
Holographic Fourier domain diffuse
correlation spectroscopy

Dr Edward James
BSc BVSc BEng MRes MRCVS

A thesis submitted in partial fulfilment
of the requirements for the degree of

Doctor of Philosophy
of

University College London

Department of Medical Physics and Biomedical Engineering
University College London

16th May 2022



2



‘I have no special talent. I am only passionately curious.’

Albert Einstein (1879 - 1955)
(1921 Nobel Prize in Physics)

3



4



Declaration

I, Edward James, confirm that the work presented in this thesis is my own. Where
information has been derived from other sources, I confirm that this has been indicated
in the thesis.

5



6



Abstract

Diffuse correlation spectroscopy (DCS) is a non-invasive optical modality which can
be used to measure cerebral blood flow (CBF) in real-time. It has important potential
applications in clinical monitoring, as well as in neuroscience and the development of a
non-invasive brain-computer interface. However, a trade-off exists between the signal-
to-noise ratio (SNR) and imaging depth, and thus CBF sensitivity, of this technique.
Additionally, as DCS is a diffuse optical technique, it is limited by a lack of inherent
depth discrimination within the illuminated region of each source-detector pair, and the
CBF signal is therefore also prone to contamination by the extracerebral tissues which
the light traverses.

Placing a particular emphasis on scalability, affordability, and robustness to ambi-
ent light, in this work I demonstrate a novel approach which fuses the fields of digital
holography and DCS: holographic Fourier domain DCS (FD-DCS). The mathematical
formalism of FD-DCS is derived and validated, followed by the construction and valid-
ation (for both in vitro and in vivo experiments) of a holographic FD-DCS instrument. By
undertaking a systematic SNR performance assessment and developing a novel multis-
peckle denoising algorithm, I demonstrate the highest SNR gain reported in the DCS
literature to date, achieved using scalable and low-cost camera-based detection.

With a view to generating a forward model for holographic FD-DCS, in this thesis
I propose a novel framework to simulate statistically accurate time-integrated dynamic
speckle patterns in biomedical optics. The solution that I propose to this previously
unsolved problem is based on the Karhunen-Loève expansion of the electric field, and I
validate this technique against novel expressions for speckle contrast for different forms
of homogeneous field. I also show that this method can readily be extended to cases
with spatially varying sample properties, and that it can also be used to model optical
and acoustic parameters.
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Impact statement

Diffuse correlation spectroscopy (DCS) is a non-invasive optical modality which can be
used to measure cerebral blood flow (CBF) in real-time. It has important potential ap-
plications in clinical monitoring and neuroscience, as well as in the development of a
non-invasive brain-computer interface. Reducing the cost and enhancing the perform-
ance of such systems will allow for more widespread clinical use. There is currently
an unmet need to develop such an instrument using a continuous, noninvasive, and
portable bedside approach, and the research in this thesis addresses this important chal-
lenge.

DCS was first developed in 1997, and, until the last handful of years, developments
in DCS have been fairly quiescent. However, since 2016, the investigation of novel ap-
proaches to improve the sensitivity of DCS to CBF has attracted interest from several
research groups. Cognisant of this, in 2018 I began investigating a new approach to
DCS that overcomes the limited light throughput of conventional single speckle detec-
tion techniques, and which makes use of holographic multispeckle detection. Not only
does this approach demonstrate a significant signal-to-noise ratio (SNR) benefit, which
opens the door to improved CBF sensitivity, but it also benefits from a 10-fold reduction
in detector cost compared to conventional DCS, as well as operating without disturb-
ance from ambient light, which increases its potential use and impact in real-world clin-
ical settings. The in vivo feasibility of the approach is also demonstrated in this thesis.
Furthermore, the reduction in detector cost results in ease of system scalability, which
is an important consideration for achieving the end-goal of whole head coverage. The
impact of the research described in this thesis is further increased as it can be adapted
to include the work of other research groups (namely acousto-optic tomography (AOT)
and long wavelength DCS approaches), and it therefore has significant potential for
future applications.

Apart from the proof-of-concept validation of the novel approach to DCS that I
present, a further key outcome of this thesis is the multispeckle denoising algorithm
that I describe. This has allowed me to achieve an SNR gain of 36 using a detector that
costs £500. The current state-of-the art in multispeckle DCS detection was published
in 2020, and achieved an SNR gain of 32 using a detector that is two orders of mag-
nitude more expensive. Another key outcome of this thesis is the development of a
framework to simulate statistically accurate two-dimensional time-integrated dynamic
speckle patterns (2D-TIDSPs). The measurement of such patterns for the purpose of
CBF measurement using inexpensive low-frame rate cameras is an increasingly com-
monly performed task in the field of biomedical optics (indeed, the work presented in
this thesis is one such example of this). Despite this, and despite literature on this dating
from 2008, the generation of such a framework was an unsolved problem prior to this
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thesis. I therefore expect these two theoretical components to have a significant impact
on the biomedical optics community, specifically with regard to modelling and improv-
ing the SNR of time-integrated multispeckle detection for improved CBF sensitivity.
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1 Introduction

1.1 Motivation

The ability to be able to monitor cerebral blood flow (CBF) in a medical setting is of
crucial importance [1]. CBF, representing the perfusion of blood through the brain’s
tissue beds, needs to be maintained at an average resting value of 40 - 50 ml per 100g
of brain tissue per minute [2]. This perfusion level is necessary in order to support
the brain’s relatively high demand of 20 % of the body’s overall oxygen supply [3], as
well as to remove the waste products of metabolism. The neurons of the brain require
adenosine triphosphate in order to function, the production of which depends almost
exclusively on oxidative processes [4]. Inadequate CBF, even if only for a few minutes,
can lead to irreversible brain damage, ischaemic stroke, and death [1]. Excessive CBF
can cause damage to the blood-brain barrier, which can cause seizures, headaches, en-
cephalopathy, and stroke [5]. Durduran and Yodh therefore state that [3],

‘CBF is an important biomarker of brain health and function. It is a crit-
ical physiological parameter linking metabolic demand to oxygen supply,
oxygen supply to metabolic consumption, and metabolic consumption to
byproduct clearance’.

CBF monitoring is critical in unconscious or anaesthetised patients, as it provides
an indicator of the adequacy of the delivery of vital nutrients to the brain, as well as a
commentary on the efficacy of cerebral autoregulation (CA). CA is the intrinsic homeo-
static mechanism by which CBF is kept within tightly controlled bounds, in the face of
variations in mean arterial pressure (MAP) and intracranial pressure (ICP) [2].

Cerebral perfusion pressure (CPP) is the net pressure gradient that drives CBF and
causes the tissues of the brain to be perfused with blood. CPP can be calculated as the
difference between MAP and ICP [5, 6]

CPP = MAP − ICP. (1)

MAP is also known as arterial blood pressure (ABP) or systemic arterial pressure (SAP).
MAP in the brain is similar to the MAP anywhere else in the human body, and can be
determined by intraarterial catheterisation. MAP can also be approximated noninvas-
ively by

MAP = DP +
SP − DP

3
, (2)

where SP is systolic pressure and DP is diastolic pressure.
ICP is the pressure within the rigid human skull, the volume of which, according to

the Monro and Kellie doctrine, cannot change [7]. ICP is the sum of the partial pres-
sures of brain tissue, cerebrospinal fluid (CSF), and cerebral blood volume (CBV) con-
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tained within the skull, and thus may vary with any of these three partial pressures
[2]. Changes in ICP can occur in the healthy patient due to arterial pulsations within
the brain, changes in head and body positioning, or exercise, but may also occur due
to the administration of drugs or various disease states, such as traumatic brain injury,
intracranial haemorrhage or tumour, disorders of CSF circulation, and stroke [5, 7].

Analogous with Ohm’s or Darcy’s Law, CBF varies with CPP according to [5]

CBF =
CPP
CVR

, (3)

where CVR is total cerebrovascular resistance, and is associated with the entirety of the
brain’s vascular tree. Thus, one component of CA involves pressure autoregulation, by
which varying degrees of vasoconstriction and vasodilation are used to affect changes in
CVR. The other component of CA is metabolic autoregulation, in which CBF is adjusted
according to metabolic needs of the tissue. This metabolic effect is primarily attributed
to changes in brain tissue pH [2].

Figure 1.1: Within the autoregulatory range of 50 - 150 mmHg of mean arterial
pressure (MAP), cerebral autoregulation is intact, with no correlation between MAP

and CBF. Reproduced with permission from [5]. © 2016 Society of Photo-Optical
Instrumentation Engineers (SPIE).

In order to assess CA in a continuous or semi-continuous manner in hospitalised
patients, invasive measurements of ICP may be taken in order to calculate an estimate
of CPP, which may be used as a surrogate for CA assessment [6]. For example, in the
absence of CA, an increase in MAP will cause an increase in CPP [5]; alternatively, a
decreased CPP can be viewed as an indicator of low CBF and impaired CA. This also
allows clinicians to manage ICP directly, but has two disadvantages:
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• in certain populations of patients, clinicians would prefer to avoid the risks of
invasive continuous cerebral monitoring devices [8], such as the risk of bleeding,
infection, and misplacement [9];

• a more accurate assessment of CA may be inferred from direct measurements of
local CBF [3], and evaluation of its correlation with MAP, together with evaluation
of clinical neurological signs. As shown in Figure 1.1, there should be no correla-
tion between CBF and MAP when CA is operating effectively.

Indeed, raised ICP and low CBF are associated with ischaemia and poor outcomes fol-
lowing brain injury, and so many management protocols target these two parameters
directly [7].

CBF measurements may also be used to distinguish between hypoxia and ischaemia,
to avoid hyperperfusion injury, to characterise different types of hypoxic states, as well
as to examine connections between vascular physiology and neurophysiology (i.e., neuro-
vascular coupling) in healthy patients for neuroscience applications [4]. Finally, CBF
monitoring also has applications in the development of a noninvasive brain-computer
interface [10].

The motivation to measure local microvascular blood flow (BF) is by no means lim-
ited to the brain. Abnormal BF can be seen in a variety of medical conditions in the
various tissues and organs of the human body, and the utility of its measurement has
been demonstrated in conditions such as cancer and peripheral arterial disease (PAD),
as well as in the monitoring of muscle disease, and normal exercise physiology. A few
of these applications are briefly outlined below.

Worldwide, breast cancer is the most frequently diagnosed and primary cause of
cancer-related mortality amongst women [11]. Therefore, every incremental improve-
ment in breast cancer detection could have a significant impact on the detection of this
disease. Previous studies have shown that BF in tissues affected by breast cancer is lar-
ger than in normal tissues [12, 13]. BF measurements have been used to monitor the
response of:

• breast cancer to chemotherapy [13];

• head-and-neck cancer to chemoradiation therapy [14];

• prostate cancer to photodynamic therapy (PDT) [15].

It has also been demonstrated that BF measurement can be used in the prediction of the
response of murine tumours to PDT [16], as well as in the real-time in situ monitoring
of the response of prostate cancers to PDT [15].
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Measurement of BF in skeletal muscles has important applications in exercise medi-
cine and the furtherance of our knowledge of exercise physiology, as well as in the aid-
ing of our understanding of diseases such as PAD, and how muscle function is affected
by cardiovascular disease more generally [17]. There has also been recent interest in BF
imaging of the heart to assess cardiac tissue for evidence of myocardial infarction (i.e.,
heart attack) [18], which would be especially useful in the emergency setting.

1.2 Project aims

Despite the importance of CBF monitoring, there is currently a vacant niche for an inex-
pensive, continuous, noninvasive, portable, bedside, and non-ionising imaging/sens-
ing modality with which to measure CBF [19]. Indeed, Durduran and Yodh [3] state
that ‘clearly, an independent, versatile and noninvasive bedside monitor of local, mi-
crovascular CBF is desirable’, and in this paragraph I offer a requirements capture of the
idealised CBF measurement. Ideally this measurement would be performed in a con-
tinuous manner, with millimetre spatial resolution and centimetre depth penetration
in order resolve regional flow differences throughout the entire brain [3]. The meas-
urement would be obtained using an instrument that is non-ionising, noninvasive, and
portable, and which adheres to any relevant safety standards [20]. Ease of use is also an
important criterion, as is robustness to motion artefacts and ambient light, all of which
are conducive to successful continuous long term monitoring in the clinical setting. The
ability to be able to sample and contrast regional differences of CBF in the brain is im-
portant. Instrumentation and per measurement costs should kept as low as possible,
and the measurement technique should be compatible with patients of all ages. The
ability to be able to provide a range of functional diagnostic imaging information, with
high sensitivity at the smallest physical scale possible, is also desirable. Finally, real-
time operation with the millisecond temporal resolution that is required to capture in
vivo sample dynamics would ideally be achieved [19].

Diffuse correlation spectroscopy (DCS), which was first developed in the 1990s [21],
is a non-invasive optical imaging modality that can be used to measure CBF in real-
time [22]. However, one of the limitations of DCS is that a trade-off exists between
the signal-to-noise ratio (SNR) and imaging depth, and thus brain specificity, of this
technique [23]. This is because an increase in imaging depth requires the use of larger
source-detector separation (SDS) distances, which result in more photon losses due to
absorption and scattering, and a subsequent decrease in SNR. Additionally, as DCS is a
diffuse optical technique, it is limited by a lack of inherent depth discrimination within
the illuminated region of each source-detector pair, and the CBF signal is therefore also
prone to contamination by the extracerebral tissues which the light traverses [24]. Under
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optical properties typical of biological tissues, DCS measurements are sensitive to flow
at a depth approximately equal to one half to one third of the optical SDS distance [4,
8]. Thus, for a typical DCS setup with an SDS distance of 2 - 3 cm, attempts to measure
CBF are limited to superficial cortical regions. To date, deep CBF has not been measured
using DCS in human studies [4].

Given that the imaging of deep tissue perfusion is an important problem in the
field of medical imaging research [25], the investigation of novel approaches to im-
prove the sensitivity of DCS to CBF has recently attracted interest from several re-
search groups. Techniques including multispeckle detection strategies [10, 26, 27], time-
domain DCS (TD-DCS) [28], DCS in the short-wave infrared region [29, 30], interfer-
ometric approaches [23, 31, 32], and acousto-optic modulation [33] have all been pro-
posed. Informed by these approaches, and placing a particular emphasis on scalab-
ility, affordability, and robustness to ambient light, in this thesis I propose to explore
an approach which fuses the fields of digital holography and DCS: holographic Fourier
domain DCS (FD-DCS). The potential benefits of holographic FD-DCS compared to con-
ventional DCS are multiple: SNR that scales linearly with the square root of the num-
ber of camera pixels used, order of magnitude reduction in detector cost, robustness
to the effects of ambient light, shot noise limited detection using off-axis holography
[34], potential for detector scalability and sensor partitioning (which could facilitate
tomographic and depth discrimination techniques [35, 36]), and suitability to a range of
design wavelengths (which could confer a further SNR advantage [29]).

To explore the feasibility and potential advantages of holographic FD-DCS, the fol-
lowing key research objectives were pursued in this thesis:

1. Development of an FD-DCS analytical model.

2. Development of a holographic FD-DCS instrument suitable for in vivo pulsatile
multispeckle detection.

3. Absolute validation of both of the above against conventional DCS.

4. Demonstration of SNR advantage and insensitivity to ambient light with respect
to conventional DCS.

5. Demonstration of in vivo feasibility.

6. Rigorous characterisation and optimisation of system SNR performance.

7. Development of a simulation framework for a two-dimensional time-integrated
dynamic speckle pattern (2D-TIDSP), which could be used to feed into a forward
model for holographic FD-DCS.
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8. Development of novel expressions for speckle contrast for various forms of electric
field commonly encountered in biomedical optics.

1.3 Thesis overview and contribution

An overview of the literature pertinent to CBF is provided in Chapter 2. This includes
a critical assessment of non-optical, optical, and hybrid methods, as well as a concise
introduction to biomedical optics. DCS is the archetypal optical modality to measure
flow beyond a few millimetres of the tissue surface, and it is suitable for continuous,
noninvasive, portable, and real-time CBF measurement. However, the depth penetra-
tion and spatial resolution of DCS are fundamentally limited by the nature of diffuse
optics, and, in Chapter 2, I review the various approaches that have been employed to
overcome these limitations.

In Chapter 3, I introduce digital holography, and describe its previous applications
to biomedical optics. I then propose how digital holography and DCS can be combined
with a view to improving the SNR performance of DCS. In Chapter 3, I also describe
some of the potential barriers to success and the fundamental limitations of this pro-
posed technique.

Research objectives 1 - 5 are addressed in Chapter 4. The novel FD-DCS analytical
model that I have derived is presented and numerically validated. This is followed by
the development and validation of a holographic FD-DCS instrument that is suitable for
in vivo pulsatile multispeckle detection. Both the analytical model and the instrument
that I have developed are then validated against absolute conventional DCS measure-
ments over a physiological temperature range in an intralipid optical tissue phantom.
This validation required the development of not only a novel temperature dependent
model for the properties of intralipid optical tissue phantoms, but also the development
of a novel mixed motion DCS model. I also demonstrate the SNR advantage and relative
insensitivity to ambient light that holographic FD-DCS offers compared to conventional
DCS. The final contribution of Chapter 4 is a demonstration of the in vivo feasibility of
holographic FD-DCS, through the measurement of pulsatile flow rates measured in the
human forearm.

Research objective 6 is addressed in Chapter 5. The characterisation and removal
of noise sources can be broadly subdivided into four investigations: the diagnosis and
elimination of laser mode hopping, correction for the modulation transfer function
(MTF) of a holographic FD-DCS instrument, using a singular value decomposition
(SVD) spatiotemporal filtering approach to characterise and remove source noise, and
the development of a novel multispeckle denoising algorithm to characterise and re-
move detector noise. By undertaking this rigorous and systematic SNR performance
assessment, I demonstrate the highest SNR gain reported in the DCS literature to date,
which has been achieved using scalable and low-cost camera-based detection.
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Research objectives 7 and 8 are addressed in Chapter 6. The simulation of statist-
ically accurate time-integrated dynamic speckle patterns using a physics-based model
that accounts for spatially varying sample properties is yet to be presented in biomedical
optics, and in this chapter I propose a solution to this problem based on the Karhunen-
Loève expansion of the electric field. In Chapter 6, I also offer novel expressions for
speckle contrast for various forms of electric field that are commonly encountered in
biomedical optics. I then use these expressions to validate the novel time-integrated
dynamic speckle pattern simulation framework that I have developed. Finally, I then
show how the novel simulation framework can readily be extended to cases with spa-
tially varying sample properties, that it can also be extended to include any form of
electric field that results from various detection geometries, and that it can also include
sample dynamic properties, as well as optical and acoustic parameters.

In Chapter 7, I conclude my findings by summarising the thesis and detailing the
contribution to knowledge contained within. I then discuss the findings of my research
within the context of similar work by other researchers, the limitations of the research,
and the future work that could extend the investigations in this thesis.

I have published the research that was conducted for this thesis in two first author
peer reviewed journal articles, one in Biomedical Optics Express and one in Optics Let-
ters. For the former I was subsequently awarded the 2021 Robert Speller Prize for the
best paper by a PhD student in the UCL Medical Physics and Biomedical Engineering
Department. A third first author peer reviewed journal article has also recently been ac-
cepted for publication by Biomedical Optics Express. In addition to this, I have presen-
ted work from this thesis during four conference presentations at three international
conferences: Photonics West SPIE BiOS 2020 and 2022, and IEEE IPC 2021. I presen-
ted an invited conference presentation at Photonics West SPIE BiOS 2022, and I was also
nominated for the best student paper prize at IEEE IPC 2021. The work presented in this
thesis therefore represents a distinct and significant contribution to biomedical optics.
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2 Review of cerebral blood flow measurement methods

2.1 Chapter contribution

Many imaging modalities exist which attempt to measure cerebral blood flow (CBF),
each of which has its own distinct advantages and disadvantages. These modalities
may be broadly characterised by the various criteria described in Table 2.1. Within the
more general context of tissue blood flow (BF) measurement, Yu et al. [19] state,

‘The ideal BF measurement should provide quantitative information about
macro- and microvasculature with millisecond temporal resolution. The
measurements should be carried out continuously, noninvasively, and
without risk to subjects. Furthermore, ideal measurements would not be
limited to the tissue surface, i.e., it is desirable to probe BF in deep tissues.
Unfortunately, no such ideal modality exists.’

This chapter contains a concise review and critical assessment of CBF measurement
methods, and is divided into a treatment of non-optical, optical, and hybrid meth-
ods. Non-optical methods, which tend to not lend themselves well to continuous, non-
invasive, and portable CBF monitoring, are reviewed at the beginning of the chapter.
Having outlined a brief introduction to biomedical optics, both incoherent and coher-
ent optical CBF measurement modalities are described, which have a range of imaging
depths, spatial resolution, and measurement signal-to-noise ratio (SNR). Finally, the
motivation for hybrid imaging methods, which make use of the interplay between op-
tics and ultrasound, is described. Of the two hybrid modalities described, acousto-optic
tomography (AOT) shows the most promise for deep and spatially resolved CBF meas-
urement with a high enough measurement SNR to allow for clinically useful temporal
resolution. However, there are many challenges that remain in making AOT methods
an in vivo reality, and these are critically appraised at the end of this chapter.

2.2 Non-optical methods

With the notable exception of transcranial Doppler ultrasound (TCD), all the non-optical
methods described in this section suffer from at least one of the following drawbacks:
invasive measurement protocol, non-portability of equipment prohibiting bedside use
and necessitating patient transport, single measurement rather than continuous monit-
oring, and high instrument cost, both in terms of the instrument itself and instrument
time. This is supported by the observation by Durduran et al. [8] that local microvascu-
lar CBF is particularly difficult to measure at the patient’s bedside.
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2.2.1 Intravascular measurements

The Kety-Schmidt arteriovenous difference method [39] became the standard approach
to global CBF measurement following its publication in 1945. This technique involves
the inhalation of nitrous oxide (N2O) by the patient, and the subsequent exploitation
of its properties as an intravascular tracer that freely diffuses into the brain. Follow-
ing inhalation, the time required to reach a steady state concentration of [N2O]arterial =
[N2O]venous (as determined from femoral artery and right internal jugular venous blood
samples, respectively) is found to be inversely proportional to CBF, and this provides a
snapshot quantitative bedside result [5]. This process is relatively time consuming, with
a steady state concentration achieved in 10 - 15 minutes, during which CBF is assumed
to remain constant. This technique is also invasive, not practical in a clinical setting [40],
and is restricted to global CBF measurements.

Continuous jugular thermodilution is like the above method, but a cold miscible
tracer is used as the intravascular marker instead. This typically requires catheterisation
of an internal jugular vein to facilitate the injection of a suitable fluid tracer, as well as
measurement of temperatures of the blood and its mixture with the tracer. Jugular BF
can then be calculated by relating the rate of injection of the tracer fluid, the densities
of blood and the tracer, the specific heat capacities of blood and the tracer, and the
temperatures of blood, the tracer and their mixture [5]. Based on the assumption that
the left and right internal jugular veins both drain the brain equally, and knowledge of
total brain mass, CBF may then be inferred from jugular BF. A non-continuous double-
indicator dilution technique has also been proposed, based on injections of indocyanine
green (ICG) dye and iced water [41].

Jugular bulb oximetry is a form of intravascular measurement technique that in-
volves measuring the oxygen content of paired arterial and jugular blood samples, and
can provide information regarding the sufficiency of CBF relative to the metabolic de-
mands of the brain. This procedure is invasive and technically demanding, as well as
being prone to modelling errors regarding the proportion of the brain that is drained by
either the left or right internal jugular veins [7]. This technique cannot calculate direct
CBF measurements and assumes that cerebral autoregulation (CA) mechanisms are in-
tact. As with all the intravascular measurement techniques, global CBF measurements
will not be able to reflect regional ischaemic changes.

2.2.2 Nuclear medicine

The Kety-Schmidt technique can be further modified to exploit the radioactive prop-
erties of 133Xe or 85Kr. These gases may be administered to a patient via intraarterial,
intravenous, or inhalation routes, after which point they are diffusible and inert within
the body. Compared to N2O, a major advantage of using these noble gases is that they
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do not interfere with brain metabolism [40]. Measurement of the isotope’s concentration
clearance curve can then be undertaken at various regional locations over the brain’s
hemispheres, from which CBF can be calculated by modelling the observed clearance
curve as an exponentially decaying function.

This technique has the obvious disadvantage of exposing the patient to a certain
dose of ionising radiation, as well as giving measurements on a timescale of minutes
[5] using ‘bulky’ equipment [7]. This technique is also susceptible to missing low CBF
areas, due to the possibility of an adequately perfused region being superimposed upon
an inadequately perfused region (the ’look-through phenomenon’).

Single photon emission computed tomography (SPECT) and positron emission tomo-
graphy (PET) are two further methods which require exposure to ionising radiation, and
also additionally require arterial blood sampling for quantification of CBF [19]. PET can
provide further diagnostic information, including cerebral blood volume (CBV), and
information relating to both oxygen and glucose metabolism [5]. These two techniques
are both associated with considerable cost (especially PET), patient administration of a
radioactive nucleotide (which may limit suitability in certain clinical settings), limited
clinical availability, patient discomfort, and unsuitability for long-term monitoring [8],
particularly in a populations such as neonates [3]. It is of note that SPECT increases
the total dose of radiation exposure due to the use of both a radioactive nucleotide and
X-rays [40].

2.2.3 X-ray imaging

Xenon computed tomography (Xe-CT) involves the acquisition of a baseline computed
tomography (CT) scan of a patient’s brain, inhalation of a stable xenon gas mixture,
followed by the acquisition of subsequent CT scans, and the sequential subtraction of
the baseline values from xenon enhanced CT images. This yields a set of voxel-wise
tracer accumulation curves, from which CBF in each voxel can then be calculated. Xe-
CT suffers from particular susceptibility to patient motion artefacts [5], and, although
noninvasive and providing an absolute measurement, the instrument and the gas re-
quired to perform this technique are both expensive [8], and its capability to measure
CBF is limited to snapshot results at discrete time points.

Dynamic perfusion computed tomography (PCT) is a similar technique to Xe-CT
and involves the acquisition of a no contrast baseline CT scan of a patient’s brain, after
which an iodine based contrast agent is administered intravenously. This is followed
by a series of rapidly acquired CT scans to determine time-concentration curves of the
contrast agent, from which CBF may be inferred. The acquisition time for this tech-
nique, although far from being real-time, is relatively short at 40 seconds, and PCT has
a spatial resolution of ∼1.5 mm, and it is thus competitive with magnetic resonance ima-
ging (MRI) in this regard [3, 19]. Like Xe-CT, PCT also suffers from patient movement
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artefacts and is not suited to continuous monitoring.

2.2.4 Magnetic resonance imaging

MRI measurements of CBF may be made using dynamic susceptibility contrast MRI
(DSC-MRI), a technique that is also known as perfusion-weighted imaging or bolus-
tracking MRI. This technique requires the intravenous injection of a gadolinium-based
contrast agent. Unlike the Kety-Schmidt technique, this contrast agent stays in the vas-
cular space and does not cross the blood-brain barrier (BBB). The retention of the para-
magnetic contrast agent in the vascular space creates a magnetic field gradient between
the brain’s capillaries and its surrounding tissues, which is the source of contrast for
DSC-MRI measurements, and is affected by local CBF [5]. The use of a bolus injection
renders this technique minimally invasive.

Other forms of MRI which are noninvasive (because they rely on endogenous con-
trast and do not require the use of an exogenous contrast agent) are arterial-spin la-
belling (ASL-MRI), flow sensitive alternating inversion recovery (FAIR-MRI), and blood
oxygen level dependent (BOLD-MRI). BOLD-MRI, an example of a functional MRI
(fMRI) modality, makes use of the endogenous contrast associated with the magnetic
properties of deoxyhaemoglobin [42]. This can then be used to infer brain activity
through the principle of neuro-vascular (or activation-flow) coupling [3, 43]. ASL-MRI
is based on the premise of magnetically labelling water in the brain’s arterial inflow in
a labelling plane, and then measuring local CBF by quantifying the decrease in magnet-
isation in the imaging plane that is caused by the inflow of arterial blood, which carries
a negative magnetisation (i.e., a magnetisation that is flipped by 1800). Similarly, FAIR-
MRI operates on the principle of obtaining two inversion recovery (IR) images: one with
a slice-selective inversion pulse, and one with a non-slice-selective inversion pulse. The
signal enhancement between the two images is then directly related to CBF [44].

These MRI techniques are capable of imaging the entire head, and produce images
which can easily be registered to other fMRI and anatomical MRI techniques, with a spa-
tial resolution of as little as 2 mm [8, 19]. MRI machines require strong magnetic fields,
which may prohibit their use in certain clinical settings and in patients with metallic
implants (e.g., pacemakers). Claustrophobic patients and neonatal patients are not well
suited to this imaging modality, the latter of which may require sedation/anaesthesia
or be required to be asleep to reduce patient motion. Further, ASL-MRI suffers from
noise during low perfusion readings, as is often encountered with neonatal patients [4].
MRI technology is also expensive, requires patient transport, and is associated with a
low patient throughput. Many patients tend to undergo MRI examination only once
during their stay in hospital, during which time a snapshot measurement of CBF may
be recorded during an intrascan time which can be up to one hour in length [8], and
which is typically done in conjunction with a specific research protocol [19].
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2.2.5 Ultrasound

Of all the imaging modalities outlined in Section 2.2, TCD is the ‘only one non-optical
method [that] is available for routine, non-invasive monitoring of cerebral haemody-
namics at the bedside’ [3]. This is achieved by measuring frequency shifts in reflected
probing ultrasound pressure waves, that have been scattered by moving red blood cells
(RBCs)1. When RBCs flow toward/away from a fixed ultrasound source, the frequency
of the reflected ultrasound wave is increased/decreased due to the Doppler effect. The
amount of Doppler shift ( fd) is related to the frequency ( f ) of the ultrasound source, the
speed of the scattering RBCs (v, which can be positive or negative), the cosine of the
angle of insonation (θ), and the speed of ultrasound in the medium (c0), by the Doppler
equation

fd = ± f vcosθ

c0
. (4)

The Doppler signal is usually extracted from a localised range gate that processes only
a segment of the received signal [46]. To improve frame rates, a colour Doppler image
may be processed within a small colour box (i.e., region of interest) within a B-mode
ultrasound image [5].

TCD is capable of measuring flow in large vessels with millimetre spatial and mil-
lisecond temporal resolutions, but is limited to be being performed through ultrasonic
‘bone windows’ and to measurement of the proximal portions of the basal brain arter-
ies (posterior, middle, and anterior cerebral arteries) and the circle of Willis (Figure 2.1)
[3]. This technique has achieved success when assessing patients with proximal arterial
occlusions, but may be less useful in other important clinical applications, such assess-
ment of stroke patients [8].

Steiner and Andrews describe this technique as ‘easy to use and noninvasive’ and
that it ‘can be used repeatedly’ for serial bedside measurements [7]. The same authors
state that TCD is ‘the simplest way to noninvasively obtain repeated real-time estimates
of CBF’. However, this is at odds with the findings of Lipnick et al. [48],

‘Accurate TCD measurements and interpretation require the presence of ad-
equate transcranial windows, a highly trained technician to perform the study,
and a physician who can interpret the study. Measurements cannot easily be
done continuously and may be subject to interference from electrical noise’,

and

‘Despite numerous scenarios where continuous CBF measurement could provide
useful clinical information (e.g., vasospasm in subarachnoid patients or flow

1Blood contains 45 % RBCs by volume, and the remaining cellular component is contained within the
buffy coat, which occupies less than 1 % of the blood by volume and is composed of white blood cells and
platelets [45]. Hence, when considering the scattering effects of moving blood cells, the relevant literature
focuses on the effects of RBCs.
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Figure 2.1: Transcranial Doppler ultrasound (TCD). Transtemporal bone window (left)
and measurement of BF velocity in the left middle cerebral artery (middle). TCD

spectrum (right) in which the x axis corresponds to time, the y axis corresponds to flow
velocity, and colour corresponds to relative amplitude. Reproduced with permission

from [47] under the terms of a Creative Commons Attribution 3.0 License. Copyright ©
2014 Lu, Mamun, and Chau.

monitoring during carotid endarterectomy), relatively few intensivists, an-
aesthesiologists, or intensive care unit nurses are proficient with TCD. Fur-
thermore, even where trained personnel are available to provide TCD, con-
tinuous measurements for prolonged periods remain technically challenging’.

This highlights the operator dependence of TCD measurement in the clinical setting,
and indicates that there is a need for a CBF measurement technique that requires less
training, greater ease of use, and that is more robust to both patient and probe position-
ing, and therefore more conducive to continuous monitoring in the hospital.

It should also be noted that TCD only provides an estimate of CBF, and that, ad-
ditionally, this technique measures macrovascular speed of BF. This can be related to
CBF through knowledge of the diameter of the insonated blood vessel (as well as other
factors such as RBC velocity spectrum and regional flow distribution [41]), assuming
that this and the angle of insonation do not change throughout the examination, and
that both can be measured accurately. This relationship introduces uncertainty when
converting speed of BF (cm/s) into volumetric flow (ml/s), and knowledge of the mass
of brain tissue perfused by the insonated vessel is then required to convert from relat-
ive to absolute CBF units [49]. Durduran and Yodh report that in some patients many
arteries cannot be insonated, and that estimates of CBF from TCD can be ‘problematic’
if the diameter of the insonated artery is not measured with sufficient accuracy [3].

To provide information regarding tissue bed perfusion, ultrasound examination re-
quires supplementation with an exogenous contrast agent, such as microbubbles [19].
This technique is known as contrast enhanced ultrasound (CEUS). Microbubbles flow
into regions of interest, and tissue perfusion metrics can be obtained from measured
contrast time-intensity curves [40]. The advantages of CEUS are that it can be performed
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at the bedside, and that neither patient sedation nor ionising radiation is required. Fur-
thermore, it has been postulated that CEUS could be used to screen for patients suf-
fering from hypoxic ischaemic encephalopathy (HIE), on the basis that CBF is a useful
biomarker for neonatal HIE [40]. Another potential advantage of this technique is that
microbubbles can be targeted to specific cell receptors, and they can also be used for
therapeutic purposes by loading them with drugs [46]. However, a recent case study
reports that an ultrasonographer, with 20 years’ experience, required 14 minutes to per-
form a brain CEUS scan [50]. CEUS, which is also invasive due to the required exogen-
ous contrast, is therefore not suited to continuous long-term monitoring of hospitalised
inpatients.

Transit-time ultrasonic flowmetry is an invasive surgical method that involves pla-
cing two ultrasound transducers on one side of a blood vessel, and an acoustic reflector
on its other side [51]. By measuring transit times from one ultrasound transducer to the
other, both with and against the direction of BF, volumetric BF (ml/s) can be calculated,
which can be taken as a relative measure of CBF (analogous to the jugular thermodilu-
tion method) [5].

2.2.6 Thermal diffusion

Thermal diffusion flowmetry (TDF) can provide a continuous bedside measure of abso-
lute focal CBF with excellent temporal resolution, but in a notably invasive manner. A
probe is inserted through a burr hole in the skull and placed on or in a cortical region of
the brain. CBF measurements can be calculated based on the principles of conduction of
heat by brain tissue and the convective flow of heat by BF, within a 20 - 30 mm3 volume
of brain tissue [5]. The probe itself consists of two thermistors, one of which is heated,
and there is then an inverse relationship between CBF and the temperature difference
between the two thermistors.

This technique is contraindicated in feverish patients, and the modelling assump-
tions upon which it operates may break down if the probe is placed close to a large
blood vessel. The probe must remain stationary to yield reliable results, and the use of
an invasive probe may not be appropriate in certain populations of patients [3].

2.3 Optical methods

Light has the distinct advantage of having photon energies which match the electronic
and vibrational energy levels of many biological compounds. This can be useful when
detecting specific changes at the molecular level, which may then be used to calcu-
late functional changes of physiological parameters [52] (e.g., blood oxygenation levels).
Light therefore has the potential to both target and provide detailed information about
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specific molecules in biological tissue. Compared with other imaging modalities, e.g.,
MRI or CT, optical imaging enables real-time assessment of patients with equipment
that is relatively portable and inexpensive [53], with cost reductions that are in part
due to the development of light guides for the telecommunications industry. As op-
tical imaging devices are often lightweight and do not present significant physical re-
straints, they lend themselves well to the development of wearable devices which can
be used to study a wide range of behaviours in a broad range of subjects [54]. Indeed,
the first functional brain imaging study in infants in Africa, performed in a remote field
station, is attributed to the field of functional near-infrared spectroscopy (fNIRS) [55].
Light sources can also be highly controlled and engineered (in terms of modulation fre-
quency, focusing power, and transmission along optical fibres), and emit radiation that
is non-ionising in the near-infrared (NIR) range of the electromagnetic (EM) spectrum
[52].

2.3.1 Introduction to biomedical optics

Biomedical optics refers to the interaction of light and biological tissue, and how this in-
teraction can be exploited for sensing, imaging, and therapy. Light in this context refers
to visible wavelengths (380 - 750 nm), as well slightly shorter (ultraviolet) and longer
(NIR) wavelengths. The concise introduction to biomedical optics that follows includes
a discussion of optical absorption and scattering, light transport theory, modelling the
time-resolved interaction of light with biological tissues, and autocorrelation functions
of coherent light.

The field of diffuse biomedical optics can be broadly divided into incoherent and co-
herent methods. The aim of incoherent methods is to quantify tissue optical properties,
from which oxygen saturation may be inferred. Near-infrared spectroscopy (NIRS) is
an example of an incoherent method, and this is introduced in Section 2.3.2. The aim
of coherent methods is to quantify sample dynamics directly by analysing spatiotem-
poral fluctuations of scattered coherent light. Surface sensitive coherent methods are
introduced in Section 2.3.4, and coherent methods with deeper imaging sensitivity are
introduced in Sections 2.3.5 - 2.3.9. NIRS is the most commonly used diffuse optical
technique to measure cerebral haemodynamics at present. However, in this section, I
outline the potential benefits that coherent methods offer, the challenges that are faced
when using coherent methods, and recent approaches that have been investigated to
overcome these challenges. This review of coherent methods serves to inform the novel
approach to DCS that is subsequently investigated in this thesis.
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2.3.1.1 Optical absorption and scattering

Molecules within biological tissue that absorb light are called chromophores, which are
the parts of a compound responsible for its colour. For example, red objects appear red
to the human eye as their chromophores strongly absorb all parts of the visible EM spec-
trum apart from red wavelengths, which may be reflected back to the observer. White
objects appear so as they reflect all incident light, and black objects appear so as they
absorb all incident light. Each of these chromophores has a specific absorption spectrum
that is a function of the wavelength of incident light. During absorption, photon energy
is converted into vibrational, electronic, or rotational energy in the absorbing chromo-
phore.

Photons passing through biological tissue will also be scattered into directions away
from their original path of propagation, due to random fluctuations in the refractive
index of tissue at a cellular level. The amount of scattering tends to decrease with an
increased wavelength of incident light. The amount of refraction depends on the re-
fractive index, n, of the tissue, with typical values of n being in the range of 1.33 - 1.55
for water and fat, respectively [56]; however, the bulk refractive index of tissue is often
considered to be constant on a macroscopic scale.

Absorption and scattering represent the main two categories of the interaction of
light with biological tissue, both of which will place a limit on how far light can travel
into it [53]. They can be characterised by two coefficients when considering light-tissue
interactions:

• µa, the absorption coefficient (per unit length);

• µs, the scattering coefficient (per unit length).

The probability of a photon being absorbed whilst travelling a short distance dz
within tissue is given by the product µadz. Alternatively, the absorption mean free path
(or optical absorption depth) is simply the reciprocal of the absorption coefficient, and
gives the average distance travelled by a photon before it is absorbed. This is also the
distance over which a collimated beam will have its intensity reduced by a factor of
1/e (∼37 %) due to absorption alone. Aside from melanin, water, collagen, and lipids,
haemoglobin is one of the main endogenous optical absorbers in biological soft tissue,
and is the chromophore that most influences functional optical imaging (in both its oxy-
genated and deoxygenated states).

Similarly, the probability of a photon being scattered whilst travelling a short dis-
tance dz within tissue is given by the product µsdz. Typical values for µs in soft tissue
are 100 - 1000 cm-1 at NIR wavelengths [57], with scatter being the most dominant light-
tissue interaction in this part of the EM spectrum. The total attenuation coefficient can
then be defined as

µt = µa + µs, (5)
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which can be used to model the exponential decay of the intensity of light in the un-
scattered part of the beam (i.e., the part that remains collimated) due to both scattering
and absorption. The average distance travelled by a photon before it is absorbed or
scattered is known as the optical mean free path, which is the reciprocal of the total
attenuation coefficient. This distance is also known as the optical penetration depth;
beyond this depth limit a collimated beam is no longer collimated, and photons move
out of the ballistic regime and closer to the diffuse or ‘random walk’ regime.

Compared to other wavelengths of light, the optical penetration depth is greatest in
skin tissues for red and NIR light, where incident optical energy drops by a factor of
1/e at a depth of 1 - 3 mm [53]. For this reason, the wavelength range 650 - 1300 nm is
referred to as the ‘optical window’, which comes about due to the relatively low levels
of absorption by endogenous chromophores at these wavelengths.

Figure 2.2: Absorption spectra for various endogenous chromophores in biological
tissue: oxyhaemoglobin (O2Hb), deoxyhaemoglobin (HHb), proteins, water, collagen,

fat, and cytochrome oxidase (CtOx). Reproduced with permission from [58].
Copyright © 2013 Elsevier Inc. All rights reserved.

The scattering coefficient indicates how much light is scattered out of a collimated
beam, but it does not offer any information on the direction of scattering. To include this
angular information, we must consider a scattering phase function, which can be meas-
ured using a goniophotomoter, or goniometer. A commonly employed scattering phase
function is the Henyey-Greenstein function [59], which is widely used for modelling
tissue optics. Scattering phase functions makes use of the anisotropy factor, g, which is
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defined as the average cosine of the scattering angle. Therefore g can take values any-
where in the range of −1 ≤ g ≤ 1, where positive values imply forward scattering and
negative values imply back scattering. If the magnitude of g is large, then the scatter-
ing phase function is anisotropic; on the other hand, if g = 0, then the scattering phase
function is isotropic. Typical values of g in biological soft tissue for NIR light are in the
range of 0.69 - 0.99 [57], from which we can infer that tissue is highly forward scattering.

The reduced (or transport) scattering coefficient, µ′
s, takes into account that a photon

only loses ‘knowledge’ of its initial direction after 1/(1 − g) scattering events,

µ′
s = µs(1 − g). (6)

The reciprocal of µ′
s therefore represents the mean distance between two effectively

isotropic scattering events, and is known as the reduced photon-scattering length or
random-walk step length [19]. Typical values of µ′

s in biological tissue are often in the
order of 10 cm-1 [56].

As the reciprocal of µt (i.e., the optical mean free path) is a poor indicator of the
penetration depths of light into tissue which is highly anisotropically scattering, there
is therefore a need for the transport attenuation coefficient,

µtr = µa + µ′
s. (7)

2.3.1.2 Light transport theory

As well as being computationally intractable, absence of the knowledge of the refract-
ive index distribution for tissue means that solving Maxwell’s equations to model tissue
scattering of light waves is not feasible. Instead transport theory is used, which is an
intensity-based model that treats light as a flow of energy. The radiative transfer equa-
tion (RTE), also known as Boltzmann’s transport equation, is an idealised representation
of low energy photon transport. One method of deriving the RTE is to consider the con-
servation of energy for the propagation of light through a volume element of a medium,
to derive the number of photons per unit volume, at a time t, at a position x, whose ve-
locity is in the direction of ŝ. This expression for directional photon intensity, Φp(x, ŝ, t),
is governed by consideration of the following terms [52]:

A. The net inflow of photons in the direction of interest into the volume (due to
photons either entering or leaving).

B. The rate of generation of photons in the direction of interest within the volume
(i.e., due to a source term).

C. The rate at which photons are scattered into the direction of interest within the
volume.
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D. The rate at which photons travelling in the direction of interest are absorbed within
the volume.

E. The rate at which photons travelling in the direction of interest within the volume
are scattered into a different direction.

The RTE may then be generated by equating the change in the number of photons in
a volume element travelling in a given direction over a given time period to a function
of the above terms: [(A + B + C)− (D + E)]. This yields a complex integro-differential
equation, and the use of the RTE in this form in analytical solutions is restricted to
simple geometries, and its use in numerical calculations is computationally expensive.
As such it is often simplified by expression as a sum of spherical harmonics, which is
truncated after N terms to produce the PN approximations. However, it is of note that
by ignoring the effects of scattering, the steady-state RTE reduces to Beer’s law in one
dimension (i.e., Φ(z) = Φ0 exp[−µaz], where Φ is radiance, which is the rate of energy
flow per unit area per unit solid angle at time t at position x in direction ŝ, Φ0 is surface
radiance, and z is depth).

Truncation after the first term leads to the P1 approximation, and, after further sim-
plification, also leads to the diffusion approximation (DA) to the RTE (or the photon
diffusion equation)

1
c

∂Φ
∂t

+ µaΦ −∇ · (D∇)Φ = q0, (8)

where c is the speed of light in the volume, q0 is an isotropic source term, and the optical
diffusion coefficient is defined as

D =
1

3µtr
. (9)

Care must be taken when solving and applying the DA, as it is derived under the as-
sumption that photons are entirely diffuse, and therefore it will not be applicable close to
optical sources or tissue boundaries. Its use is appropriate when the condition µa ≪ µ′

s

is met (i.e., when scattering is assumed to be isotropic) [60]. The DA is the simplest
approximation to the RTE, and its use is widespread within the context of biological
tissue; however, it does show marked differences to higher order approximations, such
as the diffusive wave approximation, which has applications for the time-resolved meas-
urement of light in turbid media [61].

Equation 8 can be solved for arbitrary heterogeneous media using numerical tech-
niques; however, solutions for homogeneous media can help to provide insight. By
considering the steady state solution to Equation 8 we have

µaΦ −∇ · (D∇)Φ = q0. (10)
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For tissue with homogeneous optical properties, in which D is constant, we have

(µa − D∇2)Φ = q0. (11)

The fundamental solution, or 3D Green’s function, to Equation 11 is

G0(x, x′) =
exp(−µeff|x − x′|)

4πD|x − x′| , (12)

where the effective attenuation coefficient

µeff =
√

3µa(µa + µ′
s). (13)

2.3.1.3 Temporal point spread functions

Contini et al. [62] presented solutions to the time-dependent DA (i.e., Equation 8) in a
semi-infinite diffusing slab (i.e., infinite in the xy plane but bounded in the z axis), in
which a normally incident light beam is represented by a delta function coaxial to the
z axis, at time t = 0. The authors’ notation is further described in Figure 2.3: ρ is the
radial distance away from the light beam, and s is the thickness of the slab.

Figure 2.3: Semi-infinite slab geometry with a thin and collimated incident light beam
coaxial to the z axis.
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Two sets of boundary conditions were used in this study: a zero boundary condi-
tion, and an extrapolated boundary condition. The extrapolated boundary condition
assumes that the average diffuse intensity is equal to zero at two extrapolated flat sur-
faces (shown by the green dashed lines in Figure 2.4). The distance of these extrapolated
surfaces from the boundaries of the slab is given by [63, 64]

d = 2AD, (14)

where A is a coefficient that is a function solely of n. This boundary condition takes into
account refractive index mismatches between the diffusing slab and the surrounding
medium, and is sufficient to solve the RTE in this geometry [62].

To adhere to this boundary condition, the authors used a system of an infinite num-
ber of positive and negative dipole sources in an infinite diffusing medium. The first
three of these dipole sources, together with their characteristic equations, are shown in
Figure 2.4. The authors found that the use of 7 such dipoles was sufficient to restrict
truncation error to less than 0.1 % when using the optical parameters described in Fig-
ures 2.5 and 2.6, and also when ρ < s.

Figure 2.4: The two extrapolated surfaces and the first three of an infinite series of
positive and negative dipole sources.

Alternatively, the zero boundary condition assumes that the average diffuse intens-
ity is equal to zero on the boundary of the slab. This boundary condition is independent
of the refractive index of the medium, but is still dependent upon its diffusion coeffi-
cient, D. In this scenario the extrapolation distance, d, is effectively zero. This condition
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is not particularly physically realistic, as the effects of reflections at the boundary are
not considered.

Using equations A2, A3, 36, 37, and 39 from Contini et al. [62], and a µa dependent
optical diffusion coefficient (see Equations 7 & 9), both temporal point spread functions
(TPSFs) from Figure 3 of this paper were reproduced. The time-resolved reflectance
(Figure 2.5) represents the power reflected from the surface of the slab at z = 0, per unit
area and per unit time, at a radial distance ρ from the light beam, with any exit angle.
The authors note that a value of n = 1.4 is a typical value for the air-tissue interface.
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Figure 2.5: The time-resolved reflectance at ρ = 40 mm for a slab 40 mm thick, with
µa = 0.0 mm-1 and µ′

s = 0.5 mm-1.

The time-resolved transmittance (Figure 2.6) represents the power crossing and ex-
iting the surface of the slab at z = s, per unit area and per unit time, at a radial distance
ρ from the light beam, with any exit angle. This can be thought of as the non-reflected
and non-absorbed diffuse light that is detectable on the other side of the slab, due to the
incident beam.

Together these two temporal point spread functions (TPSFs) represent the relative
likelihood that a single photon, which has entered the slab at the origin of the coordinate
system at time t = 0, will leave the slab per unit time and per unit area, at time t, and at a
radial distance p from the z axis. The time-resolved transmittance TPSF can be thought
of as a measure of the rate of arrival of photons from a point source at a detector, through
some biological tissue under examination, as a function of time. The early arriving
photons will have taken a more direct route from source to detector, whereas the late
arriving photons will have undergone multiple scattering events and will have taken a
more indirect route from source to detector.

With reference to Figure 2.6, Contini et al. describe how two defining characteristics
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Figure 2.6: The time-resolved transmittance at ρ = 0 mm (i.e., coaxial to the z axis) for a
slab 40 mm thick, with µa = 0.0 mm-1 and µ′

s = 0.5 mm-1.

of this TPSF can be used to characterise the optical properties of the medium under
examination: µ′

s can be inferred from its maximal peak, and µa can be inferred from its
slope at long times [62]. Therefore, accounting for an extrapolated boundary condition
(i.e., the effect of reflections and refractive index mismatches) as well as the use of an
appropriate refractive index are important in this context.

2.3.1.4 Autocorrelation functions

Laser speckle is a random interference pattern that is produced by the coherent summa-
tion of a scattered laser beam of light, each component of which has travelled a slightly
different pathlength due to scattering. Movement of scattering RBCs in biological tissue
causes modifications to the intensity of this speckle pattern, in both the temporal and
spatial domains [65]. Speckle ensemble methods use a high-pixel-count and typically
low-frame rate detector to capture speckle patterns and infer sample dynamics through
assessment of the spatial fluctuations of speckle [66].

Alternatively, temporal sampling methods record the intensity fluctuations of each
pixel over time, typically using high-frame rate and single or few-mode detection [66].
When an incident coherent light beam interacts with a scattering particle, each particle
develops an induced dipole moment. Each of these oscillating dipoles emits scattered
light fields in all directions. The scattered light electric field at the detector, E(t), is
thus composed of the addition of all of these oscillating dipole contributions. Due
to the movement of the scattering particles, the phases of these fields vary relative to
each other, which results in fluctuations in the field and intensity over time. Temporal
sampling methods access sample dynamics by considering the autocorrelation of such a
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time-series of measurements, the rate and shape of the decay of which, correspond to
the speed and the nature of scattering particles, respectively.

In practice the scattered normalised intensity temporal autocorrelation function,
g2(τ), at the detector is measured. This is more straightforward to measure than the
electric field [3], which fluctuates at 0.23 - 0.46 PHz in the NIR optical window (650 -
1300 nm) and which light sensors are unable to detect. However, g2(τ) is directly meas-
urable as [19]

g2(τ) ≡
⟨I(t)I(t + τ)⟩

⟨I(t)⟩2 , (15)

where intensity I(t) = |E(t)|2. An example of g2(τ) is shown Figure 2.11. Assuming
a zero mean Gaussian electric field, the Siegert relation can then be used to extract the
electric field autocorrelation function, g1(τ), from g2(τ) using [67]

g2(τ) = 1 + β|g1(τ)|2, (16)

where [21]
g1(τ) = α|g1d(τ)|+ (1 − α), (17)

where g1(τ) is the field autocorrelation due to both dynamic and static scatterers, g1d(τ)

is the field autocorrelation due to dynamic scatterers only, and where α ∈ [0, 1] and
β ∈ [0, 1] are both unitless factors.

Sample motion may be inferred by fitting measured data to a theoretical model of
g1(τ) that incorporates mean-square particle displacement, ⟨∆r2(τ)⟩. For the case of de-
terministic convective motion of scatterers, ⟨∆r2(τ)⟩ = ⟨V2⟩τ2, where ⟨V2⟩ (cm2/s2) is
the second moment of the speed distribution of scattering particles. In the case of diffus-
ive Brownian motion of scatterers ⟨∆r2(τ)⟩ = 6Dbτ, where Db (cm2/s) is the effective
Brownian diffusion coefficient of scattering particles [68]. Other types of particle mo-
tion contribute toward the measured signal (e.g., rotation, shear flow, and turbulence)
but the relevant literature focuses on these two effects.

α is an adaptation to biological tissue and refers to the fraction of scattering events
due to dynamic, rather than stationary, scatterers. This factor is therefore the ratio of dy-
namic scatterers to the total number of scatterers in a sample. One must be careful when
applying the Siegert relation to samples which have a large proportion of static scatter-
ers; however, Durduran et al. concluded that ‘one can routinely employ the Siegert
relation in most tissue dynamics experiments, except perhaps those wherein the sub-
ject is exercising’ [8]. If we make the assumption that a sample is composed entirely of
dynamic scatterers, then Equation 17 can be simplified to

g1(τ) = |g1d(τ)|. (18)
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Similarly, if a sample is composed entirely of static scatterers, then we have

g1(τ) = 1. (19)

β, the coherence factor, is a constant determined by the geometry and collection
optics of the experiment and is equal to 1 ideally. β is inversely proportional to the
number of detected speckles, and is also related to the coherence length, stability of the
laser light source, stray light, detector stability, sample coupling, and polarisation state
[21]; it can be determined from the y-intercept of g2(τ) at τ = 0.

2.3.2 Near-infrared spectroscopy

If a sample contains N known chromophores, then in principle it is possible to estim-
ate the concentrations of each chromophore by making measurements of absorbance
at N wavelengths. Under conditions of linear absorption, the total absorbance at each
wavelength due to all chromophores of interest can be added, which results in a sys-
tem of N simultaneous equations, which can then be solved to infer the concentrations
of each chromophore, assuming a suitable condition number. NIRS is an incoherent
method that uses this technique of spectroscopic inversion (or differential spectroscopy)
to make measurements of tissue chromophore concentration within the illuminated re-
gion of a sample between a single source and detector pair.

The ability to describe how light travels through biological tissue is at the core of
the field of biomedical optics. If this can be done with a certain degree of accuracy,
then, using an array of optical sources to illuminate a volume of biological tissue, we
can model the propagation of photons that enter the tissue, based on the knowledge of
the spatial distribution of variations in the optical properties of the volume in question.
This is known as the ‘forward problem’.

Alternatively, with knowledge of the optical sources used, and based on data derived
from surface measurements using an array of optical detectors, we can reconstruct a
solution for the spatial distribution of optical properties within the volume. From this
we can then infer the distribution of any pathology or functional physiological changes
that we may be interested in. This is known as the ‘inverse problem’.

One imaging modality which utilises the solution to this particular inverse prob-
lem, based on NIRS measurements acquired using an array of sources and detectors,
is diffuse optical tomography (DOT), which is a bedside application that can be used
for continuous monitoring. This noninvasive functional imaging technique uses meas-
urements of light that is transmitted through patient tissues to generate 3D volumetric
images, and is particularly useful in the study of haemodynamic and blood oxygena-
tion changes in the new-born infant brain [56, 69] (including oxyhaemoglobin [O2Hb],
deoxyhaemoglobin [HHb], and total haemoglobin [THb] concentrations). Figure 2.7
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shows one of the first DOT images of an entire infant’s head, which was acquired dur-
ing an evoked motor response [56].

Figure 2.7: An array of optical fibres coupled to an infant’s head (left). Para-sagittal
slices across a 3D image of the absorption coefficient change (see Section 2.3.1.1)

induced by passive movement of the left arm (right). Reproduced with permission
from [56]. © 2012 by Taylor & Francis Group, LLC.

NIRS instruments can be divided into three categories [58, 70]:

• Frequency domain (FD) instruments, in which light intensity is modulated at a
certain frequency through tissue, and the reduction in intensity and phase shift in
the transmitted light are measured.

• Continuous wave (CW) instruments, in which light is modulated at a constant
intensity through tissue, and only the reduction in intensity in the transmitted
light is measured. This is analogous to an FD instrument in the limiting case of
zero modulation frequency.

• Time domain (TD) instruments, in which an ultra-short pulse of light is transmit-
ted through tissue, and the arrival times of transmitted photons are measured.

Multiplexing is a technique used in DOT to distinguish between signals arising from
different sources and wavelengths, which are incident upon any one detector during
any one sampling period. Time multiplexing, frequency multiplexing, code multiplex-
ing, and spatial multiplexing have all been described [58]. Frequency multiplexing in-
volves modulating each source with a distinct frequency, and the signal amplitude for
each source may then be extracted using lock-in amplification techniques or Fourier do-
main analysis. Inspired by this frequency multiplexing strategy, a fourth category of
NIRS instrumentation has recently been proposed: wavelength modulated NIRS (WM-
NIRS) [71], in which the source wavelength is modulated at a fixed frequency. This mod-
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Figure 2.8: The three different NIRS techniques. CW-NIRS (left) involves modulating
an incident light signal, I0, at a constant intensity, and measuring the transmitted light
signal, I, that has passed through tissue of thickness d. FD-NIRS (middle) modulates

the incident light signal and then measures both I and the phase shift, φ, which
corresponds to the time of flight. TD-NIRS (right) involves emitting an extremely short
pulse of light into the sample, and measurement of the TPSF of the transmitted signal,
I(t). TD-NIRS offers the most information of all three techniques, but is also the most

complex to implement. Reproduced with permission from [58]. Copyright © 2013
Elsevier Inc. All rights reserved.

ulation leads to variation in absorption, which in turn will lead to a modulation in de-
tected intensity, and which can also be measured using lock-in amplification or Fourier
analysis. A potential advantage of WM-NIRS is the ability to measure absolute changes
in chromophores in the face of unknown changes in surface coupling losses. This could
be especially useful when differentiating between haemorrhagic and ischaemic stroke
in the emergency setting, for example.

DOT uses NIR light to ascertain the concentrations of haemoglobins, water, and lip-
ids in biological tissue by interrogation of the optical absorption spectra of these chro-
mophores (see Figure 2.2) at at least two wavelengths (this is usually achieved using
discrete wavelengths; however, broadband NIRS approaches have also been implemen-
ted, which make use of light from a continuous portion of the EM spectrum [8, 58]).
This allows the assignment of optical and physiological properties to voxels within a
tissue sample. By using a high density of sources and detectors, a recent DOT study
has demonstrated functional neuroimaging of the superficial cortex with images of a
diagnostic quality similar to those of fMRI [72].

NIRS can be used in a qualitative sense to provide continuous relative CBF measure-
ments. This can be done by making use of the following relationships [5]:

• [O2Hb] + [HHb] = [THb];

• [O2Hb]/[THb] = StO2, the oxygen saturation of haemoglobin in brain tissue;

• [O2Hb]− [HHb] = [DHb], the concentration difference between oxyhaemoglobin
and deoxyhaemoglobin.

[DHb] and StO2 are linked to CBF, but can only be used as a relative measure of CBF,
and are also affected by other factors, including blood volume, haematocrit, capillary
density, and metabolic rate of oxygen consumption.
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By using a tracer agent, NIRS can also be used to obtain snapshot absolute CBF meas-
urements. This can be done noninvasively by using endogenous oxyhaemoglobin, or
minimally invasively by using an intravenous bolus injection of exogenous ICG. These
absolute measurement techniques can introduce ambiguities and cannot be used con-
tinuously [3].

Due to the highly diffuse nature of light propagation in scattering biological tissue,
the DOT image reconstruction problem is highly ill-posed and the resultant image offers
relatively poor spatial resolution [60] with a limited penetration depth [73]. Fantini et
al. state that the spatial resolution of this technique is on the order of 1 cm, with a
maximum depth penetration of 2 - 3 cm [5]. This is in agreement with my previous
findings [74], as demonstrated in Figure 2.9. NIRS measurements make use of at least
two wavelengths of NIR light, and also require reference phantoms for quantification
[4].
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Figure 2.9: Spatial resolution in CW-NIRS as a function of imaging depth for various
dynamic ranges of opto-electronic equipment, up to maximum imaging depth, zmax

[74].

These fundamental shortcomings, in addition to the effects of superficial tissue, sys-
temic physiological changes, measurement noise, and motion artefacts, all hinder the
complete translation of NIRS from a research tool to a reliable and reproducible clinical
modality [58, 75].

2.3.3 Coherent haemodynamics spectroscopy

Rather than being an imaging modality per se, coherent haemodynamics spectroscopy
(CHS) is an additional data processing pipeline that can be applied to NIRS data, fol-
lowing physiological manipulation of the subject. The technique, which was developed
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by Fantini et al. [5], can be used to translate cerebral haemodynamic measurements
into physiological quantities. For example, CHS permits the translation of noninvasive
qualitative NIRS data into continuous bedside regional/local measurements of absolute
CBF. It should be noted that these measurements will therefore be limited by the spatial
resolution and depth penetration of diffuse optical techniques.

CHS operates in either the frequency or time domains. In the frequency domain,
oscillations in mean arterial pressure (MAP) are induced by paced breathing or cyclical
thigh cuff inflations, which results in oscillations of cerebral [O2Hb] and [HHb] that
are in phase with any changes in MAP. These data may then be fit to a haemodynamic
model, the fitting parameters of which relate to CBF and CBV.

Alternatively, in the time domain, a thigh occlusion cuff is suddenly released after
a two minute occlusion of pressure that is sufficient to block arterial BF. This occlusion
will have caused a temporary decrease in MAP, as well as [O2Hb] and [HHb], which
can then be fit to the time domain CHS haemodynamic model.

2.3.4 Surface sensitive imaging techniques

We now move to consider coherent imaging methods, which make use of the spatiotem-
poral analysis of scattered coherent light to infer sample dynamics. The following five
surface sensitive coherent imaging techniques are used to measure microvascular flow
in tissues within a few hundred microns of the surface [19]. Hussain et al. describe these
methods as ‘important tools in the clinic’, but also iterate concerns regarding the super-
ficial nature of flow detection, due to deterioration of resolution with tissue depth as a
result of multiple scattering [76].

2.3.4.1 Laser speckle contrast imaging

Laser speckle contrast imaging (LSCI) (also known as laser speckle contrast analysis
(LASCA), laser speckle flowmetry, speckle visibility spectroscopy (SVS), and speckle
contrast spectroscopy) operates on the principle of analysing the temporal and spatial
changes in intensity that occur when moving RBCs scatter coherent incident light [77,
78]. These intensity changes can be analysed by quantifying the localised spatial blur-
ring that is caused by speckle movement in a single shot LSCI image, for a given ima-
ging exposure time [79]. Spatial speckle contrast, K, is calculated according to

K =
σ

µ
, (20)

where σ is the standard deviation for exposure time T, and µ is the mean of the pixels,
usually in a 7 × 7 pixel window [65]. K can also be calculated globally (i.e., over an
entire single image), or through a spatiotemporal windowing approach over one or
more frames. K takes a value from zero to one, with larger numbers indicating slower
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fluctuations of scatterers [25]. In areas of increased BF, intensity fluctuations are more
rapid, which results in increased speckle blurring, with a lower value of K. It has been
shown that, over the physiological range, blood flow index (BFI) may be inferred as [80]

BFI =
1

K2 . (21)

Various other techniques of calculating speckle contrast exist, which make use of vari-
ous combinations of spatial and temporal statistics, and which maximise temporal and
spatial resolution, respectively [81].

These images are commonly captured on a charge-coupled device (CCD) sensor [19],
and the application of this technique is limited to periods of open-skull surgery [8].

2.3.4.2 Multiple exposure speckle imaging

LSCI is able to measure relative flow, but cannot measure baseline absolute flow values.
Additionally, LSCI is limited by the use of a single exposure time, which, due to the
presence of static scatterers, can lead to systematic error and deviations from an appro-
priate model fit [82]. An adaptation to LSCI, multiple exposure speckle imaging (MESI)
involves fitting speckle contrast images, acquired at a range of camera exposure times,
to single scattering flow models to quantify absolute flow at shallow imaging depths
[65, 83]. However, the serial acquisition of multiple exposure times reduces the tem-
poral resolution of this technique, and therefore reduces the possibility of resolving fast
changes in BF.

Initially, the multiple camera exposure times that MESI requires were achieved by
modulating the laser duty cycle [65]. The same group recently presented a synthetic
approach to MESI (syMESI), that makes use of spatial binning/averaging of single ex-
posure LSCI images to synthesise MESI images [84].

2.3.4.3 Laser Doppler flowmetry

Laser Doppler flowmetry (LDF), sometimes known as scanning LDF or just laser Dop-
pler (imaging), is a technique which quantifies the Doppler shifts in the spectrum of
re-emitted light. When a photon scatters off a moving RBC, its carrier frequency is Dop-
pler shifted. By analysing the Doppler shifts that occur in a distribution of photons, the
dynamics of the particles scattering the light may be inferred. A perfusion value may
be calculated as the first moment of the Doppler power spectrum [79], which is propor-
tional to both the velocity and number of RBCs [5]. LDF can provide a continuous and
relative measure of CBF.

A long coherence length NIR optical source (670 - 810 nm) and photodetector are
placed in very close proximity (0.25 - 1.00 mm) on the subject’s brain, and LDF there-
fore achieves a maximum penetration depth of ∼1 mm [25]. This technique therefore
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requires removal of the scalp and skull over the region of interest, and is thus deemed
an invasive method, which is limited to intraoperative measurements from a practical
perspective. The photodetector detects scattered photons that emerge from the tissue,
and the Doppler shift of this light is then fitted to a single scattering model, before be-
ing converted to a voltage that varies with time, which is proportional to CBF [5]. This
technique could therefore be considered to be the Fourier counterpart of dynamic light
scattering (DLS), which is discussed in Section 2.3.4.4.

In addition to being an invasive technique, LDF has the disadvantages of being
prone to artefacts caused by patient motion and probe movement, as well as having
limited depth penetration and repeatability [4]. Using a larger source-detector separa-
tion (SDS) may give a greater depth penetration [85] (which can be further facilitated
using pulsed LDF [86], for example) and this has been shown to be effective in human
skeletal muscle to a depth of 5 - 10 mm [87]. However, this is yet to be translated to
noninvasive transcranial monitoring [8].

Surgically implantable monitors are available which use either LDF or TDF to meas-
ure CBF in a highly localised area [5, 88]. However, these probes are mainly restricted
to experimental use as they ‘suffer from all the limitations of any invasive procedure
leaving the vulnerable patient at risk for additional pain, infection, bleeding, and the
potential for dislodging probes during the routine care of the patient’ [5]. Further, there
is also a lack of information regarding whether their use has any impact on patient out-
comes following brain injury.

2.3.4.4 Dynamic light scattering

As discussed above, the motion of tissue scatterers (e.g., RBCs) can lead to fluctuations
in the speckle pattern of scattered light. Dynamic light scattering (DLS) involves the
detection of scattered photons, from which hardware or software correlators compute
the temporal autocorrelation function of the scattered intensity, g2(τ). The motion of
the scatterers, such as particles in a suspension, can then be inferred from the rate of
decay of g2(τ). The mathematical modelling employed by this technique requires that
each photon be scattered at most once, and its use is therefore restricted to optically
thin samples. This technique is sometimes also known as quasi-elastic light scattering
(QELS).

DLS involves the use of a light beam with a long coherence length to illuminate
a sample, and a point-like photon detector placed on the other side of the sample, at
an angle θ to the incident beam. For independent particles with isotropic dynamics,
the detected normalised electric field temporal autocorrelation function due to dynamic
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scatterers, g1d(τ), is [8, 21]

g1d(τ) ≡
⟨E∗(t)E(t + τ)⟩

⟨|E(t)|2⟩ = exp−q2⟨∆r2(τ)⟩/6, (22)

where the subscript d denotes the contribution from dynamic scatterers only,

q =
√

2k2
0(1 − cos θ) is the scattered wavenumber, k0 = 2πn/λ is the wavenumber

of the incident light field, λ is the wavelength of the light field, ⟨∆r2(τ)⟩ is the mean-
square particle displacement (which directly characterises the particle displacement) in
autocorrelation decay time, τ, and ⟨. . . ⟩ denotes a spatial ensemble-average (which is
equivalent to a time-average for an ergodic sample [21]).

2.3.4.5 Dynamic light scattering imaging

Dynamic light scattering imaging (DLSI) is a technique that has recently been proposed,
which makes use of high-frame rate full-field intensity measurements. The camera frame
rates used in this technique typically exceed 20 kHz [80]. This high temporal resolution
allows for the identification of the dynamic scattering regime at every pixel, which is
assumed a priori in LSCI, MESI, LDF, and DLS, and which is a function of the amount of
dynamic light scattering (and its relative proportion compared to static light scattering),
the type of particle motion, and the approximate vessel size [89]. DLSI can be used with
other methods to guide dynamic scattering model selection, or can it be used in isolation
as a quantitative, full-field superficial flow detection technique. The high speed cameras
that are required by DLSI are a key hardware limitation of this technique, and further
research is required to characterise the noise arising from both high speed cameras and
laser source instabilities [80].

2.3.5 Diffusing wave spectroscopy

We now move to a treatment of non-superficial coherent methods by firstly considering
diffusing wave spectroscopy (DWS). DWS extends DLS to the multiple scattering limit,
by modelling g1d(τ) as an integral over photon paths, assuming uncorrelated motion at
each scattering event [90]. In biological tissue, or more concentrated solutions, the in-
cident light field is multiply scattered, and therefore the DLS theoretical model needed
to be adapted to accommodate this. DWS, introduced before diffuse correlation spec-
troscopy (DCS), is equivalent to an integral formulation of DCS (see section 2.3.6) [91];
however, the name DCS has been chosen in the field of biomedical optics due to DWS
having implications for both absorption and fluctuation spectroscopy [8].

Thus the DWS formulation of DLS, developed in the 1980s, allows for multiple scat-
tering events to contribute to the measured g2(τ) function. DLS and DWS use the same
measurement hardware, but DWS permits the recovery of flow information at depth by
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incorporating an SDS distance, ρ, into the measurement geometry, as is shown in Fig-
ure 2.10. The accumulated phase shift of many photon random walk paths through the
sample is calculated for a range of delay times. Each scattering event from a dynamic
scatterer contributes to the accumulation of the phase shift, and therefore the decay of
the autocorrelation function. If scattering events within each random walk path are
independent and uncorrelated, and when the DA is valid, g1d(τ) is equal to the angle-
averaged DLS signal due to a typical single scattering event, raised to the power N,
where N is the number of steps in the random walk photon path.

The measured signal is then the integral of these single path signals over all possible
photon paths. The field autocorrelation function from a single path is expressed as [19]

g1d(τ)onepath = exp−k2
0Y⟨∆r2(τ)⟩/3, (23)

where Y = N · (1− ⟨cos θ⟩N), and ⟨cos θ⟩N is the average value of the cosine of the scat-
tering angle over N scattering events along any one path. When N is large, ⟨cos θ⟩N is
equal to the ensemble average over all N, ⟨cos θ⟩, which is equivalent to the anisotropy
factor, g, of the sample (see section 2.3.1.1).

The random-walk photon step length between two effectively isotropic photon scat-
tering events is given by l∗s = 1/µ′

s, and the photon step scattering length is given by
ls = 1/µs. If we let s represent the total pathlength associated with a particular photon
path, then the total number of scattering events in this photon path is

N =
s
ls

, (24)

and the total number of isotropic random walk steps associated with the photon path is

Y =
s
l∗s

. (25)

By letting P(Y) represent the probability of a photon path with a number of discrete
random walk steps, Y, g1d can then be calculated by integrating the contribution from
each photon path of step length Y [19]

g1d(τ)allpaths =
∫ ∞

0
P(Y) exp−k2

0Y⟨∆r2(τ)⟩/3 dY. (26)

In a highly scattering sample, this can be expressed as an integral over all allowed
pathlengths by using the pathlength distribution, P(s), [19]

g1d(τ)allpaths =
∫ ∞

0
P(s) exp−k2

0s⟨∆r2(τ)⟩/3l∗s ds. (27)

P(s) can be derived from Monte Carlo simulation, analytical solutions to the DA,
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and from experimental time-resolved spectroscopy measurements. Equation 27 can be
solved for a particular geometry (e.g., infinite medium, semi-infinite medium, and slab)
and experimental setup. DWS has been shown to be highly successful for modelling
motions of scatterers in homogeneous and highly concentrated systems, such as col-
loids, foams, emulsions, and gels, but is less useful when modelling heterogeneous me-
dia, such as biological tissue [21].

2.3.6 Diffuse correlation spectroscopy

Boas and Yodh derived the correlation diffusion equation [21], which more accurately
describes the propagation of the temporal electric field autocorrelation function in tur-
bid biological tissue than its DWS counterpart does, and provides a natural framework
for the study of tissue dynamics and tomography [19]. DCS is a differential formula-
tion of DWS [90]. Analogous to Equation 8, the diffusion equation for photon electric
field correlation (i.e., the correlation diffusion equation) can be derived, and, in a clinic-
ally relevant semi-infinite geometry (Figure 2.10) [22], the unnormalised solution for the
autocorrelation function for dynamic scatterers is given by [21]

G1d(τ) =
S0

4πD

[
exp−K(τ)r1

r1
− exp−K(τ)r2

r2

]
. (28)

The normalised temporal electric field autocorrelation function is then [13]

g1d(τ) =
G1d(τ)

G1d(τ = 0)
, (29)

where, in Equation 28,

• S0 is the optical source intensity;

• D is the optical diffusion coefficient, 1
3(µa+µ′

s)
;

• K(τ) =
√

3µaµ′
s + µ′2

s k2
0⟨∆r2(τ)⟩ is the decay constant;

• z0 = 1/µ′
s is the depth into the medium at which the collimated source is approx-

imated as a positive isotropic source;

• ρ is the distance between the optical source and detector;

• Reff = −1.440n−2 + 0.710n−1 + 0.668+ 0.0636n is the effective reflection coefficient
and accounts for the reflective index mismatch between air (nout) and tissue (nin),
where n = nin/nout.

• zb = 2z0
3

(1+Reff)
(1−Reff)

, −zb is the position at which there should be a signal size of zero
to fulfil the extrapolated boundary condition [63];
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• r1 =
√

z2
0 + ρ2 is the distance between the detector and an approximated positive

isotropic imaging source;

• r2 =
√
(2zb + z0)2 + ρ2 is the distance between the detector and an approximated

negative isotropic imaging source located at position z = −(z0 + 2zb).

A value for ⟨∆r2(τ)⟩ can be extracted from measured data, by fitting to either a Brownian
or a convective motion model of Equation 29, or a linear combination of the two, assum-
ing that [92]

⟨∆r2(τ)⟩ = 6Dbτ + ⟨∆V2(τ)⟩τ2. (30)

Figure 2.10 describes the method of images and the notation that is used in a semi-
infinite DCS geometry model when ensuring an extrapolated-zero boundary condition
(see Section 2.3.1.3).

Figure 2.10: Semi-infinite geometry model and notation used in DCS measurements.
Adapted from [19].

Diffusing light is primarily absorbed when crossing large arteries and veins, and
therefore DCS is most sensitive to the motion of scatterers in the microvasculature (ca-
pillaries, arterioles, and venules) rather than macrovasculature [8]. Microvasculature
is convoluted and the distribution of the direction of velocities of RBCs can therefore
be assumed to be isotropic. Previous authors have found that the Brownian model fits
observed data more precisely than the convective flow model in many biological tissues
[19].

Db can be used as a BFI parameter, although it has units of cm2/s, rather than the
more commonly encountered blood perfusion unit of ml/100g/min. Db is also a rel-
ative, rather than an absolute, measure. Relative change in BF, rBF = BFI/BFI0, where
BFI0 is the baseline measurement of BFI, acquired by DCS measurement has been shown
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to agree with relative changes in absolute BF as measured by gold standard techniques,
such as ASL-MRI [4]. Additionally, the use of DCS/NIRS hybrid systems, to meas-
ure NIRS derived StO2 and DCS derived CBF, can be utilised to provide quantitative
measurement of cerebral metabolic rate of oxygen extraction (CMRO2), and its continu-
ous noninvasive inference in this context relies on fewer assumptions than when using
NIRS alone [8]. Local CMRO2 is an important physiological parameter to monitor, as
it is a function of oxygen saturation of arterial and venous ends of the local cerebral
circulation, as well as CBF itself. Overall, this provides a more robust picture of brain
health [4]. Validation studies show that DCS measurements of BF are in close agree-
ment with results obtained by theoretical expectation, computational simulation, and
other biomedical imaging modalities [19].

A typical DCS system requires only one wavelength of NIR light to operate (com-
monly ∼785 nm), and can be made to be very compact due to the advent of solid state
laser technology. A long coherence length (∼10m) laser light source is delivered through
a multimode source fibre. Single-mode or few-mode optical fibres are used to collect
photons from a single/few speckles, as far away as 2.5 - 3.5 cm. Fast photon-counting
avalanche photodiodes (APDs) can be used as detectors, as can photon multiplying
tubes (PMTs), or single photon avalanche detectors (SPADs). A correlator board re-
ceives the intensity output from the photodetector and then computes g2(τ), typically
using the multi-tau autocorrelation algorithm [19]. A schematic of the entire DCS meas-
urement process is shown in Figure 2.11.

Figure 2.11: Schematic overview of a DCS system and measurement pipeline.

2.3.6.1 Key limitations

The conventional implementations of DCS that have been described typically employ
single-mode photon counting techniques, with an associated high cost of detection com-
ponents. Such methods are limited by low light throughput [4] in a single-mode, placing
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a minimum limit on the detection time [93]. Increasing penetration depth requires the
use of larger SDS distances, which will decrease the available SNR further (by increas-
ing the number of absorption and scattering events, since the attenuation of NIR light
by these two mechanisms is in the order of 10 dB/cm [94]), and this can be worsened
by the presence of hair or darkly pigmented skin.

Increasing acquisition time can ameliorate this situation but leads to a reduction in
temporal resolution. Taking the average of many single-mode detection fibres bundled
together is an expensive option that requires many photon counting detectors and can
increase complexity of system integration. Improved collection optics, the use of few-
mode detection fibres, and increasing the amount of light delivered to the tissue can also
help to improve SNR [4, 95, 96]. However, patient safety limits [20] must be adhered to,
which necessitates an optical source of sufficiently large diameter and low power rating.
All the above characteristics limit the applicability of conventional homodyne DCS in
portable continuous monitoring applications to which optical methods are otherwise
well suited.

Light collection efficiency and SNR increase with the effective number of detected
modes, N. SNR also increases with β, but this quantity scales as 1/N for each detected
mode due to the loss of coherence of g1. In typically non-ideal situations, SNR may be
optimised by using a single-mode detector fibre; however, if the optimisation of tem-
poral resolution is of interest, then a few-mode detector fibre can be used [97]. The
use of a single-mode fibre in a conventional DCS experiment will lead to a maximum β

value of 0.5, due to the two orthogonal electric field components collected by the fibre.
The recorded value of β will likely be less than this due to variations in light coherence,
laser stability, stray light, detector stability, and fibre-tissue coupling [68]. This value of
β can be doubled by placing a polariser in front of the detector fibre.

DCS offers the ability to be able to perform safe, noninvasive, and continuous bed-
side measurements of superficial microvascular CBF, with a relatively high temporal
resolution (up to 100 Hz) [19]. However, it suffers from poor spatial resolution (which
worsens with depth) and depth penetration (a general rule of thumb in diffuse optics
is that a banana-shaped region of depth equal to one half to one third of the optical
SDS distance is sampled [4, 8]). The main limitation of DCS is that a trade-off exists
between the SNR and imaging depth, and thus brain specificity, of this technique [23].
Additionally, DCS is also susceptible to superficial extra-cerebral signal contamination,
and the measurement of absolute CBF with this technique still remains challenging [5].
DCS also depends on the accurate measurement of µa and µ′

s to provide a precise assess-
ment of CBF, and it is also limited by low SNR due to single-mode detection (especially
when using large SDS values, in the presence of hair, and in patients with dark skin)
and susceptibility to motion artefacts.

Despite these disadvantages, DCS has important potential applications in clinical

76



monitoring [36], as well as in neuroscience and the development of a noninvasive brain-
computer interface [10]. Previous authors have noted that improvements to increase
SNR, depth penetration, and both spatial and temporal resolution will assist the devel-
opment of DCS functional experiments, as well as expand the range of uses for DCS
in clinical monitoring [4]. The utility of high-frame rate (∼20 Hz) DCS measurements,
compared to the frame rates of 0.3 to 1 Hz that are currently used, has also been dis-
cussed [22]. These benefits include improved monitoring of cerebrovascular autoregu-
lation dynamics, more robust identification of motion artefacts, and increased through-
put that could enable high spatial resolution with fewer detectors.

The investigation of novel approaches to improve the sensitivity of DCS to CBF has
therefore recently attracted interest from several research groups. Techniques including
multispeckle detection strategies [10, 26, 27], time-domain DCS (TD-DCS) [28], DCS
in the short-wave infrared region [29, 30], interferometric approaches [23, 31, 32], and
acousto-optic modulation [33] have all been proposed. The remainder of Section 2.3.6
is therefore dedicated to the introduction of the wide variety of these approaches that
have recently been published, which serves to inform the novel approach to DCS which
is investigated in subsequent chapters of this thesis.

2.3.6.2 Multispeckle approaches

As described above, it has generally been accepted in the field of DCS that as the number
of modes per detection fibre increases, the resulting gain in SNR due to increased photon
intensity is negated by the subsequent loss of coherence and reduction in β. However,
closer inspection of the DCS noise model [35] reveals one term in which the photon
count has a higher weighting than β. Carp therefore proposed that the use of few-mode
detection, rather than single-mode detection, could confer a slight SNR advantage at
low photon count rates, and demonstrated a 20 % reduction in the standard deviation
of relative BFI when switching from single-mode to few-mode detection, when making
DCS measurements on an intralipid phantom with an SDS distance of 3 cm [98].

The SNR benefit that results from integrating multiple mutually incoherent speckle
grains on the same photodetector does not persist beyond few-mode detection, and
DCS therefore clearly benefits from a parallelised detection strategy, in which the de-
tection of N speckle grains on multiple independent photodetectors will result in a

√
N

improvement in SNR, under the assumption of shot noise [27]. Dietsche et al. valid-
ated this approach by bundling together 28 stand-alone SPADs, which yielded a 1/

√
28

reduction in noise [95]. Johansson et al. demonstrated a more compact approach by de-
veloping a 5 × 5 SPAD array for DCS detection, which resulted in improved SNR [99].
Subsequently, a 32 × 32 SPAD array was used for DCS detection by two groups [10,
27], which allowed Sie et al. to demonstrate a 32-fold increase in SNR with respect to
traditional single speckle DCS, for g2(τ = 4µs) [10].
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A third approach to multispeckle detection is to use conventional camera array de-
tectors; however, current camera technology is limited by noise performance (when
compared to SPADs) and by detection times, which are not short enough to fully char-
acterise g2 at very short lag times. By making use of the relationship [77, 100]

K =

[
2β

T

∫ T

0

(
1 − τ

T

)
[g1(τ)]

2 dτ

]1/2

, (31)

where T is camera exposure time, Murali et al. demonstrated that by making measure-
ments of K for various values of T, it is possible to recover g1(τ) using low-cost and
low-frame rate cameras [26, 83, 101]. With regard to compensating for camera noise
performance, interferometric approaches have recently been proposed, and these are
discussed in Section 2.3.6.4. Care must be taken when using multimode fibres for de-
tection, as these fibres are sensitive to motion caused by environmental vibrations, for
example [98].

2.3.6.3 Long wavelength approaches

Compared to a more commonly used wavelength of 785 nm, using a design wavelength
of 1064 nm confers an SNR advantage in DCS systems. Light suffers from less optical
scattering events at this wavelength, where a local minimum in water absorption com-
bined with lower haemoglobin absorption also occurs, which results in an increase in
photon availability [102]. Maximum permissible exposure limits are also higher at 1064
nm, meaning that roughly 2.5 - 4 times more optical power can be used [98]. The de-
crease in scattering also results in a slower decay of the autocorrelation curve, which
moves g1 into longer and less noisy timescales. By considering this overall photon
budget, Carp et al. demonstrated that at 1064 nm, 13, 10.5, and 7 times more photons
will be detected than at 765, 785, and 850 nm, respectively [29]. These authors note that
the reduction in scattering that occurs at 1064 nm results in a reduced sensitivity to mo-
tion; however, this is more than compensated for by the advantageous photon budget
at this wavelength. It is of note that the low haemoglobin absorption that occurs at 1064
nm makes this choice of wavelength impractical for NIRS experiments.

The main limitation that prevents the implementation of DCS at 1064 nm is a lack
of suitable detector technology. For example, silicon SPADs have a photon detection
efficiency (PDE) of 64 % and 54 % at 765 and 850 nm, respectively, but which drops to
3 % at 1064 nm [29]. Alternatively, InGaAs SPADs have a PDE of ∼32 % at 1064 nm;
however, these detectors have unacceptably long afterpulsing in the region where g2

starts to decay (i.e., 1 - 10 µs) [30]. Potential solutions to this afterpulsing problem in-
clude custom detector designs, and cross-correlation approaches using two detectors
[29, 32, 103]. A second detector technology that is suitable for 1064 nm is supercon-
ducting nanowire single-photon detection (SNSPD). SNSPD detectors possess several
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advantages over InGaAs SPADs, including shorter dead time (<50 ns), better timing
resolution (<80 ps), an extremely favourable dark count rate of 1 count per second
(CPS), a PDE of >80 % at 1064nm, and no afterpulsing issues. Ozana et al. achieved
an SNR gain of 16, for g2(τ = 4µs), when making in vivo measurements on the forehead
of 11 human subjects with an SDS distance of 25 mm, compared to DCS at 850 nm using
silicon SPAD detection [30]. However, SNSPD detectors are expensive, bulky, and loud,
require cryostats to achieve an operating temperature of 2 - 3.1 K, and have a turn-on
time of several hours, which limits their clinical application at present.

2.3.6.4 Interferometric approaches

The theory of DCS that has been considered so far has been restricted to homodyne
detection (i.e., the self-interference of changing light fields) in which g2(τ) is related to
the motion of the sample by the Siegert relation (Equation 16). An interferometric DCS
(iDCS) system may be constructed by modifying a homodyne DCS setup with a pair
of fibre couplers, to create a Mach-Zehnder interferometer. iDCS works by using the
reference arm of the interferometer to coherently amplify the speckle fluctuations of the
sample arm, and the expression for g2(τ) can then be found as [32]

g2(τ) = 1 + β

(
1 − IR

IT

)2

[g1(τ)]
2 + 2β

IR

IT

(
1 − IR

IT

)
g1(τ), (32)

which can be simplified to

g2(τ) = 1 + β1 [g1(τ)]
2 + β2g1(τ), (33)

where IR is the reference intensity, and IR/IT is the fractional reference intensity, where
IT = Is + IR is the total intensity, and IS is the sample arm intensity. A caveat of this
technique is that any laser intensity instability will have a larger influence on g2(τ) for
an interferometric measurement [98]. Using silicon SPADs and a 785 nm laser, Robinson
et al. used iDCS to demonstrate an improvement in the SNR of g1(τ) by approximately
a factor of 2 at each time lag [32]. These authors also showed an up to 80 % reduction in
the variability of measured BFI using this technique.

Interferometric techniques are beneficial in that they can compensate for detector
nonidealities (e.g., afterpulsing, read noise, and dark noise) [32], they are robust to en-
vironmental noise (such as ambient light that is present in the clinical environment)
[98], and they allow for effective measurement even in the presence of very low signal
levels, allowing for the measurement of CBF within short acquisition times in low-light
conditions [37]. This means that less expensive detectors with sub-optimal noise char-
acteristics can be used for interferometric detection.

As such, an interferometric diffusing wave spectroscopy (iDWS) system has recently
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been described which makes use of multimode fibre detection and a high speed line-
scan CMOS camera capable of operating at 333 kHz [31]. The use of camera-based
detection is conducive to multispeckle detection and the SNR advantage that this con-
fers, and this system is capable of measuring ∼96 speckles simultaneously, meaning
that clear BFI traces can be obtained using an SDS distance of 35 mm on the adult hu-
man head with an integration time of 0.1 s [24]. Although this technique is robust to the
effects of ambient light, its sample rate is considerably slower than a conventional DWS
system (which is typically in the order of ∼10 MHz) and it cannot resolve sample decor-
relations shorter than 3 µs. Additionally, this approach does not have the temporal res-
olution necessary to sufficiently resolve ultrasound tagged photons (see Section 2.3.6.7
& Section 2.4.1), which are typically modulated by ultrasound pressure fields fluctuat-
ing in the range of 1 - 5 MHz [93].

The authors of the iDWS technique have also recently proposed multi-exposure
iDWS (MiDWS), which makes use of a low-frame rate 2D CMOS sensor, and which
measures brain BFI using an SDS of 30 mm and an integration time of 0.096 s, at a lower
cost per pixel than iDWS [23]. BFI measurement using holographic approaches, which
are inherently interferometric, have also been documented, and these are introduced in
Chapter 3.

2.3.6.5 Depth discrimination techniques

As DCS is a diffuse optical technique, it is limited by a lack of inherent depth discrim-
ination within the illuminated region of each source-detector pair, and the CBF signal
is therefore also prone to contamination by the extracerebral tissues which the light tra-
verses. If robustness to extracerebral contamination is the main concern, then the meas-
urement of BFI (i.e., DCS), rather than haemoglobin concentration (i.e., NIRS), will, in
theory, provide a more effective signal. This is because optical fluctuations achieve 3 - 5
times better brain specificity than optical absorption, as brain BFI exceeds extracerebral
BFI by 6 - 10 times, while the corresponding ratio for haemoglobin concentration is 2.5
times [24]. However, this analysis relies on the SNR of DCS and NIRS being comparable
[29]. NIRS, which does not rely on coherence, can measure many incoherent modes us-
ing large detectors, and this technique can therefore more easily achieve a higher SNR
than DCS. Therefore, changes to improve the SNR of DCS will help to realise this theor-
etical like-for-like advantage that DCS has over NIRS.

One method to account for extracerebral tissue is to switch from the traditional semi-
infinite geometry model, which is commonly used in DCS, to a multi-layered (typically
two or three layered) geometry model [104]. Although this is an effective technique,
these models rely on accurate prior knowledge of the optical properties and thickness of
each layer. Alternatively, Selb et al. proposed to remove the contribution of extracereb-
ral contamination via a superficial regression technique, in which a fraction of the BFI of
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a short SDS pair is subtracted from the BFI of a corresponding long SDS pair [36]. These
authors removed a fixed contribution of 70 % of the short SDS BFI (i.e., CBF = BFIlong -
0.7 × BFIshort), and noted that this technique could be optimised through further meas-
urements and modelling studies, and also by optimisation of the DCS probe location
based on observation of a patient’s prior CT or MRI scans. A natural extension of this
technique is the principle of diffuse correlation tomography (DCT), in which a 3D volu-
metric image of BFI may be reconstructed based on intensity measurements acquired
using arrays of sources and detectors [35]. This is analogous to the extension of NIRS to
DOT, the technique described in Section 2.3.2, which reconstructs 3D volumetric images
of haemoglobin concentration changes.

Probe pressure modulation is an alternative technique which makes use of a two-
layer model (i.e., extracerebral and cerebral layers), with measurements acquired at
multiple optical probe pressures and multiple SDS distances, and which does not re-
quire prior anatomical information [105]. By exploiting the fact that variations in optical
probe pressure will induce variations in extracerebral BFI, whilst cerebral BFI remains
constant, these authors were able to isolate the contribution to BFI of the cerebral layer.

Other depth discrimination approaches have also been proposed, including TD-DCS
(see Section 2.3.6.6) and acousto-optic techniques, which make use of the ultrasound
tagging of light (see Section 2.3.6.7 & Section 2.4.1).

2.3.6.6 Time-domain approaches

Aside from contamination by extracerebral tissue, one of the other major limitations
of DCS is the need to know the optical properties of tissue to accurately quantify BFI.
TD-DCS is a time-of-flight (TOF) resolved method that enables deep tissue BFI measure-
ment with depth discrimination at short SDS distances, whilst simultaneously acquiring
tissue optical properties [28]. In this technique, each detected photon is associated with
two measurements: the TOF from source to detector to obtain the TPSF, and the abso-
lute arrival time to obtain g2. Optical properties can be extracted from the characteristic
properties of the TPSF (see Section 2.3.1.3). Then, by using a train of long coherence
length laser pulses, autocorrelation functions can be evaluated at different time gates
of the TPSF, and flow parameters can then be fit to measured g2 functions arising from
early and late arriving photons (i.e., short and long photon paths, respectively), which
thus provides depth discrimination. Due to the decreased SDS distances that are used,
TD-DCS affords both better depth sensitivity and improved spatial resolution than con-
tinuous wave DCS (CW-DCS) [98].

Compared to CW-DCS, the measurement duty cycle of TD-DCS is decreased by a
factor of 50, due to the need for pulsed illumination [28]. Additionally, the intrinsic-
ally lower coherence of a pulsed source results in lower SNR. TD-DCS performance is
strongly impacted by the system instrument response function (IRF), the selection of
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time gates that are used, and the temporal shape of the pulsed laser source [106]. Sat-
isfying the TD-DCS requirements of a picosecond pulsed laser with a long coherence
length, adequate illumination power, and a narrow IRF remains challenging [107].

An alternative technique, interferometric near-infrared spectroscopy (iNIRS), also
quantifies TOF resolved dynamics, and this is introduced in Section 2.3.7.

2.3.6.7 Other approaches

Robinson et al. have presented an approach toward enabling quantitative depth select-
ive flow measurements in DCS by using acousto-optic modulation (AOM-DCS) [33].
This is a hybrid technique that allows for improved spatial resolution of the optical sig-
nal based on knowledge of the area that is insonified by ultrasound, owing to the ultra-
sound tagging of light (UTL). These authors presented a quantitative model for flow de-
tection using CW ultrasound, based on the principle that both g2(τ) and the amplitude
of the modulation of g2(τ) decay with time [108]. More complex spatiotemporal dis-
tributions of ultrasound (e.g., focused, pulsed, encoded, or overlapping pressure fields
using two ultrasound transducers) are required to resolve flow with both better spatial
and temporal resolution. AOM-DCS is part of a broader group of methods, known as
AOT, which is discussed more fully in Section 2.4.1. The interaction of the ultrasound
generated acoustic radiation force (ARF) and the DCS signal has also been investigated
[109].

With a view to developing a low-cost and wearable DCS system, Biswas et al. have
recently presented a portable DCS system which makes use of a small-form factor and
fibre-less embedded diode laser [110]. The same group has also developed a system to
obtain pathlength resolved DCS measurements (similar to TD-DCS and iNIRS) by using
a Mach-Zehnder interferometer with a reference arm that has an adjustable length [111].
By scanning the length of the reference arm, g2(τ) may be evaluated for various photon
pathlengths. Additionally, the average intensity as a function of pathlength can be used
to generate a TPSF, from which tissue optical properties may be obtained.

Deep learning techniques have recently been employed with a view to reducing the
computational demand of DCS experiments [112]. Fitting measured g2(τ) data to ana-
lytical or Monte Carlo models to extract BFI can be computationally demanding and
suffers from inaccuracy in low SNR environments. These authors used a deep learn-
ing model that resulted in a 23-fold increase in the speed of BF quantification, which
further enables the real-time and accurate quantification of BFI using DCS. DCS denois-
ing algorithms, including the use of support vector regression, have also been explored
[113]. Within the context of DCT image reconstruction, learning approaches have also
been employed to compensate for the decreased spatial resolution resulting from the ill-
conditioned and ill-posed nature of the inverse problem, resulting in an imaging depth
of 5 mm at 2.5 Hz using a 32 × 32 SPAD array [114].
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2.3.7 Interferometric near-infrared spectroscopy

FD-NIRS and DCS instruments can be combined into one instrument to concurrently
measure both optical and dynamical properties; however, this technique cannot provide
TOF resolved DCS measurements. To overcome this limitation, iNIRS combines TD-
NIRS and DCS into a single modality to simultaneously extract sample optical prop-
erties and TOF resolved sample dynamics. This is achieved through the analysis of
a spectral interference fringe pattern, which is measured using a Mach-Zehnder inter-
ferometer with a frequency-swept narrow linewidth laser [115]. Photons with shorter
pathlengths will produce a lower frequency fringe pattern, and arrive at the detector
earlier than photons with longer pathlengths, which will produce a higher frequency
fringe pattern.

The TOF difference between light propagating through the sample arm and the
reference arm of the interferometer can be obtained by Fourier transforming the fre-
quency resolved interference signal. This yields a complex mutual coherence function,
Γrs(τs, td), between the sample and reference fields, where τs is TOF and td is delay
time. From a time series in td, a 2D TOF resolved optical field autocorrelation function,
GiNIRS

1 (τs, τd), can be obtained

GiNIRS
1 (τs, τd) = ⟨Γ∗

rs(τs, td)Γrs(τs, td + τd)⟩td
, (34)

where τd is time lag. The measured GiNIRS
1 (τs, τd) is related to the intrinsic G1(τs, τd) by

convolution with the system IRF,

GiNIRS
1 (τs, τd) = G1(τs, τd) ∗ IRF(τs). (35)

GiNIRS
1 (τs, 0) is equivalent to the TPSF that is measured from TD-NIRS. GiNIRS

1 (τs, τd)

provides TOF resolved dynamics, which, when integrated over τs and normalised, yields
g1(τd), as per a conventional DCS experiment.

Therefore GiNIRS
1 (τs, τd) is a rich data set which provides both sample optical prop-

erties and TOF resolved sample dynamics, and the authors of this technique argue that
it is the most informative diffuse optical method to date. Advantages of iNIRS, when
compared to TD-DCS for example, are that iNIRS does not require pulsed lasers (which
result in a reduced coherence factor) or single photon counting detectors, and TD-DCS
is also sensitive to ambient light. iNIRS also accesses the field autocorrelation directly,
therefore obviating the Siegert relation, and the constraints therein. The main draw-
back of iNIRS, when compared to incoherent TD-NIRS for example, is that iNIRS is a
coherent modality which, like DCS techniques, suffers from moderate light throughput.
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Figure 2.12: Due to the fact that the laser frequency is swept, photons travelling deeper
into tissue, which take a longer time to travel through the sample arm of the

interferometer, generate a larger beat frequency upon interference with the reference
arm. Therefore, iNIRS encodes TOF, τs, as beat frequency. Autocorrelation of a

time-series of mutual coherence functions yields GiNIRS
1 (τs, τd), which can be used to

obtain both TPSFs and TOF resolved dynamics. Reproduced with permission from
[116] under the terms of a Creative Commons Attribution 4.0 License. © Kholiquov,

Zhou, Zhang, Du Le, and Srinivasan 2020.

2.3.8 Speckle contrast optical tomography

Analogous to the extension from DCS to DCT, LSCI (Section 2.3.4.1) can be extended
to speckle contrast optical tomography (SCOT). SCOT is a technique that enables deep
BF measurements based on changes in laser speckle contrast over large channel counts
[25], and merges the deep imaging capability of DCS with the low cost and high-frame
rate detectors used in LSCI, enabling improved SNR and a broad field-of-view when
compared with DCT, without being prohibitively expensive. Speckle contrast optical
spectroscopy (SCOS) extends SCOT in one of three ways: using a fixed camera expos-
ure time and varying the SDS distance, using a fixed SDS distance and varying the
camera exposure time, or by varying both camera exposure time and SDS distance sim-
ultaneously [117].

In the implementations that have been described in the literature, SCOT is limited
by the requirement of frame averaging, which typically requires 200 camera exposures,
with a resulting temporal resolution in the order of ∼0.5 Hz [82]. Also, to obtain spa-
tially coherent information (i.e., imaging rather than illumination), detector arrays must
be mounted close to the sample to make use of free space detection. This is also prob-
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lematic when hair occludes the field of view. Alternatively, expensive spatially coherent
fibre bundles can be used to transmit light from the sample to the detector, to decrease
the form-factor on the detection side of the instrument, and also to comb through hair.
However, fibre bundles suffer from fragility and tend to accumulate dead pixels over
time.

2.3.9 Diffuse speckle contrast analysis

Diffuse speckle contrast analysis (DSCA) can be thought of as a modality that combines
DCS and LSCI, and which is sensitive to deep flow [118]. DSCA differs from LSCI in
that an SDS distance is specified, which enables deep flow measurement, and DSCA
differs from DCS in that low-frame rate camera detection is used.

Due to the single-mode detection that is used in DSCA, only one speckle is captured
per camera frame, and speckle contrast must be calculated temporally over ∼60 camera
frames. This yields a flow measurement frame rate that is 1/60 of the camera frame
rate. By switching to multimode detection, the same authors developed diffuse speckle
pulsatile flowmetry (DSPF), which allows speckle contrast to be calculated spatially,
rather than temporally, within each camera frame [100]. This means that the flow meas-
urement frame rate is increased by a factor of 60 compared to DSCA, and is equal to the
camera frame rate, which was 300 Hz in the paper that describes DSPF.

Multimode fibres may be less likely to be used for coherent detection due to prob-
lems with movement artefacts, and the non-ideality of the output speckle pattern. Bi et al.
corrected for this latter effect by normalising each speckle pattern by the average back-
ground intensity profile of the multimode fibre tip over 6000 camera frames, a process
requiring about 20 seconds [100]. The authors note that this average image would need
to be recalibrated each time the multimode fibre moves.

2.4 Hybrid methods

The desire to simultaneously exploit the depth penetration and spatial resolution of
ultrasound, whilst also making use of the high levels of contrast, spectroscopic spe-
cificity, and functional imaging information available with optical techniques, has led
to the recent development of ‘coupled-physics’ or ‘hybrid’ imaging techniques. Two hy-
brid modalities have emerged that make use of the interplay between sound and light:
acousto-optic tomography (AOT) and photoacoustic tomography (PAT). Both of these
imaging techniques aim to improve upon either solely optical or ultrasound methods,
and combine the two modalities to attempt to reduce the effects of the constraints as-
sociated with each method, namely weak contrast and limited specificity in the case of
ultrasound, and poor depth penetration and spatial resolution in the case of diffuse op-
tical imaging (as has been described in Section 2.3). The specific application of AOT to
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enhance DCS measurements [33, 108] was introduced in Section 2.3.6.7. The purpose of
Section 2.4.1 is therefore to introduce AOT approaches within a more general context.

2.4.1 Acousto-optic tomography

AOT, also known as ultrasound-modulated or ultrasound-mediated optical tomography
(UMT/UMOT), ultrasound assisted optical tomography, acousto-photonic imaging, or
acousto-optic imaging, aims to achieve increased spatial resolution sensitive to optical
absorption by creating an artificial ultrasound marker at some axial depth in the sample
[93]. This marker is brought about by imposing a focused ultrasound beam on the
sample under examination, meaning that the spatial resolution and sensitivity of this
technique will be greatest in the region of the ultrasound focus. Photons which pass
through the ultrasound beam are ‘tagged’ as their frequency is shifted away from the
main optical carrier frequency. By recording the intensity of photons arriving at an
optical detector that are modulated at the acoustic frequency, the relative number of
photons that have travelled through the focus of the ultrasound beam can be calculated,
and thus photon localisation in turbid tissue is achieved. AOT therefore improves upon
diffuse optical imaging methods in terms of spatial resolution; improvements related to
increasing depth penetration and SNR are discussed below.

Ultrasound tagging of light (UTL) was initially developed to provide 3D imaging of
breast tumours by Marks et al. [119]. If a sample is illuminated with a laser of suffi-
ciently long coherence length (dependent upon tissue thickness and optical scattering
properties), then the intensity distribution measured at a photodetector will be a speckle
pattern, as discussed in Section 2.3.1.4. When an ultrasound beam is focused into the
tissue, this speckle pattern will become blurred (see Figure 2.13) due to the periodic
compression and rarefaction of the tissue, which leads to changes in the optical path-
lengths that are caused by two coherent mechanisms [93]:

• the local index of refraction, n, of the tissue is changed by periodic compression
and expansion by the ultrasound beam, and photons diffracted by this refractive
index grating will be shifted in frequency;

• the oscillation of optical scatterers, caused by propagation of the ultrasound beam,
will mean that photons undergoing Rayleigh scattering will be frequency shifted.
Although the contribution from each scatterer is only on the scale of nanometres,
the effect is accumulative over the whole optical pathlength, and therefore it can
have a significant effect.

Both of these mechanisms lead to the development of an acoustic sideband in the elec-
tric fields of modulated photons, which is either side of the optical carrier frequency.
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This sideband is itself broadened due to the residual motions of these optical scatter-
ers within the tissue. Thus, these mechanisms modulate the phase of photons passing
through the focal region of the ultrasound beam, and they become ‘tagged’.

Figure 2.13: Origin of the acousto-optic signal. Reproduced with permission from [93].
© 2011 The Royal Society.

Resink et al. also detail four other incoherent phenomena which lead to UTL, but
also describe how in many situations the variation in signal strength owing to these
four mechanisms is often too low to be measured [120]:

• modulation of local optical properties, such as absorption;

• variation in position of scattering particles;

• variation in cross-section of scattering particles;

• variation in refractive index which causes Bragg diffraction patterns.

Ultrasound frequencies in the range of 1 - 5 MHz are typically used, as they provide a
good compromise between depth penetration and spatial resolution (in terms of both
axial and lateral resolution) [93].

Single-mode detection, using photodiodes (PDs) or PMTs for example [119], was
one of the earliest reported strategies for AOT detection. However, the low levels of
SNR available with single-mode detection, together with a low modulation depth at
biologically safe ultrasound power levels, limits the viability of these single-point AOT
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detection methods, especially in vivo [93]. To overcome the low SNR of single-mode
detection, a confocal Fabry-Perot interferometer can be used to optically filter the incid-
ent background unmodulated light, so that the full dynamic range of the detector may
be used. The advantages of this technique are that a large etendue2 may be achieved,
and that the technique is not affected by speckle decorrelation due to its use of incoher-
ent light [93]. However, it is more effective at higher ultrasound modulations, which
provide shallower imaging depths, and may therefore be more suited to thinner tissue
samples. Gunther and Andersson-Engels describe that this technique is very sensitive
to light incidence angle, and also describe that reports of its use within the field of AOT
have not been published since 2011 [18].

Other techniques to enhance the sensitivity to the acoustic sideband include the use
of spectral hole burning (SHB) and photorefractive (PR) crystals. The SHB technique
uses a high-power pump laser to burn a spectral hole in a SHB crystal, which permits
the passage of acoustically modulated photons and absorbs any incident unmodulated
background light [18]. SHB crystals may be used at biologically relevant wavelengths
around 800 nm, and the spectral hole, once burnt, persists for about 10 ms [93]. The
main disadvantage of this technique is the cryogenic cooling that is required to keep the
rare earth crystals at ∼4 K [120].

One variation of the group of PR crystal techniques involves frequency shifting a
reference arm by the ultrasound modulation frequency, so that only the acoustically
modulated component of the signal arm and the reference arm write the refractive in-
dex grating in the PR crystal. This results in the wavefronts of the shifted reference arm
being matched with the wavefronts of the modulated signal, and a photodetector then
records the heterodyne amplified modulated component of the signal arm [120]. The
signal contribution for each speckle is then integrated on the photodetector, increasing
both the etendue and the SNR of the experimental setup. However, one of the main
challenges of this technique is the PR response time of the crystals (0.1 - 150 ms) [120],
which must be fast relative to tissue decorrelation time (0.1 - 1.0 ms). In conjunction to
having a sufficiently fast response time, PR crystals must also be responsive at biolo-
gically relevant wavelengths (i.e., in the NIR window). It has also been argued that the
use of a strong reference beam, which is used to induce a large heterodyne gain term,
may lead to an increased level of scattered background light at the photodetector [93];
however, the same could be argued of any interferometric technique.

Analogous to the multispeckle approaches that have been described within the con-
text of DCS (Section 2.3.6.2), parallel detection techniques also boost measurement SNR
within the context of AOT. These techniques can make use of the spatial statistics of
ultrasound modulated speckle [18], parallel lock-in speckle detection [120], and hetero-
dyne detection using digital holography [93] to infer flow within the insonified region.

2Etendue is the product of the surface area of detection and the detection solid angle [120, 121].
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A concise introduction to the application of digital holography to multispeckle detection
in general is given in Chapter 3.

As with traditional focused ultrasound imaging, the lateral resolution of AOT is
equivalent to the width of the focal area of the ultrasound beam, W, which is determined
by [46]

W = 1.41λ
F
2a

, (36)

where λ is the wavelength of the ultrasound beam, F is the focal length, and a is half
the width of the ultrasound array. Lateral resolution can thus be improved by using
a higher frequency ultrasound transducer, but this will be at the expense of available
imaging depth.

In general, axial resolution may be achieved by adding a time-dependence to the
ultrasound frequency, phase, or amplitude, and typically axial resolutions of ∼1 mm
can be achieved [93]. At the most basic level, an axial scan of a tissue sample may be
achieved by resolving detected modulated signal intensity as a function of time during
the propagation of pulsed ultrasound wavefronts. These short ultrasound pulses consist
of a small number of ultrasound cycles, and will arrive at a depth of interest, z, at time
tstart = z/ca, where ca is the speed of sound in the sample. The ultrasound pulse will
finish passing through z at time

tend = tstart +
Nλ

ca
, (37)

where N is the number of cycles per ultrasound pulse. By recording the modulated AOT
signal intensity between tstart and tend, only the photons that have been modulated at a
depth z ± (Nλ) will be recorded.

This then presents a trade-off between axial resolution and SNR, with higher axial
resolution requiring shorter ultrasound pulses, with consequently less available photons
within a shorter time-gate, and a larger spread of energy in the frequency domain,
which may not match the available bandwidth of the detector appropriately. The major
drawback of this technique is that it is only possible using fast detectors.

The frequency sweep technique is the first method that was implemented to achieve
axial resolution in the field of AOT [122]. This technique uses a short, chirped ultra-
sound wave, the frequency of which varies linearly with time according to

f (t) = astart + bt, (38)

where f (t) is the frequency sweep at time t, astart is the starting frequency, and b is the
sweep rate. Photons along the axial acoustic axis are then modulated with a different
frequency at each depth, and a Fourier transform of the detected signal will encode axial
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information as frequency. The axial resolution achievable with this technique depends
on both the chirp repetition rate and chirp duration.

Randomisation of the phases of ultrasound and optical illumination is a technique
adopted by Lesaffre et al. [123] to achieve axial resolution, and is sometimes known
as acousto-optic coherence tomography. This group used a dataset containing 512 ran-
domly selected phases of either 0 or π, with a period of 1 ms, to modulate the ultra-
sound transducer and the optical illumination source. A time delay, τ, was applied to
the optical illumination according to τ = z/ca, where z is the depth of interest along
the acoustic axis, at which point the ultrasound and optical phases will be correlated
and only acoustically modulated photons will be detected using a heterodyne gain sys-
tem. The axial resolution for this technique is related to both ca and the time required to
change phase (i.e., 1 ms/512 = 1.95 µs in the case of this example).

Other techniques to improve spatial resolution include: construction of a synthetic
focus by superposition of many unfocused wavefronts to increase lateral resolution
[120]; the use of CEUS (see Section 2.2.5); the use of two ultrasound transducers and
dual ultrasound frequencies; coded ultrasound [1, 124]; and nonlinear second harmonic
imaging and pulse inversion [18]. The detection of nonlinear ultrasound effects is asso-
ciated with higher sample contrast and spatial resolution [93].

BF and the movement of scatterers within the ultrasound focal region will decrease
the temporal autocorrelation of the photons that pass through it, which is equivalent
to decreasing and broadening the amplitude of the acoustically modulated frequency
sideband. Therefore, as BF within a region increases, the cross correlation between the
incident ultrasound pulse and the detected modulated photons will decrease, and vice
versa, which can be used to infer BF [125]. However, this measurement technique suf-
fers from signal contamination and decorrelation by intermediate layers between the
imaging depth and the transmission/reception plane, and therefore tends to incorrectly
assess CBF due to the contribution from extra-cerebral tissues. This led to the devel-
opment of the ‘differential spectral width’ method, which is able to determine both the
location and amplitude of flow patterns [1]. By modulating a sample with pulsed ul-
trasound, the spectral broadening around the acoustic sideband due to BF at a range
of sample depths can be be acquired. This yields a 2D spectrogram, in which the time
delay is associated with depth, and the spectral broadening is associated with volumet-
ric flow rate. An example of a 2D spectrogram is shown in Figure 2.14(A) for simulated
data by Tsalach et al. [1].

The spectral width, SW, as a function of imaging depth can then be calculated by
normalising the area under the spectrogram curve, AUC, by the amplitude at the central
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ultrasound carrier frequency A( fUS)

SW =
AUC

A( fUS)
, (39)

which is shown in Figure 2.14(B).
The spectral broadening at a given depth can then be deduced by subtracting spec-

tral widths of adjacent layers, thus providing a measure of net broadening caused by the
relevant tissue layer, i.e., ‘local broadening’, ‘differential spectral width’, or BFI. This can
be calculated as the first derivative of SW with respect to imaging depth

BFI =
∂(SW)

∂z
, (40)

which is shown in Figure 2.14(C).

Figure 2.14: The differential spectral width method for simulated data. (A) Horizontal
concatenation of power spectra yields a 2D spectrogram, in which colour denotes

amplitude in arbitrary units. (B) The spectral width is the ratio of area under the curve
and the amplitude at the ultrasound frequency, for each imaging depth. (C) BFI is the

derivative of spectral width with respect to imaging depth. Reproduced with
permission from [1]. © 2015 Optical Society of America.

The importance of depth-resolved flow measurement in AOT is highlighted by a
recent study, which used the c-FLOWTM AOT system (Ornim Medical Ltd), and found
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that this device could indicate an apparently normally perfused brain in patients that
had been pronounced brain dead [126]. The authors of this study attributed this to the
failure of the device to remove signal contamination from superficial extra-cerebral flow,
which can persist in the scalp after death, for example.

The first in vivo demonstration of an AOT signal was by Lev and Sfez in 2003 [127].
One of the main findings of this study is that ex vivo experiments suffer much less from
speckle decorrelation noise than in vivo experiments. To the best of my knowledge there
has been no published account of depth-resolved AOT CBF measurements being suc-
cessfully made and validated in vivo. The main challenges for in vivo AOT applications
are tissue decorrelation times and low light levels [120], and the compromises that must
be made when addressing each of these two factors. Gunther and Andersson-Engels
state that challenges facing AOT for in vivo imaging also include [18],

‘improving resolution, reducing acquisition time, increasing contrast or SNR,
increasing etendue, integrating relevant wavelengths for biological tissue,
incorporating safety limitations, resolving optical and mechanical proper-
ties, and increasing imaging depth’.

Gunther et al. state that speckle contrast imaging, digital holography, SHB, and PR
crystal systems hold the most promise for in vivo AOT imaging [128]. These authors
highlight the promise of SHB systems, owing to their particularly high etendue, their
immunity to speckle decorrelation noise, and their ability to efficiently suppress the un-
modulated background light signal (which may be six orders of magnitude higher than
the modulated light signal). SHB crystals with 60 dB suppression have been developed,
but these have not yet been incorporated into AOT systems [129].

2.4.2 Photoacoustic tomography

PAT involves the use of a wide-beam laser pulse of a few nanoseconds duration, which
is used to illuminate a sample, and which is then absorbed by chromophores. At this
point the absorbed light is thermalised and converted to a pressure wave, which gives
rise to an ultrasonic pulse [130]. This ultrasonic pulse can be measured by an array of ul-
trasound transducers on the surface of the sample. An image reconstruction algorithm
can then be used to convert the measured acoustic pressure field into an initial acoustic
pressure distribution, using a time reversal algorithm, for example, to produce a pho-
toacoustic image [131]. The contrast in the image is related to optical absorption, and
the benefit of recording ultrasound instead of diffuse light is that ultrasound is much
less scattered than light in biological tissue.

A recent study has shown that AOT holds greater potential over PAT in terms of
imaging depth, with simulated imaging depths of ∼6 cm and ∼3 cm, respectively, in
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cardiac tissue [128, 132]. Additionally, for CBF measurements, there is the challenge of
attenuation of ultrasound as it passes through the skull. In the case of AOT, transmitted
ultrasound can be focused within the brain [133], which confers a significant advantage
over the ultrasound detection of PAT.

PAT already has in vivo applications, but one of its main disadvantages in compar-
ison to AOT is that the contrast in PAT is related to optical absorption, whereas AOT is
sensitive to changes in absorption, scattering, and mechanical properties of tissue [18].
Additionally, when making BF measurements through the use of Doppler shift meas-
urements, the comparatively long wavelength of the received ultrasound makes PAT
relatively insensitive to the small optically generated Doppler shifts that are produced
[76].

2.5 Chapter summary

This chapter serves to develop a description of the currently vacant niche for an inex-
pensive, continuous, noninvasive, portable, bedside, and non-ionising imaging/sens-
ing modality with which to measure CBF. Of all the non-optical methods described,
TCD has the greatest potential to fill this niche; however, TCD is highly operator de-
pendent and measures macrovascular BF rather than making direct measurements of
CBF itself.

Having offered a concise introduction to biomedical optics, in this chapter I have also
described the various incoherent and coherent optical modalities which can be used to
measure CBF, with a range of characteristic imaging depths. Diffuse optical techniques
are required to image deeper into the brain; however, these techniques are marred by the
low SNR that is associated with the SDS distances that are required to achieve deeper
imaging. DCS is a promising CBF measurement technique, and many research groups
have recently been investigating methods to improve the SNR, imaging depth, and spa-
tial resolution of DCS. Such methods have included multispeckle, long wavelength,
interferometric, depth discrimination, and time-domain approaches, and these meth-
ods inform the novel approach to DCS that is investigated in subsequent chapters of
this thesis. iNIRS is perhaps the most comprehensive diffuse optical imaging modality
to date, but it currently suffers from a lack of parallelised detection, which limits its
application to the measurement of CBF.

AOT is an emerging hybrid imaging modality that makes use of the ultrasound mod-
ulation of light, and it has the potential to offer higher levels of SNR, imaging depth, and
spatial resolution than purely diffuse optical methods. Despite early promise, spatially
resolved flow measurement with both sufficient SNR and temporal resolution for in
vivo AOT detection remains extremely challenging. Most of the research in the area of
portable and non-invasive CBF measurement focuses on diffuse optical techniques.
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3 Digital holography for in vivo multispeckle detection

3.1 Chapter contribution

In this chapter I introduce digital holography: an optical imaging modality that I pro-
pose can be incorporated into diffuse correlation spectroscopy (DCS) technology to
make measurements of cerebral blood flow (CBF). After a brief introduction to digital
holography in Section 3.2, I explain how this technique is particularly suitable for multis-
peckle detection, and describe previous examples of its use in biomedical optics in
Section 3.3. I then introduce heterodyne parallel speckle detection (HPSD) in Section
3.4, which allows the measurement of the power spectral density (PSD) of an electric
field using inexpensive low-frame rate cameras, simultaneously measured over mul-
tiple speckles, with narrow temporal frequency broadening. In Section 3.5, I give ex-
amples of the instrument response function (IRF) of an HPSD instrument, and describe
how the Wiener-Khinchin theorem can be used to infer sample dynamics from HPSD
measurements. This then allows me to pose the research question for this thesis, and
some of the challenges to be overcome for in vivo detection, in Section 3.6.

3.2 Introduction to digital holography

Dennis Gabor proposed the concept of holography in 1948 [134]. Gabor recognised
that when a mutually coherent reference wave, A(x, y), of known amplitude and phase,
interferes with the light scattered or diffracted by an object, a(x, y), it is possible to
record information about both the amplitude and phase of a(x, y), even when using
a recording medium which is sensitive to light intensity only. If we let A(x, y) =

|A(x, y)| exp (iϕ(x, y)) and a(x, y) = |a(x, y)| exp (iψ(x, y)), then the intensity of the
sum of the two complex fields that is recorded is given by [135]

h(x, y) = |A(x, y)|2 + |a(x, y)|2 + 2|A(x, y)||a(x, y)| cos (ϕ(x, y)− ψ(x, y)) . (41)

The recorded interference pattern may be regarded as a hologram, and, provided that
it is possible to separate each of the terms in Equation 41, |A|2a(x, y) (or its conjugate,
|A|2a∗(x, y), the holographic twin-image) can be reconstructed by illuminating h(x, y)
with A(x, y) or A∗(x, y), respectively. An observer will then see a reconstructed 3D
image of the object which displays all the effects of both perspective and depth of focus
[136].

The term holography is used, as it is derived from the Greek words ‘holos’, meaning
whole or entire, and ‘graphein’, meaning to write. As holography requires the use of a
coherent light source, practical applications of optical holography only became possible
with the invention of the laser in the 1960s. Holographic detection initially made use of
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photographic films and plates, which require wet processing and are associated with a
delay between recording and reconstruction steps. Digital holography, which involves
digital sampling and numerical holographic reconstruction, obviates the need for wet
processing and speeds up reconstruction times significantly.

The remainder of Section 3.2 is devoted to the demonstration of numerical holo-
graphic reconstruction using the Fresnel approximation as an illustrative example of
digital holography. The Fresnel technique is the least computationally expensive of
the holographic reconstruction algorithms, and is primarily used for larger objects and
longer observation distances. However, the image resolution of this technique can be
arbitrarily scaled by zero padding or upsampling recorded holograms. Alternative re-
construction techniques include convolution and angular spectrum approaches, which
are slower and are typically used for small objects and short observation distances [137].

Figure 3.1: Coordinate systems for digital lensless Fourier holography. Adapted from
[138, 139].

Using the coordinate systems depicted in Figure 3.1, a light wave diffracted by a
hologram, h(xH, yH), perpendicular to an incoming reference beam, A(xH, yH), can be
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described by
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, (42)

where F−1 denotes the inverse Fourier transform. The interested reader is referred to
[136, 140] for a complete derivation of Equation 42, which makes use of both the Fresnel-
Kirchhoff integral and the Fresnel approximation. Noting that
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i
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(
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2π

λ
d
)

(43)

is a complex valued constant, Equation 42 becomes
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π
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F−1
{
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(
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π
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[
x2

H + y2
H

])}
. (44)

The factors outside the argument of the inverse Fourier transform in Equation 44 only
affect the overall phase, and can be neglected if it is only the intensity of the object that
is of interest [136, 140]. Equation 44 then simplifies to

a(xI , yI) = F−1
{

h(xH, yH)A(xH, yH) exp
(
−i

π

λd

[
x2

H + y2
H

])}
. (45)

For the specific geometry of lensless Fourier holography, the effect of the spherical phase
factor associated with the Fresnel diffraction pattern of the object is eliminated by using
a spherical reference wave with the same average curvature

A(xH, yH) = exp
(

i
π

λd

[
x2

H + y2
H

])
. (46)

This can be achieved in practice by using a reference wave that approximates a point
source located in the plane of the object. Substituting Equation 46 into Equation 45 we
have

a(xI , yI) = F−1 {h(xH, yH)} , (47)

and the intensity of the object can be reconstructed as |a(xI , yI)|2.
Lensless Fourier holography reconstructs both holographic twin-images in the same

plane, and therefore a technique to separate these two images is required. The geometry
of lensless Fourier holography maintains an approximately constant angle between the
object beam and the reference beam over the whole area of the sensor, thus utilising its
full spatial bandwidth and decreasing sensor resolution requirements [138, 141]. Lens-
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less Fourier holography is fast, as it requires only one Fourier transform, and the spatial
resolution of the reconstructed image can be increased by zero padding or upsampling
h(xH, yH).

3.3 Digital holography for blood flow measurement

As digital holography is a lensless technique, it is free from aberrations by imaging
devices [136]. Digital holography is inherently interferometric, and the use of area
sensors also allows for multispeckle detection as well as facilitating the implementa-
tion of tomographic and depth discrimination techniques. In Section 2.3.6, I outlined
that interferometric and multispeckle detection are approaches that have recently been
investigated to improve the signal-to-noise ratio (SNR) and depth specificity of DCS. It
is clear that both of these approaches can be combined into one detection modality in a
digital holography system. Additionally, shot noise limited detection can be achieved
in digital holography by combining an appropriate temporal filtering strategy with the
spatial filtering that is facilitated by off-axis interference of object and reference arms [34,
142], which can lead to further SNR gains. Digital holography can also be used to im-
plement long wavelength approaches, as near-infrared (NIR) enhanced silicon cameras
and InGaAs cameras can be employed for detection. Speckle detection systems must
use a coherent light source, and therefore the requirement for coherence that digital
holography presents does not represent an additional hardware cost for speckle detec-
tion. Finally, when compared to single photon avalanche detectors (SPADs) and super-
conducting nanowire single-photon detection (SNSPD), cameras offer an extremely low
relative cost of detection.

Digital holography is therefore an attractive modality with which to detect speckle
patterns in biomedical optics; indeed, it has been highlighted as a promising detection
strategy for acousto-optic tomography (AOT) [128]. By shifting the frequency of the
reference arm near to the acoustic sideband, it is possible to selectively detect tagged
photons at the shot noise limit using off-axis holography [143, 144]. Most recently, Hus-
sain et al. developed an analytical model for detection of an AOT signal using digital
holography with a frequency shifted reference arm, which they implemented to suc-
cessfully resolve flow in a dynamic flow phantom [76]. These authors showed that the
AOT signal within the ultrasound focus was dependent on both the blood flow (BF)
through that volume and the integration time of the camera, and were able to achieve in
vitro depth-resolved flow measurements by analysing images captured using different
integration times.

Interferometric speckle visibility spectroscopy (ISVS) is a technique that was de-
veloped and published during the time that the research for this thesis was being con-
ducted [37]. ISVS uses off-axis holography to facilitate spatial filtering, and quantitat-
ively assesses the contrast (or equivalent visibility factor) of time-integrated holograms,

98



rather than frequency shifting the reference arm, to access sample dynamics. A longer
integration time, or shorter sample decorrelation time, will result in more blurring, and
vice versa, and these authors derived a quantitative model to relate these three factors,
similarly to the approach developed by Hussain et al. [76]. ISVS uses a lensless Fourier
holography setup, and therefore only one Fourier transform is required to reconstruct
the holographic terms of interest. Additionally, ISVS uses the interferometric nature
of holography to compensate for camera noise, and, like interferometric near-infrared
spectroscopy (iNIRS), access the electric field directly, thereby obviating the Siegert re-
lationship, and the constraints therein. The ISVS system that these authors presented
uses a sampling rate of 100 Hz, and was able to resolve CBF sample dynamics in vivo us-
ing source-detector separation (SDS) distances of 0.75 and 1.50 cm, using photon count
rates that were not high enough to yield a detectable single-mode DCS signal. However,
the off-axis setup that was used by these authors was not ideal, as it did not allow for
sampling of the reference beam intensity from measured holograms [see Figure 7.1(A1-
A2)]. This lack of calibration leads to noisier flow measurements when compared to
like-for-like DCS flow measurements.

Laser Doppler holography (LDH) was presented by Puyo et al. in 2018, and is con-
ceptually similar to laser Doppler flowmetry (LDF) (see Section 2.3.4.3), but the holo-
graphic implementation allows for full-field imaging of the retina [145]. To maximise
the field of view, on-axis holography is used, and a fast detection frame rate (up to 75
kHz), rather than frequency shifting of the reference arm, is used to achieve sensitiv-
ity to sample dynamics with sufficiently high temporal resolution. In LDH, a 3D slid-
ing window is moved along a consecutive time-stack of reconstructed holograms. The
pixel-wise PSD of each sliding window is calculated using a short-time Fourier trans-
form. This PSD is then integrated between two frequencies of interest to yield a single
pixel-wise power Doppler image, an example of which is shown in Figure 3.2. These
images can be acquired with a temporal resolution of 1.6 ms, when sampling over 512
× 512 pixels, which represents 2.4 × 2.4 mm2 of the retina.

3.4 Heterodyne parallel speckle detection

The main limitations of digital holography for BF detection are the trade-off that exists
between equipment cost and the detection frame rates that are required to resolve rapid
sample fluctuations, and the temporal frequency bandwidth broadening that is caused
by these high detection frame rates. Therefore, to sample the PSD of a rapidly fluc-
tuating electric field, using low-cost and low-frame rate detection, a technique known
as HPSD was developed [146]. Briefly, HPSD makes use of the spatiotemporal filter-
ing that can be achieved using multi-frame off-axis digital holography, together with
sweeping the reference arm frequency, to interrogate the PSD at discrete locations of
interest. The term ’parallel’ is used as HPSD allows the simultaneous measurement of
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Figure 3.2: Time-averaged power Doppler image of the retina acquired using LDH
(left). Red, blue, and green regions of interest (ROI), correspond to an artery (A), a vein
(V), and background tissues (B), respectively. These ROIs are used to spatially average
the power Doppler signal for the time-series plots (right). Reproduced with permission

from [145] under the terms of the OSA Open Access Publishing Agreement. © 2018
Optical Society of America.

multiple speckles [144].
HPSD using digital holography has been well described in the literature since its

inception in 2003 [142, 144, 147, 148]. The experimental configuration of an HPSD sys-
tem consists of a Mach-Zehnder interferometer, where the reference and sample arms
are recombined and interfere on a digital camera (see Figure 3.3). Temporal filtering oc-
curs over the camera integration period, and the resulting images record the first-order
PSD of the scattered electric field, S1, at a particular frequency and with a certain band-
width. By detuning the frequency of the reference arm of the interferometer by a pair of
acousto-optic modulators (AOMs), S1 may be sampled at discrete frequency shifts (∆ f )
from that of the input optical field, allowing the frequency spectrum of the scattered
light to be acquired. The heterodyne gain and shot noise limited performance [142] of
this technique permit illumination below the maximum permissible exposure limits of
tissue, and it is therefore particularly suited to in vivo flow detection [120].

In general, interferometry techniques involve the recombination of a reference beam
with a signal beam that has been transmitted through a sample. The source is split
into two parts by a beamsplitter to form a signal beam and a reference beam. In the
HPSD interferometry system described in this thesis, the frequency of the signal beam
is unshifted, such that ωS = ωL, where ωS is the optical frequency of the signal beam,
and ωL is the optical frequency of the laser source beam. The reference beam, ωR, is
shifted away from ωL using a pair of AOMs. A pair of AOMs is used as the required
frequency shift can be very small compared to the centre wavelength of the AOMs [93],
and thus one AOM is used to produce a negative frequency shift (ωAOM1), and the other
AOM a positive frequency shift (ωAOM2) of a slightly different magnitude. This results
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Figure 3.3: Schematic representation of the HPSD system that is described in this thesis.
A continuous wave (CW) laser source is split into a reference arm and a sample arm in
a fibre-coupled beamsplitter (BS). The reference arm is frequency shifted by a pair of

acousto-optic modulators (AOM1 and AOM2). Light is collected from the sample in a
reflectance mode geometry through the aperture of a liquid light guide (LLG). The two

arms are recombined off-axis in a cube BS. A photograph of the experimental
apparatus contained within the red dashed rectangle is shown in Figure 4.3.

in ωR = ωL + ωAOM1 + ωAOM2.
Having passed through the sample, the signal field takes the form ES(t) = ES expiωSt.

The reference field takes the form of ER(t) = ER expiωRt. The sample and reference
beams are recombined in a beamsplitter and are interfered on a camera sensor. This
recombination occurs slightly off-axis with respect to the camera sensor by a small tilt
angle [148].

The intensity of the speckle interference pattern that is detected by the camera is then

I(t) = |ES(t) + ER(t)|2, (48)

which, analogously to Equation 41, expands to [148]

I(t) = |ES|2 + |ER|2 + ESE∗
R exp−i(ωR−ωS)t + E∗

SER exp+i(ωR−ωS)t, (49)

where the first two terms of Equation 49 correspond to the self-beating homodyne
terms, and the third and fourth terms correspond to the heterodyne signal-reference
cross terms. Therefore, the strength of the measured signal (i.e., the two heterodyne
terms) depends on both the transmitted signal beam and the reference beam, according
to

G =
|ESER|
|ES|2

≫ 1, (50)

where G is heterodyne gain [143]. The use of a large reference beam intensity allows
this technique to reach the shot noise limit, permitting optimum acquisition times [18,
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93], enabling its use for in vivo imaging [120].

For a given value of ωR, N f camera frames are captured using a given camera ex-
posure time, T, and camera frame rate, fs. The off-axis recombination allows the spatial
separation of the zero order of diffraction and the two heterodyne gain terms (which are
a conjugate pair). This facilitates the spatial filtering component of HPSD, owing to the
separation of the signal, shot noise, speckle decorrelation noise, and technical noise of
the reference beam in the spatial frequency domain of the detected interference pattern
[120], as is demonstrated in Figure 3.4(b).

-200 0 200
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2
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3

Figure 3.4: Imaging a speckle pattern through the 5 mm diameter aperture of the LLG
depicted in Figure 3.3. (a) Camera plane hologram, HC, formed using DC subtraction

temporal filtering. (b) Arbitrary logarithmic representation of a reconstructed intensity
hologram, HR. The two heterodyne gain terms, S(±∆ω, kx, ky), are masked by the
dotted circles (which are a conjugate pair), the shot noise mask, N(∆ω, kx, ky), is
depicted by the dashed circle. (c) The thin grey solid line shows the value of the

diagonal white dashed line that has been superimposed on HR, averaged over ±5
pixels in ky. The thick dashed black line shows the average shot noise value of all the

pixels in HC for this image reconstruction.

As well as this spatial filtering, temporal filtering is also achieved by two methods.
An inherent temporal filter is applied due to the integration time of the camera. Fur-
ther temporal filtering is also achieved by constructing a hologram in the camera plane
from two or more consecutive images. For example, using a DC subtraction temporal
filtering method, the camera plane hologram, HC, is constructed as the difference of two
successive images (i.e., N f = 2)

HC = I1 − I2, (51)

which removes the two homodyne terms, |ES|2 and |ER|2 in Equation 49, from the holo-
gram. Owing to the use of a lensless Fourier holography setup, the intensity hologram,
HR, is then reconstructed in the object plane by performing a 2D discrete Fourier trans-
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form (DFT) of the camera plane hologram [136]

HR = |F2D(HC)|2. (52)

A masking operation can then be performed to sum over the two heterodyne signal
terms and also to sum over a shot noise mask, which is implemented in one of the two
‘quiet’ corners of the reconstructed hologram [Figure 3.4(b)]. The average pixel value in
each mask is then obtained, which is denoted by S(±∆ω) for the two heterodyne masks,
and N(∆ω) for the shot noise mask. To avoid contamination by the technical noise of
the reference beam and speckle decorrelation noise, none of the three masks should be
placed in the low spatial frequency region of HR [142]. The unnormalised first-order
PSD at a given detuning frequency may then be calculated for each heterodyne term as
[121, 149]

S1(±∆ω) =
S(±∆ω)

N(∆ω)
− 1. (53)

Phase-shifting holography (which is distinct from the DC subtraction temporal fil-
tering method) involves offsetting one of the AOM detuning frequencies by fs/N f , so
that multiple images of the interference pattern can be recorded which have slightly
different phase offsets between the signal and reference beams [93]. This has the effect
that, following temporal filtering, peak sensitivity to the first heterodyne gain term of
the IRF will be at DC (see Figure 3.7). For phase-shifting with N f = 2, HC is constructed
according to Equation 51, whilst for phase-shifting with N f = 4, HC is constructed as
[148]

HC = (I1 − I3) + i(I2 − I4). (54)

Four-frame phase-shifting holography allows separation of the two heterodyne gain
terms in the reconstructed hologram; however, this comes at the cost of increased ac-
quisition time, which one group argues should ideally be less than the speckle decorrel-
ation time of the sample [120]. However, another group argues that this ‘decorrelation
problem’ does not exist, and that optimal sensitivity can be achieved by using a camera
exposure time in the order of the speckle decorrelation time of the sample [143]. This is
because the spatial filtering component of HPSD separates speckle decorrelation noise
from the heterodyne signal terms in the reconstructed hologram, meaning that it is pos-
sible to measure flow using a camera exposure time that is longer than the sample de-
correlation time, assuming that the flow rate is constant (as is demonstrated in Chapter
4 of this thesis). However, when measuring a sample in which the flow rate is changing
(e.g., an in vivo pulsatile sample) then the total acquisition time to acquire a flow met-
ric must be less than half the period of the change that is being measured, according
to Nyquist-Shannon sampling theorem. Finally, compared to other more complicated
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multiple-phase-shifting techniques, it has been shown that a DC subtraction technique
is sufficient to reach the shot noise limit [34].

3.5 Instrument response function

The expression for the IRF, or the apparatus function, for the first and second heterodyne
terms of an HPSD instrument is given by disregarding the sample arm fluctuations due
to dynamic scattering, and can be found as [146, 147, 149]

B±∆ω =

∣∣∣∣∣∣sinc
(∆ω

2π
T
) k=N f

∑
k=1

exp(−2ikπ/N f ) exp(∓2ikπ∆ω/ωs)

∣∣∣∣∣∣
2

, (55)

where ωs is the angular frame rate of the camera and

sinc(t) =
sin(πt)

πt
(56)

is the normalised sinc function. The summation term in Equation 55 has already been
rigorously derived in [147] by demodulating an HPSD signal in the absence of fluctu-
ations due to either the reference arm or dynamic sample scatterers, but the argument
of the sinc term is not presented consistently in the relevant literature [146, 147, 149].
The correct form of this sinc filter can be derived by considering the Fourier transform
of a time domain rectangular bandpass filter of width T. By normalising the area of this
filter such that it has a height of 1/T and an area of one, this Fourier transform becomes

1
T

∫ +T/2

−T/2
exp−2πi f t dt =

sin(π f T)
π f T

= sinc
(∆ω

2π
T
)

. (57)

Equation 57 produces a sinc shaped low pass filter in the frequency domain, with a
bandwidth (i.e., the distance between DC and first null) of 1/T.

Characteristic examples of the HPSD IRF are shown in Figures 3.5, 3.6, and 3.7 for
single frame, DC subtraction, and four-frame phase-shifting holography, respectively,
using camera exposure parameters of T = 30 ms and fs = 12 Hz [149].

The IRF thus provides the inherent temporal filtering that is associated with the cam-
era’s integration time and that is also partly associated with the temporal demodulation
of the HPSD signal. The IRF will be broad when T is small, and the IRF will be nar-
row when T is large. Thus, broadening of measured power spectra will occur when
using a relatively broad IRF, which is more likely to happen when using shorter camera
exposure times, or when measuring the narrow power spectra of samples with slower
dynamics.
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Figure 3.5: B±∆ω for single frame holography (i.e., N f = 1), T = 30 ms, and fs = 12 Hz.
The two heterodyne terms cannot be distinguished, and therefore B±∆ω overlie each

other.

According to the Wiener-Khinchin theorem, the first-order PSD, s1(ω), of the field
fluctuations is the Fourier transform pair of the field autocorrelation function, g1(τ)

[150]. Considering this, and by taking into account the effects of the IRF in the Four-
ier domain, the total normalised measured response of an HPSD instrument is then the
Fourier domain counterpart of Equation 17 [146, 147]

s1(∆ω) = αs1d(∆ω) ∗ B±∆ω + (1 − α)B±∆ω, (58)

where s1d is the first order PSD of the field fluctuations due to dynamic scatterers, and
∗ is the convolution product. If the IRF is much narrower than the PSD that is being
measured, Equation 58 can be simplified to [147, 149]

s1(∆ω) = αs1d(∆ω) + (1 − α)B±∆ω. (59)

As per Equation 18, if we make the assumption that a sample is composed entirely of
dynamic scatterers, then Equation 59 becomes

s1(∆ω) = s1d(∆ω). (60)

Likewise, if a sample is composed entirely of static scatterers, then Equation 59 becomes

s1(∆ω) = B±∆ω. (61)
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Figure 3.6: B±∆ω for DC subtraction holography (i.e., N f = 2), T = 30 ms, and fs = 12
Hz. The two heterodyne terms cannot be distinguished (even when using

phase-shifting), and therefore B±∆ω overlie each other.

This can be related to Equation 19 by considering the normalised Fourier transform of
an IRF in the limit that detection is continuous for the whole measurement, which is
unity over the timescales of interest. Equations 58, 59, 60, and 61, together with their
time domain counterparts, are summarised in Table 3.1.

Table 3.1: Summary of measured data types for BF detection in the time and frequency
domains.

Data domain Time Frequency
Data type g1(τ) s1(∆ω)

Combined dynamic/static sample α|g1d(τ)|+ (1 − α) αs1d(∆ω) ∗ B±∆ω + (1 − α)B±∆ω

Abbreviated form - αs1d(∆ω) + (1 − α)B±∆ω

Dynamic sample |g1d(τ)| s1d(∆ω)
Static sample 1 B±∆ω

The naı̈ve approach to recovering flow information from HPSD data is simply to
transform the data into the time domain, and use established theory to fit for an appro-
priate flow metric. However, although g1(τ) and s1(∆ω) are fundamentally equivalent,
this approach will lead to errors owing to differences in the sampling of the data in
the time and frequency domains, the effects of static scattering in an HPSD system, the
nature of the measurement noise, and broadening by the IRF.
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Figure 3.7: B±∆ω for four-frame phase-shifting holography (i.e., N f = 4), T = 30 ms,
and fs = 12 Hz. The two heterodyne terms can be distinguished using this technique,

and the peak sensitivity to the first heterodyne gain term of the IRF will be at DC.

3.6 Research question and challenges for in vivo detection

It is hopefully now apparent to the reader that by using an HPSD instrument to collect
DCS data in the frequency domain at a range of discrete frequencies, and fitting these
data to Equations 58, 59, or 60 as appropriate, values of Db and α could be obtained that
will be entirely equivalent to that derived from a conventional DCS experiment. Indeed,
in 1997 Boas and Yodh stated in their founding work on DCS that [21],

‘Since our theoretical formulation and measurements have generally focused
on the time-domain picture, we shall continue to adopt that picture through-
out this paper. We note, however, that a line-shape analysis of the light spec-
trum obtained by the frequency-domain instruments will provide entirely
equivalent information’.

In Section 2.3.6, I described the broad range of approaches that have recently been
investigated to improve the sensitivity, spatial resolution, and imaging depth of DCS.
Compared to conventional DCS, the potential benefits of implementing DCS using HPSD
are multiple: SNR that scales linearly with the square root of the number of cam-
era pixels used, order of magnitude reduction in detector cost, robustness to the ef-
fects of ambient light, shot noise limited interferometric detection using off-axis holo-
graphy, potential for detector scalability and sensor partitioning (which could facilit-
ate tomographic and depth discrimination techniques), and suitability to a range of
design wavelengths (which could confer a further SNR advantage). Like iNIRS and
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ISVS, HPSD interrogates the electric field directly, and it is therefore not constrained
by the Siegert relationship. HPSD is also particularly suitable for the detection of AOT
signals, owing to the ability to select an acoustic sideband by detuning the reference
arm. HPSD could also be used to acquire time-of-flight (TOF) resolved measurements,
in a similar fashion to iNIRS, by using a tunable laser source and detecting spectrally
resolved intensity.

Despite the potential advantages of an HPSD implementation of DCS, such an ap-
proach has never been documented in the literature. The closest report of such a study
was published by Magnain et al. in 2014 [149]. Cognisant of the benefits of sampling in
the native domain of the data, this group used HPSD to measure convective flow rates
in vitro, by fitting measured power spectra to a Fourier domain diffusing wave spectro-
scopy (DWS) model of convective motion in a backscattering configuration [149]. Dif-
fusive Brownian motion was quantified by fitting measured data to the discrete Fourier
transform of a DWS model of Brownian motion. The same study also measured loc-
alised superficial microvascular convective flow rates in the cerebral cortices of 2 mice
and the retinas of 3 adult rats by imaging through a 5 mm × 5 mm aperture. However,
this study used a camera exposure time of 30 ms and a camera frame rate of 12 Hz,
which provided insufficient temporal resolution to resolve pulsatile flow in vivo, espe-
cially after frame averaging and frequency shifting. Additionally, it is well documented
in the DCS literature that a Brownian diffusion model, rather than a convective motion
model, provides a better fit to measured DCS data over a broad range of tissue types [8,
19].

In this thesis I therefore propose to investigate the implementation of DCS using
HPSD, which I will refer to henceforth as holographic Fourier domain DCS (FD-DCS).
Motivated by improvements of the sensitivity of DCS to CBF in typically non-ideal
settings, holographic FD-DCS places a particular emphasis on scalability, affordability,
and robustness to ambient light. HPSD has been highlighted as a promising detection
strategy for AOT signals, and therefore holographic FD-DCS could also form an effect-
ive basis for acousto-optic modulated DCS (AOM-DCS). A comparative summary of
conventional DCS and holographic FD-DCS is concisely detailed in Table 3.2.

Using holographic FD-DCS to measure flow, at rates sufficient to resolve pulsatile in-
formation, brings significant challenges. To employ holographic FD-DCS in a practical
in vivo setting requires the use of short camera exposure times to minimise the effects of
sample movement and external sources of vibration which disrupt the interferometric
configuration, particularly when using multispeckle detection. Additionally, short ex-
posure times are required to facilitate a high parameter output rate that can resolve fast
pulsatile changes. However, reducing the exposure time comes at the cost of a wider
IRF, which will result in a broadening of the measured power spectra, which in turn
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Table 3.2: Comparison of conventional DCS and the proposed holographic FD-DCS
technique.

Technique Conventional DCS Holographic FD-DCS
Data domain Time Frequency
Data type Photon arrival time

series used to derive
autocorrelation functions

Power spectrum
measurements at
discrete frequency shifts

Speed of detection ∼10 MHz ∼100 Hz
Optical throughput Single or few-mode Thousands of modes
Potential for detector
scalability and
implementation of
diffuse correlation
tomography (DCT)

Low High

Sensitivity to ambient
light

Sensitive Robust

Cost of detector High Low
Other cost
considerations

Correlator (∼£5000) Pair of AOMs (∼£7000)
Interferometry (∼£1000)

Detection sensitivity Close to shot noise
limited, but no inherent
gain

Shot noise limited, with
heterodyne gain

Potential for ultrasound
modulation

Yes, but with low SNR Yes, with improved SNR

Potential for TOF
resolved detection

Yes, requires a pulsed
light source to
implement time domain
diffuse correlation
spectroscopy (TD-DCS)

Yes, requires a tunable
laser and detection of
spectrally resolved
intensity, similar to
iNIRS

Suitability for long
wavelength approaches

Detector suitability is
particularly challenging
at present

Detectors are readily
available, but are less
ideal

Constrained by Siegert
relation

Yes No

will increase the complexity of data sampling and interpretation. A related complic-
ation arises as whilst the true field autocorrelation, G1, and PSD, S1, of the scattered
light form a Fourier transform pair, the data measured using conventional DCS and
holographic FD-DCS systems will deviate due to differences in the nature of the meas-
urement systems. These differences arise due to the nature of the sampling in the two
domains, the effects of IRF broadening and static scatterers, and the differing effects of
measurement noise between the two techniques.

Whilst holographic FD-DCS offers many advantages compared to conventional
measurement techniques, data acquisition speed and processing load requirements are
high, especially if real-time data acquisition at high parameter output rates is desired.
There is also a trade-off to consider between speed of data acquisition, making use of
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averaging to improve SNR, and sampling the measured power spectra at enough fre-
quency shifts so as to permit robust fitting to a forward model.

Finally, no available FD-DCS model exists in the literature. The nature of measured
DCS data in the time and frequency domains, although fundamentally equivalent, will
deviate from each other. Therefore, the development of an FD-DCS model, which allows
for native domain fitting of holographic FD-DCS data, is necessary in this regard.

3.7 Chapter summary

Digital holography is a coherent interferometric technique that involves the digital cap-
ture and numerical reconstruction of holographic images. When combined with off-axis
interferometry and an appropriate temporal filtering strategy, digital holography can
achieve shot noise limited detection. HPSD involves scanning the frequency of the ref-
erence arm of a digital holography instrument, which allows for the use of inexpensive
low-frame rate cameras, with a narrow IRF, to sample the power spectrum of a rap-
idly fluctuating electric field at discrete locations of interest, through the simultaneous
measurement of multiple speckles in parallel. By making use of the Wiener-Khinchin
theorem, these measurements can be related to the Fourier transform of conventional
time-domain models of motion to infer sample dynamics.

In this thesis, I propose to explore an alternative approach to conventional DCS that
employs an HPSD detection method: holographic FD-DCS. Such an approach benefits
from interferometric, multispeckle, and shot noise limited measurements that are not
constrained by the Siegert relation. Holographic FD-DCS places a particular emphasis
on scalability, affordability, and robustness to ambient light, and is particularly suitable
for long wavelength approaches and the detection of AOT signals.

The main challenges for implementing holographic FD-DCS are the short camera ex-
posure times that are necessary to resolve pulsatile flow in vivo, and the IRF broadening
that results from this. Also, compared to conventional DCS, the data acquisition speed
and processing load requirements of holographic FD-DCS are high. Finally, despite the
validity of FD-DCS being recognised by the founders of DCS, an analytical model for
this framework does not exist in the literature.

110



4 A digital holographic system for DCS

4.1 Chapter contribution

In this chapter I present a high speed holographic Fourier domain diffuse correlation
spectroscopy (FD-DCS) instrument suitable for making in vivo measurements at a frame
rate that permits the recovery of pulsatile flow. This approach employs heterodyne par-
allel speckle detection (HPSD) to allow averaging over thousands of modes to realise
improvements in signal-to-noise ratio (SNR) (which are demonstrated in vitro in this
chapter), and operates with continuous wave (CW) illumination without disturbance
from ambient light. The system that I demonstrate can make measurements of the
power spectral density (PSD) of a fluctuating electric field across ∼1300 speckles at 6
discrete frequency shifts, with an overall parameter output rate of 23.8 Hz.

In Section 4.2, I define a novel FD-DCS model which allows for parameter fitting
in the native domain of the data, permitting extraction of flow parameters whilst re-
specting the nature of the noise in the measurement system. The architecture and im-
plementation of the holographic FD-DCS instrument, which uses a highly parallel GPU-
accelerated holographic demodulation pathway to manage the processing requirements
for the technique, is described and validated in Sections 4.3 and 4.4. I describe a novel
mixed motion diffuse correlation spectroscopy (DCS) model in Section 4.5, which is
used together with a novel model for the temperature dependent properties of int-
ralipid phantoms, to demonstrate accurate absolute interpretation of holographic FD-
DCS data in their native domain, both at room temperature (Section 4.6) and over a
physiologically relevant temperature range (Section 4.7). In Section 4.8, I demonstrate
the SNR improvement that holographic FD-DCS offers compared to conventional DCS,
as well as demonstrating its relative insensitivity to ambient light. Finally, in Section 4.9,
I demonstrate the in vivo application of this inexpensive camera-based detection system
by recovering pulsatile flow rates measured in the human forearm.

This chapter forms the basis for work that I published in the Biomedial Optics Ex-
press Biophotonics 2020 Feature Issue [151], in which the reviewers highlighted the nov-
elty and significance of the work, as well as the potential impact of holographic FD-DCS
to overcome the SNR limitations of conventional DCS. As a result of this publication,
I was subsequently awarded the 2021 Robert Speller Prize for the best paper by a PhD
student in the UCL Medical Physics and Biomedical Engineering Department, and I
also presented related work at Photonics West SPIE BiOS 2020 [152].

4.2 Developing and validating a Fourier domain DCS model

The framework for conventional DCS has been described in Section 2.3.6, and is based
on measurements of photon arrival time series, which are made in the time domain,
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and which are used to derive autocorrelation functions. The motivation to develop
an analytical FD-DCS model has been described in Chapter 3. In this section I define
the FD-DCS models that I have developed for both Brownian and convective motion,
which are suitable for holographic FD-DCS. Full derivations of these models, together
with considerations for acousto-optic modulation, are included in Appendix A.

As was introduced in Section 3.5, it is well established according to the Wiener-
Khinchin theorem that the first-order PSD, S1(ω), and the field autocorrelation function,
G1(τ), are a Fourier transform pair [5, 21, 120, 146, 149, 150, 153]

S1(ω) =
∫ +∞

−∞
G1(τ) exp−iωτ dτ. (62)

The Fourier transform of G1d(τ), which is the field autocorrelation function due to dy-
namic scatterers, Equation 28, is then

S1d(∆ω) =
S0

4πD
[F(∆ω, r1)− F(∆ω, r2)] , (63)

where ∆ω is angular detuning frequency. In the case of Brownian motion and ∆ω > 0,
I find that

F[Db]
(∆ω+, r) =

1
∆ω3/2

(
1
4
+

i
4

)
µ′

s
√

6C exp
(
−D(∆ω)

2
− E(∆ω)

2

)
× . . .(

exp (D(∆ω)) erfc (A−(∆ω))− i exp (E(∆ω)) erfc (A+(∆ω))

)
, (64)

where the auxiliary function, A±(∆ω), is defined as

A±(∆ω) =
(2 ∓ 2i)∆ω

√
µaµ′

s
2C + (1 ± i)µ′2

s r
√

6C

2
√

2µ′
s
√

∆ω
, (65)

erfc is the complementary error function,

C = k2
0Db, (66)

D(∆ω) =
iµa∆ω

µ′
sC

, (67)

and

E(∆ω) =
3iµ′2

s Cr2

∆ω
. (68)

G1d(τ) is an even and real function, and therefore its Fourier transform is also real.
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For convective motion I find that

F[V2](∆ω, r) =

√
3µaµ′

s

µ′2
s k2

0V2r2 + ∆ω2
K1


√√√√3µa

(
µ′

sr2 +
∆ω2

µ′
sk2

0V2

) , (69)

where K1 is the first modified Bessel function of the second kind.

For a given set of arbitrary experimental parameters, examples of s1(ω), which is
the normalised S1(ω), are plotted in subplot (a) of Figure 4.1, for both Brownian and
convective motion (i.e., Equations 64 and 69, respectively). Examples of g1(τ), which is
the normalised G1(τ), for the same experimental parameters as used in subplot (a), are
shown in subplot (b). There is excellent agreement between the analytical expressions
and the numerical Fourier transform of the novel FD-DCS analytical expressions, and I
am thus confident of the accuracy of the two FD-DCS models that I have derived.
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Figure 4.1: Numerical validation of novel analytical FD-DCS models. (a) Examples of
s1(ω) for both Brownian and convective motion. (b) Examples of g1(τ), for the same

experimental parameters as used in (a). There is excellent agreement between the
analytical models for g1(τ) and the numerical Fourier transforms of the novel FD-DCS

models.

4.3 System design and integration

In addition to the introduction to HPSD given in Chapter 3, and having developed
and validated the analytical framework with which to analyse FD-DCS data, I shall
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now describe the specific architecture and implementation of the holographic FD-DCS
system that I have developed.

A schematic of the experimental design has already been shown in Figure 3.3. All
experiments were performed using a 785 nm CW long coherence length (∼9.5 m) laser
(Toptica, iBeam Smart S WS), with a maximum optical output power of 120 mW. This
near-infrared (NIR) light source is initially split into two parts by a 75:25 fibre coupler
(Thorlabs, 1x2 75:25 narrowband coupler, TN785R3A1) to form a sample arm and a ref-
erence arm, respectively. The sample arm then illuminates the sample via a multimode
source fibre (Thorlabs, FT200EMT).

In the instrument reported in this thesis, a pair of acousto-optic modulators (AOMs)
is placed on the reference arm (Gooch & Housego, Fiber-Q, 150 MHz centre frequency,
785 nm, upshift & downshift), which then feed into a single-mode fibre that termin-
ates in an antireflection-coated free-space connector (Thorlabs, P3-780AR-2). The signal
field that has been scattered by the sample is collected in a reflection mode geometry
through the aperture of a 5.0 mm diameter core liquid light guide (LLG), which has
a numerical aperture of 0.52 (Thorlabs, LLG5-4Z). The sample and reference arms are
recombined in a 50:50 cube beamsplitter (Thorlabs, CCM1-BS014/M), as illustrated in
Figure 4.3. This recombination occurs slightly off-axis with respect to the camera sensor
and the reference arm, which enables spatial filtering in the reconstructed hologram.
The sCMOS camera (FLIR, BFS-U3-16S2M-CS) has a sensor size of 1440 × 1080 pixels,
which is truncated to 2n × 2n (where n is an integer between 3 and 10) so as to facilitate
holographic reconstruction by the fast Fourier transform (FFT) algorithm, and I denote
Npix = 2n.

To prevent multiple out of phase speckles illuminating a single pixel, I ensure that
each speckle illuminates no less than one camera pixel. The camera has a pixel size,
∆pix, of 3.45 µm. Therefore the minimum speckle size, S, is constrained, according to
[154, 155]

S =
(λz)2

Aaperture
≥ ∆2

pix, (70)

where z is the observation distance between the plane of the aperture and the plane of
the camera sensor (as depicted in Figure 3.3), and Aaperture is the area of the aperture.
This yields a minimum observation distance, zmin, of 19.5 mm. Additionally, by consid-
ering the maximum spatial frequency that can be resolved at the detector for a lensless
Fourier holography setup, it has also been shown that [140]

zmin =

√
2∆pixL

λ
, (71)

where L is the characteristic dimension of the aperture. This expression yields a value of
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zmin = 31.1 mm. The experiments reported in this chapter use a value of z = 75 - 80 mm,
which adheres to both of these constraints, and for which a single speckle occupies the
area of ∼15 - 17 square pixels, respectively. ∼5200 speckles were sampled in each signal
mask for Npix = 1024, and ∼1300 speckles for Npix = 512. Decreasing the value of z
from 75 - 80 mm to 31.1 mm would increase the number of detected speckles on the
camera sensor, but this would lead to sampling of the zero order DC term in the centre
of the reconstructed hologram and is therefore avoided.

To maximise the use of the sensor layout, the size of the pixels, ∆ξ, in the reconstruc-
ted hologram image is also considered [136]

∆ξ =
λz

Npix∆pix
, (72)

where Npix is the number of pixels in 1D. Using a circular aperture, the maximum
achievable diameter of one heterodyne term can be shown to be Npix

√
2/(3 +

√
2) (as

has been independently corroborated by [37]), so as not to collect any signal at the zero
order DC term, whilst ensuring that the aperture is fully contained within the recon-
structed hologram (i.e., without spatial aliasing). This is equivalent to calculating the
maximum diameter of four equally sized circles that are both aligned along the diag-
onal of a square and fully contained within the square. The motivation to maximise the
size of the heterodyne term is twofold:

• the number of resolvable speckles within the signal mask will be increased;

• each of these speckles will be smaller, owing to the shorter observation distance,
z.

Both effects will lead to an increase in the total number of speckles detected. For ex-
ample, using a 512 x 512 sensor, and allowing for pixel discretisation, the optimal ra-
dius of the heterodyne term is 81 pixels, with a sensor layout as shown in subplot (a) of
Figure 4.2.

A CAD designed and 3D-printed mount was designed with which to hold the beam-
splitter and the LLG in an off-axis configuration, as shown in Figure 4.3. Rapid iterative
prototyping meant that the following two parameters could then be optimised:

• the size of the reconstructed heterodyne term, which is inversely related to z;

• the location of the reconstructed heterodyne term in the xy plane, which is a func-
tion of the offset of the LLG from the optical axis of the beamsplitter.

A heterodyne term radius of 80 pixels was achieved, with no sampling of the zero order
DC term and with no signal aliasing, as shown in subplot (b) of Figure 4.2.
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Figure 4.2: A 512 × 512 sensor with (a) ideal, and (b) achieved sensor layouts. Each of
the two first orders of diffraction represent the holographic twin images [as shown in

Figure 3.4(b)], which are used to image the sample, which, in this case, is the 5 mm
diameter exit pupil of the LLG.

As introduced in Chapter 3, one of the main challenges for the application of holo-
graphic FD-DCS at high-frame rates is fast data acquisition and processing load: calcu-
lating an S1 measurement requires frequency shifting, image capture, temporal filtering,
2D FFT, spatial filtering, and reduction. I have therefore designed a custom integrated
holographic FD-DCS system with a high throughput, with the aim of achieving de-
modulation and data acquisition at fast imaging frame rates, a schematic of which is
shown in Figure 4.4. The system consists of a camera, a workstation, and a control
board. The following acquisition parameters are specified in a configuration file:

• camera exposure;

• camera frame rate;

• sensor dimensions;

• the amplitude at which to drive the AOMs;

• a vector of frequency shifts to be implemented by the AOMs;

• the number of camera frames to be acquired at each frequency shift;

• the holographic demodulation mode (i.e., DC subtraction, 2-phase, or 4-phase);

• the shape, size, and position of the noise mask and the two signal masks;

• the number of frequency sweeps to acquire (i.e., the number of Db frames).
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Figure 4.3: CAD designed and 3D-printed off-axis interferometry mount (as delineated
by the red dashed rectangle in Figure 3.3). The reference arm (from top) is mounted to
the beamsplitter via a lens tube (red arrow) and an externally threaded fibre adapter.
This arrangement allows the observation distance of the reference arm to be adjusted

to match that of the sample arm (from left, blue arrow), which is a requirement of
lensless Fourier holography. N.B. A full system diagram is shown in Figure 3.3.

The use of camera frame preview images and demodulation preview images allows the
assessment of camera saturation and the correct positioning of the demodulation masks,
respectively.

The control board, which implements a Standard Commands for Programmable In-
struments interface, receives instructions from the workstation. It then carries out the
following three functions:

• generation of radio frequency waveforms for the AOMs using direct digital syn-
thesis;

• control of the laser output;

• synchronisation of the overall experiment by generation of camera triggers and
performing sweeps through the required frequency shifts.

Image data are then relayed to the workstation by a USB 3.0 connection, and then
on to the GPU (nVidia Tesla K40, 12 GB memory, 288 GB/s bandwidth, 2880 CUDA
cores), via a 16 lane Peripheral Component Interconnect express interface. Custom
CUDA kernels execute the holographic demodulation pathway (i.e., calculation of S1

values from raw camera frames, as described in Section 3.4) using the CUDA FFT lib-
rary, which was implemented using Julia, a high-level programming language that has
inbuilt GPU functionality. Demodulated data, together with log files specifying cam-
era frame timestamps and serial commands to the instrument, are passed back to the
workstation’s system memory.

The use of this highly parallel GPU-accelerated demodulation pathway, together
with a tightly synchronised instrument with minimal dead-time between frequency
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Figure 4.4: Integrated system architecture and data streaming via a highly parallel
GPU-accelerated demodulation pathway. The control board synchronises experiments,

holograms are relayed from the camera to the workstation’s system memory, and
custom CUDA kernels implement the holographic demodulation process.

shifts, allows the rapid measurement of the PSD of light scattered by a diffusing sample
at a high parameter output rate (i.e., ∼20 Hz [22]).

4.4 Validation of instrument response function

To validate the holographic FD-DCS instrument, as well as Equations 55 and 61, a
series of 4-phase instrument response function (IRF) measurements was collected us-
ing a static polyester resin optical phantom, which was lent to me by Professor Jem
Hebden. The optical properties of the illuminated region of this phantom were µa =
0.1 cm-1 and µ′

s = 8.5 cm-1 at 780 nm [156]. The IRF characterisation was performed
for -100 Hz ≤ ∆ f ≤ 100 Hz, as shown in Figure 4.5. In this figure, each IRF model has
been normalised by its respective maximum value. Each measured IRF data set has
been normalised according to a least squares fit to the normalised IRF model (Equation
55), allowing for a constant noise offset in each case. The IRF models in Figure 4.5 have
been shifted by − fs/N f , as the peak sensitivity to the first heterodyne gain term of the
IRF is at DC for phase-shifting holography. There is excellent agreement between the
measured and modelled data in Figure 4.5, which serves to validate the design of the
holographic FD-DCS instrument.
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Figure 4.5: 4-phase IRF detection and validation against the IRF model for the first and
second heterodyne terms (T = 9.6 ms, fs = 29.8 Hz, N f = 4). Error bars represent ±1

standard deviation over 13 samples.

4.5 Mixed model fitting

This section describes the novel mixed motion model fitting process that was applied to
measured DCS data in this chapter, both for conventional DCS data, and for holographic
FD-DCS data. Conventional DCS data (g2) were fit to Equation 16 by minimisation of
the unweighted least squares objective function

argmin
[β,⟨∆r2(τ)⟩]

k

∑
i=1

[g2(τi)measured − g2(τi)model]
2 (73)

over k delay times. This was performed separately for both Brownian and convective
motion models (i.e., paired vectors of [Db, βDb ] and [⟨V2⟩, β⟨V2⟩] were optimised for
separately). In a third and final optimisation step, the contribution of each of these
two models to a mixed motion model could then be determined by optimising for a
‘Brownian factor’ (FBr), which is constrained to have a value between 0 and 1. This was
achieved by minimisation of the unweighted least squares objective function

argmin
[FBr]

k

∑
i=1

[g2(τi)measured − [FBr × g2(τi)Brownian + (1 − FBr)× g2(τi)convective]]
2 . (74)

The Brownian model fit and the extracted Db value could then be scaled by the Brownian
factor. Likewise, the convective model fit and the extracted ⟨V2⟩ value could then be
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scaled by (1 - Brownian factor). The mixed motion model fit is then then sum of these
two scaled model fits, and it is assumed that flow parameters scale linearly with changes
in Brownian factor [92]. An example of this mixed model fit is shown in Figure 4.6(a)
and Figure 4.7(a).
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Figure 4.6: Application of (a) conventional DCS mixed model fitting, and (b)
holographic FD-DCS mixed model fitting to data acquired using an intralipid optical

tissue phantom. Magnified views are shown in Figure 4.7.

Similarly, measured S1 data were fit to Equation 63; however, these data are impli-
citly unnormalised, and therefore fitting for a normalisation constant (Cnorm) and noise
floor parameter (Nfloor) was also necessary. Flow parameters (i.e., Db or ⟨V2⟩), Cnorm,
and Nfloor were optimised for by minimisation of the weighted least squares objective
function

argmin
[Db/⟨V2⟩,Cnorm,Nfloor]

k

∑
i=1

wi[Cnorm(S1d(∆ωi)measured − Nfloor)− s1d(∆ωi)model]
2, (75)

over k detuning frequencies, where wi represents the weights. s1d(∆ω)model is the for-
ward model normalised by its maximum value (i.e., its value at the smallest measured
positive detuning frequency), and wi is calculated as 1/σ2

i , where σi is the standard de-
viation of the measured data at the ith frequency step. Again, in a third and final optim-
isation step, the contribution of each of these two models of motion to a mixed motion
model could then be determined by optimising for a Brownian factor (constrained to
take a value between 0 and 1). This was achieved by minimisation of the weighted least
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Figure 4.7: Magnified views of Figure 4.6 show that the mixed model fits the data
better than either the Brownian model or the convective model alone, for both (a)

conventional DCS, and (b) holographic FD-DCS.

squares function

argmin
[FBr]

k

∑
i=1

wi[Cnorm(S1d(∆ωi)measured − Nfloor)− · · ·

[FBr × s1d(∆ωi)Brownian + (1 − FBr)× s1d(∆ωi)convective]]
2. (76)

The Brownian factor could then be used to weight the contribution of each of the two
model fits to the mixed motion model, and to scale the values of Db and ⟨V2⟩ accord-
ingly. An example of this mixed model fit is shown in Figure 4.6(b) and Figure 4.7(b).
This novel mixed model fitting process is validated, both for conventional DCS and
holographic FD-DCS, in Section 4.7. In Figure 4.6(b) there is deviation from the model
fit for the 6th, 7th, and 8th detuning frequencies; it is possible that this deviation at these
lower detuning frequencies could be due to contributions from the IRF, due to static
scattering from the ferrule of the LLG. A similar effect is also visible for the lower de-
tuning frequencies in Figure 4.9, which also shows that these detuning frequencies are
noisier.

4.6 Absolute validation at room temperature

For the purposes of demonstrating absolute equivalence between the data obtained
from conventional DCS and holographic FD-DCS techniques, I elected to use a relat-
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ively long camera exposure time of 30 ms, together with a camera frame rate of 17.5 Hz,
such that convolution of the true power spectra with the IRF could be ignored in the
model fit process (as is detailed further below in this section and also displayed in Fig-
ure 4.9). This is the same camera exposure time that was used in [149] to accurately
measure known convective in vitro flow rates using HPSD, which were controlled using
a calibrated syringe pump.

Conventional DCS experiments used a single-mode detection fibre (Thorlabs, 780HP)
coupled to a single photon avalanche detector (SPAD) with a typical dead time of 45 ns
and a response time of 30 ns (Laser Components, COUNT-50N), giving a typical max-
imum detection rate of 13.3 MHz [22]. This is small compared to the 60 MHz system
clock speed of the digital correlator (Correlator.com, Flex02-01D/C), which was used
in single channel photon history recording mode to obtain photon arrival timestamps.
These photon arrival timestamps were then autocorrelated in software using the
Laurence algorithm [157]. The digital correlator was also used to autocorrelate photon
arrival times in hardware using the multi-tau algorithm [19, 158] at 640 MHz, using a
fixed value of 106 delay times per decade by default. However, my implementation of
the Laurence algorithm provides more flexibility, as both the delay times of the autocor-
relation function and the frame rate of the DCS measurement can defined in software.

An intralipid optical tissue phantom (Fresenius Kabi, Intralipid 20 %) was prepared
which consisted of 25.62 mls of intralipid made up to 550 mls with deionised water,
resulting in optical properties of µ′

s = 7.5 cm-1 (based on former in-house calibration
measurements) and µa = 0.026 cm-1 at 20 0C [159] (assuming that the optical absorp-
tion of intralipid is primarily due to background water absorption, µBKG

a , as water is
the main absorbing component of intralipid [160, 161]). This value of µ′

s is based on the
measurement of the optical properties of the brain in three healthy volunteers in [22].
A temperature dependent model for the optical properties of combined intralipid/de-
ionised water phantoms at 785 nm was constructed using the refractive index model
of pure water presented in [162], the optical absorption coefficient model of pure water
presented in [159], and the temperature coefficient for the reduced scattering coefficient
of intralipid [160] (personal communication), having made scaling adjustments to al-
low for intralipid concentration differences. Intralipid is commonly used as an optical
phantom to simulate the absorption and scattering properties of biological tissue; it
has also been shown to have high temporal stability and negligible variation between
batches [163].

The liquid phantom was contained within a glass beaker, which itself was immersed
in a thermostatically controlled water bath, as depicted in Figure 4.8. It is important to
control and account for the temperature of the phantom during absolute equivalence
experiments, as not only does temperature affect the optical properties of the phantom,
but it also affects the value of Db in the phantom, according to the Stokes-Einstein equa-
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tion [146, 149, 164, 165]

Db =
kBT

6πηr
, (77)

where kB is Boltzmann’s constant, T is absolute temperature, η is dynamic viscosity,
and r is the hydrodynamic radius of spherical particles diffusing through a liquid in the
limit of a low Reynolds number. Furthermore, the dynamic viscosity of fluids also has
a temperature dependence which is roughly exponential, η ≈ a exp(−bT). However, a
more accurate relationship can be modelled according to the empirical fit

ln
(

η

η0

)
= a + b

(
T0

T

)
+ c

(
T0

T

)2

, (78)

where, for water, T0 = 273.16 K, η0 = 1.792 x 10-3 Kg/(m · s), and suggested coefficient
values are a = -1.94 , b = -4.80 and c = 6.74 [166]. This model provides a better fit than a
pure exponential decay model, and assumes the empirical result that ln(η) is quadratic
in 1/T, resulting in an accuracy of ±1 %.

Figure 4.8: Semi-infinite reflection mode geometry used for absolute validation
experiments. From left, single-mode detection fibre, multimode source fibre, and LLG,

coupled to the intralipid phantom using a custom designed and 3D printed probe.

The source-detector separation (SDS) distance, as measured from the centre of the
source fibre to the centre of the LLG, was set to 17.50 mm. The optical configuration was
placed on the surface of the liquid phantom as shown in Figure 4.8. Holographic FD-
DCS data were gathered by implementing a logarithmically spaced frequency sweep
consisting of 15 steps between 0.1 Hz and 1 MHz, with 201 camera frames recorded at
each frequency step, resulting in 200 data points at each detuning frequency for a DC
subtraction temporal filtering method, and a total integration time of 90.45 seconds. The
measured data were then fit directly to Equation 63 (as described by Equation 75), the
results of which are depicted in Figure 4.9 and Figure 4.10(d). The former of these two
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figures shows ±1 standard deviation of the noise floor corrected and normalised data,
together with the model fit to the FD-DCS model of Brownian motion. The average level
of assumed Gaussian noise (as a percentage of mean s1 value) was calculated at each
detuning frequency, the median of which was determined to be 3.8 %. The half width
at half maximum (HWHM) of the measured signal is two orders of magnitude larger
than the HWHM of the main lobe of the IRF, and I therefore neglect the effects of IRF
broadening in this experiment. Forward modelling simulations show that using these
parameters, assuming 3.8 % Gaussian measurement noise averaged over 200 readings,
an enforced condition of α = 1, and a DC subtraction temporal filtering method, a final
Db estimation error of ∼ 0.19 % is expected.

Conventional DCS data were gathered by collecting 30 seconds of multi-tau autocor-
related g2 data, which were fit to Equation 16 assuming α = 1 and a Brownian model of
motion, the result of which is shown in Figure 4.10(a). The extracted value of Db was in-
put into the FD-DCS forward model of Brownian motion, the result of which is shown
by the black dotted line in Figure 4.9. The remarkably close correspondence between
the two power spectra shown in this figure further validates the instrument, as well as
validating the novel FD-DCS model in terms of absolute Db measurement.
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Figure 4.9: Fitting holographic FD-DCS data to the FD-DCS model (grey error bars and
grey solid line), which is at least two orders of magnitude wider than the IRF (black

dashed line). Error bars represent ±1 standard deviation of measured data. The black
dotted line represents synthetic data produced by forward modelling in the Fourier

domain with the Db value acquired from a conventional DCS setup.

The naı̈ve approach to recovering flow information from Fourier domain data is to
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numerically Fourier transform the data into the time domain, and to use established the-
ory to fit for Db. This approach is depicted in Figure 4.10(b), and would at first glance
be considered acceptable under the conditions of this experiment: a sufficiently narrow
IRF, a sample composed entirely of dynamic scatterers, and the ability to average out
noise over a generously large data set. However, due to the logarithmic spacing of the
measured data, linear resampling prior to numerical Fourier transform is required (us-
ing shape-preserving piece-wise cubic interpolation with a resolution of 0.1 Hz in this
case). This two-step process is not immune to the presence of noise in the measured
data, which results in sub-optimal fitting in the complementary domain: the Db value
acquired in Figure 4.10(b) is not in keeping with those acquired by fitting in the native
domains, which are shown in Figure 4.10(a) and 4.10(d). This is confirmed by consid-
ering the time domain fit to the transformed Fourier domain native model fit, which
produces a good Db value correspondence (2.15 × 10-8 cm2/s) to that of Figure 4.10(a).

Similarly, conventional DCS data were transformed into the Fourier domain, follow-
ing linear resampling with a resolution of 0.5 µs, and were fit to the FD-DCS model
of Brownian motion, the result of which is shown in Figure 4.10(c). The value of Db

produced by this model fit is also not in keeping with that acquired by fitting in the
native domains; however, this can be rectified by considering the Fourier domain fit
to the transformed time domain native model fit, which yields a much closer Db value
correspondence (2.13 × 10-8 cm2/s) to that of Figure 4.10(d).

These results support the argument described above that, due to noise in the meas-
ured data, model fitting in the native domain is preferable to resampling, numerical
transform, and fitting in the complementary domain. Whilst the deviations in Db meas-
urement using complementary domain fitting that are shown here are relatively small
for these very slow acquisition times, they could be significant when optimising for fast
acquisition times with a broader IRF, especially when imaging samples with a static
scatterer component. Thus, fitting with a native model appears to be an appropriate
technique to ensure accuracy in flow parameter measurements.

4.7 Absolute validation across a physiological temperature range

To show the absolute equivalence of conventional and holographic FD-DCS techniques
over a physiologically relevant temperature range, as well as to demonstrate ground-
truth validation from other measurement techniques, I repeated the validation exper-
iment performed in Section 4.6 at 12 temperature steps during heating (in a step-wise
fashion) between 17.1 oC and 40.5 oC. According to Equation 77, and using the novel
temperature dependent model of the optical properties and dynamic viscosity of int-
ralipid, the Db value of the optical phantom will increase in a nonlinear fashion as its
temperature is increased. Intralipid optical phantoms have previously been demon-
strated to have good thermal stability, with scattering properties varying less than 0.5 %
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Figure 4.10: Fitting of measured data to native domain decorrelation models, for (a)
conventional DCS collection, and (d) holographic FD-DCS collection. Model fitting in
the complementary domain following numerical Fourier transform of measured data,

for (b) holographic FD-DCS collection, and (c) conventional DCS collection. Due to
noise in the measured data, DCS model fitting in the native domain is preferable to

numerical transform and fitting in the complementary domain.

when held at 70 oC for 12 hours, and are therefore considered to be optically robust and
stable when subject to elevated temperatures [163].

A thermostatically controlled waterbath was allowed to stabilise for 30 minutes be-
fore collecting each data set [160], and the phantom was manually stirred after each tem-
perature increase to maintain homogeneity. Evaporative losses are to be expected when
performing such an experiment, as such the optical probe was lowered slightly as need
be before each measurement, to ensure good optical coupling with the phantom. Loss
of water from the phantom will also alter its optical properties, by way of increasing
the concentration of scatterers and decreasing the water concentration [161]; however,
I deemed this effect to be minimal in my experimental setup due to both the original
volume of the phantom and the relatively short span of time over which data were
collected following the lowering of the optical probe. The laser source was turned off
between readings to prevent any undesired heating of the phantom from occurring (the
heating of the phantom therefore occurred solely due to the waterbath, as intended).

In addition to the data acquired in Section 4.6, 15 seconds of raw photon counting
data were also collected at each temperature step (with the exception of the second tem-
perature step, due to a corrupt data file). A time of 15 seconds was chosen as this was
deemed long enough to average over, and to provide redundancy for postprocessing
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of data. These data were autocorrelated using my implementation of the Laurence al-
gorithm. Autocorrelated g2 data were then fit to the conventional DCS mixed model,
with the distribution of the mixed model Db values and Brownian factors displayed
in Figures 4.11 and 4.12, respectively (these two figures also show the corresponding
multi-tau autocorrelated data). The 200 holographic FD-DCS frequency sweeps were
averaged, and the Db values acquired by fitting to the Fourier domain mixed motion
model (as well as the corresponding Brownian factor at each temperature step) are also
displayed in Figures 4.11 and 4.12. As the temperature of the phantom increases, I
would expect there to be more convective flow within the phantom due to the tem-
perature gradient induced and maintained by the waterbath. In this situation I would
also expect that the Brownian factor should decrease with increasing temperature, as is
demonstrated by the results presented in Figure 4.12. Although all three data sets shown
in this figure demonstrate an inverse relationship between temperature and Brownian
factor, there are marked differences between the specific Brownian factors for each tem-
perature, and this disparity warrants further investigation. It is possible that this dispar-
ity could be due to the different flow profiles that occur across the 5 mm diameter aper-
ture of the LLG and the ferrule opening of the single-mode fibre, especially at higher
waterbath temperatures.

Figure 4.11 also shows the results of fitting the mixed motion model Db values to the
Stokes-Einstein equation, both in terms of the Stokes-Einstein model fits and the extrac-
ted intralipid particle radii, for all three data sets. There is close agreement between the
Laurence algorithm, multi-tau algorithm, and holographic FD-DCS data, which yield an
intralipid particle radius of 98, 102, and 98 nm, respectively. These values are all within a
maximum 4 % deviation of each other. Furthermore, these values are in close agreement
with previous measurements of intralipid by the same manufacturer using transmission
electron microscopy (TEM) in [167], which suggest an average particle radius of 107 nm.
By failing to account for a mixed model fit in this experiment (i.e., by using a Brownian
motion model only), intralipid particle radii of 90, 94, and 88 nm are extracted for the
Laurence algorithm data, multi-tau algorithm data, and holographic FD-DCS data, re-
spectively, and a reduction in the goodness of model fitting to the Stokes-Einstein rela-
tion also occurs.

4.8 Comparing SNR performance with conventional DCS

I define the SNR of a Db measurement to be the mean Db value over N measurements,
divided by the standard deviation in those measurements

SNRDb =
µ(Db)

σ(Db)
. (79)
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Figure 4.11: The distribution of Db values for both conventional DCS and holographic
FD-DCS over a temperature range in an optical tissue phantom using native domain

mixed model fitting. Model fits to the Stokes-Einstein equation and extracted intralipid
particle radii are also shown for all three data sets.

To assess the SNRDb benefit conferred by the holographic FD-DCS instrument under op-
tical blackout conditions, I measured SNRDb (using a Brownian model of motion) over
a range of flow parameter output rates in an intralipid phantom with optical properties
similar to that of brain tissue (µa = 0.10 cm-1 and µ′

s = 7.5 cm-1 [22]), for an SDS distance of
15 mm and N = 100. This was achieved by the addition of Indian ink (Windsor & New-
ton, Liquid Indian Ink, 1010754) to an intralipid phantom, based on in-house dilution
calibration experiments (using a PerkinElmer Lambda 750 S UV/Vis/NIR spectropho-
tometer). By varying the number of camera frames taken at each detuning frequency,
the overall parameter output rate can be traded for the number frames to average, and
thus the SNRDb in the measurement. For example, with measurement at 6 detuning
frequencies, a camera exposure time of 0.299 ms and a camera frame rate of 303 Hz, an
overall parameter output rate of 23.8 Hz can be obtained by capturing 2 camera frames
per detuning frequency. Increasing the number of frames captured per detuning fre-
quency to 11 effectively decreases the overall parameter output rate to 4.5 Hz.

I then performed equivalent analysis on conventional DCS data (autocorrelated us-
ing the Laurence algorithm) collected under matched conditions by collecting raw
photon counting data and discretising it into N samples (each of length equal to Tframe,
the total time required to acquire a Db frame using the holographic FD-DCS instrument).
Using a Brownian motion model fit to this data, I then calculated an SNRDb value for
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Figure 4.12: The distribution of Brownian factors for both conventional DCS and
holographic FD-DCS over a temperature range in an optical tissue phantom using

native domain mixed model fitting.

conventional DCS data at matched overall parameter output rates. For both holographic
FD-DCS and conventional DCS data, I observed that SNRDb scales with

√
Tframe, as is to

be expected for a variable exhibiting Gaussian noise, as demonstrated in Figure 4.13.
The holographic FD-DCS instrument offered an improvement in SNRDb over con-

ventional DCS by a mean factor of 2.3 over all 10 parameter output rates that were in-
vestigated. This is surprising considering that in the order of ∼1300 modes of light are
detected for Npix = 512, which have undergone a heterodyne gain process. However,
it must be considered that for this specific selection of exposure parameters the camera
is operating at a 9.1 % duty cycle, whereas the SPAD is capable of detecting individual
photon arrival times at a maximum rate of 13.3 MHz. Increasing this duty cycle is there-
fore motivated in the future work of this thesis, to further increase the SNR advantage
of the system, which could be achieved by using a multiple camera setup, for example.
Additionally, the camera has a quantum efficiency of ∼33 % at the operating wavelength
of the laser, and a gain of 5.73 photoelectrons per digital count. Therefore, for every 100
photons incident upon a camera pixel, only 6 digital counts will be produced. However,
the SPAD has a detection efficiency of ∼70 % at the operating wavelength of the laser.
The use of a higher performance NIR-enhanced camera could therefore be considered
to improve the relative SNRDb performance of the system, and this is discussed further
in Chapter 7.

The results obtained by repeating this experiment under normal ambient lighting
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Figure 4.13: SNRDb performance against overall parameter output rate for
conventional DCS and holographic FD-DCS experiments, under optical blackout

conditions.

conditions are shown in Figure 4.14. These experimental conditions result in an increase
in the SNRDb mean improvement factor to 5.2, due to degradation of SNRDb associated
with the conventional DCS technique. This confirms the relative insensitivity of the
holographic FD-DCS technique to ambient light.

The absolute values of SNRDb for the holographic FD-DCS data vary from Figure
4.13 to Figure 4.14, as, although performed under entirely equivalent experimental con-
ditions, these experiments were performed on different samples, with possible drift in
experimental apparatus between data collection sessions. However, the relative SNRDb

improvement of holographic FD-DCS with respect to conventional DCS for each of these
two experiments is the key concern here, the behaviour of which is consistent with the
prediction that holographic FD-DCS is relatively insensitive to ambient light.

4.9 Demonstrating in vivo feasibility

The challenges for the design of a holographic FD-DCS instrument for in vivo applica-
tion were discussed in Sections 3.6 and 4.3. In addition to these considerations, patient
safety limits must also be adhered to: the maximum permissible exposure of the skin
to laser radiation at a wavelength of 785 nm is 2.96 mW/mm2 [20]. I achieved this by
making use of a fixed focus fibre collimator which produces a beam of 2.1 mm diameter
(Thorlabs, F220APC-780), such that a maximum output power of 10.25 mW can be ac-
cepted at the end of the sample arm. To acceptably manage the risk of exposure of
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Figure 4.14: SNRDb performance against overall parameter output rate for
conventional DCS and holographic FD-DCS experiments, under ambient lighting

conditions.

the naked eye to the collimated beam, safety glasses were worn by all persons present
during acquisition of in vivo data.

The interferometric design of the system is highly sensitive to both sample move-
ment and external sources of vibration. This can be ameliorated by selecting short cam-
era exposures, and also by good experimental design. To this end, I designed a NIR
opaque 3D printed probe with a neoprene sleeve to minimise the effects of stray light,
as demonstrated in Figure 4.15. The LLG and collimator are both fixed in place with
grub screws, and the lens of the collimator is held in contact against the skin by an
optical mounting stage. The SDS distance of the probe is 11.3 mm, which provides an
imaging depth of ∼ 3.8 - 5.7 mm.

By developing an understanding of the complex interplay between the parameters of
the instrument and the flow values that are expected in a particular DCS geometry, I can
determine the most appropriate camera exposure parameters for any given experiment.
For example, when making forearm measurements I assume sample optical properties
of µa = 0.25 cm-1 and µ′

s = 4.27 cm-1. These are the average of the measurements acquired
from the forearm of three healthy volunteers at a wavelength of 788 nm by Wang et al.
[22]. This group used sample optical properties measured at 788 nm to analyse data
from DCS experiments of the same samples, which were undertaken using a 785 nm
laser source. I therefore deem the values that I have selected to be appropriate estimates
of the optical properties of the sample in this experiment, which also operates at 785 nm.
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Figure 4.15: Top (left), and underside (right) views of a 3D printed in vivo probe with
an SDS distance of 11.3 mm.

Using a conventional DCS system, these optical properties were used to recover the
range of Db values that would be expected in the sample. Then, for this particular
experimental geometry, this allows the expected power spectra during both diastole
(low flow) and systole (high flow) for Brownian motion to be modelled, as shown by
Figures 4.16 and 4.17.

Inspection of Figure 4.17 shows that, for a camera exposure time of 2 ms and a cam-
era frame rate of 200 Hz, the HWHM of the expected diastolic power spectrum and
the HWHM of the IRF are equivalent, resulting in significant broadening of the meas-
ured diastolic spectrum (grey dotted line); however, this effect is much less pronounced
during systole (black dotted line). I have chosen to sample at frequencies where the
greatest measured change is expected over the cardiac cycle, and these are indicated
by the circles on each of the measured power spectra in Figure 4.17. Additionally,
since the camera exposure time is in the order of the expected tissue decorrelation time
(∼1 ms [18]), optimal detection sensitivity is expected [143]. The camera operates at a
duty cycle of 40 % using these exposure parameters, which is an improvement over the
9.1 % duty cycle used in Section 4.8.

Selecting the location of detuning frequencies to sample at, and the number of cam-
era frames to record at each of these frequencies, is a trade-off between the competing
interests of the following two considerations:

• increased averaging for improved SNR, and picking more frequency points to
make fitting to the FD-DCS analytical model more robust;

• the overall flow parameter output rate.

Choosing the 6 frequency points shown in Figure 4.17, with 3 camera frames at each
point, gives an overall parameter output rate of 10.8 Hz for these camera exposure para-
meters, ensuring that pulsatile information can be accurately recovered, which we ex-
pect to contain significant frequency content at 1 - 2 Hz. Therefore, this information
can be faithfully recovered by using a sampling rate of at least ∼ 4 Hz. However, I am
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Figure 4.16: Simulated power spectra (black plots) expected during (a) diastole, and (b)
systole. The IRF is shown by the black dashed plots, and the simulated measured

power spectra, after IRF broadening, are shown by the grey plots. These simulated
data were generated using a holographic FD-DCS forward modelling tool, using a

camera exposure time of 2 ms, a camera frame rate of 200 Hz, a DC subtraction
temporal filtering technique, 3.8 % Gaussian measurement noise, and averaging over

two S1 data sets.

motivated to sample even faster than this, for the reasons outlined in Section 2.3.6, and
the overall parameter output rate of 10.8 Hz that I have achieved for this experiment
therefore represents significant progress toward this goal.

Figure 4.18 validates the in vivo applicability of the instrument in the context of
contact forearm measurements (this study was approved by the UCL Research Ethics
Committee, project ID number: 1133/001). Subplot (a) of this figure shows the signal
obtained from a the holographic FD-DCS instrument, with the resolution of pulsatile
flow clearly visible in the signal. Subplot (b) of the same figure shows the conventional
DCS signal for reference, at an equivalent overall parameter output rate (autocorrel-
ated using the Laurence algorithm). Fourier transforms of these Db time series, which
were acquired using a Brownian model of motion, reveal peak content at 64.9 beats per
minute (bpm) in both cases, as demonstrated in Figure 4.19. This was consistent with
the resting heart rate of the volunteer in this study.

The mean value of the holographic FD-DCS Db time series in Figure 4.18(a) is 1.13
× 10-8 cm2/s, whereas the mean value of the conventional DCS Db time series in Figure
4.18(b) is 0.58 × 10-8 cm2/s. I attribute this to broadening of the measured signal by the
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Figure 4.17: Simulated noiseless data, used to aid selection of appropriate detuning
frequencies. The solid lines show the range of power spectra that are expected (using
Db values acquired from conventional DCS data collection). The dotted lines simulate
the effects of IRF broadening on the expected power spectra. The simulated measured
power spectra are then sampled where the greatest measured change is expected over

the cardiac cycle (these sample points are depicted by the circles on each of the
measured power spectra).

IRF of the system, as demonstrated in Figure 4.17, which artificially elevates the lower
Db values especially (as confirmed by fitting Db values to the simulated measured data
in Figure 4.17).

4.10 Chapter summary and discussion

The experiments performed in this chapter have shown that holographic FD-DCS can
measure data that are entirely equivalent to conventional DCS, but with a higher op-
tical throughput, a decreased cost of detector and a robustness to the effects of ambient
light. Improved SNR has been demonstrated in vitro; however, this advantage is yet to
be demonstrated in vivo. By developing and validating a mixed motion DCS Fourier
domain model, as well as a temperature dependent model for the optical and dynamic
properties of intralipid phantoms, I can achieve accurate interpretation of the data pro-
duced by the instrument in its native domain, which is fundamentally different to con-
ventional DCS data. These differences arise due to the alternative sampling strategies of
data in the time and frequency domains, the effects of static scattering in a holographic
FD-DCS system, the nature of the noise, and broadening by the IRF, especially at high
parameter output rates. These high output rates have been made possible by the design
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Figure 4.18: Db time series for contact forearm measurements acquired at 10.8 Hz,
using both (a) holographic FD-DCS, and (b) conventional DCS. The dashed horizontal
lines represent the mean Db value for each time series. Qualitatively, conventional DCS

appears to have a better SNR than holographic FD-DCS, which I suspect is due to
movement artefact and sub-optimal tissue coupling associated with an in vivo sample

(this is discussed further in Sections 4.10 and 7.2.2).

of a custom instrument with a high throughput and minimal dead-time, which enables
highly parallel GPU-accelerated holographic demodulation and is thus suited to in vivo
application.

With reference to Figure 4.10, I conclude that, due to the noise in the measured data,
DCS model fitting in the native domain is preferable to numerical transform and fitting
in the complementary domain. Whilst the deviations in Db measurement using com-
plementary domain fitting that are shown in Figure 4.10 are relatively small for the very
slow acquisition times used in the exemplar configuration of Section 4.6, they are sig-
nificant when optimising for fast acquisition times with a broader IRF, especially when
imaging samples with a static scattering component. Thus, fitting with a native model
appears to be an appropriate technique to achieve accuracy in flow parameter measure-
ments.

My mixed model fitting procedure has been rigorously validated by the results of
Section 4.7. Compared to the Brownian model of motion, the mixed motion model Db

values shown in Figure 4.11 have an improved fit to the Stokes-Einstein relationship
(Equation 77), and the extracted intralipid particle radii values are also in closer agree-
ment with the TEM gold standard measurement [167]. This is because, although the
speed of both the Brownian and convective components of the phantom increased as
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Figure 4.19: Fourier transform of the two time series in Figure 4.18 reveals peak
frequency content at 65 bpm for both (a) holographic FD-DCS, and (b) conventional

DCS.

the phantom was heated, the sample became less Brownian and more convective due
to circulating currents within the waterbath (i.e., the Brownian factor decreased), and
therefore allowing for this variation was important in revealing the underlying absolute
Db agreement between the conventional and holographic FD-DCS techniques. I there-
fore conclude that to show absolute equivalence between conventional DCS and holo-
graphic FD-DCS over a temperature range, the use of a mixed model fit to account for
a Brownian factor variation is essential. However, the experiments in Sections 4.6, 4.8,
and 4.9 do not make use of mixed model fitting, as the Brownian factor of the sample is
not expected to vary within the course of each of these experiments.

Holographic FD-DCS is an inherently heterodyne and multispeckle detection tech-
nique. Conventional DCS has, until recently, been a homodyne single speckle detection
technique. However, due to recent developments in the field [23, 31, 32], a fuller com-
parison of holographic FD-DCS (especially with regard to assessing SNR performance
and robustness to ambient light) could be achieved by comparison to both single and
multispeckle conventional heterodyne DCS techniques [i.e., interferometric diffuse cor-
relation spectroscopy (iDCS), interferometric diffusing wave spectroscopy (iDWS), and
multi-exposure iDWS (MiDWS)], and these comparisons form part of the future work
of this thesis. However, the reduction in detector cost afforded by holographic FD-DCS,
as well as the scalability of a detection strategy that operates at the shot noise limit, is a
compelling advantage of this technique.
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Despite validating and demonstrating the potential advantages of holographic FD-
DCS, this chapter does not reflect the full potential of this technique. The short camera
exposure times that were used in Section 4.9, which are necessary to sample fast enough
to resolve pulsatile information, introduce a complication to the measured data. Spec-
tral broadening by a relatively wide IRF artificially elevates the measured Db values
in Figure 4.18(a). Correcting for this, whilst sampling at only a limited number of de-
tuning frequencies (especially in the presence of static scattering due to the skull, for
example), represents a significant challenge, and this will form part of the future work
of this thesis. Following on from this, the SNR advantage that was demonstrated in vitro
in Section 4.8 was not achieved in vivo in Section 4.9. I suspect that this is in part due
to movement artefact, which is a known problem of multimode detection [98], and sub-
optimal tissue coupling in the system [96]. Therefore, experimentation into the effect
of various collection optics and tissue coupling mechanisms, together with minimising
other sources of movement and vibration in the system, is warranted. In light of this,
a rigorous SNR performance characterisation of the holographic FD-DCS system for in
vitro data collection is offered in Chapter 5.

Whilst the SDS distances used in this chapter (1.13 - 1.75 cm) are relatively short
compared to the SDS distances of 2 - 3 cm typically used in human applications [4],
this does not detract from the purpose of this proof of concept work, where the aim is to
demonstrate the quantitative equivalence of measurements made using the holographic
FD-DCS method. The future work of this thesis will assess the feasibility of the system to
detect signals under the more challenging conditions provided by larger SDS distances,
such as 3.5 cm (as was recently achieved by Zhou et al. [24]).

4.11 Conclusion

I have developed a new Fourier domain implementation of DCS by building an off-axis
HPSD instrument. Rapid operation of this holographic FD-DCS instrument is enabled
by a GPU-accelerated holographic demodulation system, which currently operates with
a throughput of 79.4 M pixels per second when detecting ∼1300 modes in parallel. To
show absolute equivalence between conventional DCS and holographic FD-DCS, the
use of a novel mixed model fitting process, together with a novel temperature depend-
ent model for the optical and dynamic properties of intralipid phantoms, is a key step.
In this chapter I have also demonstrated the SNRDb advantage that holographic FD-DCS
yields compared to conventional DCS, as well as its relative insensitivity to ambient
light. Finally, the feasibility of making in vivo measurements using holographic FD-DCS
was demonstrated by acquiring forearm contact measurements. By considering the IRF
of a holographic FD-DCS instrument, appropriate camera exposure parameters can be
selected to allow for the high parameter output rates necessary to make in vivo measure-
ments. The holographic FD-DCS system is limited by the duty cycles available with the

137



camera that is currently in use, especially when using very short camera exposure para-
meters. The future work of this thesis will therefore involve duty cycle optimisation, as
well using higher performance NIR-enhanced cameras, and further development of a
probe for in vivo detection.

To the best of my knowledge, this chapter represents the first time that a holographic
FD-DCS technique has been used to recover in vivo flow measurements, at a fast enough
sample rate to ensure the accurate recovery of pulsatile information. Additionally, this
technology can readily be applied to longer wavelengths, which have previously been
shown to improve SNR and depth sensitivity, but which are currently incompatible
with existing detector technologies in conventional DCS. This offers exciting prospects
not only for the potential of deeper multispeckle DCS measurements, but also for the
potential of acquiring spatially resolved DCS measurements using acousto-optic tomo-
graphy (AOT) techniques.
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5 System performance characterisation

5.1 Chapter contribution

In this chapter I report on a systematic characterisation of the signal-to-noise ratio (SNR)
performance of the holographic Fourier domain diffuse correlation spectroscopy
(FD-DCS) instrument described in Chapter 4. In Section 5.2, I demonstrate and elimin-
ate outliers in the measured data that are due to laser mode hopping, and I also correct
for a model of the system’s modulation transfer function (MTF) in Section 5.3. To the
best of my knowledge, this is the first time that these two noise sources have been iden-
tified and removed from a digital holography experiment. In Section 5.4, I then describe
the SNR performance problem that was encountered during initial performance char-
acterisation of the instrument. By using spatiotemporal filtering as a validation tool in
Section 5.4.1, I determine whether any given experimental setup is affected by limiting
noise sources that compromise maximal SNR performance, and I use this to document
the effects of varying laser source power in Section 5.4.2. In Section 5.4.3, I detail the fi-
nal contribution of this chapter: a novel multispeckle denoising algorithm, the develop-
ment of which has allowed the removal of spatiotemporally uncorrelated noise from the
measured data, and which has also allowed the demonstration of a linear relationship
between SNR gain and the square root of the number of speckles detected, as predicted
by the theory of multispeckle detection. The denoising algorithm can also be used to
go beyond this linear relationship by the removal of sampling noise, but this comes at a
cost of decreased temporal resolution.

By bringing together the techniques outlined in this chapter, I achieve an in vitro
SNR gain of 36, for a flow parameter output rate of 8.2 Hz, when detecting over ∼1290
heterodyne speckles for the inexpensive camera-based detection system described in
this thesis. This is the highest SNR gain reported in the diffuse correlation spectroscopy
(DCS) literature to date.

This chapter forms the basis for work that was recently accepted to be published in
Biomedical Optics Express [168], in which the reviewers commended the SNR improve-
ment that I have achieved as exciting, comprehensive, novel, and of high interest. I also
presented work from this chapter at Photonics West SPIE BiOS 2022 [169]. Additionally,
this chapter represents a pivot in the course of the research that was conducted for this
thesis. Due to the Covid-19 pandemic, Section 5.3 and onward are the output of re-
search that was carried out entirely remotely, and which could no longer be performed
in a laboratory. Furthermore, the holographic FD-DCS instrument that I described in
Chapter 4 was removed from UCL in July 2021. As such, I have not been able to per-
form any practical work since March 2020, and considerations for future practical work
have been discussed in the remainder of this thesis where appropriate.
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5.2 Elimination of multimode behaviour

Interferometric techniques inherently rely on splitting a light source into sample and ref-
erence arms. In my experimental setup, a fibre-coupled beamsplitter is used to achieve
this (see Section 4.3), and I have found that back reflections from this beamsplitter into
the laser cavity induce mode hopping that has deleterious effects on temporal filtering
(as is confirmed later in this section). These effects are visible as negative going outliers
in reconstructed S1 data, as shown in Figure 5.1(a), and occur at a rate of one in every
250 data points in this figure. Even though these outliers occur infrequently in this in
vitro validation dataset, and could therefore easily be ignored, this would not be pos-
sible when detecting at the fast Db parameter output rates that are required to resolve
pulsatile flow in vivo, which limit the number of S1 values used to fit per Db measure-
ment. An outlying data point would be costly in this context and would negate the
advantages of SNR improvement and goodness of model fitting that are offered by an
increased number of camera frames.

50 100 150 200 250 300 350 400 450 500
3

3.5

4

4.5

5

5.5

50 100 150 200 250 300 350 400 450 500

2

3

4

5

Figure 5.1: (a) Negative going outliers in S1 data (highlighted by the red squares). (b)
Using an alternative temporal filtering strategy reveals discontinuities in intensity,

which suggests that these outliers could be correlated with mode hopping (highlighted
by the red rectangles).

The data presented in Figure 5.1(a) were acquired using a DC subtraction temporal
filtering method (analogous to the approach recently presented in multi-exposure in-
terferometric diffusing wave spectroscopy (MiDWS) [23]), in which the camera plane
hologram, HC, is constructed as the difference of two successive images

HC = In − In+1, (80)

which serves as a high pass filter that removes the contribution of what is assumed to
be a temporally static contribution from the reference beam [34]. However, I hypothes-
ise that if the laser were to mode hop between two successive images, then Hc would
be formed from two mutually incoherent fields, which would result in an artefactual
increase in N, with a subsequent decrease in S1, according to Equation 53. To test this
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theory, I used an alternative temporal filtering strategy

HC = In − I1, (81)

where n ̸= 1, which removes the contribution of the reference beam as it is recorded
in the first camera frame of a measured series. The results of this analysis, shown in
Figure 5.1(b), reveal discontinuities in intensity, which suggests that these outliers could
be correlated with mode hopping [this behaviour can also be demonstrated using a
singular value decomposition (SVD) approach - see Figure 5.9(b)].

Inspection of HC, for both the most median data point and one of the two outliers in
Figure 5.1(a), is also instructive in diagnosing this behaviour. Aberrations are present in
HC, as shown in Figure 5.2(g), for one of these outlying data points. These aberrations
could occur due to camera frames In and In+1 being derived from mutually incoherent
fields for this data point, which is consistent with my hypothesis that the laser has mode
hopped between these two camera frames.

Figure 5.2: Top row: (a) In and (b) In+1 are used to form (c) HC, from which (d) HR is
reconstructed, for the most median data point in Figure 5.1(a). Bottom row: (e) In and
(f) In+1 are used to form (g) HC, from which (h) HR is reconstructed, for one of the two

outlying data points in Figure 5.1(a). Aberrations are present in (g), because camera
frames (e) and (f) are formed from mutually incoherent fields.

The light source in the system is a single-mode diode laser that incorporates a ∼35
dB optical isolator fitted at the laser head to minimise back reflections into the laser
cavity. Back reflections from optical interfaces can cause the laser to mode hop unpre-
dictably [110], and even with the use of a single-stage optical isolator it is still possible
to encounter back reflections into the laser. By employing the laser manufacturer’s pro-
prietary feedback induced noise eraser (FINE) electronic feature, I am able to eliminate
the outlying data points demonstrated in Figure 5.1(a), but at the expense of decreasing
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the measured S1 values and introducing noise into the Db measurement. For conven-
tional DCS, the implementation of FINE decreased the measured β and Db values, and
I therefore suspect that FINE may reduce the coherence length of the laser.

By trimming the laser head to decrease back reflections into the main laser cavity,
as well as incorporating a second optical isolator (Thorlabs, IO-F-780APC) to achieve
∼71 dB of total optical isolation at the laser head, I am able to eliminate outlying data
points without employing FINE. Therefore, all three of FINE, laser head trimming, and
dual-stage optical isolation were used as diagnostic tools to demonstrate the presence
of mode hopping, but only the latter two were implemented as a solution in my experi-
mental setup.

I confirmed that the back-reflections which caused mode hopping arose from the
primary beamsplitter, by analysing data acquired under two experimental conditions:
(a) removal of the reference arm, and (b) removal of both the reference arm and the
primary beamsplitter. Under the experimental conditions of (a), the incidence of out-
liers was 167/3000; however, under the experimental conditions of (b), this incidence
decreased to 2/3000. By modelling each of these two rates as a Poissonian distribution,
they are statistically different at a significance level of p < 0.0001 using a chi-squared
test.

5.3 Modulation transfer function

Due to effect of the finite size of the camera pixels (∆x, ∆y), the heterodyne detection
efficiency within the space of HR (kx, ky) is given by the MTF of the lensless digital
Fourier holography instrument [138, 142, 170]. Here (kx, ky) refers to spatial frequency,
which is a function of the rate of sampling and the number of samples in the spatial
domain [170]. For example, kx = (N∆x)−1, where N is the number of camera pixels in
the x dimension. The MTF is the Fourier transform pair of the spatial distribution of a
single pixel in the camera plane

MTF(kx, ky) =
∣∣sinc(

√
α∆xkx)sinc(

√
α∆yky)

∣∣2 , (82)

where α is the camera pixel fill factor, and

sinc(t) =
sin(πt)

πt
(83)

is the normalised sinc function. Each of the terms ∆xkx and ∆yky in Equation 82 is
evaluated between ±0.5 across each of the two dimensions of the camera sensor [142].
An example of the MTF for α = 0.72 is shown in Figure 5.3(b). The MTF, which has
rotational symmetry of order four, is centred on the reference beam (i.e., kx = ky =

0) and results in increasing attenuation for increasing heterodyne spatial frequencies
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over the holographic twin images, but which does not affect the homodyne shot noise
component [135]. I therefore update Equation 53 to become

S1(±∆ω, kx, ky) =

S(±∆ω,kx,ky)

N(∆ω)
− 1

MTF(kx, ky)
, (84)

and then proceed to take the average value within each heterodyne mask to make a
measurement of S1(±∆ω), which, as both of the heterodyne terms are identical for the
holographic detection schemes described in this chapter, I abbreviate to S1(∆ω).

As the optical tissue phantom is spatially invariant and has been imaged through
the spatially incoherent core of a liquid light guide (LLG) of length 1.2 m, I expect to
reconstruct a flat profile in Figure 5.3(a), which shows the average intensity of 500 re-
constructed S1 images. However, and as expected, the MTF of the instrument causes a
distortion artefact whereby higher spatial frequencies are more strongly attenuated. By
minimising the variance, σ2, in the reconstructed S1 image, for values of α in the range
[0, 1], I can determine the α value for the experimental setup to be 0.72, as is shown in
Figure 5.4.
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Figure 5.3: (a) Reconstructed average of 500 S1 images without MTF correction. (b)
MTF with α = 0.72, the white dotted circles indicate the location of the twin

holographic images, which lie in a common plane. (c) Reconstructed average of 500 S1
images with MTF correction.

The manufacturer of the camera reports a camera pixel fill factor of 1.00, due to
the microlenses that are used in the sensor array. The use of a microlens array will
increase the light detection efficiency of the sensor; however, this does not consider
the optical aberrations of the microlenses that are relevant to an imaging application.
Additionally, the camera has a maximum quantum efficiency over visible wavelengths,
and its microlenses will therefore have a wavelength response that is not designed for
the near infrared. By modelling a value of α = 0.72, as shown in Figure 5.3(b), the
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flatness of the average reconstructed S1 image in Figure 5.3(c) is optimised, and thus
the distortion artefact caused by the MTF of the instrument is corrected for.
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Figure 5.4: Choosing a value of α = 0.72 minimises the variance, σ2
min, and thus

maximises the flatness, of the average reconstructed S1 image.

This optimisation process can be customised to the features of any particular exper-
imental setup, and other appropriate optimisation targets for this experimental design
could include radial symmetry, or the gradient of the radial average. I note that, in
practice, it is unlikely that a fill factor of 1.00 can be achieved; for example, the use of
an array of circular microlenses and square pixels will yield a maximum fill factor of
π/4 ≈ 0.79.

5.4 SNR scaling problem

Under the assumption of shot noise limited detection over the entire speckle pattern,
and in the absence of detector noise and other experimental noise sources, the SNR of a
speckle detection instrument should scale linearly with the square root of the number of
detected speckles [25, 27, 66]. I therefore sought to verify this for the S1 values produced
by my instrument, using the same intralipid optical phantom as used in Sections 4.6
and 4.7. Here I define the SNR in S1 to be the ratio of the mean value, µ, to the standard
deviation, σ, of a sample of S1 values

SNRS1
=

µ(S1)

σ(S1)
, (85)
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over N repeats. For this experiment I use 501 camera plane holograms, which yields a
value of N = 500 for DC subtraction temporal filtering, and note that the laser is being
driven at its maximum rated output power of 120 mW. By varying the size of the signal
mask in the holographic reconstruction process, the number of speckles that contribute
to each S1 measurement can be controlled.

The resulting SNR values are plotted in Figure 5.5, where I expect to observe a linear
relationship between SNR and mask radius (the square root of the number of modes is
a linear function of mask radius). This shot noise limited regime is indeed observed for
a mask radius of approximately 10 pixels and smaller in this figure. However, for larger
mask radii, the SNR of S1 appears to form an asymptote, which suggests that another
source of noise becomes limiting at this point.
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Figure 5.5: The red dashed line shows relationship between SNRS1
and the radius of

the demodulation mask for ∆ f = 0.1 Hz. The linear scaling target is shown by the
dotted grey line, which is calculated from the data presented in Figure 5.11(b).

Further analysis has shown that this finding is consistent when using masks which
are not centrally located within the reconstructed aperture, i.e., it is the size of the mask,
not its location, which is important in determining this effect. It is fundamental that
this problem is addressed, as one of the proposed advantages of holographic FD-DCS
is SNR that scales with the square root of the number of pixels of relatively low-cost
camera-based detection. Realisation of this proposed SNR advantage is a pre-requisite
for achieving deeper imaging depths in DCS, and for the effective detection of acousto-
optic tomography (AOT) signals. The remainder of Section 5.4 therefore describes the
series of experiments and analysis that was performed to investigate this SNR scaling
problem.
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5.4.1 Singular value decomposition

The spatiotemporal filtering of holograms using an SVD approach has recently been
presented in the field of laser Doppler holography (LDH) (see Section 3.3) to discrimin-
ate between the spatiotemporal characteristics of blood flow (BF), and unwanted clutter
such as bulk tissue motion, camera jitter, parasitic reflections, and other physical flaws
in the recording channel [171, 172]. The authors of the LDH technique achieved this by
reconstructing holograms, having first performed an SVD of the holograms and setting
the first nc singular values to zero.

Within the context of multispeckle interferometric DCS (iDCS), a similar approach
has also recently been presented by Robinson et al. [173]. These authors suggested that
the largest singular values are also associated with movement artefacts and fluctuations
in laser power, although the precise identity of the noise source is less important than
the removal of a component of the measured data that is overly represented across the
camera sensor, and which is therefore not due to the signal of an individual speckle.

The spatiotemporal filtering of holograms works by reshaping a series of nt consec-
utive holograms, of spatial dimensions nx × ny, into a 2D space-time matrix H, which
has dimensions nxny × nt. An SVD allows the matrix H to be described as the sum of nt

independent terms

H =
nt

∑
i=1

λiUiV∗
i , (86)

where λi are the singular values (ordered by decreasing value), Ui are the left singular
vectors (which correspond to space), Vi are the right singular vectors (which corres-
pond to time), and ∗ denotes the complex conjugate transpose. This decomposition is
depicted in Figure 5.6.

The basis of the spatiotemporal filtering approach is that the highest magnitude sin-
gular values correspond to variations in H with the strongest spatiotemporal correla-
tions. Since speckle is expected to have weak spatiotemporal correlation, it is assumed
that strong spatiotemporal correlations in H will be due to artefacts. In this section I
propose to remove spatiotemporal clutter owing to channel noise in the experimental
setup, that may be caused by laser instability and reflections at optical interfaces, for
example. This is achieved by setting the first nc singular values to zero, and reconstruct-
ing H using this updated vector of singular values. Spatiotemporal filtering is used as
a validation tool against which to benchmark the SNR performance of any given exper-
imental setup, and I demonstrate this approach in Section 5.4.2.

H is formed from 501 camera plane holograms, each of spatial dimensions 512× 512
pixels. Thus, the dimensions of H are 262144 × 501. All 501 singular values of this mat-
rix are computed, this first 100 of which are shown in Figure 5.7(a). The first 10 singular
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Figure 5.6: A 3D time-stack of camera frames is reshaped into a 2D space-time matrix,
H. By performing an SVD, H can be described as the product of three matrices. U and

V are the spatial and temporal singular vectors, respectively, and ∆ is the diagonal
matrix of singular values, λi. Reproduced with permission from [171] under the terms

of the OSA Open Access Publishing Agreement. © 2020 Optical Society of America.

values are elevated due to spatiotemporally correlated noise, and a threshold value of
nc = 10 is therefore used. Speckle has inherently weak spatiotemporal correlation, and
I make use of this fundamental property by reconstructing H having set the first nc sin-
gular values equal to zero. As the SVD step has already implemented temporal filtering,
this allows the formation of HC using single frame holography, i.e.,

HC = In, (87)

and I then proceed to reconstruct each HR according to Equation (52). The SNRS1
ana-

lysis is then repeated for this spatiotemporally filtered data, and it is found that the
SNR performance is closer to the linear scaling target, as is depicted in Figure 5.7(b),
with shot noise limited detection persisting up until a mask radius of approximately 25
pixels.

5.4.2 Laser source power

With a view to characterising the source of the noise that has been removed by the SVD
step in Section 5.4.1, I repeated this analysis on data acquired using a reduced laser
output power of 100 mW, the results of which are shown in Figure 5.8. This time, the
spatiotemporal filtering approach results in similar SNR performance to the DC sub-
traction temporal filtering technique. I can therefore conclude that by reducing the laser
output power, high frequency clutter has been removed from the measured data that
is outside the stopband of a DC subtraction temporal filter. This can also be appreci-
ated as a reduction in magnitude of some of the first 10 singular values in Figure 5.8(a),
compared to Figure 5.7(a). Furthermore, as spatiotemporal filtering and DC subtrac-
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Figure 5.7: 120 mW laser output power. (a) Singular values that result from the SVD of
H. The first 10 singular values (highlighted in red) are elevated and thus correlated

with spatiotemporal noise. (b) Spatiotemporal filtering (plotted in solid black) results
in an improvement in SNR performance compared to DC subtraction temporal

filtering alone (plotted in dashed red).

tion temporal filtering offer similar SNR performance for this dataset, I can conclude
that they have similar efficacy at removing low frequency clutter, which is within the
stopband of a DC subtraction temporal filter.
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Figure 5.8: 100 mW laser output power. (a) Singular values that result from the SVD of
H. The first 10 singular values (highlighted in red) are elevated and thus correlated

with spatiotemporal noise. (b) Spatiotemporal filtering (plotted in solid black) results
in a similar SNR performance to DC subtraction temporal filtering alone (plotted in

dashed red).

As was also demonstrated by Puyo et al. [171], I have found that SVD provides a
more robust basis than Fourier space to filter clutter from holograms. This is because
high frequency clutter cannot be effectively removed using high pass temporal filtering
alone. As this clutter is removed by decreasing the laser output power, it may be that the
clutter is due to reflections that occur at optical interfaces within the experimental setup
[110, 174]. Indeed, inspection of the temporal singular vectors associated with elevated
singular values reveals the presence of beat notes when using a laser output power of
120 mW, as depicted in Figure 5.9(a), which implies that the laser is not achieving stable
single-frequency operation at this power setting. Additionally, this technique can also
be used to visualise mode hopping behaviour (see Section 5.2) when dual-stage optical
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isolation is not used, as is shown in Figure 5.9(b).
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Figure 5.9: Temporal singular vector noise characterisation examples. (a) A beat note is
evident when using a laser output power of 120 mW. (b) Mode hopping occurs when

dual-stage optical isolation is not used.

It may also be that when pumping the laser at its maximum rated output power, phe-
nomena such as increased spontaneous emission and technical noise (e.g., vibrations of
the laser resonator, excess noise from the pump source, or temperature fluctuations)
contribute noise to the measured data [175]. However, I use spatiotemporal filtering
as a validation tool, rather than a final solution to implement in my signal processing
pipeline, and therefore the precise identification of the sources of noise that spatiotem-
poral filtering removes is not imperative. The conclusion that DC subtraction temporal
filtering, together with a sub-maximal laser output power, provides equivalent SNR per-
formance to spatiotemporal filtering is key to validating the choice of DC subtraction as
a temporal filtering strategy.

For these in vitro validation datasets, I have the luxury of computing singular values
over a time-stack of nt = 501 camera frames. Using this approach when detecting in
vivo pulsatile flow rates places significant restrictions on the hardware that is used. For
example, Puyo et al. [171] used a value of nt = 1024 for their LDH technique, which
was made possible by using a camera operating at a frame rate of 75 kHz. A DC sub-
traction temporal filtering strategy requires a minimum of only two camera frames, and
is therefore a more appropriate choice for my experimental setup, which uses a camera
operating at 200 Hz for in vivo experiments.

5.4.3 A novel multispeckle denoising algorithm

Noise due to detector nonidealities impacts the SNR performance of a multispeckle de-
tection system [66], and in this section I demonstrate a novel algorithm to remove this
noise from the measured data.

Having performed the SVD filtering step described in Sections 5.4.1 and 5.4.2, the
remaining sources of noise demonstrably have no spatiotemporal correlation, and are
therefore particularly challenging to remove, especially as the signal itself also has no
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spatiotemporal correlation. In Figure 4(d) of [66], Xu et al. observed a similar phe-
nomenon to that which I present in Figure 5.8(b) of this thesis. These authors postu-
lated that the experimental SNR does not reach the predicted theoretical linear rela-
tionship with the square root of the number of detected speckles due to experimental
imperfections, such as detector noise. The sources of noise that exist in a holographic
reconstruction in lensless digital Fourier holography have been discussed in [140, 176],
and these include detector nonidealities (such as quantisation noise, read noise, and
pixel nonuniformity noise) and noise due to superimposed diffraction patterns caused
by dust particles in the interferometric path.

In this section I present a method that allows the removal of this noise from the meas-
ured data. I start by constructing a 2D space-time matrix, as described in Section 5.4.1,
but this time I reshape reconstructed holograms (which have undergone DC subtraction
temporal filtering in the camera plane), and this matrix is denoted R. For this example,
the same dataset that has been analysed in Figure 5.8 is used (i.e., a laser output power
of 100 mW and a detuning frequency of 0.1 Hz). There are 20081 camera pixels within
each of the signal masks shown in Figures 3.4(b) and 4.2(b), and the values within one of
these signal masks is reshaped into a column vector. This is then repeated for nt = 500
reconstructed holograms, and the resulting 500 column vectors are horizontally concat-
enated to form R, which has dimensions 20081 × 500, an example of which is shown in
Figure 5.10(a). The formation of R does not alter the S1 values within each reconstructed
hologram, and, since this matrix of raw data is yet to be denoised (and it is to be used
to test the efficacy of the denoising algorithm), it is referred to as ‘control’ data.

In theory, each column of R contains values sampled from the same distribution of
S1 values, but which has been independently randomised due to the nature of spatial
speckle sampling (such that each column vector is therefore uncorrelated), and each
column of R is therefore one in a series of independent and identically distributed ran-
dom variables that has been drawn from the same probability density function (PDF).
However, a further consideration is that each column of R has also been contaminated
with both sampling noise and measurement noise. The next step of the multispeckle de-
noising algorithm involves independently sorting the elements of each column of R into
ascending order, as is shown in Figure 5.10(b). This means that any temporal variation
that exists between sorted holograms is due to both sampling noise, which is inherent to
the speckle pattern that is measured, and also detection noise. As detector noise occurs
as white noise in each camera plane hologram, its discrete Fourier transform (DFT) is
a random walk and can be assumed to have speckle-like statistics [176], and therefore
it can be treated as an additional speckle-like noise in the reconstruction plane. Thus
I propose that speckle reduction techniques can be adapted to remove detector noise
from the sorted S1 data. In this thesis I propose median filtering, which has previously
been employed to remove speckle noise from reconstructed holograms of static objects
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Figure 5.10: Novel multispeckle denoising algorithm. (a) The 2D space-time matrix, R.
(b) Each column of R is sorted into ascending order. (c) R is then median filtered using

a [1 × 3] neighbourhood. (d) The sorting is reversed.

[177].
By removing the inherently random nature of the spatial sampling of speckle within

each column of R, temporal filtering can then be performed between each column of R to
remove noise. This is done by filtering the sorted matrix using a [1 × n] neighbourhood
(which refers to the space and time axes of R, respectively) and I choose a median filter,
as discussed in the paragraph above, with a value of n = 3. I am motivated to use a
low value of n so as not to compromise the temporal resolution of the measurement,
and I have found that n = 3 is the lowest value of n that achieves the linear SNR scaling
that multispeckle detection predicts, as depicted in Figure 5.13. The results of median
filtering the sorted matrix are shown in Figure 5.10(c). The sorting of each column is
then reversed to restore the random nature of spatial speckle sampling, as is shown in
Figure 5.10(d), and this matrix is referred to as ‘denoised’ data.

The distribution of the S1 values of each column of the control data are shown by
the red histogram in Figure 5.11(a), which also shows the distribution of the S1 values
of each column of the denoised data by the black histogram. By applying the novel
multispeckle denoising algorithm, the variance of the data has been decreased without
disturbing its central tendency. The noise that has been removed from the control data
is defined as the pixel-wise difference between the control data and the denoised data
[i.e., the matrices in Fig 5.10(a) and Fig 5.10(d)]. The distribution of this noise is shown
by the histogram in Figure 5.12; 99.95 % of the noise that has been removed from this
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dataset has an absolute value less than the camera read noise (2.45 photoelectrons), and
99.99 % of the noise that has been removed has an absolute value less than the camera
quantisation interval (5.73 photoelectrons). As almost all of the noise is contained within
the read noise and quantisation interval of the camera, this suggests that the detector is
a limiting noise source for this dataset, and I am thus confident that the final source of
noise that has been removed by this denoising step is detector noise.
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Figure 5.11: (a) Red and black histograms show the distribution of 500 S1 values for
control and denoised data (n = 3), respectively. (b) Denoising achieves the theoretical
linear scaling target (which is calculated as the linear line of best fit through the origin

that includes the maximum number of data points possible whilst still retaining an
R-squared value of at least 0.99) for SNR performance, as shown by the black solid line.

For effective comparison, SNR performance achieved using 120 mW laser output
power and DC subtraction temporal filtering is shown by the grey dash-dotted line.

I then reorder each of the columns of the denoised data back into the form of the
native signal mask, and repeat the SNRS1

analysis that is given by Equation 85. The
results of this are shown by the black solid line in Figure 5.11(b), which demonstrates
that the theoretical linear scaling target for SNR performance has been achieved, and
that the shot noise limited detection regime persists up until a maximum mask radius
of 80 pixels. I repeat this validation for all six detuning frequencies for this dataset,
as is shown in Figure 5.13. Additionally, to verify that the denoising process does not
corrupt the power spectral density (PSD) measurement, Db was fitted to both control
and denoised data in Figure 5.14, which confirms that the signal is unchanged by the
denoising process.

Finally, I define the SNR gain of my multispeckle detection system to be the ratio
of SNRS1

achieved with multispeckle DCS to SNRS1
achieved with single speckle DCS,

using detectors with the same performance [10] and at the same detuning frequency.
The geometry of my experimental setup has been described in Chapter 4, and for the
observation distance used in the current dataset (z = 76.84 mm), a single speckle occu-
pies 15.6 pixels on the camera sensor. Figure 5.15 shows that, at a detuning frequency
of 1 kHz and for a value of n = 3, the experimental SNR gain fits the theoretical predic-
tion that SNR gain is equal to the square root of the number of detected speckles, and I
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Figure 5.12: Noise distribution histogram, where noise is defined as the pixel-wise
difference between the control data and the denoised data [i.e., the matrices in Fig

5.10(a) and Fig 5.10(d)]. 99.95 % of the noise has an absolute value less than the camera
read noise (2.45 photoelectrons), and 99.99 % of the noise has an absolute value less

than the camera quantisation interval (5.73 photoelectrons).

find that this relationship is validated at all six measured detuning frequencies for this
dataset. I achieve an SNR gain of 36 when detecting ∼1290 speckles in parallel.

5.5 Chapter summary and discussion

The current state-of-the-art in SNR performance achieved by a multispeckle DCS sys-
tem is described by Sie et al. [10], who reported an in vitro SNR gain of 32 when de-
tecting homodyne speckles using a 1024 pixel single-photon avalanche diode camera,
with a source-detector separation (SDS) distance of 11.0 mm (see Section 2.3.6.2). I have
achieved an in vitro SNR gain of 36 when detecting over ∼1290 heterodyne speckles in
parallel, with an SDS distance of 17.5 mm, using a detector that is two orders of mag-
nitude less expensive. Additionally, compared to homodyne DCS, heterodyne DCS has
been shown to offer an SNR gain of ∼2 for in vitro experiments [32] (see Section 2.3.6.4).

An in vivo SNR gain of 16 has recently been reported in a DCS system that has
a design wavelength of 1064 nm, and which uses superconducting nanowire single-
photon detection (SNSPD), with an SDS distance of 25.0 mm on the forehead of human
subjects [30] (see Section 2.3.6.3). Although I have not reported in vivo results in this
chapter, this, together with optimisation of an in vivo probe, will form part of the future
work of this thesis, as has already been discussed in Chapter 4. The in vivo data that I
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Figure 5.13: Denoising with n = 3 achieves the theoretical linear scaling target for SNR
performance at all six detuning frequencies for this dataset, as shown by the black

solid line in each subplot. Denoising with n = 4 outperforms the linear scaling target
at a cost of decreased temporal resolution.
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Figure 5.14: Denoising does not affect the signal contained within the PSD
measurement. The Db values fitted to control and denoised data are within 0.02 %,

0.02 %, and 0.01 % of each other for a Brownian motion fit, for values of n = 2, 3, and 4,
respectively. Error bars represent ±1 standard deviation of measured data.
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Figure 5.15: Experimental SNR gain for a detuning frequency of 1 kHz. Using a value
of n = 3, the experimental data fit the theoretical prediction that SNR gain is equal to
the square root of the number of detected speckles,

√
Nspeckles. Using a value of n = 4

outperforms this linear prediction by reducing the independence of consecutive
holograms, but at the cost of a decreased temporal resolution, which allows access to a
broader range of temporal information, meaning that more speckles contribute to each
measurement. The denoising algorithm does not achieve better performance than the
theoretical shot noise limit, but rather its utility lies in demonstrating the distribution

of noise that needs to be removed in order to achieve this fundamental limit, as
demonstrated in Figure 5.12.

presented in Chapter 4 involved the capture of three camera frames at each detuning
frequency, using a sub-maximal laser output power of 39 mW, with a subsequent Db

frame rate of 10.8 Hz for my current experimental setup. The multispeckle denoising
algorithm requires the capture of four camera frames at each detuning frequency for
n = 3, and doing so slows down the resulting Db frame rate to 8.2 Hz. However, this
frame rate is still sufficiently fast to recover pulsatile information.

The value of n that is used in the novel denoising algorithm represents a trade-off
between temporal resolution and denoising performance. Indeed, I note that by us-
ing a value of n > 3, I can reduce the independence of consecutive holograms further,
without perturbing the measured signal, thereby overcoming the linear SNR scaling
limit imposed by sampling noise (as depicted in Figure 5.15) but at the cost of a de-
creased temporal resolution. For any given value of n, temporal averaging without sort-
ing achieves the same magnitude SNR gain as temporal averaging with sorting, when
evaluated at the maximum sampled mask radius. However, without sorting, the SNR
gain does not scale as it should with the square root number of speckles, and therefore
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leaves noise sources unaccounted for. In this chapter, I have found that median filter-
ing with sorting, for a value of n = 3, yields the SNR statistics that are expected, and I
have shown that this can be achieved by accounting for both spatiotemporally correl-
ated noise sources and detector noise, which occurs as white noise in the camera plane.
This could be further corroborated by using detectors with higher performance noise
characteristics, and this will be addressed in future work.

The computational processing requirements of holographic FD-DCS are demanding,
especially when operating at fast Db frame rates. With a view to reducing the compu-
tational demand of conventional DCS experiments, deep learning techniques have re-
cently been employed [112], resulting in a 23-fold increase in the speed of BF quantific-
ation. The application of deep learning techniques to holographic FD-DCS would be an
interesting further study. The generation of training data could be performed using the
algorithms that I present in Chapter 6 for the generation of wide-field two-dimensional
time-integrated dynamic speckle patterns (2D-TIDSPs), which would serve as a forward
model for that which is detected on the sample arm of the instrument. The development
of such a forward model would also aid a fuller statistical analysis of the denoising al-
gorithm presented in this chapter.

Finally, the SNR gain reported in this chapter has the potential to facilitate the meas-
urement of acousto-optic modulated DCS (AOM-DCS) signals in vivo, which are weak
at biologically safe power levels [18]. By using a heterodyne parallel speckle detec-
tion (HPSD) instrument, I obviate the need for high-frame rate detection, thus making
my low-frame rate detection strategy suitable for this purpose. Therefore, the future
work of this thesis will also involve the development of an acousto-optic modulated
FD-DCS analytical model, as well as an exploration of depth-resolved flow measure-
ment strategies using this technique.

5.6 Conclusion

I have systematically characterised the SNR performance of a holographic FD-DCS
instrument. By bringing together the four methods detailed in this chapter, I have
achieved an SNR gain which is equal to the square root of the number of measured
speckles, and which is also the highest SNR gain reported in the DCS literature to date.

In this chapter I have characterised the effects of mode hopping and the MTF of my
holographic FD-DCS instrument. To the best of my knowledge, this is the first time that
either of these effects has been characterised in a digital holography experiment. I then
used SVD filtering to remove spatiotemporally correlated source noise, before devising
a novel multispeckle denoising algorithm to isolate and remove detector noise. This
has been achieved using scalable low-cost camera-based detection that is robust to the
effects of ambient light. This represents a significant step toward mitigating the trade-
off that exists between SNR and brain specificity in conventional DCS, in typically non-
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ideal clinical settings, as well as increasing the affordability of such a system.
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6 Simulation of time-integrated dynamic speckle patterns

6.1 Chapter contribution

The simulation of statistically accurate time-integrated dynamic speckle patterns using
a physics-based model that accounts for spatially varying sample properties is yet to be
presented in biomedical optics, and in this chapter I propose a solution to this problem
based on the Karhunen-Loève expansion of the electric field. In Section 6.2, I describe
the motivation to simulate such images, and also detail why pre-existing methods in the
literature are not used in this thesis. In this section I also detail two probability density
function (PDF) solutions for time-integrated dynamic speckle patterns that have previ-
ously been proposed by Goodman [150]. In Section 6.3, I offer novel expressions for
speckle contrast for various forms of field autocorrelation function, g1(τ), that are com-
monly encountered in biomedical optics. I then use these expressions to validate the
novel time-integrated dynamic speckle pattern simulation framework that I present in
Section 6.4. In this section I then go on to show how the simulation framework that
I propose can readily be extended to cases with spatially varying sample properties,
that it can also be extended to include any form of g1(τ) that results from various de-
tection geometries, and that it can also include sample dynamic properties, as well as
optical and acoustic parameters. Considerations for the use of the simulation frame-
work presented in this chapter for the generation of a forward model of holographic
Fourier domain diffuse correlation spectroscopy (FD-DCS) are then given in Section 6.5.

This chapter forms the basis for work that I published in Optics Letters [178], in
which the reviewers praised the convincing and elegant nature of the simulation frame-
work that I propose. I also presented work from this chapter at two conferences. The
first of these was a presentation at IEEE IPC 2021 [179], for which I was nominated for
the best student paper prize, and the second of these was an invited presentation at
Photonics West SPIE BiOS 2022 [180].

6.2 Motivation and prior art

The measurement of wide-field two-dimensional time-integrated dynamic speckle pat-
terns (2D-TIDSPs) for the purpose of blood flow (BF) measurement using inexpensive,
low-frame rate cameras, is a task that is performed in a variety of modalities in bio-
medical optics. These modalities have all been introduced in Section 2.3; however, their
relevance within the context of time-integrated measurement is briefly reviewed here.

The oldest example of these modalities is laser speckle contrast imaging (LSCI - Sec-
tion 2.3.4.1), which was developed in the 1980s [78]. LSCI infers blood flow index (BFI)
as 1/K2, where K is the speckle contrast of a 2D-TIDSP that has been backscattered from
the sample [80]. A related technique, multiple exposure speckle imaging (MESI - Sec-
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tion 2.3.4.2), is based on the acquisition of a series of 2D-TIDSPs using multiple camera
exposure times [65].

Diffuse correlation spectroscopy (DCS - Section 2.3.6) is a modality that is able to
measure BF at greater imaging depths than LSCI and MESI through the recovery of
g1(τ). This technique is traditionally limited to single-mode photon counting detection
[3]; however, one group has recently demonstrated the feasibility of recovering equi-
valent information from multi-exposure 2D-TIDSPs through the use of the multi-step
Volterra integral method (MVIM) [83], as introduced in Section 2.3.6.2. Additionally, in
Chapters 5 and 6 of this thesis, I have presented a holographic FD-DCS instrument that
makes use of low-frame rate camera-based detection in the Fourier domain to acquire
DCS data using a heterodyne detection technique [151, 152].

Diffuse speckle pulsatile flowmetry (DSPF - Section 2.3.9) has recently been presen-
ted and is a technique that extends diffuse speckle contrast analysis (DSCA) from single-
mode to multimode detection, with a subsequent improvement in the measurement rate
of deep tissue BF that is equal to the camera frame rate [100]. Speckle contrast optical
tomography (SCOT - Section 2.3.8) reconstructs 3D maps of deep tissue BF by utilising
information from all the source-detector pairs that are detected by an array of detectors,
such as that present within a camera [25].

The motivation to develop a forward model for holographic FD-DCS was introduced
in Section 5.5: not only would such a model serve as a useful characterisation tool, but
it would also find utility in aiding a fuller statistical analysis of the denoising algorithm
presented in Section 5.4.3, as well as being suitable for the generation of training data for
the application of deep learning techniques to holographic FD-DCS. Within a broader
context, the motivation to simulate speckle patterns has also previously been put for-
ward by Song et al. [181], who explained that simulation techniques are a useful comple-
ment to experimental investigation with regard to understanding speckle phenomena
and their practical application [79, 154, 182]. Simulation is also a useful tool for eval-
uating data processing methods [81, 183] and for investigating the feasibility of novel
applications of laser speckle.

Two techniques have been described in the literature to model the evolution of a
speckle pattern between two statistically independent fully developed speckle patterns,
based on the expected properties of g1(τ). The first of these is the copula method [184],
an empirical approach that was used [81, 182, 183] to simulate 2D-TIDSPs; however,
the solutions offered by this technique do not model static scatterers and are restricted
to only a few prescribed forms of g1(τ). The second technique is a first principles ap-
proach [181] that allows for the generation of a series of fully developed speckle patterns
with corresponding spatial variations in g1(τ): the pre-defined correlation distribution
method. This technique does not restrict the form of g1(τ) that is used, and it is also
able to model static scatterers. However, my investigations have shown that integrating
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over time in such an evolution does not simulate a 2D-TIDSP with statistically accurate
speckle contrast, the property from which sample motion may be inferred. This is be-
cause this approach does not take into account the number of statistically independent
degrees of freedom (or temporal coherence lengths), M, that influence a time-integrated
speckle measurement [150].

Goodman employed the concept of independent degrees of freedom to generate an
approximate solution for the PDF of a 2D-TIDSP, and also described an approach to ob-
tain an exact solution for this problem that makes use of the Karhunen-Loève expansion
of the electric field [150]. In this chapter I extend this latter approach and propose new
insights to simulate 2D-TIDSP images in biomedical optics. By doing so, I build a robust
forward model for the simulation of 2D-TIDSPs that accounts for spatial variation in
g1(τ) (with known scatterer motion and decorrelation time), camera integration time,
contributions from dynamic and static scatterers, and the coherent transfer function
(CTF) of the instrument.

The forward model that I have developed in this chapter is suitable for the simu-
lation of a speckle pattern that is detected on the sample arm of a holographic FD-DCS
instrument. Considerations for holographic image formation, numerical holographic
reconstruction, and attenuation by detuning of the reference arm, are given in Section
6.5.

6.2.1 Copula method

The copula method was introduced in 2008, and works by first generating a pair of uni-
formly distributed and statistically independent random variables, X1 and X2, where
bold notation indicates a 2D xy dependency. A copula is a function that links two indi-
vidual distributions into a prescribed joint distribution function [184], and the authors
of this method use a Gaussian copula to correlate X1 and X2, from which a sequence
of correlated speckle patterns may be generated. Prior to using an FFT to scatter the
resulting fields, a multiplicative phase factor, m, is used to modulate the rate of decor-
relation of the sample, where a larger m value corresponds to a faster decorrelation. A
2D-TIDSP can then be simulated by averaging over a sequence of such frames [81].

As well as generating a sequence of speckle patterns for Gaussian forms of g1(τ),
the authors of the copula method also offer a solution for exponential forms of g1(τ).
However, these discrete solutions limit the flexibility of the copula method, as it can
only accommodate forms of g1(τ) for which analytical solutions are given. Addition-
ally, whilst m is a useful tuning parameter when performing simulations, it does not
physically represent any quantitative experimental parameter. Furthermore, the solu-
tions offered by the copula method do not model static scatterers. For these reasons, the
copula method was not used as a technique to simulate 2D-TIDSPs in this thesis, and
other methods of achieving this goal were subsequently explored.
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6.2.2 Pre-defined correlation distribution method

In 2016, Song et al. proposed an alternative method to link two statistically independent
and uncorrelated random variables into a joint distribution: the pre-defined correlation
distribution method [181]. These authors recognised that if two random variables U1

and U2 are uncorrelated, then a new variable V can be generated that has a specific
correlation between U1 and U2, according to

V = rU1 +
√

1 − r2U2, (88)

where r is the correlation coefficient factor between V and U1, and r takes a value in the
range [0, 1]. By letting

U1 = exp(−iΩ1) (89)

and
U2 = exp(−iΩ2), (90)

where Ω1 and Ω2 are two 2D matrices that consist of independent uniformly distrib-
uted variables on the interval (−π, π), it can be considered that U1 and U2 represent
fields of random phasors in the object plane for instantaneous (or ‘fully developed’)
speckle. Ignoring the effects of the CTF of an imaging system (i.e., by considering free-
space propagation, or objective speckle), the expression for the observed intensity of an
instantiation of a fully developed speckle pattern in a far field image plane is given by
its Fraunhofer diffraction pattern [155]

I = |F [V]|2 , (91)

where F denotes the 2D Fourier transform. Incorporating the CTF of a coherent ima-
ging system allows for the consideration of subjective, or imaged, speckle. Equation 91
then becomes

I =
∣∣∣F−1[F (V)H]

∣∣∣2 , (92)

where H is the CTF of the imaging system (i.e., the optical pupil function of the clear
aperture), and F−1 denotes the 2D inverse Fourier transform. This then allows for the
generation of a sequence of fully developed speckle patterns to be generated, each of
which has a pre-defined correlation between both of the two seed variables, U1 and
U2. If r is a 1D vector, then temporal decorrelation is specified. Alternatively, if r is
a 2D matrix, then spatial decorrelation is specified. Finally, if r is a 3D matrix, then
spatiotemporal decorrelation is specified.

Song et al. recognised that

g1(τ) = r2(0, j) =
cov(I0, Ij)

σ(I0)σ(Ij)
, (93)
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where I0 is the initial speckle pattern, Ij is the jth speckle pattern at delay time τ, cov
denotes covariance, and σ denotes standard deviation. These authors used the form of

g1(τ) = exp (−τ/τc) , (94)

where τc is the decorrelation time of the sample, which is a commonly employed form
g1(τ) in LSCI, and which corresponds to single scattering from unordered motion or
multiple scattering from ordered motion, when imaging medium sized vessels (i.e., with
a diameter between 30 µm and 110 µm) [77, 80, 89]. Song et al. were therefore able to
generate a series of fully developed speckle patterns that models the pre-defined spa-
tiotemporal decorrelation from one fully developed speckle pattern to another, by ac-
counting for any arbitrary form of g1(τ), including the effects of both dynamic and static
scatterers, at each pixel address within a speckle image. Further examples of the vari-
ous forms of g1(τ) used in LSCI, together with novel analytical expressions for speckle
contrast, are expounded in Section 6.3.

Motivated to develop a technique to simulate a 2D-TIDSP, I explored the concept of
integrating over time in such a series of fully developed speckle patterns. This was per-
formed using two approaches: (a) a brute-force approach that involved the simulation
of N images equally spaced over the camera exposure period, T, and (b) a more eleg-
ant approach that involved developing an analytical expression for a time-integrated
measurement. Accordingly, for the form of g1(τ) given by Equation 94, I find that

W =
1
T

[
T
(

c2 + d2
)
+ · · ·

τc

(
a2 + b2 − c2 − d2

)
+ τcX

(
−a2 − b2 + c2 + d2

)
− · · ·

2τcZ(ac + bd)
[
Y − 1 + Y

√
1 − Y tanh−1

(√
1 − Y

)]
√

Z (Y − 1)

 , (95)

where W is the intensity of a 2D-TIDSP, and where

x = T/τc, (96)

X = exp (−x) , (97)

Y = exp (x) , (98)

Z = exp (−2x) , (99)

and where a and c are the real parts of U1 and U2, respectively, and b and d are the
imaginary parts of U1 and U2, respectively (i.e., U1 = a + bi, and U2 = c + di). The full
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derivation of Equation 95 is given in Appendix B.

For these two approaches, I simulated a 2D-TIDSP using the simulation parameters
presented by Song et al.: τc = 0.37 ms, T = 1.85 ms, an image size of 600 × 600 pixels,
and H was modelled as a central circle function of radius 100 pixels [181]. The number
of intermediate images used was N = 2n, where n is an integer between 1 and 15. The
equivalence of the intermediate image approach and the analytical expression approach
is validated in Figure 6.1. Subplot (a) of this figure shows the sum of squared differ-
ences (SSD) between W acquired using intermediate image data and W acquired using
the analytical expression; the reduction in error between the two images as N increases
validates the accuracy of the analytical expression. Subplot (b) of this figure shows that
as N is increased, the global speckle contrast of W acquired using intermediate image
data converges on the global speckle contrast of W acquired using the analytical expres-
sion. The computational performance of these two approaches is compared in subplot
(a) of Figure 6.2: the analytical expression approach offers a shorter computation time
for all values of N. Finally, for a value of N = 64, the values of r2 (calculated according
to Equation 93) are plotted by the black crosses in subplot (b) of Figure 6.2, where excel-
lent agreement between the simulated data and the underlying physical model of g1(τ)

is evident.
Having established both the accuracy and the computational advantage of the ana-

lytical expression that I developed, I then sought to verify the statistical accuracy of the
speckle contrast of 2D-TIDSPs generated using this technique (for free-space propaga-
tion), according to Equation 4 of [65]

K(x) =

√
β

[
exp (−2x)− 1 + 2x

2x2

]
, (100)

where x = T/τc. This analysis is presented in Figure 6.3, in which the black crosses
represent the global speckle contrast of 2D-TIDSPs acquired for a range of = T/τc val-
ues, and the black line plots the relationship that is expected, according to Equation 100.
As can be seen from this figure, integrating over time using the pre-defined correla-
tion distribution method fails to simulate a 2D-TIDSP with statistically accurate speckle
contrast. Although the pre-defined correlation distribution method can model the spa-
tiotemporal decorrelation between two fully developed speckle patterns over time, this
approach does not work when considering a time-integrated measurement, as it does
not consider the M value of the measurement. In this situation, many independent fluc-
tuations of instantaneous intensity occur within the integration time. Song et al. allude
to this limitation in their paper [181],

‘The contrast profile of the simulated and experimental data fit well although
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Figure 6.1: (a) The sum of squared differences (SSD) between W acquired using
intermediate image data and W acquired using the analytical expression; the reduction
in error between the two images as N increases validates the accuracy of the analytical

expression. (b) As N is increased, the global speckle contrast of W acquired using
intermediate image data converges on the global speckle contrast of W acquired using

the analytical expression.

the absolute values are different because the experimental images are not
fully developed’.

The concept of M is explored further in Section 6.2.3.1.

6.2.3 Probability density function solutions

Although Goodman has not presented algorithms to simulate 2D-TIDSPs, he has presen-
ted solutions with which to obtain the PDF of a 2D-TIDSP [150, 155]. In this section I
introduce both of Goodman’s approaches to solve this problem: the approximate ap-
proach and the exact approach. Whilst both approaches will yield a PDF with the cor-
rect mean and variance, the approximate approach involves significant simplification,
and only the exact approach yields a PDF with a statistically accurate distribution of
intensities.
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Figure 6.2: (a) Comparison of computational performance: the analytical expression
approach offers a shorter computation time for all values of N. (b) For a value of

N = 64, the values of r2 are plotted by the black crosses, which show excellent
agreement with the underlying physical model of g1(τ).
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Figure 6.3: The black crosses represent the global speckle contrast of 2D-TIDSPs,
simulated using the pre-defined correlation distribution method, and the black line

plots the relationship that is expected, according to Equation 100, for a range of T/τc
values.
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6.2.3.1 Approximate solution

Goodman [150] developed the concept of the number of degrees of freedom, M, con-
tained within a finite integration period, T,

M =
1

K2 =

[
2β

T

∫ T

0

(
1 − τ

T

)
[g1 (τ)]

2 dτ

]−1

, (101)

for a fully polarised wave. By considering the limiting case that T ≫ τc, it can be
shown that M ≈ T/τc, and M is therefore equal to the number of temporal coher-
ence lengths for a time-integrated measurement (and therefore the ‘number of degrees
of freedom’ appears to be an appropriate name). Alternatively, by considering the lim-
iting case that T ≪ τc, it can be shown that M ≈ 1, as there will always be at least
one degree of freedom that contributes to a time-integrated measurement, even for the
case of instantaneous speckle. The novel expressions for K, for various forms of g1(τ)

commonly employed in biomedical optics, that are presented in Section 6.3, can readily
be re-expressed in terms of M. These expressions can be used to find the asymptotes of
M for limT→0 and limT→∞ for the forms of g1(τ) presented.

Equation 101 will yield an exact expression for the mean and variance of a 2D-TIDSP;
however, Goodman highlights the need to know the PDF of such a distribution, rather
than just these two numerical parameters [150],

‘In some applications, knowledge of only the mean and variance of the in-
tegrated intensity is not sufficient. Rather, the entire probability density of
this quantity is desired’.

Within the context of this thesis, this statement is applicable to the accurate simulation
of a 2D-TIDSP for the purpose of generating a forward model for holographic FD-DCS,
for example.

Goodman’s approximate approach involves replacing the smoothly varying instant-
aneous intensity, I(t), by a boxcar function on the interval t = 0 to t = T, which is
divided into M equal subintervals. I(t) is assumed to be constant within each subinter-
val, and it is also assumed to be statistically independent of all other subintervals. The
integrated intensity is then the area under the boxcar function

W =
∫ T

0
I(t) dt ≈

M
∑
j=1

Ij∆t =
T
M

M
∑
j=1

Ij, (102)

where ∆t = T/M (i.e., the width of each subinterval), and Ij is the value of the boxcar in
the jth subinterval. By considering the resulting characteristic function of W, Goodman
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showed that the PDF of W takes the form of a gamma PDF of order M

p(W) =


(M/W)

M
WM−1 exp(−MW/W)

Γ(M)
W ≥ 0

0 otherwise,
(103)

where Γ is the gamma function. For a mean normalised distribution, such that W = 1,

p(W/W) =


MMWM−1 exp(−MW)

Γ(M)
W ≥ 0

0 otherwise.
(104)

For limM→1, this PDF simplifies to

p(W/W) =

exp (−W) W ≥ 0

0 otherwise,
(105)

which is the negative exponential PDF (with a mean value of 1) of one fully developed
speckle pattern. As M increases, according to the central limit theorem the PDF ap-
proaches a Gaussian distribution. For limM→∞, the PDF becomes a delta function at
W/W = 1. Examples of the PDFs generated using this approximate technique are
shown in the bottom row of Figure 6.5.

If the parameters on the right hand side of Equation 101 are known (i.e., g1(τ), β, and
T), then a value of M can be acquired, from which it is possible to calculate the PDF of a
2D-TIDSP, and also to simulate a 2D-TIDSP by generating an array of random numbers
from a gamma PDF (by using the gamrnd function in MATLAB, for example). This
simulation technique is advantageous in that it allows for the parameterisation of β, and
it will also yield a 2D-TIDSP which has the correct mean and variance. However, this
technique does not incorporate the CTF, and also the PDF distribution is not statistically
correct, as is described in Section 6.2.3.2.

6.2.3.2 Exact solution

Goodman then described an exact solution for the PDF of a 2D-TIDSP [150], which
makes use of the Karhunen-Loève expansion of the electric field, U(t) [the Karhunen-
Loève expansion is described in more detail in Section 6.4]. Starting from this expansion
of the electric field, Goodman showed that the PDF of a 2D-TIDSP can be expressed as
the sum of an infinite number of negative exponential distributions

p(W) =


∞
∑

n=1
dn

[
1

λn
exp

(
−W
λn

)]
W ≥ 0

0 otherwise,
(106)
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where

dn =
∞

∏
m=1
m ̸=n

(
1 − λm

λn

)−1

, (107)

and where λm/n are the eigenvalues of g1(τ) evaluated over the integration time, T.
Examples of the PDFs generated using this exact technique are shown in the bottom
row of Figure 6.5.

Whilst this method provides an exact PDF solution, it is approximate in that, unless
an analytical solution and tabulated eigenvalues exist for any particular form of g1(τ),
the problem must be discretised and the eigenvalues found numerically (as is demon-
strated in Section 6.4). This discretisation occurs with finite numerical accuracy using a
certain sampling resolution, and decisions must be made about how many eigenvalues
to use and retain. Compared to Goodman’s approximate method, the exact method is
computationally expensive, and it does not directly parameterise β.

To the best of my knowledge, the exact PDF technique has never been extended to
the simulation of 2D-TIDSPs, and neither has it ever been applied to the forms of g1(τ)

commonly employed in biomedical optics. Therefore in the remainder of this chapter,
I develop an approach to achieve this in Section 6.4, and I validate the results obtained
from these simulations against novel expressions for speckle contrast, which I develop
in Section 6.3.

6.3 Novel expressions for speckle contrast

In this section I develop novel analytical expressions for speckle contrast, which I use to
validate the 2D-TIDSP simulation framework that I develop Section 6.4, both for vary-
ing types of sample motion and various camera integration times. During the time that
the research for this thesis was being conducted, these expressions for speckle contrast
were published independently and concurrently elsewhere [89].

As introduced in Sections 2.3.4.1 and 6.2.3.1, speckle contrast is the ratio of standard
deviation, σ, to mean intensity, µ, of a sample of speckles and can be related to M and
g1(τ) through [77, 100]

K =
σ

µ
=

1√
M

=

[
2β

T

∫ T

0

(
1 − τ

T

)
[g1(τ)]

2 dτ

]1/2

. (108)

Remembering that g1 (τ) has contributions from both dynamic and static scatterers [21]

g1(τ) = α|g1d(τ)|+ (1 − α), (109)
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where α is the fraction of the dynamic scattering component, in this chapter I consider

g1d(τ) = exp
(
−
(

τ

τc

)p)
, (110)

for values of p = [0.5, 1, 2]. These three forms of g1d(τ) can be used to model sample mo-
tion in LSCI experiments according to scattering regime (i.e., single or multiple), particle
motion type (i.e., ordered or unordered) and approximate vessel size [77, 80, 89], and
these forms of g1d(τ) are summarised in Table 6.1. Values of p = 1 and p = 2 can also
be used to model Brownian and convective motion in DCS experiments, respectively,
under certain conditions [10].

Table 6.1: Form of g1d(τ) for different scattering regimes, motion types, and
approximate vessel sizes in LSCI, adapted from [89].

Form of g1d(τ) Scattering Motion Approximate vessel size

exp
(
−
(

τ
τc

)0.5
)

Multiple Unordered Small (≈ ⊘ < 30 µm)

exp
(
−
(

τ
τc

)1
)

Multiple Ordered
Medium (≈ 30 < ⊘ < 110 µm)

Single Unordered

exp
(
−
(

τ
τc

)2
)

Single Ordered Large (≈ ⊘ > 110 µm)

For the form of g1d(τ) given by Equation 110, I find that the general solution to the
right hand side of Equation 108 is

Kp =
√

β

√
α2

2x2 Ap(x) +
α(1 − α)

x2 Bp(x) + (1 − α)2, (111)

where x = T/τc, and where Ap(x) and Bp(x) are auxiliary functions, for p = [0.5, 1, 2].
For p = 0.5, I find that (analogous to Equation 15 of [80])

A0.5(x) = exp(−2
√

x)
(
3 + 6

√
x + 4x

)
− 3 + 2x, (112)

and
B0.5(x) = 16

[
exp(−

√
x)(3 + 3

√
x + x)− 3 +

1
2

x
]

. (113)

The solution for p = 1 is (Equation 14 of [77])

A1(x) = exp(−2x)− 1 + 2x, (114)

and
B1(x) = 4 [exp(−x)− 1 + x] . (115)
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For p = 2, I find that (analogous to Equation 10 of [185])

A2(x) = exp
(
−2x2

)
− 1 + erf

(
x
√

2
)

x
√

2π, (116)

and
B2(x) = 2

[
exp(−x2)− 1 + erf(x)x

√
π
]

, (117)

where erf is the error function.

This analysis can also be extended to interferometric DCS (iDCS) by considering that
[32]

g2(τ) = 1 + β1 [g1(τ)]
2 + β2g1(τ), (118)

where β1 and β2 are defined by Equations 32 and 33 in Section 2.3.6.4. For this form of
g2(τ), it can be shown that

K =

√
2
T

[
β1

∫ T

0

(
1 − τ

T

)
[g1(τ)]

2 dτ + β2

∫ T

0

(
1 − τ

T

)
g1(τ) dτ

]
. (119)

Thus expressions for K for an interferometric measurement, for the forms of g1(τ) de-
scribed in Table 6.1, can readily be obtained.

6.4 A novel multispeckle simulation algorithm

With a view to calculating an exact solution for 2D-TIDSP PDFs, I described in Section
6.2.3.2 Goodman’s result that such a PDF can be represented as the sum of an infinite
number of negative exponential distributions [150]. Here I extend this approach to the
simulation of 2D-TIDSP images for fully polarised light. The measured intensity of a
2D-TIDSP is evaluated as

W =
∫ T

0
U(t)U∗(t) dt, (120)

where U(t), the complex valued field, is a random process that has autocorrelation func-
tion g1 (τ), where τ is the delay time t2 − t1, and g1 (τ) measures the statistical similarity
of U(t1) and U(t2) over a measured spatial ensemble. I first consider Goodman’s start-
ing point for his exact PDF solution: the inverse Karhunen-Loève expansion of U(t) on
the interval (0, T) into a weighted sum of basis vectors

U(t) =
∞

∑
n=1

ϕn(t)Ûn, (121)
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which at this stage is a general expression, and where ϕn(t) is a set of orthonormal and
complete functions, such that

∫ T

0
ϕn(t)ϕ∗

m(t) dt =

1 n = m

0 n ̸= m,
(122)

and the expansion coefficients Ûn are uncorrelated modes given by

Ûn =
∫ T

0
ϕ∗

n(t)U(t) dt. (123)

By design, the Karhunen-Loève expansion maximally decorrelates the expansion coef-
ficients Ûn, and thus for a zero mean process it is required that

E[ÛnÛ∗
m] =

λn n = m

0 n ̸= m,
(124)

which can be achieved when the set {ϕn(t)} satisfies the integral equation

∫ T

0
g1 (t2 − t1) ϕn(t1) dt1 = λnϕn(t2), (125)

i.e., ϕn(t) and λn are the set of eigenfunctions and eigenvalues, respectively, of the in-
tegral equation that has g1 (τ) as its kernel [186].

Substituting Equation 121 into Equation 120,

W =
∞

∑
n=1

∞

∑
m=1

ÛnÛ∗
m

∫ T

0
ϕn(t)ϕ∗

m(t) dt, (126)

which, using Equation 122, simplifies to

W =
∞

∑
n=1

ÛnÛ∗
n, (127)

and W has been expressed as the sum of an infinite number of uncorrelated and stat-
istically independent modes. Each ÛnÛ∗

n represents a statistically independent instan-
tiation of the instantaneous intensity of fully polarised light, which adheres to negative
exponential statistics and is statistically equivalent to a fully developed speckle pattern
[150].

I therefore propose that the time-integrated signal as a function of space (i.e., one
2D-TIDSP) may be simulated as the weighted sum of N uncorrelated and statistically
independent fully developed 2D speckle patterns, each of which has a corresponding
mean value of E[ÛnÛ∗

n] = λn. I consider first the case of homogeneous fields (i.e.,
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spatially invariant λn) in Section 6.4.1; however, I relax this assumption later in the
chapter when considering spatially heterogeneous fields in Section 6.4.2.

An introduction to the simulation of fully developed speckle patterns was given
in Section 6.2.2; however, I now specify adaptations to this that are required for the
proposed simulation method. The intensity of an instantiation of a fully developed
speckle pattern follows negative exponential statistics, the weighted spatial sampling
of which can be modelled by [155, 181]

In =
∣∣Ûn

∣∣2 , (128)

where,
Ûn = F [exp (−iΩn)]

√
λn (129)

is the corresponding field, where F denotes the 2D discrete Fourier transform and each
Ωn is an independent instantiation of uniformly distributed random variables in a 2D
matrix on the interval (−π, π). Incorporating the CTF of a coherent imaging system,
Equation 128 becomes [155, 181, 185]

In =
∣∣∣F−1 [ÛnH

]∣∣∣2 , (130)

where H is the CTF. In this chapter, I model 600 × 600 pixel images and all simulations
model H as a central circle function of diameter 200 pixels [181]; I therefore expect each
modelled speckle to occupy a square region with a width of three pixels.

To compute the values of λn, I adapt the routine described by Goodman [150, 155].
g1 (τ) (Equation 109) is linearly discretised over the camera exposure period, T, by
sampling the function g1 (|t2 − t1|) over a 2D N × N matrix, for values of t1 = (0, T/(N −
1), . . . , T) on one matrix axis, and for values of t2 = (0, T/(N − 1), . . . , T) on the other
matrix axis. λn are then the N eigenvalues of this g1 (τ) square sampling matrix, each of
which is scaled by 1/N, and in this chapter I use a value of either N = 500 or N = 1000.
An example of this process is shown in Figure 6.4, whilst Figure 6.6 demonstrates how
the individual λn values vary as a function of T/τc. The exact nature of this solution
becomes approximate due to this discretisation; however, I have found that using these
values of N provides a sufficient level of accuracy for the range of T/τc ratios used in
the simulations presented in this chapter. The impact of the choice of N on the compu-
tational performance of this algorithm, together with considerations on how to optimise
performance, are discussed in Section 6.5.

6.4.1 Homogeneous field

For homogeneous field simulations I use a value of τc = 0.37 ms [181], and simulated
2D-TIDSPs for such fields are shown in the top row of Figure 6.5 for p = 1, α = 0.9 and
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Figure 6.4: (a) Sampling of g1 (|t2 − t1|) for T = 0.37 ms, τc = 0.37 ms, α = 0.9, p = 1, and
N = 500. (b) The N eigenvalues, λn, of the square matrix (a).

various camera integration times. The bottom row of this figure shows the correspond-
ing image histograms of the mean normalised 2D-TIDSPs. In each case there is excellent
agreement with Goodman’s exact PDF solution [150], which serves to validate the pro-
posed simulation method in terms of intra-image statistics. At short integration times,
the PDF takes the form of a negative exponential distribution (i.e., one fully developed
speckle pattern). As the integration time increases, the PDF converges on a Gaussian
distribution as an increasing amount of speckle blurring occurs, as is expected accord-
ing to the central limit theorem. In this figure I also show Goodman’s approximate PDF
solution, which deviates from the simulated data, especially at intermediate values of
T/τc.

Figure 6.6 shows the first five eigenvalues of g1(τ) for p = 1 and α = 1. At very
short integration times the measurement is dominated by one mode. As the integra-
tion time increases this dominance decreases and the modes have an increasingly equal
contribution to the time-integrated measurement, which results in blurring.

I then sought to validate the proposed simulation method against the novel ana-
lytical expressions for speckle contrast that were presented in Section 6.3. This was
performed for different types of scatterer motion by simulating 2D-TIDSPs with homo-
geneous fields for p = [0.5, 1, 2] and α = 0.9, for the range of T/τc ratios shown in
Figure 6.7. The global speckle contrast of each 2D-TIDSP was calculated, and (for each
value of p) the resulting values of Kp were fit to the respective form of Equation 111 by
minimisation of the least squares objective function

argmin
(τc,β,α)

x

∑
i=1

[
Kp(Ti)simulated − Kp(Ti)model

]2 (131)
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Figure 6.5: Simulated 2D-TIDSPs and their corresponding image histograms for p = 1,
α = 0.9, τc = 0.37 ms, (a-b) T/τc = 0.1, (c-d) T/τc = 1.0, (e-f) T/τc = 5.0, and (g-h)
T/τc = 25.0. The top row shows a 150 × 150 pixel region of interest (ROI) of each

2D-TIDSP. Exact and approximate expected PDFs [150] are superimposed on the image
histograms.
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Figure 6.6: The first five eigenvalues of g1(τ) for p = 1, N = 1000, α = 1, τc = 0.37 ms,
and variable ratios of T/τc.

over x values of T. The resulting model fits and extracted parameter values shown in
Figure 6.7 are in excellent agreement with the chosen simulation parameters and simu-
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lated data. The proposed simulation framework has therefore been validated in terms
of both intra-image and inter-image statistics, for a range of different motion types com-
monly encountered in biomedical optics. Although each speckle is expected to occupy
nine image pixels for this fully polarised model, this is not a perfect mapping, and some
pixels will have contributions from more than one speckle. The fitted values of β shown
in Figure 6.7 are therefore slightly less than 1.
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Figure 6.7: Global speckle contrast values of simulated 2D-TIDSPs for p = [0.5, 1, 2],
α = 0.9, τc = 0.37 ms, and variable ratios of T/τc. Model fits to the respective form of

Equation 111 and extracted parameter values are also shown.

6.4.2 Heterogeneous field

I now consider the case of spatial variations in g1(τ), which are treated by allowing
λn to have a spatial dependence. This is done by partitioning the sample into labelled
sub-domains, each having uniform g1(τ) and, therefore, λn. Equation 129 is then evalu-
ated for each sub-domain, where the support of each Ûn is given by the corresponding
sub-domain. The smooth transition between adjacent tissue types can be modelled by
increasing the number of labels (Nlabel); however, the incorporation of the CTF into the
simulation will also perform this smoothing function. For each heterogeneous field sim-
ulation, λn is a 2D matrix of size Nlabel × N which need only be computed once. This λn

2D matrix is then distributed across N fully developed speckle patterns according to a
Nlabel × 600 × 600 logical 3D matrix (each layer of this 3D matrix acts as a binary mask
for each tissue label and for each fully developed speckle pattern).

To demonstrate this approach for a realistic yet arbitrary in vivo sample, I adap-
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ted with permission the in vivo optical-resolution photoacoustic microscopy (OR-PAM)
image from Figure 5(a) of [187], which shows an 8 mm × 8 mm field of view of the
microvasculature of a mouse ear. Using an approach similar to that demonstrated by
Song et al. [181], the image was partitioned into five greyscale labels, as shown in Fig-
ure 6.8(a), and arbitrary yet realistic values of τc in the range 0.05 - 1.0 ms [89] were
assigned to each label. The image was sectioned to a 3.4 mm × 3.4 mm region of in-
terest, and it was assumed that areas of higher optical absorption in the OR-PAM image
correspond to areas of higher flow. Thus values of τc = [0.05, 0.10, 0.20, 0.50, 1.00] ms
were used, which corresponded to labels [1,2,3,4,5], respectively. Modelling values of
p = [1, 1, 1, 1, 0.5] and α = [1, 1, 1, 1, 0.8] for each label, I simulated 30 2D-TIDSPs using
an exposure time of 20 ms [81]. By running the validation presented in Figure 6.7, it was
found that a value of N = 1000 is necessary to ensure statistical accuracy for these sim-
ulation parameters. An example of a simulated 2D-TIDSP generated using the spatially
varying λn for these specified simulation parameters is shown in Figure 6.8(b). A tem-
poral speckle contrast image was computed from this stack of 30 simulated 2D-TIDSPs,
and this is shown in Figure 6.8(c), where the speckle contrast values correspond well
with the spatial distribution of τc.
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Figure 6.8: (a) Partitioned OR-PAM image of mouse ear vasculature. (b) Example of
one simulated 2D-TIDSP. A magnified view of the ROI within the white dashed square

is shown in Figure 6.9. (c) Temporal speckle contrast image computed from 30
simulated 2D-TIDSPs.

Figure 6.9 shows a magnified view of the 200 × 200 pixel ROI delineated by the
white dashed square in Figure 6.8(b), which depicts an edge between a large vessel and
its surrounding parenchyma. Each of the five labels in Figure 6.8(b) is composed of
the weighted sum of the same 1000 fully developed speckle patterns, but in which the
weights differ for each label. By allowing for this spatially variant λn, local changes in
the ratio of dynamic and static scatterers, the type of motion encountered, and decor-
relation time can all be modelled. This is enabled by using a suitably high number of
labels, and by incorporating the CTF into the simulation.
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Figure 6.9: Magnified view of the 200 × 200 pixel ROI delineated by the white dashed
square in Figure 6.8(b).

6.4.3 Acousto-optic modulation

The simulations presented thus far in this chapter have specified sample dynamic prop-
erties, for both homogeneous and heterogeneous fields. In this section I demonstrate
that it is also possible to specify optical and acoustic parameters. As discussed in Section
2.3.6, conventional DCS is a useful tool for measuring BF in continuous, non-invasive,
and portable settings; however, it is hindered by relatively poor depth penetration and
spatial resolution. In order to overcome this, acousto-optic modulated DCS (AOM-DCS)
(see Section 2.3.6.7) has been proposed as a technique to facilitate deeper imaging with
improved spatial resolution, which makes use of an ultrasound modulated component
of g1(τ), according to

g2(τ) = 1 + β

∣∣∣∣[1 − M
2

+
M
2

cos(ωaτ)

]
g1(τ)

∣∣∣∣2 , (132)

where ωa is acoustic radial frequency, and M is modulation depth (or modulation amp-
litude). According to Equation 132, g1(τ) is modulated by cos(ωaτ) between values of
1 and (1 − M) [33].

I have done some preliminary work in determining the ultrasound modulated com-
ponent of the Brownian signal in an AOM-DCS experiment, as shown in Figures 6.10
and 6.11, when modelling a semi-infinite detection geometry. This experiment made
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use of a circular single element ultrasound transducer, with a diameter of 13.5 mm and
an ultrasound centre frequency of 2 MHz. The source-detector separation (SDS) dis-
tance was measured to be 20.5 mm, and the same room temperature intralipid phantom
that was described in Chapter 4 was used, but this time with continuous wave (CW)
insonification.

Figure 6.10: AOM-DCS with single-mode detection, using the intralipid phantom
described in Chapter 4, but with CW insonification.

Photon arrival times were autocorrelated using the multi-tau algorithm, the results
of which are shown by the blue dots in Figure 6.11. In this figure, the green line shows
the result of fitting to Equation 132, which yields a modulation depth of M = 0.078, and
excellent agreement between the measured data and the modulated model fit is seen.
The red line shows the DCS Brownian motion model fit that would be expected in the
absence of ultrasound modulation.

Modelling a camera exposure time of 10 µs (which is in the order of that presented
in [31]), both of these fitted g1(τ) functions were sampled in two 500 × 500 matrices,
as shown in subplots (a) and (b) of Figure 6.12, for DCS and AOM-DCS, respectively.
Subplot (c) of this figure shows the 500 eigenvalues of each g1(τ) function, which were
then used to simulate two 2D-TIDSPs, which are shown in subplots (a) and (b) of Figure
6.13. Although these two images are not visually distinct, the AOM-DCS image is more
blurred as it has a lower speckle contrast value, KAOM−DCS, of 0.66, compared to the
DCS image, which has a speckle contrast value, KDCS, of 0.72. This is because the added
time-varying process of the ultrasound perturbation (2 MHz) causes the speckle pattern
to change more quickly than due to sample motion alone (typically 1 - 20 kHz for in vivo
samples [89]), which causes a blurring effect when imaged (as was introduced in Figure
2.13 in Section 2.4.1), and this is validated analytically below.

Inspection of the PDFs of both of these images, shown in Figure 6.13(c) reveals that
the AOM-DCS component, shown in solid green, is right-shifted away from a negative
exponential distribution, and toward a Gaussian of mean value 1, when compared to
the DCS component, shown in dashed red. Furthermore, modulation depth can be
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Figure 6.11: Fitting an AOM-DCS Brownian motion model (green line) to
autocorrelated data (blue dots). The red line shows the DCS Brownian motion model

fit without ultrasound modulation.
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Figure 6.12: Sampling of g1 (|t2 − t1|) for (a) DCS, and (b) AOM-DCS. (c) The 500
eigenvalues, λn, of the square matrices (a) and (b).

calculated by considering the speckle contrast of these two images, according to [18]

M ≈ KDCS

KAOM−DCS
− 1, (133)
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provided that the condition T ≫ 1/ωa is met, to ensure that the exposure time is long
enough to sample the ultrasound modulation, which is adhered to in this simulation.
Equation 133 yields a value of M = 0.080 for the two simulated 2D-TIDSPs shown in
Figure 6.13, which is in good agreement with the value of M = 0.078 that is yielded by
fitting experimental g2(τ) data to Equation 132.

Figure 6.13: Simulated 2D-TIDSPs for (a) DCS, and (b) AOM-DCS. PDFs of both
mean-normalised images are shown in (c).

I have therefore validated the statistical accuracy of simulated 2D-TIDSPs not only
when incorporating sample dynamic properties, but also when incorporating optical
and acoustic parameters too, and for both infinite and semi-infinite detection geomet-
ries. The simulation framework that I have presented in this chapter can readily be
extended to include any form of g1(τ), for example that which results from mixed mo-
tion models (see Section 4.5), including those where the edges between different types
of motion are not sharp [80] (i.e., p exists on a spectrum between 0.5 and 2, for LSCI).
Although the simulation framework does not model flow propagation due to velocity
profiles in larger vessels, this is something that could be incorporated into the model by
adjusting the simulation parameters. Further limitations of the simulation framework
are discussed in Section 6.5 and Chapter 7.

6.5 Chapter summary and discussion

A major consideration when using the simulation technique presented in this chapter is
that a larger ratio of T/τc results in a narrower g1(τ) function, which requires a larger
N value in order to sample g1(τ) with sufficient accuracy. This accuracy can be ensured
by running the validations presented in Figure 6.7, for a particular set of simulation
parameters. However, a larger N value will increase the computational demand of the
simulation; the choice of N (and also the number of eigenvalues to retain) therefore
reflects a compromise between accuracy and performance. That being said, the simula-
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tion framework presents a modest computational task when compared with full-wave
modelling, for example.

In this chapter I have described that the edges that exist between two different tis-
sue labels in a simulated 2D-TIDSP are smoothed by the CTF. The accuracy and spatial
resolution of the simulation could be increased by increasing the value of Nlabel that is
used, which would allow for gradual spatial transitions to be modelled more explicitly.
However, this would increase the computational expense of the simulation and also rely
on a sufficiently accurate partitioning of the initial image. Using MATLAB 2020a on a
PC with 32 GB RAM and a 2.6 GHz processor with N = 1000 and Nlabel = 5, 0.3 seconds
are required to compute the λn matrix used in the in vivo simulation presented in Fig-
ure 6.8, and a further 86 seconds are required to simulate each of the 30 2D-TIDSPs. If
sufficient memory were available, it would be preferable to use pre-computed libraries
of fully developed speckle patterns in the above calculation. Additionally, GPU acceler-
ation and lower-level programming languages could also be employed.

A limitation of the simulation framework presented in this chapter is that it does not
allow for the parameterisation of β. Although it is trivial to simulate the effect of two
orthogonal polarisation states by taking the sum of two 2D-TIDSPs, simulating the effect
of other factors that influence β (such as coherence length and stability of the laser light
source, stray light, detector stability, and sample coupling) is more complex and would
be an interesting further study. I have successfully modelled the CTF of a coherent
imaging system, but variations in speckle to pixel size ratio could be further modelled
by upsampling or downsampling of the simulated 2D-TIDSPs [154]. If the inclusion of β

into a 2D-TIDSP is necessary, then it is possible to achieve this by extending Goodman’s
approximate PDF solution. However, such a 2D-TIDSP will have inaccurate second
order statistics, and neither will it incorporate the effects of the CTF.

The addition of specific models of measurement noise (such as that due to shot noise,
read noise, dark noise, and hot pixels [25]) to simulated 2D-TIDSPs, together with ex-
perimental validation of this combined technique, would be a useful and interesting
further study. However, this is not within the scope of this chapter, which has addressed
the more fundamental validation of the proposed simulation framework against previ-
ously published solutions for the exact PDF of time-integrated intensity for coherent
light [150]. Furthermore, I have validated the simulation framework (both in terms of
intra-image and inter-image statistics) against novel expressions for speckle contrast for
different forms of homogeneous field. The correctness of these novel expressions has
also been independently corroborated elsewhere [89].

The simulation framework presented in this chapter can simulate the 2D-TIDSP that
is detected on the sample arm of a holographic FD-DCS instrument. By rearranging

182



Equation 84, the forward model for a reconstructed holographic FD-DCS image is

S(±∆ω,kx,ky) =
[
S1(±∆ω,kx ,ky)

N(∆ω,kx,ky)MTF(kx,ky)

]
+ N(∆ω,kx,ky). (134)

S1(±∆ω,kx ,ky)
may be simulated according to the 2D-TIDSP framework presented in this

chapter, with an intensity attenuation according to the analytical solutions for FD-DCS
that I presented in Chapter 4. MTF(kx,ky) may be modelled according to the theory
presented in Chapter 5, and N(∆ω,kx,ky) may be modelled as a fully developed speckle
pattern, of mean intensity equal to the shot noise of the reference beam [142]. An altern-
ative approach to generate holographic FD-DCS images would be to use the 2D-TIDSPs
simulated in this chapter as inputs to computer generated holography algorithms [188].
Investigation of these simulation approaches forms part of the future work of this thesis.

6.6 Conclusion

To the best of my knowledge, the work presented in this chapter represents the first
time that a statistically accurate algorithm for the simulation of 2D-TIDSPs, with spe-
cified temporal and spatial correlations, including the effects of sample dynamics, op-
tical and acoustic parameters, and a range of detection geometries, has been presented
in the field of biomedical optics. The proposed simulation technique is efficient and ad-
aptable, and can readily be extended to include any form of g1(τ). I therefore expect the
technique presented here to be a powerful and useful simulation tool for the biomedical
optics community for the purposes of understanding the practical application of speckle
phenomena, evaluating data processing methods of speckle images, and assessing the
feasibility of novel applications of laser speckle.

183



184



7 Conclusions and discussion

7.1 Thesis summary and contribution to knowledge

In Chapter 1, I detail the motivation to measure cerebral blood flow (CBF), as well as the
currently vacant niche to measure CBF using a continuous, noninvasive, and portable
bedside device. Motivated by this challenge, I then described the project aims of this
thesis, and enumerated the research objectives that I planned to investigate. Chapter 1
closes with a concise thesis overview and a summary of the thesis contribution.

In this thesis, I have explored the feasibility of fusing the fields of heterodyne paral-
lel speckle detection (HPSD) and diffuse correlation spectroscopy (DCS), with a view to
mitigating the trade-off between imaging depth and signal-to-noise ratio (SNR) that is
inherent to conventional DCS. This has been motivated by the literature review under-
taken in Chapter 2, in which I offer a concise and critical review of CBF measurement
techniques.

DCS is the archetypal optical imaging modality to measure deep flow, however the
SNR performance of conventional DCS is fundamentally limited by the use of single
speckle detection, which can be expensive and impractical to scale-up. Given the po-
tential that DCS has to achieve real-time, deep, and spatially-localised CBF monitoring,
several approaches have been investigated to improve the sensitivity of DCS to CBF, and
these are all introduced in Chapter 2. These approaches can be divided into: multis-
peckle detection strategies, long wavelength approaches, interferometric approaches,
depth discrimination techniques, time-of-flight (TOF) resolved detection, and acousto-
optic tomography (AOT). Most of the research in the area of portable and non-invasive
CBF measurement using DCS focuses on the first five of these approaches (i.e., all-
optical methods).

In Chapter 3, I then introduced the concept of digital holography, and described
previously and concurrently published examples of its use in biomedical optics. Hav-
ing introduced the specific example of HPSD in detail, I then describe the feasibility
of applying an HPSD approach to DCS: holographic Fourier domain DCS (FD-DCS).
Such an approach would have all the advantages of multispeckle and interferometric
detection that has been investigated by other groups, and it could also be extended to
include long wavelength detection, depth discrimination techniques, and the detection
of acousto-optic tomography (AOT) signals. Furthermore, holographic FD-DCS would
offer shot noise limited and scalable detection, using inexpensive detectors, which is not
constrained by the Siegert relation. The main drawback of the proposed technique is
that it does not offer TOF resolved detection. Additionally, the measurement of pulsat-
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ile flow in vivo using holographic FD-DCS is particularly challenging, owing to the short
camera exposure times that are required, the complexity of system integration, and the
data processing requirements of the technique.

Having been informed by the wider context of the literature review in Chapter 2,
in Chapter 3, I synthesise the connection of previously unrelated facts with a view to
advancing the field of DCS. This is subsequently achieved in Chapters 4, 5, and 6, in
which I demonstrate a distinct and significant contribution to biomedical optics though
the development of new theory and ideas, the discovery of new knowledge, and the
implementation of new practical applications.

Chapter 4 starts by defining the novel FD-DCS analytical models that I have de-
veloped, both for Brownian and convective motion in DCS experiments. Despite the
utility of such a framework being recognised by the founders of DCS in the 1990s, a
solution to this problem has not been forthcoming until the research for this thesis was
carried out. Whilst the assembly of an off-axis HPSD instrument, as well as its applica-
tion to measure in vivo flow at low temporal resolution, has been described before, the
application of such an instrument to the formalism of DCS is novel.

By conducting a series of temperature controlled waterbath experiments, I validated
both the holographic FD-DCS instrument and the analytical FD-DCS models that were
developed in this thesis. As my understanding of this series of experiments evolved,
I understood the need to develop a novel temperature dependent model for the op-
tical, mechanical, and dynamic properties of intralipid optical tissue phantoms. Fur-
thermore, I also developed a novel mixed motion model of DCS (which is applicable to
both conventional DCS and holographic FD-DCS), which accounts for variation in both
the predominance of the type of motion (i.e., the Brownian factor), and the speed of each
type of motion within the sample. I used this series of experiments to show that holo-
graphic FD-DCS can measure data that are entirely equivalent to a conventional DCS
instrument, but with a higher optical throughput and a decreased cost of detector. By
developing and validating this mixed motion model for FD-DCS, I achieved accurate
interpretation of the data produced by the holographic FD-DCS instrument in its native
domain, which are fundamentally different to conventional DCS data.

I then demonstrated the in vitro SNRDb advantage that holographic FD-DCS has over
conventional DCS, as well as its relative insensitivity to ambient light, by conducting a
series of experiments using an intralipid phantom with optical properties resembling
that of brain tissue. This robustness to ambient light is a particularly important consid-
eration for the use of DCS in typical clinical settings, in which optical isolation of the
imaged areas of a patient would be impractical.

In addition to the novelty described above, the application of an off-axis HPSD in-
strument to measure at parameter output rates sufficient to resolve pulsatile flow in vivo,
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which was achieved in Chapter 4, is also novel. From a theoretical perspective, achiev-
ing this required the development of a deep understanding of the interplay between
the exposure parameters of the system, the instrument response function (IRF), and
the dynamic and optical properties of the in vivo sample. Whilst these factors could
be gleaned from the literature, their synthesis and subsequent validation has not been
demonstrated before. From a hardware perspective, these high output rates were made
possible by the design of an instrument with a high throughput and minimal dead-
time between frequency shifts, and which enables highly parallel GPU-accelerated holo-
graphic demodulation and is thus suited to in vivo application. The considerations
presented in this paragraph are perhaps the most fundamental limitations for the ap-
plication of holographic FD-DCS to in vivo settings, and these are evaluated further in
Section 7.2.

Chapter 5 is concerned with the characterisation and optimisation of the holographic
FD-DCS instrument that was described and validated in Chapter 4. Chapter 5 can
be subdivided into four major investigations: the diagnosis and elimination of laser
mode hopping, correction for the modulation transfer function (MTF) of a holographic
FD-DCS instrument, using a singular value decomposition (SVD) spatiotemporal filter-
ing approach to characterise and remove source noise, and the development of a novel
multispeckle denoising algorithm to characterise and remove detector noise. By un-
dertaking this rigorous and systematic SNR performance assessment, I demonstrate the
highest SNR gain reported in the DCS literature to date, which has been achieved using
scalable and low-cost camera-based detection.

The use of DC subtraction temporal filtering has been well described in the digital
holography literature: it is a strategy that can achieve shot noise limited detection with
only two camera frames. In Chapter 5, I document the vulnerability of such a technique
to laser mode hopping, which has not been documented in the literature before. This
investigation evolved through various stages to show that negative going outlying data
points were caused by laser mode hopping. Whilst these outliers could easily be ig-
nored when analysing in vitro validation datasets, this is not possible when detecting at
the high parameter output rates that are necessary for in vivo detection, and thus it is
preferable to eliminate them at source using hardware based techniques.

Whilst a model for the MTF of a lensless digital Fourier holography instrument is ac-
cepted within the relevant literature, its incorporation and validation within an HPSD
experiment has not been reported before. In Chapter 5, I therefore revise the reconstruc-
tion of an unnormalised power spectral density (PSD) measurement using HPSD, in
order to include the MTF of the instrument. This was motivated by the need to invest-
igate an attenuation that I initially observed over the reconstructed holographic twin
images. However, I then had to consider the effect of the camera pixel fill-factor on the
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gradient of the MTF, and I found that modelling a camera pixel fill-factor of 0.72 appro-
priately compensated for the MTF of the instrument. To best of my knowledge, this is
the first time that this inclusion has been validated in a digital holography experiment.

I then developed an SVD spatiotemporal filtering approach to denoising, which was
adapted from the related fields of laser Doppler holography (LDH) and multispeckle
interferometric DCS (iDCS). In this thesis, I specifically exploit the weak spatiotemporal
correlation of speckle, and use this knowledge to justify the removal of the first nc sin-
gular values of a hologram time-stack. When pumping the laser at its maximum rated
output power of 120 mW, SVD filtering offers an improved SNR performance that is
closer to that which the theory of multispeckle detection predicts (compared to when
SVD filtering is not used). However, the same SNR improvement can also be achieved
by decreasing the laser source power from 120 mW to 100 mW, and I therefore hypo-
thesise that by pumping the laser at its maximum rated output power, effects such as
increased spontaneous emission and technical noise decrease SNR performance. How-
ever, SVD filtering is costly in terms of the number of camera frames that it requires,
especially in a holographic FD-DCS instrument (which is designed to exploit low-frame
rate detection). I therefore propose that, within the context of holographic FD-DCS,
SVD filtering be used as a validation tool, rather than a final solution in the signal pro-
cessing pipeline, to confirm that any particular experimental setup is not impacted by
spatiotemporally correlated noise sources.

The final contribution of Chapter 5 is a novel multispeckle denoising algorithm,
which has yielded the demonstration of a linear relationship, and beyond, between
SNR and the square root of the number of speckles detected. This algorithm takes ad-
vantage of the knowledge that a series of a two-dimensional time-integrated dynamic
speckle patterns (2D-TIDSPs) represents a series of independent and identically dis-
tributed random variables, each of which has been drawn from the same probability
density function (PDF). Therefore, once the randomness of spatial speckle sampling has
been corrected for, the resulting distribution of sampled intensities should be identical
between consecutive holograms. This means that temporal filtering can be applied to
remove noise sources, before restoring the random nature of spatial speckle sampling.
By applying this technique to experimental data, I have found that this algorithm can
not only be used to characterise and remove detector noise, but it can also be used
to remove sampling noise, which can be thought of as another form of noise that can
be identified and removed from a shot noise limited distribution. However, there is a
trade-off between SNR gain and temporal resolution when using this algorithm, and
this is discussed further in Section 7.2.

By bringing together the four investigations described in Chapter 5, I achieve an in
vitro SNR gain of 36, for a flow parameter output rate of 8.2 Hz, when detecting over
∼1290 heterodyne speckles, using scalable and low-cost detection. This is the highest
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SNR gain reported in the DCS literature to date, and represents a significant step toward
mitigating the trade-off that exists between SNR and imaging depth in conventional
DCS, and toward increasing the affordability of such a system.

Chapter 6 is concerned with the simulation of statistically accurate 2D-TIDSPs in
biomedical optics, which is motivated by the development of a forward model for holo-
graphic FD-DCS. Such a forward model would not only aid system characterisation, but
it could also be used to generate training data for the application of deep learning tech-
niques to holographic FD-DCS, and to aid a fuller statistical analysis of the denoising
algorithm presented in Chapter 5. I start Chapter 6 by detailing why existing speckle
simulation algorithms are not appropriate for use in this thesis. The copula method
lacks the flexibility necessary to account for any arbitrary type of speckle decorrelation
(including that due to static scatterers). I also undertake an investigation to extend the
pre-defined correlation distribution method to the simulation of 2D-TIDSPs, and report
the negative result that such an extension is not appropriate, as it yields 2D-TIDSPs with
statistically inaccurate speckle contrast.

I then introduce Goodman’s approximate and exact solutions for the PDF of a
2D-TIDSP and describe the advantages and disadvantages of each solution. The former
is based on the principle of the number of degrees of freedom, M, within a time-
integrated speckle measurement, and the latter is based on the Karhunen-Loève expan-
sion of the electric field. Goodman’s exact PDF solution has never been used to simulate
2D-TIDSPs before, and neither has it ever been applied to forms of g1(τ) commonly en-
countered in biomedical optics. The main contribution of Chapter 6 is therefore the
extension of Goodman’s exact PDF solution to the development of a new theoretical
framework for the simulation of a statistically accurate 2D-TIDSPs in biomedical op-
tics. In Chapter 6, I also offer novel expressions for speckle contrast for various forms
of g1(τ) that are used in biomedical optics (which were also reported independently
and concurrently elsewhere during the time that the research for this thesis was being
conducted), and describe how expressions for speckle contrast can also be obtained for
an iDCS measurement.

I robustly validate the 2D-TIDSP simulation framework that I develop in Chapter 6
in terms of intra-image statistics and inter-image statistics, in part by using the expres-
sions for speckle contrast that I have developed, for various sample motion types and
camera exposure times. I also show that, by using a suitably high number of tissue la-
bels, and by incorporating the coherent transfer function (CTF) into the framework, the
simulation technique can readily be extended to samples with spatially varying sample
properties. The work presented in Chapter 6 represents a distinct and significant contri-
bution to the understanding of spatiotemporally sampled speckle in biomedical optics,
and was indeed instructive when devising the novel multispeckle denoising algorithm
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presented in Chapter 5.
The final contribution of Chapter 6 showcases the versatility of the 2D-TIDSP simu-

lation framework that I have developed by applying it to an acousto-optic modulated
DCS (AOM-DCS) model of g1(τ), which incorporates dynamic, optical, and acoustic
parameters in a semi-infinite detection geometry. Using this approach, I validate the
speckle contrast of simulated AOM-DCS 2D-TIDSPs against experimentally measured
g1(τ) data. In fact, the 2D-TIDSP simulation framework that I propose can be used
to model any form of g1(τ), and I therefore expect it to become a powerful and useful
simulation tool for the biomedical optics community.

7.2 Discussion and future work

In this section I discuss the findings of my research within the context of similar work by
other researchers, the limitations of the research, and the future work that could extend
the investigations in this thesis. This is done for each novel chapter in turn.

7.2.1 Chapter 4

The multispeckle aspect of holographic FD-DCS that I propose in this thesis is closely
related to the multispeckle detection strategies of other research groups. The system
that I have proposed detects over ∼1290 speckles for the in vivo detection setup that I
have described; the work of Sie et al. [10] and Liu et al. [27] detects over 1024 speckles
using a 32 × 32 single-photon avalanche diode (SPAD) array, and interferometric diffus-
ing wave spectroscopy (iDWS) detects over ∼96 speckles using a high speed line-scan
camera. Multispeckle techniques which use low cost 2D detector arrays [23, 26, 37]
do no not specify the number of detected speckles. Perhaps this is because it is as-
sumed that achieving a one-to-one pixel to speckle ratio can be achieved, and that the
relatively low cost per pixel of these detectors means that scaling up to an arbitrary
level of multispeckle detection is readily feasible. Indeed, the authors of the interfer-
ometric speckle visibility spectroscopy (ISVS) technique state that ‘a speckle pattern
recorded by using a detector array can contain thousands to millions of speckle grains’
[37]. The largest number of pixels per detector that has been reported was by Zhou
et al., who used 1700 × 280 pixels (476000) for their multi-exposure interferometric dif-
fusing wave spectroscopy (MiDWS) instrument [23]. When combined with techniques
that exploit low-frame rate detection and relatively long camera exposure times, such
as holographic FD-DCS, ISVS and MiDWS, the use of low-cost camera-based detection
represents a particularly effective way to scale SNR whilst maintaining affordability.

The considerations for multispeckle detection documented above lead into a limit-
ation of my experimental design: sensor layout and light collection efficiency. Xu et al.
[37] used a rectangular aperture for their digital lensless Fourier holography ISVS setup,
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which, by inspection of Figure 7.1(A2), makes use of 50 % of the space of the reconstruc-
ted hologram. The experimental design reported in this thesis uses a circular aperture,
which, as I describe in Chapter 4, has a maximum diameter of A = Npix

√
2/(3 +

√
2),

as measured in the space of the reconstructed hologram. It can be shown that this only
makes use of π/(11 + 6

√
2) ≈ 16 % of the space of the reconstructed hologram. There-

fore, the use of a rectangular aperture means that the number of pixels used to detect the
holographic twin images is increased by a factor of 3.1. However, the use of a rectangu-
lar aperture means that the shot noise on the reference beam [which is contained within
the grey region of Figure 7.1(B2)] cannot be sampled in the space of the reconstructed
hologram, and Xu et al. observed that this introduced noise into their measurements
[37]. These authors note that this could be mitigated by sampling the intensity fluc-
tuations from a tap off the reference beam and using this to correct for fluctuations in
signal intensity.

In this thesis, I present experiments in which the camera operates with a duty cycle
ranging from 3.0 % (Section 5.4.2) to 52.5 % (Sections 4.6 and 4.7), with shorter duty
cycles corresponding to shorter camera exposure times. Whilst I have demonstrated
that these shorter camera exposure times are necessary for the detection of pulsatile
flow in vivo, the measurement duty cycle could be increased by using a multiple camera
setup, for example. Furthermore, the camera used for the experiments described in this
thesis is designed for the detection of visible wavelengths, and has a quantum efficiency
of ∼33 % at 785 nm. The use of a near-infrared (NIR) enhanced sensor could therefore
also increase light collection efficiency (for example the Thorlabs Kiralux 1.3 MP NIR-
Enhanced CMOS Camera, CS135MUN, has a quantum efficiency of ∼45 % at 785 nm,
which would provide a gain of ∼37 % over the sensor that is currently used). The
improvement of sensor layout, detector duty cycle, and detector quantum efficiency is
therefore future work.

The interferometric nature of holographic FD-DCS plays an important role in de-
termining the SNR gain of the technique, and as such, all the experiments reported
in this thesis were calibrated so as to make full use of the reference arm SNR boost,
without saturating the detector. That being said, there is only one report in the liter-
ature of an iDCS system that does not also make use of multispeckle detection. This
work, by Robinson et al. [32], reports an SNR gain of ∼2, over all lag times, compared
to a homodyne conventional DCS system. It would therefore seem prudent to combine
the advantages of both interferometric and multispeckle detection when attempting to
increase SNR performance in DCS.

Whilst it is established that larger source-detector separation (SDS) distances will
lead to a deeper imaging depth (see Section 2.3.6.1), and that a higher SNR gain (such as
that achieved in this thesis) is necessary to measure at larger SDS distances, in this thesis
I have not explicitly demonstrated the sensitivity of holographic FD-DCS to deeper flow.
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Figure 7.1: Aperture design considerations for off-axis holography. (A1) Rectangular
aperture in the camera plane, and (A2) the respective holographic twin images in the

reconstruction plane, shown by the two red rectangles, which occupy 50 % of the
sensor. (B1) Circular aperture in the camera plane, and (B2) the respective holographic
twin images in the reconstruction plane, shown by the two red circles, which occupy

π/(11 + 6
√

2) ≈ 16 % of the sensor. Reproduced with permission from [37] under the
terms of a Creative Commons Attribution 4.0 License. © Xu, Jahromi, Brake, Robinson,

and Yang 2020.

Future work to demonstrate this would necessitate the use of phantoms that are more
sophisticated than the homogeneous intralipid phantoms used in this thesis. Improved
phantoms could include two layer designs (e.g., using silicone oil and intralipid, which
are immiscible and will have different Db values, or phantoms which have a static su-
perficial layer and a deeper dynamic layer, which could be used to simulate the skull
and the brain, respectively). Furthermore, a dynamic flow phantom could also be con-
structed, so as to validate measurements of flow that is occurring at both a known depth
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and convective speed.
Unlike other multispeckle DCS studies, in this thesis I have chosen to use a liquid

light guide (LLG) to detect speckles, rather than a multimode fibre, since this provides
an optical aperture of appropriate dimensions to enable the use of digital lensless Four-
ier holography without any additional optical elements. This allows for the most robust
and stable optical configuration with minimal alignment requirements. If desired, a
multimode fibre could be employed by introducing a microscope objective and associ-
ated imaging lenses, and, whilst this was not a priority for this thesis, this would be
an interesting further study. Indeed, this would be a useful experiment to investigate
the differences in Brownian factor measurements between conventional DCS and holo-
graphic FD-DCS, which are shown in Figure 4.12.

Like ISVS [37] and interferometric near-infrared spectroscopy (iNIRS) [116], holo-
graphic FD-DCS interrogates the electric field directly, rather than intensity, and there-
fore the Siegert relation, and the assumptions therein, do not constrain holographic FD-
DCS. The Siegert relation assumes that a scattered field obeys Gaussian statistics and
is violated in the presence of static scatterers or stray light at the sensor. Obviating the
Siegert relation is therefore an advantage when performing measurements in typical
clinical settings, in which optical isolation of imaged areas from ambient light may be
impractical.

A fundamental limitation of holographic FD-DCS to the application of in vivo meas-
urement is the requirement to obtain a series of very short exposure camera frames, at
a series of discrete frequency shifts, all at a fast enough sample rate so as to ensure the
accurate recovery of pulsatile information. These short camera exposure times come at
the cost of broadening of the signal in the Fourier domain, and make the data more dif-
ficult to interpret, especially in the presence of static scatterers. Whilst the investigation
of IRF deconvolution and static scatterer compensation techniques could be one way
to solve this problem, another solution could be to adopt the approach used by ISVS,
for example. This technique works by assessing the amount of blurring within recorded
holograms, rather than using frequency shifting, to access sample dynamics.

Compared to time-domain DCS (TD-DCS) and iNIRS, holographic FD-DCS is lim-
ited in that it does not offer TOF resolved detection. However, by modifying a holo-
graphic FD-DCS instrument with the addition of a tunable laser, it is possible to use
frequency shifting to isolate individual beat frequencies, each of which encodes a par-
ticular photon pathlength. The disadvantage of this approach, however, would be the
reduction in speed owing to the frequency shifting.

To conclude the comparison of holographic FD-DCS with other approaches aimed
at improving the performance of DCS, holographic FD-DCS is a potential candidate
for the detection of both long wavelength DCS and AOM-DCS signals, which can be
used to improve SNR and spatial resolution, respectively. Therefore, the future work
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of this thesis also includes investigating long wavelength holographic FD-DCS, and the
development of an AOM FD-DCS analytical model, as well as an exploration of depth-
resolved flow measurement strategies using this combined technique.

Finally, it is important to consider the potential clinical translation of holographic
FD-DCS. For this to be achieved, sensitivity to CBF would need to be demonstrated,
and this could be achieved by developing acousto-optically modulated FD-DCS, or by
extension to a superficial regression technique or tomographic approach. With further
experimental effort it would be possible to measure multiple source-detector pairs on
the same sensor (by using a spatially coherent fibre bundle or multiple detector fibres,
for example), and these investigations also form part of the future work of this thesis.
Having achieved CBF sensitivity, the use of a longer design wavelength (i.e., 1064 nm),
continued work on the development of a suitable in vivo probe, and scaling up the num-
ber of sample arms and detectors to improve head coverage, would all need to be con-
sidered before taking the instrument through to clinical trials and application.

7.2.2 Chapter 5

Whilst the use of a low laser power [28] and optical isolation stages [110] have been ad-
vocated in the DCS literature to reduce the incidence of mode hopping, it is surprising
that the effects of mode hopping described in Chapter 5 are not observed and accounted
for elsewhere in the the digital holography literature. Additionally, any coherent mul-
tiple camera frame technique will be vulnerable to mode hopping in the way that I have
described in this thesis, and it would be interesting to observe if a similar phenomenon
has been encountered in techniques such as MiDWS [23] and ISVS [37], for example.
It is also surprising that the MTF of a digital holography instrument (in this thesis a
lensless digital Fourier holography instrument) has not been experimentally validated
and corrected for in the literature before. Although the MTF will not vary from camera
frame to camera frame, and therefore does not affect absolute validation experiments,
it does increase the variance of the data and therefore introduce noise. ISVS [37] and
LDH [145] both make use of digital holography to recover quantitative flow parameters
in biomedical optics, and yet neither of these two techniques describes MTF correction
in its signal processing pipeline. I hope that the work presented in this thesis leads to
the more commonplace inclusion of the MTF in image reconstructions in digital holo-
graphy.

Although inspired by the LDH technique of Puyo et al. [145], my implementation of
SVD spatiotemporal filtering is different to that implemented in LDH. The authors of
the LDH technique compute singular values over a short-time window of 1024 frames,
when running their camera at 75 kHz, which yields an integration time of 14 ms. Whilst
this is fast enough to resolve pulsatile flow in vivo, the holographic FD-DCS experiments
reported in this thesis use low-frame rate measurement (i.e., 200 Hz), which means that
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the high-frame requirement of SVD spatiotemporal filtering is not appropriate when
detecting rapidly changing signals. Furthermore, in this thesis I have not investigated
the impact of SVD spatiotemporal filtering on absolute measurement value (as was done
by Robinson et al. [173]), nor have I considered methods for automating the thresholding
of singular values. However, I have used SVD spatiotemporal filtering as a validation
tool with which to analyse in vitro validation datasets, and to confirm that any particular
experimental setup is not impacted by spatiotemporally correlated noise sources. I have
also been able characterise some of these noise sources by inspection of the temporal
singular vectors associated with elevated singular values.

Two research groups have recently investigated the relationship between multis-
peckle DCS detection and SNR performance. Sie et al. observed an SNR gain that
was equal to the square root of the number of detected speckles, when detecting 1024
speckles using a 32 × 32 SPAD camera [10]. Xu et al. were not able to achieve this linear
SNR scaling target when detecting ∼3000 speckles using a CMOS camera [66]; these
authors attributed this deficit to experimental imperfections, such as detector noise and
imperfect control of the speed of the sample. Given the findings of Sie et al., and also the
findings of the denoising algorithm that I present in Chapter 5, I suspect that this deficit
is mainly due to the noise performance of CMOS sensors. The denoising algorithm that
I present is unprecedented in the field of multispeckle DCS detection, and, as it can be
used to both characterise and remove noise sources, I hope that other researchers will
find it useful when denoising multispeckle DCS measurements.

The spatiotemporal filtering aspect of off-axis digital holography is instrumental in
achieving shot noise limited detection when using inexpensive and relatively noisy de-
tectors, which I have demonstrated in Figure 3.4(c). Although this figure demonstrates
shot noise limited performance for a single frame, I have found that this effect does not
persist over the whole multispeckle pattern when using temporal SNR statistics. In or-
der to achieve this linear SNR scaling target over the whole multispeckle pattern, I have
shown in Figure 5.11(b) that both source noise and detector noise must be accounted for,
and this is a consideration that has been expounded in neither the DCS nor the digital
holography literature before. Whilst I have shown that the multispeckle denoising al-
gorithm that I have presented can remove both detector noise and sampling noise from
a time-series of multispeckle DCS measurements, the major limitation of this algorithm
is the trade-off between SNR gain and temporal resolution.

In this thesis I have characterised the SNR performance of a holographic FD-DCS
instrument without trialling the use of different detectors. Experimenting with differ-
ent detectors would be useful in corroborating the impact of detector noise on SNR
performance that I documented in Chapter 5. The future work of this thesis also in-
cludes developing a forward model for holographic FD-DCS, which could be achieved
using the simulation framework presented in Chapter 6. Such a forward model would
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have three main functions. Firstly, it could be used as a system characterisation tool.
Secondly, it could be used to aid a fuller statistical analysis of the multispeckle denois-
ing algorithm that I have presented. Thirdly, it could be used to generate training data
for the application of learning approaches to holographic FD-DCS. Robinson et al. high-
light that camera-based approaches to DCS have the disadvantages of requiring soft-
ware postprocessing and less manageable data volumes, especially for longer record-
ings [32]. These factors affect the ability to achieve real-time measurement, and learn-
ing approaches have already been used in conventional DCS to speed up blood flow
(BF) quantification 23-fold [112]. I therefore propose that the application of learning
approaches to holographic FD-DCS would be useful in compensating for the software
postprocessing and data volumes that are required by the technique.

Other further work that leads from Chapter 5 is the improvement of the in vivo probe
that was developed in Chapter 4. The SNR performance characterisation that was de-
scribed in Chapter 5 was performed on in vitro data, and, in Chapter 4, I demonstrated
how an in vitro SNR advantage did not translate into an in vivo SNR advantage (Fig-
ure 4.18). This may well be due to patient movement artefact and sub-optimal tissue
coupling, and improvements to the in vivo probe therefore warrant further investiga-
tion. Whilst all of the research objectives that are enumerated in Section 1.2 have been
achieved in this thesis, the further work that is described in this paragraph addresses
a potential shortcoming related to research objective 2 (i.e., the holographic FD-DCS
instrument that I have developed is not suitable for repeatable high SNR in vivo meas-
urement in its current form).

In Chapter 5, I have also inferred various physical properties of the holographic FD-
DCS instrument based on data analysis. For example, by compensating for the MTF of
the instrument I have inferred a camera pixel fill-factor of 72 %, and, by inspection of the
temporal singular values of SVD spatiotemporal filtering, I have inferred that the laser
does not achieve stable single-frequency output when being pumped at its maximum
output power. Inspection of the microlens array using an optical microscope would
therefore be a useful further investigation, as would assessing the laser beam at various
output powers using an optical spectrum analyser.

7.2.3 Chapter 6

Chapter 6 draws together literature relating not only to previous speckle simulation
algorithms [181, 184], but also that relating to time-integrated speckle PDF solutions
[150, 155], the forms of g1(τ) commonly encountered in biomedical optics and how
they relate to speckle contrast [80, 89], and also AOM-DCS [18, 33]. The context of the
speckle simulation algorithm that I have developed within this literature is embedded
throughout Chapter 6.

The main limitation of the speckle simulation framework that I present in Chapter 6
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is that narrower g1(τ) functions require sampling with a higher N value, which requires
the addition of more fully developed speckle patterns, and subsequently decreases the
computational performance of the simulation. Future work to mitigate this could in-
clude the use of pre-computed libraries of fully developed speckle patterns, GPU accel-
eration, and lower level programming languages. Another limitation of the technique is
that it does not parameterise the coherence factor, β, although, in Chapter 6, I do discuss
how the technique can be extended to include two orthogonal polarisation states, and I
describe how Goodman’s approximate PDF simulation technique can be adapted if the
parameterisation of β is necessary.

A potential limitation of the work presented in Chapter 6 is that it does not consider
how faithfully the simulation framework operates under conditions of experimental
noise, and that the framework has not been validated by experimental results. Whilst I
appreciate this concern, it overlooks the fundamentally novel and impactful contribu-
tion of this chapter. The proposed simulation technique aims to simulate the signal of
a 2D-TIDSP; prior to this thesis the simulation of the signal of a statistically accurate
2D-TIDSP that accounts for any arbitrary g1(τ) function was an unsolved problem. In
addition to this, previous speckle simulation studies [181, 184] do not explicitly model
the inclusion of experimental noise into the simulation of speckle patterns. However,
the addition of specific models of experimental noise (such as shot noise, read noise,
dark noise, and hot pixels [25], as well as noise models unique to any arbitrary speckle
measurement system) would be a useful and interesting further study that is unfortu-
nately outside the scope of this thesis. In this thesis I robustly validate my proposed
technique against previously published solutions for the exact PDF of time-integrated
intensity for coherent light. I further validate my technique (both in terms of intra-image
and inter-image statistics) against expressions for speckle contrast for different forms of
homogeneous field.

Following on from this concern, the quality of the simulation is limited by the know-
ledge of g1(τ) of the sample, including its spatial variation. It is not within the remit of
the simulation framework to predict what g1(τ) will be at each pixel. The simulations in
this thesis have focussed on the generation of LSCI images, which only contain inform-
ation relating to superficial scatterers, by discretising the sample into a 2D matrix. It is
possible to extend the simulation framework to consider the scattering that is detected
at the sample surface due to scatterers within the volume of the sample, by discretising
the sample into a 3D matrix and assigning properties to each element. This would allow
for the use of more complicated forms of g1(τ) that include depth dependent inform-
ation (such as that used to model the correlation diffusion equation in a semi-infinite
geometry in DCS experiments, for example), as well as the consideration of the interac-
tion of multiple source-detector pairs (i.e., diffuse correlation tomography [DCT]). If the
form of g1(τ) is known, then, by incorporating a suitably high number of tissue labels
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within the sample volume, as well as the CTF of the instrument, local changes in sample
properties can be modelled, which can incorporate any form of g1(τ). Experimental val-
idation of these simulations would indeed be a useful and interesting further study, but
the validation that I have demonstrated in this thesis proves the potential impact of the
technique.
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Appendix A Developing a Fourier domain DCS model

A.1 Brownian motion

The time domain expression that we wish to Fourier transform is

G1d(τ) =
S0

4πD

[
exp−K(τ)r1

r1
− exp−K(τ)r2

r2

]
, (135)

where
K(τ) =

√
3µaµ′

s + µ′2
s k2

06Db|τ|, (136)

for a Brownian motion model. The term outside the square brackets in Equation 135 has
no dependence on τ, and the terms inside the square brackets can be split. Then, having
made simplifying substitutions, the following expression can be arrived at to undergo
Fourier transform

f (τ) =
exp

(
−R
√

AB + B2F|τ|
)

R
. (137)

As G1d(τ) is a real and even function, i.e., symmetrical about τ = 0, its Fourier
transform is also real. Thus, only the real part of the full Fourier transform could be
used. Alternatively, a Fourier cosine transform can be performed from the outset, which
takes advantage of the Fourier transform property

∫ +∞

−∞
g(|τ|) exp(iωτ) dτ = 2

∫ +∞

0
g(τ)cos(ωτ) dτ, (138)

to arrive at

F(ω) =
2√
2π

∫ +∞

0

exp
(
−R

√
AB + B2Fτ

)
R

cos(ωτ) dτ. (139)

An integration by substitution approach was employed to solve Equation 139, where

Z = AB + B2Fτ, (140)

such that
τ =

Z − AB
B2F

, (141)

and
dτ =

dZ
B2F

, (142)

and the lower and upper integration limits of Equation 139 become AB and +∞, re-
spectively.

After applying the substitutions given by Equations 140, 141, and 142, Equation 139
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becomes
F(ω) =

2√
2πRB2F

∫ +∞

AB
exp(−R

√
Z)cos

(
ω

Z − AB
B2F

)
dZ, (143)

which was evaluated in Mathematica as

F(ω) =
2√

2πRB2F
× . . .([ ∫ +∞

0
exp(−R

√
Z)cos

(
ω

Z − AB
B2F

)
dZ

]
− . . .[ ∫ AB

0
exp(−R

√
Z)cos

(
ω

Z − AB
B2F

)
dZ

])
, (144)

with the assumptions

{A, B, F, R} ∈ R>0,

Z ∈ R≥0, and

ω ∈ R.

The result of Equation 144 is then

B
√

Fω exp
(
− iAω

BF − iB2FR2

4ω

)
4 |ω|7/2 sgn(ω)

× . . .[
exp

(
iB2FR2

2ω

) [
− (1 − i)

√
ω
√
|ω|erf [T+(ω)] + |ω| − iω

]
+ . . .

exp
(

2iAω

BF

) [
− (1 + i)

√
ω
√
|ω|erf [T−(ω)] + |ω|+ iω

]]
, (145)

where the auxiliary function, T±(ω), is defined as

T±(ω) =
(2 ∓ 2i)ω

√
AB
F + (1 ± i)B2

√
FR

2
√

2B
√

ω
, (146)

and where, for real x,

sgn(x) =


−1 x < 0

0 x = 0

1 x > 1,

(147)

and where the error function is the integral of the Gaussian distribution

erf(z) =
2√
π

∫ z

0
exp−t2

dt. (148)
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Equation 145 can be simplified, for the case of ω > 0, to

1
ω3/2

(
1
4
+

i
4

)
B
√

F exp
(
− iAω

BF
− iB2FR2

4ω

)
× . . .[

− i exp
(

iB2FR2

2ω

)
erfc [T+(ω)] + exp

(
2iAω

BF

)
erfc [T−(ω)]

]
, (149)

and, for the case of ω < 0, to

1
ω

(
1
4
+

i
4

)
B

√
− F

ω
exp

(
− iAω

BF
− iB2FR2

4ω

)
× . . .[

− exp
(

iB2FR2

2ω

)
erfc [T+(ω)] + . . .

exp
(

2iAω

BF

)erfi


(

1
2 +

i
2

)(
B2

√
FR + 2iω

√
AB
F

)
√

2B
√

ω

+ i


]

, (150)

where the complementary error function

erfc(z) = 1 − erf(z), (151)

and where the imaginary error function

erfi(z) = erf(iz)/i. (152)

Equation 145 is undetermined for the case of ω = 0, and I have therefore been unable
to implement a normalised Brownian FD-DCS model, which would be given by

s1d(ω) =
F(ω, r1)− F(ω, r2)

F(0, r1)− F(0, r2)
. (153)

The Fourier transform of Equation 135 that I implement in the Brownian FD-DCS
forward model is then

S1d(ω) =
S0

4πD
[F(ω, r1)− F(ω, r2)] , (154)

where ω is detuning frequency (rads/s). For practical purposes, I limit the expression
for F(ω, r) that I have developed to the case of ω > 0, having reversed the substitutions
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used in Equation 137

F[Db]
(ω+, r) =

1
ω3/2

(
1
4
+

i
4

)
µ′

s

√
6k2

0Db × . . .

exp

(
− iµaω

2µ′
sk2

0Db
−

3iµ′2
s k2

0Dbr2

2ω

)
× . . .

[
− i exp

(
3iµ′2

s k2
0Dbr2

ω

)
erfc [A+(ω)] + . . .

exp

(
iµaω

µ′
sk2

0Db

)
erfc [A−(ω)]

]
, (155)

where the auxiliary function, A±(ω), is defined as

A±(ω) =

(2 ∓ 2i)ω
√

µaµ′
s

2k2
0Db

+ (1 ± i)µ′2
s r
√

6k2
0Db

2
√

2µ′
s
√

ω
, (156)

as given by Equations 64, 65, 66, 67, and 68 in Chapter 4.

A.2 Convective motion

The initial problem formulation is identical to that adopted when solving for Brownian
motion: the time domain expression that we wish to Fourier transform is Equation 135;
however, the following form of Equation 136 is considered for convective motion

K(τ) =
√

3µaµ′
s + µ′2

s k2
0V2τ2. (157)

Equation 157 yields the following expression to undergo Fourier transform

f (τ) =
exp

(
−R

√
AB + B2Fτ2

)
R

, (158)

which can be manipulated as follows

f (τ) =
1
R

exp

(
−R

√
B2F

[
A

BF
+ τ2

])
, (159)

f (τ) =
1
R

exp

(
−R

√
B2F

√[
A

BF
+ τ2

])
, (160)

f (τ) =
1
R

exp

(
−RB

√
F

√[
A

BF
+ τ2

])
. (161)

202



Equation 161 is of the general form

f (x) = exp
(
−β
√

α2 + x2
)

, (162)

where the Fourier cosine transform of f (x) is [189]

F(ω) =

√
2
π

αβ√
β2 + ω2

K1

[
α
√

β2 + ω2
]

, (163)

for

{α, β} ∈ R>0, (164)

and where K1 is the first modified Bessel function of the second kind.
If the following substitutions are performed

β = RB
√

F, (165)

α =

√
A

BF
, (166)

x = t, (167)

then the Fourier cosine transform of Equation 161 is

F(ω, R) =

√
2
π

√
AB

B2FR2 + w2 K1

[√
A
(

BR2 +
w2

BF

)]
, (168)

where

F(0, R) =

√
2
π

AK1

[√
ABR

]
R
√

ABF
. (169)

The Fourier transform of the unnormalised expression G1d(τ) (Equation 135) is then

S1d(ω) =
S0

4πD
[F(ω, r1)− F(ω, r2)] , (170)

the normalised expression of which is

s1d(ω) =
F(ω, r1)− F(ω, r2)

F(0, r1)− F(0, r2)
. (171)

By reversing the substitutions of Equations 158, 165, 166, and 167,

F[V2](ω, r) =

√
3µaµ′

s

µ′2
s k2

0V2r2 + ω2
K1


√√√√3µa

(
µ′

sr2 +
ω2

µ′
sk2

0V2

) , (172)
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which is given by Equation 69 in Chapter 4, and

S1d(ω, r1, r2) =
S0

2
√

2π3/2D
× . . .[√

3µaµ′
s

µ′2
s k2

0V2r2
1 + ω2

K1


√√√√3µa

(
µ′

sr2
1 +

ω2

µ′
sk2

0V2

)− . . .

√
3µaµ′

s

µ′2
s k2

0V2r2
2 + ω2

K1


√√√√3µa

(
µ′

sr2
2 +

ω2

µ′
sk2

0V2

)], (173)

and

s1d(ω, r1, r2) =

√
µ′

sk0Vr1r2√
3µa

[
r2K1

(√
3µaµ′

sr1
)
− r1K1

(√
3µaµ′

sr2
)] × . . .

[√
3µaµ′

s

µ′2
s k2

0V2r2
1 + ω2

K1


√√√√3µa

(
µ′

sr2
1 +

ω2

µ′
sk2

0V2

)− . . .

√
3µaµ′

s

µ′2
s k2

0V2r2
2 + ω2

K1


√√√√3µa

(
µ′

sr2
2 +

ω2

µ′
sk2

0V2

)], (174)

for √
3µa

µ′
sk2

0V2
∈ R>0,

r1µ′
sk0V ∈ R>0,

r2µ′
sk0V ∈ R>0,

for convective motion.

A.3 Acousto-optic modulation

By considering the acoustic modulation of Equation 135,

G1(d+a)(τ) =
S0

4πD

[
exp−K(τ)r1

r1
− exp−K(τ)r2

r2

]
cos(nωaτ), (175)

where the subscript (d + a) refers to dynamic scatterers and acoustic modulation, n
corresponds to the harmonic of acoustic modulation, and ωa is the ultrasound radial
frequency [18]. The Fourier cosine transform of Equation 175 is then

2
∫ +∞

0
G1d(τ)cos(nωaτ)cos(ωτ) dτ. (176)
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The trigonometric product-sum identity states

cos(x)cos(y) =
1
2
[cos(x + y) + cos(x − y)], (177)

which I use to rearrange Equation 176 to

∫ +∞

0
G1d(τ)cos([ω + nωa]τ) dτ +

∫ +∞

0
G1d(τ)cos([ω − nωa]τ) dτ. (178)

I have already derived the results to these Fourier cosine transforms, for Brownian and
convective motion in Appendices A.1 and A.2, respectively. These results can be used
directly to state

Fa(ω, ωa, r, n) = F(ω + nωa, r) + F(ω − nωa, r). (179)

The Fourier transform of Equation 175 is then

S1(d+a)(ω, ωa, n) =
S0

4πD
[Fa(ω, ωa, r1, n)− Fa(ω, ωa, r2, n)] , (180)

the normalised expression of which is

s1(d+a)(ω, ωa, n) =
[Fa(ω, ωa, r1, n)− Fa(ω, ωa, r2, n)]
[Fa(0, ωa, r1, n)− Fa(0, ωa, r2, n)]

. (181)

Note that this logic for acoustic modulation can be applied to both Brownian and con-
vective models of motion.
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Appendix B Time-integrated pre-defined correlation dis-

tribution

This appendix details the mathematical derivation of an expression for a two-dimensional
time-integrated dynamic speckle pattern (2D-TIDSP), W, using the pre-defined correla-
tion distribution method approach that is described in Section 6.2.2. I start by substitut-
ing Equation 88 into Equation 92

I =
∣∣∣F−1

[[
rF [U1] +

√
1 − r2F [U2]

]
H
]∣∣∣2 , (182)

multiplying out the inner square brackets

I =
∣∣∣F−1

[
rHF [U1] +

√
1 − r2HF [U2]

]∣∣∣2 , (183)

which, due to the linearity property of the inverse Fourier transform, can be expressed
as

I =
∣∣∣rF−1 [HF [U1]] +

√
1 − r2F−1 [HF [U2]]

∣∣∣2 , (184)

which can be simplified to

I =
∣∣∣rA +

√
1 − r2B

∣∣∣2 , (185)

where A = F−1 [HF [U1]] and B = F−1 [HF [U2]]. A and B are two constant and
complex valued 2D matrices, each of which has no dependence on r.

Considering an element-wise decomposition of I into real and imaginary compon-
ents, let A = a + bi, and B = c + di. Equation 185 can then be expressed as

I =
∣∣∣ra + rbi +

√
1 − r2c +

√
1 − r2di

∣∣∣2 , (186)

collecting real and imaginary terms

I =
∣∣∣ra +

√
1 − r2c + rbi +

√
1 − r2di

∣∣∣2 , (187)

calculating the complex magnitude

I =

[√(
ra +

√
1 − r2c

)2
+
(

rb +
√

1 − r2d
)2
]2

, (188)

simplifying

I =
(

ra +
√

1 − r2c
)2

+
(

rb +
√

1 − r2d
)2

, (189)
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multiplying out brackets

I = r2a2 + 2ra
√

1 − r2c + c2(1 − r2) + r2b2 + 2rb
√

1 − r2d + d2(1 − r2), (190)

multiplying out brackets and collecting terms

I = r2
(

a2 + b2 − c2 − d2
)
+ 2r

√
1 − r2 (ac + bd) + c2 + d2. (191)

Using the form of r presented in Equation 16 of [181]

r2 = exp
(
− τ

τc

)
, (192)

r =

√
exp

(
− τ

τc

)
, (193)

and substituting Equations 192 and 193 into Equation 191, the expression for instantan-
eous intensity is

I(τ) = exp
(
− τ

τc

)(
a2 + b2 − c2 − d2

)
+ · · ·

2

√
exp

(
− τ

τc

)√
1 − exp

(
− τ

τc

)
(ac + bd) + c2 + d2. (194)

We therefore wish to solve

W =
1
T

∫ T

0
I(τ) dτ, (195)

where W is the intensity of a 2D-TIDSP, and where T is the integration time of the
camera.

The indefinite integral of Equation 194 with respect to τ is

∫
I(τ) dτ = τ

(
c2 + d2

)
+ τc exp

(
− τ

τc

)(
−a2 − b2 + c2 + d2

)
− · · ·[

exp
(

τ

τc

)
+ exp

(
τ

τc

)√
1 − exp

(
τ

τc

)
tanh−1

(√
1 − exp

(
τ

τc

))
− 1

]
× · · ·

2τc exp
(
−2τ

τc

)
(ac + bd)√

exp
(
−2τ

τc

) (
exp

(
τ
τc

)
− 1
) . (196)
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For limτ→0, Equation 196 converges on∫
I(τ) dτ = τc

(
−a2 − b2 + c2 + d2

)
. (197)

and the definite integral over the camera exposure period evaluates to

W =
1
T

[
T
(

c2 + d2
)
+ · · ·

τc

(
a2 + b2 − c2 − d2

)
+ τcX

(
−a2 − b2 + c2 + d2

)
− · · ·

2τcZ(ac + bd)
[
Y − 1 + Y

√
1 − Y tanh−1

(√
1 − Y

)]
√

Z (Y − 1)

 , (198)

where
x = T/τc, (199)

X = exp (−x) , (200)

Y = exp (x) , (201)

Z = exp (−2x) . (202)
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‘The whole problem with the world is that fools and fanatics are always so
certain of themselves, and wiser people so full of doubts.’

Bertrand Russell (1872 - 1970)

225


