjustment and interpretability), speed of the program and re-

quirements for auxiliary information, such as transcript annotations and input con-

trols.

Different peak callers may in fact be useful in different situations based on

these practical and technical requirements. Peak-callers may perform differently

when faced with an RBP that binds sharply to a clear motif (eg. RBFOX2 (Van Nos-

trand et al., 2016)) vs. a more promiscuous binder without a clear motif (eg. FMRP,

FUS (Rogelj et al., 2012)). Moreover, it is important to define our purpose in peak

calling. One might explain that we call peaks because clusters of single nucleotide

crosslinks represent the footprint of an RNA-binding protein on RNA, which we

consider to be the binding site, and so we hope that by peak-calling we capture this

binding site. However, in practice the reality is more complex, crosslinking sites

may not always correspond to binding sites and peak-calling is most often a way

to summarise our data to submit for further downstream analysis, which might in-

fluence the parameters we choose. For example, researchers wanting to mutate a

binding site for later functional studies will be willing to sacrifice true positive sites
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for the sake of minimising false positives, as a few very strong candidates may suf-

fice. However, bioinformaticians looking at overlapping two datasets might prefer

less stringent peak calling to maximise the possibility of overlap. Similarly, when

undertaking a differential analysis it can be better to assign broader peaks to reduce

the variability introduced by shorter peaks with lower counts.

In this section I describe Clippy - a Python-based peak-caller for CLIP data.

Clippy is unique in that it provides an interactive peak calling app that launches in

the user’s browser. This app allows the user to explore how their parameter choice

affects peak calling on several genes of interest. For example, a user might specif-

ically choose a low, medium and high expression gene to ensure that their chosen

parameters perform well over these ranges or a user might have prior biological

knowledge that enables them to check parameters on certain key target transcripts.

This solves several issues with current peak calling: 1) to optimise parameters one

must run code multiple times blindly, load results into a genome browser to com-

pare, and perhaps go back to run the code again; in the worst case a user might not

explore a peak caller’s settings at all, and use sub-optimal default settings because

of this time cost. By utilising Clippy’s interactive app this iterative process is made

quick and easy. 2) The algorithms behind peak callers can feel like a “black box” to

biological researchers, who are often left wondering why one region is called as a

peak, whilst another is not. Allowing the user to interactively explore thresholding

provides transparency and clarity to the process.

The full benefits of Clippy are as follows:

• Interactive peak calling mode enables exploration of parameters on test genes.

• Fast to run - 30 minutes to 1 hour for a large human dataset.

• Easy to install through the Bioconda package repository, with a linked Docker

container that auto-updates with each new release (Grüning et al., 2018).

• Minimal transcript annotation requirements. A GTF must be supplied but the

only required feature is “gene”, this makes the peak-caller very permissive to

non-standard model organisms or custom annotations.
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• Can be run on transcriptomic or genomic-mapped crosslinks.

• Can run on any type of CLIP data, as it runs on a bed file of crosslinks defined

by the user.

• Parameters are simple and straightforward to intuit.

• Users can choose to calculate separate minimum thresholds for exons vs. in-

trons to account for coverage differences.

Many of the latest developments in CLIP peak calling have been to incorporate

the data from input controls, such as in programs like PureCLIP (Krakau et al.,

2017). However, it has recently been shown that the broad application of input

controls is not as straightforward as one might assume, and domination of certain

RBPs in these controls could actually further bias peak calling rather than improving

it (Kuret et al., 2021). Therefore, we focused on finding a tool that is able to perform

well without input data, and recommend that such enrichment analyses should be

performed downstream to the initial peak calling itself.

To test Clippy we ran it alongside a selection of the most commonly-used CLIP

peak callers: Piranha, Clipper, iCount and PureCLIP (König et al., 2010; Krakau et

al., 2017; Lovci et al., 2013; Uren et al., 2012) (Table 4.1). We also tested Paraclu: a

CAGE-seq peak caller that has previously been repurposed for CLIP data (Hallegger

et al., 2021; Kuret et al., 2021). We performed a comparison of CLIP peak callers

across different CLIP types and proteins, using: Rbfox2 eCLIP data and Ptbp1 and

Tia1 iCLIP data (Table 4.2).

4.3.2 Clippy algorithm and interface

Clippy is a wrapper around the scipy find peaks function tailored for CLIP data,

that I have developed together with Dr. Marc Jones (Virtanen et al., 2020). This

algorithm is used across data science to find peaks in a wide range of datasets, from

identifying peaks of volcanic plume density in the field of geophysics (Haley et

al., 2021) to finding movement artefacts in bioradar signal produced by wearables



Peak caller Concept Installation Annotation requirement Reference

Piranha Uses a zero-truncated
negative binomial
distribution to assign
statistical significance to bins
of crosslink values.

Available from Bioconda None (Uren et al.,
2012)

Clipper Fits smoothed splines to read
depth to define clusters of
crosslink sites.

Requires compilation. A number of annotations are
built into the software.

(Yeo et al., 2009)

iCount Permutation of crosslink
locations to determine
significant crosslink sites,
which subsequent merging.

Available from Bioconda Gencode or Ensembl
formatted gtf

(König et al.,
2010)

PureCLIP Hidden Markov Model to
segment the genome into
regions enriched and
non-enriched for crosslink
sites.

Available from Bioconda FASTA file for the reference
genome.

(Krakau et al.,
2017)

Paraclu Progressive peak splitting to
determine “stable” peaks.

Available from Bioconda None (Frith et al.,
2008)

Clippy Wraps the find peaks
function from the scipy.signal
Python library to identify
peaks.

Available from Bioconda Any gtf/gff with “gene” lines
in the third column. For
exon thresholding, “exon”
lines are also required.

This chapter

Table 4.1: Characterisation of CLIP peak callers.
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during human sleep (Anishchenko et al., 2019). The algorithm is based around two

key parameters used to identify peaks:

1. Prominence: The prominence of a peak is a topographic term calculated as

the distance between the height of the peak and its nearest contour line. In

mountaineering terms it can be thought of as the shortest height drop that can

be taken from a given peak to reach a higher one.

2. Relative height: The relative height parameter can be used to define the width

of a given peak. In this sense, a line is drawn at a relative fraction of the

prominence of a peak and the width of that line is determined to be the peak

width. In practical terms lower relative width values will result in shorter

peaks.

In order to apply the algorithm to CLIP data I introduced a few extra com-

ponents. Firstly, I decided to call peaks on a gene-by-gene basis so that certain

thresholds could be calculated on a gene-by-gene basis. My idea was that this could

help to ensure better peak calling across a range of gene expression values. Sec-

ondly, I introduced smoothing of the crosslink data before peak calling, the ratio-

nale behind this being that users can make broader peaks with larger smoothing

windows and also to combat some of the biases observed when focusing on single

crosslinks (as discussed for psiCLIP). I also introduced a minimum threshold that

must be exceeded by the crosslink signal to be called as a peak, which is set as the

mean crosslink signal across the gene. The threshold for prominence is set as the

mean crosslink signal across the gene + (standard deviation in crosslink signal * a

user-defined scaling factor). By introducing this scaling factor users can increase

the prominence threshold if they have especially noisy or high coverage datasets

(Figure 4.4).

An interactive parameter search app was built using the Dash framework

(https://dash.plotly.com/). Launching the app is triggered by execution of a sin-

gle Clippy command in the terminal; the app can then be accessed in any browser

- here I show Google Chrome (Figure 4.5). A downsampled version of the Pho92p
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Figure 4.4: Schematic of Clippy algorithm and operation.

iCLIP data is packaged with Clippy as an example dataset. The app has three main

sections: at the top in red text the command to run Clippy with the currently trialed

settings is dynamically displayed, on the right a control panel allows users to adjust

every parameter and on the left CLIP signal is plotted across genes chosen to be

visualised. In this specific example I chose IME1 and RME1. The total number of

crosslinks across the gene is printed in the plot titles - it is clear that IME1 has a lot

more coverage (2043 crosslinks) than RME1 (71 crosslinks), but in this example I

have found parameters that work well for both genes. The final peaks are displayed

in orange beneath the crosslink signal graphs.
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Figure 4.5: Screenshot of Clippy interactive mode.

4.3.3 Performance

In order to test Clippy’s performance against state of the art CLIP peak callers,

Dr. Marc Jones pre-processed public Rbfox2 eCLIP data and Ptbp1 and

Tia1 iCLIP data using nf-core/clipseq (https://nf-co.re/clipseq), merged repli-

cate samples and ran the peaks callers using a custom Nextflow workflow

(https://github.com/luslab/peak-benchmarking, (Table 4.2)). Clippy was run us-

ing parameters: window size 15, adjustment factor 1, min gene count 5 and min

peak count 5, the current default, and all other peak callers were run with default set-

tings. RNA-Seq corresponding to TIA knockout and PTBP1/2 knockdown (Table

4.2) was mapped using nf-core RNA-Seq pipeline (DOI: 10.5281/zenodo.5550247,

(Ewels et al., 2020)), and splicing analysis was performed with rMATS (Shen et al.,
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2014).

Dataset Data Type Cell line Source Reference

Tia1 and Tial1 iCLIP HeLa ArrayExpress:
E-MTAB-432

(Z. Wang
et al., 2010)

Ptbp1 iCLIP HEK293 ArrayExpress:
E-MTAB-5027

(Haberman
et al., 2017)

Ptbp1-Ptbp2
knockdown

RNA-Seq
siRNA
PTBP1 and
PTBP2

HEK293 GEO: GSE69656 (Gueroussov
et al., 2015)

DKO of TIA1 and
TIAL1, rescued with
DOX overexpression of
TIA1-FH or TIAL1-FH

RNA-Seq Flp-In
T-REx
HEK293

NCBI
BioProject:
PRJNA400256

(C. Meyer
et al., 2018)

Rbfox2 eCLIP eCLIP HepG2 ENCODE:
ENCSR456FVU

(Van
Nostrand,
Freese,
et al., 2020)

Table 4.2: Datasets used for testing peak callers.

Figure 4.6: Runtime of peak callers for Ptbp1 dataset.

Clippy ran in ∼5 minutes for the largest dataset (Ptbp1), much faster than

iCount, PureCLIP or Clipper which took between an hour and ten hours to com-

plete (Figure 4.6). Only Paraclu and Piranha were faster, taking 4 and 1.5 minutes

respectively.
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Figure 4.7: Number of peaks and percentage of crosslinks contained within peaks.
A) Percentage of all crosslinks contained within peaks for Ptbp1 iCLIP,
Rbfox2 eCLIP and Tia1/Tial1 iCLIP data analysed with six different
peak callers. B) The number of peaks called for each dataset by each
peak caller.

Clippy consistently produced peaks containing the most crosslinks, despite not

calling the most peaks (Figure 4.7). PureCLIP consistently called few peaks and

discarded the most crosslinks. Called peaks could be true positives or they might

be false positives. In the absence of ground truth, there are a few ways to assess

the precision of Clippy. In the context of CLIP data, it is easier to identify surro-

gate true positive outcomes, than false positives. For example, Ptbp1, Rbfox2 and

Tia1/Tial1 all regulate splicing events in the transcriptome, therefore we can make

an assumption that a binding site near to a regulated exon is a true positive. How-

ever, it is harder to make the statement that a binding site not near to a regulated

exon is a false positive. This is because in a technical sense, our RNA-Seq might

not be sensitive enough to detect every regulated exon and in a biological sense the

binding site might be near to a different transcriptomic landmark that is involved

in a separate function of the RBP. It’s also possible that RBPs might bind lots of

regions in the transcriptome without being functional at all.

A common way to examine peaks around regulated exons is to plot an RNA

map (Rot et al., 2017). In a splicing RNA map exons are split into categories:

silenced (increased inclusion in RBP knockdown RNA-Seq), enhanced (decreased

inclusion in RBP knockdown), constitutive (percent spliced in values near to 1) and
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control (percent spliced in values are consistent between WT and RBP knockdown,

but are not so high to suggest the exon is constitutively spliced in). CLIP peaks are

then plotted as a metaprofile around exons, split into the different categories. This

strategy has enabled the discovery of RBP position-dependent principles of RNA

regulation. It has also been previously used to test how well peak callers are able

to identify binding sites near regulated exons (Chakrabarti et al., 2018). To produce

the RNA maps in this section I used code developed by Aram Amalietti available

from https://github.com/ulelab/rna maps.

Another way to address the performance is to look at sequence motif enrich-

ment from peak sequences. PEKA is a motif finding algorithm for CLIP data, that

generates enrichment scores for all kmers of a given length found within peak se-

quences (Kuret et al., 2021). These scores are validated against scores from in vitro

methods such as RNA Bind-n-Seq (RNBS) and RNAcompete (RNAC) (Lambert

et al., 2014; Ray et al., 2017). I reasoned that examining these scores would give a

sense of whether Clippy, and the other peak callers, are truly capturing the impor-

tant characteristics of RBP binding sites. Further, usually the authors of peak callers

run a tool like DREME and report the most enriched motif, which is less useful as

you do not have a sense of what other sequences might be enriched (Bailey, 2011).

Applying RNA maps to Ptbp1 and Tia1/Tial1 peaks, I found that Clippy pro-

duced the most enriched peaks across regulated exons, followed by Paraclu (Figure

4.8A,C). I removed Clipper from the RNA maps because it had dramatically higher

signal than any other peak caller, obscuring evaluation of the other peak callers,

but this signal was also in “off-target” regions. Combined with the long run time

and poor motif performance it seems sub-optimal compared to the other options. In

terms of recovering motifs, Clippy was able to capture both Ptbp1 and Tia1/Tial1

motifs (Figure 4.8B,D). Running Clippy with a longer rolling mean window en-

abled more variant motifs to be detected, which deserves further investigation. It is

of note that the very stringent peak callers seem to perform better at motif detec-

tion when binding is more punctate and restricted to one motif (ie. Tia1/Tial1) than

when binding is more spread, and seemingly multivalent (Ptbp1). It is concerning
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that even though Clipper called nearly the most peaks, it was unable to detect Ptbp1

motifs.

Figure 4.8: RNA maps and PEKA enrichment scores for Ptbp1 and Tia1/Tial1. A)
RNA map showing Ptbp1 iCLIP peaks over exons that are silenced by
Ptbp1, as determined by Ptbp1/2 siRNA knockdown. Different colours
of line indicate peaks called by different peak callers. The y axis is -
log(pvalue) determined by chi-squared test on the frequency of iCLIP
peaks in silenced exons vs. control exons at a given position. The x axis
shows distance in nucleotides from the 3’ splice site or 5’ splice site of the
cassette exon. B) Heatmap showing PEKA score of 5-mers enriched in
peaks called by different peak callers, note Clippy is shown with varying
window size. The right-most column displays in vitro binding scores
for the 5-mers as determined by RNAcompete. C) As in A, but for
Tia1/Tial1 iCLIP data. D) As in B, but for Tia1/Tial1 iCLIP data
with in vitro RNA Bind-n-Seq data.
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4.4 Conclusions

In this chapter I have described the development of two software tools for the visu-

alisation and analysis of CLIP data. The first, clipplotr, enables users to normalise,

smooth and visualise their data over a gene or genomic region of interest, along-

side complementary annotations or data. The strength of this tool lies in its ability

to sensibly condense large amounts of data into a digestable plot from which one

can make biological observations. The second tool, Clippy, is a peak caller with a

unique interactive graphical interface, allowing users to explore the impact of dif-

ferent parameter choices on called peaks. I have demonstrated that Clippy outper-

forms, or matches performance, of existing CLIP peak callers in various scenarios,

demonstrating it to be a useful addition to CLIP analysis pipelines.

Two important analysis issues are addressed in this chapter, that of data nor-

malisation and parameter choice. Some degree of normalisation of individual sam-

ples is required for their comparison. The question of how to normalise is an in-

teresting one - currently the possibilities within clipplotr are by: library size, where

the crosslinks at each position are divided by the total crosslink count and multi-

plied by one million; the maximum peak, where the crosslinks within a window are

divided by the cDNA count of the highest crosslink; or by size factors, these are in-

tegers derived by other means, for example via DeSeq2, and crosslinks are divided

by the given number. Whilst these options are useful, there are several situations

in which they may not be sufficient. For example, in the case where a user would

like to compare two CLIP samples where the RBP of interest is dramatically dif-

ferentially expressed, or has it’s RNA-binding capacity inhibited in one condition,

simple library size normalisation won’t capture the true nature of the binding dy-

namics. Due to a large number of simply missing binding sites in this example, the

remaining binding sites will have their normalised counts inflated, even if they are

bound to the same extent as the other condition. To avoid such misinterpretation, a

spike-in mixture of known concentration at the experimental stage is useful to nor-

malise against (K. Chen, Hu, et al., 2015). In future, capacity to normalise against

spike-ins will be added to clipplotr.
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Another aspect of normalisation that is important in the context of CLIP data,

is normalisation of binding signal to gene expression. When comparing RBP bind-

ing across two genes, a researcher may want to know if the increased binding in

one gene can be explained by higher gene expression. In order to add such nor-

malisation clipplotr would require gene expression information from the given cell

type or tissue, which could be generated from matched RNA-Seq data for example.

Currently it is possible for users to plot RNA-Seq data as a coverage track below the

crosslink track, but in a figure with many tracks the user might want to condense

this information further by normalising the crosslink track by the coverage track,

which could be added as an option in the future.

In terms of parameter choice, an issue for both clipplotr and Clippy is the se-

lection of an appropriate smoothing window for the crosslink data, especially when

analysing a novel RBP with limited or no prior expectations. Through analysis of

multiple RBP datasets we find that a window of 15 nucleotides is usually a good

starting point, which can be iteratively adjusted by eye. An ideal situation would

be if this parameter could be inferred from the crosslinking pattern itself, such that

there was a way to automatically detect broad or punctate binders. However, this

problem is not trivial, due to the difficulty of designing a universal criteria that

should be optimised against. One possible way would be for the tool to run across

varying window sizes and for one to be selected based on enrichment of kmer se-

quences. The issue with relying on sequence is that some RBPs don’t have a strong

sequence context and so this approach would fail for them. A recent tool “Stoaty-

Dive” aims to classify different categories of peaks within a single CLIP dataset,

however PureCLIP peaks extended by 20nt in either direction are used as input,

which is already introducing bias into the number and length of peaks called (Heyl

& Backofen, 2021).

In the future, more work will be required to establish criteria which describe

accurate and useful CLIP peaks. This will be of great help in the automation of

parameter selection for peak detection.



Chapter 5

Discussion

In the course of my thesis I have explored computational approaches for analysing

crosslinking and immunoprecipitation data in the context of RNA modifications,

and in the wider study of RNA binding proteins. I describe three new openly avail-

able software packages: a ncRNA-aware end-to-end CLIP analysis pipeline written

in the Snakemake workflow language, which I’ve tested with an array of miCLIP

and iCLIP datasets; clipplotr, a tool for smoothing, normalising and presenting mul-

tiple CLIP datasets across transcripts of interest alongside supplementary data and

finally Clippy, a peak caller with a unique interactive visualisation that enables users

to explore parameters on transcripts of interest before applying to whole datasets.

These computational approaches have already facilitated interesting biological

insights, in the case of the ncRNA-aware CLIP pipeline I have been able to identify

that NSun2 and Trmt2a extensively modify pre-tRNA transcripts and also explore

the novel tRNA binding of DEAH-box helicase DDX3X. I used Clippy extensively

in the exploration of m6A in yeast meiosis to call peaks across miCLIP and iCLIP

datasets. Here the ability to moderate the length of peaks was especially useful in

choosing broader peak regions suitable for differential CLIP analysis. clipplotr was

born out of the need for a tool capable of visualising many CLIP datasets at once,

a problem I encountered in the course of working on the psiCLIP project, which

involved >90 final iCLIP samples.

In this discussion I will explore the impact of the various findings made in this
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thesis and the opportunities that present themselves as a result.

5.1 Specificity of m6A and its readers

In chapter 3 I explored iCLIP data for Pho92p produced in both WT and methyl-

transferase deletion backgrounds by Dr. Radhika Varier. I found that approximately

30% of binding sites could be designated as downregulated in ime4-∆. It’s pos-

sible that a higher percentage of sites are m6A-dependent, but were beyond our

detection limit. Specifically I found that calling sites as m6A-dependent might be

harder when the transcript is also downregulated. Despite this, the m6A consen-

sus sequence motif is enriched in m6A-dependent Pho92p binding, but not in the

sites I designated as m6A-independent binding, suggesting that these categories are

genuinely meaningful.

This observation raises the question of what specifies Pho92p binding: in the

case of m6A-dependent binding, why some m6A sites and not others? And in the

case of the independent binding, how is this specified in the absence of m6A, or

the m6A sequence motif? Despite searching, I couldn’t find a convincing prefer-

ence of Pho92p for certain m6A consensus motifs over others, and alongside pre-

vious in vitro work it seems unlikely that this is the reason for binding of certain

m6As. Rather I suspect the answer lies in U-rich sequences that are bound by

Pho92p’s intrinsically disordered regions. I found GU repeats enriched in analysis

of m6a-independent Pho92p binding sites and perhaps with enough multivalent in-

teractions over degenerate sequence Pho92p is still able to interact with RNA. This

binding might be weaker than that specified by m6A, although its worth noting

that the m6A binding isn’t particularly strong in the first place compared to other

RBP-RNA affinities and in itself has been suggested to be stablised by U-rich in-

teractions of intrinsically disordered regions (Arribas-Hernández, Rennie, Köster,

et al., 2021). Interestingly the effect of Pho92p on mRNA downregulation/decay

was most extreme for Pho92p bound to m6A. We propose this is due to stronger in-

teractions maintaining Pho92p-mRNA binding from the nucleus into the cytoplasm,
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but this isn’t certain. It remains to be investigated what the function of this m6A-

independent binding is, if any. As more CLIP data in this model system becomes

available it will be interesting to see if Pho92p binding is impacted by nearby bind-

ing of other RBPs in U-rich sequence contexts, which could also go part of the way

to explaining why certain m6A sites are bound over others.

There could also be a contribution of chromatin factors in positioning Pho92p

if it is indeed loaded co-transcriptionally, as the 3’ end binding is consistent regard-

less of sequence at that given position.

The dependency of YTH protein binding on m6A across transcriptomes re-

mains to be explored in human or mice, although extensive redundancy in steady

state cell lines might make this hard to investigate. Expression of the different hu-

man YTH proteins differs along developmental timelines and in different cellular

contexts, therefore perhaps it will prove more fruitful to choose conditions where

a certain YTH protein is more dominantly expressed, in order to determine their

individual functions and dependency on m6A.

5.2 The promise of single molecule resolution

As described in this thesis, advances in high throughput sequencing methods have

vastly improved the detection of m6A on mRNAs. In the case of the yeast m6A

project, alongside miCLIP we were also keen to explore Nanopore sequencing as a

method that is unaffected by m6A antibody biases and also offers single molecule

resolution. Dr. Dora Sideri prepared RNA which was sequenced by Dr. Tommasso

Leonardi at the Italian Institute of Technology and analysed using the Nanocompore

approach where changes in voltage and retention time of 5mers in the pore are

assessed between WT and methyltransferase knockout conditions to identify m6A

sites. I contributed to the benchmarking of the method with some comparison to

miCLIP data (Leger, Amaral, Pandolfini, Capitanchik, et al., 2019b).

However, I believe that exciting future developments will revolve around anal-

yses that are able to extract information about the combinatorics of RNA modifi-
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cation sites on the same molecule. The dynamics of m6A deposition are currently

unclear, its unknown if modification is cooperative, ie. does methylation at one site

make methylation at adjacent sites more likely? Preliminary analysis of the Actin

transcripts suggests not (Leger, Amaral, Pandolfini, Capitanchik, et al., 2019a), but

ideally we would develop a unified computational approach that could summarise

such information across all quantifiable sites.

Methods such as MAZTER-seq are able to quantify the proportion of mRNA

transcripts of a given gene that are methylated at a given point in time. It would

be ideal to validate such quantifications using Nanopore, which should be a more

unbiased approach, given that MAZTER-seq requires enzymatic digestion of RNA.

While we still know little about how m6A results in mRNA fate changes, we know

even less about how this operates across a population of transcripts for a given gene.

Are the number of modified transcripts regulated at some level, can this be changed

and how? Further, does having more sites of modification on a transcript make a fate

change more extreme? This is partially addressed by analyses of bulk modification

levels, however in these cases its unclear if transcripts with two modification sites

are any more modified than transcripts with one, i.e. modification could be split

between the two sites rather than the two sites being constitutively modified.

5.3 The future of bioinformatics in RNA biology and be-

yond

The software tools presented in this thesis all address burgeoning needs that have

emerged in the CLIP field: that of accurate ncRNA quantification and how to vi-

sualise ever expanding volumes of CLIP and orthogonal data to reach meaningful

biological conclusions. The issue of analysing and visualising large volumes of

bioinformatics data is not isolated to the CLIP field alone, but is in fact a growing

problem in bioinformatics as a whole. There is also increasing interest in mak-

ing the latest advances in bioinformatics technologies accessible to the biologists

who are producing the data, who are most commonly not bioinformatics experts
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themselves. Making analyses as straightforward to implement as possible not only

benefits those without coding experience, but also lightens the load of experienced

bioinformaticians to explore exciting new frontiers.

The rapid adoption of workflow languages such as Nextflow and Snake-

make, has greatly simplified bioinformatics processes over a short period of time.

As an example, at the beginning of my PhD in 2017, bioinformaticians I knew

all had their own version of RNA-Seq workflow, commonly a series of bash

scripts. This meant that many bioinformaticians spent valuable research time

repeating a task that had been performed thousands of times before, and col-

laboration between bioinformaticians wasn’t straightforward, with different re-

searchers in the same group coming to slightly different results from analysing

the same data. Now, it is possible to run a very good RNA-Seq workflow from

Nextflow’s nf-core project with a single line of code, or even without coding

or any access to high performance computing by launching the workflow on the

cloud using Nextflow Tower’s graphical user interface (GUI) (https://tower.nf).

The potential of these advances for accelerating biomedical discovery is awe-

inspiring. During the global COVID-19 pandemic, the COVID-19 Genomics

UK (COG-UK) Consortium created a platform for integrating and analysing

rapidly produced SARS-CoV-2 viral genomes. The platform incorporates sev-

eral Nextflow pipelines, some of which are run daily - highlighting the robustness

of the language. One analyses raw sequencing data (https://github.com/connor-

lab/ncov2019-artic-nf), another performs quality control, moves files and write re-

ports (https://github.com/SamStudio8/elan-nextflow/). Datapipe performs multiple

sequence analysis of all sequences that pass a quality threshold in order to call vari-

ants (https://github.com/COG-UK/datapipe). Further, a Snakemake pipeline called

Grapevine runs phylogentic analyses across all database sequences to produce up-

dated phylogenetic trees (https://github.com/COG-UK/grapevine). By July 2021,

the platform contained over 550,000 sequences. Before the widespread adoption

of workflow languages, such rapid analysis at such a massive scale would have

required considerably more work to architect.
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From the perspective of CLIP analysis, within Prof. Luscombe’s group

we developed nf-core/clipseq (https://nf-co.re/clipseq): a gold standard analysis

pipeline for CLIP data. As the Nextflow language moves from its first itera-

tion - DSL1, to its second - DSL2, I have worked extensively, alongside oth-

ers in the Luscombe group, on porting the existing CLIP pipeline from DSL1 to

DSL2, whilst also integrating the latest software improvements - including Ultra-

plex, an ultra-fast demultiplexer (Wilkins, Capitanchik, et al., 2021) and Clippy

(https://github.com/goodwright/imaps-nf). The DSL2 language updates support the

creation of software modules, community-curated gold standard software modules

are made available by the nf-core project, so many common steps have already been

written and contributed including those for Bowtie and STAR mapping for example

(https://github.com/nf-core/modules) (Ewels et al., 2020).

Separately to these developments, Prof. Jernej Ule has been developing iCLIP

analysis server platforms for the past ten years. The iCount server was developed

originally in partnership between Prof. Jernej Ule and Prof. Tomaž Curk, repre-

senting a free GUI for iCLIP analysis which doubled as a database repository for

iCLIP data. As I joined the group in 2017, an updated platform developed in part-

nership with the company Genialis was released (https://imaps.genialis.com/iclip).

The improvements included improved options for data security and sharing along-

side the concept of ’Collections’. A collection contains all the data supporting a

single project or paper, enabling meaningful organisation of data that can then be

shared with other single users or groups of users at varying levels: for example

read-only or full access. Further, the iCLIP pipeline underlying the platform was

updated, and the look and feel of the website was improved.

With the rapid developments in Nextflow, we saw the opportunity to over-

haul the iMaps platform entirely to wrap around Nextflow DSL2 pipelines

on the backend and in November 2020 partnered with the company Good-

wright, comprised of Dr. Sam Ireland and Alex Harston, to build iMaps 2.0

(https://imaps.goodwright.com/). The power of integrating with Nextflow is multi-

layered: 1) with appropriate abstraction of iMaps software layers any Nextflow
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DSL2 pipeline can be easily integrated into the platform: this means we will

be able to expand the platform beyond iCLIP analysis to include functional ge-

nomics data such as RNA-Seq, QuantSeq, ribosome profiling and also expand

beyond RNA to integrate analysis of chromatin layers, for example cut and run

(https://nf-co.re/cutandrun). 2) As bioinformaticians are able to use exactly the

same version-controlled pipelines accessed through iMaps or through the command

line this heightens reproducibility across projects and reduces the inconvenience of

achieving different results via the web server than via the command line. Further to

the use of Nextflow in the backend, we also made changes to improve the front end,

namely to improve user account management - now it is easy to see which groups

you are a part of and which datasets you own. Additionally, we introduced more

signifiers of a data objects origin, making it easier to trace the flow of data through a

pipeline. Further to all of this we created a public iMaps Slack workspace to gather

feedback from users and answer questions with the aim of creating a supportive

community around the platform (imapsgroup.slack.com).

More than being a platform for analysis, iMaps also functions as a user-

populated database. Once users are happy with their collections it is sim-

ply one click to make that collection public and searchable. We plan to in-

troduce quality thresholding into the search for data objects, to facilitate in-

tegrative analysis across all datasets present in the platform. Other platforms

in this field are more limited in scope, as they exclusively perform only one

of these functions. The most established provider of bioinformatics analysis

workflows by GUI is currently Galaxy, which in late 2020 released the CLIP-

explorer pipeline (https://clipseq.usegalaxy.eu/) (Heyl et al., 2020). Unlike nf-

core/clip-seq, there is no clear route for users to contribute to the development

of CLIP-explorer or to report issues, and the results of user’s analyses are not

collated and shared publicly, making meta-analyses intractable. Conversely, EN-

CORI (previously starBase http://starbase.sysu.edu.cn/index.php) and POSTAR2

(http://lulab.life.tsinghua.edu.cn/postar/) are the main CLIP databases, and both suf-

fer from a lack of consistent curation for CLIP data or interactive visualisation (J.-H.
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Li et al., 2014; Y. Zhu et al., 2019). Moreover, these databases lack quality control

analyses and don’t report some of the key analysis parameters, and are therefore in

danger of rapidly falling out-of-date in the face of rapidly developing technologies

and standards. iMaps overcomes these limitations by being openly developed on

GitHub and establishing coherent annotation standards.

Integration of the visualisation tools described in this thesis will enhance iMaps

and broaden the user base of the tools, as currently both still require use of the com-

mand line to initially run. Further, by porting my ncRNA-aware CLIP pipeline into

Nextflow, I will make it more widely accessible to the community and I am certain

that the routine accurate quantification of ncRNA will yield useful, unexpected dis-

coveries in the years to come. By streamlining the process of data pre-processing,

computational biologists will be able to shift focus on to more interesting down-

stream analyses. Moreover, by facilitating high quality data curation, exciting meta-

analyses will become more viable. In the field of CLIP meta-analyses are often

limited to ENCODE eCLIP data due to convenience; however, by populating iMaps

with a wide range of data, more expansive meta-analyses will become possible.

In the near future, expansion of the iMaps platform to include orthogonal datasets

such as RNA-Seq, quantSeq, ribosome profiling and chromatin profiling method-

ologies will open up even more exciting possibilities for data visualisations and

integration. Prioritising datasets across different species, alongside integration with

cross-species resources, will enable analysis from an evolutionary vantage point.

Powerful modelling approaches, such as deep learning of binding site specifici-

ties, require carefully prepared input datasets which are currently incredibly time

consuming to curate. Through inclusion of thoughtful quality control filters and

thresholds, iMaps should open the doors to novel analyses and insights.

To summarise, I believe these rapid developments in bioinformatics will accel-

erate insights into RBP biology and beyond. By focusing our attention on how to

improve and facilitate collaboration, how to present data in a biologically meaning-

ful way and by making usability a priority, every researcher benefits.
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C., Sloan, K. E., & Bohnsack, M. T. (2017). Human METTL16 is a n6-

methyladenosine (m6a) methyltransferase that targets pre-mRNAs and

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.celrep.2020.108580
https://doi.org/10.1016/j.celrep.2020.108580
https://doi.org/10.1038/nature12730
https://doi.org/10.1016/j.cell.2015.05.014
https://doi.org/10.1016/j.cell.2015.05.014
https://doi.org/10.1038/ncb2902
https://doi.org/10.1038/ncb2902
https://doi.org/10.1038/s41589-020-0525-x
https://doi.org/10.1371/journal.pbio.1000530
https://doi.org/10.1371/journal.pbio.1000530


BIBLIOGRAPHY 213

various non-coding RNAs. EMBO reports, 18 (11), 2004–2014. https :

//doi.org/10.15252/embr.201744940

Wei, C. M., Gershowitz, A., & Moss, B. (1975). Methylated nucleotides block

5’ terminus of HeLa cell messenger RNA. Cell, 4 (4), 379–386. https:

//doi.org/10.1016/0092-8674(75)90158-0

Wei, C. M., Gershowitz, A., & Moss, B. (1976). 5’-terminal and internal methy-

lated nucleotide sequences in HeLa cell mRNA. Biochemistry, 15 (2),

397–401. https://doi.org/10.1021/bi00647a024

Weiss, M. C., Preiner, M., Xavier, J. C., Zimorski, V., & Martin, W. F. (2018).

The last universal common ancestor between ancient earth chemistry

and the onset of genetics. PLoS genetics, 14 (8), e1007518. https://doi.

org/10.1371/journal.pgen.1007518

Wen, J., Lv, R., Ma, H., Shen, H., He, C., Wang, J., Jiao, F., Liu, H., Yang,

P., Tan, L., Lan, F., Shi, Y. G., He, C., Shi, Y., & Diao, J. (2018).

Zc3h13 regulates nuclear RNA m6a methylation and mouse embryonic

stem cell Self-Renewal. Molecular cell, 69 (6), 1028–1038.e6. https://

doi.org/10.1016/j.molcel.2018.02.015

Wen, J.-T., Huang, Z.-H., Li, Q.-H., Chen, X., Qin, H.-L., & Zhao, Y. (2021).

Research progress on the tsRNA classification, function, and applica-

tion in gynecological malignant tumors. Cell death discovery, 7 (1), 388.

https://doi.org/10.1038/s41420-021-00789-2

Wickham, H. (2010). Stringr: Modern, consistent string processing. The R

journal, 2 (2), 38. https://doi.org/10.32614/rj-2010-012

Wickham, H. (2011). Ggplot2.Wiley Interdisciplinary Reviews: Computational

Statistics, 3 (2), 180–185. https://doi.org/10.1002/wics.147

Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis. Springer.

Wickham, H., Francois, R., Henry, L., Müller, K., et al. (2015). Dplyr: A

grammar of data manipulation. R package version 0. 4, 3.

Wilke, C. O., Wickham, H., & Wilke, M. C. O. (2019). Package ‘cowplot’.

Streamlined Plot Theme and Plot Annotations for ‘ggplot2.

https://doi.org/10.15252/embr.201744940
https://doi.org/10.15252/embr.201744940
https://doi.org/10.1016/0092-8674(75)90158-0
https://doi.org/10.1016/0092-8674(75)90158-0
https://doi.org/10.1021/bi00647a024
https://doi.org/10.1371/journal.pgen.1007518
https://doi.org/10.1371/journal.pgen.1007518
https://doi.org/10.1016/j.molcel.2018.02.015
https://doi.org/10.1016/j.molcel.2018.02.015
https://doi.org/10.1038/s41420-021-00789-2
https://doi.org/10.32614/rj-2010-012
https://doi.org/10.1002/wics.147


BIBLIOGRAPHY 214

Wilkins, O. G., Capitanchik, C. et al. (2021). Ultraplex: A rapid, flexible,

all-in-one fastq demultiplexer. Wellcome Open.

Woischnik, M., & Moraes, C. T. (2002). Pattern of organization of human

mitochondrial pseudogenes in the nuclear genome. Genome research,

12 (6), 885–893. https://doi.org/10.1101/gr.227202
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