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Abstract

High-dimensional data are omnipresent. Although many statistical methods de-

veloped for analysing high-dimensional data adopt the normality assumption, the

Gaussian distribution could be a poor approximation of real data in many applica-

tions. In this thesis, we investigate how to properly analyse such high-dimensional

non-Gaussian data. As quantifying sample relationships, such as measuring the

inter-sample proximity and determining neighbours for samples, is an important

step in numerous statistical approaches, this thesis develops three methods for

analysing different high-dimensional non-Gaussian data types based on the sam-

ple relationship: dimension reduction for single cell RNA-sequencing data with

missingness with a proposed proximity measure, dimension reduction for data of

small counts with a developed proximity measure, and modelling skewed survival

data with a proposed procedure of identifying neighbours for samples.

In chapter 3, I develop an unbiased estimator of the Gram matrix, which

characterises the proximity between samples. The proposed estimator improves a

broad spectrum of dimension reduction methods when applied to single cell RNA-

sequencing data with missingness. In addition, the consequences of directly apply-

ing existing dimension reduction methods to data with missingness are empirically

and theoretically clarified.

In chapter 4, I develop a dissimilarity measure for count data with an excess of

zeros based on the Kullback-Leibler divergence and the empirical Bayes estimators.

The proposed measure is shown to have better discriminative power compared with

other popular measures. The proposed measure boosts the performance of standard

dimension reduction methods on count data containing many zeros.
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In chapter 5, I clarify that graphs derived from features themselves can be

beneficial for the analysis of high-dimensional survival data when used in graph

convolutional networks. Besides, a sequential forward floating selection algorithm

is proposed to simultaneously perform survival analysis and unveil the local neigh-

bourhoods of samples with the aid of graph convolutional networks.



Impact Statement

High-dimensional non-Gaussian data are frequently observed in various applica-

tions and how to properly analyse the data is an important research topic in the fields

of machine learning and statistics . The approaches developed in this thesis have

successfully dealt with a wide range of types of high-dimensional non-Gaussian

data based on the sample relationship. More importantly, all the proposed methods

are highly interpretable and widely applicable.

Missing data arise in many real-world applications, including the areas of ge-

nomics and image processing. The statistical analysis provided in Chapter 3 clar-

ifies the consequence of performing standard dimension reduction approaches on

data with missingness. This clarification helps to understand why ignoring miss-

ing observations would result in representations that fail to reveal underlying data

structures. Additionally, the dimensionality is proven to be a blessing as a higher

dimension leads to a better representation. The unbiased estimator presented in this

chapter offers an effective way to enhance a variety of existing dimension reduction

methods in the presence of missing data. The insight and the estimator are partic-

ularly useful for researchers working on obtaining meaningful representations of

high-dimensional data with missingness.

The dissimilarity measure presented in Chapter 4 copes with small counts con-

taining many zeros, which are ubiquitous in the fields of genomics and ecology. The

proposed measure can be integrated into a broad spectrum of dimension reduction

methods to facilitate the analysis of high-dimensional count data. In particular, the

statistical comparison presented in this chapter shows that the discrimination abil-

ities of commonly used dissimilarity measures deteriorate when applied to small
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counts, explaining why those measures combined with standard dimension reduc-

tion techniques fail to extract meaningful representations.

Applications of survival analysis can be found in various areas, such as clinical

research and credit scoring. In Chapter 5, a survival model is developed based on

graph convolution networks and geometric graphs, and achieves promising perfor-

mance. The successful application of graph convolution networks to survival data

opens up the possibility of improving survival analysis by using complex graph

neural networks and geometric graphs. Furthermore, the insight into desirable char-

acteristics of graphs when used with graph convolutional networks is given in the

context of survival analysis. This insight is particularly useful for researchers who

aim to enhance survival analysis with graph convolutional networks and geometric

graphs.
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Chapter 1

Introduction

1.1 Background and scope of this thesis

Although the normality assumption takes centre stage in statistical approaches,

real-world data are often observed to be non-Gaussian. Examples of such data in-

clude the plate-based single cell RNA-sequencing (scRNA-seq) data with missing-

ness [1–3], integer-valued count data [4–7], and skewed survival times [8–10]. The

frequently observed non-normality motivates the development of statistical analysis

approaches for data that are poorly approximated by the Gaussian distribution.

In this thesis, we investigate how to properly analyse different types of high-

dimensional non-Gaussian data based on the relationship between samples. The

relationship between samples can be quantified in various forms, such as proximity

matrices and sets of neighbouring data points. For many data analysis methods,

properly quantifying the sample relationship is a prerequisite for their successful

applications. For example, numerous dimension reduction methods seek a low-

dimensional embedding to faithfully retain a proximity matrix calculated from the

high-dimensional features, such as multidimensional scaling (MDS) [11] and Gaus-

sian process latent variable model (GPLVM) [12]. As a result, the low-dimensional

representation obtained by these methods would fail to reveal the underlying data

structure if the corresponding proximity matrix is unable to capture the true sample

relationships. For another example, the edge set of a graph, showing the neigh-

bouring data points of each sample, is a key gradient of improving classification
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performance with graph convolutional networks (GCNs). Specifically, the graph

convolution used in GCNs homogenises features within the local neighbourhood of

each sample (a node in the graph) [13]. Thus, GCNs with a graph, that tend to con-

nect samples from the same class, homogenise features within each class, easing

the subsequent classification task. On the contrary, GCNs will homogenise features

across classes if the samples in a local neighbourhood belong to different classes,

making the classification task more difficult.

Stimulated by the importance of properly quantifying the sample relationship,

the scope of this thesis covers three topics of research. First, we investigate how to

perform dimension reduction on high-dimensional scRNA-seq data with missing-

ness with a suitable proximity measure. Second, we focus on dimension reduction

on high-dimensional data of small counts with an apt proximity measure. Third, we

investigate how to construct graphs with appropriate edge sets for GCNs to boost

the analysis of high-dimensional survival data.

1.2 Research objectives

In this thesis, there are three research objectives for the analysis of three differ-

ent kinds of high-dimensional non-Gaussian data, including scRNA-seq data with

missingness, count data with an excess of zeros, and survival data.

For complete high-dimensional data, dimension reduction methods with com-

monly used proximity matrices, such as the Euclidean distance matrix and the Gram

matrix, have witnessed successes in uncovering the underlying data structure as they

can capture the sample relationship with these matrices. However, these proximity

matrices are unable to reflect the sample relationship for data with missingness due

to the information loss. Therefore, the direct calculation of these matrices by ignor-

ing missing observations leads to the failure of getting meaningful low-dimensional

representation. An example of such data is the plate-based scRNA-seq data where

some zero values actually correspond to missing observations [2, 3]. Motivated by

this issue, the first objective of this thesis is to propose a proximity matrix that

properly quantifies the relationship between samples in the presence of missing ob-
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servations. Meanwhile, we aim to elucidate the consequence of directly applying

standard dimension reduction methods designed for complete data to incomplete

data.

Similarly to the case where missing data are present, the widely used Euclidean

distance matrix is no longer suitable for capturing the sample relationship for count

data containing a large proportion of zeros. A common strategy is to first make

count data approximately Gaussian by a variance-stabilising transformation and

then calculate the Euclidean distance matrix of the transformed data, which can be

used within the frameworks of standard dimension reduction approaches. However,

popular variance-stabilising transformations fail to stabilise the variance of small

counts. Thus, the sample relationship is not properly quantified by the Euclidean

distance matrix of the transformed data. To improve a variety of existing dimen-

sion reduction methods, the second objective of this thesis is to develop a proximity

measure that is suitable for small counts.

GCNs that process the relational information between samples by combining

the information of a sample with its neighbours have witnessed successes in clas-

sification tasks. Although it is shown that graphs derived from features themselves

can be used with GCNs to aid classification tasks [14], it is in doubt that by doing

so the task of survival analysis would be boosted. Thus, the third objective of this

thesis is to investigate whether feature-derived graphs used with GCNs are benefi-

cial for survival analysis and if so, how to construct graphs with proper edge sets

from the perspective of survival analysis.

1.3 Contributions and thesis structure

The contributions of this thesis are summarised as follows:

Contribution 1: Dimension reduction for data with heterogeneous missingness

Chapter 3 clarifies the effects of missingness on dimension reduction by studying

the statistical properties of the Gram matrix computed by an inner product matrix

with or without missingness. We first elucidate that the Gram matrix is an unbiased

estimator of the covariance matrix when data are complete under the framework of
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GPLVM [12]. The unbiased Gram matrix is able to result in the low-dimensional

representation revealing underlying data structures. We then show that the original

computation of the Gram matrix is a biased estimator in the presence of missing-

ness. Furthermore, the variance of the biased estimator is larger than that of the

unbiased estimator in the case of complete data. Lastly, we propose a bias-corrected

estimator for data with missingness, which can be integrated into a broad spectrum

of dimension reduction methods. In addition, we clarify the role of sample dimen-

sion in the relevant dimension reduction methods, based on its relationship with the

variances of the estimators. Extensive empirical results, on both simulated datasets

and real scRNA-seq datasets, show that the proposed unbiased estimator can sig-

nificantly improve the performance of a wide range of representative dimension re-

duction approaches when missingness is present. This work leads to the following

publication:

• Ling, Yurong, Zijing Liu, and Jing-Hao Xue. Dimension reduction for data

with heterogeneous missingness. In the conference on Uncertainty in Artifi-

cial Intelligence, pp. 1310-1320. PMLR, 2021.

Contribution 2: Dimension reduction for small counts

Chapter 4 first develops two dissimilarity measures for count data with the

Kullback-Leibler (KL) divergence and under the assumption that the data follow

either Poisson or negative binomial distributions. With a proposed index that eval-

uates the discrimination ability of a dissimilarity measure, we then investigate the

statistical behaviours of different measures in the high-dimensional space. Mea-

sures taken into account include the Euclidean distance, the Euclidean distances of

the data transformed by widely used variance stabilisation transformations, and the

proposed measures. Based on their statistical behaviours, we show that although

popular variance stabilisation transformations fail to stabilise the variance of small

counts, the Euclidean distance of the transformed data leads to better-distinguished

groups compared to the Euclidean distance of original data. In particular, we show

that the proposed dissimilarity measure developed with the negative binomial as-

sumption outperforms the other measures in terms of the discrimination ability.
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Experiments on simulated and real datasets demonstrate the superiority of the pro-

posed measure when integrated into a wide spectrum of dimension reduction meth-

ods, which is consistent with the statistical investigation. This work leads to the

following submission:

• Ling, Yurong, Jing-Hao Xue. Dimension reduction for high-dimensional

small counts with KL divergence. Accepted by the conference on Uncer-

tainty in Artificial Intelligence, 2022.

Contribution 3: Survival analysis with GCNs and geometric Graphs

Chapter 5 proposes a survival model based on GCNs and geometric graphs directly

constructed from high-dimensional features. First, we clarify that graphs used with

GCNs play a critical role in processing the relational information of samples, and

the graphs that align well with the underlying structure of samples could be bene-

ficial for survival analysis. Secondly, we build on a insight that sparse geometric

graphs derived from high-dimensional data are favoured over dense graphs, when

used in GCNs for survival analysis. Thirdly, from this insight, we propose a model

for survival analysis based on GCNs. By using multiple sparse geometric graphs

and a proposed sequential forward floating selection algorithm, the new model is

able to simultaneously perform survival analysis and unveil the local neighbour-

hoods of samples. The experimental results on real-world datasets show that the

proposed survival model based on GCNs outperforms a variety of existing methods,

demonstrating that geometric graphs can aid survival analysis of high-dimensional

data. This work leads to the following submission:

• Ling, Yurong, Zijing Liu, and Jing-Hao Xue. Survival analysis of high-

dimensional data with graph convolutional networks and geometric graphs.

Submitted to IEEE Transactions on Neural Networks and Learning Systems

(in revision).

Thesis structure This thesis is organised as follows. Chapter 2 gives an introduc-

tion to representative dimension reduction methods that rely on the calculation of

proximity matrices. Chapters 3-5 present the developed methods for analysing dif-

ferent non-Gaussian data types. The conclusion of this thesis and the future work
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Figure 1.1: Main structure of this thesis.

are presented in Chapter 6. The main structure of this thesis is illustrated in Fig-

ure 1.1. A reference for an additional paper on image quality assessment completed

and published during the PhD is provided in Appendices C.



Chapter 2

Background

This chapter consists of two parts introducing representative dimension reduction

(DR) methods and graph convolutional networks (GCNs), respectively. In the first

part, we present some popular DR approaches that aim to preserve the sample re-

lationship with a proximity matrix. In the second part, starting by introducing the

widely-used GCNs, we provide insights into how the alignment between graphs and

underlying data structures affects GCNs’ performance.

2.1 Representative dimension reduction approaches
DR is a data transformation technique that projects high-dimensional data onto a

low-dimensional space. The low-dimensional representation often retains some

meaningful properties of the high-dimensional data as much as possible. DR

helps reveal underlying data structures and as a result, it facilitates data visuali-

sation [15, 16], clustering [17, 18], and classification [19, 20].

The problem setting of DR can be defined as follows. Consider a high-

dimensional dataset of n observations and p features and the corresponding data

matrix Y = [y1, . . . ,yn]
T , where yi ∈ Rp is a p-dimensional observation. The target

of a DR approach is to embed Y in a low dimensional space as X = [x1, . . . ,xn]
T ,

where xi ∈Rd (normally d� p). In the following, we will present some representa-

tive DR approaches that seek to retain the properties of high-dimensional data with

a proximity matrix, including principal component analysis (PCA) with either the

Euclidean distance matrix or the Gram matrix [11, 12, 21], multidimensional scal-
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ing (MDS) with an input dissimilarity matrix [11], Gaussian process latent variable

model (GPLVM) with the Gram matrix [12], and t-distributed stochastic neighbor

embedding (tSNE) with the matrix of Gaussian kernels [15].

2.1.1 PCA

PCA is arguably the most popular DR tool and it linearly projects high-dimensional

data onto a low-dimensional space [22, 23]. There are several interpretations of

how PCA reduces dimensions, and we will first present the interpretation of seeking

directions with maximal variances.

PCA can be thought of seeking an embedded space where the low dimensional

data describe as much of the variance in the high dimensional data as possible. This

can be done by finding a linear basis such that the amount of variance in the data

transformed by the basis is maximal. Let Cov(Ỹ ) = 1
n−1Ỹ T Ỹ be the sample covari-

ance matrix of the zero-mean data Ỹ = HY , where H = I− 1
n11T is the centring

matrix and has the property H1 = 0, and Wd = [w1, . . . ,wd] be the linear transfor-

mation matrix, where wi ∈ Rp. The problem setting of PCA can be formulated

as

max
Wd

trace
(
W T

d Cov(Ỹ )Wd
)
, s.t. W T

d Wd = Id, (2.1)

where trace
(
W T

d Cov(Ỹ )Wd
)

is the sum of variances of the transformed data YWd

across d directions which are defined by the columns in Wd , and Id is the d× d

identity matrix. It can be shown that the maximum is attained when Wd consists

of the top-d principal eigenvectors of Cov(Ỹ ) (i.e., principal components). The d-

dimensional representation produced by PCA is thus X = ỸŴd with Ŵd formed by d

principal eigenvectors, and trace
(
Ŵ T

d Cov(Ỹ )Ŵd
)

equals the sum of corresponding

eigenvalues. Note that the representation X is centred around 0.

2.1.2 MDS

MDS refers to a set of techniques that attempt to map a set of samples to a space

subject to dissimilarity constraints. The overall goal of MDS is to find a low di-

mensional representation by minimising the discrepancy between the dissimilarity

matrix in the low-dimensional space and in the original space [11]. MDS is not only
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an effective tool for visualising the similarity between samples but also for DR.

PCA can also be viewed as a special case of MDS, which is called classical

MDS, as it preserves the Euclidean distance matrix as much as possible [24]. The

input dissimilarity matrix for classical MDS is the Euclidean distance matrix DE(Y )

where DE(Y )i, j =
∥∥yi−y j

∥∥
2. The objective of classical MDS given DE(Y ) is

min
X

n

∑
i=1

n

∑
j=1

(∥∥yi−y j
∥∥2

2−
∥∥xi−x j

∥∥2
2

)
. (2.2)

It is shown that classical MDS is equivalent to PCA (Section 14.4 in [24]). Thus,

PCA is a distance-preservation method. Moreover, the minimum of the following

equation

min
X

∥∥ỸỸ T −XXT∥∥2
F (2.3)

is obtained when X = ỸŴd , which is identical to PCA. Therefore, PCA can also be

treated as DR method that preserves the Gram matrix of zero-mean data.

2.1.3 GPLVM

GPLVM is a non-linear DR approach that assumes high-dimensional data are reali-

sations of a Gaussian process and the covariance matrix of samples is determined by

the low-dimensional latent variables [12]. GPLVM seeks to find the latent variables

X maximising the following log-likelihood:

L =−np
2
− 1

2
trace

(
K−1YY T)− p

2
log [det(K)] , (2.4)

where K is the kernel matrix of the latent variables specified by a kernel function

ki j = k(xi,x j). When K = XXT +β−1In is a linear kernel matrix with a noise pa-

rameter β , it can be shown that the maximal of Equation 2.4 is equivalent to the

low-dimensional representation obtained by PCA as β approaches infinity.

In addition, Equation 2.4 equals the the Kullback-Leibler (KL) divergence be-

tween two Gaussian distributions with the covariance matrices K and 1
PYY T , re-

spectively, up to a constant independent of X : KL(N (z | 0, 1
PYY T ) || N (z | 0,K)).

This equivalence suggests that GPLVM attempts to find the low-dimensional repre-
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sentation X such that the corresponding kernel matrix is similar to the Gram matrix

computed by the inner product matrix, where the similarity is measured by the KL

divergence.

2.1.4 tSNE

tSNE is a widely used DR approach for visualising high-dimensional data in a

space of two or three dimensions [15]. The tSNE algorithm aims to locate a low-

dimensional map that reflects the similarities between high-dimensional data points.

Specifically, for i 6= j, the similarity of yi to y j in the high-dimensional space is

measured with the Gaussian kernels:

p j|i =
exp
(
−
∥∥y j−yi

∥∥2
/σ2

i

)
∑k 6=i exp

(
−‖yk−yi‖2 /σ2

i

) , (2.5)

where σi is the bandwidth of the Gaussian kernels. The overall similarity between

yi and y j is defined as pi j =
p j|i+pi| j

2n . The similarity between the corresponding low-

dimensional xi and x j is measured with the Student t-distribution with 1 degree of

freedom:

qi j =

(
1+
∥∥x j−xi

∥∥2
)−1

∑k 6=l

(
1+‖xk−xl‖2

)−1 . (2.6)

The algorithm finds the locations of the low-dimensional map by minimising

KL(P |Q) =∑i6= j pi jlog pi j
qi j

. The employment of the heavy-tailed Student-t distribu-

tion helps alleviate the crowding issue that the relative locations between neighbour-

ing points in the high-dimensional space cannot be fully accommodated by a space

of lower dimension so they are squashed into a single point in the space. It is found

that moderate distances in the high-dimensional space can be faithfully retained

in the low-dimensional space with the Student-t distribution, and thus moderately

distant points would not be collapsed.

Table 2.1 shows the proximity matrices that the aforementioned DR methods

attempt to preserve with their counterparts in the space of low dimension.
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Table 2.1: Proximity matrices that representative DR approaches aim to preserve and their
counterparts in the space of low dimension.

Methods Proximity (high dimension) Proximity (low dimension)
PCA ỸỸ T /Ỹ T Ỹ /DE(Y ) XXT /XT X /DE(X)
MDS Input dissimilarity matrix DE(X)

GPLVM 1
pYY T K with ki j = k(xi,x j)

tSNE
The similarity matrix defined
with the Gaussian kernels

The similarity matrix defined
with the student t distribution

2.2 GCNs

Nowadays, data objects in many applications show complex interdependency,

which can be represented in the form of graphs consisting of interconnected nodes

with features. For instance, we can represent social media users as nodes in a graph

and assign an edge between two users if they interact with each other frequently.

To extract the high-level information from such graph data, it is necessary to ex-

ploit both node features and the dependency between nodes, as we perform con-

volution on image data. However, applying the convolution operator commonly

used in the image domain to graph data is infeasible due to the irregular sizes of

graphs and the variability of neighbourhood sizes across nodes. To learn the high-

level representation of nodes that can encode both node information and local graph

structures, a graph convolution operator which generalises the convolution operator

from grid data to graph data is introduced in GCNs [25]. GCNs and other graph

neural networks that are built upon the graph convolution have witnessed successes

in classification tasks [25–27]. The graph convolution is derived from a first-order

approximation of spectral graph convolutions [28]. It can also be regarded as a spa-

tial convolution operator which propagates node information along edges by taking

the weighted average within a local neighbourhood. Figure 2.1 provides an illustra-

tive example showing the difference between the 2D convolution for an image and

the graph convolution used in GCNs.

We first present the mathematical definition of the graph convolution and the

network architecture of GCNs for node-level classification. A graph can be rep-

resented with the node set V and the edge set E : G = (V,E). In this thesis,



2.2. GCNs 30

Figure 2.1: An illustrative example for comparing the 2D convolution and the graph convo-
lution. left: 2D convolution for the red node (a pixel) in an image; right: graph
convolution for the red node in a graph. The neighbourhoods of the red nodes
are marked with blue borders. After applying the convolution operators to the
two red nodes, we obtain nodes with updated features. Both the 2D convolu-
tion and the graph convolution update the feature of a node by the weighted
average of its feature value and the values of neighbouring nodes. However,
the neighbourhood sizes in the image, which are determined by the filter size,
are fixed and those could be variable across nodes in the graph.

we consider unweighted sample-to-sample graphs. Each node in the graph rep-

resents a sample. Suppose there are n samples and each one is characterised by a

p-dimensional feature vector xi ∈ Rp. The data matrix of samples is denoted by

X = [x1,x2, . . . ,xn]
T ∈ Rn×p. Let A = [ai j] ∈ Rn×n be the adjacency matrix of G,

and D = diag(d1,d2, . . . ,dn) is the diagonal degree matrix where di = ∑ j ai j is the

degree of node i. The convolution operator in GCNs is defined by Â = D̃−
1
2 ÃD̃−

1
2 ,

where Ã = A+ In, and D̃ = diag(d̃1, d̃2, . . . , d̃n) is the degree matrix calculated from

Ã with d̃i = ∑ j ãi j. Given the data matrix X and the corresponding Â, the output

of the two-layer GCN proposed in [25] for classifying observations into one of F

classes is given by:

Z = softmax
(
Â ReLU(ÂXW1)W2

)
, (2.7)

where Wi is the weight matrix in the i-th graph convolution layer (i = 1,2),

ReLU(·) = max(0, ·) is the activation function, and each row in Z ∈ Rn×F repre-

sents the class probabilities for the corresponding sample. The loss incurred by Z is

evaluated by the cross-entropy over available labels, and the weight matrix W1/W2

is learned by gradient descent.

Despite the successful applications of GCNs in classification tasks, input
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graphs with inappropriate edges could adversely affect their classification perfor-

mance. The graph convolution layer actually consists of two steps: first update

the feature of a node by the weighted average of its feature and neighbours’ and

then project the new feature into a hidden space. In [13], the authors show that the

graph convolution ÂX is a special form of Laplacian smoothing and GCNs make

the features of connected nodes more similar using the graph convolution. Thus,

the graph topology should be consistent with the task objective otherwise the graph

convolution can be harmful to the node-level classification [29, 30]. More specifi-

cally, if connected nodes tend to come from the same class, the graph convolution

would ease the subsequent classification by smoothing the features within a class.

In contrast, GCNs would perform worse than classification approaches that model

each sample independently without considering the relational information if linked

nodes often belong to different classes. The above insights suggest that the align-

ment between the edge set and the underlying data structure plays a central role in

achieving performance gain using GCNs.



Chapter 3

Dimension Reduction for Data with

Heterogeneous Missingness

3.1 Introduction

Dimension reduction (DR) is important for analysing high-dimensional data as it

helps reveal underlying structures of the data. A large number of DR methods

have been successfully applied to real data, such as principal components analysis

(PCA) [22, 23], dual probabilistic PCA and its non-linear variant Gaussian process

latent variable model (GPLVM) [12]. However, missing data arise in many appli-

cations [3, 31, 32], making implementations of standard DR methods designed for

complete data infeasible. To address the problems posed by missing data, a broad

spectrum of methods have been proposed, including the expectation-maximisation

approaches [33], the direct imputation of observations either via matrix comple-

tion [34–36] or by chained equations [37], and the implicit imputation of the co-

variance matrix [38, 39].

In this chapter, we focus on the implicit imputation of the Gram matrix and

show that an unbiased estimator of it, in the presence of missing data, offers a sig-

nificant prospect for enhancing the reliability of many DR procedures. This implicit

imputation is motivated by the fact that a large number of widely used DR methods

obtain the low-dimensional projections via the proximity matrix that quantify the

pairwise similarity/dissimilarity rather than the data matrix. For example, multi-



3.1. Introduction 33

dimensional scaling (MDS) seeks to find an embedded low-dimensional structure,

of which the distance matrix is as close to the high-dimensional distance matrix as

possible [11]. In addition, the objective of preserving the distance relationship be-

tween data points is shared by many dimension reduction algorithms. Algorithms

such as the t-distributed stochastic neighbor embedding (tSNE) [15] and the uni-

form manifold approximation and projection (UMAP) [16], two favoured visuali-

sation tools in data analysis, build the stochastic relationship between data points

in the low-dimensional space based on their original Euclidean distances. Simi-

larly, dual probabilistic PCA and its non-linear variant GPLVM also seek to find

the low-dimensional embedding using the Gram matrix [12]. Furthermore, it is ad-

equate for performing the aforementioned methods through the precise calculation

of either the Gram matrix or the distance matrix, due to the linear transformations

between these two matrices: the Gram matrix can be obtained by doubly centring

the squared Euclidean distance matrix [21], while there also exists a linear transfor-

mation for converting the Gram matrix to the distance matrix, as shown by Equa-

tion 3.15. Consequently, for the relevant DR approaches, we do not need to impute

missing values as long as we can estimate the distance or Gram matrix reliably in

such cases.

Although the authors in [38] studied the eigenvectors and eigenvalues for ho-

mogeneous missingness under the framework of PCA and the authors in [39] in-

vestigated those for heterogeneous missingness, the effect of missing data on the

techniques beyond PCA remains unclear. Moreover, the consequences of neglect-

ing missing observations are not thoroughly studied from a statistical perspective.

Therefore, this chapter aims to fill in this critical gap by making the following con-

tributions. First, we elucidate how a reliable Gram matrix can ensure the powerful

representation using GPLVM, a generalised framework for DR where the Gram

matrix can be seen as an estimator of the covariance matrix [12] (Section 3.2.1).

Secondly, we show that, owing to missing data, the original computation of the

Gram matrix by an inner product matrix is a biased estimator of the covariance

matrix with a larger variance under the framework of GPLVM, and we propose
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unbiased estimators in the cases of homogeneous missingness (Section 3.2.2) and

heterogeneous mechanism (Section 3.2.3). In addition, we clarify the role of input

dimension in the relevant dimension reduction methods, based on its relationship

with the variances of the estimators (Section 3.2.4).

We compare standard DR approaches and their variants taking the proposed

unbiased estimator from two aspects: visualisation and clustering results, on both

simulated and real datasets (Section 3.4.4 and Section 3.4.5). Moreover, we empir-

ically verify that the impact of input dimension is consistent to the results from our

theoretical analysis (Section 3.4.3).

3.2 Proposed unbiased estimators
In this section, we first show that the Gram matrix of high-dimensional data is an

unbiased estimator of a covariance matrix when data are complete and we clarify

the importance of accurately computing the Gram matrix under the framework of

GPLVM. The missing data model is then introduced with the bias of the estimator

shown, and an unbiased estimator is derived in the presence of missing observations.

Finally, we elucidate the role of input dimension on DR.

3.2.1 For complete data

Consider a dataset of N observations and D features represented as an N×D ma-

trix Y = [y1, . . . ,yN ]
T , where yi ∈ RD is a D-dimensional observation. Under the

assumption of GPLVM, every dimension is a realisation of a Gaussian process (GP)

indexed by the latent variables X = [x1, . . . ,xN ]
T , where xi ∈ Rd and d is the di-

mension of the latent space (normally d � D). Let the GP have a mean function

m(x) and a covariance function k(x,x′). For simplicity, m(x) is taken to be the zero

function (m(x) = 0). Let y:,i denote the i-th column of the data matrix Y , GPLVM

assumes that y:,i ∼N (0,K), where K is the covariance matrix with Ki j = k(xi,x j).

GPLVM then aims to find the latent variables by maximising the marginal likeli-

hood of the data:

log p(Y |X ,θ) =
D

∑
s=1

log p(y:,s|X ,θ), (3.1)
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where

log p(y:,s|X ,θ) =−1
2

yT
:,sK
−1y:,s−

N
2

log2π− 1
2

log |K| .

The above formulation provides a probabilistic interpretation of dual PCA in the

case of the linear covariance function k(xi,x j)= xT
i x j. Notably, GPLVM would be a

non-linear model as long as K is obtained by a non-linear covariance function. Here

we denote the latent points found by GPLVM by X̂ and denote the corresponding

covariance matrix by K̂ to differentiate them from the true latent points X and true

covariance matrix K, respectively.

The following Kullback-Leibler (KL) divergence, between the two Gaus-

sians [40] equivalent to Equation 3.1 up to a constant independent of X , clarifies

the objective of GPLVM:

KL(N (z | 0, 1
D

G) || N (z | 0,K)

=
1
2

log |K|− 1
2

log
∣∣∣∣ 1
D

G
∣∣∣∣+ 1

2
tr(

1
D

GK−1)− N
2
,

(3.2)

where G = YY T is the Gram matrix. Thus, GPLVM seeks a matrix of latent points

X̂ , which generate the covariance matrix K̂, with K̂i j = k(x̂i, x̂ j), as close to 1
DG as

possible in terms of KL divergence. Moreover, 1
DG can be regarded as an estimator

of the covariance matrix in N (0,K). Since Gi j = ∑
D
s=1 yisy js, under the assumption

that each column of Y follows N (0,K), the asymptotic properties of 1
DG can be

summarised by the Lindeberg–Lévy central limit theorem (CLT) as [41]

√
D(

Gi j

D
−Ki j)

dist.→ N (0,KiiK j j +K2
i j), for i 6= j,

√
D(

Gii

D
−Kii)

dist.→ N (0,2K2
ii), for i = j, as D→ ∞.

(3.3)

That is, when there is no event of missingness, not only 1
DG is an unbiased estimator

of the covariance matrix K, but also, with a higher dimension D, 1
DG is an estimator

of higher accuracy because the variance shrinks with D.
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3.2.2 For data with homogeneous missingness

The nice asymptotic properties in Equation 3.3 may not hold as missing data exist.

It is hence necessary to investigate the consequences of directly using the Gram

matrix obtained from data with missing values. Let Ỹ denote the complete data

matrix without missing entries and Y the partially observed data matrix. We define

a N×D binary revelation matrix Ω with 1 representing the corresponding entry in Ỹ

being observed and 0 for the missing entry. Here, we assign a value of 0 to missing

entries, as the authors in [38, 39] did in their work, to calculate the Gram matrix

with missing observations by YY T . Therefore, we have Y = Ỹ ◦Ω, where ◦ denotes

the element-wise product.

We first study a simple case where values in a dataset are missing inde-

pendently and completely at random (MCAR) with the homogeneous probabil-

ity. Under the framework of GPLVM, we assume that the partially observed data

matrix Y is generated column-wise from N (0,K), followed by the event of ho-

mogeneous missingness. The occurrences of missing observations are assumed

to follow independent Bernoulli distributions with the homogeneous probability

1− p (0 < p ≤ 1). We also assume that the missing observations are independent

of the Gaussian processes given p. The detailed statistical model is

ỹ:,s ∼N (0,K),

his | ỹis ∼ Bernoulli(p),

yis =

 ỹis if his = 1,

0 if his = 0,

(3.4)

where ỹis is the true value in the i-th observation and s-th feature (s = 1, . . . ,D; i =

1, . . . ,N).

From the above model, we get

E(yisy js) = p2Ki j, Var(yisy js) = p2KiiK j j +K2
i j(2p2− p4), for i 6= j;

E(y2
is) = pKii, Var(y2

is) = K2
ii(3p− p2), for i = j.

(3.5)
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With the CLT, the asymptotic properties of 1
DG, as D→ ∞, are

√
D(

Gi j

D
− p2Ki j)

dist.→ N (0, p2KiiK j j +K2
i j(2p2− p4)), for i 6= j;

√
D(

Gii

D
− pKii)

dist.→ N (0,K2
ii(3p− p2)), for i = j.

(3.6)

Therefore, 1
DG is no longer an unbiased estimator of K for data with missing values.

As we mentioned in Section 3.2.1, the Gram matrix is of importance to dual PCA

and GPLVM. Hence the latent points found by GPLVM with the original Gram

matrix G can be misleading. A straightforward solution to the problem is to use an

unbiased estimator instead of 1
DG. Based on the above analysis in Equation 3.6, it

is easy to see that an unbiased estimator for K is a matrix G̃ where

G̃i j =
Gi j

Dp2 (i 6= j)and G̃ii =
Gii

Dp
.

3.2.3 For data with heterogeneous missingness

In spite of the simplicity of the assumption presented in Section 3.2.2, the homo-

geneous missing data model conflicts with the fact that the missingness probability

is often linked to some internal or external factors in reality. For instance, there

usually exists an inverse relationship between the true values and the corresponding

missingness probabilities in single cell RNA-sequencing (scRNA-seq) data [1]; in

the recommendation system, whether a user rates a movie is determined by their

preference and the movie’s genre. We therefore consider the case where the miss-

ingness probabilities are heterogeneous; that is, values are missing not at random

(MNAR). Further, we propose an unbiased estimator in such a situation. Now the

statistical model is
ỹ:,s ∼N (0,K),

his | ỹis ∼ Bernoulli(pis),

yis =

 ỹis if his = 1,

0 if his = 0,

(3.7)
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where 1− pis denotes the probability of missingness for the i-th observation and

s-th feature, and 0 < pis ≤ 1 (s = 1, . . . ,D; i = 1, . . . ,N).

By using the statistical model in Equation 3.7, we get the following two propo-

sitions regarding the estimator of K in such case.

Proposition 1. Let the probabilities of missingness for the s-th feature in the i-th

and j-th observations to be 1− pis and 1− p js respectively, where i = 1, . . . ,N, s =

1, . . . ,D. By assuming that the observed data matrix Y is generated according to the

model in Equation 3.7, we have, for i 6= j,

E[yisy js] = pis p jsKi j,

Var[yisy js] = pis p jsKiiK j j +K2
i j(2pis p js− p2

is p2
js);

(3.8)

and for i = j,

E[yisy js] = E[y2
is] = pisKii,

Var[yisy js] = Var[y2
is] = K2

ii(3pis− p2
is).

(3.9)

Based on Proposition 1, it is straightforward to conclude that 1
DG is a biased

estimator of K. Consequently, it is necessary to correct the bias so as to get reliable

K̂ and X̂ .

Proposition 2. By adopting the same assumption and notation as those in Propo-

sition 1, we obtain an unbiased estimator G̃ of K with bounded variances. Specifi-

cally, for i 6= j we have G̃i j =
Gi j

∑
D
s=1 pis p js

, and Var[G̃i j] is given by

KiiK j j ∑
D
s=1 pis p js +K2

i j ∑
D
s=1(2pis p js− p2

is p2
js)(

∑
D
s=1 pis p js

)2 . (3.10)

The bounds of Var[G̃i j] are given by

KiiK j j +K2
i j

Dp̄i j
≤ Var(G̃i j)≤

KiiK j j

p̄i jD
+

K2
i j

D

(
2

p̄i j
−1
)
, (3.11)

where 0 < p̄i j =
1
D ∑

D
s=1 pis p js ≤ 1. Note that the equality holds if and only if pis =

1, for all i and s, which means no event of missing observations.
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For the diagonal entries, G̃ii =
Gii

∑
D
s=1 pis

, and Var[G̃ii] is

K2
ii ∑

D
s=1 pis(3− pis)(
∑

D
s=1 pis

)2 . (3.12)

The bounds of Var[G̃ii] are given by

2K2
ii

Dp̄i
≤ Var(G̃ii)≤

K2
ii

D

(
3
p̄i
−1
)
, (3.13)

where p̄i =
1
D ∑

D
s=1 pis. Again, the equality holds if and only if pis = 1, for all i and s.

Based on Proposition 2, we conclude that G̃ is bias-corrected with the bounds

of variance decreasing with D. Furthermore, under a mild condition, G̃ is a consis-

tent estimator.

Proposition 3. Let xi j,s = yisy js and µi j,s = E(xi j,s) = pis p jsKi j. If
D
∑

s=1
pis p js � D,

then

Zi j,D =
∑

D
s=1
(
xi j,s−µi j,s

)
[
∑

D
s=1 Var(xi j,s)

] 1
2

dist.→ N (0,1), (3.14)

as D approaches infinity. Here we define
D
∑

s=1
pis p js � D if there exist constants

0 < m < M < ∞, and an integer n0 such that m < ∑
D
s=1 pis p js

D < M, for all D > n0.

Corollary 1. If
D
∑

s=1
pis p js � D, the proposed unbiased estimator G̃ converges in

probability to the true covariance matrix K as D approaches infinity.

Proposition 3 and Corollary 1 suggest that the unbiased estimator G̃ of K

could be beneficial for a method using the Gram matrix as input since it converges

to the ground-truth covariance matrix in the presence of missing observations if
D
∑

s=1
pis p js � D. In reality, ∑

D
s=1 pis p js

D < M for any constant M > 1, since pi j’s ≤ 1.

Furthermore, there exists a constant m > 0 such that m < ∑
D
s=1 pis p js

D as long as the

probabilities of non-missingness pi j’s are bounded from below. Thus, the condition
D
∑

s=1
pis p js�D is readily satisfied in practice. When applying the proposed estimator

to DR methods, we use G̃ rather than 1
DG to improve the performance.
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Corollary 2. If
D
∑

s=1
pis p js � D, the estimator G/D converges in probability to the

true covariance matrix K if and only if lim
D→∞

D
∑

s=1
pis p js

D = 1.

Corollary 2 implies that the estimator G/D would still converge to K if the

fraction of missing values is small enough as compared to 1. All proofs in this

section are provided in Appendix. Note that the mathematical terms in the bias and

the variances presented in Proposition 1 and Proposition 2, respectively, would be

more involved if we set the missing observations to a non-zero constant, but the

statistical properties remain the same.

3.2.4 Impact of the input dimension D

As shown in Equation 3.3, Equation 3.6, and Proposition 2, the variance of 1
DG and

the bounds of Var(G̃) are inversely proportional to the input dimension D. Hence,

higher input dimension can lead to more accurate results of dimension reduction,

from decreasing the variances of the estimators. Moreover, 1
DG would be close

enough to K when there exists no missing entries in Y , as long as the dimension is

high enough such that the corresponding variances approach zero, so is G̃ for data

with missingness. Although G̃ is an unbiased estimator, as shown by Proposition 2,

the variance of G̃ are greater than that of 1
DG in the presence of missing observa-

tions. In other words, in order to reach the same accuracy, more dimensions are

required in the presence of missing data, compared with the case of complete data.

3.3 Application of the proposed unbiased estimator
In practice, the heterogeneous probabilities of missingness are unknown. Hence, we

need to estimate them before applying the proposed estimator to real datasets. The

procedure of estimation is proposed as follows: first compute pF ∈ RD and pS ∈

RN , which are the vectors containing the proportion of non-missing observations

for each feature and for each sample, respectively; then, the entries in the outer

product of two vectors pS⊗ pF scaled by a constant are treated as the matrix of

estimated non-missingness probabilities for the data matrix. The detail of estimators

is provided in Section 3.7.1 of Appendix.
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Once all the pi j are estimated, we compute G̃ and then substitute G
D in the rele-

vant Gram-matrix-based dimension reduction methods, such as PCA and GPLVM,

to correct the bias. In addition, G̃ can benefit the approaches designed taking ad-

vantage of the distance structure, owing to the linear transformation between the

squared Euclidean distance matrix E2 and G:

E2 = diag(G)1T +1diag(G)T −2G, (3.15)

where diag(G) is a column vector of the diagonal elements in G. Considering that

the bias-corrected G̃ could result in negative values via Equation 3.15, we propose

an alternative way to enhance the distance-matrix-based methods such as tSNE and

UMAP: first do PCA with the bias-corrected Gram matrix G̃, and then calculate the

distance matrix in the PC space. To ensure a good estimate of the distance, we keep

all the PCs with non-negative eigenvalues.

The data used for comparing standard DR methods and their variants taking the

proposed unbiased estimator include image data and scRNA-seq data, which mea-

sure gene expression at a single-cell level and offer a way to investigate the stochas-

tic heterogeneity of complex issues on a near-genome-wide scale [42–44]. There is

an additional challenge when handling real scRNA-seq data: the positions of miss-

ing entries remain unknown. There exist highly-frequent zero expression values in

scRNA-seq data. Some zeros indicate the true biological non-expression while oth-

ers are due to the corresponding missing values, which are called dropouts [2,3]. To

address the mentioned problem, we propose a simple yet reliable ensemble-learning

strategy to infer the positions of missing entries (dropouts) in data matrix, as illus-

trated in Figure 3.1. Specifically, we first identify similar cells via clustering. A

zero count is then regarded as true biological non-expression if most values of the

same gene in the corresponding cluster are zero, otherwise it is taken to be a miss-

ing value. This identification procedure is performed multiple times using different

clustering methods and different numbers of clusters to ensure reliable results. We

reach the final decision by the majority voting: a zero count is considered as the true

non-expression if more than half results confirm this. The proposal of this proce-
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Pipeline	for	differentiating	true	non-expression	from	dropouts

Data	(cell	by	gene)																			Cell	clustering																					Identification	results											Major	voting
Log-transformed															different	k	and	methods																Indicator	matrices													Final	result

(cell	by	gene)					 (cell	by	gene)
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M2

C1

C3

C2 M

Figure 3.1: Pipeline for identifying dropout events. From left to right: 1) log-transformed
data matrix; 2) clustering with different clustering methods and different num-
bers of clusters (k); 3) indicator matrices from different clustering results; and
4) combining all indicator matrices (results) by the majority voting.

dure is inspired by the principle introduced in scImpute that a zero count may reflect

real biological variability if the corresponding gene has constantly low expression

in similar cells [2]. After the true non-expression or dropout events are identified,

we compute the probability of being a dropout across both observations (cells) and

features (genes) as we mentioned before.

3.4 Experimental results and analysis
In this section, we show the superiority of the proposed unbiased estimator

in terms of the clustering accuracy and visualisation quality on both simulated

and real datasets. The results in Section 3.2.4 regarding the role of the in-

put dimension are empirically verified with the simulated data. The code to re-

produce these experiments is available at https://github.com/yurongling/

DR-for-Data-with-Missingness

3.4.1 Datasets

Nine publicly available real datasets from different domains are selected for com-

paring different methods: 6 scRNA-seq datasets, 2 image datasets, and 1 dataset

from the UCI repository. The characteristics of each dataset are provided in Ta-

https://github.com/yurongling/DR-for-Data-with-Missingness
https://github.com/yurongling/DR-for-Data-with-Missingness
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Table 3.1: Real datasets used in this chapter.

Dataset # clusters/classes N D Ref
Pollen (scRNA-seq) 11 301 21045 [45]
Deng (scRNA-seq) 10 286 20484 [46]
Treutlein (scRNA-seq) 8 405 15893 [47]
Koh (scRNA-seq) 10 651 41594 [48]
Usoskin (scRNA-seq) 4 622 17571 [49]
Kumar (scRNA-seq) 3 361 16092 [50]
Olivetti faces (image) 40 400 4096 [51]
fashion MNIST (image) 10 1000 784 [52]
wine (UCI) 3 178 13 [53]

ble 3.1; the data pre-processing is provided in Section A.1 Appendices A, respec-

tively. Clusters in each real scRNA-seq dataset are for different cell types, while

those in the other datasets correspond to different classes. More information about

clusters in each dataset is provided in Section 3.7.2 of Appendix. We sample 1000

images from the test set of the fashion MNIST dataset for comparison and preserve

the percentage of samples of each class to reduce the computational complexity of

some benchmark imputation methods. Note that the wine dataset possesses only a

small number of features (13).

In addition to real datasets, we also simulate a dataset with 3 clusters for in-

vestigating the role of the input dimension. The complete dataset is first simulated

with the Probabilistic PCA (PPCA) [54], which can be regarded as a GPLVM with

a linear kernel. Then, the data matrix with missing observations is generated with a

missingness mechanism mentioned below.

Missing value generation mechanisms. The missingness probability 1− pi j

for scRNA-seq data is often assumed to be nonlinearly related to the true value

ỹi j, such as exp(−λ ỹ2
i j) [1], where λ is the exponential decay parameter. Note

that this missingness mechanism differs from that used for deriving the estimators

of missingness probabilities (Section 3.7.1 of Appendix). Apart from scRNA-seq

datasets, all datasets we employ are complete. We adopt the missingness mecha-

nism presented in Section 3.7.1 of Appendix to generate missing positions for the

complete datasets. Specifically, P(Ωi j = 0) = biq j, for i ∈ [N], j ∈ [D], where iid
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b1, . . . ,bN ∼U [0.4,0.6], and iid q1, . . . ,qD ∼U [0.7,0.9]. The fraction of missing-

ness is around 0.4.

3.4.2 Benchmarks

DR methods. To demonstrate the applicability and effectiveness of the proposed es-

timator, we consider four DR methods: PCA, GPLVM, tSNE, and UMAP. PCA and

GPLVM are representative Gram-matrix-based methods, while tSNE and UMAP

are widely-used approaches depending on the distance matrix. In both the simulated

and real experiments, we compare them with their bias-corrected variants proposed

in this chapter, where the Gram matrix is replaced by G̃ or the distance matrix is

calculated in the PCA space obtained from G̃ as discussed in Section 3.3. The prefix

BC- (bias-corrected) of each method is to denote its bias-corrected variant.

Imputation methods. The widely-used imputation methods softImpute [36]

and imputation by chained equations (ice) [37] are applied to the datasets, followed

by performing the DR methods on the imputed data matrices. softImpute is pro-

posed with the low-rank assumption and performs missing values imputation using

iterative soft-thresholded SVD’s, while ice uses a strategy that models each feature

with missing values as a function of other features in a round-robin fashion. We

use the prefix softImpute-/soft- and ice- to represent the corresponding DR methods

applied to the data matrix imputed by softImpute and ice, respectively. When these

two imputation approaches are applied to real scRNA-seq data where the missing

positions are unidentified, we input the missing positions inferred by the proposed

pipeline.

Approaches designed specifically for scRNA-seq data For real scRNA-seq

data, we also integrate two approaches that deal with the missing data problem of

scRNA-seq data: CIDR [55] and scImpute [2]. CIDR tries to recover the Euclidean

distance matrix while scImpute aims at imputing the missing values. The imputed

data matrix produced by scImpute is directly fed into the mentioned four bench-

marks for extracting low-dimensional representations. tSNE and UMAP take the

imputed Euclidean distance matrix yielded by CIDR as input. On the other hand,

we transform the imputed distance matrix to the Gram matrix by doubly-centering,



3.4. Experimental results and analysis 45

which is then input into GPLVM and PCA, respectively. We use the prefix CIDR-

and sc-/scImpute- to denote the corresponding DR methods integrated with CIDR

and scImpute, respectively,

Evaluation. We evaluate DR performance from two perspectives: clustering

and visualisation. For clustering-based evaluation, we use k-means clustering in the

reduced space and the number of clusters is set to the same as the ground truth.

The clustering results are evaluated in terms of the adjusted rand index (ARI) [56]

between the cluster/class labels obtained from the original publication and the in-

ferred cluster labels. ARI measures the agreement between two clusterings and is

the corrected-for-chance version of the Rand index. The expected similarity of pairs

of clusterings specified by a permutation model serves as a baseline and is used to

correct the clustering similarity for chance in ARI. Note that the permutation model

assumes that the number and size of clusters within each clustering are fixed, which

does not necessarily hold in practice. This measure has a nice interpretation in that

an expected value of 0 for a pair of independent clusterings and a maximal value of

1 for identical clusterings. ARI is commonly used for assessing clustering results

on a variety of data types, including scRNA-seq datasets [2, 55, 57, 58], due to its

convenient interpretability.

Since the missing positions determined by the proposed pipeline could be vari-

able, we replicate the procedure of first performing DR and then applying k-means

20 times on the real scRNA-seq datasets for a more reliable comparison. Regarding

the visualisation-based evaluation, we reduce the input data into two dimensions and

visually compare the visualisations. For implementation details, see Section A.2 of

Appendices A.

3.4.3 Input dimension influences the performance of dimension

reduction

In order to examine the impact of input dimension on the performance of DR, we

randomly select a subset of dimensions (features) from the simulated data. We

then reduce the selected subset of data into two dimensions (2D). The qualities

of the produced 2D projections are assessed according to the visualisation and the
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Figure 3.2: 2D scatter plots of the simulated data with or without missing observations,
obtained by four different methods (from top to bottom: PCA on the com-
plete dataset, PCA, BC-PCA, softImpute-PCA, and ice-PCA on the dataset
with missing values), and with different numbers of genes (from left to right:
500, 1000, 2000 and all 3000 features). Colours indicate the cluster labels.
Comparing columns: generally more input features, better separation between
different clusters. Comparing rows: BC-PCA, softImpute-PCA, and ice-PCA
lead to much more distinct clusters on the dataset with heterogeneous missing-
ness.

clustering accuracy. We repeat the aforementioned procedure 10 times and average

the ARI. The size of the subset features varies across 500, 1000, and 2000. The

performance using all features (3000) is also provided for comparison. Since the

simulated dataset is generated in the context of PPCA, we compare only the DR

methods based on PCA.

First, we find that, on the simulated datasets with and without missing observa-

tions, the visualisation (Figure 3.2) is of a higher quality with more input features,

based on the separation between different clusters. The upward trends of the clus-

tering performances on the simulated datasets shown in Figure 3.3 are consistent
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Figure 3.3: ARI of the k-means clustering results with different DR approaches on the sim-
ulated dataset with or without missing values.

with the visualisation. In addition, more input features lead to a smaller deviation

of the ARI.

Second, by comparing the performances between the dataset with missing ob-

servations and that without missing observations, we find that, with missing data,

a higher input dimension is required to reach a performance comparable to that of

the complete data. For instance, PCA leads to distinct clusters when the number of

input features is 1000 while BC-PCA renders clusters that are overlapping to some

degree in such a case.

Overall, the experimental results on the simulated data offer empirical evi-

dence confirming that the input dimension influences the performance of relevant

DR approaches, as discussed in Section 3.2.4.

3.4.4 Bias correction improves visualisation

Now we examine whether the bias correction exploiting the information of missing

data can produce better visualisation. First, we visualise the dimension-reduced data

of the simulated datasets without and with bias-correction. Figure 3.2 shows that

PCA is capable of separating different clusters when no missing entry is present

in data matrix. However, for data with missing observations, PCA cannot distin-

guish the subpopulations very clearly (Figure 3.2). In contrast, BC-PCA shows

much more distinct clusters. Furthermore, BC-PCA has comparable performance

to softImpute-PCA and ice-PCA in terms of the separation of clusters.

Next, we focus on the comparison between the benchmark DR methods and



3.4. Experimental results and analysis 48

100 50 0 50 100

125

100

75

50

25

0

25

50

GPLVM

100 50 0 50 100

100

50

0

50

100
BC GPLVM

60 40 20 0 20 40 60

40

20

0

20

40

60

80

softImpute-GPLVM

50 0 50 100

75

50

25

0

25

50

75

100

ice-GPLVM

100 50 0 50 100

100

50

0

50

100

scImpute-GPLVM

200 100 0 100 200

200

150

100

50

0

50

100

150

200

CIDR-GPLVM

iN1 iN2 iN3 iN4 iN5 iN7 iN8 iN6

Figure 3.4: Visualisation of the Treutlein dataset obtained by GPLVM and its variants inte-
grated with the bias correction or imputations.

their bias-corrected versions in terms of the visualisations displayed by them on

a wide spectrum of real datasets. Compared with PCA, BC-PCA presents more

divergent clusters on the Pollen dataset and the Kumar dataset (Figure 3.5 and Fig-

ure A.8 of Appendices A), and it achieves comparable performance on the other

datasets. BC-GPLVM succeeds in separating most clusters on the Treutlein dataset

(Figure 3.4), the Usoskin dataset (Figure A.14 of Appendices A), and the Koh

dataset (Figure A.16 of Appendices A), showing a better performance than BC-

PCA. It may be due to the nonlinearity of data structures, which is difficult to be

captured by a linear dimension reduction method like PCA even after the bias cor-
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Figure 3.5: Visualisation of the Pollen dataset obtained by PCA and its variants integrated
with the bias correction or imputations.

rection. Meanwhile, the degrees of overlapping between clusters are reduced greatly

by BC-GPLVM on the fashion MNIST dataset (Figure A.9 of Appendices A) and

the Olivettic faces dataset (Figure A.10 of Appendices A). Comparing GPLVM with

BC-GPLVM, we find that BC-GPLVM often yields a clearer visualisation. Regard-

ing the distance-matrix-based methods, both BC-tSNE and BC-UMAP clearly show

superior visualisation to tSNE and UMAP, respectively.

Last, we compare the proposed bias-corrected estimator with the other impu-

tation methods and the approaches specifically handling scRNA-seq data. The vi-

sualisations obtained by CIDR are inferior to those produced by the bias-corrected
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variants in terms of the separation between different groups of cells. Compared

with the bias-corrected benchmark methods, scImpute yields more compact clus-

ters on the Koh dataset (Figure A.6, Figure A.16, Figure A.23, and Figure A.33 of

Appendices A). However, the within-cluster compactness and between-cluster sep-

aration are worse than or comparable to the approaches incorporating the unbiased

Gram matrix on the other datasets. When applied to the fashion MNIST dataset

and the Olivetti faces dataset, the proposed bias-corrected estimator is comparable

to softImpute and ice; see the visualisations shown in Figure A.9 and Figure A.10

of Appendices A. However, softImpute presents superior visualisations on the wine

dataset (Figure A.3, Figure A.11, Figure A.19, and Figure A.28 of Appendices A).

The bias-corrected DR methods fail to separate different clusters in such a case,

since our method is proposed to high-dimensional data while the wine dataset has

only a small number of features. For the scRNA-seq datasets, the DR methods

incorporating the bias correction match or outperform softImpute and ice, respec-

tively. In particular, the visualisations attained by the bias correction on the Usoskin

dataset are much more clear than those achieved by softImpute and ice (Figure A.14,

Figure A.24 and Figure A.34 of Appendices A).

To sum up, the superiority shown by the bias-corrected variants suggests that

the proposed bias correction is beneficial for displaying better separation of clusters

in the presence of missing observations.

3.4.5 Bias correction enhances clustering

In this subsection, we investigate how the proposed bias correction impacts on the

clustering applications. To this end, we first apply different DR methods and their

variants to the dataset to extract the low-dimensional points, which are then grouped

using the k-means clustering algorithm. The ARI is then calculated as a measure

of clustering performance. For the real datasets, the dimension of latent points

extracted from PCA and BC-PCA is chosen in terms of the Cattell–Nelson–Gorsuch

scree test [59], while only two-dimensional projections are produced with the other

dimension reduction methods. Note that the dimension determined by the scree test

is usually 2 in our experiments.
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Figure 3.6: ARI of k-means with different DR approaches and their variants on the datasets
(a) Usoskin, and (b) Pollen.

First, we assess the clustering performance obtained from using all features

on the simulated data. On the simulated data without missing observations, the

inferred labels obtained from PCA match perfectly with the ground truth labels in

terms of ARI (Figure 3.3). On the simulated data with missing observations, the

original PCA is unable to provide distinct clusters in the low-dimensional space

(Figure 3.2), and hence hinders the clustering (Figure 3.3). On the contrary, their

bias-corrected PCA presents nearly perfect ARI values, suggesting that the bias-

correction significantly improves the clustering accuracy in such a case.

Next, we compare benchmark DR methods with their variants integrating the

bias-correction in terms of the clustering performance on the real datasets, as pre-

sented in Figure 3.6, Figure A.35 and Figure A.36 of Appendices A. Consistently

with the visualisations, the k-means clustering performance of BC-tSNE and BC-

UMAP is better than that of tSNE and UMAP on almost all datasets except the
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Deng dataset and the wine dataset. Similarly, the cluster labels obtained by BC-

GPLVM show a much higher agreement with the ground truth labels than GPLVM

on the Treutlein dataset, the Usoskin dataset, the Koh dataset, and the Olivetti faces

dataset. For the other datasets, BC-GPLVM accomplishes the ARI values com-

parable to those of GPLVM. BC-PCA surpasses or is comparable to PCA on all

the datasets except the Koh dataset which can be due to the nonlinearity possessed

by the datasets and the wine dataset which is not suited for being handled by the

proposed estimator, as we discussed in Section 3.4.4.

Last, the bias-corrected estimators are compared with the imputation methods

and the approaches handling scRNA-seq data. It is clear that the k-means results

obtained by integrating CIDR with different DR methods are inferior to those at-

tained by the bias correction, according to ARI. Bias-corrected DR methods outper-

form DR approaches integrated with scImpute on the Usoskin, Treutlein and Pollen

datasets. Moreover, all the values of ARI achieved by the proposed bias correction

are nearly 1 while the values of ARI of sc-tSNE and sc-UMAP are much lower

than 1 on the Kumar dataset. Although BC-tSNE and BC-UMAP perform slightly

worse than sc-tSNE and sc-UMAP on the Koh dataset, BC-GPLVM achieves much

higher ARI value. On the Deng dataset, scImpute achieves higher ARI values when

combined with the benchmark methods in comparison with the bias-corrected ver-

sions and the original ones. Generally speaking, the bias-corrected DR methods

is better than scImpute on most datasets. When applied to the fashion MNIST

dataset and the Olivetti dataset, the methods based on the bias correction often yield

higher ARI compared to those integrating ice (Figure A.36 of Appendices A), while

their clustering performances are slightly worse than those attained by the meth-

ods inputting the data matrix imputed by softImpute. For the scRNA-seq datasets,

the bias-corrected approaches outperforms softImpute on the Usoskin dataset, the

Pollen dataset, and the Deng dataset. For the other scRNA-seq datasets, the bias-

corrected variants accomplishes the ARI values comparable to or slightly worse

than those obtained by softImpute.

Overall, the clustering results indicate that the bias correction is able to infer
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the cluster labels that are more consistent with the ground truth and improve the

performance of clustering following dimension reduction.

3.5 Discussion of missingness probabilities

estimation
As mentioned before, missingness probabilities for scRNA-seq data are nonlinearly

related to true values. The superior visualisation and clustering performance ob-

tained by the bias-corrected variants on the scRNA-seq datasets indicate that the

proposed estimators of missingness probabilities perform well, even though the

missingness mechanism for the data differs from that we adopt for developing these

estimators. However, we believe that the estimation of missingness probabilities

could adversely impact G̃ if the probabilities are not accurate enough. It would be

interesting to investigate how the estimation of missingness probabilities affects the

performance of G̃ in the future work.

3.6 Conclusion
This chapter proposes an unbiased estimator of the covariance matrix in the pres-

ence of missing data. The proposed bias-corrected Gram matrix is able to substan-

tially improve the performance of various DR methods. As shown by the theoretical

results in this chapter, the Gram matrix is a biased estimator in the presence of miss-

ing observations and could be adverse for DR, while the proposed unbiased estima-

tor can correct the bias introduced to the Gram matrix by the missingness. More-

over, the bounds of variances ensure the accurate estimation of the ground-truth co-

variance matrix in the low-dimensional space as long as the input dimension is high

enough, and hence guarantees the reliable representation of the high-dimensional

data. The experimental results on both simulated and real datasets demonstrate that

the proposed unbiased estimator is widely applicable and is able to effectively en-

hance the performance of both the distance-matrix-based and Gram-matrix-based

DR methods.
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3.7 Appendix

3.7.1 Estimation of missingness probabilities

Suppose that the probability of non-missingness for the i-th sample and the s-th

feature is given by pis = cigs, where ci and gs account for the influence from the i-th

sample and s-th feature, respectively.

By using the method of moments, we get

E

[
D

∑
s=1

his

]
= ci

D

∑
s=1

gs = Mi·, E

[
N

∑
i=1

his

]
= gs

N

∑
i=1

ci = M·s,

where Mi· = ∑
D
s=1 Mis, M·s = ∑

N
i=1 Mis, M is the indicator matrix with 1 representing

non-missingness event, and s = 1, . . . ,D; i = 1, . . . ,N. It is straightforward to verify

that c̄i =
Mi·
N /
√ m

DN and ḡs =
M·s
D /
√ m

DN , where m=∑i Mi·=∑s M·s, satisfy the above

equations. However, it is likely that c̄iḡs > 1. Hence, we normalise the estimator by

c̄i =
Mi·

N
√

nc
and ḡs =

M·s
D
√

nc
, where nc = maxi∈[N],s∈[D](

Mi·M·s
DN , m

DN ).

3.7.2 Cluster labels of datasets

Table 3.2 provides the cluster label definitions for the datasets used in Chapter 3.

All the cluster labels in the scRNA-seq datasets are obtained from their original

publications. These scRNA-seq datasets can be categorised into two levels (gold,

silver) based on the confidence degree of cluster (cell) labels [57]. Cell labels pro-

vided by gold-standard scRNA-seq datasets are assigned in terms of experimental

conditions, cell lines, or stages. Cells within each condition/stage/line are relatively

homogeneous, and the cell labels defined based on them are of high confidence. For

silver-standard scRNA-seq datasets, cell labels are defined with computational ap-

proaches and authors’ biological knowledge. Cell labels provided by silver-standard

scRNA-seq datasets are less trustworthy than those by gold-standard datasets. The

gold-standard scRNA-seq datasets used in this chapter are: Pollen, Deng, Koh, and

Kumar. The silver-standard scRNA-seq datasets used in this chapter are: Treutlein

and Usoskin.
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Table 3.2: Cluster label definitions for the datasets used in the chapter.

Dataset Cluster label definition

Pollen (scRNA-seq) Human cell lines

Deng (scRNA-seq) Stages of mouse preimplantation development

Treutlein (scRNA-seq)
Cell populations from
direct reprogramming from fibroblast to neuron

Koh (scRNA-seq)
FACS purified H7 human embryonic stem cells
in different differention stages

Usoskin (scRNA-seq) Types of mouse lumbar DRG (dorsal root ganglion)

Kumar (scRNA-seq)
Mouse embryonic stem cells, cultured with
different inhibition factors

Olivetti faces (image) Images of different subjects

fashion MNIST (image) Class of clothing

wine (UCI) Wines derived from three different cultivars

3.7.3 Proof of Proposition 1

For i 6= j, based on the law of total expectation, we get

E
[
yisy js

]
= E

[
E
[
yisy js | his,h js

]]
= E

[
yisy js | his = 1andh js = 1

]
pis p js

+E
[
yisy js | his = 0andh js = 0

]
(1− pis)

(
1− p js

)
+E

[
yisy js | his = 1andh js = 0

](
1− p js

)
pis

+E
[
yisy js | his = 0andh js = 1

]
(1− pis) p js

= E
[
yisy js | his = 1

]
pis p js = pis p jsKi j,
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and

Var
[
yisy js

]
= E

[
y2

isy
2
js
]
−E

[
yisy js

]2
= E

[
E
[
y2

isy
2
js | his,h js

]]
−E

[
yisy js

]2
= E

[
E
[
y2

isy
2
js | his,h js

]]
− p2

is p2
jsK

2
i j

=
(
KiiK j j +2K2

i j
)

pis p js− p2
is p2

jsK
2
i j

= pis p jsKiiK j j +K2
i j
(
2pis p js− p2

is p2
js
)
.

For i = j, we get

E
[
y2

is
]
= E

[
E
[
y2

is | his
]]

= E
[
y2

is | his = 1
]

pis +E
[
y2

is | his = 0
]
(1− pis)

= E
[
y2

is | his = 1
]

pis = pisKii,

and

Var
[
y2

is
]
= E

[
y4

is
]
−E

[
y2

is
]2

= E
[
E
[
y4

is | his
]]
−E

[
y2

is
]2

= 3K2
ii pis−K2

ii p2
is = K2

ii
(
3pis− p2

is
)
.

3.7.4 Proof of Proposition 2

Based on Proposition 1, it is straightforward to get that the elements in the unbiased

estimator G̃ of K are given by


G̃i j =

Gi j

∑
D
s=1 pis p js

, for i 6= j;

G̃ii =
Gii

∑
D
s=1 pis

,

and the corresponding variances are given by


Var
[
G̃i j
]
=

KiiK j j ∑
D
s=1 pis p js+K2

i j ∑
D
s=1(2pis p js−p2

is p2
js)

(∑
D
s=1 pis p js)

2 , for i 6= j;

Var
[
G̃ii
]
=

K2
ii ∑

D
s=1 pis(3−pis)

(∑
D
s=1 pis)

2 .
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We first consider the bounds for Var
[
G̃i j
]
, for i 6= j. Var

[
G̃i j
]

can be re-written as

Var
[
G̃i j
]
=

KiiK j j ∑
D
s=1 pis p js +K2

i j ∑
D
s=1(2pis p js− p2

is p2
js)(

∑
D
s=1 pis p js

)2

=
KiiK j j

p̄i jD
+

K2
i j

D

D

∑
s=1

(
2pis p js

D
−

p2
is p2

js

D
)

(
∑

D
s=1 pis p js

D
)2

=
KiiK j j

p̄i jD
+

K2
i j

D

(2p̄i j−
∑

D
s=1 p2

is p2
js

D
)

p̄2
i j

,

where 0 < p̄i j =
1
D ∑

D
s=1 pis p js ≤ 1. Note that 2 p̄i j−

∑
D
s=1 p2

is p2
js

D ≥ p̄i j, We thus get

the lower bound for Var
[
G̃i j
]
:

Var
[
G̃i j
]
≥

KiiK j j

p̄i jD
+

K2
i j

D
p̄i j

p̄2
i j
=

KiiK j j +K2
i j

Dp̄i j

Meanwhile, since f (x) = 2x−x2 (with E[ f (x)]≤ f [E(x)]) is a strictly concave

function, we have

Var
[
G̃i j
]
=

KiiK j j

p̄i jD
+K2

i jD

D

∑
s=1

(
2pis p js

D
−

p2
is p2

js

D
)

(∑D
s=1 pis p js)2
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KiiK j j

p̄i jD
+K2

i jD
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s=1 pis p js

D
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s=1 pis p js

D

)2
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D
s=1 pis p js

)2

=
KiiK j j

p̄i jD
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K2
i j

D

(
2

p̄i j
−1
)
.

Next, we consider the bounds for Var
[
G̃ii
]
. By using the fact that ∑

D
s=1 p2

is ≤

∑
D
s=1 pis we get

Var
[
G̃ii
]
=

3K2
ii

Dp̄i
− K2

ii ∑
D
s=1 p2

is

(∑D
s=1 pis)2

≥ 2K2
ii

Dp̄i
,
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where p̄i =
1
D ∑

D
s=1 pis. Again, since since g(x) = 3x− x2 is a strictly concave func-

tion, we have

Var
[
G̃ii
]
=

K2
ii ∑

D
s=1(3pis− p2

is)

(∑D
s=1 pis)2

≤ K2
iiD

3∑
D
s=1 pis

D
−
(

∑
D
s=1 pis

D

)2

(
∑

D
s=1 pis

)2

=
K2

ii
D

(
3
p̄i
−1
)
.

3.7.5 Proof of Proposition 3

First, we consider the limiting distribution of Zi j,D for i 6= j. We verify that for any

ε > 0 ,

lim
D→∞

1
S2

i j,D

D

∑
s=1

E
[
(xi j,s−µi j,s)

2
1{|xi j,s−µi j,s|>εSi j,D}

]
= 0,

where

S2
i j,D =

D

∑
s=1

Var(xi j,s) = KiiK j j

D

∑
s=1

pis p js +K2
i j

D

∑
s=1

(2pis p js− p2
is p2

js),

and 1{·} is the indicator function. Based on the law of total expectation, we get

1
S2

i j,D

D

∑
s=1

E
[
(xi j,s−µi j,s)

2
1{|xi j,s−µi j,s|>εSi j,D}

]
=

1
S2

i j,D

D

∑
s=1

(1− pis p js)µ
2
i j,s1{|µi j,s|>εSi j,D}

+
1

S2
i j,D

D

∑
s=1

pis p jsE
[
(ỹisỹ js−µi j,s)

2
1{|ỹisỹ js−µi j,s|>εSi j,D}

]
(3.16)

Since
D
∑

s=1
pis p js � D, there exist constants 0 < m < M < ∞, and an integer n0

such that

m <
∑

D
s=1 pis p js

D
< M, for all D > n0.
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Furthermore, we obtain

p2
is p2

jsK
2
i j

S2
i j,D

≤
p2

is p2
jsK

2
i j(

KiiK j j +K2
i j

)
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is p2
jsK

2
i j(

KiiK j j +K2
i j

)
mD
≤ 1

mD
(

KiiK j j

K2
i j

+1
) , f or D > n0.

Let n = max

 1

ε2m

(
KiiK j j

K2
i j

+1

) ,n0

, we get
p2

is p2
jsK

2
i j

S2
i j,D

< ε2, for D > n. It is hence clear

that

lim
D→∞

1
S2

i j,D

D

∑
s=1

(1− pis p js)µ
2
i j,s1{|µi j,s|>εSi j,D} = 0. (3.17)

Without loss of generality, suppose that Ki j ≥ 0, with 0 < pis ≤ 1 for any i and

s, we get εSi j,D + pis p jsKi j > εSi j,D and pis p jsKi j − εSi j,D ≤ Ki j − εSi j,D. Since

(ỹisỹ js−µi j,s)
2 ≥ 0, we obtain that

0≤ 1
S2

i j,D

D
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s=1

pis p jsE
[
(ỹisỹ js−µi j,s)

2
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pis p jsE
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(3.18)

To investigate the limit of 1
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pis p jsE

[
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2
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]
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Equation 3.18, we first investigate the limit of
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− 2
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pis p jsKi jE
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ỹisỹ js1{ỹisỹ js>εSi j,D}

]
.

(3.19)

The limit of above equation can be obtained by showing that the upper bound for
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each term goes to 0. Based on the fact that ỹi1ỹ j1, ỹi2ỹ j2, . . . are iid, the upper

bounds for the terms in Equation 3.19 are respectively given by
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i j
,

0≤
Ki j

(
∑

D
s=1 p2

is p2
js

)
E
[
ỹisỹ js1{ỹisỹ js>εSi j,D}

]
S2

i j,D
≤ Ki j

E
[
ỹisỹ js1{ỹisỹ js>εSi j,D}

]
KiiK j j +K2

i j
.

(3.20)

Since

∣∣∣ỹ2
isỹ

2
js1{ỹisỹ js>εSi j,D}

∣∣∣≤ ỹ2
isỹ

2
js,
∣∣∣ỹisỹ js1{ỹisỹ js>εSi j,D}

∣∣∣≤ ∣∣ỹisỹ js
∣∣ ,

and E
[
ỹ2

isỹ
2
js

]
, E
[∣∣ỹisỹ js

∣∣]< ∞, the dominated convergence theorem implies that

lim
D→∞

E
[
(ỹisỹ js)

2
1{ỹisỹ js>εSi j,D}

]
KiiK j j +K2

i j
= 0, lim

D→∞
Ki j

E
[
ỹisỹ js1{ỹisỹ js>εSi j,D}

]
KiiK j j +K2

i j
= 0.

Moreover, since 1{ỹisỹ js>εSi j,D}
P→ 0, it is clear that K2

i j

E
[
1{ỹisỹ js>εSi j,D}

]
KiiK j j+K2

i j
goes to 0

based on the bounded convergence theorem. Thus, the limits of all upper bounds

shown in Equation 3.20 are 0 and we get

lim
D→∞

1
S2

i j,D

D

∑
s=1

pis p jsE
[
(ỹisỹ js−µi j,s)

2
1{ỹisỹ js>εSi j,D}

]
= 0.

Analogously, we can obtain

lim
D→∞

1
S2

i j,D

D

∑
s=1

pis p jsE
[
(ỹisỹ js−µi j,s)

2
1{ỹisỹ js<Ki j−εSi j,D}

]
= 0.

Hence, by taking the limits of both sides of inequality provided in Equation 3.18,
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we get

lim
D→∞

1
S2

i j,D

D

∑
s=1

pis p jsE
[
(ỹisỹ js−µi j,s)

2
1{|ỹisỹ js−µi j,s|>εSi j,D}

]
= 0. (3.21)

Furthermore, by taking the limits of both sides of Equation 3.16, we get

lim
D→∞

1
S2

i j,D

D

∑
s=1

E
[
(xi j,s−µi j,s)

2
1{|xi j,s−µi j,s|>εSi j,D}

]
= 0,

based on the limiting results provided in Equation 3.17 and Equation 3.21. The

Lindeberg’s condition is therefore satisfied and Zi j,D
dist.→ N (0,1) for i 6= j. For i= j,

Zi j,D
dist.→ N (0,1) can be proved by following the same logic as that for showing

Zi j,D
dist.→ N (0,1) for i 6= j.

3.7.6 Proof of Corollary 1

For i 6= j, G̃i j =
Zi j,DSi j,D+

D
∑

s=1
µi j,s

D
∑

s=1
pis p js

= Zi j,D
Si j,D

D
∑

s=1
pis p js

+

D
∑

s=1
µi j,D

D
∑

s=1
pis p js

. Since

S2
i j,D(

D
∑

s=1
pis p js

)2 ≤
KiiK j j

D
∑

s=1
pis p js

+K2
i j

 2
D
∑

s=1
pis p js

− 1
D

→ 0, as D→ ∞;

D
∑

s=1
µi j,s

D
∑

s=1
pis p js

= Ki j,

by the Slutsky’s theorem, we obtain that G̃i j
P→ Ki j for i 6= j. Analogously, we get

G̃ii
P→ Kii.

3.7.7 Proof of Corollary 2

It is straightforward to get the Corollary by using the Slutsky’s theorem and G
D =

G
D
∑

s=1
pis p js

D
∑

s=1
pis p js

D .



Chapter 4

Dimension Reduction for Small

Counts with KL Divergence

4.1 Introduction
High-dimensional count data, especially those with a large proportion of zeros, are

omnipresent in various fields, such as ecology and genomics [5–7, 60, 61]. Di-

mension reduction (DR) techniques can be used to extract useful information from

high-dimensional count data, by eliminating noisy dimensions of the data. Owing

to the mean-variance dependency that is often observed in count data, it is inap-

propriate to apply standard DR methods that adopt the normality assumption, such

as probabilistic principal component analysis (PPCA) [54] and Gaussian process

latent variable model (GPLVM) [12], to the data.

Hence, to perform DR on count data, a number of specific strategies/methods

have been proposed. A common strategy is to first apply a variance-stabilizing

transformation (VST) to the data [62, 63], aiming to make the data more Gaussian-

like, and then feed the transformed data into the standard DR approaches. The

transformation function is specifically chosen to remove the mean-variance depen-

dency. Popular transformation functions include the square root, logarithm, and in-

verse hyperbolic sine functions. Despite the widespread use of the VSTs, they can

only be guaranteed to work well with large counts [62,63] and cannot reasonably be

expected to stabilise the variance of small counts containing a large faction of ze-
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ros [61, 64]. Rather than focusing on making count data more normally distributed,

several approaches have been developed to directly model the original data. With

the assumption that count data follow the exponential family distributions, PCA

variants maximise the likelihood of the observed data to get the low-dimensional

representation [65–68]. By adopting the same distributional assumption, a robust

estimator of the covariance matrix is derived and the data of reduced dimension are

obtained by the eigendecomposition of this estimator [69]. Nonnegative matrix fac-

torisation (NMF) acquires the low-dimensional representation by factorising count

data matrix into two nonnegative matrices of low rank [70–72]. Despite the pop-

ularity of NMF and PCA variants, it is still unclear whether they perform well on

count data having an excess of zeros.

Unlike the aforementioned works, we focus on developing measures that can

reliably quantify the pairwise dissimilarity for small count data, motivated by the

importance of proximity matrix in common DR frameworks. Specifically, many

DR approaches seek to preserve the properties of a proximity matrix of high-

dimensional data when reducing the dimension of the data. Examples of such

approaches include PCA with the Euclidean distance matrix and the Gram ma-

trix [11, 12, 21], GPLVM with the Gram matrix [12], multidimensional scaling

(MDS) with an input dissimilarity matrix [11], and t-distributed stochastic neighbor

embedding (tSNE) with the matrix of the Gaussian kernels [15]. Therefore, a prox-

imity measure that properly quantifies the dissimilarity between small-count data

points could benefit a wide range of DR methods.

The two core contributions of this chapter can be summarised as follows. First,

we develop two dissimilarity measures for small count data based on the Kullback-

Leibler (KL) divergence [40] and the assumption that the data follow either Poisson

or negative binomial (NB) distributions. We take both Poisson and NB distributions

into account, as it is common to model count data with these two types of distribu-

tion [5,6,73–76]. Furthermore, to reliably calculate the KL divergence, we propose

to use empirical Bayes estimators to estimate the distributional parameters. Sec-

ondly, we propose an index to evaluate the discrimination abilities of different dis-
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similarity measures and show that the measure developed with the NB assumption

has superior discrimination ability compared with other widely used dissimilarity

measures for high-dimensional small counts, in terms of their statistical behaviours.

Moreover, consistent with our statistical investigation, the experimental results, on

both real and simulated count data, also demonstrate that the measure obtained with

the NB assumption is superior to other measures when handling small counts. Addi-

tionally, representative DR methods with the proposed superior measure outperform

the variants of PCA and NMF.

The rest of this chapter can be summarised as follows. First, we present stan-

dard VSTs for count data in Section 4.2.1. We then derive two new dissimilar-

ity measures with the KL divergence and the empirical Bayes estimators in Sec-

tion 4.2.2. Secondly, we propose an index to evaluate the discriminate ability of a

dissimilarity measure (Section 4.3.1) and compare different dissimilarity measures

according to the proposed index. It is shown that, when applied to small counts,

the Euclidean distance of the transformed data exhibits better discrimination abil-

ity than the original Euclidean distance, although the corresponding VST is unable

to stabilise the variances (Section 4.3.2). More importantly, the measure obtained

with the NB assumption is expected to perform the best when used for distinguish-

ing different distributions of small count data including many zeros (Section 4.3.3).

Lastly, we present the experimental results of representative DR methods with dif-

ferent measures, NMF, and variants of PCA, on both real and simulated datasets

(Section 4.4).

4.2 VSTs and dissimilarity measures for count data
In this section, we first present widely used VSTs for count data and then derive

two new dissimilarity measures with the KL divergence and the empirical Bayes

estimators for small counts.

4.2.1 VSTs

A VST is a data transformation that applies to data such that the variance of the

transformed data is independent of their mean. Most VSTs for count data are de-
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veloped by assuming data follow an either Poisson or NB distribution [62, 63]. Let

y be the raw counts. The square root transformation

gr(y) =

√
(y+

3
4
) (4.1)

is a popular technique for stabilising the variance of a Poisson random variable.

For an NB random variable y which counts the number of successes and has the

PMF
(y+r−1

y

)
(1− p)r py, where p is the probability of success and r represents the

number of failures, a prevalent transformation is

gasin(y) = arcsinh

√
y+ 3

8

r− 3
4

, (4.2)

where arcsinh is the inverse hyperbolic sine function. Note that gasin(y) is approx-

imately equivalent to gr(y) up to a constant 1/
√

r−3/4 when r is large. Since

gasin(y) requires an approximate knowledge of r and in some cases it cannot be es-

timated well enough, a simpler logarithm transformation with a pseudocount 1 is

preferred in practice, which is given by

glog(y) = log(y+1). (4.3)

As mentioned before, these transformations fail to stabilise the variance of small

counts. Thus, there is no guarantee that the Euclidean distances of the data trans-

formed from raw counts by these VSTs perform well on small counts.

4.2.2 Two new dissimilarity measures developed with KL

divergence

The KL divergence is a statistical measure of how one probability distribution is dif-

ferent from a second, reference probability distribution [40]. For discrete probabil-

ity distributions P and Q defined on the same probability space Z, the KL divergence

is defined as DKL(P | Q) = ∑z∈Z P(z)log P(z)
Q(z) . The KL divergence for continuous

random variables can be defined similarly by replacing the sum with the integral.
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For a pair of univariate normal distributions, P : N (µx,σ
2) and Q : N (µy,σ

2),we

have the following KL divergences:

DKL
[
N (µx,σ

2) | N (µy,σ
2)
]
=

(µx−µy)
2

2σ2 . (4.4)

The squared Euclidean distance D2
E between two vectors x = [x1, . . . ,xp]

T ,y =

[y1, . . . ,yp]
T ∈ Rp is equivalent to the sum of the KL divergence between two uni-

variate normal distributions (Equation 4.4) across dimensions up to a constant 1
2σ2

and the mean values of the distributions are estimated by MLEs. This equivalence

is shown by the following equation:

p

∑
i=1

D̂KL
[
N (µix,σ

2) | N (µiy,σ
2)
]
=

p

∑
i=1

(µ̂ix− µ̂iy)
2

2σ2 =
p

∑
i=1

(xi− yi)
2

2σ2 , (4.5)

where xi and yi are the MLEs of mean parameters of the normal distributions on the

i-th dimension of x and y, respectively, when there is only one realisation observed

for each distribution.

Stimulated by the equivalence between D2
E and the KL divergence, we pro-

pose to quantify the pairwise dissimilarity for count data by the KL divergence. To

calculate the KL divergence, the distribution type and the corresponding parameter

values are required to be specified. For the distribution type, we assume the ob-

served data follow either Poisson or NB distributions, which are commonly used

for modelling count data. Regarding the parameter estimation, a straightforward

estimator is the MLE. However, the MLE incurs a numerical problem in practice.

To clarify this problem, we derive two dissimilarity measures with the MLEs for

Poisson and NB distributions, respectively. Suppose xi and yi follow Pois(λix) and

Pois(λix), respectively. The respective MLEs of λix and λiy are xi and yi. The KL

divergence between x and y with these MLEs is thus

p

∑
i=1

D̂KL [Pois(λix) | Pois(λiy)] =
p

∑
i=1

yi− xi + xi log
xi

yi
. (4.6)

Analogously, we suppose xi and yi follow NB(r, pix) and NB(r, piy), respectively,
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with known r. Note that there are multiple definitions of the NB distribution and

we use the following ones: the PMF of NB(r, pix) for xi is
(xi+r−1

xi

)
(1− pix)

r pxi
ix

and similarly for NB(r, piy), where pix and piy are the probabilities of success, r

represents the number of failures, and xi and yi count the numbers of successes.

The respective MLEs of pix and piy are xi
xi+r and yi

yi+r . The KL divergence between

x and y with the MLEs is given by

p

∑
i=1

D̂KL [NB(r, pix) | NB(r, piy)] =
p

∑
i=1

rlog
yi + r
xi + r

+ xilog
xi(yi + r)
yi(xi + r)

. (4.7)

The dissimilarity measures presented in Equation 4.6 and Equation 4.7 both in-

volve log(xi) and log(yi), and thus zeros in count data would result in the numer-

ical problem. Further, since the MLEs are close to the true values of parameters

only if the number of observations is sufficiently large, the MLEs calculated from

one observation respectively are unreliable, so are D̂KL [Pois(λix) | Pois(λiy)] and

D̂KL [NB(r, pix) | NB(r, piy)].

To address these issues, we propose to use the empirical Bayes estimators

rather than the MLEs. The conjugate priors of Poisson and NB distributions are

employed for estimating the parameters (λix, λiy, pix, piy). In addition, the hyper-

parameters of these priors are learned from data themselves, sidestepping the diffi-

culty of specifying proper priors to some degree. Concretely, we specify a Gamma

prior distribution G(mi,1), where the shape parameter mi is the mean value of the

i-th dimension across all data points and the other parameter is the scale parameter,

for the Poisson means (λix, λiy). For the probability parameters of NB distributions

(pix, piy), we specify a Beta prior distribution B(mi,r) for them. Note that the mean

value can be thought of an additional observation. With the priors, we obtain the

posterior distribution of λix is G(mi + xi,
1
2) and that of λiy is G(mi + yi,

1
2). The

posterior means, which are mi+xi
2 and mi+yi

2 , respectively, are used as the estimated

distributional parameters. Analogously, we obtain the posterior mean mi+xi
mi+xi+2r from

the posterior distribution B(mi + xi,2r) and mi+yi
mi+yi+2r from B(mi + yi,2r), as the es-

timated probability parameters. Now we obtain the KL divergence between x and y
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Table 4.1: Dissimilarity measures and their equations.

Dissimilarity measure Equation

DE(x,y)
[
∑

p
i=1(xi− yi)

2] 1
2

Dr(x,y)
[
∑

p
i=1(gr(xi)−gr(yi))

2] 1
2

Dasin(x,y)
[
∑

p
i=1(gasin(xi)−gasin(yi))

2] 1
2

Dlog(x,y)
[
∑

p
i=1(glog(xi)−glog(yi))

2] 1
2

DP(x,y)
[
∑

p
i=1(log(xi +mi)− log(yi +mi))(xi− yi)

] 1
2

DNB(x,y)
[
∑

p
i=1

(
log xi+mi

xi+mi+2r − log yi+mi
yi+mi+2r

)
(xi− yi)

] 1
2

with the Bayes estimators (posterior means):

D̂Bayes
KL [Pois(λix) | Pois(λiy)] =

1
2

p

∑
i=1

yi− xi +(xi +mi) log
xi +mi

yi +mi
,

D̂Bayes
KL [NB(r, pix) | NB(r, piy)] =

p

∑
i=1

rlog
yi +mi +2r
xi +mi +2r

+
xi +mi

2
log

(xi +mi)(yi +mi +2r)
(yi +mi)(xi +mi +2r)

.

(4.8)

The logarithm terms in Equation 4.8 are well defined for mi > 0, which is easily

satisfied in practice as only meaningless features in the form of all zeros have mi = 0.

Owing to the asymmetry of the KL divergence, we propose to use

D2
P = D̂Bayes

KL [Pois(λix) | Pois(λiy)]+ D̂Bayes
KL [Pois(λiy) | Pois(λix)]

D2
NB = D̂Bayes

KL [NB(r, pix) | NB(r, piy)]+ D̂Bayes
KL [NB(r, piy) | NB(r, pix)]

(4.9)

to measure the pairwise dissimilarity for count data. Table 4.1 lists the dissimilarity

measures that we take into account in this chapter. Note that for DP and DNB we

ignore their multiplicative constant 1
2 for conciseness.

4.3 Comparison of dissimilarity measures for

high-dimensional small counts
In this section, we compare different measures listed in Table 4.1 according to their

abilities to distinguish distributions that tend to produce small counts. First, we
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propose an index to quantify the discrimination abilities of different dissimilarity

measures. Then, we investigate and compare the statistical behaviours of different

measures based on the proposed index when the dimension is high and the count

data consist of many zeros.

4.3.1 Evaluation index

The main goal of DR is to eliminate noisy or uninformative dimensions of high-

dimensional data and to assist classification/clustering algorithms to uncover mean-

ingful classes in the data. Different classes of count data can be characterised by

different distributions, and thus a dissimilarity measure that benefits DR techniques

should distinguish these distributions well. In this subsection, we propose an index

to evaluate how well a dissimilarity measure separates data points generated from

different distributions and groups those from the same distribution. The definition

of the proposed index is given in Definition 1.

Definition 1. Suppose there are two count data distributions, denoted by Fx and Fy,

respectively. Let SX = {x1, . . . ,xnx} be the set of samples generated from Fx and

SY =
{

y1, . . . ,yny

}
the set of samples from Fy. For a given dissimilarity measure

D(·, ·), the proposed index is defined as follows:

R(Fx,Fy)=

∑
x∈SX ,y∈SY

D2(x,y)/(nxny)

∑
xi,x j∈Sx,xi 6=x j

D2(x j,xi)
(nx−1)nx

+ ∑
yi,y j∈Sy,yi 6=y j

D2(y j,yi)
(ny−1)ny

. (4.10)

The proposed index R(Fx,Fy) assesses the variation between data points from

the same distribution and that from different distributions simultaneously, which are

measured by D(·, ·). In particular, R(Fx,Fy)> 1 implies that using the correspond-

ing dissimilarity measure makes the separation between Fx and Fx greater than the

within-distribution variation. Note that here we consider only two distributions for

simplicity, and to facilitate the following analysis we use the squared dissimilarity

function. In the following, the subscript ∗ of R∗ (Fx,Fy) will be that of the cor-

responding dissimilarity measure. It is straightforward to see that the higher the

value of R(Fx,Fy), the more powerful the discrimination ability of the dissimilarity
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measure. Particularly, a higher value of R(Fx,Fy) indicates that the correspond-

ing measure is more robust in the presence of noisy dimensions, which possibly

reduce the inter-distribution separation degree and increase the within-distribution

variation.

Before we dive into the comparison of measures using R(Fx,Fy), the statistical

behaviour of R(Fx,Fy) in the high-dimensional space should be clarified. Proposi-

tion 4 presents the behaviour of R(Fx,Fy) for the dissimilarity functions in a generic

form: D2(x,y) = [ f (x)− f (y)] [g(x)−g(y)], which covers all the measures pre-

sented in Table 4.1. Proposition 4 shows that R(Fx,Fy) moves towards a constant

as dimension d grows, irrespective of the number of samples from distributions.

The convergence will still hold under some mild conditions, such as with depen-

dent dimensions and non-identical distributions. The covariance of two increasing

functions ( f ,g) of a random variable is positive [77], and thus c in Proposition 4

would be greater than 1
2 iff [E f (x)−E f (y)] [Eg(x)−Eg(y)] > 0, which is readily

satisfied in practice.

Proposition 4. Suppose points in SX ∪SY are independent, and each coordinate of

points in SX and SY are independently drawn from 1-dimensional non-degenerate

data distributions Fx and Fy, respectively. For D2(x,y) = [ f (x)− f (y)] [g(x)−g(y)]

with x∼ Fx, y∼ Fy, where f (·) and g(·) are predetermined functions, if E[D2(x,y)],

E[D2(x1,x2)] and E[D2(y1,y2)] exist for independent samples x1,x2,x ∼ Fx,

y1,y2,y∼ Fy, we have

R(Fx,Fy)
p→ c =

1
2
+

1
2

[E f (x)−E f (y)] [Eg(x)−Eg(y)]
Cov( f (x),g(x))+Cov( f (y),g(y))

.

Proof. First note that R(Fx,Fy)
p→ E[D2(x,y)]

E[D2(x1,x2)]+E[D2(y1,y2)]
, as d → ∞, based on the

weak law of large numbers and the Slutsky’s theorem. Now we rewrite the constant
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Figure 4.1: PMFs of two Poisson distributions.

that R(Fx,Fy) converges to:

Cov( f (x)− f (y),g(x)−g(y))+ [E f (x)−E f (y)] [Eg(x)−Eg(y)]
2E [ f (x)g(x)]−2E f (x)Eg(x)+2E [ f (y)g(y)]−2E f (y)Eg(y)

=
Cov( f (x),g(x))+Cov( f (y),g(y))+ [E f (x)−E f (y)] [Eg(x)−Eg(y)]

2Cov( f (x),g(x))+2Cov( f (y),g(y))

=
1
2
+

1
2

[E f (x)−E f (y)] [Eg(x)−Eg(y)]
Cov( f (x),g(x))+Cov( f (y),g(y))

,

which completes the proof.

4.3.2 Compare the Euclidean distances w/o VSTs

In the following, we compare DE of original data with the Euclidean distances of

the transformed data, according to their behaviours when dealing with small counts

in the space of high dimension; that is, we compare them in terms of the respective

constants that their R(Fx,Fy)’s converge to as dimension diverges to infinity. We

first examine the discrimination ability of DE when count data are small. Corollary 3

provides the sufficient and necessary condition for RE (Fx,Fy)
p→ cE > 1 and sug-

gests that DE of original data cannot be expected to perform well on small counts.

For instance, suppose we have two Poisson distributions with mean values 0.01 and

0.96, respectively. Although both distributions outputs small counts, the PMFs of

these two distributions, provided in Figure 4.1, display disparate patterns: the mass

of one distribution concentrates in 0, while the frequent values of the other one lie

in {0,1,2}. It is highly likely that RE (Fx,Fy) < 1 in the space of high dimension
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Figure 4.2: cg for different Poisson distributions and different transforms.

according to Corollary 3 due to the mean-variance dependency, indicating that DE

cannot distinguish these two distributions well. As a matter of fact, cE < 1 for any

pair of Poisson distributions with mean values less than 1. Therefore, the Euclidean

distance of original data is expected to perform poorly when handling small counts.

Corollary 3. With the same assumptions and notation as those in Proposition 4, for

D(·, ·) = DE(·, ·), we have

1. RE (Fx,Fy)
p→ cE ≥ 1

2 for some constant cE > 0. The equality holds iff E(x) =

E(y) for x∼ Fx, y∼ Fy.

2. cE > 1 iff [E(x)−E(y)]2 > Var(x)+Var(y).

We then investigate the behaviours of R(Fx,Fy)’s of the Euclidean measures

based on the VSTs when either Fx or Fy generates small counts. Without loss of

generality, we assume Fx outputs small counts and Fy is an arbitrary distribution.

Suppose there is a VST characterised by an increasing transformation function g(·),

such that g(y) ≥ 0 for y ≥ 0. Note that g(·) covers gr(y), gasin(y), and glog(y). Let

DE of the data transformed from raw counts by g(·) be Dg and the corresponding

index Rg (Fx,Fy). Corollary 4 provides the difference between cg and cE when the

proportion of zeros of each data point in SX moves towards 1. It shows that Dg is
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better suited for distinguishing data points as µx approaches 0 in comparison with

DE iff [g(0)−E(y)]2

Var[g(y)] −
E2(y)
Var(y) > 0.

To illustrate the advantages of applying VSTs to small counts, we obtain values

of cg = [g(0)−E(y)]2

Var[g(y)] for Poisson distributions with different mean values and trans-

formation functions by numerical computation. Figure 4.2 supplies the numerical

results and shows that gr, glog, and gasin always result in a cg that is no less than

cE . In particular, it is observed from Figure 4.2(a) that cg’s exceed 1 when the Pois-

son mean is higher than 0.8, indicating that the corresponding measures distinguish

better between data points with large proportions of zeros compared with DE . Note

that we assign a large value to r in cgasin (r = 1000), since an arbitrary NB(r, p) ap-

proximates a Poisson distribution when r approaches infinity. The above analysis

suggests that although the VSTs are unable to stabilise variances when count data

are small, they improve the discrimination ability over DE .

Corollary 4. Suppose that x and y are non-negative random variables. Let the

expectation of Fx be µx. With the same assumptions and notation as those in Propo-

sition 4, we have

lim
µx→0

(cg− cE) =
1
2

[
[Eg(0)−Eg(y)]2

Var [g(y)]
− E2 (y)

Var(y)

]
,

where cg is the constant that Rg (Fx,Fy) approaches.

Proof. First note that limµx→0 p(x = 0) = 1 for non-negative random variable

x and limµx→0 Var(x) = 0. Further, we obtain limµx→0 E [g(x)] = g(0) and

limµx→0 Var [g(x)] = 0. Now consider the limiting difference between cg and cE:

lim
µx→0

cg− cE = lim
µx→0

1
2

[Eg(x)−Eg(y)]2

Var [g(x)]+Var [g(y)]
− 1

2
[E(x)−E(y)]2

Var(x)+Var(y)

=
1
2

[
[g(0)−Eg(y)]2

Var [g(y)]
− E2 (y)

Var(y)

]
.
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Table 4.2: Parameter spaces for Fy.

Distributions Parameter 1 Parameter 2
Poisson means: [0.05,1] #samples: 50 variances: the same as the space of means
NB r (# failures): (3

4 ,5]; #samples: 50 p (probability of success): [0.05,0.2]; #samples: 10

4.3.3 Compare the two proposed measures with other

dissimilarity measures

In the following, we will compare the proposed measures (DP,DNB) with the other

dissimilarity measures in terms of the proposed index R(Fx,Fy) computed in the

high-dimensional space. Note that the estimate R̂(Fx,Fy) would be close enough to

the constant that R(Fx,Fy) approaches as long as the dimension is high enough.

Given a pair of distributions (Fx, Fy) and that of measures (DNB,DE), we be-

lieve DNB is superior to DE for distinguishing between Fx and Fy if R̂NB(Fx,Fy) >

R̂E(Fx,Fy). Further, to thoroughly evaluate their discrimination abilities for a spe-

cific distribution type, we compare their performances in terms of the fraction that

R̂NB(Fx,Fy) > R̂E(Fx,Fy) for different configurations of parameters. The fraction

greater than 0.5 suggests DNB is better suited for distinguishing this distribution

type than DE and vice versa.

To obtain R̂(Fx,Fy), we first generate high-dimensional samples in SX and SY

with each coordinate i.i.d., and then calculate R̂(Fx,Fy) in Equation 4.10 with dif-

ferent measures. The distributions (Fx, Fy) taken into account are the broadly used

Poisson and NB distributions. Fx and Fy are of the same distribution type but with

different parameter configurations. As we compared DE with the Euclidean dis-

tances of the transformed data, we let Fx be a count distribution that frequently

generates zeros. Specifically, Fx is either Pois(0.05) or NB(r,0.05) that has the

same r as that of Fy. Note that the probability of getting a zero from Pois(0.05) is

around 0.951 and that from NB(r,0.05) is 0.95r.

The parameter spaces for Fy are provided in Table 4.2. Note that the param-

eters for simulating NB and Poisson distributions are selected in an evenly spaced

way from the intervals provided in Table 4.2. With the mean value increasing,

the proportion of zeros produced from a Poisson distribution decreases to 0. We
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hence bound the mean value from above by 1 to generate small counts and the

expected fractions of zeros in the Poisson-distributed count data lie in the range

[0.368,0.905]. When r approaches infinity, the NB distribution approximates an

equi-dispersed Poisson distribution. Thus, the upper bound of r for simulating NB

distributions should be small in order to generate overdispersed distributions. When

simulating data from NB distributions, the values of r for both Fx and Fy are the

same, and we use the true value of r for calculating DNB and Dasin. Since r < 3
4

results in the numerical problem when calculating Dasin, we only take values that

is larger than 3
4 for r . Again, we restrict the range of p in NB distributions with

the aim of simulating small counts. The proportion of zeros in the simulated NB

data ranges from 0.363 to 0.963. For Poisson distributions, we set r to 1000 in both

DNB and Dasin due to the approximation of NB distributions to Poisson distributions

when r is large. The dimension for each data point is set to be 5000 which is high

enough to obtain a reliable estimation of the constant that R(Fx,Fy) converges to.

Although the convergence of R(Fx,Fy) holds regardless of the number of samples

in each distribution, small values of nx and ny possibly result in the meaningless

coordinates, in the form of vectors of zeros. Therefore, we set nx and ny to 200 to

avoid such cases.

After simulations, we get R̂(Fx,Fy)’s for a wide scope of parameter config-

urations and different distribution types. As mentioned before, the measures are

compared in terms of R̂(Fx,Fy)’s. Table 4.3 and Table 4.4 supply the compari-

son of the measures when data follow Poisson and NB distributions, respectively.

For small count data following Poisson distributions, Dlog achieves the best perfor-

mance according to its highest average fraction value, followed by DNB. Although

Dlog is superior to DNB for Poisson-distributed count data, DNB achieves a much

higher value than Dlog when count data are negative-binomially distributed. In ad-

dition, for small count data following NB distributions, DP exhibits the second best

discrimination ability. DE , as anticipated, performs much worse than the other mea-

sures. The simulation results show that DNB distinguishes both the equidispersed

and overdispersed distributions well, and thus we expect that DNB outperforms the
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others when integrated into standard DR methods.

Table 4.3: Fraction that R̂(Fx,Fy) of a measure is greater than that of another measure for
Poisson distributions. The value at (i, j) represents the fraction that R̂ of the
measure on the i-th row is greater than that of the measure on the j-th column.
Top two measures are shown in bold.

Measures DE Dr Dasin Dlog DP DNB Ave
DE - 0.060 0.060 0.060 0.060 0.060 0.060
Dr 0.940 - 0.060 0.100 0.240 0.240 0.316
Dasin 0.940 0.940 - 0.100 0.240 0.240 0.492
Dlog 0.940 0.900 0.900 - 0.740 0.740 0.844
DP 0.940 0.760 0.760 0.260 - 0.080 0.560
DNB 0.940 0.760 0.760 0.260 0.92 - 0.728

Table 4.4: Fraction that R̂(Fx,Fy) of a measure is greater than that of another measure for
NB distributions.

Measures DE Dr Dasin Dlog DP DNB Ave
DE - 0.252 0.300 0.270 0.146 0.148 0.223
Dr 0.748 - 0.542 0.500 0.092 0.092 0.396
Dasin 0.700 0.458 - 0.364 0.118 0.046 0.337
Dlog 0.730 0.500 0.636 - 0.150 0.078 0.419
DP 0.854 0.908 0.882 0.850 - 0.178 0.734
DNB 0.852 0.904 0.954 0.922 0.822 - 0.891

4.4 Experimental results
In this section, we present experimental results of representative DR methods with

different dissimilarity measures, PCA variants, and NMF on both real and simulated

high-dimensional count datasets with large fractions of zeros.

4.4.1 Datasets

The high-dimensional count data considered in this chapter is the single cell RNA-

sequencing (scRNA-seq) data with unique molecular identifiers (UMI). By measur-

ing gene expression at a single-cell level, scRNA-seq offers a unique opportunity

to investigate the stochastic heterogeneity of complex issues at a near-genome-wide

scale [42–44]. scRNA-seq data with UMI are often modelled by NB or Poisson dis-

tributions [5–7] and exhibit large proportions of zero counts. We run experiments on
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both real and simulated scRNA-seq datasets. These datasets contain large propor-

tions of zeros, ranging from 0.6 to 0.97. The characteristics of the real scRNA-seq

datasets used in this chapter are summarised in Table 4.5. Cluster labels provided

by the real scRNA-seq datasets correspond to different cell types: labels for the

datasets obtained from [78] are assigned in terms of cancer cell lines and those for

the Zheng8eq dataset based on the types of purified peripheral blood mononuclear

cells. All the cluster labels reported in these datasets are defined independently of

gene expression profiles and can be used as the ground-truth labels. We simulate

three additional scRNA-seq datasets by using the R’s Splatter package [79] with

most of the parameters learned from real datasets except for differential expression

factors, which determine the difference between groups of cells and the number

of clusters. The information of the simulated datasets and the corresponding real

datasets used for simulations is summarised in Table 4.6.

Table 4.5: Real scRNA-seq datasets used in this chapter.

Dataset #clusters #cells #genes prop of zeros
sc-CEL-seq2 [78] 3 274 22060 0.678
sc-CEL-seq2-5cl-p1 [78] 5 297 15564 0.608
sc-CEL-seq2-5cl-p2 [78] 5 307 14078 0.598
sc-CEL-seq2-5cl-p3 [78] 5 305 13426 0.643
Zheng8eq [80] 8 3994 13301 0.957

Table 4.6: Simulated scRNA-seq datasets used in this chapter.

Dataset #clusters #cells #genes prop of zeros corresponding real dataset
sim-Zheng8eq 8 3994 13770 0.969 Zheng8eq [80]
sim-manno-vm 5 1977 19416 0.899 manno-ESCs [81]
sim-manno-ESCs 5 1715 19459 0.834 manno-ventral-midbrain [81]

4.4.2 Evaluation

We compare the proposed measures with two different types of methods that deal

with count data: the VSTs and the DR methods designed specifically for original

non-negative data. The proposed measures and DE’s of the data transformed by the

VSTs are compared based on their performances when integrated into representative

DR approaches, including PCA, tSNE, and GPLVM. In addition, the generalised

PCAs (GPCAs) [65] and NMF [70], which handle original non-negative data, are
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included in comparison. GPCAs assume observed data follow either Poisson or NB

distributions, denoted by GPCA-P and GPCA-NB, respectively. Note that r in DNB

and Dasin is set to the common NB dispersion parameter estimated by the R’s edgeR

package [82].

When applying tSNE with the proposed measures to the datasets, we replace

the Euclidean distance with the proposed ones to characterise the dissimilarities

between data points for the construction of conditional probabilities. When per-

forming PCA with the proposed measures, we first get a pseudo Gram matrix

by double-centring the corresponding pairwise dissimilarity matrix and then get

the low-dimensional components by eigen-decomposing the pseudo Gram matrix.

We empirically found that making the pseudo Gram matrix positive semi-definite

would produce better results when combined with GPLVM. Thus, we first eigen-

decompose the pseudo Gram matrix and keep all the eigenvectors with non-negative

eigenvalues. We then feed the modified pseudo Gram matrix QΛQT into the

GPLVM, where Q is the matrix whose columns are the kept eigenvectors and Λ

is the diagonal matrix whose diagonal elements are the corresponding eigenvalues.

We evaluate the performance of DR from two perspectives: visualisation and

clustering. We project the high-dimensional dataset onto a two-dimensional (2D)

space with a DR method and assess the 2D visualisation by visual inspection. A

good visualisation should exhibit well-separated groups of data. The k-means algo-

rithm [17, 18] is used for inferring the cluster labels of data in the space of reduced

dimension, and the number of clusters is set to be the ground truth. The cluster-

ing performance is assessed in terms of the adjusted rand index (ARI) between the

cluster labels from the original publication/simulation and the inferred ones. The

higher the ARI, the better the performance. Normally, tSNE and GPLVM map high-

dimensional data to a 2D space, and thus we consider only 2D projections when

evaluating their clustering performance. Since the results of the tSNE algorithm,

GPCA-P, and GPCA-NB could be variable, we replicate the procedure, of first per-

forming tSNE/GPCA-P/GPCA-NB and then applying k-means, for 10 times on the

datasets for a more reliable comparison. We evaluate the clustering performances of
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GPCAs and NMF in the spaces of different dimensions for a thorough comparison,

ranging from 2 to 7.
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Figure 4.3: Visualisation of the sim-manno-vm dataset obtained by GPLVM with different
measures. Different clusters are shown in different colours.

4.4.3 Visualisation

In this subsection, we examine whether the use of DNB can produce better visuali-

sation.

First, we visualise the dimension-reduced data obtained by different dissim-

ilarity measures. Figure 4.3 and Figures B.1-B.7 of Appendices B provide the

visualisation results obtained by GPLVM with different measures. It is observed

that GPLVMs with DNB, Dr, Dasin, and Dlog perform equally well on most datasets

except the sim-manno-ESCs dataset and the sim-manno-vm dataset. For the sim-

manno-ESCs dataset (Figure B.7 of Appendices B), GPLVMs with DP and DNB

display well-grouped data in the 2D space while those with the other measures fail

to do so. Furthermore, only the GPLVM with DNB can distinguish different groups

of data points on the sim-manno-vm dataset (Figure 4.3). As GPLVM seeks to pre-

serve the pairwise proximity amongst all data points, it could display the global
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Figure 4.4: Visualisation of the sc-CEL-seq2-5cl-p1 dataset obtained by PCA with differ-
ent measures.

60 30 0 30 60

60

30

0

30

60

GPCA-P

60 30 0 30 60
75

50

25

0

25

50

GPCA-NB

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5
NMF

Figure 4.5: Visualisation of the sc-CEL-seq2-5cl-p1 dataset obtained by GPCAs and NMF.

structure (inter-cluster proximity) well if the input proximity matrix properly char-

acterises the sample proximity. The visualisation results of the sim-manno-ESCs

dataset (Figure B.7 of Appendices B) and the sim-manno-vm dataset (Figure 4.3)

indicate that DNB characterises the global structure well and GPLVM with DNB

could be a superior tool for visualising clusters in high-dimensional count data con-

sisting of zeros.

Figures B.8-B.14 of Appendices B supply the visualisation obtained by tSNE
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with different measures. tSNEs with DNB, Dr, Dasin, and Dlog produce well-

distinguished groups of data on most datasets except for the sim-manno-ESCs

dataset (Figure B.13 of Appendices B) and the sim-manno-vm dataset (Figure B.14

of Appendices B), where all the measures fail to recognise the groups of the data.

By comparing PCA results with different measures in the 2D space (Figure 4.4 and

Figures B.15-B.21 of Appendices B), we found that PCAs with DNB, Dasin, Dlog

produce more distinguished groups of data on the sc-CEL-seq2-5cl-p1 dataset (Fig-

ure 4.4) and the sc-CEL-seq2-5cl-p2 dataset (Figure B.15 of Appendices B). For

the sc-CEL-seq2-5cl-p3 dataset (Figure B.16 of Appendices B), the PCA with Dlog

presents 3 distinguished groups while those with the other measures display only

2 groups. Both PCAs with DNB and Dasin separate the groups in the sc-CEL-seq2

dataset (Figure B.17 of Appendices B). PCAs with the proposed measures and the

VSTs perform equally well on the Zheng8eq dataset (Figure B.18 of Appendices B)

and the sim-Zheng8eq dataset (Figure B.19 of Appendices B). For the sim-manno-

ESCs dataset (Figure B.20 of Appendices B), the uses of Dr, DP, and DNB lead to

more distinguished groups in the data. Furthermore, it is observed in Figure B.21

of Appendices B that only the PCA with DNB can separate groups of data to some

degree on the sim-manno-vm dataset while those with the other measures fail to do

so.

Secondly, we assess the visualisation produced by GPCAs and NMF (Fig-

ure 4.5 and Figures B.22-B.28 of Appendices B) and compare them with those

obtained by the PCA with DNB. It is observed that the PCA with DNB display more

well-grouped data than GPCAs and NMF on most datasets except the Zheng8eq

dataset (Figure B.25 of Appendices B) and sim-Zheng8eq dataset (Figure B.26 of

Appendices B). For these two datasets, GPCAs distinguish the groups existing in

the data more clearly compared with the PCA with DNB.

To sum up, the representative DR approaches with DNB outperform those with

the other measures, and the use of DNB often results in visualisation better than

those produced by GPCAs and NMF.
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Figure 4.6: ARI of k-means with GPLVM and different dissimilarity measures on the
datasets: (a) sc-CEL-seq2-5cl-p1, (b) sc-CEL-seq2-5cl-p2, (c) sc-CEL-seq2-
5cl-p3, (d) sc-CEL-seq2, (e) Zheng8eq, (f) sim-Zheng8eq, (g) sim-manno-
ESCs, and (h) sim-manno-vm.



4.4. Experimental results 83

4.4.4 Clustering results

We first compare the proposed dissimilarity measures with those based on the VSTs

in terms of the clustering performances in the reduced spaces. The k-means clus-

tering results with GPLVM and different dissimilarity measures are shown in Fig-

ure 4.6. It is observed that GPLVM with DNB performs consistently well on most

datasets except the sc-CEL-seq2-5cl-p2, where its ARI value is slightly lower than

those obtained by the VSTs. Further, the GPLVM with DNB obtains much higher

values than the other measures on the sim-manno-ESCs dataset and the sim-manno-

vm dataset. To sum up, DNB outperforms the other measures when integrated into

GPLVM. Figure B.29 of Appendices B presents the k-means clustering results with

tSNE and different measures. The clustering performances obtained by tSNEs on

the datasets differ greatly from those by GPLVMs. For the sc-CEL-seq2-5cl-p1

dataset, the sc-CEL-seq2-5cl-p2 dataset, and the sc-CEL-seq2 dataset, tSNEs with

the VSTs and the proposed measures perform equally well according to their aver-

age ARI values. For the sc-CEL-seq2-5cl-p3 dataset, DNB and Dlog achieve more

stable and higher ARI values than the others. Unlike the performance obtained by

GPLVM, the tSNE with DE achieves the highest ARI value on both the Zheng8eq

dataset and the sim-manno-ESCs dataset, as well as a value approximately the same

as those with DP and DNB on the sim-Zheng8eq dataset. All measures perform

poorly on the sim-manno-vm dataset. There is no measure that maintains the supe-

riority over the other measures across the datasets when input into tSNE.

It is observed in Figure B.30 of Appendices B, DNB is superior to the other

measures when combined with PCA, irrespective of the number of dimensions, on

most datasets except for the sc-CEL-seq2-5cl-p3 dataset and the Zheng8eq dataset.

Furthermore, DNB outperforms most measures when the dimension is greater than

5 on the the sc-CEL-seq2-5cl-p3 dataset and the Zheng8eq dataset.

Secondly, we compare the proposed measures, which are input into PCA, with

GPCAs and NMF according to the clustering results provided in Figure 4.7. On

the sc-CEL-seq2 dataset and the sim-manno-vm dataset, the PCA with DNB not

only outperforms GPCAs and NMF by a large margin when dimension is 2 but
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Figure 4.7: ARI of k-means with GPCAs in comparison with that with PCA and the pro-
posed measures on the datasets: (a) sc-CEL-seq2-5cl-p1, (b) sc-CEL-seq2-5cl-
p2, (c) sc-CEL-seq2-5cl-p3, (d) sc-CEL-seq2, (e) Zheng8eq, (f) sim-Zheng8eq,
(g) sim-manno-ESCs, and (h) sim-manno-vm.
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also achieves the highest ARI value with the lowest dimension. The value of ARI

obtained by DNB is much higher than those by GPCAs and NMF when dimension

equals 2 on the sc-CEL-seq2-5cl-p1 dataset. For the sim-manno-ESCs dataset, the

ARI values of GPCAs dramatically decrease as the dimension increases from 6 to

7, while those obtained by PCAs with DNB and DP are higher and more stable.

Although the ARI values of DNB do not rise as the dimension grows from 2 to 4 on

the sc-CEL-seq2-5cl-p1 dataset and the sc-CEL-seq2-5cl-p3 dataset, PCA with DNB

outperforms GPCAs and NMF by a wide margin in the 2D space. For the Zheng8eq

dataset and the sim-Zheng8eq dataset, GPCA-P accomplishes the highest value with

the lowest dimension. It is found that the results of GPCAs could be highly variable,

indicated by the large variations of their ARI values for a fixed dimension size on

the sc-CEL-seq2-5cl-p2 dataset, the sc-CEL-seq2 dataset, and the sim-manno-ESCs

dataset.

Overall, the clustering performances obtained by the representative DR meth-

ods with DNB are superior to those with the other measures. Moreover, the PCA

with DNB outperforms GPCAs and NMF.

4.5 Conclusion
This chapter investigates how to perform DR for high-dimensional small count data.

We not only propose the dissimilarity measures with the KL divergence and the

Bayes estimators but also thoroughly compare them with the measures based on

the commonly used VSTs. An index that evaluates the dissimilarity measure’s abil-

ity to distinguish count data points from different distributions is proposed. We

investigate the statistical behaviours of different dissimilarity measures when the

dimension is high enough in terms of the proposed index. We find that the proposed

measures DNB is superior to the other measures in the sense that it distinguishes data

points from different distributions better. Consistent with the statistical comparison,

the experimental results demonstrate that DNB enhances a variety of standard DR

approaches. Furthermore, the experimental results show that DNB combined with

PCA achieve better visualisation and clustering performance compared with the
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methods handling original count data.



Chapter 5

Survival Analysis of

High-dimensional Data with Graph

Convolutional Networks and

Geometric Graphs

5.1 Introduction
Applications of survival analysis can be found in various areas, such as clinical

research [83,84] and credit scoring [85]. The primary objective of survival analysis

is to predict the time until the occurrence of the particular event of interest [86],

which is also called time-to-event prediction. A major challenge when dealing with

time-to-event data is the existence of censored instances, where the event times are

unknown and the information of such instances is available only up to specific time

points. Thus, it is impractical to directly apply those regression models designed

for data without censoring to the task of time-to-event prediction.

To perform survival analysis with censored instances, the Cox proportional

hazards model and its penalized extensions are commonly used [87–89]. These

models assume the proportional hazards and adopt the partial likelihood, possibly

with regularisation, to estimate the model coefficients for calculating the relative

risks and survival functions of patients. Apart from the Cox model and its variants,
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numerous machine learning approaches have been proposed for analysing time-to-

event data. Random survival forests (RSF), extending random forests to censored

data, are introduced with the log-rank test as the splitting rule for growing survival

trees [90]. Support vector methods have been successfully adapted for survival

analysis by reformulating the survival problem as a regression or ranking prob-

lem [91–93]. With the aid of multi-task learning, survival models can be improved

by efficiently using shared-knowledge of related survival problems [94, 95].

Recently, methods based on neural networks have been applied to time-to-

event data due to their ability to learn complex data structures. A common ap-

proach is to integrate the Cox regression into the framework of neural networks,

by employing the negative Cox log partial likelihood as a loss function. The par-

tial likelihood is a ranking loss that accounts for the ordering of patients’ relative

risks, and thus using it as a loss function often results in better concordance of sur-

vival predictions. Examples of such approaches include DeepSurv and Cox-nnet,

which use the multilayer perceptron (MLP) [84, 96]. Alternatively, a number of

approaches are proposed to circumvent the constraint of the proportional hazards.

The loss function of the partial likelihood is extended by letting the relative risk

function depend on time [97]. In [98–100], the authors cast the time-to-event for-

mulation to a discretised-time classification problem and directly model the survival

or hazard function at discrete intervals with neural networks. Most aforementioned

works based on neural networks aim to improve the ordering of the patients’ sur-

vival predictions, while the non-proportional extension of the Cox model [97] shows

the better calibration of survival time estimates. In spite of these successful applica-

tions of neural networks in survival analysis, most studies mentioned above conduct

experiments on datasets with the number of features much less than that of samples

(p� n). It is therefore in doubt that their performances on datasets of high dimen-

sionality (p� n) are still promising.

Graph convolutional networks (GCNs), where the convolution is extended

from grid-like data to graph-like ones, have witnessed success in many classifi-

cation tasks [25–27]. Under the framework of GCNs, people can exploit both sam-
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ples’ features and their relational information represented in the form of graphs.

Compared with the methods that do not consider a graph and solely utilise sam-

ple features, GCNs require the alignment between the graph and the class labels

as the essence for achieving better classification performance [101]. Concretely,

the graph convolution operation in GCNs aggregates and exchanges information

between neighbouring nodes in the graph and it is equivalent to a special form of

Laplacian smoothing; that is, GCNs make the features of neighbours more simi-

lar [13]. Thus, if a graph aligns well with class labels in the sense that neighbouring

nodes tend to belong in the same class, GCNs with the graph would improve the

class separation by making the features of the samples within a class more homoge-

neous and those across different classes more heterogeneous. On the contrary, with

a graph that is inconsistent with class labels, the features across different classes

would be homogenised by GCNs, in which case the GCNs are expected to perform

worse than the methods considering only independent features. Although people

often use available relational information represented in the form of graphs when

implementing GCNs, it has been shown that sample-to-sample sparse geometric

graphs derived from sample features can be used within GCNs to improve classifi-

cation by enhancing the alignment between data and class labels [14].

Inspired by the successful attempts of using GCNs and geometric graphs in the

context of classification, we propose a survival model based on GCNs and feature-

derived graphs. The above insights into GCNs suggest that the prerequisite of using

GCNs to improve survival analysis is that their input graphs align well with sample

survival times. That is, linked samples in the graphs should tend to have simi-

lar survival times. Otherwise, the graph convolution in the GCNs is inclined to

homogenise samples with markedly dissimilar survival times, and thus adversely

affects survival analysis. In this work, we therefore first investigate the alignment

between geometric graphs derived from features and survival times. We then study

how to construct graphs that can be used in GCNs to improve survival analysis.

Additionally, we employ survival data containing a large number of features for

comparison in this work (p� n) to study whether GCNs are able to reduce the
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overfitting, compared with the other approaches based on neural networks. The

technical novelty and contributions of our work can be summarised as follows.

First, we show that, for survival analysis, sparse geometric graphs built from

high-dimensional features are more favourable for GCNs compared with dense

graphs (Section 5.3.1). Second, considering that using a single sparse graph may

reveal only a small part of neighbours for each sample, particularly for those from

high-density areas, we propose to use multiple sparse graphs to uncover the lo-

cal neighbourhoods (Section 5.3.2). Third, we propose a survival model that not

only outputs the survival predictions but also captures the local neighbourhoods,

by using multiple sparse graphs with GCNs (Section 5.3.3). To this end, we first

construct various sparse graphs derived from random subsets of features, and each

constructed graph is then fed into a GCN with the widely used partial likelihood as

a loss function to get the survival forecast. With the principle that the aggregated

survival predictions from a subset of the constructed graphs would be superior if the

union of their edge sets approximates better the ground-truth one, we select graphs

and aggregate their predictions simultaneously by a proposed sequential forward

floating selection algorithm. The experimental results on real datasets in Section 5.4

demonstrate that the proposed survival model based on GCNs and multiple sparse

graphs outperforms state-of-the-art methods. The promising results of the proposed

model suggest that geometric graphs could be beneficial for the survival analysis of

high-dimensional data.

5.2 Preliminary knowledge
In this section, we briefly review some key concepts in survival analysis, the Cox

model, GCNs, geometric graphs, and evaluation metrics for survival models.

5.2.1 Survival analysis

Let T ? denote the time when a particular event of interest occurs. The primary

objective of survival analysis is to model the distribution of T ?. Specifically, it can
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be formulated as the lifetime distribution function

F(t) = P(T ? ≤ t) =
∫ t

o
f (s)ds,

where f (t) is the event density function. Equivalently, the survival function defined

as the complement of the lifetime distribution function S(t) = 1−F(t) = P(T ? > t)

is modelled.

In some survival models like the Cox model, instead of the survival function,

the hazard function is learned. The hazard rate function, denoted by h(·), is defined

as the event rate at time t conditional on survival until time t or later (that is, T ?≥ t):

h(t) = lim
dt→0

P(t ≤ T ? < t +dt | T ? ≥ t)
dt

=
f (t)
S(t)

. (5.1)

The survival function can alternatively be represented in terms of the cumulative

hazard function, denoted by H(·):

S(t) = exp[−H(t)],

where H(t) =
∫ t

0 h(s)ds.

As we mentioned before, it is possible that the events of interest are not ob-

served for some instances, a situation called censoring. This may occur when we

lose track of an individual or the maximum follow-up time is shorter than the sur-

vival time. Censoring falls into three groups: right-censoring, left-censoring, and

interval censoring. In this chapter, we consider the most common right-censoring

where the observed survival time is less than or equal to the true survival time. In

such scenarios, we observe a possibly right-censored time T = min{T ?,C}, where

C is the censoring time.

The feature vector and the observed time for the i-th individual are denoted

by xi and Ti, respectively. The full likelihood accounting for both censored and
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uncensored instances is

L = ∏
i

f (Ti | xi)
DiS(Ti | xi)

1−Di, (5.2)

where Di = 1{Ti=T ?
i } is the indicator function of the event occurrence.

5.2.2 Cox model

The Cox model is widely used in survival analysis [87]. As a semi-parametric

approach, it requires no knowledge of underlying survival distribution and assumes

that covariates have the exponential influence on the hazard. For the i-th individual,

the corresponding hazard function specified by the Cox model is given by

h(t | xi) = h0(t)exp[g(xi)], (5.3)

where g(xi) = βββ
T xi is the linear relative risk score function, and βββ is the coefficient

vector. The baseline hazard function h0 can be an arbitrary non-negative function of

time. In this model, it is infeasible to estimate βββ and the hazard function by using

the full likelihood as h0 is not specified. To deal with this estimation problem, the

partial likelihood that does not involve the baseline hazard function is proposed to

fit the model [87]. Suppose there are N distinct time points at which the event of

interest occurs, denoted by T1 < T2 < · · · < TN , and the covariate vector x with the

same subscript is the corresponding individual. Let Ri be the set of all individuals

at risk at time Ti (corresponding to min{T ?,C} ≥ Ti). The Cox partial likelihood is

given by

Lcox = ∏
i

 exp[g(xi)]

∑
j∈Ri

exp[g(x j)]


Di

. (5.4)

In practice, the negative partial log-likelihood is used to fit the model:

Lloss =−∑
i

Di

{
g(xi)− log[ ∑

j∈Ri

expg(x j)]

}
. (5.5)

The cumulative hazard function H(·) can be estimated by the Breslow estimator
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using β̂ββ that minimises Lloss.

The classical Cox model is unable to handle high-dimensional features due to

the overfitting problem, which encourages the regularised Cox models that take ad-

vantage of the norm regularisation to shrink coefficients. Two representative meth-

ods are Lasso-Cox with the `1 norm regularisation and Ridge-Cox with the `2 norm

regularisation [88, 89].

5.2.3 Graph convolutional networks

GCNs generalise the convolution operator to the graph domain and achieve promis-

ing performance in many areas. To investigate their potential in survival analysis,

we apply the commonly used GCNs proposed in [25] to high-dimensional time-to-

event data with Lloss as the loss function.

A graph can be represented as G = (V,E), where V is the node set, and E

is the edge set. In this work, we consider unweighted graphs, and each node in

the graph represents an observation with high-dimensional features. Suppose there

are n observations (samples) and each sample is characterised by a p-dimensional

feature vector xi ∈Rp. Let A = [ai j] ∈Rn×n be the adjacency matrix of G, and D =

diag(d1,d2, . . . ,dn) is the diagonal degree matrix where di = ∑ j ai j is the degree of

node i. The convolution matrix Â in GCNs is given by D̃−
1
2 ÃD̃−

1
2 , where Ã=A+In,

and D̃ = diag(d̃1, d̃2, . . . , d̃n) is the degree matrix calculated from Ã with d̃i = ∑ j ãi j.

Our work takes advantage of the two-layer GCN proposed in [25] with the last layer

outputs the risk scores for samples; that is, the relative risk function g(·) in the Cox

model is now parameterised by the GCN instead of a linear function βββ
T xi. Given

the data matrix X = [x1,x2, . . . ,xn]
T ∈ Rn×p, and the corresponding Â, the GCN

uses the following propagation rule to output the relative risk scores:

z = ReLU(ÂXW1)W2, (5.6)

where Wi is the weight matrix in the i-th layer (i = 1,2), ReLU(·) = max(0, ·)

is the activation function, and z ∈ Rn contains the relative risk scores of n sam-

ples. With the set of observed times {T1,T2, . . . ,Tn} and the set of event indicators
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{D1,D2, . . . ,Dn}, we train the weights by substituting the risk scores in Equation 5.5

with z from Equation 5.6 and optimising Lloss with gradient descent.

Unlike the original GCNs, the input graph in our model only consists of the

training samples during the training phase. After training, for an unseen new sam-

ple, we first derive a new graph which consists of both the training samples and

the new sample, and then plug the corresponding new adjacency and degree matrix

into Equation 5.6 to get the risk score of the unseen sample.

5.2.4 Geometric graphs

Inspired by the fact that Continuous k-Nearest neighbour (CkNN) graphs achieve

good performance in node classification with GCNs [14, 102], we feed CkNN

graphs into GCNs for performing survival analysis in this chapter. For a graph

with the number of neighbours for each sample fixed, a pair of samples that lie in a

poorly sampled area could be connected in the graph even though they are dissim-

ilar and far away from each other. The edge between these two dissimilar samples

is detrimental to the performance of GCNs with the graph as the graph convolution

homogenises the features of the samples. In contrast, CkNN graphs are able to al-

leviate this issue by adapting edge densities for different samples. The adjacency

matrix ACkNN = [aCkNN
i j ] ∈ Rn×n of a CkNN graph is defined as

aCkNN
i j =

1 if dist(i, j)< δ
√

dist(i, ik) dist( j, jk),

0 otherwise,
(5.7)

where δ is a parameter that regulates the graph density, and dist(i, ik) is the Eu-

clidean distance from a sample to its k-th nearest neighbour. The establishment

of a link between two samples in a CkNN graph depends on the densities of their

regions. To investigate how to appropriately apply CkNN graphs to time-to-event

data, we fix δ = 1 and vary k for simplicity. CkNN graphs become sparser/denser

with smaller/larger k values. Note that ACkNN equals a zero matrix and ÃCkNN is an

identity matrix when k = 0; that is, there is no edge between any samples.
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5.2.5 Evaluation metrics

In this chapter, we adopt three metrics for evaluating survival models: the time-

dependent concordance index, the distributional calibration, and the integrated Brier

score, which evaluate the discriminative performance, the calibration of survival

distributions, and the accuracy of survival predictions, respectively.

5.2.5.1 Time-dependent concordance index

Harrell’s concordance index is a widely used metric for evaluating the discrimina-

tion ability of survival models [103]. It extends the area under the receiver oper-

ating characteristic curve (AUC), which is used for assessing binary classification

models [104], to the case of time-to-event prediction. Furthermore, it has been

demonstrated that Harrell’s concordance index is closely related to the time-specific

AUC [105]. Harrell’s concordance index of a model that outputs the survival func-

tion Ŝ(·) is defined as

CIH = P
(
Ŝ(t | xi)> Ŝ(t | x j)) | Tj < Ti,D j = 1

)
, (5.8)

The CIH evaluates the consistency between the ordering of predicted survival times

and that of true survival times. When applied to proportional hazards models, we

only need to calculate g(·)’s which are independent of t to obtain CIH , since the

ranking between the predicted survival times remains the same over time. How-

ever, it is inappropriate to apply CIH to survival models where the ordering of sur-

vival predictions is time-dependent as CIH does not account for this. Therefore, we

adopt the time-dependent concordance index proposed in [106] to account for the

ordering of survival estimates that possibly changes over time. The time-dependent

concordance index is given by

CI = P
(
Ŝ(Tj | xi)> Ŝ(Tj | x j)) | Tj < Ti,D j = 1

)
. (5.9)

The CI falls in the range [0,1], and a CI value closer to 1 is better. Note that CI

reduces to CIH for the proportional hazards models.
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5.2.5.2 Distributional calibration

A survival model is well-calibrated if the predicted number of events obtained from

the model within any time interval is close to the observed number [107]. Mathe-

matically, a survival model is deemed to have the perfect calibration if its estimated

survival functions Ŝ(t | x)’s have the following property:

E
(
1Ŝ(t|x)∈I

)
= |I| , (5.10)

for any subinterval I of [0,1]. This definition is motivated by the fact that the un-

derlying true survival distribution S(t | x) is uniformly distributed. Thus, Ŝ(t | x) is

expected to be uniform if Ŝ(t | x)≈ S(t | x). To statistically test whether a survival

model is well-calibrated or not, distributional calibration (D-calibration) is intro-

duced [108]. The D-calibration process proposed by the authors consists of two

steps: first divide [0,1] into disjoint continuous intervals and then perform a χ2 test

by comparing the observed number of events and the predicted number across all

intervals. The comparison is conducted based on

∑
I∈I

[
E
(
1Ŝ(t|x)∈I

)
−|I|

]2
, (5.11)

where I is the collection of the disjoint continuous intervals of [0,1]. The survival

model is deemed to be well-calibrated if the p value output from D-calibration is

greater than the significance level.

5.2.5.3 Integrated Brier score

The Brier score is a measure that assesses the inaccuracy of probabilistic fore-

cast [109]. For the binary classification of N instances with labels yi ∈ {0,1}, the

Brier score of a model that outputs the probability P̂(yi = 1 | xi) is formulated as

1
N

N

∑
i=1

[P̂(yi = 1 | xi)− yi]
2.

The Brier score has been generalised to time-to-event data by calculating the Brier

scores for different time points and integrating them [110]. Specifically, for a fixed
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time t, we get the binary outcome from time-to-event data in terms of whether the

survival of a patient is longer than t or not and evaluate the model at t with predicted

survival estimates. The Brier score at t is defined as

BS(t) =
1
N

N

∑
i=1

[
Ŝ2(t | xi)1(Ti ≤ t,Di = 1)

Ĝ(Ti)
+

(
1− Ŝ(t | xi)

)2
1(Ti > t)

Ĝ(t)

]
, (5.12)

where Ĝ(·) is the Kaplan-Meier estimate of the survival function of the censor-

ing distribution P(C > t), and serves as a weighting function for instances. BS(t)

evaluates the calibration ability of a model for a fixed time point. To measure the

inaccuracy of survival predictions for a time interval, we consider the integrated BS

(IBS):

IBS =
1

t2− t1

∫ t2

t1
BS(s)ds. (5.13)

In practice, we employ numerical integration to approximate IBS. Lower values of

IBS suggest better calibration of survival estimates.

5.3 Methodology
In this section, we will first present the motivation of using sparse graphs con-

structed from high-dimensional features for GCNs. We then propose to use multi-

ple sparse graphs to uncover the local neighbourhoods of samples, which, compared

with a single sparse graph, could be more consistent with the survival times of sam-

ples. Finally, we introduce a sequential forward floating selection algorithm that

yields survival predictions by aggregating information from different graphs with

the aid of GCNs.

5.3.1 Motivation of using sparse graphs

In this subsection, we investigate how the parameter k of a CkNN graph affects the

alignment between the graph and the survival times, and our finding motivates using

sparse CkNN graphs. First, we evaluate the alignment in terms of two criteria that

quantify the similarity between the survival times of samples and a CkNN graph.

We then find that sparser CkNN graphs with smaller k may be favoured by GCNs

for survival analysis.
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Figure 5.1: Illustrative examples of four graphs (G1-G4) with different values of R1 and R2.
The nodes and their spatial locations are the same in different graphs. Edges
that are consistent with those in Gtime are shown in black, while those that are
not identified by Gtime are shown in green.

As discussed before, GCNs with a graph may help survival analysis if the

graph structure is consistent with the survival times of samples. That is, two samples

connected by an edge in the graph have similar survival times. We therefore evaluate

the quality of a geometric graph by comparing the consistency between its edge set

and the survival times. For some pairs of samples, we are unable to determine

whether there should be edges connecting them or not based on the difference of

their survival times due to censoring. We thus exclude these pairs when comparing

the edge set of a graph and the survival times. The set of comparable pairs is defined

as follows:

Scom =
{
(i, j) | (Ti−Tj)> cs,D j = 1 or

∣∣Ti−Tj
∣∣≤ cs,Di = 1,D j = 1

}
(5.14)

where cs is a pre-selected threshold for determining whether the survival times of

two samples are similar or not. Note that when evaluating the consistency, we only

consider the pairs in Scom. The set of the pairs of samples with similar survival

times Etime is given by

Etime =
{
(i, j) |

∣∣Ti−Tj
∣∣≤ cs,Di = 1,D j = 1

}
. (5.15)

We denote the edge set of a CkNN graph by ECkNN . The set of edges within
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the comparable pairs is E ′CkNN = ECkNN ∩Scom. With the principle that the edge set

of the graph used in a GCN should be as similar to Etime as possible, we use the

following two criteria to compare E ′CkNN to Etime:

• the ratio of appropriate edges in the CkNN graph:

R1 =

∣∣∣Etime∩E
′
CkNN

∣∣∣∣∣E ′CkNN

∣∣ ;

• the fraction of edges in Etime that have been successfully discovered by the

CkNN graph:

R2 =

∣∣∣Etime∩E
′
CkNN

∣∣∣
|Etime|

.

Note that R1 and R2 are similar to the widely-used precision and recall which are

metrics for evaluating binary models [111], respectively, in the sense that the pos-

itive instances are now defined as pairs in Etime. The higher R1 and R2, the better

the CkNN graph aligns with the survival times. Specifically, a high value of R1 in-

dicates that the corresponding graph tends to connect samples with similar survival

times, while higher R2 means that more pairs of samples with similar survival times

are retrieved by the graph. To illustrate the characteristics of graphs with different

R1 and R2 values, we provide example graphs in Figure 5.1. As suggested by the

higher value of R1 of G1, most edges identified by G1 link samples with similar sur-

vival times, but a relatively lower value of R2 indicates that a number of of edges

present in Gtime are missing in G1. That is, G1 discovers only a subset of the edge

set of Gtime. Although G2 obtains a higher value of R2 and discovers most edges in

Gtime, nearly half of the edges detected by the graph do not exist in Gtime, which is

indicated by a mediocre R1. Regarding G3, it is clearly observed that the graph is at

odds with Gtime, shown by the lowest values of both R1 and R2, compared with other

three graphs. Among these four graphs, G4 best fits GCNs: it is highly consistent

with Gtime and it achieves high values for both R1 and R2.

Figure 5.2(a) and Figure 5.2(c) present the plots of R1 and R2 against varying

k on different high-dimensional survival datasets. It is observed that there exists
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Figure 5.2: Plots of R1 and R2 calculated from CkNN graphs. (a) R1 (and (c) R2) versus
k on four high-dimensional survival datasets, whose information is provided
in Table 5.1. The corresponding CkNN graphs are built by using all available
features and different values of k. (b) R1 (and (d) R2) with varying number
of sampled features and different k on the BRCA dataset. The correspond-
ing CkNN graphs are constructed from subsets of features. The sampling and
graph-construction procedure for a fixed size (number of features) is repeated
10 times and we present their average R1 (and R2) values. The threshold cs

is set to the difference between the maximal and the minimal survival times
divided by 5 when computing R1 and R2.

a negative correlation between R1 and k, while the opposite trend is observed for

R2. The patterns presented in these two figures indicate that sparser graphs are

able to achieve higher R1 while denser graphs obtain higher R2. It seems difficult

for a single graph to achieve both high R1 and high R2. Sparse graphs could be

exemplified by G1 in Figure 5.1 and dense graphs by G2.

Although dense graphs are able to uncover more neighbours for a node than

sparse graphs, a dense graph with big k may assign many inappropriate neighbours

to nodes. As illustrated by G2 in Figure 5.1, for most nodes, a large fraction of

their neighbours have survival times that vary greatly from theirs. Thus, perform-

ing the graph convolution on most nodes could exacerbate their survival predic-

tions. Further, take a limiting case for instance, a GCN with the complete graph
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(A = 11T − I) makes the feature of one sample replaced with the average of all

the available samples. It is expected that a survival model based on the GCN with

such a graph performs no better than a random predictor since the features of all

samples are the same after smoothing. Compared with dense graphs, a GCN with

the graph obtained by small k is able to improve survival predictions of most nodes

with neighbours. Take the sparse graph (G1) presented in Figure 5.1 for an example:

among the nodes having neighbours, four out of five are connected to nodes with

similar survival times. Therefore, a GCN with E1 possibly improves the predictions

of these nodes. Based on the above comparison, We reason that sparse graphs are

favoured in practice when used in GCNs for survival analysis. Note that the limit

of sparse graphs is no graph and the corresponding GCN is equivalent to the MLP.

5.3.2 Multiple sparse graphs

As discussed before, graphs with both high R1 and R2 fit GCNs well. Although

sparse geometric graphs are able to achieve high R1, their R2 values are often small

as it is unlikely to uncover the complete local neighbourhoods of all nodes with a

single sparse graph. We therefore propose to unveil more neighbours for each node

and improve R2 by combining multiple sparse graphs within GCNs. Inspired by the

fact that the finite edge set Etime can be decomposed into subsets, we propose to first

construct a set of multiple sparse graphs SG = {Gi, . . . ,GnG}, where Gi = (V,Ei) for

i = 1,2, . . . ,nG. Then, we select the a subset of graphs Sselect ⊂ SG such that the

aggregation of the corresponding edge sets
⋃

Gi∈Sselect

Ei is more consistent with Etime.

Figure 5.3 illustrates an ideal case where multiple sparse graphs can be combined

to discover all the edges in Etime. All sparse graphs (G1,G2,G3,G4) in Figure 5.3

have perfect R1 value but low R2 value. These graphs are diverse in the sense that

their edge sets do not overlap too much. Although none of them fully uncovers

Etime, their combined graph with R1 = 1 and R1 = 1 is the same as Gtime. This

illustrative example indicates that combining diverse sparse graphs may increase R2

over original sparse graphs without dramatically decreasing R1.

The first problem of adopting the proposed approach is how to construct ap-

propriate multiple sparse graphs from available features. As two samples could be
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Figure 5.3: Illustration of using multiple sparse graphs (G1,G2,G3,G4) to uncover a graph
(Gtime). The nodes and their spatial locations are the same in different graphs.

The union of the corresponding edge sets
4⋃

i=1
Ei = Etime.

regarded as being similar in one graph and being dissimilar in the other graph when

the graphs are constructed using different subsets of features, we propose to use

random subsets of features to construct diverse sparse graphs. Figure 5.2(b) and

Figure 5.2(d) show that the values of R1 and R2 of the graphs obtained by using

different random subsets of features do not change much from those of the graph

built on all features. Thus, combining these sparse graphs possibly improves R2

without decreasing R1, leading to a graph better-suited for survival analysis. Ran-

dom (survival) forests also use different subsets of features to grow diverse trees,

but our approach distinguishes itself from them in that the proposed method aims to

discover more neighbours for each data point and make the combined model more

consistent with the underlying data structure, while random (survival) forests model

samples without considering their relationships.

It leads to the second question of how to select graphs and combine them for

survival analysis. To address this problem, we propose an implicit approach for

the selection of graphs with the aid of survival information. Our intuition is that,

if
⋃

Gi∈Sselect

Ei aligns well with Etime, the model that aggregates the outputs produced

from the GCNs with graphs from Sselect should perform well in terms of an eval-

uation metric designed for the time-to-event prediction. From this intuition, we

select the graphs in such a way that aggregating their outputs results in a good per-

formance, after training survival models based on GCNs with different graphs and
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obtaining their risk scores (Algorithm 2).

5.3.3 Algorithms

In the following, we first present the model which AGgregates the output from

GCNs for Survival analysis (AGGSurv) and then describe the details of graph se-

lection and aggregation.

5.3.3.1 AGGSurv

We first use random subsets of features to build different CkNN graphs. Inspired

by the finding that better alignment between the features and the graph in a GCN

benefits the classification performance [101], we then use the subset of features

from which the CkNN graph is constructed as the input of the GCN rather than

all the features. After training, for each constructed CkNN graph Gi with its edge

set Ei, we obtain its corresponding survival model Mi. Finally, we select a subset

of the constructed graphs and learn the aggregation model simultaneously with the

validation data. The summary of the algorithm is presented in Algorithm 1.

Algorithm 1 Survival analysis using GCNs and CkNN graphs

Input: the data matrix X ∈ Rn×p, the set of observed time {T1,T2, . . . ,Tn}, the set
of event indicators {D1,D2, . . . ,Dn}

Output: the set of selected graphs Sk, the aggregation model J(Sk) with the weight
vector wk.

1: Initialisation: sample subsets of features from X and construct multiple CkNN
graphs SG = {Gi}.

2: Step 1: input each subset of features and the corresponding Gi into a GCN and
obtain the trained model Mi, where i = 1, . . . ,nG .

3: Step 2: calculate the risk scores
{

ĝi j
}

of the validation data, where i= 1, . . . ,nG
and j = 1, . . . ,nval.

4: Step 3: feed
{

ĝi j
}

and SG into Algorithm 2 to obtain the output.

5.3.3.2 SFFS

In this work, we propose a sequential forward floating selection (SFFS) algorithm

to select the subset of the constructed graphs and learn the aggregation model (Al-

gorithm 2).

Let Sk be a set of k selected graph (|Sk|= k). The relative risk score of sample

j given by the graphs in Sk can be complied by a vector ĝ j = [ĝi j] ∈ Rk, where i
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Algorithm 2 SFFS algorithm for selecting graphs and learning the aggregation
model
Input: the set of CkNN graphs SG = {Gi} and their output risk scores

{
ĝi j
}

, where
i = 1, . . . ,nG and j = 1, . . . ,nval.

Output: the set of selected graphs Sk, and the weight vector wk ∈ Rk for linearly
aggregating the output risk scores.

1: Initialisation: S0 = /0, k = 0, w+ = [1], and cbest = 0. We first select the graph
G+ that obtains the highest CI on the validation data and set c to the correspond-
ing CI.

2: while c > cbest and k ≤ nG do
3: Sk+1 = Sk

⋃
{G+}

4: cbest = c
5: k = k+1
6: wk = w+

7: #conditional exclusion step:
8: if |Sk|> 2 then
9: G− = argmax

Gi∈Sk

max
w∈Dir(1k−1,30)

CI(Sk\{Gi} ,w)

10: w− = argmax
w∈Dir(1k−1,30)

CI(Sk\{G−} ,w)

11: ce = CI(Sk\{G−} ,w−)
12: if ce > c then
13: Sk−1 = Sk\{G−}
14: cbest = ce
15: wk−1 = w−
16: k = k−1
17: end if
18: end if
19: G+ = argmax

Gi∈SG\Sk

max
w∈Dir(1k+1,30)

CI(Sk
⋃
{Gi} ,w)

20: w+ = argmax
w∈Dir(1k−1,30)

CI(Sk
⋃
{G+} ,w)

21: c = CI(Sk
⋃
{G+} ,w+)

22: end while

is the index of the graph in Sk. The weighted average of the relative risk scores of

sample j can be computed by

ĝ j(Sk,w) = wT
k ĝ j,

where w is a weight vector generated from a symmetric Dirichlet distribution

Dir(1k), and 1k is a vector of ones with length k. The CI on the validation set
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with the averaged risk scores from Sk can be obtained as

CI(Sk,w) := CI(ĝ1(Sk,w)1, . . . , ĝnval(Sk,w)) .

To include one graph (step 3-6, 19-21 in Algorithm 2) or exclude a selected

graph for Sk (step 9-16 in Algorithm 2), we first sample a number of weight vectors

from a symmetric Dirichlet distribution Dir(1k−1) (exclusion) or Dir(1k+1) (inclu-

sion). In our experiments, we generate 30 weight vectors for each graph and denote

the set as Dir(1k−1,30) or Dir(1k+1,30) for simplicity. We then choose the weight

vector w such that the aggregated risk scores computed by using w attain the highest

CI on the validation dataset. This process is iterated for all the graphs which can

be possibly added to or removed from the set Sk, and the one with the highest CI

is added or removed. The algorithm stops when the CI can not be increased any-

more. Note that the output selected graphs in Sk can be combined into a weighted

graph, where the edge set is the union of those of selected graphs and the weight for

each edge can be obtained by the weighted sum of those of the graphs with the final

weight vector wk.

5.4 Experiments
In this section, the proposed AGGSurv model is extensively evaluated with com-

parisons to several other methods. Eight high dimensional datasets are used in our

experiments. The results show that AGGSurv outperforms the other approaches.

5.4.1 Datasets

The comparison of survival analysis performance is conducted on the high-

dimensional datasets obtained from The Cancer Genome Atlas (TCGA): https:

//www.cancer.gov/tcga. The datasets are downloaded from TCGA by using the

R/Bioconductor package: RTCGAToolbox [112]. The high-dimensional features

that we extract from TCGA for performing time-to-event prediction are the nor-

malised RNA sequencing data. The used datasets include the following eight can-

cer types: breast invasive carcinoma (BRCA), kidney renal clear cell carcinoma

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
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Table 5.1: Summary of the datasets used in the experiments.

Dataset Number of patients Number of features Prop. Censored
BRCA 1079 20224 0.860
KIRC 531 20221 0.670
LUAD 503 20172 0.638
BLCA 405 20215 0.560
HNSC 519 20234 0.576
LGG 511 20199 0.755
LIHC 365 20140 0.644
OV 303 20161 0.393

(KIRC), lung adenocarcinoma (LUAD), urothelial bladder carcinoma (BLCA),

head and neck squamous cell carcinoma (HNSC), brain lower grade glioma (LGG),

liver hepatocellular carcinoma (LIHC), and ovarian serous cystadenocarcinoma

(OV).

The characteristics of these datasets are summarised in Table 5.1. In the pre-

processing of the datasets, we remove the features with 0 variance and add a pseu-

docount 1 to all features, followed by a log transformation. We then standardise the

log-transformed data to make them centred around 0 with a unit variance for each

feature.

5.4.2 Methods

We compare AGGSurv to the classical Lasso-Cox [88], Ridge-Cox [88, 89], and

RSF [90], as well as the methods based on neural networks: DeepSurv [84], Deep-

Hit [98], and CoxTime [97]. To investigate whether the combination of multiple

sparse graphs is superior to using a single graph, we also take into account the sur-

vival model based on the GCN with a single graph (GSurv) where k in the CkNN

graph is determined by a grid search over the validation dataset.

5.4.3 Implementation details

For evaluation, we apply 10-fold cross validation for each dataset: we randomly

separate the data into a training set (90%) and a test set (10%), and 10% of the

training set is used for validation. For all sets, we keep the same ratio of censoring
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Table 5.2: Hyperparameters search spaces.

Hyperparameter Values
# Nodes in the hidden layer 16,32,64
Batch size 128,256
k (GSurv) 0,1,2,3,4,5,10
# durations (DeepHit) 10,20
α (DeepHit) 0,1
σ (DeepHit) 0.1,0.5,1,2.5,5,10,100
Split rule (RSF) log rank, log rank score
Node size (RSF) 5,10,15,20

as that in the original datasets.

All (graph) neural networks used in DeepSurv, CoxTime, DeepHit, GSurv, and

AGGSurv consist of an input layer and an output layer with one hidden layer. The

networks are trained by back-propagation via the Adam optimizer with a learning

rate of 5e-4. The dropout probability of 0.1 and weight decay of 1e+0 are applied in

the aforementioned methods. Early stopping is performed based on the validation

loss to avoid overfitting.

The optimisation of the other hyperparameters is performed individually for

each fold by a grid search, and the configuration is selected such that the corre-

sponding model achieves the best discriminative performance (CI) on the valida-

tion data. The search spaces for the hyperparameters are provided in Table 5.2.

The search spaces listed in the top two rows in Table 5.2 are applied to all methods

based on the (graph) neural networks. The regularisation parameters in Lasso-Cox

and Ridge-Cox are selected from the sequence provided by the glmnet function in

R package glmnet [89]. The number of trees in RSF is 500, which is found to be

empirically sufficient.

It is possible that samples (nodes) are too far away from each other, in which

case considering the relation between nodes using GCNs is unnecessary, particu-

larly for datasets of a small size. We thus take into account the case of no graph

when implementing GSurv and AGGSurv, which is equivalent to DeepSurv. Note

that the inclusion of no graph would not change the graph structure obtained by
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Table 5.3: Comparison of different approaches in terms of CI (averaged over the 10 folds).
The rightmost column shows the average ranking in terms of CI for each method
over the eight datasets. Note that the lower the ranking, the better the perfor-
mance. Top three models for each dataset are in bold.

Methods BRCA KIRC LUAD BLCA HNSC LGG LIHC OV Avg. ranking
CoxTime 0.637 0.711 0.592 0.636 0.598 0.781 0.652 0.570 5.625
DeepHit 0.643 0.664 0.581 0.633 0.562 0.759 0.667 0.582 6.250
DeepSurv 0.715 0.723 0.599 0.644 0.610 0.852 0.674 0.574 2.625
GSurv 0.697 0.723 0.600 0.639 0.595 0.852 0.667 0.577 3.625
AGGSurv 0.721 0.723 0.601 0.664 0.625 0.856 0.693 0.596 1.375
RSF 0.581 0.681 0.585 0.622 0.610 0.828 0.656 0.566 6.125
Ridge-Cox 0.700 0.709 0.585 0.612 0.632 0.843 0.691 0.582 4.000
Lasso-Cox 0.660 0.691 0.573 0.619 0.600 0.841 0.596 0.569 6.375

Table 5.4: Comparison of different approaches in terms of IBS (mean value over the 10
folds). The top three approaches for each dataset are in bold.

Methods BRCA KIRC LUAD BLCA HNSC LGG LIHC OV Avg. ranking
CoxTime 0.152 0.168 0.243 0.220 0.246 0.157 0.208 0.186 2.625
DeepHit 0.168 0.198 0.237 0.238 0.239 0.177 0.201 0.220 4.875
DeepSurv 0.154 0.169 0.246 0.239 0.241 0.169 0.232 0.189 4.625
GSurv 0.177 0.170 0.263 0.241 0.260 0.172 0.238 0.203 6.625
AGGSurv 0.160 0.165 0.246 0.230 0.234 0.169 0.225 0.187 3.125
RSF 0.167 0.178 0.215 0.218 0.223 0.169 0.207 0.173 2.500
Ridge-Cox 0.168 0.176 0.248 0.219 0.238 0.163 0.213 0.187 3.875
Lasso-Cox 0.205 0.200 0.306 0.239 0.247 0.229 0.249 0.223 7.750

combining the selected graphs in the sense that the edge set of no graph (Ã = I) is

an empty set and
⋃
i
Ei
⋃
∅ =

⋃
i
Ei. For each configuration of the network architec-

ture of AGGSurv, we first construct multiple graphs from random subsets of features

and input them into GCNs to get the corresponding results. Then, we input these

results into Algorithm 2 to get the aggregated predictions. Two different sizes of the

subset of features for constructing multiple CkNN graphs are used, which are 1500

and 3000. The sampling for each size is repeated 4 times for each configuration;

that is, 8 graphs is constructed for each configuration. The parameter k of CkNN

graphs is set to 1 so as to build sparse CkNN graphs for AGGSurv.

5.4.4 Results and analysis

In the following, we evaluate the discriminative performances of the survival models

in terms of CI, the calibration of the survival distributions with D-Calibration, and

the inaccuracy of the survival predictions according to IBS.

Table 5.3 shows that the mean values of CI obtained by different methods over



5.4. Experiments 109

Table 5.5: Comparison of different approaches in terms of D-Calibration. Each value rep-
resents the number of folds the corresponding approach yields well-calibrated
survival distributions on a dataset, which are determined by the p values output
from the D-Calibration processes. Note that we set the significance level to 0.05.
The approaches having well-calibrated survival estimates across all folds are in
bold.

Methods BRCA KIRC LUAD BLCA HNSC LGG LIHC OV Avg. number
CoxTime 10 10 10 10 10 10 10 10 10.000
DeepHit 10 10 9 7 8 10 10 6 8.750
DeepSurv 10 10 10 10 9 10 10 8 9.625
GSurv 10 10 9 8 8 10 9 5 8.625
AGGSurv 10 10 10 10 10 10 10 8 9.750
RSF 10 10 10 10 10 10 10 10 10.000
Ridge-Cox 9 10 9 9 10 10 9 6 9.000
Lasso-Cox 10 7 7 8 8 7 9 7 7.875

10-folds on each dataset, Table 5.4 presents the average IBS, and Table 5.5 provides

the number of folds each approach yields well-calibrated survival distributions on

each dataset. To facilitate the comparison of different approaches in terms of CI

and IBS, we provide the visualisations of both model rankings and p-values of the

statistical testing that tests whether one approach is significantly better than another

one in Figure 5.4 and Figure 5.5.

We first compare different approaches from the perspective of the discrimi-

nation (CI). Ridge-Cox is significantly better than DeepHit, RSF, and Lasso-Cox.

Furthermore, CoxTime is inferior to Ridge-Cox based on their average rankings

over the datasets. On the contrary, DeepSurv and GSurv which are based on the

proportional hazards assumption perform equally well as Ridge-Cox according to

the corresponding statistical testing. It is clear to see that AGGSurv presents the

lowest average ranking and its discriminative performance is significantly superior

to the other methods.

Second, we compare the methods based on their calibration performances

(IBS). CoxTime and RSF obtain better performances than the others in terms of

their lower average rankings. Furthermore, RSF performs significantly better than

most approaches except for CoxTime, AGGSurv, and Ridge-Cox. Overall, RSF

generally performs well over the datasets. Although most approaches based on the

neural networks and the Cox partial likelihood do rather poorly, AGGSurv achieves
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Figure 5.4: Visualised comparison of different approaches in terms of CI. Left: visualised
rankings of each method on different datasets in terms of CI. The value at the
(i, j) position is the ranking of the method in the i-th row on the dataset in the
j-th column. Right: visualised p-values of the one-sided Wilcoxon signed-rank
test between pairs of approaches obtained by comparing their CI. The alterna-
tive hypothesis is that the performance of the method in the i-th row is better
than that in the j-th row according to CI or IBS over all the datasets used.
Here we set the significance level to 0.05, i.e., one approach is significantly
better than the other if the corresponding p-value is smaller than the signifi-
cance level. Note that brighter colour and lower ranking value indicate better
performance.

above-average performance based on its average ranking and performs significantly

better than DeepSurv, GSurv, and Lasso-Cox.

Third, we compare different approaches in terms of their calibration perfor-

mances. CoxTime and RSF always output well-calibrated survival distributions on

the datasets and achieve the best calibration performance. Although AGGSurv is in-

ferior to CoxTime and RSF based on the average number of folds across all datasets,

its performance is better than the other approaches.

Lastly, by comparing AGGSurv and GSurv, we note that combining multi-

ple sparse graphs does provide an advantage over a single graph. Furthermore,

AGGSurv is shown to be able to remedy the overfitting problem of the high-

dimensional datasets compared to the other approaches based on neural networks.

To sum up, AGGSurv achieves the best discriminative performance and above-

average performance based on the calibration of the survival distributions and the

accuracy of the survival probabilities. Although RSF has the most accurate survival
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Figure 5.5: Visualised comparison of different approaches in terms of IBS. Left: visualised
rankings of each method on different datasets in terms of IBS. Right: visu-
alised p-values of the one-sided Wilcoxon signed-rank test between pairs of
approaches obtained by comparing their IBS.

probabilities in terms of IBS, the CI of the RSF approach is shown to be signif-

icantly worse than that of AGGSurv (p-value=0.004). In contrast, RSF does not

show a very significant advantage over AGGSurv in terms of IBS according to the

Wilcoxon signed-rank test (p-value=0.098). Further, the average number of folds

RSF produces well-calibrated survival distributions is only slightly larger than AG-

GSurv’s. Based on the above analysis, we conclude that AGGSurv provides a robust

approach for survival analysis of high-dimensional datasets by aggregating multiple

sparse graphs.

5.5 Discussion
The performances of the survival models in this chapter are internally validated

with the 10-fold cross validation. However, how well a survival model performs on

internal datasets used for training the model may not match its performance on an

external dataset. Thus, in the future work, it would be desirable to further evalu-

ate the generalisation abilities of different survival models with external validation,

which denotes the evaluation of a survival model on a new dataset that is indepen-

dent of the dataset used for training the models [113, 114].
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5.6 Conclusion
In this work, we first clarify that the prerequisite of a GCN model to improve sur-

vival analysis is to input a graph that aligns well with the sample survival times.

With this insight, we propose to combine multiple sparse graphs to uncover a graph

where the edges connect samples with similar survival times, aiming to improve sur-

vival analysis. We then propose a survival model that not only outputs the survival

predictions but also captures the local neighbourhoods, by using multiple sparse

graphs for GCNs. The key idea of the proposed approach is to aggregate the infor-

mation of local neighbourhoods from different sparse graphs and assess the aggre-

gated predictions by the survival information. The experimental results show that

the proposed model achieves the best concordance and above-average calibration

performance.



Chapter 6

Conclusions and Future Work

6.1 Conclusions
In this thesis, we have achieved three research objectives: develop a proximity

measure that is well-suited for single cell RNA-sequencing (scRNA-seq) data with

missingness, develop a proximity measure that is suitable for small count data, and

propose a method to construct graphs with proper edge sets that can benefit the

modelling of survival data.

First, Chapter 3 presents an unbiased estimator that is beneficial for a vari-

ety of dimension reduction methods in the presence of missing observations. The

proposed estimator can reliably measure the pairwise similarity between samples

with missingness. It is shown that the proposed estimator is consistent and its per-

formance is guaranteed as long as the dimension of input features is high. The

proposed estimator used with standard dimension reduction methods has been suc-

cessfully applied to scRNA-seq data with missingness. Further, the experimental

results and the propositions presented in Chapter 3 demonstrate that a higher di-

mension of input features would result in better dimension reduction results.

Secondly, Chapter 4 presents a dissimilarity measure that can be used to im-

prove standard dimension reduction, when applied to count data consisting of many

zeros. The proposed measure is developed with the Kullback-Leibler (KL) diver-

gence and the empirical Bayes estimator. With a proposed index that assesses the

discrimination abilities of dissimilarity measures, the proposed measure is shown
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to be capable of yielding more distinguished groups for small count data compared

with the Euclidean distances of transformed/original data. In addition, the statistical

analysis shows that although the variance-stabilisation transformations fail to sta-

bilise the variance of small counts, the Euclidean distance of the transformed data

has better discrimination ability than that of the original data.

Thridly, Chapter 5 provides a survival model developed based on graph con-

volutional networks (GCNs) and geometric graphs with proper edge sets. The de-

sirable characteristics of graphs when used with GCNs are clarified in the context

of survival analysis. Based on the finding that sparse geometric graphs possibly

benefit survival analysis when used with GCNs, a sequential forward floating selec-

tion algorithm is proposed to combine multiple sparse graphs, aiming at uncovering

local neighbourhoods of nodes and improving survival analysis. The promising

performance of the survival model demonstrates its effectiveness.

6.2 Future work

6.2.1 More accurate estimation of missingness probabilities

In Chapter 3, we estimate the heterogeneous missingness probabilities with the mo-

ment estimators. Although the proposed unbiased estimator of the covariance ma-

trix along with these estimates of missing probabilities result in meaningful and

distinguishable representations, the accuracy of the estimated probabilities is not

guaranteed. The reliability of these estimates inevitably impacts the convergence

rate of the proposed unbiased estimator and the corresponding dimension reduction

results. Thus, it would be interesting to focus on the accurate estimation of miss-

ingness probabilities under a general missing not at random mechanism in future

work. An available method is to estimate the missingness probabilities with the ma-

trix completion algorithm [115], but it is necessary to investigate how the estimated

probabilities obtained from the matrix completion algorithm affect the performance

of the proposed estimator. More specifically, how well these estimated probabilities

debias the Gram matrix.
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6.2.2 Dimension reduction for small counts with the

dependency assumption and a more general divergence

In Chapter 4, dimensions of count data are assumed to be independent for facilitat-

ing the statistical comparison between different measures and the calculation of the

proposed measures, but real-world data often display the dependency across dimen-

sions. Therefore, it would be valuable to extend the statistical comparison and the

computation of the proposed measures to the case of dependent dimensions. When

estimating the distributional parameters on a dimension, it is necessary to take into

account the dependency between this dimension and other dimensions. The proce-

dures of comparing different measures presented in this chapter need to be modified

to consider the dependency pattern.

The KL divergence used in this chapter is a special case of the commonly used

f -divergence [116, 117], which measures the divergence between two probability

distributions with a convex function. There exist a variety of statistical divergences

that are in the family of the f -divergence and can be explored in future work, such as

the squared Hellinger distance and α-divergence. Comparing these f -divergences

to reveal which one exhibits better discrimination ability would be an interesting

future research topic. Apart from that, it would be desirable to directly learn a

convex function that has better discrimination ability for the f -divergence.

6.2.3 Survival analysis with graph attention neural networks

As shown in Chapter 5, the survival times of two linked samples in a sparse geomet-

ric graph are often similar and thus, the graph could be beneficial for survival anal-

ysis when used with GCNs. On the contrary, GCNs may suffer from graphs with

too many noisy links that connect samples with markedly different survival times

as the graph convolution would tend to combine information for a sample from its

wrong neighbours. To address this issue, a possible solution is to use graph atten-

tion networks (GATs) [26] instead of GCNs to model survival times with geometric

graphs. Unlike GCNs, by utilising the multi-head attention mechanism, GATs ex-

plicitly modify the input graphs during training to alleviate noises from wrong links.
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Specifically, different weights are learned for different pairs of linked samples and

important neighbours receive higher weights. Noisy links would impact less the

final prediction of a sample compared with GCNs if GATs learn and assign lower

weights to its noisy neighbours. It would be interesting to study whether geomet-

ric graphs containing many noisy edges used with GATs could still benefit survival

analysis.



Appendix A

Chapter 3

A.1 Dataset pre-processing
For the pre-processing of the scRNA-seq datasets, genes (features) observed in less

than 2 cells (observations) are first discarded, followed by a log2 transformation

with pseudo 1 count added. For the other real datasets, we keep all features obtained

from the original publications.

A.2 Implementation details
There are several hyperparameters in the procedure of distinguishing between

dropouts and biological non-expression. We use k-means clustering, a key ingredi-

ent in analysing scRNA-seq data, and spectral clustering, accounting for the nonlin-

earity in the data. For each clustering method, a wide range of cluster numbers are

assigned: (4,6,8,10,12). The kernel coefficient in the spectral clustering is set to

be the average distance to the 7-th nearest neighbour. All other parameters are used

as default.

A zero count would be deemed to be biological non-expression if the propor-

tion of similar cells showing zero expression in the same gene exceeds the threshold

85%. In practice, we found that this threshold should be higher than 0.5, and we

would get better results when it ranges from 0.7 to 0.95.

For each DR benchmark or its variant when applied to the scRNA-seq datasets,

we replicate the procedure of first performing DR and then applying k-means 20

times. Each time when performing the k-means algorithm on the extracted low-
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dimensional components, the number of repeats of k-means starting with different

centroid initialisations is set as 30 for more reliable results.

For the simulated datasets, we first sample subsets of features, followed by

performing DR techniques. Last, we run the K-means algorithms on the low-

dimensional data points with 30 different centroid initialisations and obtain the most

reliable clustering results in terms of inertia.

A.3 Visualisation

A.3.1 Visualisation of PCA results on the real datasets
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Figure A.1: Visualisation of the fashion MNIST dataset obtained by PCA and its variants
integrated with the bias correction or imputations.
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Figure A.2: Visualisation of the Olivetti faces dataset obtained by PCA and its variants
integrated with the bias correction or imputations. Different colours represent
face images of different persons, and there are 40 persons in total.
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Figure A.3: Visualisation of the wine dataset obtained by PCA and its variants integrated
with the bias correction or imputations. Different colours represent different
classes of wine.



A.3. Visualisation 120

200 150 100 50 0 50

100

50

0

50

100

PCA

2.0 1.5 1.0 0.5 0.0 0.5
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
BC-PCA

80 60 40 20 0 20 40 60
60

40

20

0

20

40

60
softImpute-PCA

200 150 100 50 0 50

75

50

25

0

25

50

75

100

ice-PCA

200 150 100 50 0 50
100

50

0

50

100

scImpute-PCA

200 150 100 50 0 50

100

50

0

50

100

150

CIDR-PCA

zy
early2cell

mid2cell
late2cell

4cell
8cell

16cell
earlyblast

midblast
lateblast

Figure A.4: Visualisation of the Deng dataset obtained by PCA and its variants integrated
with the bias correction or imputations.
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Figure A.5: Visualisation of the Treutlein dataset obtained by PCA and its variants inte-
grated with the bias correction or imputations.
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Figure A.6: Visualisation of the Koh dataset obtained by PCA and its variants integrated
with the bias correction or imputations.



A.3. Visualisation 123

200 100 0 100 200
100

75

50

25

0

25

50

75

100
PCA

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25
BC-PCA

75 50 25 0 25 50 75 100

40

20

0

20

40

softImpute-PCA

250 200 150 100 50 0 50 100

100

50

0

50

100

ice-PCA

150 100 50 0 50 100 150
75

50

25

0

25

50

75

100

125
scImpute-PCA

100 50 0 50 100 150 200

75

50

25

0

25

50

75

100
CIDR-PCA

NP TH NF PEP

Figure A.7: Visualisation of the Usoskin dataset obtained by PCA and its variants inte-
grated with the bias correction or imputations.
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Figure A.8: Visualisation of the Kumar dataset obtained by PCA and its variants integrated
with the bias correction or imputations.
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A.3.2 Visualisation of GPLVM results on the real datasets
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Figure A.9: Visualisation of the fashion MNIST dataset obtained by GPLVM and its vari-
ants integrated with the bias correction or imputations.
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Figure A.10: Visualisation of the Olivetti faces dataset obtained by GPLVM and its variants
integrated with the bias correction or imputations.
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Figure A.11: Visualisation of the wine dataset obtained by GPLVM and its variants inte-
grated with the bias correction or imputations.



A.3. Visualisation 127

150 100 50 0 50 100 150
200

150

100

50

0

50

100

150
GPLVM

100 50 0 50 100 150 200

100

50

0

50

100

BC-GPLVM

80 60 40 20 0 20 40 60
60

40

20

0

20

40

60

softImpute-GPLVM

100 50 0 50 100 150

100

75

50

25

0

25

50

75

ice-GPLVM

100 0 100 200 300

150

100

50

0

50

100

150

scImpute-GPLVM

1500 1000 500 0 500 1000 1500
1500

1000

500

0

500

1000

CIDR-GPLVM

2338
2339

K562
BJ

HL60
iPS

Kera
GW21+2_

GW21_
NPC

GW16

Figure A.12: Visualisation of the Pollen dataset obtained by GPLVM and its variants inte-
grated with the bias correction or imputations.
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Figure A.13: Visualisation of the Deng dataset obtained by GPLVM and its variants inte-
grated with the bias correction or imputations.
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Figure A.14: Visualisation of the Usoskin dataset obtained by GPLVM and its variants
integrated with the bias correction or imputations.
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Figure A.15: Visualisation of the Kumar dataset obtained by GPLVM and its variants inte-
grated with the bias correction or imputations.
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Figure A.16: Visualisation of the Koh dataset obtained by GPLVM and its variants inte-
grated with the bias correction or imputations.
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A.3.3 Visualisation of tSNE results on the real datasets
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Figure A.17: Visualisation of the fashion MNIST dataset obtained by tSNE and its variants
integrated with the bias correction or imputations.
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Figure A.18: Visualisation of the Olivetti faces dataset obtained by tSNE and its variants
integrated with the bias correction or imputations.
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Figure A.19: Visualisation of the wine dataset obtained by tSNE and its variants integrated
with the bias correction or imputations.
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Figure A.20: Visualisation of the Pollen dataset obtained by tSNE and its variants inte-
grated with the bias correction or imputations.
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Figure A.21: Visualisation of the Deng dataset obtained by tSNE and its variants integrated
with the bias correction or imputations.
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Figure A.22: Visualisation of the Treutlein dataset obtained by tSNE and its variants inte-
grated with the bias correction or imputations.
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Figure A.23: Visualisation of the Koh dataset obtained by tSNE and its variants integrated
with the bias correction or imputations.



A.3. Visualisation 138

20 0 20 40 60
10

5

0

5

10

tSNE

20 10 0 10 20 30

20

10

0

10

20

30

40

50
BC-tSNE

60 40 20 0 20 40

40

20

0

20

40

60

softImpute-tSNE

40 20 0 20 40 60
60

40

20

0

20

40

60

ice-tSNE

40 30 20 10 0 10 20

20

0

20

40

60

80

scImpute-tSNE

5 0 5 10 15 20

120

100

80

60

40

20

0

CIDR-tSNE

NP TH NF PEP

Figure A.24: Visualisation of the Usoskin dataset obtained by tSNE and its variants inte-
grated with the bias correction or imputations.



A.3. Visualisation 139

80 60 40 20 0 20 40
140

120

100

80

60

40

20

0

20

tSNE

20 10 0 10 20

20

15

10

5

0

5

10

15

BC-tSNE

10 0 10 20 30

30

20

10

0

10

softImpute-tSNE

20 10 0 10 20

10

0

10

20

ice-tSNE

0 20 40 60 80

80

60

40

20

0

20

scImpute-tSNE

20 10 0 10 20 30
30

20

10

0

10

20
CIDR-tSNE

FBSLIF TwoiLIF Dgcr8KO

Figure A.25: Visualisation of the Kumar dataset obtained by tSNE and its variants inte-
grated with the bias correction or imputations.
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A.3.4 Visualisation of UMAP results on the real datasets
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Figure A.26: Visualisation of the fashion MNIST dataset obtained by UMAP and its vari-
ants integrated with the bias correction or imputations.
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Figure A.27: Visualisation of the Olivetti faces dataset obtained by UMAP and its variants
integrated with the bias correction or imputations.
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Figure A.28: Visualisation of the wine dataset obtained by UMAP and its variants inte-
grated with the bias correction or imputations.
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Figure A.29: Visualisation of the Kumar dataset obtained by UMAP and its variants inte-
grated with the bias correction or imputations.
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Figure A.30: Visualisation of the Pollen dataset obtained by UMAP and its variants inte-
grated with the bias correction or imputations.
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Figure A.31: Visualisation of the Deng dataset obtained by UMAP and its variants inte-
grated with the bias correction or imputations.
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Figure A.32: Visualisation of the Treutlein dataset obtained by UMAP and its variants in-
tegrated with the bias correction or imputations.
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Figure A.33: Visualisation of the Koh dataset obtained by UMAP and its variants integrated
with the bias correction or imputations.
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Figure A.34: Visualisation of the Usoskin dataset obtained by UMAP and its variants inte-
grated with the bias correction or imputations.
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Figure A.35: ARI of k-means with different DR approaches and their variants on the
scRNA-seq datasets (a) Deng, (b) Treutlein, (c) Kumar, and (d) Koh.
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Figure A.36: ARI of k-means with different DR approaches and their variants on the real
datasets (a) fashion MNIST, (b) Olivetti faces, and (c) wine.
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Chapter 4

B.1 Visualisation

B.1.1 Visualisation of GPLVM results
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Figure B.1: Visualisation of the sc-CEL-seq2-5cl-p1 dataset obtained by GPLVM with dif-
ferent measures.
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Figure B.2: Visualisation of the sc-CEL-seq2-5cl-p2 dataset obtained by GPLVM with dif-
ferent measures.
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Figure B.3: Visualisation of the sc-CEL-seq2-5cl-p3 dataset obtained by GPLVM with dif-
ferent measures.
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Figure B.4: Visualisation of the sc-CEL-seq2 dataset obtained by GPLVM with different
measures.
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Figure B.5: Visualisation of the Zheng8eq dataset obtained by GPLVM with different mea-
sures.
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Figure B.6: Visualisation of the sim-Zheng8eq dataset obtained by GPLVM with different
measures.
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Figure B.7: Visualisation of the sim-manno-ESCs dataset obtained by GPLVM with differ-
ent measures.
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B.1.2 Visualisation of tSNE results
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Figure B.8: Visualisation of the sc-CEL-seq2-5cl-p1 dataset obtained by tSNE with differ-
ent measures.
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Figure B.9: Visualisation of the sc-CEL-seq2-5cl-p2 dataset obtained by tSNE with differ-
ent measures.
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Figure B.10: Visualisation of the sc-CEL-seq2-5cl-p3 dataset obtained by tSNE with dif-
ferent measures.
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Figure B.11: Visualisation of the sc-CEL-seq2 dataset obtained by tSNE with different
measures.
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Figure B.12: Visualisation of the Zheng8eq dataset obtained by tSNE with different mea-
sures.
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Figure B.13: Visualisation of the sim-manno-ESCs dataset obtained by tSNE with different
measures.
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Figure B.14: Visualisation of the sim-manno-vm dataset obtained by tSNE with different
measures.
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B.1.3 Visualisation of PCA results
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Figure B.15: Visualisation of the sc-CEL-seq2-5cl-p2 dataset obtained by PCA with dif-
ferent measures.
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Figure B.16: Visualisation of the sc-CEL-seq2-5cl-p3 dataset obtained by PCA with dif-
ferent measures.
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Figure B.17: Visualisation of the sc-CEL-seq2 dataset obtained by PCA with different
measures.
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Figure B.18: Visualisation of the Zheng8eq dataset obtained by PCA with different mea-
sures.
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Figure B.19: Visualisation of the sim-Zheng8eq dataset obtained by PCA with different
measures.
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Figure B.20: Visualisation of the sim-manno-ESCs dataset obtained by PCA with different
measures.
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Figure B.21: Visualisation of the sim-manno-vm dataset obtained by PCA with different
measures.
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B.1.4 Visualisation of GPCAs and NMF results
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Figure B.22: Visualisation of the sc-CEL-seq2-5cl-p2 dataset obtained by GPCAs and
NMF.
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Figure B.23: Visualisation of the sc-CEL-seq2-5cl-p3 dataset obtained by GPCAs and
NMF.
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Figure B.24: Visualisation of the sc-CEL-seq2 dataset obtained by GPCAs and NMF.
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Figure B.25: Visualisation of the Zheng8eq dataset obtained by GPCAs and NMF.
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Figure B.26: Visualisation of the sim-Zheng8eq dataset obtained by GPCAs and NMF.
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Figure B.27: Visualisation of the sim-manno-ESCs dataset obtained by GPCAs and NMF.
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Figure B.28: Visualisation of the sim-manno-vm dataset obtained by GPCAs and NMF.
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Figure B.29: ARI of k-means with tSNE and different dissimilarity measures on the
datasets: (a) sc-CEL-seq2-5cl-p1, (b) sc-CEL-seq2-5cl-p2, (c) sc-CEL-seq2-
5cl-p3, (d) sc-CEL-seq2, (e) Zheng8eq, (f) sim-Zheng8eq, (g) sim-manno-
ESCs, and (h) sim-manno-vm.
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Figure B.30: ARI of k-means with PCA and different dissimilarity measures on the
datasets: (a) sc-CEL-seq2-5cl-p1, (b) sc-CEL-seq2-5cl-p2, (c) sc-CEL-seq2-
5cl-p3, (d) sc-CEL-seq2, (e) Zheng8eq, (f) sim-Zheng8eq, (g) sim-manno-
ESCs, and (h) sim-manno-vm.



Appendix C

ASSP: An Adaptive Sample

Statistics-based Pooling for

Full-reference Image Quality

Assessment

• Ling, Yurong, Fei Zhou, Kun Guo, and Jing-Hao Xue. ASSP: An adap-

tive sample statistics-based pooling for full-reference image quality assess-

ment. Neurocomputing, 2022. https://doi.org/10.1016/j.neucom.

2021.12.098

https://doi.org/10.1016/j.neucom.2021.12.098
https://doi.org/10.1016/j.neucom.2021.12.098
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