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Abstract 

The thesis presents a theoretical investigation of the 

optical trapping of erythrocytes in the ray optics 

approximation. The thesis is divided in two parts: Part I 

provides an introduction on the general background on 

erythrocytes and the physics underlaying the work presented 

in the thesis; Part II presents the results obtained during my 

studies.  

In the first chapter of Part II, I introduce the ray-tracing 

scheme useful to perform the geometrical optics calculations 

for a healthy red blood cell that will be used extensively in the 

thesis. Therefore, I present a methodology for the 

identification of the equilibrium configuration of a red blood 

cell (RBC) for the simple case of a single-beam optical 

tweezers. Then, I proceed to investigate the equilibrium 

configuration of a RBC optically trapped with a double-, triple- 

and four-beam optical tweezers comparing my results with 

experiments.  

In the second chapter of Part II, I introduce a 

numerical scheme useful to simulate the Brownian dynamics 

of a non-spherical particle in a force-field (i.e. an optically 

trapped particle). This scheme is then applied to investigate 

the possibility to control the position and orientation of a 
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healthy RBC with a reconfigurable triple-beam optical 

tweezers.  

In the third chapter of Part II, I investigate the 

possibility of optically confine and deliberately rotate a 

healthy RBC with a light-sheet optical tweezers (i.e. beam 

focused over a line instead of a point).  

In the fourth chapter of Part II, I present the research 

carried out in collaboration with Nano-Soft Lab at CNR in 

Messina, Italy. Here we couple the geometrical optics 

calculation with machine learning to improve the accuracy 

and the speed of geometrical optics calculations.  

Lastly, in the fifth chapter of Part II, I extend the work 

presented in the previous chapters to a pathological RBC 

conformation (i.e. sickle cell).  
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Impact Statement 

Issue: Since its invention optical tweezers (OT) have brought 

unprecedented possibilities to basic and applied biophysical 

research. To unlock new horizons, experiments have been 

accompanied by a rigorous theoretical treatment, and often, 

the privileged methods for the description, interpretation and 

planning of new experiments is the geometrical optics 

approximation (GO). OT has been extensively applied in red 

blood (RBC) research to sense and screen various 

biochemical and biomechanical properties of erythrocytes. 

However, to date, nothing has been done to theoretically 

describe the optical trapping of healthy and pathological 

erythrocytes.  

What has been done:  
In the present work, the well-known GO 

approximation is applied for the first time to investigate the 

optical trapping of healthy and pathological RBC via OT 

unravelling the theoretical understanding of the RBC optical 

trapping.  

Although GO is well-established, it is also intrinsically 

slow, and this results in major drawbacks that limits their 

application when thousands or millions of recursive 

calculations are needed. In collaboration with Nano-Soft Lab 

(CNR in Messina, Italy), I couple GO with a machine learning 
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algorithm to consistently decrease the computation time 

opening up the possibility to simulate the dynamics of a 

trapped RBC for longer time and multiple repetitions (tens or 

thousands).  

Several medical conditions are associated to a 

change in the RBC morphology and membrane elasticity, a 

prominent example being sickle cell anaemia. Sensors able 

to screen and investigate the membrane elasticity are 

essential for the correct diagnosis and the following treatment 

of the disease. However, the sickled cell presents a very 

complex morphology, and the standard GO calculations are 

impossible in this context. For this reason, I introduce a 

relatively new methodology to perform GO calculations on 

pathological RBCs with the aim of identifying the possibility 

to optically trap pathological RBCs. 

Impact: Overall, this work has manifold importance paving 

the way for experimentalists to envisage new experiments, 

and at the same time, providing insights on the mechanism 

of red blood cells trapping. The overall impact is not confined 

to the basic biophysical research in academia, but it can also 

help in making significant progress in interdisciplinary applied 

research outside academia underpinning future studies 

where the mechanical properties of the erythrocytes are 

investigated by deforming/stretching the RBCs through OT. 
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1. General introduction: red blood cell 

In this Chapter 1 I will describe the properties and 

function of red blood cell, and the interdependence of the two 

that is required for their normal operation. 

Red blood cells (RBC) or erythrocytes are the most 

abundant cell present in most vertebrates’ blood. In humans, 

mature and healthy RBCs are biconcave disks with a typical 

diameter of 6-8 μm, 2-3 μm thick in the periphery and 1-2 μm 

thick in the centre, Figure 1.1.[1] The cell’s interior is delimited 

from the external world by a highly organised and very 

flexible cell membrane. Three different layers compose the 

cell’s membrane in RBC: an outer layer, formed mainly of 

carbohydrates, known as glycocalyx, an intermediate lipidic 

bilayer, constituted mainly from cholesterol, phospholipids 

and membrane protein, and the membrane skeleton, a 

proteic structural scaffold in the interior of the cell, Figure 

1.1.[2,3] 

Mature RBCs lack the nucleus and the organelles 

found in most cells. The cell’s inner portion, known as cytosol, 

is mainly filled by a concentrated protein solution known as 

haemoglobin. Thanks to the presence of iron atoms in a 

dedicated pocket in the protein three-dimensional structure, 

haemoglobin can bind O2 or CO2 with high efficiency for a 
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prolonged period of time. Haemoglobin is responsible for the 

characteristic red colour of the RBC.[2,4] 

 
Figure 1.1. Morphology and cell membrane structure of a healthy red blood 

cell. 

The RBCs’ primary function is delivering oxygen to 

peripheral tissues and organs of the human body. The 

complex series of events that leads to oxygenation starts in 

the lungs, where O2 diffuses within the RBC and binds to 

haemoglobin. Successively, the oxygenated RBCs travel 

within arteries until the peripheral tissues, where oxygen is 

released and diffuses into tissues/organs. After the release 

of oxygen, RBC takes up gaseous residues of the metabolic 

activity (i.e. CO2), and transports them back to the lungs, 

where they are released and expelled from the organism, 

Figure 1.2. Then the cycle starts again.[5] A complete RBC’s 

circulation takes about 60 seconds, and typically RBCs 

remains in the bloodstream for about 100–120 days before 

their components are recycled by specialised cells.[2]  
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During the cycle, RBCs must enter a system of small 

vessels where the gaseous components are exchanged. This 

system is called microcirculation. The microcirculation 

comprises arterioles with an inner diameter (i.d.) of ~100 μm, 

venules with i.d. ~150 μm, and capillaries i.d. ~5-8 μm, Figure 

1.2.[6] 

 
Figure 1.2. Cardiovascular system. The heart pumps oxygen-rich blood 

into the circulatory system. Blood flows through arteries and arterioles 

before reaching capillaries, supplying organs and tissues with oxygen and 

other nutrients. Successively, the oxygen-poor blood travels within venules 

and veins back to the heart, where it is pumped to the lungs, and the red 

blood cells are reloaded with oxygen. Adapted from ref. [5]. 

It appears immediately evident that RBCs must have 

a high degree of reversible flexibility and that any variation of 

their biomechanical properties could lead to severe 

dysfunctions in the microcirculation. In the most severe cases 
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of RBCs’ alteration, the capillaries can be obstructed entirely, 

leading to tissues necrosis or organ damage and failure.[7]  

The main origins of severe alteration of the RBC 

deformability can be genetic or a consequence of a 

pathogen’s infection. Hereditary spherocytosis, elliptocytosis 

and sickle cell disease are examples of genetically inherited 

disorders that affect the shape and deformability of the RBCs, 

even if the molecular mechanisms that lead to the diseases 

are different.[7] On the contrary, malaria is a pathogenic 

disease that impairs the elastic properties of the 

erythrocytes.[8] The cause of malaria is the infection of 

microorganisms of the Plasmodium group, and mosquitoes 

are generally the primary transmission source.[9] Moreover, 

change in the RBC elasticity has also been correlated to a 

metabolic disorder such as diabetes,[10] and more recently 

also to SARS-CoV-2 viral infection, which leads to the Covid-

19 disease.[11] 

Optical tweezers (OTs) are a handy tool able to 

confine and manipulate single micron-sized objects thanks to 

a tightly focused laser beam. During the last two decades, 

OTs have been demonstrated to be an effective technique to 

investigate, sense, and screen the biomechanical properties 

of healthy and unhealthy RBCs, as well as pathogens 

infection.[12]  
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Now that we discussed the function, the morphology 

and some of the important biophysical properties that are 

required for the correct operation of the RBCs, we will look in 

more detail into the mechanism behind optical trapping that 

will underpin the work in this thesis. 
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2. BACKGROUND AND THEORY  

In this chapter, I will introduce the history that bring to 

the development of optical tweezer before to introduce the 

underlying physics that is required in the following of the 

thesis. 

2.1. A brief history of optical tweezers 

The first speculation that light can exert mechanical 

forces on particles dates back to the 17th century when 

Kepler observed that the comet tails always point away from 

the Sun. He attributed this phenomenon to a pressure 

exerted by the sunlight on the matter of the comet’s tail.[1] 

Such an assumption entered modern science when Maxwell 

and Bartoli described the radiation pressure as a 

consequence of the electromagnetic theory and the second 

law of thermodynamics.[2,3] The first direct experimental 

observation of radiation pressure was made only ca. 30 years 

after the first theoretical description. Independently of each 

other, Pyotr Lebedev and Nichols and Hull evaluated the 

radiation pressure using a torsion radiometer.[4,5] However, to 

generate forces able to overcome gravitational or frictional 

forces are needed light sources with considerable intensity in 

most circumstances. For this reason, the phenomenon of 

radiation pressure seemed destined to remain confined to be 
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a novelty in physics rather than to have any interesting 

technological application.  

In 1970, Arthur Ashkin realised that, even though the 

forces resulting from radiation pressure are small, so are the 

forces required to move small particles (microparticles). 

Furthermore, the invention of the laser in 1960 had provided 

a light source of sufficiently high brightness to make effects 

of radiation pressure more easily observable. In his first 

experiment, Ashkin could three-dimensionally confine a 

polystyrene microparticle using two counter-propagating and 

slightly divergent beams.[6] Soon after, in 1986, Ashkin and 

his collaborators demonstrated the possibility to confine 

microparticles by a single tightly focused laser beam, and the 

optical tweezers appeared on the scene.[7] 

2.2. Optical forces and optical tweezers 

Traditionally, optical forces are understood within 

approximations based on limiting size regimes based on the 

size parameter, 𝜉𝜉:[8] 

𝜉𝜉 = 2𝜋𝜋𝜋𝜋𝑛𝑛𝑚𝑚/𝜆𝜆0  

where 𝑎𝑎 is the characteristic size of the object (i.e. the radius 

of the sphere), 𝑛𝑛𝑚𝑚 is the refractive of the surrounding 
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medium, and 𝜆𝜆0 is the wavelength of the incident light in 

vacuum.  

In the limit of 𝜉𝜉 ≪ 1 (i.e. particle much smaller than 

the wavelength), the calculations are based on the dipole 

approximation. In the dipole approximation, the optical forces 

are calculated as a consequence of the interaction of the 

incoming electromagnetic wave with the small dipole induced 

by the electromagnetic field approximating the trapped 

object. If the object’s typical size is comparable to the optical 

wavelength, the intermediate regime (𝜉𝜉 ≈ 1), a wave-optical 

approach is necessary for calculating the optical forces, and 

the Lorenz–Mie theory can be exploited to obtain accurate 

calculations for spherical particles of essentially any size and 

refractive index. However, the situation becomes more 

complex for non-spherical particles, e.g. elongated particles, 

optically anisotropic particles, and inhomogeneous particles. 

At the other limit of the limiting size regimes (𝜉𝜉 ≫ 1) there is 

the geometrical optics approximation (GO).[8–10]  

GO is well suited for biological samples, particularly 

for cells that show diameter ≥ 5 - 10 μm. In experiments with 

living cells, the photodamage of the light beam must be 

minimised, usually selecting light sources in the first or 

second biological window, a region of the electromagnetic 

spectrum with the lowest water absorption, assures a 

consistent decrement in the sample’s photodamaging. For 



 39 

biological samples, this happens for wavelengths around 

0.850 μm and 1.064 μm.[11] These wavelengths are 

considerably smaller than the typical sizes of cellular 

samples, and thus the GO can be generally applied to a good 

level of approximation. 

2.2.1. Optical forces and torques in geometrical 
optics approximation  

In GO, an optical beam can be decomposed in a 

bundle of light rays provided with appropriate direction 

intensity and polarisation. Each light ray travels in straight 

lines within homogenous media. From a quantum 

mechanical point of view, electromagnetic radiation (light 

rays in GO) can be seen as particles rather than waves. 

These particles are known as photons. Each photon, with a 

wavelength λ0 carries an energy 𝐸𝐸𝑝𝑝ℎ = ℎ𝑐𝑐/𝜆𝜆0 where ℎ is the 

Plank’s constant and 𝑐𝑐 is the speed of light in vacuum. The 

momentum of each photon is given by:[10] 

𝒑𝒑 =
ℎ
𝜆𝜆0
𝒊̂𝒊 2.1 

where 𝒊̂𝒊 is the direction of propagation of the light ray.[10] 

Therefore, an optical ray (𝒓𝒓) of total power (𝑃𝑃) carries 𝑁𝑁 =

 𝑃𝑃/𝐸𝐸𝑝𝑝ℎ photons per second at a fixed point. 
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When a light ray travelling in a medium with a 

refractive index (RI) 𝑛𝑛1, hits an object with RI = 𝑛𝑛2 at an angle 

𝜃𝜃𝑖𝑖 in respect to the line normal to the surface at the point of 

incidence, part of it is reflected at an angle 𝜃𝜃𝑟𝑟 = 𝜃𝜃𝑖𝑖, and part 

of it is transmitted in a direction defined by Snell’s law 

(n1sin𝜃𝜃𝑖𝑖=n2sin𝜃𝜃𝑡𝑡), Figure 2.1-a. In non-absorbing media, as 

a consequence of the conservation of energy, the incoming 

power (𝑃𝑃𝑖𝑖) must be equal to the sum of the reflected (𝑃𝑃𝑟𝑟) and 

the transmitted (𝑃𝑃𝑡𝑡) power (𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑟𝑟 + 𝑃𝑃𝑡𝑡). The repartition of 

the power between the transmitted and the reflected rays is 

calculated according to Fresnel’s reflection and transmission 

coefficients, for the s (𝑅𝑅𝑠𝑠) and p (𝑅𝑅𝑝𝑝) polarised light:[10] 

Rs= �
n1cosθi − n2cosθt
n1cosθi + n2cosθt

�
2

;𝑅𝑅𝑝𝑝 = �
n1cos𝜃𝜃𝑡𝑡 − n2cos𝜃𝜃𝑖𝑖
n1cos𝜃𝜃𝑡𝑡 + n2cos𝜃𝜃𝑖𝑖

�
2

2.2 

where θ𝑖𝑖 and 𝜃𝜃𝑡𝑡 are the angle between the direction of 

propagation of the incident and refracted ray with the normal 

to the surface at the incidence point, respectively. From this 

follows that the transmission coefficients (𝑇𝑇) for the 𝑠𝑠-

polarized light is 𝑇𝑇𝑠𝑠 = 1 − 𝑅𝑅𝑠𝑠, and for the 𝑝𝑝-polarized light is 

𝑇𝑇𝑝𝑝 = 1 − 𝑅𝑅𝑝𝑝. For circularly polarised or unpolarised light, 𝑅𝑅 

and 𝑇𝑇 are treated as an equal mix of the two polarisations, 

and the total reflection and transmission coefficients are 𝑅𝑅 =

�𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑝𝑝�/2 and 𝑇𝑇 = �𝑇𝑇𝑝𝑝 + 𝑇𝑇𝑠𝑠�/2.[10]  
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Thus, the optical forces generated by a stream of 

photons on the surface can be calculated as the rate of 

change of momentum between the incident, reflected and 

transmitted ray:[10] 

𝑭𝑭𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑛𝑛1𝑃𝑃𝑖𝑖
𝑐𝑐

𝒓𝒓�𝑖𝑖 −
𝑛𝑛1𝑃𝑃𝑟𝑟
𝑐𝑐

𝒓𝒓�𝑟𝑟 −
𝑛𝑛2𝑃𝑃𝑡𝑡
𝑐𝑐

𝒓𝒓�𝑡𝑡 2.2 

where 𝑛𝑛1 and 𝑛𝑛2 are defined previously, 𝑃𝑃𝑖𝑖 , 𝑃𝑃𝑟𝑟  and 𝑃𝑃𝑡𝑡 are the 

power of the incident, reflected and transmitted ray 

respectively, c is the speed of light in vacuum and 𝒓𝒓�𝑖𝑖, 𝒓𝒓�𝑟𝑟 and 

𝒓𝒓�𝑡𝑡 are the direction of the incident, reflected and transmitted 

light ray. The first term on the right-hand side of eq. 2.2 

represents the rate at which the momentum is incident on the 

surface, the second two are the rate at which it leaves the 

surface after reflection and transmission respectively. This 

difference is the total force exerted by a ray on a given 

surface. 

However, if the light rays hit a closed surface (e.g. a 

spherical particle), the transmitted light ray at the first surface 

becomes the incident ray at the rear surface where it is again 

partially reflected and partially transmitted, Figure 2.1-b. The 

reflected ray at rear surface continues to be incident on the 

surface with decreased amplitude. Therefore, the total force 

exerted by the ray on a closed surface must account for this 

infinite reflection/refraction:[10] 
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𝑭𝑭𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑛𝑛1𝑃𝑃𝑖𝑖
𝑐𝑐

𝒓𝒓�𝑖𝑖 −
𝑛𝑛1𝑃𝑃𝑟𝑟
𝑐𝑐

𝒓𝒓�𝑟𝑟 − �
𝑛𝑛𝑖𝑖𝑃𝑃𝑡𝑡,𝑛𝑛

𝑐𝑐
𝒓𝒓�𝑖𝑖,𝑛𝑛.

+∞

𝑛𝑛 = 1

2.3 

In practice, the last in term on the right hand side of 

2.3 is truncated after few terms since the total reflected power 

decreases considerably, especially for biological sample. 

Since 𝒓𝒓𝑖𝑖 , 𝒓𝒓𝑟𝑟 and 𝒓𝒓𝑡𝑡 are all contained in the plane of incidence, 

the components of 𝑭𝑭𝑟𝑟𝑟𝑟𝑟𝑟 are contained in the same plane. It 

is then possible to split 𝑭𝑭𝑟𝑟𝑟𝑟𝑟𝑟 into the optical scattering force 

(𝑭𝑭𝑟𝑟𝑟𝑟𝑟𝑟,𝑠𝑠), that pushes the particle in the direction of 

propagation of the light ray and into the optical gradient force 

(𝑭𝑭𝑟𝑟𝑟𝑟𝑟𝑟,𝑔𝑔) that acts into the direction transverse to the light ray 

axis.[10] Lastly, the total optical force due to a set of 𝑚𝑚 light 

rays can be calculated as the sum of the contribution of each 

single light ray:[10] 

𝑭𝑭𝐺𝐺𝐺𝐺 = �𝑭𝑭𝑟𝑟𝑟𝑟𝑟𝑟
(𝑚𝑚)  =

𝑚𝑚

 

��
𝑛𝑛1𝑃𝑃𝑖𝑖

(𝑚𝑚)

𝑐𝑐
𝒓𝒓�𝑖𝑖

(𝑚𝑚) −
𝑛𝑛1𝑃𝑃𝑟𝑟

(𝑚𝑚)

𝑐𝑐
𝒓𝒓�𝑟𝑟,0

(𝑚𝑚) − �
𝑛𝑛𝑖𝑖𝑃𝑃𝑡𝑡,𝑛𝑛

(𝑚𝑚)

𝑐𝑐
𝒓𝒓�𝑡𝑡,𝑛𝑛

(𝑚𝑚)
+∞

𝑛𝑛 = 1

�
𝑚𝑚

. 2.4 

The total optical force (𝑭𝑭𝐺𝐺𝐺𝐺) acts on the centre of mass of the 

particle.  
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Figure 2.1. a) Schematisation of the law of reflection and Snell’s Law The 

black arrows indicate the polarization. b) Interaction of a single light ray 

with a cross-section of a spherical particle.  

However, significant torques can arise if the light rays 

interact with non-spherical particles, such as a cylinder, an 

ellipsoid, or (of particular relevance for this thesis) an RBC. 

The torque generated by a single light ray can be calculated 

as the difference of the angular momentum associated with 

the incoming ray and that of the outgoing rays:[10] 

𝑻𝑻𝑟𝑟𝑟𝑟𝑟𝑟
(𝑚𝑚) =  (𝑷𝑷0 − 𝑪𝑪) ×

𝑛𝑛𝑖𝑖𝑃𝑃𝑖𝑖
(𝑚𝑚)

𝑐𝑐
𝒓𝒓�𝑖𝑖

(𝑚𝑚) − (𝑷𝑷0 − 𝑪𝑪) ×
𝑛𝑛𝑖𝑖𝑃𝑃𝑟𝑟

(𝑚𝑚)

𝑐𝑐
𝒓𝒓�𝑟𝑟,0

(𝑚𝑚) 

− �(𝑷𝑷𝑛𝑛 − 𝑪𝑪) ×
𝑛𝑛𝑖𝑖𝑃𝑃𝑡𝑡,𝑛𝑛

(𝑚𝑚)

𝑐𝑐
𝒓𝒓�𝑡𝑡,𝑛𝑛

(𝑚𝑚)
+∞

𝑛𝑛=1

2.5 
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where C is the centre of mass of the object, 𝑷𝑷0 is the 

incidence point of the incoming ray and 𝑷𝑷𝑛𝑛 are the scattering 

points of the subsequently scattered rays.[10]  

 
Figure 2.2. Optical torque acting on a non-spherical particle. On the left is 

shown the ray tracing of a light ray interacting with a cylindrical particle in 

three dimensions. On the right, the torques (black arrows) generated by a 

couple of light rays incident on a cylindrical particle are schematically 

depicted.[10] 

Therefore, the total torque acting on the object is the 

sum of each contribution. Interestingly, the generated 

torques align the asymmetric particle along the axis of 

propagation of the light beam, as shown in Figure 2.2, so that 

it is rotationally confined as well as translationally confined, 

although the details of the orientation depend on the shape 

of the particle. Another characteristic example is given by 

ellipsoidal particles which tend to align their major axis along 
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the propagation direction of the light beam when optically 

trapped by an optical tweezers. 

2.2.2. Optical trap 

Optical tweezers (OT) is a technique able to three-

dimensionally confine and manipulate microscopic objects 

through single or multiple laser beams. Figure 2.3 

schematically depicts the trapping mechanism for a spherical 

particle with a refractive index higher than that of the 

surrounding medium. The laser beam’s intensity distribution 

is considered Gaussian, and for simplicity, only two highly 

converging light rays originating at the fringe of the beam are 

shown. 

If the spherical particle centre of mass (CM) does not 

lie on the optical axis, the two light rays strike the particle’s 

surface asymmetrically. Consequently, the forces generated 

by the two light rays do not cancel out, and as a result of 

Newton’s action-reaction law, the total optical force acting on 

the centre of mass of the particle pulls the object towards the 

optical axis, Figure 2.3-a. Simultaneously, the scattering 

force generated by the two light rays push the particle along 

the direction of propagation of the light beam. If the particle 

becomes consistently displaced in the axial direction, the two 

highly converging light rays generate a total optical force that 

pulls the object towards the region of higher intensity (i.e. the 
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beam focus), Figure 2.3-b. Importantly, the strong light 

convergence is essential in assuring a stable axial trapping. 

In fact, the absence of a strong light gradient in the direction 

of propagation of the light beam would prevent the 

emergence of a gradient force that counteracts the scattering 

component which would end up propelling the particle along 

the optical axis. 

 
Figure 2.3. Schematic depiction of the working principle of optical tweezer: 

restoring forces generated by a couple of highly converging light rays in a 

direction transverse to the optical axis (a), on the optical axis (b), and 

particle at the point of equilibrium (c). 

However, the axial restoring force is not able to counteract 

the scattering force completely, and the two forces cancel out 
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in a position slightly over the beam focus, Figure 2.3-c. 

Importantly, there would be no stable axial trapping in 

absence of highly converging light rays, and gravity or other 

forces would be needed to obtain stable axial trapping.[12] 

The location where all the forces cancel out is called 

equilibrium position. Hence, for each particle displacements 

from the equilibrium position, or at least for small 

displacements from the equilibrium position, the particle is 

subjected to a restoring force that is proportional to the 

particle’s displacement from the equilibrium position:[10] 

�
𝐹𝐹𝐺𝐺𝐺𝐺,𝑥𝑥 ≈  −𝑘𝑘𝑥𝑥�𝑥𝑥 − 𝑥𝑥𝑒𝑒𝑒𝑒�
𝐹𝐹𝐺𝐺𝐺𝐺,𝑦𝑦 ≈  −𝑘𝑘𝑦𝑦�𝑦𝑦 − 𝑦𝑦𝑒𝑒𝑒𝑒�
𝐹𝐹𝐺𝐺𝐺𝐺,𝑧𝑧 ≈  −𝑘𝑘𝑧𝑧�𝑧𝑧 − 𝑧𝑧𝑒𝑒𝑒𝑒�

2.6 

where kx, ky and kz are the spring constant or trap stiffness. 

The trap stiffnesses are used to characterise the trap’s 

strength along the different cartesian directions.[10] 

Non-spherical particles find an equilibrium configuration 

when the major axis is aligned with the optical axis. Similarly 

to the previous case, restoring torques are present for 

particles’ rotation around each of the Cartesian components 

(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, respectively 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾) which can be characterised 

by the rotational trapping stiffnesses:[10] 
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�
𝑇𝑇𝐺𝐺𝐺𝐺,𝑥𝑥 ≈ −𝑘𝑘𝛼𝛼�𝛼𝛼 − 𝛼𝛼𝑒𝑒𝑒𝑒�
𝑇𝑇𝐺𝐺𝐺𝐺,𝑦𝑦 ≈ −𝑘𝑘𝛽𝛽�𝛽𝛽 − 𝛽𝛽𝑒𝑒𝑒𝑒�
𝑇𝑇𝐺𝐺𝐺𝐺,𝑧𝑧 ≈ −𝑘𝑘𝛾𝛾�𝛾𝛾 − 𝛾𝛾𝑒𝑒𝑒𝑒�

2.7 

2.2.3. Particle dynamics 

Colloidal particles suspended within a fluid constantly 

change their position because of the thermal agitation of the 

surrounding molecules. This motion is known as Brownian 

Motion (BM) named after the botanist Robert Brown who first 

described this erratic particles’ movement.[13] BM is the 

opponent to the confining forces of optical tweezers. Even if 

OT can decrease the amplitude of this motion, BM cannot be 

totally eliminated, even at thermal equilibrium. For this 

reason, in this section, I introduce the mathematical 

framework to simulate the motion of an optically trapped 

spherical colloid.  
In principle, it is possible to write down and solve the 

equation of motion for every molecule of the fluid to calculate 

the trajectory of the larger colloid. However, this is a 

prohibitive task given the huge number of molecules of fluids 

involved in real situations.[14] Conversely, it is possible to 

reduce the number of effective degrees of freedom by 

describing the stochastic trajectory of a single particle with 

differential equations to which a stochastic force is added to 
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account for the interaction with the molecules of the 

surrounding fluid.[15] 

2.2.3.1. Langevin equation 

Brownian particles are subjected to Newton’s second 

law of motion, which states that the total force acting on an 

object is equal to the mass of the object times its 

acceleration:  

𝐅𝐅𝐭𝐭𝐭𝐭𝐭𝐭 = m𝐯̇𝐯(t). 2.8 

If we assume the mass of the particle to be unity, the 

equation of motion for a particle in a viscous fluid can be 

written as:  

𝐯̇𝐯(t) = −γ𝐯𝐯(t) + 𝛘𝛘(t) 2.9 

where γ is the particle friction coefficient, and for a spherical 

particle with radius a, moving in a fluid of viscosity η, is 

defined by Stokes’ law:  

γ = 6πηa. 2.10 
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The term 𝛘𝛘(t) is a random force that accounts for the 

particles’ collision with the surrounding molecules of fluid and 

has the following properties:[16] 
 

1. The mean of 𝛘𝛘(t) vanishes: 

〈𝛘𝛘(t)〉 = 0; 2.11 

2.  It is uncorrelated with the particle’s position: 

〈𝛘𝛘(t)𝐫𝐫(t)〉 = 0; 2.12 

3. 𝛘𝛘(t) is caused by the collision with the molecules of the 

surrounding fluids and varies rapidly. This is expressed 

by postulating for its autocorrelation function:  

〈𝛘𝛘(t1)𝛘𝛘(t2)〉 = Γδ(t1 − t2) 2.13 

where Γ is a constant (see next paragraph), and δ is the 

Dirac delta function with the following properties:  

δ(t1 − t2) = �
∞, t1  =  t2
0,  t1  ≠  t2

2.14 
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The basic idea is that each collision is instantaneous and that 

successive collisions are uncorrelated. Equation 2.9 is known 

as the Langevin equation.[15,16] 

2.2.3.2. Fluctuation-dissipation theorem 

It is impossible to know the time-dependence of the 

stochastic force term 𝛘𝛘(t), so it is assumed as a stochastic 

variable with some plausible distribution. It is possible to find 

a solution to eq. 2.9 in terms of 𝛘𝛘(t), allowing us to identify 

the mean and the variance of the velocity and to obtain a 

relationship that defines the magnitude of the fluctuating 

term. Eq. 2.9 can be solved with the use of integration factor 

eγt: 

𝐯𝐯(t) = 𝐯𝐯0e−γt + � dse−γ(t−s)𝛘𝛘(s)
t

0

2.14 

where 𝐯𝐯0 is the velocity at t = 0. Taking the average of the 

velocity over an ensemble of trajectories and employing eq. 

2.11, we find that: 

〈𝐯𝐯(t)〉 = 𝐯𝐯0e−γt 2.15 

which indicates that the average velocity of a Brownian 

particle decays exponentially with a characteristic time scale 
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1/γ. This time scale (1/γ) is known as momentum relaxation 

time and is typically in the orders of tens of nanoseconds. We 

also take the variance of the velocity:  

〈𝐯𝐯2(t)〉

= e−2γt𝐯𝐯02 + ��ds1ds2e−γ(t−s1)e−γ(t−s2)〈𝛘𝛘(s1)𝛘𝛘(s2)〉
t

0

t

0

. 2.16  

Given eq. 2.13 and the properties of δ, the only contribution 

to the integral in eq. 2.16 is when s1 = s2. Thus:  

〈𝐯𝐯2(t)〉 = e−2γt𝐯𝐯02 + Γ�ds1e−2γ(t−s1)

t

0

 

= e−2γt𝐯𝐯02 +
Γ
2γ

(1 − e−2γt). 2.17 

at long times, t → ∞, by the equipartition theorem, the mean 

squared velocity has the known thermal value kbT, where kb 

is the Boltzmann constant and T is the absolute temperature, 

and we see that:  

〈𝐯𝐯2(∞)〉 =
Γ
2γ

= kbT. 2.18 

We have obtained the constant Γ that describes the size of 

the fluctuation term in eq. 2.13: 
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Γ = 2γkbT. 2.19 

The size of the fluctuations is dictated only by the 

temperature and the damping coefficient γ. Eq. 2.19 is an 

expression of the fluctuation-dissipation theorem, which 

relates the size of the fluctuation to the rate of dissipation (γ). 

Eq. 2.13 may now be written as:[16] 

〈𝛘𝛘(t1)𝛘𝛘(t2)〉 = 2γkbTδ(t1 − t2). 2.20 

As we will see later in the text, the intensity of the noise 

fluctuation can be used to extract important trap information 

(e.g. trap constants). 

2.2.3.3. Overdamped Langevin equation 

Until now, we have considered a Langevin equation 

that describes the free diffusion of a Brownian particle. We 

now include an additional force term to account for the 

confining effect of an optical trapping potential, U(𝐱𝐱): 

m𝐯̇𝐯(t) = −γ𝐯𝐯(t) + 𝛘𝛘(t) −
dU(𝐱𝐱)

dx
. 2.21 

The numerical experiments described in this thesis 

takes place in a low-Reynolds-number regime. The Reynolds 
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number, Re =  avρ/η (where ρ is the density of the fluid and 

η the viscosity), describes the ratio of inertial and viscous 

forces acting on a particle moving through a fluid. In the low-

Reynolds number regime (Re ≤ 1), viscosity dominates over 

inertia, which means that the inertial term in eq. 2.21 

(−m𝐯̇𝐯(t)) is negligible and may be omitted: 

0 = −γ𝐯𝐯(t) + 𝛘𝛘(t) −
dU(𝐱𝐱)

dx
. 2.22 

The force produced by the optical tweezers behaves like the 

force produced by a Hookean spring (eq. 2.6), and thus the 

potential has the form U(𝐱𝐱) = 1
2

k𝐱𝐱2. Eq. 2.22 in terms of the 

positions, becomes:  

γ𝐱̇𝐱(t) = 𝛘𝛘(t) − k𝐱𝐱(t) 2.23 

where k is the trap stiffness and 𝐱𝐱(t) is the particle’s position 

relative to the minimum of the Harmonic potential. The 

solution of eq. 2.23, with initial condition 𝐱𝐱(0) = 𝐱𝐱′, is:  

𝒙𝒙(𝑡𝑡) = 𝒙𝒙′𝑒𝑒
−𝑡𝑡
𝜏𝜏 +

1
𝛾𝛾
�𝑑𝑑𝑡𝑡′𝑒𝑒

�𝑡𝑡−𝑡𝑡′�
𝜏𝜏 𝝌𝝌(𝑡𝑡). 2.24 

Eq. 2.24 is an exponential decay towards equilibrium. This 

tells us that the system is an overdamped oscillator with a 

decay constant 𝜔𝜔𝑂𝑂𝑂𝑂 = 𝛾𝛾/𝑘𝑘, and this is the position relaxation 
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time, which is a much longer timescale (milliseconds) than 

the momentum relaxation time.[14,17] 

2.2.3.4. Position auto-correlation function 

The autocorrelation function (ACF) is a valuable tool 

for the characterisation of a harmonic trapping potential. The 

ACF correlates a signal with itself as a function of lag-time. 

The ACF describes how similar a particle’s position is to 

some initial position. At short lag-time, the particle does not 

move far from its initial position, so it will be highly correlated. 

At long lag-time, the particle is unlikely to have remained 

close to its initial location and thus becomes uncorrelated 

with the initial position. The ACF described the temporal 

transition from correlation to non-correlation. This can be 

thought of as the time taken by a particle to ‘forget’ its original 

position. The position ACF is defined as:[14,18] 

𝐶𝐶𝑥𝑥𝑥𝑥(𝑡𝑡) = 〈𝒙𝒙(0) ∙ 𝒙𝒙(𝑡𝑡)〉. 2.25 

If we take the time derivative of the auto-correlation: 

𝐶̇𝐶𝑥𝑥𝑥𝑥(𝑡𝑡) = 〈𝒙𝒙(0) ∙ 𝒙̇𝒙(𝑡𝑡)〉 2.26 

and substitute for the time-derivative term in eq. 2.23, we find 

that:  



 56 

𝐶̇𝐶𝑥𝑥𝑥𝑥(𝑡𝑡) =
1
𝛾𝛾
〈𝒙𝒙(0) ∙ �𝛘𝛘(t) − k𝐱𝐱(t)�〉. 2.27 

Now, because 𝒙𝒙(𝑡𝑡) and 𝛘𝛘(t) are uncorrelated at all times 

other than t = 0, the term 〈x(0)𝛘𝛘(t)〉 is zero and:  

𝐶̇𝐶𝑥𝑥𝑥𝑥(𝑡𝑡) = −
𝑘𝑘
𝛾𝛾
〈𝒙𝒙(0) ∙ 𝐱𝐱(t)〉 = −

𝑘𝑘
𝛾𝛾
𝐶𝐶𝑥𝑥𝑥𝑥 2.28 

which has the simple solution:  

Cxx(t) = Cxx(0)e−
k
γt. 2.29 

An exponential decay describes the transition from the 

correlation to non-correlation with a characteristic frequency 

that depends on the trap spring constant and the drag 

coefficient (ωOT = γ/k). At zero lag-time, the energy stored in 

the trap is:  

U =
k
2
〈x2(0)〉 =

k
2

Cxx(0) 2.30 

we can equate this to kbT/2 via the equipartition theorem, 

allowing us to write:  

Cxx(t) =
kbT

k
e−

k
γt. 2.31 
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Two assumptions have been made to arrive at this equality. 

Firstly, U(𝐱𝐱) has been approximated as harmonic. 

Accordingly, we assume a linear response of the restoring 

force for small particle’s displacements from its equilibrium. 

Secondly, the force field has been approximated as 

conservative. 

2.2.3.5. Brownian dynamics simulations 

The Langevin equation can be solved numerically to 

obtain the time evolution of the position of the Brownian 

particle. This offers a practical methodology for simulating 

experimental particle’s trajectories. The basic idea is to 

estimate the continuous-time solution, 𝐱𝐱(t), with a discrete-

time series, xi. The discrete terms of the time sequence are 

obtained by recursively solving the Langevin equation at 

finite time steps, 𝑡𝑡𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖. For determined values of ∆𝑡𝑡, the 

discrete terms (i.e. 𝑥𝑥𝑖𝑖) are good approximations of 

continuous-time solution 𝒙𝒙(𝑡𝑡), as it will be explained shortly 

after in the text. 

The overdamped Langevin equation (eq. 2.23) can be re-

written as:[14] 

𝒙̇𝒙(𝑡𝑡) = −
𝑘𝑘
𝛾𝛾
𝒙𝒙(𝑡𝑡) + √2𝛤𝛤𝑊𝑊(𝑡𝑡) 2.32 

where W(t) is a white noise with the following properties:  
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1. ⟨𝑊𝑊(𝑡𝑡)⟩ = 0 for each 𝑡𝑡; 

2. 〈𝑊𝑊(𝑡𝑡)2〉 = 1 for each 𝑡𝑡; 

3. 𝑊𝑊(𝑡𝑡1) and 𝑊𝑊(𝑡𝑡2) are independent of each other for 𝑡𝑡1 ≠

𝑡𝑡2.  

To write the finite-difference equation, the particle position 

(i.e. 𝒙𝒙(𝑡𝑡)) and its time derivative have to be replaced in eq. 

2.32 with the following: 

𝒙𝒙(𝑡𝑡) → 𝒙𝒙𝑖𝑖;          𝒙̇𝒙(𝑡𝑡) →
𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑖𝑖−1

∆𝑡𝑡
. 2.33 

The noise is included in the finite-difference scheme as a 

sequence of random numbers that mimic the properties of 

W(t):  

 

1. Wi must be a series of random numbers with zero mean; 

2. Wi must satisfy the condition that: 

⟨(Wi∆t)2⟩
∆t

= 1 

thus ensuring that the variance per unit time is unitary; 

3. Wi and Wj must be independent for i ≠ j. 
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Therefore, it will be used a sequence of random numbers with 

zero mean and variance 1/∆t. Practically, this can be 

obtained by generating a sequence wI of Gaussian-

distributed random numbers with zero mean and unitary 

variance, and then rescale it to get the series Wi = wi/√∆t 

with variance 1/∆t.[14] Therefore, eq. 2.32 becomes: 

𝐱𝐱i = 𝐱𝐱i−1 −
k
γ
𝐱𝐱i−1∆t + √2Γ∆t wi 2.34 

where the second term on the right-hand side is the 

deterministic contribution to the particle’s motion (i.e. optical 

trap), and the third term is the diffusive term.  

In performing the numerical simulation, ∆t should be 

chosen to be significantly smaller than the relaxation time of 

the trapped particle, 𝜔𝜔𝑂𝑂𝑂𝑂 = 𝛾𝛾/𝑘𝑘. In the case that ∆t ≳ ω, the 

simulation will show unphysical behaviour, and the particle 

may escape the trap or appear to oscillate. Moreover, ∆t 

should be considerably longer than the momentum relaxation 

time, ωm = m
γ
. If ∆t ≲ ωm, the ballistic motion of the particle 

becomes significant, and the over-damped Langevin 

equation cannot describe the dynamics of the particle.[14,19] 

Figure 2.4-a shows the trajectories simulated in 

presence (red trajectory) and absence (blue trajectory) of a 

confining potential acting on a spherical particle. Here it can 

be seen the effect of the confining potential force of eq. 2.32. 
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In fact, a particle that is not subjected to restoring forces is 

free to diffuse away from the original position with an erratic 

motion typical of Brownian particles. On the contrary, an 

optically trapped particle explores an ellipsoidal volume in the 

vicinity of the objective focus.  

 
Figure 2.4. a) Brownian dynamics simulation of an optically trapped particle 

and a freely diffusive particle and autocorrelation analysis of the trapped 

particle (b) 

The asymmetry between the volume explored in the 

𝑥𝑥- and 𝑦𝑦-direction compared to the 𝑧𝑧-direction is a 

consequence of the scattering force acting on the dielectric 

colloid. As mentioned before, the autocorrelation analysis 

can be used to extract the stiffness of the optical trap. In 

Figure 2.4-b, the spatial autocorrelation function (only along 

the 𝑥𝑥-direction) can be fitted with an equation of the form of 

eq. 2.31. In this example, the particle has a radius a = 2 μm, 

the system’s temperature is 293 K, the viscosity of the water 
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(η) is 0.001 Pa·s. Therefore, the friction coefficient (γ) can be 

calculated via Stokes’ equation (γ = 6·π·η·a = 3.97 x 10-8 kg·s-

1), and the trap stiffness obtained by the parameters of the fit. 

The trap stiffness is 𝑘𝑘𝑥𝑥 = 1.011 pN·μm-1 in very good 

agreement with the 𝑘𝑘𝑥𝑥 used for the simulation (𝑘𝑘𝑥𝑥= 1 pN·μm-

1).  

In this Chapter I introduced the underlying physics 

that is require in this thesis for the study of particles trapped 

in optical tweezer, namely the mechanism by which force is 

exerted in the geometrical optics approximation, and the 

Brownian motion of the particles as well the methodology to 

determine the trap stiffness from the Brownian motion. 
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3. THEORETICAL INVESTIGATION OF 
OPTICAL TRAPPING OF 
BICONCAVE RED BLOOD CELL 
WITH SINGLE- AND MULTI-BEAMS 
OPTICAL TWEEZER 

In this chapter I present the result regarding the 

theoretical investigation of optical trapping of healthy 

biconcave red blood cell in the geometrical optics 

approximation. Initially, I introduce the ray tracing approach 

used to perform the geometrical optics calculations that are 

used extensively throughout the thesis. Successively, I 

propose the methodology used to characterize the optical 

trapping of a healthy erythrocyte in the simple case of a 

single-beam optical tweezer. Lastly, I investigate the optical 

trapping of healthy red blood cell with a double-, triple- and 

four-beam optical tweezers. 

3.1. Introduction 

The application of optical tweezers in red blood cell 

(RBC) studies has seen a rapid growth in the last two 

decades.[1] Two main approaches to optically trap RBC have 

been adopted so far. The first contemplates the use of 
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handles, such as polystyrene or silica microsphere, which are 

allowed to adhere to the cell membrane and are then used to 

trap, manipulate, or stretch the cell.[1,2] In the second 

mechanism, the cell is confined and manipulated by a single 

or multiple focused laser beams which illuminate the cell 

directly.[1,3] The latter is referred to as direct trapping 

henceforth. Since the direct trapping has been previously 

used in our laboratory to optically trap erythrocytes,[4,5] in the 

remainder of this thesis, only the direct trapping of RBC will 

be considered.  

A single-beam optical tweezer (SBOT) is the most 

straightforward option for the direct trapping of a RBC. In a 

representative experiment, the plane of the RBC is initially 

transverse to the propagating light beam, from now on 

referred to as 'flat' configuration, Figure 3.1-a. The optical 

force ‘draws’ the RBC into the beam(s) while optical torques 

rotates the cell, such that its plane becomes oriented parallel 

to the optical axis, Figure 3.1-a and -b. This phenomenon is 

referred to as the RBC getting folded into an optical trap and 

this RBC configuration is referred to as 'folded' configuration 

henceforward.[1,6]  
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Figure 3.1. a) Schematic depiction of the equilibrium configuration of a 

biconcave erythrocyte trapped by a single-beam optical tweezer. b) 

Micrograph of an RBC trapped by a single-beam optical trap. The red cross 

indicates the approximate trap position. Image adapted from [3]. 

SBOT can be used for a variety of different analytical 

applications. For example, the single-beam set-up has been 

used to study the trapping dynamics of RBCs, whose shapes 

are slightly modified by the osmolarity of the cell suspension 

medium.[6] A more intriguing application of a single-beam set-

up is given in [7]. In their research, Brandão and collaborators 

measured the elasticity and the viscosity of healthy and 

unhealthy RBCs. The authors used a SBOT to keep the RBC 

in the 'folded' configuration while a fluid with a defined 

velocity deforms the cell in the direction of flow.  
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Figure 3.2. RBC trapping with a double-beam optical tweezer. a) 

Schematic depiction of an RBC in its equilibrium configuration. b) 

Experimental observation of an RBC optically trapped by a double-beam 

optical tweezer. The red crosses indicate the approximate trap position. 

Image adapted from [5]. 

An experimental configuration with increased 

complexity is given by a double-beam optical tweezer 

(DBOT). In DBOT, two beams are used to directly trap the 

RBC. Importantly, the beams' foci must be spaced to fall 

within the RBC’s border, at least initially, Figure 3.2-a and -

b.[5] DBOT has been used mainly to stretch the RBC along 

the line connecting the two beams' foci. For example, Liao et 

al. studied the transverse extent of an RBC stretch using a 

rapidly jumping beam between two points. After the cell gets 

trapped, by increasing the spacing between the points in 

which the beams jump, they could induce and measure the 

deformation of the RBC.[8] More recently, this methodology 
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(with two static beams) has also been used to measure and 

correlate the deformability of the RBC of patients affected by 

type 2 diabetes with diabetic retinopathy.[4] 

Other applications of OT to RBC relies on the 

combination of spectroscopic techniques such as Raman 

spectroscopy with multi-beams optical tweezer, application 

often called Raman-Tweezers (RT). An elegant example of 

the use of RT to RBC studies was given by G. Rusciano et 

al.[9] In these experiments a four-beams optical tweezer 

(FBOT) was used to orient and maintain the cell in the 'flat' 

configuration, while a fifth laser beam with a different 

wavelength scanned the cell to excite the Raman mode of 

the biomolecule of interest, Figure 3.3-a and -b. With this set-

up, the investigators were able to obtain 2D-maps of the 

distribution of the biomolecules within the cell. Interestingly, 

the researchers were able to cancel out the torques 

contribution due to each beam, which should induce the cell 

folding, so that the equilibrium configuration is for a RBC in 

its 'flat' configuration as shown in Figure 3.3-b. 
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Figure 3.3. RBC trapping with a four-beam optical tweezer. a) Schematic 

depiction of an RBC in its equilibrium configuration. The green light beam 

indicates the beam used for Raman spectroscopy. b) Micrograph of an 

RBC optically trapped by a four-beam optical tweezer. The red crosses 

indicate the approximate trap position. Image adapted from [9]. 

Although numerous experiments demonstrated how it 

is possible to optically confine healthy RBCs and control the 

orientation by using a different number of laser beams, 

relatively little theoretical work has been performed to 

investigate the trapping mechanism necessary for these 

experiments and the cell stretching experiments described 

above. To the best of my knowledge, only one work explores 

the RBC equilibrium configuration in an optical trap 

theoretically.[10] Grover et al. investigated the final orientation 

of an RBC trapped by a counter-propagating beam trap. 

However, the trapping mechanism of a counter-propagating 

beam trap is fundamentally different from that of OT since it 
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relies on a balance of optical scattering forces for stability. A 

theoretical investigation of the mechanism of trapping is 

necessary to understand better how the intricate shape of the 

RBC (that is crucial for its function) affects the optical trapping 

via optical tweezers. Moreover, a methodology to calculate 

the optical forces and torques along with the trapping 

stiffnesses is vital for the experimentalists to optimize these 

parameters before performing real experiment on e.g. RBC 

deformability.  

For these reasons, in the next sections I will introduce 

a method to calculate the optical forces generated by tightly 

focused beam/beams on a healthy RBC in the geometrical 

optics approximation (GO). The methodology is then applied 

to study the trapping mechanism of an RBC extensively. 

3.2. Model 

In my model a three-dimensional Cartesian co-

ordinate system is considered. The light beams possess a 

Gaussian light intensity distribution and propagate along the 

+𝒛𝒛�. The wavelength of the light beam (1.064 μm) is selected 

to matches with the vast majority of experiments and to 

coincide with the light source present in our laboratory 

(Nd:YAG laser).[1,11]  

To illustrate the mode of operation some plausible 

values have been chosen for the beam waist at the back 
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aperture of the objective (50 μm), objective numerical 

aperture (1.3), and the objective back aperture (9.78 μm). In 

this conditions the objective's back aperture is completely 

overfilled by the incoming beam, and the high light rays' 

convergence is assured. It must be stressed that these 

values can be completely tuned according to the particular 

conditions one wants to explore. However, the tuning of these 

values could results in slightly different trap constants and 

positions of equilibrium obtained via the numerical 

simulations. The power of the beam is always 5 mW. In multi-

beam optical trap calculations, each beam has the properties 

just described.  

The beams’ power is kept in the mW range for two 

reasons. Firstly, high laser powers (>100 mW) can damage 

the cell significantly, and thus such conditions are unrealistic 

from an experimental point of view.[11] Secondly, as 

introduced previously in the text, the RBCs are elastic and 

can deform considerably under the effect of radiation 

pressure generated by a high power laser beam.[8,12] 

According to experiments, the RBC is immersed in a 

water-based medium (refractive index 𝑛𝑛1 = 1.33). The cell 

membrane is modelled as a single net line. The interior of the 

RBC is considered to be filled by a non-absorbing medium 

with isotropic physical properties. The refractive index of the 
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cell interior is 𝑛𝑛2  =  1.38, and the cell’s density is 1.11 

g/cm3.[13] 

The RBC is in its healthy biconcave disk conformation 

and the parameters describing the RBC disk are those 

reported by Evans and collaborators.[14] A radius of 3.91 μm 

characterises the RBC, the central dimple has a thickness of 

0.81 μm, while the thickest portion, located at 2.76 μm from 

the axis of symmetry, has a thickness of 2.52 μm. For the low 

optical powers used in the calculations the RBC is always 

considered to be non-deforming in response to radiation 

pressure. 

For biological samples such as RBC, the fraction of 

power that is reflected after a scattering event is very low (< 

0.001).[15] Therefore, only the first two scattering events are 

considered. 

Considering a cell radius of 𝑎𝑎= 3.91 μm, the medium 

refractive index 𝑛𝑛𝑚𝑚 = 1.33, a wavelength of the incoming 

beam λ0 = 1.064 μm, we found that the size parameter 𝜁𝜁 =

(2𝜋𝜋𝜋𝜋𝑛𝑛𝑚𝑚/𝜆𝜆0) ≈ 80. In this conditions, the GO optics 

approximation is entirely fulfilled. Thus, the optical forces 

acting on the RBC can be calculated with GO. However, to 

calculate the ray traces, an appropriate mathematical 

description of the RBC is needed. In the next section, the 

mathematical model used to describe a red blood cell outline 

is discussed.  
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3.3. Mathematical description of a RBC  

In chapter 1, I introduced the native structure of a 

healthy RBCs. Generally, the RBC shape is geometrically 

described as axially symmetric. The meridional cross-section 

is characterised by a radius (𝑟𝑟), a minimum thickness (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚), 

a maximum thickness (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚), and the radius where the 

maximum thickness occurs (𝑑𝑑). Several well-known and 

widely recognised models describing the biconcave shape of 

the RBC have been proposed, and an extensive overview of 

the available descriptions is given in the work proposed by 

Valchev and collaborators.[16] Here the authors provided a 

series of useful formulae that correlate the parameters 

describing the cell with the meridional cross-section. In 

Figure 3.4-a some of the available models describing the 

RBC are overimposed to the experimental data obtained by 

Evans et al., and reported as in Valchev’s work.[14,16] 
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Figure 3.4. a) Different models used to describe the RBC cross-section are 

plotted and compared to the experimental values obtained by Evans et al., 
[14] and vastly discussed by Valchev et al.[16] Thanks to the symmetry of the 

RBC geometry, the values of the meridional cross-section are plotted only 

for the first quadrant. b) Three-dimensional rendering of the RBC geometry 

described by the Evans-Fung model. 

Some of these models are relatively simple and 

describe the RBC meridional cross-section via biquadratic 

polynomials, such as the description based on Cassini’s oval 

or that offered by Kuchel-Fackerell’s model.[17,18] Even if 

these simple models can describe the rough outline, they fail 

to carefully represent the RBC’s curvature of the central 

dimple, Figure 3.4-a. As we will see in more detail later, this 

portion of the RBC is vital in determining the optical forces 

acting on the cell, and therefore the stability of the optical 

trap. 
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An improved version of the RBC description has been 

proposed by Yurkin and co-workers.[19] Although a significant 

enhancement in the RBC description is obtained, the model 

still fails to precisely describe the central dimple, Figure 3.4-

a. A significant improvement in the RBC’s morphology 

description can be obtained using polynomials of degree 

higher than four as proposed in [14], Figure 3.4-a. According 

to the Evans-Fung model, the thickness (𝑍𝑍) of a section of 

the RBC reads: 

𝑍𝑍(𝜌𝜌)  = �1 − �
𝜌𝜌
𝑟𝑟
�
2
�
1
2
�𝐶𝐶0 + 𝐶𝐶2 �

𝜌𝜌
𝑟𝑟
�
2

+ 𝐶𝐶4 �
𝜌𝜌
𝑟𝑟
�
4
�  3.1 

where 𝜌𝜌 is the radial distance from the axis of symmetry, 𝑟𝑟 

the cell radius and 𝐶𝐶0, 𝐶𝐶2 and 𝐶𝐶4 are numerical values that 

can be related to the observable parameters that describe 

the cell morphology through the following equations:  

𝐶𝐶0 =  
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
2𝑟𝑟

 

𝐶𝐶2 =
4𝑟𝑟2

2𝑑𝑑2
�−4𝐶𝐶0 +

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚|5𝑑𝑑2 − 16𝑟𝑟2|
(4𝑟𝑟2 − 𝑑𝑑2)3/2 � 3.2 

𝐶𝐶4  =  
16𝑟𝑟2

2𝑑𝑑4
�2𝐶𝐶0 +

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚(16𝑟𝑟2 − 3𝑑𝑑2)

𝑠𝑠𝑠𝑠𝑠𝑠(5𝑑𝑑2 − 16𝑟𝑟2)(16𝑟𝑟2 − 𝑑𝑑2)
3
2
� 

where 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑑𝑑 were defined previously and 𝑟𝑟 is the 

RBC radius.[14,16] Figure 3.4-b shows the 3D rendering of the 
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RBC surface described by the Evans-Fung model. With an 

accurate description of the RBC outline, it is possible to ray 

trace the optical rays and calculate the optical forces due to 

each ray. Due to its better ability to describe the RBC outline, 

the model proposed by Evans-Fung will be used in the 

remainder of this thesis. 

3.4. Ray tracing procedure for the RBC 

In this section, the algorithm used to trace the 

trajectories of the optical rays impinging on the RBC is 

described. The methodology is based on standard ray tracing 

procedure,[20] and is incorporated in a new object and used in 

the well-known Optical Tweezer In Geometrical Optics 

(OTGO) software.[21] 

During the ray-tracing procedure, two primary pieces 

of information must be geometrically extracted to describe 

the interaction between a light ray and the object: the 

intersection point between the ray and the object, and the unit 

normal vector at the point of intersection. Knowing these two 

quantities it is possible to obtain the angle of incidence of the 

light ray and describe the rays’ path according to Snell’s law 

and the law of reflection.  

A light ray can be defined by its origin 𝒐𝒐 = �𝑜𝑜𝑥𝑥 , 𝑜𝑜𝑦𝑦 , 𝑜𝑜𝑧𝑧� 

and its ending point 𝒆𝒆 = �𝑒𝑒𝑥𝑥 , 𝑒𝑒𝑦𝑦, 𝑒𝑒𝑧𝑧�. An optical ray (𝒑𝒑) is a 
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straight line which can be modelled by its origin and the 

displacement vector 𝒅𝒅 = 𝒆𝒆 − 𝒐𝒐 = �𝑑𝑑𝑥𝑥 ,𝑑𝑑𝑦𝑦,𝑑𝑑𝑧𝑧�, and a 

parameter 𝑡𝑡 ≥ 0. 𝑡𝑡 defines the distance from the origin of the 

vector along the ray. In terms of the three Cartesian 

components, this can be written as: 

�
𝑝𝑝𝑥𝑥  =  𝑜𝑜𝑥𝑥  +  𝑡𝑡𝑑𝑑𝑥𝑥
𝑝𝑝𝑦𝑦  =  𝑜𝑜𝑥𝑥  +  𝑡𝑡𝑑𝑑𝑦𝑦
𝑝𝑝𝑧𝑧  =  𝑜𝑜𝑧𝑧  +  𝑡𝑡𝑑𝑑𝑧𝑧

; 𝑡𝑡 ≥ 0. 3.3 

Thus, to find the intersection between the vector describing 

the light ray, and the object, 𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦, and 𝑝𝑝𝑧𝑧 must be replaced 

for 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 in the equation that describes the object. 

Transforming eq. 3.13.1 to Cartesian co-ordinates, and 

replacing 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 as just described, one obtains:  

�
𝑝𝑝𝑧𝑧
𝑅𝑅
�
2
−  �1 −

�𝑝𝑝𝑥𝑥2 + 𝑝𝑝𝑦𝑦2�
𝑟𝑟2

� 

�𝐶𝐶0 + 𝐶𝐶2 �
𝑝𝑝𝑥𝑥2 + 𝑝𝑝𝑦𝑦2

𝑟𝑟2
� + 𝐶𝐶4 �

𝑝𝑝𝑥𝑥2 + 𝑝𝑝𝑦𝑦2

𝑟𝑟2
�
2

�
2

= 0. 3.4 

Therefore, eq. 3.4 must be solved for 𝑡𝑡. 𝑡𝑡 is obtained via a 

numerical roots finder. If there are no real values for 𝑡𝑡, the 

ray does not intersect the object. If there are more than one 

real positive values for 𝑡𝑡, then the intersection point is the 

smallest. If there are only negative values, then the line 

describing the light ray intersects the object in a portion that 

does not describe the optical ray.  
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Figure 3.5-a and b illustrate the calculation of the 

intersection point between a light ray and the RBC surface 

calculated with the described methodology. Once the 

intersection point is obtained, the unit normal vector is 

calculated as the normalised gradient of the surface at the 

intersection point.  

If the RBC is roto-translated into a configuration that 

does not coincide with standard position (centre of mass in 

(0,0,0) and not rotated, in the 'flat' configuration), it is possible 

to take the inverse transformation of the light ray, and then 

calculate the intersection between the transformed light ray 

and the RBC in its standard position.  

 
Figure 3.5. a) Example of the intersection point between an RBC in its 

standard position and modelled with the Evans-Fung model and a light ray. 

The light originates at 𝒐𝒐 = (5,5,5) and end in 𝒆𝒆 = (0,0,0). b) Enlargement of 

(a) to better appreciate the intersection point. 
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In the specific case, the transformations are only 

rotation and translation and are encoded in the rotation (𝑹𝑹) 

and translation (𝑻𝑻) matrix. If the RBC in its standard position 

𝑩𝑩�  undergone the transformation TR to get in the desired 

position 𝑩𝑩: 

𝑩𝑩 =  𝑻𝑻𝑻𝑻𝑩𝑩� 3.5 

therefore, 𝒐𝒐 and 𝒅𝒅 need to be transformed as follows: 

𝒐𝒐�  =  𝑻𝑻−𝟏𝟏𝑹𝑹−𝟏𝟏𝒐𝒐;  𝒅𝒅�  =  𝑹𝑹−𝟏𝟏𝒅𝒅. 3.6 

Hence, the intersection point and the normal vector are 

calculated as previously. Lastly, the intersection point's co-

ordinates have to be roto-translated back to the initial 

condition, while the normal vector has to be rotated only.  

Figure 3.6 shows an example of the calculation of the 

intersection point for a roto-translated cell. This process is 

repeated for each light ray and for each scattering event. 
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Figure 3.6. a) Example of calculation of intersection point between a roto-

translated RBC modelled with the Evans- Fung model and a light ray. The 

light ray originates at 𝒐𝒐 = (5,5,5) and end in 𝒆𝒆 = (0,0,0). b) Enlargement of 

(a) to better appreciate the intersection point. 

3.5. Numerical computation 

In this section, the numerical investigation of optical 

forces acting on an RBC trapped by a single and multi-beams 

OT is presented. The investigation starts by analysing the 

forces and the torques exerted by a single-beam OT for 

RBC’s displacements and rotations in respect to all the 

Cartesian co-ordinates to illustrate the methodology used to 

investigate the equilibrium configuration. The same analysis 

is then used to characterise the optical trapping of a RBC with 

two, three and four focused laser beams in highly symmetric 

configurations. The entire set of numerical computations 
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made in this thesis has been carried out with a standard 

labtop unless otherwise stated. 

3.5.1. Single-beam optical tweezers 

3.5.1.1. Optical forces 

I first consider an RBC trapped by a single-beam 

optical tweezer (SBOT) in its 'folded' configuration. The RBC 

is firstly displaced along the 𝑥𝑥-direction (i.e. the direction 

perpendicular to the optical axis in the plane of the cell) 

between -3 μm and +3 μm with steps of 0.01 μm as 

schematically depicted in Figure 3.7-a. After each step, the 

optical forces are calculated in all three dimension via eq. 2.4. 

Since the density of the RBC (𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅  = 1.11 g/cm3 = 

1100 kg/m3) is higher than that of the surrounding medium 

(𝜌𝜌𝑤𝑤 = 1 g/cm3 = 1000 kg/m3), the action of a constant force 

acting along the negative 𝑧𝑧-direction must be considered: 

𝑭𝑭𝑏𝑏 = 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅(𝜌𝜌𝑅𝑅𝑅𝑅𝑅𝑅 − 𝜌𝜌𝑤𝑤)𝒈𝒈 3.7 

Considering a cell volume of 94 x 10-18 m3,[14] 𝑭𝑭𝑏𝑏 = -0.1 pN. 

𝑭𝑭𝑏𝑏 is always considered in my calculation unless otherwise 

stated.  

As a first step in my numerical investigation, I 

determine the convergence of the simulation as a function of 
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the number of light rays used to describe the light beam. To 

do so, I simulate numerically the total optical force (𝑭𝑭𝑡𝑡𝑡𝑡𝑡𝑡) 

acting on the centre of cell as function of the cell 

displacements from the origin of the reference frame along 

the 𝑥𝑥-direction. More information regarding the particular 

shape of the force-displacements curves will be given shortly 

after in the text.  

 
Figure 3.7. a) Simulation of 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) as a function of the number of light rays 

used in the simulation, and (b) time required to simulate points 601 as a 

function of the number of light rays. 

To evaluate the convergence, 𝑭𝑭𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) is simulated starting 

from 1·102 light rays with up to 1·104 light rays. Figure 3.7-a 

shows 𝑭𝑭𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) as a function of the number of light rays for cell 

displacement between 0 and 1 μm. Here, it can be seen that 

𝑭𝑭𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) rapidly converges as the number of light rays 

increases. In particular, if more than 1.6·103 light rays are 

used 𝑭𝑭𝑡𝑡𝑡𝑡𝑡𝑡(𝑥𝑥) seems not variate further. Moreover, the 
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computation time increases linearly with the number of light 

rays used in the simulation. Thus, since the convergence 

seemed reached when 1.6·103 are used, in the following of 

my thesis l make use of 1.6·103 (unless otherwise stated) to 

save computation time. 

Figure 3.8-b shows the total optical force in terms of 

the three Cartesian components as a function of the 

displacement of the cell’s centre mass (CM) from the origin 

(the focal point of the beam). For 𝑥𝑥-displacements, no net 

forces act along the 𝑦𝑦-component (𝐹𝐹𝑦𝑦,1(𝑥𝑥)). On the contrary, 

significant forces arise along 𝑥𝑥- and 𝑧𝑧-direction. 

𝐹𝐹𝑧𝑧,1(𝑥𝑥) originates from the scattering force generated by the 

trapping laser, and acts pushing the cell towards +𝒛𝒛�. The 

shape of 𝐹𝐹𝑥𝑥,1(𝑥𝑥) demonstrates the transverse trapping. Near 

the origin 𝐹𝐹𝑥𝑥,1(𝑥𝑥) has positive gradient, suggesting that the 

RBC is pushed away from the optical axis until it reaches a 

position where 𝐹𝐹𝑥𝑥,1(𝑥𝑥) vanishes with negative gradient at 

𝑥𝑥𝑒𝑒𝑒𝑒,1 = ±1.95 μm, Figure 3.8-b. This is a consequence of the 

biconcave disc shape of the RBC, since the RBC can 

maximize the overlap of the cell volume with the beam when 

the beam focus is near the thickest part of the cell. Via a linear 

fit to the roughly linear portion of the graph in the region of 

the equilibrium positions yields a (power normalized) spring 

constant of 𝑘𝑘𝑥𝑥,1 = 0.17 pN·μm-1·mW-1.  
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Figure 3.8. Force-displacement curve for cell displacements along the 𝑥𝑥-

direction. a) The cell is positioned in the folded state and then is displaced 

along the 𝑥𝑥-direction. In blue is highlighted the centre of mass of the cell. 

b) Total optical force as a function of the cell displacements from the origin 

of the Cartesian co-ordinates system. The total force is shown in terms of 

the Cartesian co-ordinates. c) Trap stiffness extrapolation from the force-

displacement curve. 

The origin of fluctuations present in the force traces 

must be sought in the finite number of light rays used for the 

simulation. As said above in the text, a consistent increment 

in the number of light rays would slightly decreases these 

features, but it does not eliminate completely, Figure 3.7-a. 

This would also increases the time of simulation consistently, 

Figure 3.7-b. Moreover, the peculiar shape of the red blood 

cell could induce total internal reflection when a light ray hit 

the interior of the dimple at specific angles. The latter could 

cause force spikes that reflects in inhomogeneities in the 

force trace as extensively discussed later in the text. 
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Subsequently, the RBC is placed at 𝑥𝑥𝑒𝑒𝑒𝑒,1 in its 'folded' 

configuration (Figure 3.9-a), and the force-displacements 

curve is obtained for displacements along the 𝑦𝑦-direction (i.e. 

normal to the cell’s plane), Figure 3.9-b. In this case the 

range of displacements is smaller compared to Figure 3.8-b, 

since the cell is thinner in this direction. From Figure 3.9-b 

can be seen that 𝐹𝐹𝑦𝑦,1(𝑦𝑦) decreases linearly within the interval 

analysed (vanishes at 𝑦𝑦𝑒𝑒𝑒𝑒,1 = 0 μm), and fitting a line to the 

linear part of the data I extrapolate the trap stiffness in this 

direction 𝑘𝑘𝑦𝑦,1 = 0.30 pN·μm-1·mW-1, Figure 3.9-c.  

 
Figure 3.9. Force-displacement curve for cell displacements along the y-

direction. a) The cell is positioned 𝑥𝑥𝑒𝑒𝑒𝑒,1, and then is displaced along the y-

direction. In blue is highlighted the centre of mass of the cell. b) Optical 

force as a function of the displacements from the origin (focal point of the 

beam). The force is presented in terms of the Cartesian co-ordinates. c) 

Trap stiffness extrapolation from the force-displacement curve. 

The RBC is then placed at 𝑥𝑥𝑒𝑒𝑒𝑒,1 and 𝑦𝑦𝑒𝑒𝑒𝑒,1, Figure 3.10-

a, and the optical forces are calculated for displacements 
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along the 𝑧𝑧-direction. Along this direction the trapping 

behaviour, that is the total force 𝐹𝐹𝑧𝑧,1(𝑧𝑧) = 0 with a negative 

slope around an equilibrium position, emerges only when the 

effective weight of the cell (approximately 0.1 pN) is also 

included and is located at 𝑧𝑧𝑒𝑒𝑒𝑒,1 = -0.8 μm. The linear fit of the 

approximately linear part of the data produces a (power 

normalized) trap stiffness 𝑘𝑘𝑧𝑧,1 = 0.04 pN·μm-1·mW-1. As 

expected, 𝑘𝑘𝑧𝑧,1 is smaller than 𝑘𝑘𝑥𝑥,1 and 𝑘𝑘𝑦𝑦,1 since the gradient 

in the light intensity is smaller along the 𝑧𝑧-direction. However, 

both 𝐹𝐹𝑥𝑥,1(𝑧𝑧) and 𝐹𝐹𝑧𝑧,1(𝑧𝑧) have an unexpected behaviour that 

suggests the impossibility to have a stable trapping for a 

single-beam optical tweezer since there are no positions for 

which the total force vanishes.  

 
Figure 3.10. Force-displacement plot for cell displacement along the z-

direction. a) The cell is positioned in the equilibrium position along x and y 

and then is displaced along the z-direction. In blue is highlighted the centre 

of mass of the cell. b) Optical force as a function of the displacements. The 

force is presented in terms of the Cartesian co-ordinates, c) Trap stiffness 

evaluation from the force-displacement curve. 
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To better comprehend this unexpected behaviour, 𝐹𝐹𝑥𝑥,1(𝑧𝑧) 

and 𝐹𝐹𝑧𝑧,1(𝑧𝑧) are decomposed in the scattering (𝑭𝑭𝑠𝑠,1) and 

gradient (𝑭𝑭𝑔𝑔,1) components, Figure 3.10-a and -b. Comparing 

𝐹𝐹𝑠𝑠,𝑧𝑧,1 and 𝐹𝐹𝑔𝑔,𝑧𝑧,1 with 𝐹𝐹𝑧𝑧,1(𝑧𝑧), it is possible to directly associate 

the unexpected behaviour of 𝐹𝐹𝑧𝑧,1(𝑧𝑧) to a strong scattering 

components that arises at slightly negative displacements. It 

could be hypothesised that this trend is related not only to the 

presence of the dimple but also to its shape. Moreover, even 

𝐹𝐹𝑥𝑥,1(𝑧𝑧) presents a significant scattering component and even 

in this case, this behaviour could be associated to the dimple. 

It seems clear that the dimple plays a critical role in 

determining the optical forces. In the next section, the 

influence of the dimple on the ray path and therefore on the 

optical forces is analysed meticulously. 

 
Figure 3.11. Scattering (a) and gradient (b) component of the total optical 

force acting on the centre of mass of the cell as a function of the cell’s 

displacement along the z-direction, Figure 3.9. 
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3.5.1.1.1. The importance of being dimpled 

The typical conformation of a healthy red blood cell is 

that of a biconcave disk. This morphology has strong 

repercussions on the optical properties of a RBC. Indeed, the 

healthy cell can be seen as a negative lenses. Intuitively, this 

means that the cell is repelled away from the origin because 

of the concavity in the middle, while it is trapped at the 

thickest portion at the periphery in order to maximise the 

overlap between the cell volume with the high intensity part 

of the beam. 

The importance of the presence of the dimple, and its 

shape, in determining the force displacements curve 

observed for cell displacement along the 𝑧𝑧-direction is 

investigated (see section 3.5.1.1). The force-displacements 

curves for cell displacements along the 𝑧𝑧-direction are 

analysed in detail (considering every single ray) while 

keeping the cell at the 𝑥𝑥𝑒𝑒𝑒𝑒,1 and 𝑦𝑦𝑒𝑒𝑒𝑒,1 (see section 3.5.1.1). 

Since I am investigating the influence of the cell shape on the 

optical forces, I exclude the Fb during the present analysis.  

Figure 3.12-a shows an example of rays traces for the 

RBC located at the point of equilibrium (𝑥𝑥𝑒𝑒𝑒𝑒,1= +1.95 μm, 𝑦𝑦𝑒𝑒𝑒𝑒,1 

= 0 μm, 𝑧𝑧𝑒𝑒𝑒𝑒,1 = -0.8 μm), and the light ray exerting the highest 

force on the cell is highlighted in blue. The blue ray hits the 

cell at an angle such that it undergoes to total internal 



 90 

reflection (TIR) in the interior of the dimple. This ray 

trajectories is common for a RBC in this configuration, and 

these rays are associated with the force spikes observable 

along every Cartesian direction which contributes to increase 

the scattering component, Figure 3.12-b.  

 
Figure 3.12. Effect of the dimple on the ray path and the optical forces for 

a cell placed at 𝑥𝑥𝑒𝑒𝑒𝑒,1 and 𝑦𝑦𝑒𝑒𝑒𝑒,1. a) Ray tracing for a dimpled cell and the 

forces generated along every direction by every single ray (b), In (a) the 

blue-ray is the light ray that generates the highest force on the cell.  

However, due to the symmetry of the system, the 

effect of a pair of rays along the 𝑦𝑦-direction cancel out and 

not net optical force is present along this direction, Figure 

3.12-b and Figure 3.10-b. Conversely, in this condition, the 

system lack of symmetry along the 𝑥𝑥- and 𝑧𝑧-direction, and the 

contribution of every two light rays does not cancel out 

generating the inhomogeneous and unexpected force traces 
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observable for 𝐹𝐹𝑥𝑥,1(𝑧𝑧) and 𝐹𝐹𝑧𝑧,1(𝑧𝑧), Figure 3.12-b and Figure 

3.10-b. Intuitively, the behaviour of 𝐹𝐹𝑥𝑥,1(𝑧𝑧) would be the same 

but with opposite sign if the cell is displaced at -𝑥𝑥𝑒𝑒𝑒𝑒,1. Notably, 

in absence of 𝑭𝑭𝑏𝑏 the light gradient alone would not be able to 

stably trap the RBC along the beam propagation direction. In 

this condition, the cell ‘optically levitates’ since the balance 

between 𝑭𝑭𝑏𝑏and 𝐹𝐹1,𝑠𝑠,𝑧𝑧 determine the point of equilibrium along 

the 𝑧𝑧-direction.[22] However, despite this, in real experiments 

conducted at higher beam powers (10-100 of mW), the cell 

may deform in response to the radiation pressure (see 

paragraph 3.5.1.3).[23] Consequently, the dimple structure 

changes, and thus the ray paths could be less affected by the 

cell’s shape, and subsequently 𝐹𝐹1,𝑠𝑠,𝑧𝑧 could decrease 

significantly. 

In absence of the dimple the light rays do not undergo 

TIR, and the strong force of each light ray contribution are 

visible only along the 𝑦𝑦-direction, Figure 3.12-a-b. However, 

in this case the contribution of every two light rays cancels 

out and no net force arises along this direction, Figure 3.12-

c. On the contrary,  
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Figure 3.13. Effect of the dimple on the ray path and the optical forces for 

a RBC without dimple (i.e. flat disk) placed at 𝑥𝑥𝑒𝑒𝑒𝑒,1 and 𝑦𝑦𝑒𝑒𝑒𝑒,1. a) Ray tracing 

for a flat disk and the forces generated along every direction by every 

single ray (b), In (a) the blue-ray is the light ray that generates the highest 

force on the cell. c) Total optical force acting on the cell as function of the 

cell displacements form the origin. d) and e) scattering and gradient 

component of the optical forces as function of the cell distance from the 

origin. The forces are shown in terms of the Cartesian components. 

since the dimple is not present, a strong negative force 

component is always present along the 𝑥𝑥-direction which 

pulls the cell towards the point of higher light intensity (origin), 

and is almost completely attributable to the gradient 

component, Figure 3.13-d and -e. On the other hand, 𝐹𝐹𝑧𝑧,1(𝑧𝑧) 
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is homogeneous and decreases monotonically over the 

entire interval.  

Therefore, it is clear as the complex biconcave shape 

of a healthy RBC is of paramount importance in determining 

the ray trajectories, the optical forces and ultimately the point 

of equilibrium for a RBC. 

3.5.1.2. Optical torques 

In chapter 2 the effect of the optical pressure on non-

spherical object like cylinders or ellipsoids is introduced. For 

these non-spherical objects, optical torques arise and tend to 

align the particles with the optical axis. As introduced in 

section 3.1, this is the case for an optically trapped RBC. 

Experiments have shown that the RBC gets folded in the 

optical trap acquiring the equilibrium configuration shown in 

Figure 3.1-b. Therefore, apart from the forces analysed in 

section 3.5.1.1, there must also be restoring torques that act 

on the RBC to keep it in the folded configuration.  
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Figure 3.14. Optical torques acting on an RBC for cell rotation around the 

𝑥𝑥-direction. a) Schematic depiction of the rotation. b) Total 𝜏𝜏 as a function 

of the angle of rotation given in terms of the three-cartesian component. c) 

Rotational trap stiffness calculation. 

To analyse the torques generated by a single tightly 

focused laser beam on an RBC, the rotations around the 𝑥𝑥-

axis are analysed first. The cell initially is placed at (𝑥𝑥𝑒𝑒𝑒𝑒,1, 

𝑦𝑦𝑒𝑒𝑒𝑒,1) in the flat configuration as schematically in Figure 3.14-

a. The cell is rotated around an axis passing through the 

centre of the trap and parallel to the 𝑥𝑥-axis with steps of 1° 

and the optical torques are calculated after each step through 

equation 2.5. Figure 3.14-b shows the torque (𝜏𝜏) components 

acting on the cell while rotating 180°. As the cell starts to 

rotate from the flat configuration (0° and 180°), 𝜏𝜏𝑥𝑥,1 increases 

reaching a peak at 35°. After this peak, 𝜏𝜏𝑥𝑥,1 decreases 

linearly towards a second peak at 145°, where 𝜏𝜏𝑥𝑥,1 is equal in 

magnitude, but the sign is inverted. On the contrary, 𝜏𝜏𝑦𝑦,1 and 

𝜏𝜏𝑧𝑧,1 fluctuates around 0.  
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The point at which 𝜏𝜏𝑥𝑥,1 vanishes with negative slope 

is the rotational point of equilibrium.[10] It occurs when the cell 

is rotated of 90° around the 𝑥𝑥-axis which corresponds to the 

'folded' configuration observed experimentally.[6] For every 

rotation from this configuration, a restoring torque acts on the 

RBC pushing back the cell at the rotational equilibrium 

orientation. The linearity of 𝜏𝜏𝑥𝑥,1, for small angular 

displacement from 90°, allows one to extract a ’rotational’ 

trap stiffness. By the fit of 𝜏𝜏𝑥𝑥,1 vs angle plot with a line, the 

(power normalized) angular stiffness can be extracted 𝑘𝑘𝛼𝛼,1 = 

0.22 pN·μm·rad-1·mW-1. 

 
Figure 3.15. Optical torques acting on an RBC for cell rotation around the 

𝑦𝑦- and z-direction. a) Schematic depiction of the rotation. b) Total 𝜏𝜏 as a 

function of the angle of rotation given in terms of the three-cartesian 

component. c) Rotational trap stiffness calculation. 

Other two rotations are possible for an RBC trapped 

by a single beam as schematically depicted in Figure 3.15-a. 

The cell can rotate around an axis passing through the centre 
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of mass and parallel to the 𝑦𝑦-direction, or it can rotate around 

an axis passing through the trapping point and parallel to the 

𝑧𝑧-direction Figure 3.15-a. For both kinds of rotation, no 

significant 𝜏𝜏 arise in any direction, Figure 3.15-b-c. 

Considering rotation around the 𝑦𝑦-axis, it is relatively easy to 

picture that the cell does rotate around its axis of symmetry, 

and thus no significant torques can arise, while for rotation 

around the cell does not change its position in respect to laser 

beam. Therefore, for a single-beam optical tweezer, the RBC 

is free to ‘flap’ around the 𝑧𝑧-axis. 

Even though not specifically studied, the presence of 

the dimple is thought to have a minor effect on the optical 

torque. In fact, a healthy RBC behaves as one would expect 

from an ellipsoidal particle with the cell aligned with its major 

axis along the beams' propagation direction. 

3.5.1.3. Optical stress distribution 

In the previous sections I described the optical force 

and torques acting on the centre of mass of the RBC. 

However, as I introduced in chapter 2, the photon momentum 

is transferred to the particle at the particle surface, and this 

generates an optical stress on the microparticle. The optical 

stress is always orthogonal to the particle's surface and 

points outwards the object’s surface.[15] If the micron-sized 

object is elastic enough the surface forces induce the object 
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deformation. In the present context, the forces distribution on 

the particle surface can be evaluated considering only the 

force component along the normal to the cell surface via the 

following equation:  

𝑭𝑭𝑟𝑟𝑟𝑟𝑟𝑟 =  �
𝑛𝑛𝑖𝑖𝑃𝑃𝑖𝑖
𝑐𝑐

 𝒓𝒓�𝑖𝑖 −  
𝑛𝑛𝑖𝑖𝑃𝑃𝑟𝑟
𝑐𝑐

 𝒓𝒓�𝑟𝑟 −
𝑛𝑛𝑡𝑡𝑃𝑃𝑡𝑡
𝑐𝑐

 𝒓𝒓�𝑡𝑡� ∙ 𝒏𝒏� 3.8 

where each term of the eq. 3.8 is described in eq. 2.2, and 𝒏𝒏� 

is the unit normal vector to the RBC surface at the point of 

incidence. To calculate the force distribution generated by a 

SBOT, the RBC is place at the equilibrium position (𝑥𝑥𝑒𝑒𝑒𝑒,1, 

𝑦𝑦𝑒𝑒𝑒𝑒,1, 𝑧𝑧𝑒𝑒𝑒𝑒,1), and the forces are calculated through eq. 3.8.  
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Figure 3.16. Forces distribution generated by a SBOT on the surface of a 

RBC (a), top-view (b), lateral view (c) and front-view (d). For simplicity the 

cell is centred on the origin.  

As expected, the force distribution profile is 

completely asymmetrical in respect to the 𝑥𝑥-direction, Figure 

3.16-b and c, but is symmetrical in respect to the y-axis, 

Figure 3.16-b and d. The force distribution profile shows two 

characteristic symmetric peaks on the upper portion of the 

cell, Figure 3.16-d. This peaks corresponds, approximately, 

to the position where the cell is trapped and are due to the 

combination of rays coming from the outermost part of the 

beam, and to rays coming from the centre of the beam. More 

importantly, the force distribution shows a peak also in the 



 99 

vicinity of the dimple. This is particular important since the 

latter is the region of cell that influences most the ray path, 

and thus any significant deformation would be really 

important in determining the equilibrium configuration. 

Therefore, the present calculations could differ from 

experimental data since the cell deformation is not accounted 

for. However, if the deformation is considered, the ray tracing 

scheme adopted until now would fail, and a new 

(computationally expensive) approach needs to adopted (see 

chapter 7). Thus, for the remainder of the thesis the cell is 

always considered to be a rigid body.  

3.5.2. Double-beam optical tweezers 

In this section, I report the numerical investigation 

regarding the optical trapping of a red blood cell via a double-

beam OT. The two beams’ foci are positioned 5.06 μm apart 

along the 𝑥𝑥-axis, similarly to the experiments conducted by 

Agrawal and co-workers, and schematically depicted in 

Figure 3.17.[5] As for the single-beam OT, experiments have 

demonstrated that the cell reaches the equilibrium 

configuration in its 'folded' state, Figure 3.2. The force-

displacements curves, and the spring constant, are 

calculated for displacements along each of the cartesian co-

ordinates as depicted in Figure 3.17-a, while the optical 
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torques are analysed for rotations around the CM of the cell 

as depicted in Figure 3.17-b. 

 
Figure 3.17. Schematic depiction of an RBC trapped by a double-beam 

optical tweezer. a) Direction along which the forces are calculated. b) 

Possible rotation of a trapped RBC around trap’s centre. 

Initially, I investigate the trapping mechanism along 

the 𝑧𝑧-axis constraining the cell plane in the 𝑥𝑥-𝑧𝑧 plane. In 

Figure 3.18-a are shown the results for the force-

displacements along 𝑧𝑧-direction. 𝐹𝐹𝑧𝑧,2(𝑧𝑧) decreases linearly in 

the interval analysed and vanishes with negative slope at 

𝑧𝑧𝑒𝑒𝑒𝑒,2 = -0.23 μm suggesting the effective confinement along 

this direction. Following the same approach illustrated in the 

previous paragraph, I extrapolated the (power normalised) 

spring constant 𝑘𝑘𝑧𝑧,2 = 0.045 pN·μm-1·mW-1, insert Figure 

3.18-a.  
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Figure 3.18. Force-displacements curves for an RBC trapped by a dual-

beam optical tweezer for cell displacements along the z-direction (a), y-

direction (b), and x-direction (c). The inserts show the linear fitting to the 

approximately linear part of the graph near the point of equilibrium. 

Successively, the RBC is placed at 𝑧𝑧𝑒𝑒𝑒𝑒,2 and is 

displaced along the 𝑥𝑥-direction calculating the optical forces 

after each step, Figure 3.18-b. Here it can be seen that 

𝐹𝐹𝑥𝑥,2(𝑥𝑥) decreases linearly from 2 pN to -2 pN at 1 μm, and 

vanishes with negative slope at 𝑥𝑥𝑒𝑒𝑒𝑒,2 = 0 μm, Figure 3.18-b. 

Fitting a line to the linear portion of the graph I obtained the 

spring constant 𝑘𝑘𝑥𝑥,2 = 1.528 pN·μm-1·mW-1, insert Figure 

3.18-b. 
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Subsequently, the RBC is positioned at 𝑥𝑥𝑒𝑒𝑒𝑒,2 and 𝑧𝑧𝑒𝑒𝑒𝑒,2 

and is therefore displaced along the 𝑦𝑦-direction. From Figure 

3.18-c it can be seen that 𝐹𝐹𝑦𝑦,2(𝑦𝑦) vanishes with negative 

slope at 𝑦𝑦𝑒𝑒𝑒𝑒,2 = 0 μm, and the (power normalized) spring 

constant is 𝑘𝑘𝑦𝑦,2 = 0.24 pN·μm-1·mW-1, insert Figure 3.18-c.  

Compared to the single-beam case, the cell is 

confined at the centre of the trap in the 𝑥𝑥-𝑦𝑦 plane, and the 

values of the trap stiffnesses are doubled. However, the most 

intriguing difference is given by an additional degree of 

rotational confinement. 

Figure 3.19 shows the torque-rotation curves for the 

three rotations schematically depicted in Figure 3.17-b. As 

expected, significant restoring torque arises for rotation about 

the 𝑥𝑥-axis (𝑘𝑘𝛼𝛼,2= 0.37 pN·μm·rad-1·mW-1) but not for rotation 

around the 𝑦𝑦-axis, Figure 3.19-a-b. However, if the cell is 

trapped by a double-beam OT a significant restoring torque 

(𝑘𝑘𝛾𝛾,2= 1.73 pN·μm·rad-1·mW-1) arises also when the RBC is 

rotated about the 𝑧𝑧-axis.  

The numerical investigation shows how an additional 

degree of confinement arises for a double-beam optical 

tweezers compared to the single-beam case. The presented 

results suggest a complete three-dimensional confinement of 

the RBC with a cell confined in a plane containing the beams' 

foci and the optical axis. Moreover, the presented analysis 

finds good qualitative agreement with the experiments 
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conducted by Agrawal et al.[4,5] In fact, experiments shown 

that a healthy RBC is completely confined in a plane 

containing the beams' foci and the optical axis and it is not 

free to rotate around its centre of mass (except around the 

cell axis of symmetry). Here, I numerically investigated the 

origin of this confinement which can be correlated to the 

synergistic torque exerted by the two light beams. Also, 

compared to the single-beam case, the light's gradient alone 

is able to confine the RBC entirely, even in absence of the 

force of gravity.  

 
Figure 3.19. Torque-rotation curves for an RBC trapped by a dual-beam 

optical tweezer for a cell rotated around the 𝑥𝑥-axis (a), 𝑦𝑦-axis (b), and 𝑧𝑧-

axis (c). The inserts show the linear fitting to the approximately linear part 

of the graph near the point of equilibrium. 
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3.5.3. Three and four beams optical tweezers 

In this section I report the results of simulations 

performed for a three and four beams OT, and the equilibrium 

configuration is briefly discussed.  

Figure 3.20 shows the configuration of a three-beams 

and four-beams optical tweezer. In these two alternative 

beam configurations, the foci of the beams are arranged in 

an equilateral triangle or in a square with the vertices on the 

thickest portion of the cell, red circle in Figure 3.20-a and -b. 

Interestingly, in both cases, the RBC should find the 

equilibrium configuration when has its plane transverse to the 

optical axis, since the torques generated by the beams 

should balance out. Moreover, at the equilibrium 

configuration, the centre of mass of the cell should coincide 

with the origin of the Cartesian co-ordinates system in the 𝑥𝑥-

𝑦𝑦 plane that is also the centre of the trap. However, because 

of the radiation pressure the centre of mass should be slightly 

shifted towards +𝒛𝒛�. 
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Figure 3.20. Configuration of a three-beams (a) and four-beams (b) optical 

tweezer. The two concentric circles represent the external diameter of the 

RBC (black line) and the diameter where the RBC is thickest (red line). 

To verify the hypothesis, the same analysis proposed 

for a single-beam and double-beams OT are carried out 

again for the three-beams and four-beams case. The force-

displacements curves are obtained for the cell in the 

configuration depicted in Figure 3.20-a and -b. The cell is 

displaced along each of the three Cartesian components, 

and the trap stiffnesses are extracted via the linear fit of the 

approximately linear portion of the graph.  
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Figure 3.21. Optical trapping of a RBC in a triple-beam optical tweezer. 

Force-displacements curves for cell displacements along x- (a), y- (b) and 

z-direction (c). The inserts show the linear fit used for the extrapolation of 

the characteristic spring constant. 

Once 𝑥𝑥𝑒𝑒𝑒𝑒,3, 𝑦𝑦𝑒𝑒𝑒𝑒,3 and 𝑧𝑧𝑒𝑒𝑒𝑒,3 are obtained, the cell is rotated 

around an axis parallel to each of the Cartesian axes and 

passing through the centre of the trap, and the rotational trap 

stiffnesses are calculated as described previously. As in 

section 3.5.1 and 3.5.2, a constant force of gravity along the 

𝑧𝑧-direction is always considered. 

In Figure 3.21 and Figure 3.22 are shown the results 

of the calculation for a RBC optically confined by a triple-

c) 



 107 

beam optical tweezer. As expected, for this highly symmetric 

beams’ configuration the cell finds an equilibrium position 

approximately at the origin of the 𝑥𝑥-𝑦𝑦 plane. However, since 

the light intensity gradient is not completely symmetric, the 

cell is slightly shifted along the 𝑦𝑦-direction (𝑦𝑦𝑒𝑒𝑒𝑒,3 = +0.025 

μm). As a consequence of the scattering force the cell is 

pushed along the optical axis (𝑧𝑧𝑒𝑒𝑒𝑒,3 = +0.23 μm). The spring 

constants transverse to the optical axis (𝑘𝑘𝑥𝑥,3 and 𝑘𝑘𝑦𝑦,3) are 

slightly bigger than 𝑘𝑘𝑧𝑧,3 as a consequence of the gradient in 

the light intensity. 

 
Figure 3.22. Torque-rotation curves for a RBC trapped by a triple-beam 

optical tweezer: rotation around the x-axis (a), y-axis (b), and z-axis (c). 
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The insets show the linear fitting to the approximately linear part of the 

graph near the point of equilibrium. 

Rotationally, the cell finds an equilibrium orientation 

when the cell is in its 'flat' configuration which correspond to 

rotation of 0° around the 𝑥𝑥- and 𝑦𝑦-axis, and restoring torques 

are present for both type of rotation, but not for rotation 

around the 𝑧𝑧-axis, since for the latter the cell is spinning on 

its axis of symmetry, Figure 3.22-a-c. Therefore, with a triple-

beam optical tweezer is possible to completely confine a RBC 

in its 'flat' configuration.  

Figure 3.23 shows the force-displacements curves 

computed for a RBC optically confined by a four-beam optical 

tweezer, and in Table 3.1 are reported the values extracted 

from the computation. As expected, the equilibrium position 

is obtained for a cell centred at the origin of the 𝑥𝑥-𝑦𝑦 plane 

(𝑥𝑥𝑒𝑒𝑒𝑒,4 = 𝑦𝑦𝑒𝑒𝑒𝑒,4 = 0 μm) and slightly shifted towards +𝒛𝒛� (𝑧𝑧𝑒𝑒𝑒𝑒,4 = 

0.35 μm). Compared to the three beams case, this shifting is 

a bit higher because of the effect of the fourth beam, which 

increases the scattering force along the 𝑧𝑧-direction. Not 

surprisingly, the spring constant along the direction 

transverse to the optical axis have the same value (𝑘𝑘𝑥𝑥,4 = 

𝑘𝑘𝑦𝑦,4) which is slightly higher that the value obtains along the 

𝑧𝑧-direction.  
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Figure 3.23. Optical trapping of a RBC in a four-beam optical tweezer. 

Force-displacements curves for cell displacements along x- (a), y- (b) and 

z-direction (c). The inserts show the linear fit used for the extrapolation of 

the characteristic spring constant. 

The cell finds its orientational equilibrium when it is not 

rotated around either 𝑥𝑥- or 𝑦𝑦- (i.e. 'flat' configuration), and 

restoring torques are present for both rotation, suggesting an 

orientational confinement. For the same argument introduced 

for the three-beams OT, no torques are visible for rotation 

around the 𝑧𝑧-axis.  

c) 
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Figure 3.24. Rotational confinement for a RBC trapped by a four-beam 

optical tweezer: rotation around the 𝑥𝑥-axis (a), 𝑦𝑦-axis (b), and 𝑧𝑧-axis (c). 

The insets show the linear fitting to the approximately linear part of the 

graph near the point of equilibrium. 

Experiments conducted by Rusciano and 

collaborators showed that a fourth-beams optical tweezers is 

able to confine a RBC in its flat configuration.[9] Here, my 

numerical investigation demonstrated how the synergistic 

effect of the fourth beams confine the RBC in its flat 

configuration as a consequence of the balancing of the 

optical torques generated by each beam. My results 

demonstrate to be in good qualitative agreement with the 

previously reported experiments. Compared to the triple-

c) 
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beams optical tweezers, the trapping stiffnesses have higher 

values since an additional beam is used for trapping, Table 

3.1. 

Table 3-1. Values of the trap stiffnesses and rotational trap stiffness for an 

RBC trapped by single- (SBOT), double- (DBOT), triple- (TBOT), and 

fourth-beams optical tweezers. 

  

 SBOT DBOT TBOT FBOT 

𝒌𝒌𝒙𝒙 (pN·μm-1·mW-1) 0.17 1.53 0.11 0.09 

𝒌𝒌𝒚𝒚 (pN·μm-1·mW-1) 0.30 0.24 0.11 0.09 

𝒌𝒌𝒛𝒛 (pN·μm-1·mW-1) 0.04 0.045 0.10 0.08 

𝒌𝒌𝜶𝜶 (pN·μm·rad-1·mW-1) 0.22 0.37 0.33 0.32 

𝒌𝒌𝜷𝜷 (pN·μm·rad-1·mW-1) 0 0 0.31 0.33 

𝒌𝒌𝜸𝜸 (pN·μm·rad-1·mW-1) 0 1.73 0 0 
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3.6. Chapter summary 

In this chapter, I presented a theoretical investigation 

of the optical trapping of a healthy RBC in its biconcave 

conformation when trapped by a single- or multi-beams 

optical tweezer in the geometrical optics regime. The 

numerical study shed light on how the biconcave shape is 

essential to establish the rays' path, the optical forces and 

torques, and thus the equilibrium configuration of a healthy 

RBC. The methodology used to investigate the equilibrium 

configuration of a healthy RBC within an optical trap has been 

illustrated for a single-beam optical tweezer. Therefore, it has 

been numerically investigated the possibility to completely 

confine a RBC in space by means of a double-beam optical 

tweezer. It has also been shown that the addition of a third or 

fourth beams in highly symmetric arrangements impacts 

significantly the final equilibrium configuration of the RBC, 

confining the cell in its 'flat' configuration.  

The presented analysis agrees well with experiments 

and can be adopted to investigate various parameters before 

performing experiments. Moreover, this approach can be 

directly applied to search for alternative RBC’s equilibrium 

configuration by simply tuning the position of the beams 

forming the optical trap or to study the dynamics of a trapped 

RBC.  
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In the next Chapter I will present a study on the 

possibility to govern the position and orientation of a healthy 

RBC with a triple-beam optical tweezer.  
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4. POSITION AND ORIENTATION 
CONTROL OF BICONCAVE RED 
BLOOD CELL IN OPTICAL 
TWEEZERS 

In this chapter, I examine the possibility to govern the 

position and orientation of a red blood cell via a triple-beams 

optical tweezers. Here I apply the geometrical optics 

calculations introduced in chapter 3 to identify the final 

equilibrium configuration of a red blood cell via an iterative 

process. This methodology is demonstrated to be very 

effective when the equilibrium configuration of the cell is 

known from experimental evidence or if the configuration of 

the trap is simple. However, this approach fails when the trap 

increases in complexity and the equilibrium configuration of 

the cell is not known a priori. For this reason, I exploit a 

numerical scheme for the simulation of the Brownian motion 

of the optically trapped RBC to identify the final equilibrium 

configuration of the cell. Therefore, the Brownian dynamics 

simulations are used to investigate the extent of the 

governability of the RBC with a reconfigurable triple-beams 

optical trap.  
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4.1. Introduction 

The refraction (bending) of incident light at a surface 

causes the transfer of recoil-momentum from the impinging 

photons to the object.[1] As first envisaged by A. Ashkin, these 

forces are significant enough to move, manipulate and 

confine micron-sized particles. In the very first experiments 

on optical manipulation, the researchers observed a 

spherical microparticle with a refractive index higher than 

those of the surrounding medium is simultaneously pushed 

along the optical axis and attracted towards the region of 

higher light intensity by a weakly diverging (in the sample) 

Gaussian laser beam. In the ray optics (RO) approximation, 

this observation can be interpreted in terms of the scattering 

force (Fs) and the gradient force (Fg); see chapter 2 for a 

detailed description.  

In the first realisation of an optical trap, the authors 

made use of these two forces to optically confine a small 

dielectric particle. Indeed, 𝑭𝑭𝑠𝑠 generated by two counter-

propagating lasers beams are subtractive and cancel out at 

the point of symmetry of the two beams while 𝑭𝑭𝑔𝑔 is always 

additive. These two forces act synergistically to confine the 

particle at the point of equilibrium.[2] Soon after, A. Ashkin et 

al. grasped that if a strong gradient is created in all the spatial 

dimensions through a high numerical aperture objective, Fg 
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would be able to confine a dielectric micron-sized object in 

space close to the beam focus.[3] 

In one of the first applications of OT in biology, the 

researchers were able to optically trap rod-like viruses and 

living bacteria.[4] Interestingly, the shape of the living cell 

deviated from that of a simple spherical particle. Indeed, as 

extensively discussed in chapters 2 and 3, when a light beam 

strikes a non-spherical object like an ellipsoid or a cylinder, 

significant optical torques (𝜏𝜏) arise, which tend to align the 

object with the optical axis. Shortly after, Ashkin and 

collaborators could stably trap and manipulate more complex 

organisms as the algae Spirogyra. More interestingly, the 

researchers could optically trap the biconcave disk-shaped 

human red blood cell (RBC), observing no appreciable 

damage if an infrared red light source were used for 

trapping.[5] 

In the last couple of decades, the use of OT in red 

blood cell research has extended rapidly. It has been applied 

to investigate various biochemical and biophysical properties 

of the RBC.[6] As discussed in detail previously (see chapter 

3), researchers exploited the indirect trapping (use of handles 

to manipulate the RBC) and the direct trapping where the 

illumination light is used to manipulate the cell. Interestingly, 

if directly trapped, a healthy biconcave RBC can assume two 

different and alternative orientations within the optical trap 
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depending on the number of beams used for trapping, as 

extensively discussed in chapter 3, Figure 4.1-a-b. 

 
Figure 4.1. Schematic depiction of an RBC in its 'folded' configuration in a 

single-beam optical trap (a). (b) Illustration of an erythrocyte in a four-beam 

optical tweezer in its 'flat' configuration. (c) Schematic representation of the 

proposed alternative beam configuration useful for control the orientation 

of an RBC.  

In a single-beam or a double-beam OT, the RBC is 

trapped on its thickest portion and the optical torque confines 

the cell to have its plane orientated parallel to the optical axis 

in the so-called 'folded' configuration (see chapter 3) Figure 

4.1-a. In a double-beam OT set-up, the torques generated by 

the two beams act synergistically and confine the cell in the 

'folded' configuration in a plane containing the beams' foci 

and the optical axis. On the contrary, if three or four beams 

arranged in very symmetric configurations are used, the 

torques generated by each beam cancel out, and the cell 
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finds its equilibrium when it has its plane orthogonal to the 

optical axis, referred to as 'flat' configuration (see chapter 4). 

However, what happens if one breaks the symmetry 

in the configuration of the beams' foci? 

In principle, it could be possible to identify particular 

intermediate beams' configuration between the double-

beams trap and the triple-beams trap able to confine the cell 

in an intermediate equilibrium configuration between the 'flat' 

and the 'folded' one, Figure 4.1-c. Identifying a possible 

beams' arrangement that could finely tune and confine the 

orientation of an RBC is of practical importance. It could 

unlock the possibilities to carry out orientational dependent 

studies. 

For these reasons, in this chapter, I report numerical 

experiments performed to identify a possible alternative 

equilibrium configuration for an RBC within a multi-beam 

optical trap. 

4.2. Model 

In the current model, a three-dimensional Cartesian co-

ordinates system is considered. The laser beams propagate 

towards +𝒛𝒛� and possess a Gaussian intensity distribution. In 

agreement with the vast majority of experiments and to match 

the light source present in our laboratory (Nd:YAG laser), the 

wavelength of the light beam is chosen to be 1.064 μm. The 
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beam waist at the back aperture of the objective is 50 μm, the 

numerical aperture (NA) of the objective is 1.3, and the back 

aperture is 9.78 μm, such that the incoming beam overfills it. 

The power of each beam is always 5 mW. The beams’ power 

is maintained in the mW range for reasons reported in section 

3.1.  

The RBC is considered to be immersed in a water-based 

medium with homogeneous refractive index (𝑛𝑛1 = 1.33), 

temperature (𝑇𝑇 = 298 K), and dynamic viscosity (𝜂𝜂 = 0.001 

Pa·s). Note that 𝑇𝑇 is not the physiological temperature but the 

temperature at which the experiments are performed. The 

RBC is always considered a rigid body (not deforming in 

response to the optical pressure), and filled by a non-

absorbing medium with isotropic physical properties (𝑛𝑛2 

=1.38, 𝜌𝜌𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =1.11 g/cm3). The RBC is always in its healthy 

biconcave disk conformation, and the parameters describing 

the RBC disk are those extensively described and used in 

section 3.1.  
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Figure 4.2. a) Laboratory and particle reference frame used in the current 

chapter. b) Schematic depiction of the triple-beams optical trap and the 

polar co-ordinates system used to identify the position of beam 1. 

In addition to the laboratory reference frame (𝛴𝛴𝑙𝑙), a 

second Cartesian frame of reference centred on the centre of 

mass of the RBC is defined: the particle reference frame (𝛴𝛴𝑝𝑝), 

Figure 4.2-a. 𝛴𝛴𝑝𝑝 always encodes the position and orientation 

of the particle. The polar orientation of the RBC is always 

given by the angle 𝛷𝛷 and the azimuthal orientation by the 

angle 𝛩𝛩, as shown in Figure 4.2-a. If 𝛷𝛷 = 90°, the cell is in its 

'flat' configuration whilst for 𝛷𝛷 = 0°, the cell is in its 'folded' 

configuration. On the other hand, when the cell is oriented 

towards +𝑦𝑦�, 𝛩𝛩 =  90°, while 𝛩𝛩 =  −90° when the cell is 

oriented towards -𝑦𝑦�. In the remainder of this chapter, 𝛷𝛷 is 

always comprised in between [0°,90°], while θ is comprised 

in between [-180°;180°]. 
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Only the first two scattering events (reflection and 

refraction) are considered since the fraction of power 

reflected for biological samples is very low (< 0.001), 

because of low refractive index contrast with the 

surroundings.[7] Since the characteristic diameter of an RBC 

(7.92 μm) is bigger than the wavelength used for the 

calculations, the geometrical optics approximation is 

completely fulfilled, and the optical forces and torques can be 

calculated with GO following the scheme reported in chapter 

3.  

In this study, the triple-beams optical tweezer is 

composed by three identical and tightly focused laser beams. 

Two beams (beam 2 and 3) are always arranged along the 

𝑥𝑥-axis as in a double-beams optical tweezer. They are 

positioned in a diametrically opposite location on the thickest 

portion of the cell as shown in Figure 4.2-b. A third beam 

(beam 1) can be translated over the thickest portion of the 

cell and is used to counteract 𝜏𝜏𝑥𝑥 generated by the beams 2 

and 3. For simplicity, the position of beam 1 is described by 

a polar co-ordinates system in the 𝑥𝑥-𝑦𝑦 plane. Therefore, the 

location of beam 1 is defined by a single angle (𝜁𝜁), and the 

distance from the origin is fixed and equal to the radius of the 

thickest portion of the cell (2.76 μm), Figure 4.2-b. 
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4.3. Numerical computation 

4.3.1. Static equilibrium searching 

As introduced previously, a possible beams' 

configuration for a triple-beam optical tweezer that can 

confine an RBC in defined orientation must be sought 

between the triple-beam optical tweezer and a double-beam 

optical tweezer. 

However, for asymmetric beams configurations, and 

in the absence of experimental evidence, it’s not trivial to 

predict the final equilibrium configuration a priori. For this 

reason, initially, I organise the three beams as an isosceles 

triangle similarly to the triple-beams trap already analysed in 

chapter 3. Beam 1 is positioned at 𝜁𝜁 = 90°, while beam 2 and 

3 are positioned along the 𝑥𝑥-axis, as schematically depicted 

in Figure 4.3. With this configuration, the torques generated 

by beam 2 and 3 should be counteracted, at least to some 

extent, by beam 1. If this is true, the cell should be confined 

in an intermediate orientation between the 'flat' and the 

'folded' one. In particular, the orientation of the cell plane (𝛩𝛩 

and 𝛷𝛷) should be directly dictated by the specific angular 

position of beam 1. In addition, the presence (and the 

location) of beam 1 creates an asymmetry in the gradient 

force, and so the equilibrium position of the RBC is expected 

to be shifted towards beam 1. Conversely, the three beams 
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will act synergistically along the optical axis pushing the cell 

towards +𝒛𝒛�. 

 
Figure 4.3. Schematic depiction of the triple beam optical tweezer used in 

the first set of numerical experiments. Beams 2 and 3 are positioned in a 

diametrically opposite position along the 𝑥𝑥-axis, while beam 1 is positioned 

at 𝜁𝜁 = 90°. 

The equilibrium configuration of an RBC trapped by a 

triple-beam OT with the aforementioned configuration is 

initially investigated with the same scheme adopted in 

chapter 3. Each possible cell translation and rotation is 

analysed independently and successively. This method is 

named static equilibrium searching (SES) in the remainder of 

the thesis.  

Initially, I speculate that the RBC at the equilibrium 

configuration should be nearly 'flat' with the current beams' 

configuration. Therefore, I start to displace the cell along the 
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𝑥𝑥-direction, keeping all other degrees of freedom fixed (y = z 

= 0 μm, 𝛷𝛷=90° and 𝛩𝛩=0°). 

 
Figure 4.4. Force-displacements curves for cell displacements along the 𝑥𝑥-

direction (a), 𝑦𝑦-direction (b) and the 𝑧𝑧-direction (c) 

Figure 4.4-a shows the force-displacements curve 

along the 𝑥𝑥-direction. Here 𝐹𝐹𝑥𝑥(𝑥𝑥) decreases linearly over the 

entire displacements interval and clearly shows a spring-like 

behaviour for 𝑥𝑥𝑒𝑒𝑒𝑒 = 0 μm, suggesting the cell confinement 

along this direction. The power normalised trap stiffness is 

𝑘𝑘𝑥𝑥~0.14 pN·μm-1·mW-1. However, forces are present along 

the transverse directions (𝐹𝐹𝑦𝑦(𝑥𝑥)≠0 and 𝐹𝐹𝑧𝑧(𝑥𝑥)≠0). 𝐹𝐹𝑧𝑧(𝑥𝑥) can be 

easily associated with the scattering forces generated by the 

c) 
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three beams. On the contrary, 𝐹𝐹𝑦𝑦(𝑥𝑥) is due to the gradient 

component of the optical force generated by the asymmetric 

light distribution, suggesting that the cell is drawn towards 

beam 1.  

Successively, the cell is placed at 𝑥𝑥𝑒𝑒𝑒𝑒 (with 𝑧𝑧 = 0, 𝛷𝛷 = 

90° and 𝛩𝛩 = 0°) and the force-displacements curve is 

calculated for the cell's displacements along the 𝑦𝑦-direction, 

Figure 4.4-b. The RBC trapping along this direction is 

demonstrated by the form of 𝐹𝐹𝑦𝑦(𝑦𝑦) which vanishes with 

negative slope at 𝑦𝑦𝑒𝑒𝑒𝑒 = +0.252 μm and the force constant is 

𝑘𝑘𝑦𝑦~0.068 pN·μm-1·mW-1. On the contrary, 𝐹𝐹𝑥𝑥(𝑦𝑦) is always 0, 

implying that the cell is located at the equilibrium position 

along the 𝑥𝑥-direction. 𝐹𝐹𝑧𝑧(𝑦𝑦) is always positive, and again the 

scattering force is responsible for this trend.  

Lastly, using 𝑥𝑥𝑒𝑒𝑒𝑒 and 𝑦𝑦𝑒𝑒𝑒𝑒, the force-displacements 

curve for displacements along the 𝑧𝑧-axis is calculated, Figure 

4.4-c. Here it can be seen that the cell experiences a 

restoring force along the 𝑧𝑧-direction that pushes back the cell 

at 𝑧𝑧𝑒𝑒𝑒𝑒 = +0.325 μm. By the linear fit of the approximately 

linear portion of the graph, the power normalised trap 

stiffness is 𝑘𝑘𝑧𝑧~0.08 pN·μm-1·mW-1. 

To better comprehend the optical forces generated by 

the current beams' configuration in the direction transverse 

to the optical axis, a force-field is simulated in an 𝑥𝑥-𝑦𝑦 plane 
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placed at 𝑧𝑧𝑒𝑒𝑒𝑒 = +0.325 μm, Figure 4.5. The force map 

suggests that the equilibrium position is on the 𝑥𝑥-axis but 

slightly shifted towards +𝒚𝒚�. The black arrows show that the 

optical forces are always directed towards the equilibrium 

position, suggesting an effective optical trapping of the RBC.  

 
Figure 4.5. Force-field map in an 𝑥𝑥-𝑦𝑦 plane placed at 𝑧𝑧 = 𝑧𝑧𝑒𝑒𝑒𝑒 = +0.325 μm. 

The black arrows indicate the forces' direction that points towards the 

equilibrium position located at 𝑥𝑥𝑒𝑒𝑒𝑒=0 and 𝑦𝑦𝑒𝑒𝑒𝑒=+0.253 μm. The colour map 

shows the magnitude of the force.  

Subsequently, I analyse the orientational confinement 

of the RBC. Figure 4.6 shows the optical torques acting on 

the RBC trapped by three beams arranged as depicted in 

Figure 4.3 as a function of the angle of rotation around the 𝑥𝑥-

axis (𝛼𝛼), 𝑦𝑦-axis (𝛽𝛽) and 𝑧𝑧-axis (𝛾𝛾), in -a, -b and -c respectively.  
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Figure 4.6. Optical torques acting on the cell for rotation around 𝑥𝑥-direction 

(a), 𝑦𝑦-direction (b) and 𝑧𝑧-direction (c), for the beams' configuration shown 

in Figure 4.3. 

Initially, the cell is placed at 𝑥𝑥𝑒𝑒𝑒𝑒, 𝑦𝑦𝑒𝑒𝑒𝑒, 𝑧𝑧𝑒𝑒𝑒𝑒 and then is 

rotated from the flat configuration (𝛼𝛼 = 0°) with steps of 1° 

around an axis passing through the centre of the cell and 

parallel to the 𝑥𝑥-axis, Figure 4.6-a. Here it can be seen that 

no torque component acts along the 𝑦𝑦- and 𝑧𝑧-direction (𝜏𝜏𝑦𝑦(𝛼𝛼) 

= 𝜏𝜏𝑧𝑧(𝛼𝛼) = 0). On the contrary, 𝜏𝜏𝑥𝑥(α) shows a spring-like 

behaviour when α = -22° (𝑘𝑘𝛼𝛼~0.233 pN·μm·rad-1·mW-1), 

which corresponds to 𝛩𝛩=90° and 𝛷𝛷=68°. Importantly, the cell 

is tilted in the same direction of beam 1, and this suggests 
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that beam 1 can be used to tilt the cell along a specific 

direction. 

Figure 4.6-b shows the torques for rotation around the 

𝑦𝑦-axis. Here 𝜏𝜏𝑦𝑦(𝛽𝛽) shows a clear spring-like behaviour when 

𝛽𝛽=0° ('flat' configuration), suggesting the effective 

orientational trapping of the RBC, and a torque constant 

𝑘𝑘𝛽𝛽~0.585 pN·μm·rad-1·mW-1. On the contrary, no optical 

torques arise for cell rotation around the 𝑧𝑧-direction, Figure 

4.6-c. Therefore, an RBC is spatially and rotationally confined 

within a triple-beam OT with the current beams' arrangement 

with the equilibrium configuration shown in Figure 4.7-a-c. 

 
Figure 4.7. a) 3D rendering of the equilibrium configuration of an RBC 

optically trapped by three focused laser beams arranged as depicted in 

Figure 4.3, and projection on the 𝑦𝑦-𝑧𝑧 plane (b) and 𝑥𝑥-𝑧𝑧 plane (c). The blue 

c) 
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dot represents the centre of mass of the cell, while the red dots indicate 

the foci of the three beams. 

Intuitively, by placing beam 1 in a diametrically 

opposite position (𝜁𝜁 =  270°), the equilibrium configuration of 

the RBC should be reversed (shifted towards -𝒚𝒚� and tilted 

toward the same direction). 

Figure 4.8-a shows the configuration of the beams 

under consideration. By performing the same investigation 

made previously in this paragraph for the new beams' 

configuration emerges that the force-displacements curve 

along the 𝑥𝑥- and 𝑧𝑧 −direction do not change. On the contrary, 

𝑦𝑦𝑒𝑒𝑒𝑒 is shifted at 𝑦𝑦𝑒𝑒𝑒𝑒 = -0.252 μm. Another exciting variation in 

respect to the previous case is observed for the rotation 

around 𝑥𝑥. The rotational equilibrium is found for a cell tilted 

at α = 22° (𝛩𝛩 =  270°, 𝛷𝛷 =  68°), and thus the RBC is tilted 

towards beam 1, Figure 4.8-c. On the other hand, none of the 

remaining possible rotations shows any variation in respect 

to the previous case. Thus, if beam 1 is positioned at 𝜁𝜁 = 

270°, the equilibrium configuration is reached for a cell 

shifted and tilted in exactly the opposite direction in respect 

to the previous case, Figure 4.8-d-e-f. The values 

extrapolated from the previous simulation are reported in 

Table 4.1 for a direct comparison.  
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Figure 4.8. Equilibrium configuration for the alternative beams' 

configuration. a) Beam 1 is positioned in a position diametrically opposite 

to that represented in Figure 4.3. b) Force-displacements curve for a cell 

translated along the y-direction with the beam configuration presented in 

(a). c) Optical torque-rotation for rotation around the x-axis and the beams' 

configuration presented in (a). d-e-f) Equilibrium configuration of the RBC 

with the arrangement of the beam is shown in (a). 

Following the same reasoning of the above analysis, 

it seems possible to control the RBC orientation by simply 

placing beam 1 in any other angular position along the red 

circle that defines the diameter where the RBC is thickest. If 

this is true, the RBC can be deliberately oriented and tilted 

along each possible 𝜁𝜁, or at least in some intervals of 𝜁𝜁. 
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Figure 4.9-a shows a third possible beams’ 

configuration, and in Figure 4.9-b and -c are shown the force-

displacements curves for cell translation along the 𝑥𝑥- and 𝑦𝑦-

direction, respectively. It is immediately evident that the 

beams’ configuration strongly influences the optical forces 

and, therefore, the equilibrium point. However, following the 

investigation’s scheme adopted so far, it is not trivial to 

identify an equilibrium position along the 𝑥𝑥- and 𝑦𝑦-direction.  

 
Figure 4.9. a) Alternative beam configuration, and the force-displacements 

curve along x-direction (b) and y-direction (c). d) Force-map for an RBC on 

the 𝑥𝑥-𝑦𝑦 plane for the configuration of the beams shown in (a). 

The identification of the equilibrium via SES would require 

several reiterations along each direction, resulting in a very 
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complicated and time-consuming task, if possible at all. This 

issue is even more clearly visualised by a force map on the 

𝑥𝑥-𝑦𝑦 plane, Figure 4.9-d. Here it can be seen that the light 

gradient creates a very complex force-field, and non-

negligible optical forces act simultaneously along the 𝑥𝑥- and 

𝑦𝑦-direction for a specific cell location. A possible solution is 

to simulate the RBC dynamics within the force field generated 

by the three beams until the RBC configuration stabilises at 

a precise location and orientation. With such an approach, it 

is possible to overcome the limits posed by the static 

equilibrium searching since the RBC equilibrium position and 

orientation do not have to be searched iteratively. Therefore 

any possible position of beam 1 (any 𝜁𝜁) can be analysed. 

 

 

 𝜻𝜻𝟗𝟗𝟗𝟗 𝜻𝜻𝟐𝟐𝟐𝟐𝟐𝟐 

𝒙𝒙𝒆𝒆𝒆𝒆 (μm) 0 0 

𝒚𝒚𝒆𝒆𝒆𝒆 (μm) 0.252 -0.252 

𝒛𝒛𝒆𝒆𝒆𝒆 (μm) 0.325 0.325 

𝒌𝒌𝒙𝒙 (pN·μm-1·mW-1) 0.140 0.140 

𝒌𝒌𝒚𝒚(pN·μm-1·mW-1) 0.068 0.068 

𝒌𝒌𝒛𝒛(pN·μm-1·mW-1) 0.080 0.080 

𝜶𝜶𝒆𝒆𝒆𝒆 (°) -22 22 
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𝜷𝜷𝒆𝒆𝒆𝒆 (°) 0 0 

𝜸𝜸𝒆𝒆𝒆𝒆 (°) 0 0 

𝒌𝒌𝜶𝜶 (pN·μm·rad-1·mW-1) 0.233 0.233 

𝒌𝒌𝜷𝜷 (pN·μm·rad-1·mW-1) 0.585 0.585 

𝒌𝒌𝜸𝜸 (pN·μm·rad-1·mW-1) 0 0 

Table 4-1. Equilibrium position and orientation and trap stiffnesses for the 

beams' configuration 𝜁𝜁90 and 𝜁𝜁270. 

4.3.2. Dynamic equilibrium searching 

In Chapter 2, I introduced how it is possible to 

simulate the Brownian dynamics of a spherical particle when 

confined by an optical tweezer. Conversely to spherical 

particles, non-spherical micron-sized objects undergoes 

coupled roto-translation while optically trapped.[8,9] For this 

reason, the theory used in the simulation must be modified to 

account for this coupling. In the next section, I detail the 

theory useful for simulating the Brownian motion of a non-

spherical particle in a force field.  
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4.3.2.1. Brownian motion of non-spherical 
particles in a force field  

4.3.2.1.1. Diffusion tensor  

The erratic Brownian motion of a non-spherical 

particle is influenced by the fluid's resistance, the thermal 

noise, and the external deterministic forces exerted by the 

optical trap.[9,10] Importantly, for a non-spherical object, a 

single scalar diffusion coefficient is not enough to describe 

the statistics of the random motion. It is indeed necessary a 

6 x 6 diffusion tensor (𝑫𝑫), which depends on the particle 

shape and orientation: 

𝑫𝑫 = �𝑫𝑫𝑡𝑡𝑡𝑡 𝑫𝑫𝑡𝑡𝑡𝑡
𝑫𝑫𝑟𝑟𝑟𝑟 𝑫𝑫𝑟𝑟𝑟𝑟

� 4.1 

where 𝑫𝑫𝒕𝒕𝒕𝒕, 𝑫𝑫𝒓𝒓𝒓𝒓 and 𝑫𝑫𝒓𝒓𝒓𝒓 = 𝑫𝑫𝒕𝒕𝒕𝒕
𝑻𝑻 are 3 x 3 blocks and the 

subscripts ‘r’ and ‘t’ refer to the particle's rotational and 

translational degree of freedom, respectively. In each 3 x 3 

block, the diagonal terms indicate the diffusion coefficients 

along a specific direction, while the off-diagonal terms 

indicate the cross-diffusional terms (i.e. coupled motion). 

Although analytical expression for 𝑫𝑫 exists for simple 

shapes, like spherical particle, ellipsoid or cylinder, the RBC 

morphology is more complex and require numerical methods 

for the determination of 𝑫𝑫. In the present work, I used the 
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bead model technique developed by De La Torre et al., 

exploiting the widely used software winHYDRO++.[11,12] In the 

bead model, a series of spheres are used to approximate the 

size and the total volume of the RBC. The computer program 

then uses the model geometry to calculates the 

hydrodynamic resistance of the particle of interest, where the 

translational, rotational, and the coupled terms (roto-

translation) are encoded in 6 x 6 friction tensor (𝜩𝜩):[13] 

𝜩𝜩 = �𝜩𝜩𝑡𝑡𝑡𝑡 𝜩𝜩𝑡𝑡𝑡𝑡
𝜩𝜩𝑟𝑟𝑟𝑟 𝜩𝜩𝑟𝑟𝑟𝑟

� 4.2 

where 𝜩𝜩𝒕𝒕𝒕𝒕, 𝜩𝜩𝒓𝒓𝒓𝒓 and 𝜩𝜩𝒓𝒓𝒓𝒓 = 𝜩𝜩𝒕𝒕𝒕𝒕𝑻𝑻 are 3 x 3 blocks and the 

subscripts ‘r’ and ‘t’ refer to the particle's rotational and 

translational degree of freedom, respectively. Given 

additional information about the solvent physical properties 

(e.g. fluid viscosity, and the temperature) the software 

obtains the diffusion tensor 𝑫𝑫 via the generalised Einstein 

relationship:[13] 

𝑫𝑫 = 𝑘𝑘𝑏𝑏𝑇𝑇𝜩𝜩−1 4.3 

where 𝑘𝑘𝑏𝑏 is the Boltzmann constant, and 𝑇𝑇 is the temperature 

of the system.  

In the present study, the bead model is constructed in 

a strict sense, where the volume of the RBC is filled with 
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spheres of equal sizes. On the one hand, many spheres of 

very small diameters can be used to approximate the shape 

of the RBC, but this has a high computational cost. Still, the 

results of the computation are not significantly more 

accurate. On the other hand, a smaller number of spheres 

with a larger diameter can approximate the RBC’s volume, 

with a smaller computational cost but with a significant 

decrement in the approximation of the friction tensor. In the 

present work, the optimal parameters are obtained if 657 

spheres with a radius of 0.25 μm are used, Figure 4.10. 

In the present case, the centre of diffusion of the 

particle coincides with the centre of mass of the particle, and 

the numerical output for the diffusion tensor reads:  

𝐃𝐃𝑡𝑡𝑡𝑡 = �
   7.427 × 10−14 −4.383 × 10−20 6.234 × 10−21
    5.933 ×. 10−21     7.427 × 10−14 5.991 × 10−21
−8.744 × 10−20 −5.425 × 10−19 6.283 × 10−14

� 4.4 

𝐃𝐃rt=        

𝐃𝐃tr
T = �

−6.178 × 10−15 −2.520 × 10−15 −1.748 × 10−15
−2.520 × 10−15    8.853 × 10−16 −2.724 × 10−15
−1.748 × 10−15 −2.724 × 10−15 −2.199 × 10−16

� 4.5 

𝐃𝐃rr = �
 4.041 × 10−3 3.627 × 10−11   1.056 × 10−10
1.043 × 10−9 4.041 × 10−3 −7.846 × 10−10

  1.018 × 10−10   3.169 × 10−10  3.362 × 10−3
� 4.6 

where the units are m2·s-1, rad·m·s-1, and rad2·s-1 

respectively. 
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Figure 4.10. Bead model for the RBC useful to calculate the diffusion 

tensor 𝑫𝑫 winHYDRO++. 

The diagonal terms of 𝑫𝑫𝑡𝑡𝑡𝑡 give the diffusion coefficient 

along a specific direction (i.e. 𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and are several order 

of magnitude larger than the off-diagonal terms that provide 

the cross-diffusional terms. Similarly, the terms along the 

diagonal of 𝑫𝑫𝑟𝑟𝑟𝑟 encode for the rotational diffusion coefficients 

around a specific axis (i.e. 𝑥𝑥, 𝑦𝑦, 𝑧𝑧), and even in this case, 

these are several order of magnitude larger than the coupled 

terms.  

4.3.2.1.2. Brownian motion in a force field 

In this section, I describe the finite difference scheme 

used for the simulation of the dynamics of the RBC, which is 

based on the works of M. X. Fernandes and collaborators.[9] 

Two reference frames are defined: a particle reference frame 

𝛴𝛴𝑝𝑝, which origin coincides with particle’s centre of mass (CM) 



 141 

and the centre of diffusion (CD), and a laboratory reference 

frame 𝛴𝛴𝑙𝑙 that is centred in (0,0,0) and which axes are oriented 

along 𝒙𝒙�, 𝒚𝒚� and 𝒛𝒛�, Figure 4.2-a. At time 𝑡𝑡, the RBC’s CD is 

located at 𝒓𝒓𝐶𝐶𝐶𝐶(𝑡𝑡) = [𝑥𝑥𝐶𝐶𝐶𝐶(𝑡𝑡), 𝑦𝑦𝐶𝐶𝐶𝐶(𝑡𝑡), 𝑧𝑧𝐶𝐶𝐶𝐶(𝑡𝑡)]. The cell 

orientation is described by the direction cosines 𝛼𝛼1(𝑡𝑡), 𝛽𝛽1(𝑡𝑡) 

and 𝛾𝛾1(𝑡𝑡) defined with respect to the particle unit vector 

𝒙𝒙�𝑝𝑝(𝑡𝑡) = �𝑥𝑥�𝑝𝑝,𝑥𝑥(𝑡𝑡), 𝑥𝑥�𝑝𝑝,𝑦𝑦(𝑡𝑡), 𝑥𝑥�𝑝𝑝,𝑧𝑧(𝑡𝑡)�, 𝒚𝒚�𝑝𝑝(𝑡𝑡) =

�𝑦𝑦�𝑝𝑝,𝑥𝑥(𝑡𝑡),𝑦𝑦�𝑝𝑝,𝑦𝑦(𝑡𝑡), 𝑦𝑦�𝑝𝑝,𝑧𝑧(𝑡𝑡)�, 𝒛𝒛�𝑝𝑝(𝑡𝑡) = �𝑧̂𝑧𝑝𝑝,𝑥𝑥(𝑡𝑡), 𝑧̂𝑧𝑝𝑝,𝑦𝑦(𝑡𝑡), 𝑧̂𝑧𝑝𝑝,𝑧𝑧(𝑡𝑡)�, 

Figure 4.2-a. 𝑫𝑫 is obtained in the particle reference frame, 

that is centred at 𝒓𝒓𝐶𝐶𝐶𝐶(𝑡𝑡) and the axes are oriented along 𝒙𝒙�𝑝𝑝, 

𝒚𝒚�𝑝𝑝 and 𝒛𝒛�𝑝𝑝.  

To simulate the free diffusion of an arbitrarily shaped 

particle from time t to the time step t+∆t, initially, one has to 

calculate the increment of the particle position and orientation 

in 𝛴𝛴𝑝𝑝(𝑡𝑡):[9] 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
∆𝑥𝑥𝑝𝑝
∆𝑦𝑦𝑝𝑝
∆𝑧𝑧𝑝𝑝
∆𝛼𝛼𝑝𝑝
∆𝛽𝛽𝑝𝑝
∆𝛾𝛾𝑝𝑝 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=  √2∆𝑡𝑡

⎣
⎢
⎢
⎢
⎢
⎡
𝑤𝑤𝑥𝑥
𝑤𝑤𝑦𝑦
𝑤𝑤𝑧𝑧
𝑤𝑤𝛼𝛼
𝑤𝑤𝛽𝛽
𝑤𝑤𝛾𝛾⎦
⎥
⎥
⎥
⎥
⎤

4.7 

where �𝑤𝑤𝑥𝑥 ,𝑤𝑤𝑦𝑦 ,𝑤𝑤𝑧𝑧 ,𝑤𝑤𝛼𝛼 ,𝑤𝑤𝛽𝛽 ,𝑤𝑤𝛾𝛾�
𝑇𝑇 are random numbers obtained 

from a multivariate normal distribution with zero mean and 

covariance 𝑫𝑫. Successively, the increments of the particle 

position calculated in 𝛴𝛴𝑝𝑝 has to be transformed to 𝛴𝛴𝑙𝑙. This 



 142 

transformation, rotation around CD, is given by the 

transformation matrix: 

𝑴𝑴𝛴𝛴𝑝𝑝→𝛴𝛴𝑙𝑙(𝑡𝑡) =  �
𝑥𝑥�𝑝𝑝,𝑥𝑥 𝑦𝑦�𝑝𝑝,𝑥𝑥 𝑧̂𝑧𝑝𝑝,𝑥𝑥
𝑥𝑥�𝑝𝑝,𝑦𝑦 𝑦𝑦�𝑝𝑝,𝑦𝑦 𝑧̂𝑧𝑝𝑝,𝑦𝑦
𝑥𝑥�𝑝𝑝,𝑧𝑧 𝑦𝑦�𝑝𝑝,𝑧𝑧 𝑧̂𝑧𝑝𝑝,𝑧𝑧

� . 4.8 

Therefore, the finite difference equation to update the particle 

position in 𝛴𝛴𝑙𝑙 is: 

�
𝑥𝑥𝐶𝐶𝐶𝐶(𝑡𝑡 + ∆𝑡𝑡)
𝑦𝑦𝐶𝐶𝐶𝐶(𝑡𝑡 + ∆𝑡𝑡)
𝑧𝑧𝐶𝐶𝐶𝐶(𝑡𝑡 + ∆𝑡𝑡)

� =  �
𝑥𝑥𝐶𝐶𝐶𝐶(𝑡𝑡)
𝑦𝑦𝐶𝐶𝐶𝐶(𝑡𝑡)
𝑧𝑧𝐶𝐶𝐶𝐶(𝑡𝑡)

� + 𝑴𝑴𝛴𝛴𝑝𝑝→𝛴𝛴𝑙𝑙(𝑡𝑡) �
∆𝑥𝑥𝑝𝑝
∆𝑦𝑦𝑝𝑝
∆𝑧𝑧𝑝𝑝

� . 4.9 

Once the new particle position is calculated, one has to 

update the particle orientation from 𝛴𝛴𝑝𝑝(𝑡𝑡) to 𝛴𝛴𝑙𝑙(𝑡𝑡), which is 

effectively a rotation of the particle unit vectors. This rotation 

is expressed in 𝛴𝛴𝑝𝑝 by the rotation matrix: 

𝑹𝑹𝑝𝑝�∆𝛼𝛼𝑝𝑝,∆𝛽𝛽𝑝𝑝,∆𝛾𝛾𝑝𝑝� =  𝑹𝑹𝑝𝑝,𝑥𝑥�∆𝛼𝛼𝑝𝑝�𝑹𝑹𝑝𝑝.𝑦𝑦�∆𝛽𝛽𝑝𝑝�𝑹𝑹𝑝𝑝,𝑧𝑧�∆𝛾𝛾𝑝𝑝� 4.10 

where: 

𝑹𝑹𝑝𝑝,𝑥𝑥�∆𝛼𝛼𝑝𝑝� =  �
1 0 0
0 cos�∆𝛼𝛼𝑝𝑝� − sin�∆𝛼𝛼𝑝𝑝�
0 sin�∆𝛼𝛼𝑝𝑝� cos�∆𝛼𝛼𝑝𝑝�

� 
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𝑹𝑹𝑝𝑝,𝑦𝑦�∆𝛽𝛽𝑝𝑝� =  �
𝑐𝑐𝑐𝑐𝑐𝑐(∆𝛽𝛽𝑝𝑝) 0 𝑠𝑠𝑠𝑠𝑠𝑠(∆𝛽𝛽𝑝𝑝)

0 1 0
−𝑠𝑠𝑠𝑠𝑠𝑠(∆𝛽𝛽𝑝𝑝) 0 𝑐𝑐𝑐𝑐𝑐𝑐(∆𝛽𝛽𝑝𝑝)

� 4.11 

𝑹𝑹𝑝𝑝,𝑧𝑧�∆𝛾𝛾𝑝𝑝� =  �
cos�∆𝛾𝛾𝑝𝑝� − sin�∆𝛾𝛾𝑝𝑝� 0
sin�∆𝛾𝛾𝑝𝑝� cos�∆𝛾𝛾𝑝𝑝� 0

0 0 1
� . 

Transforming this rotation matrix to 𝛴𝛴𝑙𝑙, we obtain the 

unit vectors representing the orientation of the particle at the 

end of the time step: 

�𝒙𝒙�𝑝𝑝(𝑡𝑡 + ∆𝑡𝑡),𝒚𝒚�𝑝𝑝(𝑡𝑡 + ∆𝑡𝑡), 𝒛𝒛�𝑝𝑝(𝑡𝑡 + ∆𝑡𝑡)� = 

�𝒙𝒙�𝑝𝑝(𝑡𝑡),𝒚𝒚�𝑝𝑝(𝑡𝑡), 𝒛𝒛�𝑝𝑝(𝑡𝑡)�𝑹𝑹𝑝𝑝�∆𝛼𝛼𝑝𝑝,∆𝛽𝛽𝑝𝑝,∆𝛾𝛾𝑝𝑝�. 4.12 

As the last step, the rotation matrix has to be updated:  

𝑴𝑴𝛴𝛴𝑝𝑝→𝛴𝛴𝑙𝑙(𝑡𝑡 + ∆𝑡𝑡) = 𝑴𝑴𝛴𝛴𝑝𝑝→𝛴𝛴𝑙𝑙(𝑡𝑡)𝑹𝑹𝑝𝑝�∆𝛼𝛼𝑝𝑝,∆𝛽𝛽𝑝𝑝,∆𝛾𝛾𝑝𝑝�. 4.13 

However, in the current situation, we must also 

account for the optical forces (𝑭𝑭) and torques (𝝉𝝉) exerted by 

the triple-beams optical trap on the centre of mass of the 

RBC. Therefore, taking into account 𝑭𝑭 and 𝝉𝝉, the increments 

of the particle orientation and position in 𝛴𝛴𝑝𝑝 are: 



 144 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
∆𝑥𝑥𝑝𝑝
∆𝑦𝑦𝑝𝑝
∆𝑧𝑧𝑝𝑝
∆𝛼𝛼𝑝𝑝
∆𝛽𝛽𝑝𝑝
∆𝛾𝛾𝑝𝑝 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=
𝑫𝑫
𝑘𝑘𝐵𝐵𝑇𝑇

∆𝑡𝑡

⎣
⎢
⎢
⎢
⎢
⎡
𝐹𝐹𝑥𝑥,𝑝𝑝
𝐹𝐹𝑦𝑦,𝑝𝑝
𝐹𝐹𝑧𝑧,𝑝𝑝
𝜏𝜏𝑥𝑥,𝑝𝑝
𝜏𝜏𝑦𝑦,𝑝𝑝
𝜏𝜏𝑧𝑧,𝑝𝑝⎦

⎥
⎥
⎥
⎥
⎤

+ √2∆𝑡𝑡

⎣
⎢
⎢
⎢
⎢
⎡
𝑤𝑤𝑥𝑥
𝑤𝑤𝑦𝑦
𝑤𝑤𝑧𝑧
𝑤𝑤𝛼𝛼
𝑤𝑤𝛽𝛽
𝑤𝑤𝛾𝛾⎦
⎥
⎥
⎥
⎥
⎤

4.14 

which then need to be transformed back into 𝛴𝛴𝑙𝑙. However, 𝑭𝑭 

and 𝝉𝝉 are calculated in 𝛴𝛴𝑙𝑙, and therefore they must be 

transformed to 𝛴𝛴𝑝𝑝 via the rotation matrix 𝑴𝑴𝛴𝛴𝑝𝑝→𝛴𝛴𝑙𝑙
𝑇𝑇.  

The present finite difference scheme is combined with 

the code to calculate the optical forces and torques acting on 

the RBC (see chapter 4). It is then integrated with the 

computer software Optical Tweezer in Geometrical Optics 

(OTGO)[14] to perform the numerical simulation.  

4.3.2.2. Numerical computation 

The particle dynamics is simulated for the beams' parameters 

reported in section 4.2 and using a time step (∆t) of 0.001 s. 

In every simulation, the cell is initially positioned in its 'flat' 

configuration (𝛷𝛷 =  90° and 𝛩𝛩 = 0°) and centred in (0,0,0), 

since the final configuration is not known a priori. The final 

position and orientation are given as the average position and 

orientation ± the standard deviation of the last second of the 

simulation.  
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Even if not extensively analysed, I estimate ∆𝑡𝑡 from 

the trap constants calculated in chapter 3, and from the 

diffusion properties of a healthy RBC. The typical time scale 

on which the restoring force acts is given by 𝜔𝜔𝑂𝑂𝑂𝑂 = 𝛾𝛾/𝑘𝑘, while 

the momentum relaxation time is given by 𝜔𝜔𝑚𝑚 = 𝑚𝑚/𝛾𝛾. As 

extensively discussed in chapter 2, ∆𝑡𝑡 must fall in between 

these two characteristic time scales (𝜔𝜔𝑂𝑂𝑂𝑂 ≫ Δ𝑡𝑡 ≫ 𝜔𝜔𝑚𝑚) to 

assure numerical stability. From the diffusion tensor 𝑫𝑫, one 

can extract the diffusion properties of the RBC along a 

specific direction (𝐷𝐷𝑖𝑖), then through the fluctuation dissipation 

theorem one can obtain 𝛾𝛾𝑖𝑖. For example, for the 𝑥𝑥-direction 

one obtains 𝛾𝛾𝑥𝑥 = 𝑘𝑘𝑏𝑏𝑇𝑇/𝐷𝐷𝑥𝑥~5 ∙ 10−8 kg·s-1. Therefore, 

considering a 𝑘𝑘𝑥𝑥~1.6 pN·μm-1, one obtains 𝜔𝜔𝑂𝑂𝑂𝑂~3 ∙ 10−2 s. 

On the other hand, given a mass of ~1·10-11 kg for a typical 

healthy RBC, one obtain 𝜔𝜔𝑚𝑚~4 ∙ 10−4 s. A similar estimation 

can be made for the other directions, and contemplating the 

magnitude of the other terms in 𝑫𝑫, a ∆𝑡𝑡=0.001 s should 

assure numerical stability.  

The time evolution of the RBC's position is followed 

storing the co-ordinates of the RBC’s CM in 𝛴𝛴𝑙𝑙 after each time 

step, while the orientation of the cell is recorded as the polar 

(𝛷𝛷) and the azimuthal orientation (𝛩𝛩) encoded by 𝐳𝐳�𝑝𝑝, Figure 

4.2-a. With these two angles, and the position of the centre 

of mass of the cell, the position and orientation of the RBC 

are entirely defined. Initially, I do not consider the possible 
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cell's spinning about 𝒛𝒛�𝑝𝑝,𝑧𝑧 even though the cell could spin 

around its axis of symmetry (𝒛𝒛�𝑝𝑝,𝑧𝑧) when beam 1 is close 

enough to beam 2 or 3, Figure 4.2-a and -b.  

As a first numerical experiment, I perform the 

numerical simulation for the beams' configuration shown in 

Figure 4.3 to compare the output of the dynamic simulation 

with the results obtained with the SES.  

 
Figure 4.11. a) 3D trajectories of the RBC CM as a function of time, and b) 

each Cartesian co-ordinates as a function of the simulation time. c) Polar 

and azimuthal (d) orientation of the RBC as a function of time. 

Figure 4.11-a shows the three-dimensional 

trajectories of the centre of mass of the RBC trapped by a 
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triple-beams optical trap, while each Cartesian co-ordinate is 

plotted as a function of the simulation time in Figure 4.11-b. 

As soon as the light beams are turned on (𝑡𝑡 = 0 s), the cell 

starts to migrate towards +𝒛𝒛� guided by 𝑭𝑭𝒔𝒔. Simultaneously, 

the cell starts to re-orient itself within the optical trap, Figure 

4.11-c and -d. This re-orientation is accompanied by a motion 

towards +𝒚𝒚� under the pulling action of 𝑭𝑭𝒈𝒈. Conversely, the 

RBC does not undergo substantial motion along the 𝑥𝑥-

direction over the entire simulation time, and this is 

completely expected, Figure 4.11-a and -b.  

Interestingly, the orientational dynamics seems to 

have a two-time scale. Θ seems to stabilise within 0.25 s 

along the same direction of the beam 1 (𝛩𝛩 = 90.355° ± 

1.603°), but it requires ~1.5 s to stabilise along the final polar 

orientation (𝛷𝛷 = 56.379° ± 0.974°), Figure 4.11-c and -d. After 

the initial transient period, the cell stabilises at its final 

translational and rotational equilibrium within 2 s.  

In Table 4-1 are summarised the values of the 

equilibrium position and orientation of the RBC extracted 

from the static equilibrium searching and the dynamic 

equilibrium searching. Overall, the values are in good 

agreement. The equilibrium is for a cell slightly shifted 

towards +𝒚𝒚� and +𝒛𝒛�, while 𝑥𝑥𝑒𝑒𝑒𝑒 is zero in both cases. For what 

concern the rotational equilibrium, the cell is slightly tilted 

towards beam 1.  
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Nevertheless, from a closer inspection, some 

differences arise, precisely for 𝛷𝛷, 𝑧𝑧𝑒𝑒𝑒𝑒 and 𝑦𝑦𝑒𝑒𝑒𝑒. These 

differences are due to the essentially different methods to 

identify the equilibrium position. In theory, both methods 

should converge to the same equilibrium values. However, 

the static method analyses one co-ordinate at a time, leaving 

all other degrees of freedom with a predetermined and fixed 

value during the investigation. Therefore, one would need to 

iterate a certain number of times the entire procedure before 

reaching the final equilibrium configuration. This reiteration 

process could be really laborious or practically impossible 

when the final equilibrium configuration is not known a priori, 

as for the beams' configuration shown in Figure 4.9-a. On the 

contrary, the dynamic method is faster (~3-4 hours) and can 

explore simultaneously every degree of freedom until the 

particle reaches the final equilibrium configuration. 
 

Degree of freedom Static searching Dynamic searching 

x 0 μm 0.001 ± 0.047 μm 

y 0.252 μm 0.112 ± 0.051 μm 

z 0.326 μm 0.901 ± 0.043 μm 

𝜱𝜱 68. 010° 56.379° ± 0.974° 

𝜽𝜽 90.000° 90°±0.135° 

Table 4-2. Comparison of the equilibrium position and orientation obtained 

with the static equilibrium searching and the dynamic equilibrium 

searching. 
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As a further proof of the current dynamic searching method, 

I also carry out the dynamic searching for the alternative 

beams' configuration shown in Figure 4.8-a.  

In Figure 4.12 are directly compared the simulations 

results for beam 1 located at 𝜁𝜁 =  90° and 𝜁𝜁 =  270°, which 

corresponds to the beam configuration used for the static 

equilibrium searching shown in section 4.3.1. In the two 

conditions beam 1 is placed in diametrically opposite position 

along the 𝑦𝑦-axis while beam 2 and 3 are placed on the 𝑥𝑥-axis, 

Figure 4.12-a.  

 
Figure 4.12. a) Schematic illustration of the alternative beams' 

configuration investigated via the dynamic equilibrium searching. b) 3D 

trajectories of the RBC’s CM for the beams' configuration shown in (a). c, 

d) Polar and azimuthal orientation of the RBC as a function of time for the 
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beams' configuration shown in (a). e) 3D representation of the equilibrium 

configuration of the RBC obtained with the dynamics equilibrium searching 

for the beams' configuration shown in (a). The small dot represents the 

location of the beams' foci.  

Figure 4.12-b shows the three-dimensional 

trajectories of the centre of mass of the cell for the two cases. 

In both cases, the cell starts to rapidly migrate in the direction 

of beam 1 while translating towards +𝒛𝒛� because of 𝑭𝑭𝒔𝒔. 

Conversely, the trajectories fluctuate around 0 μm along the 

𝑥𝑥-direction. Importantly, at equilibrium, the cell is just slightly 

shifted along the 𝑦𝑦-direction according to the position of 

beam 1, Figure 4.12-b. 

Independently from the position of beam 1, the cell 

finds its rotational equilibrium when the plane is rotated of 

about 56° around the 𝑥𝑥-axis, Figure 4.12-c. However, in the 

two cases, the cell is tilted in the opposite direction, Figure 

4.12-d and e. Here can be seen the different effects of the 

position of beam 1 on the cell tilting. If beam 1 is positioned 

in two diametrically opposite directions along the 𝑦𝑦-axis, the 

cell orients itself with the very same polar angle but along the 

opposite direction.  

It appears, therefore, to be possible to control the 

orientation and the position of the cell by varying the angular 

position of beam 1. From symmetry arguments, the effect of 

different locations of beam 1 can be understood restricting 𝜁𝜁 
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in the interval [0°, 90°], Figure 4.13-a. Moreover, since I am 

particularly interested in configurations alternative to the 'flat' 

or 'folded' one (or to a transition between the two), it is also 

possible to exclude every position of beam 1 that is too close 

to beam 2, which should induce a folded configuration. Thus, 

the position of beam 1 can be restricted to 15° ≤ 𝜁𝜁 ≤ 90°. 

To analyse the effect of the position of beam 1 on the 

RBC's configuration, I sample 𝜁𝜁 every 15°. For each angular 

position of beam 1, I carried out the dynamics equilibrium 

searching.  

Figure 4.13-b shows the 3D trajectories of the RBC's 

CM obtained from the simulations carried out for different 𝜁𝜁. 

From the trajectories, it is evident that the position of beam 1 

influences the equilibrium position of the RBC. In particular, 

it seems clear that if beam 1 is close to beam 2 (𝜁𝜁 =  15 −

30°), 𝑧𝑧𝑒𝑒𝑒𝑒~ 0 μm. I anticipate that for 𝜁𝜁 ≤ 30°, the cell is in its 

'folded' configuration. Moreover, it is also possible to 

appreciate that for 𝜁𝜁 = 15°, the cell centre of mass seems to 

be slightly shifted towards -𝒙𝒙�. Not surprisingly, both effects 

are expected, and they are due to a combination of the light 

intensity distribution and the cell configuration within the trap. 

In fact, when the cell is in its 'folded' position, the cell's plane 

is parallel to the direction of propagation of the light beam. In 

this condition, more light rays strike the biggest faces of the 

RBC, increasing significantly 𝑭𝑭𝑔𝑔. Simultaneously, 𝑭𝑭𝑠𝑠 
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decreases appreciably because of the smaller geometrical 

cross-section of the cell (see chapter 3). However, if 𝜁𝜁 

increases, this effect is less pronounced since the light rays 

strike the cell less symmetrically, and for 𝜁𝜁 = 30°, 𝑧𝑧𝑒𝑒𝑒𝑒~0.5 μm. 

On the other hand, the shifting along the 𝑥𝑥-direction is due to 

the strong gradient in the light intensity along 𝒙𝒙�, and thus to 

the pulling effect of 𝑭𝑭𝑔𝑔. Conversely, for the remaining beams' 

configurations, the effect on the centre of mass of the particle 

is less pronounced, and all the simulations converge to 

approximately the same three-dimensional position. 

 
Figure 4.13. a) Schematic depiction of the beams' configuration for variable 

position of beam 1. b) 3D trajectories obtained from the simulations for 

different 𝜁𝜁. 

Much more interesting is the analysis of the rotational 

equilibrium. In Figure 4.14-a are shown the polar orientation 



 153 

(𝛷𝛷) of the cell as a function of the simulation time for different 

locations of beam 1 (i.e. various 𝜁𝜁). Here, it is clearly evident 

that beam 1 strongly influences the final polar orientation of 

the cell. In every configuration tested, beam 1 induces a 

clockwise cell rotation around the 𝑥𝑥-axis, Figure 4.14-c. In 

particular, as beam 1 is closer to beam 2, the cell tilts more 

and more until it reaches the 'folded' configuration (𝛷𝛷 =  0°). 

Analysing the final orientation of the cell in more detail, it is 

possible to discriminate between three different regions. 

When beam 1 is in the proximity of beam 2, 𝜁𝜁 ≤ 30°, the cell 

is in the 'folded' configuration. If 30° < 𝜁𝜁 < 75°, the RBC's 

tilting seems to vary linearly with 𝜁𝜁, from a 'folded-like' 

configuration to 'flat-like' configuration. The last region is for 

𝜁𝜁 ≥ 75°, where the cell tilting cannot be decreased further, 

Figure 4.14-a.  
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Figure 4.14. a) Polar orientation of the RBC as a function of the simulation 

time, and average polar orientation of the cell in the last second of 

simulation (b). c) Azimuthal direction of the cell as a function of time and 

average azimuthal orientation for the last second of simulation (d). The 

error bar represents the standard deviation.  

To appreciate more this behaviour, I extract the 

average value of the cell orientation and position and plot 

them as a function of 𝜁𝜁, Figure 4.14-b. Here the three regions 

are particularly evident. An initial plateau for 𝜁𝜁 ≤ 30°, a linear 

increase for 30° ≤ 𝜁𝜁 ≤ 75° and final plateau for 𝜁𝜁 > 75°. 

Moreover, from Figure 4.14-b is also evident that in every 

condition, the cell tilts clockwise around the 𝑥𝑥-axis (towards 

beam 1). It is also interesting to note the minor effect that the 
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position of beam 1 has on 𝛩𝛩. In particular, for 𝜁𝜁 = 45° is 

possible to obtain the highest cell’s tilting around the z-axis. 

For every other 𝜁𝜁, the tilting of the RBC around the z-direction 

decreases towards 𝛩𝛩 = 90°.  

In Figure 4.15 are depicted the final equilibrium 

configuration of the RBC in respect to beam 1 position, and 

the arrows indicate the relation between the cell configuration 

and the position of beam 1. Here is clearly visible how beam 

1 strongly influences the cell tilting over a wide range of 

possible orientations.  

 
Figure 4.15. Final equilibrium configuration of the RBC for different 

positions of beam 1. The red dots indicate the projection on the x-y plane 

of the position of the focal points of beam 2 and beam 3. The coloured dots 

indicate the position of beam 1. The green arrow shows how beam 1 is 

translated, while the blue arrow indicates how the cell tilts in response to 

the position of beam 1.   
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4.4. Chapter summary 

In this chapter, I investigated how a triple-beam 

optical tweezer can be used to control the orientation and the 

position of a healthy RBC in its biconcave disk conformation. 

I used two different approaches for the final equilibrium 

configuration searching. The static equilibrium searching 

demonstrated an excellent method to investigate the trapping 

mechanism if the equilibrium configuration of the cell is 

known a priori or if the trap configuration assumes a simple 

geometrical configuration. In fact, with few reiterations of 

such a method, the final equilibrium configuration can be 

easily identified. However, as the trap configuration 

increases in complexity, the static equilibrium searching 

becomes too laborious and could fail to identify the final 

configuration of the cell. For highly complex traps' 

configuration, simulating the non-spherical particles' 

Brownian dynamics was an essential step. The introduction 

of dynamic equilibrium searching makes possible to identify 

the final equilibrium position and orientation even in highly 

complex light distribution patterns. 

In conclusion, I theoretically demonstrated the 

possibility to fine control the position and orientation of a 

healthy RBC in its biconcave disk conformation using 

reconfigurable triple-beam optical tweezers. Moreover, the 
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introduction of a dynamic equilibrium searching method 

paves the way for experimentalists to verify various 

hypotheses on the possibility to control the configuration of 

an RBC for orientational dependent studies.  

It must be made it clear that the presented work is 

purely numerical and that during experiments some 

differences could arise. Firstly, the red blood cell is 

approximate as a rigid body which in real world is clearly not. 

Nevertheless the cell deforms in response to optical 

pressure, it is unlikely that the deformation induced by low 

lasers' powers (< 10 mW) could be so consistent to prevent 

the optical trapping completely. More significant in terms of 

trapping could be a cell damaged induced by a prolonged 

trapping with high lasers' power (tens or hundreds of mW). 

Secondly, the entire set of numerical experiment are tuned 

on specific RBC morphological properties as discussed 

extensively in chapter 3. These parameters can be tweaked 

to accommodate specific conditions. For example, the 

morphology of the cell can be adjusted to describe the 

swelling state of a RBC according to the osmolarity of the 

solution. However, if this is the case the trap architecture 

needs to be changed accordingly. Additionally, this numerical 

experiment does not consider anyhow a morphological 

change in the RBC outline due to a pathological RBC 

condition. In third place, any trap imperfection (e.g. beam 



 158 

aberrations) that can be encountered experimentally is not 

considered. The presence of imperfections would limit the 

applicability should you attempt trapping in vivo, for example. 

Therefore, an experimental validation is strictly necessary to 

confirm the possibility to govern the orientation and the 

position of the RBC.  
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5. LIGHT-SHEET TWEEZER FOR 
OPTICAL TRAPPING AND 
ROTATION OF HEALTHY RED 
BLOOD CELLS IN THE BICONCAVE 
DISK CONFORMATION 

In this Chapter, I present a theoretical investigation on the 

possibility of optically trap a healthy erythrocyte with a line 

tweezer. This section is motivated by a suggestion for using 

a line optical trap for trapping RBCs for interrogation as they 

flow through a microfluidic device. A line tweezer should 

allows the same orientational confinement that ones can 

obtain with a double-beam optical tweezers, but using only a 

single beam thanks to the addition of a single and simple 

optical element (i.e. cylindrical lens). 

5.1. Introduction 

In 1970 Arthur Askhin first demonstrated how to 

manipulate micron-sized latex spheres suspended in water 

through optical pressure.[1] Following the first demonstration 

of optical trapping, he applied single-beam optical tweezers 

(see chapter 2 for a detailed description) to manipulate 

biological particles as bacteria and red blood cells.[2,3]  
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The basic principles of optical tweezers hang on to 

the fact that light carries momentum, which can be harvested 

to manipulate microscopic dielectric particles in solution. A 

stable optical trapping can be reached when the net force 

exerted on the particle by the illuminating light is balanced. In 

its conventional set-up, the optical tweezer uses spherical 

optics, which produces a point focus. This gives rise to a well-

defined point trap where a laser beam, with a Gaussian 

intensity distribution, is focused to a diffraction-limited spot 

through a high numerical aperture objective[4], Figure 5.1-a. 

In this condition, a gradient in the light intensity distribution is 

created along each spatial direction, and the gradient force 

(𝐅𝐅g) confines the microparticle in the proximity of the beam 

focus. The trapping mechanism is considerably different if a 

Gaussian beam is focused over a line (line-traps) rather than 

a single point.  

In one of the first implementations of line-traps 

researchers proposed the use of a rectangular aperture that 

blocks the light beam exiting the laser resonator selectively.[5] 

However, this methodology presents technical difficulties and 

a significant loss of the initial laser power (greater than 50%). 

Others have formed line tweezers by rapidly scanning a point 

like optical trap,[6,7] or holography.[8] Interestingly, Dasgupta 

and collaborators exploit a simple set-up initially used for 

fluorescence microscopy,[9] the well-known light-sheet 
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fluorescence microscopy, to produce a line-trap.[10] 

Importantly, compared to other methodologies, the proposed 

set-up require only a single cylindrical lens to create the line-

trap. 

 
Figure 5.1. Schematic diagram of a single-beam optical tweezer (a), and a 

light-sheet optical tweezer (b). 

Line-traps are well understood in rectangular co-

ordinates systems.[11] The diffraction-limited light ‘line’ is 

taken along the xz-plane with the x-axis and the z-axis as the 

light ‘line’ axis and the beam propagation direction. Initially, 

the incoming beam is focused by the cylindrical lens along a 

line on the y-axis. The objective lens is placed at the focus of 

the cylindrical lens. The field at the back aperture of the 
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objective lens undergoes a Fourier transform, forming a 

diffraction-limited line along the x-axis at its focus, Figure 5.1-

b. In this condition, a strong light intensity gradient is present 

only along two directions (𝐲𝐲� and 𝐳𝐳�). Therefore, a particle is 

completely free to move around the direction over which the 

incoming beam is focused (i.e. 𝐱𝐱�) as long as it is smaller than 

the extent of the line along 𝑥𝑥-direction. 

Objects that deviates from the simple spherical 

shape, like ellipsoid or cylinder, tend to align with the beam 

propagation direction because of the optical torque 

generated by the incoming beam (see chapter 2). This is the 

case for biological particles like healthy red blood cells 

(RBCs) trapped by a single- or double-beam optical tweezer 

(see chapter 3). In line-tweezer, the same remains true. This 

behaviour can be exploited further to achieve a controlled 

rotation of the object around the optical axis. The 

microparticles’ rotation can be achieved by rotating the 

cylindrical lens around the optical axis, as initially 

demonstrated in [10]. Dasgupta and collaborators could rotate 

biological entities freely suspended in a water-based 

medium, or even subcellular organelles within living cells, 

with a speed up to 9 rad/s without damaging the trapped 

object. More interestingly, the researchers were also able to 

rotate aggregates of healthy and unhealthy RBC at a speed 

of 3 rad/s. 
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Even though some examples of optical trapping with 

line tweezers have been produced, to the best of my 

knowledge, none of them analyses the optical trapping of an 

RBC with a line-tweezer theoretically. Moreover, a theoretical 

investigation can be used to shed light on the complete 

confinement of RBCs with a line-tweezers. For this reason, 

in the remainder of this chapter, I theoretically investigate the 

RBC optical trapping with a line-tweezer.  

5.2. Model 

In the current chapter, a three-dimensional cartesian co-

ordinates system is considered, and a single Gaussian laser 

beam propagates towards +𝑧̂𝑧. The wavelength of the light 

beam is chosen to be 1.064 μm in agreement with the vast 

majority of experiments and with the light source present in 

our laboratory (Nd:YAG laser). To reproduce the line-

tweezer, the Gaussian laser beam (100 μm beam waist) is 

decomposed into a bundle of light rays with appropriate 

intensity and direction. The light rays are then focalised along 

the 𝑥𝑥-axis, as shown in Figure 5.2-a and -b. The focal length 

of the cylindrical lens is 10 μm, while the power is always 5 

mW for the reasons reported in the previous chapter.  
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Figure 5.2. Decomposition of the Gaussian laser beam into a bundle of 

light rays focalised over the 𝑥𝑥-axis. a) lateral view and b) perspective view. 

As in the previous chapters, the RBC is considered 

immersed in a water-based medium (𝑛𝑛1 = 1.33), and filled by 

a non-absorbing medium with isotropic physical properties 

(index of refraction 𝑛𝑛2 = 1.38, and density 𝜌𝜌 = 1.11 g/cm3). 

Since the cell density is higher than the density of the 

surrounding fluid, a constant force (𝑭𝑭𝒃𝒃 = -0.1 pN) acting along 

the 𝑧𝑧-axis is always considered, as explained in chapter 3. 

The RBC is always considered a rigid body (i.e. not 

deforming in response to the optical pressure), and the cell-

medium interface is modelled as a single net line. The RBC 

is always in its healthy biconcave disk conformation, and the 

parameters describing the RBC disk are those extensively 

described and used in chapter 3. In addition to the laboratory 

reference frame (𝛴𝛴𝑙𝑙), I define a second cartesian frame of 

reference centred on the centre of mass of the RBC, particle 
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reference frame (𝛴𝛴𝑝𝑝) according to what is reported in chapter 

4.  

For biological samples, the fraction of power that is 

reflected after a scattering event is very low (< 0.001),[12] and 

therefore to a good approximation I can consider only the first 

two scattering events.  

In these conditions, the geometrical optics approximation 

is completely fulfilled, hence, the optical forces and torques 

can be calculated with GO following the scheme reported in 

chapter 3 and in [13]. 

5.3. Numerical computation 

5.3.1. Infinite light-sheet width 

In this section, I report the numerical analysis for a 

line-tweezer in which the beam is focalised over a line whose 

length (100 μm) is much bigger than the typical size of an 

RBC (7.82 μm). This is particularly important since a strong 

gradient in the light intensity is obtained only along the 𝑦𝑦- and 

𝑧𝑧-direction, so the cell is completely free to move along the 

𝑥𝑥-direction. In analogy with the static equilibrium searching 

analysis carried out in the previous chapters, I start the 

numerical investigation by displacing the RBC along each 

degree of freedom (translational and rotational) at a time 

while keeping the other fixed. Initially, the cell is maintained 
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in its 'folded' configuration (i.e. cell plane parallel to the 𝑥𝑥𝑥𝑥-

plane in the laboratory reference frame) and centred at the 

origin of the 𝑥𝑥𝑥𝑥-plane while displaced along the 𝑧𝑧-direction 

with steps of 0.01 μm.  

 
Figure 5.3. a) Force-displacements curve along the 𝑧𝑧-direction, and force's 

decomposition in scattering and gradient component (b) and (c) 

respectively. d) Schematic depiction of the possible equilibrium position of 

an RBC along the beam propagation direction.  

Figure 5.3.-a shows the force-displacements curve for 

an RBC displaced along the 𝑧𝑧-direction as a function of the 

cell displacements in terms of the cartesian components. As 

expected, no optical forces are present along the 𝑥𝑥- and 𝑦𝑦-

axis. On the contrary, a net (inhomogeneous) optical forces 

c) d) 
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component is visible along the 𝑧𝑧-direction. 𝐹𝐹𝑧𝑧(𝑧𝑧) initially 

decreases linearly vanishing with negative slopes at 

approximately -1 μm, suggesting a stable optical trapping. On 

the contrary, the RBC is repelled away from the origin, Figure 

5.3.-a. Interestingly, a second stable trapping position seems 

to be present at approximately +1 μm. This can be 

understood by observing that a healthy RBC is a biconcave 

disk. In fact, the RBC can be trapped in two almost 

symmetrical equilibrium positions in respect to 𝑥𝑥𝑥𝑥-plane 

where the deepest portion of the dimple is completely above 

or below this plane, Figure 5.3.-a and -d. As discussed in 

chapter 3, the presence of the central dimple plays a pivotal 

role in determining the rays’ path and, ultimately, the optical 

forces. If the centre of the cell is close to the origin, a 

consistent portion of light rays undergoes to total internal 

reflection on the interior of the dimple, increasing 𝑭𝑭𝒔𝒔, while 𝑭𝑭𝒈𝒈 

remains essentially unaltered, Figure 5.3.-b and c. The 

balance between 𝑭𝑭𝒔𝒔, 𝑭𝑭𝒈𝒈 and 𝑭𝑭𝒃𝒃 dictates the two symmetrical 

equilibrium positions along the 𝑧𝑧-direction. However, the high 

irregularities of the force-displacements curve renders 

problematic the trap stiffness estimation with the 

methodology used in the previous chapter (linear fitting).  

Successively, the cell is placed at 𝑧𝑧𝑒𝑒𝑒𝑒 = -1 μm and y 

= 0 μm, and the force-displacements curve is simulated for 

cell translation along the 𝑥𝑥-direction, Figure 5.4-a. As 
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expected, no forces arise along this direction since no strong 

light intensity gradient are present. However, for very big 

displacement, comparable to the size of the line along the 𝑥𝑥-

direction, 𝐹𝐹𝑥𝑥(𝑥𝑥) would be visible. Therefore, for the present 

analysis I will set 𝑥𝑥𝑒𝑒𝑒𝑒 = 0 μm. Later in the text, I will discuss 

how confining the size of the 'light line' to approximately the 

cell diameter results in a clear confinement along the 𝑥𝑥-

direction. 

Having verified that no restoring forces act along the 

𝑥𝑥-direction, the cell is placed at 𝑥𝑥𝑒𝑒𝑒𝑒 and 𝑧𝑧𝑒𝑒𝑒𝑒 = -1 μm, and the 

force-displacements curve is calculated for the 𝑦𝑦-direction. 

As expected, no optical forces act along the 𝑥𝑥-direction, and 

only small 𝑧𝑧-component of force are present for relatively 

large displacement along the 𝑦𝑦-direction. On the other hand, 

𝐹𝐹𝑦𝑦(𝑦𝑦) vanishes with negative slope at 𝑦𝑦𝑒𝑒𝑒𝑒 = 0 μm, suggesting 

the presence of stable equilibrium position, Figure 5.4-b. 
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Figure 5.4. Force-displacements curve along the 𝑥𝑥- and 𝑦𝑦-direction, (a) and 

(b) respectively. 

Once the equilibrium position is thoroughly analysed, 

I turn my attention to the rotational confinement. As 

introduced in chapter 3, non-spherical objects align with the 

optical axis when optically trapped because of the optical 

torques (τ). For a trapped object, these torques must be 

restoring to keep the cell in a defined orientation. In the 

present situation, the RBC’s plane must be parallel to the 

optical axis, and the cell’s plane must contain the light-sheet.  

Initially, I analysed the torque-rotations curve for RBC 

rotation around the 𝑥𝑥-axis (α). The cell is placed at 𝑥𝑥𝑒𝑒𝑒𝑒, 𝑦𝑦𝑒𝑒𝑒𝑒 

and 𝑧𝑧𝑒𝑒𝑒𝑒 = -1 μm, and is rotated with angular steps of 1°. The 

optical torques acting on the cell are calculated after each 

angular displacement. Figure 5.5-a shows 𝜏𝜏(𝛼𝛼), where α = 

90° corresponds to a cell in its 'folded' configuration with its 

plane comprised in the 𝑥𝑥𝑥𝑥-plane. Here it can be seen that a 
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𝜏𝜏𝑥𝑥(𝛼𝛼) vanishes with negative slope at 𝛼𝛼𝑒𝑒𝑒𝑒 = 90°, suggesting 

that a stable equilibrium configuration is present for an RBC 

in its 'folded' configuration. On the other hand, an unstable 

equilibrium is visible for a cell in its 'flat' configuration, that is, 

for a cell that has its plane parallel to 𝑥𝑥𝑥𝑥-plane.  

Not surprisingly, if the cell is rotated around an axis 

passing through the centre of mass and parallel to the 𝑦𝑦-axis 

no torque are present, Figure 5.5-b. This can be understood 

by the fact that the cell is rotating around its axis of symmetry.  

Lastly, I analyse the torque-rotations curve for cell 

rotation around the 𝑧𝑧-axis (angle γ) while keeping the cell at 

equilibrium position (𝑥𝑥𝑒𝑒𝑒𝑒, 𝑦𝑦𝑒𝑒𝑒𝑒, 𝑧𝑧𝑒𝑒𝑒𝑒 = -1 μm, and 𝛼𝛼𝑒𝑒𝑒𝑒 = 90°) 

configuration. Here 0° rotation corresponds to a configuration 

where the RBC has its plane parallel to the 𝑥𝑥𝑥𝑥-plane. From 

Figure 5.5-c, it can be seen that 𝜏𝜏𝑧𝑧(𝛾𝛾) vanishes with a 

negative slope for 𝛾𝛾𝑒𝑒𝑒𝑒 = 0° suggesting an effective rotational 

confinement. This is particularly interesting if compared to the 

single-beam optical tweezers case, where the cell is 

completely free to 'flap' around the 𝑧𝑧-axis (see chapter 4).  

Therefore, from this initial analysis for the simplest 

possible case (i.e. infinite light-sheet width), it is clear that the 

line-trap can easily confine the asymmetrical object in a 

specific equilibrium configuration.  
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Figure 5.5. Torques-rotation curves for cell rotation around the 𝑥𝑥 −, 𝑦𝑦 −, 𝑧𝑧-

direction, (a), (b), and (c), respectively.  

5.3.2. Finite light-sheet width 

Until now, I have always considered a simple case 

where the size of the light-sheet is much bigger than the cell 

diameter, and therefore the cell does not experience a strong 

light gradient along the 𝑥𝑥-direction. This reflects on an 

absence of a restoring force along the direction over which 

the beam is focused. However, decreasing the light-sheet 

extent along the 𝑥𝑥-direction would also create a strong light 

gradient in the direction along which the light is focused. One 

c) 
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may think to simply reduce the beam waist of the incoming 

beam to match the diameter of the cell or to block the light 

selectively with a circular aperture of the same size as the 

cell diameter (i.e. 7.82 μm). However, the high rays’ 

convergence needed for a stable axial trapping is completely 

lost with these approaches. An alternatives solution to this 

issue is to modify the shape of the incoming beam by using 

a second cylindrical lens. Doing so, the beam is made 

elliptical at the second cylindrical lens and is then focalised 

by the objective lens as schematically depicted in Figure 5.6-

a and b. At the objective lens, the focusing of an elliptical 

beam guarantees the high rays’ convergence along one 

direction necessary for a stable axial trapping. Moreover, by 

tuning the distance between the two cylindrical lenses 

(telescope), the length of the light sheet can be controlled so 

that the RBC can be completely confined.  

 
Figure 5.6. Schematic depiction of the optical set-up used in the numerical 

experiments. Two cylindrical lenses are used to shape the incoming beam 
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before the objective lens. b) Rays starting point (red) and elliptical beam 

(blue) focused by the objective lens.  

To evaluate the effect of the light-sheet width along 

the 𝑥𝑥-direction, I choose four different sizes for the light-

sheet. These correspond to a beam width that coincides to 

the thickest portion of the cell 5.52 μm, Figure 5.7-a, to an 

intermediate width between the thickest part of the cell and 

the cell diameter 6.67 μm, Figure 5.7-b, to a width equal to 

cell diameter 7.82 μm, Figure 5.7-c, and to a width slightly 

higher than the cell diameter 8.97 μm, Figure 5.7-d.  

 
Figure 5.7. Projection of the starting point of the light rays for different beam 

sizes. a) The beam semi-axis is 5.52 μm, in (b) is 6.67 μm, in (c) 7.82 μm 

and in (d) is 8.97 μm. 
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In all the cases investigated, the high light 

convergence needed for a stable axial trapping is assured. 

This can be appreciated by observing the ray-tracing 

performed in the different condition, Figure 5.8-a-d.  

 
Figure 5.8. Ray traces for beams of different sizes. Only the light rays that 

interact with the cell are shown in (d). 

Figure 5.9-a shows the force-displacements curves 

as a function of the cell displacements along the 𝑥𝑥-direction 

for different light-sheet widths while the cell is kept in its 

'folded' configuration at 𝑦𝑦 = 𝑧𝑧 = 0 μm. Note that only the 𝑥𝑥-

component of the force is shown. Here it can be seen that as 

the size of the light-sheet is decreased, the force traces 
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vanish with a negative slope at 𝑥𝑥𝑒𝑒𝑒𝑒 = 0 μm. Importantly, this 

suggests that a restoring force is also introduced along the 𝑥𝑥-

direction, and therefore the cell can be completely confined 

via a light-sheet tweezers. To compare the trapping strength 

in the different conditions, I use the trap stiffness (𝑘𝑘𝑥𝑥); see 

chapter 2 and 3 for a detailed description. For each force-

displacement curve, 𝑘𝑘𝑥𝑥 is extrapolated with a linear fit of the 

approximately linear region of the plot and is plotted as a 

function of the light-sheet width, Figure 5.9-b. As the light-

sheet width increases, 𝑘𝑘𝑥𝑥 increases accordingly, until it 

reaches a maximum value of approximately 0.12 pN·μm-

1·mW-1 when the light-sheet width matches the cell’s 

diameter (7.82 μm) and then decreases if the light-sheet 

width is increased further. This behaviour can be explained 

considering that the cell is subjected to the highest light 

gradient when the beam size equals the RBC diameter.  
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Figure 5.9. a) 𝐹𝐹𝑥𝑥(𝑥𝑥) for different light-sheet widths. b) 𝑘𝑘𝑥𝑥 for different light-

sheet widths. 𝑘𝑘𝑥𝑥 is estimated fitting a line to the linear portion of the plot in 

(a). 

Successively, I investigate the effect of varying the 

beam size for cell displacements along the 𝑦𝑦-direction. The 

cell is placed at 𝑥𝑥𝑒𝑒𝑒𝑒 = 0 μm and kept in its 'folded' 

configuration while displaced along the 𝑦𝑦-direction. In Figure 

5.10-a are shown 𝐹𝐹𝑦𝑦(𝑦𝑦) as a function of the cell's 

displacements along the 𝑦𝑦-direction. In every case 𝐹𝐹𝑦𝑦(𝑦𝑦) 

vanish with negative slope at 𝑦𝑦𝑒𝑒𝑒𝑒 = 0 μm, suggesting the 

presence of a restoring force along this direction. However, 

compared to the 𝑥𝑥-direction, it is evident that the aspect ratio 

of the trapping beam has a minor effect on 𝐹𝐹𝑦𝑦(𝑦𝑦), and only 

for significant cell displacements (>0.5 μm) some differences 

appear. In fact, the large positive and negative peaks are 

much less pronounced when the beam is not elliptical 

because only a fraction of the total beam power hits the cell. 
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However, for small displacement (<0.1 μm), the disparities 

are much less pronounced, and there are no differences 

between the different conditions (insert Figure 5.10-a). As 

before, the trap stiffnesses (𝑘𝑘𝑦𝑦) are used to discern between 

the different conditions, Figure 5.10-b. 𝑘𝑘𝑦𝑦 reaches a 

maximum value of approximately 0.4 pN·μm-1·mW-1 when 

the size of the incoming beam is intermediate between the 

diameter of the maximum thickness and the cell's outer 

diameter. However, the values of 𝑘𝑘𝑦𝑦 are relatively constant 

compared to 𝑘𝑘𝑥𝑥. 

 
Figure 5.10. a) 𝐹𝐹𝑦𝑦(𝑦𝑦) for different light-sheet size. b) 𝑘𝑘𝑦𝑦 for different light-

sheet size. 𝑘𝑘𝑥𝑥 is estimated fitting a line to the linear portion of the plot in 

(a). 

Lastly, I simulate the force-displacements curve for 

displacements along the 𝑧𝑧-direction. The RBC is placed in 

the 'folded' configuration at 𝑥𝑥𝑒𝑒𝑒𝑒 and 𝑦𝑦𝑒𝑒𝑒𝑒 and the cell is 

translated along the 𝑧𝑧-direction, while the cell's plane is 
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constrained in the 𝑥𝑥𝑥𝑥-plane. Figure 5.11 shows 𝐹𝐹𝑧𝑧(𝑧𝑧) as a 

function of the cell displacements from the origin for different 

light-sheet widths. Even if the general trend of the force 

traces agrees with the one obtained for an infinite line, it is 

visible that as the beam size increases, the negative 𝑧𝑧𝑒𝑒𝑒𝑒 

seems to shift towards 0, passing from 𝑧𝑧𝑒𝑒𝑒𝑒 = -1.505 μm for a 

light-sheet width of 5.52 μm to 𝑧𝑧𝑒𝑒𝑒𝑒 = -0.943 μm for a light-

sheet width of 8.97 μm.  

 
Figure 5.11. 𝐹𝐹𝑧𝑧(𝑧𝑧) for different light-sheet widths. The vertical line and the 

red circles represent the two points of equilibrium for the RBC. The blue 

circle show the point of unstable equilibrium close to the origin of the 

Cartesian co-ordinates system.  
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Moreover, even the inhomogeneities of the force traces seem 

to increase as the beam size increases. Two factors can be 

accounted for the different locations of -𝑧𝑧𝑒𝑒𝑒𝑒 and for the 

irregularities in the force traces. On the one hand, as the light-

sheet width increases, the fraction beam power that strikes 

the cell in a specific location change accordingly. This 

modifies how the total optical forces are subdivided between 

𝑭𝑭𝑠𝑠 and 𝑭𝑭𝑔𝑔 (see chapter 3 for a detailed description), and 

therefore the location of the 𝑧𝑧𝑒𝑒𝑒𝑒 observed. On the other hand, 

the finite number of light rays could enhance this effect further 

because the light rays with the highest power are likely to 

strike the central dimple generating force spikes in 𝑭𝑭𝑠𝑠, Figure 

5.12-a and b.  

 
Figure 5.12. Scattering (a) and gradient (b) component of 𝐹𝐹𝑧𝑧(𝑧𝑧) for different 

light-sheet widths.  

However, the positive 𝑧𝑧𝑒𝑒𝑒𝑒 seem to be less affected by 

the light-sheet width, red circle in Figure 5.11. The RBC is 
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always repelled away from the origin because of its 

biconcave disk conformation, blue circle in Figure 5.11. Even 

though the force traces clearly suggest the ability of the light-

sheets to optically confine the RBC, the extrapolation of the 

trap stiffness is not possible via a linear fitting because of the 

high irregularities of the force-displacements curves. 

Once the equilibrium position is fully characterised, I 

analyse the rotational equilibrium. Similarly to the infinite line 

case, I explore the cell rotation around the 𝑥𝑥-axis (angle of 

rotation α). The RBC is placed at the respective 𝑥𝑥𝑒𝑒𝑒𝑒, 𝑦𝑦𝑒𝑒𝑒𝑒 and 

-𝑧𝑧𝑒𝑒𝑒𝑒 in its 'folded' configuration with its plane parallel to the 

𝑥𝑥𝑥𝑥-plane. The cell is rotated with angular steps of 1°, and the 

optical torques acting on the RBC are calculated after each 

angular step.  

In Figure 5.13-a are shown 𝜏𝜏𝑥𝑥(𝛼𝛼) for different light-

sheet widths. Here at 0° and 180°, the cell is in the 'flat' 

configuration, while at 90°, the cell is in the 'folded' 

configuration. All 𝜏𝜏𝑥𝑥(α) vanish with negative slope at α𝑒𝑒𝑒𝑒 = 

90°, suggesting that the cell is rotationally confined in its 

'folded' configuration. Moreover, it is also evident that 𝜏𝜏𝑥𝑥(α) 

show higher peaks when the beam is focused over a shorter 

line. This is expected since the light intensity is concentrated 

in a smaller region, but it preserves the size along the 

transverse direction. As done previously for the spatial 

confinement, I characterise the traps strength by means of 
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the spring constant (𝑘𝑘α), which slowly decreases from its 

highest values for the shorter light-sheet width, Figure 5.13-

a.  

 
Figure 5.13. 𝑥𝑥 component of the torque-rotations curve for cell rotation 

around the 𝑥𝑥-axis, and (b), 𝑘𝑘𝛼𝛼 for different light-sheet widths.  

Successively, I place the cell at the equilibrium 

positions (both positional and rotational), and I rotate the cell 

around the 𝑦𝑦-axis while calculating the optical torques. Not 

surprisingly, the cell does not experience any optical torque 

since it is rotating around its axis of symmetry.  

Lastly, to verify the last degree of confinement, the 

cell is placed at the equilibrium positions and is rotated from 

the rotational equilibrium around the 𝑧𝑧-axis (angle of rotation 

γ). In Figure 5.14-a are shown 𝜏𝜏𝑧𝑧(𝛾𝛾). Here it can be seen that 

all the 𝜏𝜏𝑧𝑧(γ) vanish with negative slopes for 𝛾𝛾𝑒𝑒𝑒𝑒 = 0°, that is, 

for a cell whose plane is parallel to the 𝑥𝑥𝑥𝑥-plane and contains 

the optical axis, suggesting a rotational confinement even for 
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this kind of rotation. The 𝜏𝜏𝑧𝑧(𝛾𝛾) peaks are of higher magnitude 

when the light-sheet width is comparable to the cell diameter 

(7.82 μm), and they decrease if the beam width is increased 

or decreased. This is completely expected. In fact, when the 

light rays (and thus the beam's power) are distributed over 

the entire cell surface, they can exert the highest 𝜏𝜏 since the 

total initial power is incident over the entire cell. On the 

contrary, if the line width is bigger than the size of the cell, 

some rays do not strike the cell and part of the initial beam's 

power is lost, and thus the torques are smaller. On the other 

hand, if the beam is smaller than the diameter of the cell, the 

rays impinge on the cell closer to the centre of mass and thus 

𝜏𝜏 decreases even if the beam power is concentrated in a 

smaller region. For these reasons, the highest trap 

stiffnesses (𝑘𝑘γ) for this rotational motion are reached when 

the light-sheet has the same size of the cell diameter.  

 
Figure 5.14. Z-component of torque-rotation curves for cell rotation around 

the 𝑧𝑧-axis (a), and the respective trap stiffness (𝑘𝑘𝛾𝛾) (b) 
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Comparing the results obtained for the light-sheet 

optical tweezers with those obtained for a single-beam 

optical tweezers, some differences arise. Compared to the 

single-beam case, a light-sheet optical tweezer can fully 

spatially confine the RBC only if the light-sheet width is 

controlled. Moreover, a light-sheet optical tweezer can 

rotationally confine the cell in the 𝑥𝑥𝑥𝑥-plane, results that can 

only be obtained with a double-beam optical tweezers in the 

case of the widely used point trap.  

The possibility to rotationally confine an RBC on a 

specific plane, thanks to its non-spherical shape, open up the 

prospect to obtain a controlled cell rotation by rotating the 

light-sheet as initially pointed out by Dasgupta et al.[10] In 

particular, a cell rotation can be obtained by the 

contemporary rotation of the two cylindrical lenses around 

the optical axis. If the two lenses are rotated simultaneously, 

the light-sheet rotates accordingly, and so the cell is confined 

in the plane containing the optical axis and the light-sheet 

‘line'. For this reason, as the last numerical experiment, I 

numerically analyse the possibility to rotate a single RBC 

suspended in a biological medium via a light-sheet optical 

tweezer.  

In the following simulation, the width of the light-sheet 

is chosen to be 7.82 μm since it has been shown that 

maximise 𝑘𝑘𝛾𝛾 and therefore, the confinement in the trapping 
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plane should be the highest. The simulation of the dynamic 

of the trapped cell follows the numerical scheme introduced 

in chapter 4, while the parameters regarding the physical 

system are those reported previously. To simulate the 

rotation of the two cylindrical lenses, the light-sheet is rotated 

with a step gradient of 1° every 0.1 s around the optical axis, 

from 0° up to 90°. A step gradient is chosen to agree with 

possible future experiments. In fact, with this simple set-up, 

the cell rotation can be achieved via the synchronous rotation 

of the two cylindrical lenses by a stepper motor. Although the 

light-sheet could be rotated at different speeds, the RBC 

encounters the viscous drag of the fluids. Therefore, a higher 

rate of rotation would result in significant delays in the 

response of the cell. 

 
Figure 5.15. Position of the centre of mass of the cell as a function of the 

simulation time in terms of the Cartesian co-ordinates (a) and 3D trajectory 

(b). 



 187 

The cell is initially placed at the centre of the co-

ordinates system in its 'folded' configuration with the plane 

parallel to the 𝑥𝑥𝑥𝑥-plane. At 𝑡𝑡 = 0 s, the light beam is turned on 

and the position and orientation of the RBC is recorded via 

the cell's centre of mass co-ordinates and with the angle 𝜃𝜃 

and 𝜙𝜙 defined in chapter 4.  

Figure 5.15-a shows the position of the centre of mass 

of the cell as a function of the simulation time. Here it can be 

seen that the cell immediately migrates to +𝑧𝑧𝑒𝑒𝑒𝑒 = +2 μm 

where it stabilises, while the cell remains confined at the 

centre of the trap (i.e. the origin of the Cartesian co-ordinates 

system) in 𝑥𝑥𝑥𝑥-plane. These findings agree well with the 

equilibrium position found with the static equilibrium 

searching analysed previously. Simultaneously to these 

translations, the cell, confined in its 'folded' configuration, 

also starts to rotate around the optical axis following the 

rotation of the light-sheet with an average angular velocity of 

approximately 0.2 rad/s for a beam power of 5 mW, Figure 

5.16-a. Moreover, comparing the trajectories of the centre of 

mass of the cell with its orientation, it can be seen that the 

rotation of the light-sheet does not influence the position of 

the cell, and the cell is constantly trapped at the equilibrium 

position, Figure 5.15 and Figure 5.16.  

Even if the angular velocity reported for this numerical 

experiment is ~10 times smaller than the values obtained 
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from Dasgupta and collaborators ( 1-10 rad/s),[10] the values 

are in good agreement. In fact, the authors used a beam 

power in the order of tens of mW while I am using just few 

mW. Since the torque is directly proportional to the beam's 

power, an increase in the beam's power would result in a 

higher torque able to counteract the viscous torque and thus 

in a relatively higher angular velocity. However, for a very 

elastic object like an RBC, a higher beam's power would 

induce a significant deformation of the trapped object, 

resulting in considerable errors in the calculation.  

 
Figure 5.16. Orientation of the cell as a function of the simulation time (a). 

In (b) is shown as is possible to control the rotation of the cell inverting the 

direction of rotation of the light-sheet.  

Lastly, I also evaluate the possibility of re-orientating 

the cell around the optical axis by simply inverting the 

direction of rotation of the light-sheet as shown in Figure 

5.16-b. Here it can be seen that the cell can be deliberately 
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re-oriented around the optical axis by simply changing the 

direction of rotation of the light-sheet.  
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5.4. Conclusion 

In this chapter, I reported a numerical investigation of the 

optical trapping of healthy RBC with a light-sheet optical 

tweezer. Initially, I demonstrated the possibility to optically 

confine an RBC with a light-sheet of infinite width within a 

specific plane defined by the optical axis and the direction 

over which the beam is focused. Successively, I showed the 

ability of a light-sheet optical tweezer to entirely confine the 

healthy RBC, both spatially and rotationally. Interestingly, a 

complete confinement can be obtained if the light-sheet width 

is controlled, and the highest trapping strength was obtained 

for a light-sheet width comparable to the cell diameter. Since 

a light-sheet tweezer can confine the RBC in a specific plane, 

the rotation of the light-sheet can be used to direct the re-

orientation of the cell via the simple light-sheet rotation.  

In conclusion, the presented analysis is in good 

agreement with experiments and paves the way for possible 

future experiments in which the re-orientation of a single RBC 

cell must be controlled and kept constant, as for example, 

within a fluid flow. 
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6. MACHINE LEARNING FOR THE 
SIMULATION OF OPTICALLY 
TRAPPED ERYTHROCYTES. 

Geometrical optics (GO) calculations for particle with 

complex shape are intrinsically slow. This can be a major 

drawback when one intends to simulate the Brownian 

dynamics of an optically trapped particle. Indeed, Brownian 

dynamics simulations often requires a recursive calculation 

of optical forces and torques to simulate the time evolution of 

the particle trajectories. Thus, simulating for long time, or for 

multiple repetitions becomes rapidly computationally 

prohibitive. In this chapter, I describe a study done in 

collaboration with Nano-Soft Lab at CNR in Messina, Italy. 

We employ an artificial neural network (NN) to predict the 

optical forces and torques acting on a healthy red blood cell 

faster and with higher accuracy compared to GO. The NN 

prediction are then used within the numerical scheme 

introduced in chapter 4 in simulating the Brownian dynamics 

of a red blood cell trapped in double-beam optical tweezers, 

observing a decrease in computation time of two order of 

magnitude.  

Here, I performed the geometrical optics calculation 

and the simulation of the dynamic of the trapped cell while 
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David Bronte Ciriza, PhD student from Nano-soft lab, set up 

and trained the neural network.  

6.1. Introduction 

Soon after their introduction in the late 1980s,[1] 

optical tweezers (OT) were immediately applied to trap and 

manipulate viruses, bacteria, eukaryotic living cells, and cells' 

organelles.[2,3] The nature of biological samples make them 

particularly susceptible to photodamage, and infrared light 

with a wavelength in the second biological window (i.e. 

around 1064 nm), demonstrated significant reduction in 

photodamage when dealing with biological samples, and 

therefore is generally preferred for biological experiments.[4]  

In the last couple of decades, OT has been widely 

applied in red blood cell research to investigate biochemical 

and biophysical properties of both healthy and unhealthy 

erythrocytes.[5] Healthy red blood cells (RBC) have a 

biconcave disk conformation with a diameter of 7-8 μm, a 

thickness of 0.5-1.5 μm in the middle and 2-3 μm in the 

periphery.[6] In studying these systems, numerical 

simulations are frequently used to plan and interpret 

experiments. According to the size parameter (𝜉𝜉 = (2π𝑎𝑎𝑎𝑎𝑚𝑚/

λ0) ≈ 80), the geometrical optics approximation (GO) is 

usually the preferred method for modelling the beam-cell 

interaction (as we have seen in previous chapters).[7–9] 
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However, even though GO simplifies the theoretical 

treatment considerably compared to a full wave optical 

approach,[10] it still requires to ray trace every single light ray 

with a high computational cost. In relatively simple 

applications, these computations can be parallelised, or an 

interpolation-based approach can decrease the overall 

simulation time. Nevertheless, simulating the Brownian 

dynamics requires a sequential forces and torques 

calculation, and often for complex particles' shapes, these 

computations are prohibitive.[11] 

Machine learning (ML) is emerging across research 

fields for its ability to make predictions for given inputs very 

efficiently without being explicitly programmed to do so. ML 

is based on algorithms that learn autonomously through a set 

of training data and build a model through experience.[12] A 

specific approach of ML is based on artificial neural networks 

(NN). A NN is a network or a circuit of artificial neurons or 

nodes that mimics the biological counterpart. Artificial NNs 

are structured in an input layer, a hidden layer, and an output 

layer. The connections between neurons are modelled as 

weights between nodes. A positive weight reflects an 

excitatory connection, while negative values mean inhibitory 

connections. By means of training data, the neurons learn 

(establishing specific connections) to map specific inputs to 
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specific outputs, similarly to the learning process of the 

human brain.[13] 

Recently, ML has been applied to OT research. For 

example, Wang et al. used ML to classify RBC of different 

species via the Raman fingerprint of haemoglobin.[14] 

Researchers also applied NN to predict optical forces acting 

on spherical particles with greater accuracy than the 

phenomenological approach in significantly less time than 

exact methods.[15] Here, we use GO to calculate the optical 

forces and torques generated by a single-beam optical 

tweezer on a healthy RBC. The data points are then used to 

train a NN, which is then employed in simulating the 

Brownian dynamics of an optically trapped RBC in a double-

beam optical tweezer. 

6.2. Model and GO calculations 

The GO calculation used as training data are 

generated considering a single-beam optical tweezer. The 

calculations are carried out with the methodology introduced 

in chapter 3, except that the number of total optical rays is 

decreased to 4·102 (20·20 light rays). The DBOT used for 

comparison to the NN prediction is simulated according to 

what is reported in chapter 3. The RBC position and 

orientation are defined as the co-ordinates of the centre of 
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mass of the cell (𝑥𝑥, 𝑦𝑦, 𝑧𝑧), and the azimuthal (θ) and polar (ϕ) 

angles in respect to the fixed reference frame.  

The Brownian dynamics simulations of the trapped 

RBC are carried out accordingly to the numerical scheme 

introduced in chapter 4, and the solution properties are 𝑇𝑇 = 

293 K and η = 0.001 Pa·s. If the NN is used to predict the 

optical forces and torques, the outputs of the NN are 

substituted to the GO calculation in eq. 4.9. 

6.3. Neural network structure and training  

Deep Neural Networks are one of the most basic deep 

learning structures. Recently, Convolutional Neural Networks 

(CNN) are becoming a basic tool for image analysis or Graph 

Neural Networks are pushing the boundaries of knowledge 

regarding the structure of proteins or molecules. However, 

our problem is simpler than that. For a given point in the 

space of parameters, we want to know the forces and the 

torques associated to it. This constitutes a basic regression 

problem, where deep neural networks still provide the best 

compromise between efficiency and simplicity. 

Here, the neural network (NN) architecture is 

composed of one input layer with 6 neurons 

(𝑥𝑥,𝑦𝑦, 𝑧𝑧, cos(𝜃𝜃) , sin(𝜃𝜃) ,𝜑𝜑), one output layer with 6 neurons 

(𝐹𝐹𝑥𝑥 ,𝐹𝐹𝑦𝑦 ,𝐹𝐹𝑧𝑧,𝑇𝑇𝑥𝑥 ,𝑇𝑇𝑦𝑦,𝑇𝑇𝑧𝑧), and 7 hidden layers in between with 256 

neurons each, Figure 6.1.  
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The total number of parameters of the model is 

around 4·105. We have data for the optical forces and torques 

at 4·106 different points in the 5D space of parameters 

(𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝜃𝜃,𝜑𝜑). 90% of these data points are used as training 

data set while the remaining 10% is kept as testing data set 

to evaluate the accuracy of the NN. 

 
Figure 6.1. Schematic depiction of the artificial neural network used in this 

study. 

The training data are generated via GO calculation 

made in OTGO as explained in chapter 3.[16] The cell is 

placed in uniformly distributed positions comprised in a cube 

of side 8 μm centred at the origin of the Cartesian coordinates 

system (i.e. −4 μm ≤ 𝑥𝑥 ≤ 4 μm, −4 μm ≤ 𝑦𝑦 ≤ 4 μm and 

−4 μm ≤ 𝑧𝑧 ≤ 4 μm). Simultaneously, to account for the 

possible different orientation of the RBC within the trap, the 

cell is uniformly and randomly oriented in an interval for −π ≤
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θ ≤ π and 0 ≤ ϕ ≤ π/2. The training data are generated for 

the simplest case of a single-beam optical tweezer. 

The NN is trained in Python using Keras (version 

2.2.4-tf).[17] The training of the NN is divided into 5 different 

steps. The data pre-processing and the model definition, 

which are done only once, the loading of the data, the training 

step, and performance evaluation, that are carried out 

iteratively. The training data, generated as previously 

described, contains data in different units and scales. While 

the position scale is in the order of ~10-6 m, the forces are on 

the range of ~10-12 N, and the torques around ~10-18 N·m. To 

achieve an efficient training of the NN, we need to apply a 

pre-processing step where the variables must be rescaled 

around unity and the "𝜃𝜃" angle, that ranges from -π and π, is 

expressed in terms of sines and cosines to avoid 

inconsistencies around 2𝜋𝜋. Shuffling the data and dividing 

them into a validating and training set are the final step of the 

pre-processing. In our situation, the training data set contains 

5.4·106 points while 6·105 points are reserved for the testing 

data set. In this work, we employ fully connected NNs where 

each neuron is activated by a sigmoidal function. Defining the 

model implies choosing the number of layers and the number 

of neurons per layer. We found that the architecture 

previously described consisting of 7 hidden layers provides 

the best results (in terms of accuracy, training time, and 



 200 

speed). A more careful selection of these parameters might 

help to improve the performance. In an optimisation stage, 

we train different networks slightly changing the model 

parameters (different layers, different number of neurons…) 

and we keep the one that provides the best results (trial 

error). It is important to keep in mind that while one could 

think that a more complex structure would provide better 

results, this is not our case. Geometrical optics calculations 

introduced artifacts that we want to avoid learning. If our 

structure is perfect and the training is perfect, we would learn 

the artifacts too! 

The iterative part of the training starts by loading a 

subset of the training data and applying the training step 

where the NN weights are optimised to minimise the loss 

function. We used the mean squared error as the loss 

function and the Keras implementation of the Adam 

optimiser.[17] Once the weights of the NN have been updated, 

the training data is erased from the RAM memory, and a new 

subset of the training data is loaded before repeating the 

same process. The strategy of dividing the training set into 

smaller subsets (instead of loading all at once) allows to use 

big training sets independently of the RAM memory. Once 

the training dataset is fully explored through all the subsets, 

the error between the NN calculation and the validating 

dataset (defined as the mean square difference) is 



 201 

computed. The iterative step is repeated until this error stops 

decreasing. The training of the NN is done in a GPU type 

NVIDIA GeForce RTX 2060 with 16 GB of memory. The 

processor of the computer is an Intel Core i7-10700, and it 

has 16 GB of RAM. 

6.4. Results 

To evaluate the effectiveness of our approach, we 

initiate by testing the ability of the NN to predict the forces 

and torques acting on an RBC in a single-beam optical 

tweezer (SBOT). We commence by predicting the forces and 

torques at 1·105 unseen random positions and orientations. 

We then compare the NN prediction with GO calculation 

carried out at the same location and orientation (1.6·103 rays, 

40x40 light rays). The 2D density plots shown in Figure 6.2-

a and -b gives us a picture of the goodness of the NN in 

predicting the optical forces (regression coefficient 0.998, 

𝑅𝑅2=0.996) and torques (regression coefficient 0.999, 

𝑅𝑅2=0.996), respectively. Indeed, the NN is trained with a data 

set produced with GO calculation made with a total of 4·102 

rays, and thus less accurate in respect to the test data, and 

this makes us speculate that the NN can predict the forces 

and torques with higher accuracy in respect to the training 

data. We further compare the NN predictions with the GO 

calculation to test our hypothesis. Figure 6.2-c shows the 
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normalised root mean squared error (NRMSE) between the 

NN prediction and the GO calculation made with up to a total 

of 4.9·103 light rays. Here it is visible that the NRMSE 

between 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁-𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺, and 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁-𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺 , decrease as the number of 

light rays increases. Moreover, when compared through the 

Euclidean similarity, the forces and torques calculated with 

4.9·103 optical rays result more similar to the NN output than 

to the forces obtained with a total of 4·102 light rays. Thus, it 

is safe to say that the NN can increase the accuracy of the 

force/torque prediction compared to the GO calculation.  

 
Figure 6.2. (a) Density plots comparing the magnitude of the total force 

predicted with NN (𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁) with those calculated with the GO method (𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺). 

(b) Density plot comparing the magnitude of the total torques predicted with 

the NN (𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁) with the torque obtained with the GO method (𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁). In red 
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are shown the regression lines. (c) Log-Log plot of the normalised mean 

squared error between 𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁-𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺, and 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑁𝑁𝑁𝑁-𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺  as a function of the number 

of rays used in the GO calculation.  

Since the NN is trained for a SBOT, one may think it 

can predict the optical forces and torques only for a SBOT. 

However, the NN can be used multiple times to simulate 

multi-beam optical tweezers. In fact, the NN can predict the 

forces generated by a single beam on different cell's 

locations, and then the total force acting on the centre of 

mass of the cell is calculated as the vector sum of each 

contribution. For a DBOT, since the two beams are focalised 

along the 𝑥𝑥-direction 5.06 μm apart, the input for the 𝑥𝑥-

direction must be changed accordingly, while the other 

degrees of freedom are unchanged (i.e. 𝑥𝑥1 = 𝑥𝑥𝐶𝐶.𝑀𝑀. + 2.53 μm, 

𝑥𝑥2 = 𝑥𝑥𝐶𝐶.𝑀𝑀. − 2.53 μm, 𝑦𝑦1 = 𝑦𝑦2 = 𝑦𝑦𝐶𝐶.𝑀𝑀. and 𝑧𝑧1 = 𝑧𝑧2 = 𝑧𝑧𝐶𝐶.𝑀𝑀., 

𝜃𝜃1 = 𝜃𝜃2 = 𝜃𝜃, 𝜙𝜙 = 𝜙𝜙2 = 𝜙𝜙).  
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Figure 6.3. Comparison between GO calculation and NN prediction for the 

force-displacements curve for a DBOT along the 𝑥𝑥-direction (a) and torque-

rotation curve for rotation around the 𝑥𝑥-axis (b).  

Figure 6.3-a shows 𝐹𝐹𝑥𝑥(𝑥𝑥) simulated via GO and 

predicted with the NN for a cell in its 'folded' configuration (i.e. 

cell plane parallel to the optical axis) for a DBOT. Similarly, 

we also compare the ability of the NN to predict optical 

torques in the case of a DBOT, and as a representative 

example, we show 𝜏𝜏𝑥𝑥(𝛼𝛼) (i.e. rotation around 𝑥𝑥-axis). In both 

cases, the predictions (solid line) agree well with the GO 

method (dots), demonstrating the possibility to use the NN for 

multi-beam optical traps. Therefore, we can securely 

conclude that a similar approach could be extended to predict 

forces and torques generated by a triple- and fourth-beam 

OT, situations in which the GO calculation are considerably 

slower given the very high number of light rays.  
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Figure 6.4. Brownian dynamics of an RBC in a force field: 3D-trajectories 

of the cell's centre of mass (a) and cell orientation (b). In every plot, the 

results obtained with the GO calculation are directly compared with those 

obtained with the predictions of the NN. 

Successively, we investigate the cell's dynamics 

within a DBOT using both the NN and the GO. Figure 6.4-a 

shows the 3D trajectories of the centre of mass of the cell for 

a total simulation time of 5 s, while in Figure 6.4-b are shown 

the azimuthal (𝜃𝜃) and polar orientation (𝜙𝜙) of the cell as a 

function of the simulation time. By extracting the average 

values for each degree of freedom, it is possible to compare 

the final equilibrium configuration not only between the NN 

and GO but also with the static equilibrium searching (SES) 

of chapter 3. Indeed, the average values obtained with the 

predictions of the NN and GO methods agree well and are 

also in good agreement with the values obtained with SES, 

Table 6.1. Moreover, the most significant advantage of using 

the NN is a consistent decrement in the simulation time. Here 
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the time needed to simulate 5·103 time steps with a NN is 

approximately 8·101 s while the GO method requires 

approximately 8.5·103 s (i.e. a 100 times decrease). Since 

the NN shows a higher computational efficiency, hereafter, 

we make use of the NN prediction to simulate the Brownian 

dynamics for 2·104 steps with time increment Δ𝑡𝑡 = 0.001 s. 

    
 SES GO NN 
𝑥𝑥2,𝑒𝑒𝑒𝑒 (μm) 0 0.013 ± 0.051 0.005 ± 0.051 

𝑦𝑦2,𝑒𝑒𝑒𝑒 (μm) 0 0.004 ± 0.053 -0.001 ± 0.042 

𝑧𝑧2,𝑒𝑒𝑒𝑒 (μm) -0.232 -0.204 ± 0.083 -0.181 ± 0.082 

𝜙𝜙2,𝑒𝑒𝑒𝑒 (°) 90 90 ± 0.022 90 ± 0.039 

𝜃𝜃2,𝑒𝑒𝑒𝑒 (°) -90 -90 ± 0.029 -90 ± 0.018 

Table 6-1. Equilibrium position and orientation for an RBC in a double-

beam optical tweezer as found with static equilibrium searching (SES), with 

geometrical optics (GO) and with neural networks (NN). For GO and NN 

are reported the average ± the standard deviation. 

In chapter 2, I introduced a methodology to extract the 

trap stiffnesses by analysing the particle trajectories for a 

spherical particle. Here, we adopt a similar method that 

considers also the particle orientations. The diffusion tensor 

(𝑫𝑫) for a healthy RBC reads:  
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𝑫𝑫𝑡𝑡𝑡𝑡 = �
   7.427 × 10−14 −4.383 × 10−20 6.234 × 10−21
    5.933 ×. 10−21     7.427 × 10−14 5.991 × 10−21
−8.744 × 10−20 −5.425 × 10−19 6.283 × 10−14

� 4.4 

𝑫𝑫𝑟𝑟𝑟𝑟=        

𝑫𝑫𝑡𝑡𝑡𝑡
𝑇𝑇 = �

−6.178 × 10−15 −2.520 × 10−15 −1.748 × 10−15
−2.520 × 10−15    8.853 × 10−16 −2.724 × 10−15
−1.748 × 10−15 −2.724 × 10−15 −2.199 × 10−16

� 4.5 

𝑫𝑫𝑟𝑟𝑟𝑟 = �
 4.041 × 10−3 3.627 × 10−11   1.056 × 10−10
1.043 × 10−9 4.041 × 10−3 −7.846 × 10−10

  1.018 × 10−10   3.169 × 10−10  3.362 × 10−3
� 4.6 

𝑫𝑫 does not show any strong translation-rotation coupling; 

therefore, we do not expect to find any strong correlation in 

the cell's motion intrinsically due to the RBC's 

hydrodynamics. Within this framework, we initially assume 

the stiffness matrix to be diagonal, and we analyse the 

Brownian dynamics via a set of uncoupled Langevin's 

equations:[18]  

𝑑𝑑𝑋𝑋𝑖𝑖(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝜔𝜔𝑖𝑖𝑋𝑋𝑖𝑖(𝑡𝑡) + 𝜉𝜉𝑖𝑖(𝑡𝑡); 𝑖𝑖 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧 6.1 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝛺𝛺𝜙𝜙𝜙𝜙(𝑡𝑡) + 𝜉𝜉𝜙𝜙(𝑡𝑡) 6.2 
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𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝛺𝛺𝜃𝜃𝜃𝜃(𝑡𝑡) + 𝜉𝜉𝜃𝜃(𝑡𝑡) 6.3 

where 𝑋𝑋𝑖𝑖, ϕ and θ are the stochastic variables associated 

with the position and angular coordinates, 𝜉𝜉𝑖𝑖(𝑡𝑡) are the 

random noise sources with zero mean and variance 
〈𝜉𝜉𝑖𝑖(𝑡𝑡)𝜉𝜉𝑖𝑖(𝑡𝑡 + 𝜏𝜏)〉 = 2𝐷𝐷𝐷𝐷(𝜏𝜏), while 𝜔𝜔𝑖𝑖 = 𝐷𝐷𝑖𝑖𝑘𝑘𝑖𝑖/𝑘𝑘𝑏𝑏𝑇𝑇, 𝛺𝛺𝜙𝜙 = 𝐷𝐷𝜙𝜙𝑘𝑘𝜙𝜙/

𝑘𝑘𝑏𝑏𝑇𝑇, and 𝛺𝛺𝜃𝜃 = 𝐷𝐷𝜃𝜃𝑘𝑘𝜃𝜃/𝑘𝑘𝑏𝑏𝑇𝑇 are the relaxation frequencies 

related to the forces and torque constants, and 𝐷𝐷𝑖𝑖 are the 

diffusion tensor components.  

We now evaluate the auto-correlation function (ACF) 

of the particle centre of mass trajectories and angular 

fluctuation. ACF for a non-spherical particle gives insight on 

the force and torque constants.[18,19] 𝐶𝐶𝑥𝑥𝑥𝑥(𝜏𝜏) and 𝐶𝐶𝑧𝑧𝑧𝑧(𝜏𝜏) decay 

as a single exponential with characteristic decay frequencies 

𝜔𝜔𝑥𝑥 = 28 𝑠𝑠−1 and 𝜔𝜔𝑧𝑧 = 6.4 𝑠𝑠−1, Figure 6.5-a and -c, 

respectively. Somewhat unexpectedly, 𝐶𝐶𝑦𝑦𝑦𝑦(𝜏𝜏) is well fitted 

with a double exponential with characteristic frequencies 

𝜔𝜔𝑦𝑦,1 = 42 𝑠𝑠−1 and 𝜔𝜔𝑦𝑦,2 = 2.7 𝑠𝑠−1, Figure 6.5-b. For the latter, 

the fast decay rate is associated with the translation, while 

the slower decay can be related to rotation around the 𝑥𝑥-axis 

(ϕ in this context) induced by a motion along the 𝑦𝑦-direction, 

Figure 6.6-c. This would suggest that the coupling is probably 

due to a cross term in the stiffness matrix, and thus to the 

optical trap itself, and not to the cell's hydrodynamics. 
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Figure 6.5. Translational autocorrelation function for the 𝑥𝑥-direction (a), 𝑦𝑦-

direction (b), and 𝑧𝑧-direction (c). 

Averaging over multiple repetitions, it is possible to 

obtain the average values and the standard deviation for the 

force constants (𝑘𝑘2,𝑥𝑥 = 𝜔𝜔𝑥𝑥𝑘𝑘𝑏𝑏𝑇𝑇/𝐷𝐷𝑥𝑥𝑥𝑥 = 0.166 ± 0.024 pN·μm-

1·mW-1, 𝑘𝑘2,𝑦𝑦 = 𝜔𝜔𝑦𝑦,1𝑘𝑘𝑏𝑏𝑇𝑇/𝐷𝐷𝑧𝑧𝑧𝑧 = 0.218 ±  0. 025 pN·μm-1·mW-1, 

𝑘𝑘2,𝑧𝑧 = 𝜔𝜔𝑧𝑧𝑘𝑘𝑏𝑏𝑇𝑇/𝐷𝐷𝑦𝑦𝑦𝑦 = 0.005 ±  0.001pN·μm-1·mW-1), which 

values are in excellent agreement with those obtained with 

SES (see chapter 3), Table 6.2. Similarly to the translational 

motion, we calculate 𝐶𝐶𝜙𝜙𝜙𝜙(𝜏𝜏) and 𝐶𝐶𝜃𝜃𝜃𝜃(𝜏𝜏), Figure 6.6-a and -b. 

𝐶𝐶𝜙𝜙𝜙𝜙(𝜏𝜏) and 𝐶𝐶𝜃𝜃𝜃𝜃(𝜏𝜏) decay as a single exponential and the 

respective trap constant are: 𝑘𝑘ϕ = 𝜔𝜔𝜙𝜙𝑘𝑘𝑏𝑏𝑇𝑇/𝐷𝐷𝛼𝛼𝛼𝛼 = 0.352 ±
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0.096 pN·μm·rad-1·mW-1 and 𝑘𝑘𝜃𝜃 = 𝜔𝜔𝜃𝜃𝑘𝑘𝑏𝑏𝑇𝑇/𝐷𝐷𝛽𝛽𝛽𝛽 = 1.587 ±

0.382 pN·μm·rad-1·mW-1 which agrees well with the values 

obtained in chapter 3, Table 6.2. 

   
 SES NN 

𝑘𝑘𝑥𝑥,2 (pN·μm-1·mW-1) 0.153 0.166 ± 0.024 

𝑘𝑘𝑦𝑦,2 (pN·μm-1·mW-1) 0.240 0.218 ± 0.025 

𝑘𝑘𝑧𝑧,2 (pN·μm-1·mW-1) 0.005 0.005 ± 0.001 

𝑘𝑘𝜙𝜙,2 (pN·μm·rad-1·mW-1) 0.370 0.352 ± 0.096 

𝑘𝑘𝜃𝜃,2 (pN·μm·rad-1·mW-1) 1.730 1.587 ± 0.382 

Table 6-2. Values of the trap stiffnesses obtained with static equilibrium 

searching (SES), and via the Brownian dynamics simulation made (NN). 

𝑘𝑘𝜙𝜙,2 and 𝑘𝑘𝜃𝜃,2 corresponds to 𝑘𝑘𝛼𝛼,2 and 𝑘𝑘𝛾𝛾,2 of chapter 3. 

Figure 6.6-c shows the correlation between the 

rotation around the 𝑥𝑥-axis (𝜙𝜙) and the motion along the 𝑦𝑦-

direction. Here it can be seen a moderate negative 

correlation (Pearson's correlation coefficient -0.4085) which 

suggests that the RBC rotates as it moves away from 𝑦𝑦𝑒𝑒𝑒𝑒,2, 

and undergoes to an "oscillating" motion about the 

equilibrium configuration where it is stably confined. As 

previously pointed out, this negative correlation is due to the 

presence of cross-term in the stiffness matrix. Figure 6.6-c 

shows the torque along the 𝑥𝑥-direction as a function of the of 

the displacement along the 𝑦𝑦-direction. Here it can be seen 
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an instable equilibrium position that induces the "oscillating" 

motion of the cell.  

 
Figure 6.6. a) 𝐶𝐶𝜙𝜙𝜙𝜙(𝜏𝜏), 𝐶𝐶𝜃𝜃𝜃𝜃(𝜏𝜏) (b), and 𝑦𝑦-𝜙𝜙 density plot (c), while in (d) is 

shown 𝜏𝜏𝑥𝑥(𝑦𝑦). The Pearson's correlation coefficient is reported in red in (c). 
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6.5. Chapter summary  

In this chapter, it has been introduced a preliminary 

study carried out in collaboration with Nano-Soft Lab at CNR 

in Messina, Italy. In this work, we trained and used an artificial 

neural network (NN) to predict the optical forces and torques 

generated by a single-beam optical tweezer on a healthy red 

blood cell (RBC). The neural network demonstrates to predict 

the optical forces and torques with higher accuracy than 

geometrical optics calculation in significantly shorter 

computation time. Moreover, the as trained NN can be 

applied to a more complex case where multiple-beams are 

responsible for the trapping of the RBC. Thanks to the higher 

computational efficiency, the NN is used to simulate the 

Brownian dynamic of a trapped RBC in a double-beam 

optical tweezer for a significant longer simulation time. Lastly, 

the results of the simulation are used to extract the trap 

constants that characterise the optical trap via the auto-

correlation method with a good agreement with the static 

method introduced in chapter 3.  

ML can be easily extended to predict forces and 

torques acting on pathological RBC conformation where the 

GO are intrinsically slower. In the next, and final chapter, I 

will introduce a methodology to calculate optical forces and 

torques on a pathological RBC morphology (e.g. sickle cell) 
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where an analytical definition of the cell surface is not 

available. 
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7. THEORETICAL INVESTIGATION OF 
OPTICAL TRAPPING OF A SICKLE 
CELL WITH A DOUBLE BEAM 
OPTICAL TWEEZER.  

In this chapter, I report a preliminary study on the 

theoretical investigation of the optical trapping of sickle cells, 

a pathological morphology of red blood cells. Unlike healthy 

erythrocytes, the symmetry of a sickle cell is greatly reduced 

from a morphological point of view, and thus a simple 

mathematical description is not available in performing ray-

tracing. For this reason, I introduce a new ray-tracing 

approach which needs only a points cloud definition for the 

particle's surface. This new approach is used to investigate a 

possible equilibrium configuration of the optically trapped cell 

within a double-beam optical tweezers through the dynamic 

equilibrium searching. 

7.1. Introduction  

Sickle cell anaemia is an hereditary genetic disorder 

that affects the molecular structure of Haemoglobin (Hb). In 

patients affected by sickle cell anaemia the alteration of the 

Hb molecular structure is due to a change in a single amino 
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acid in the Hb β-chain (sHb).[1,2] In subjects affected by sickle 

cell disease, at low oxygen level sHb shows low solubility and 

tend to aggregate and polymerize[3] causing morphological 

changes in the conformation of the healthy RBC.[4] sHb 

concentration and deoxygenation rate strongly influence the 

polymerization process inducing a variety of cell 

deformations and associated morphologies.[5] The 

morphological changes due to sHb polymerization also 

affects the cells’ mechanical properties, including the cell 

membrane elasticity.[6,7] These biomechanical alteration can 

lead to vessel occlusion, tissue damage, organ failure, and in 

the most severe case even death.[8]  

Optical Tweezers (OT) are an useful tool able to 

confine and manipulate micron-sized particles with a 

refractive index higher than that of the surrounding medium.[9] 

So far OT have been widely apply to investigate various 

biochemical and biophysical properties of RBC.[10] Among 

other applications, researchers have used OT to sense the 

membrane elasticity of healthy and unhealthy RBC. In this 

type of applications, OT have been used to trap and stretch 

RBC as explained in chapter 3.[11,12] 

The RBC elongation has been successfully used in 

our laboratory to evaluate the RBC's deformability of healthy 

patients and patients affected by type 2 diabetes.[13] Such an 

approach could be easily extended to measure the extent of 
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membrane elasticity of erythrocytes affected by the sickle 

disease (sRBC). For this reason, in this last chapter, I report 

a preliminary work on the theoretical investigation of optical 

trapping of red blood cell with a pathological morphology (i.e. 

Sickle Cell).  

7.2. Mathematical description of sickle 
cells 

Healthy red blood cells possess a biconcave disk 

shape and are quite elastic allowing them to deform to pass 

through capillaries.[14] In patients affected by the sickle cell 

disease, low oxygen concentration fosters red blood cell 

sickling and the decrease of the cell's elasticity. Sickled cells 

fail to return to normal shape when normal oxygen tension is 

restored. Sickled cells can assume a variety of different 

shape but the best know are that of a sickle or the letter “C”.[4] 

Figure 7.1-a shows scanning electron microscope 

micrograph of a sickle cell and a healthy RBC. Compared to 

a healthy RBC, a sickle cell presents an elongated shape, 

and the symmetry of the object is greatly reduced. 

To describe the sickle cell morphology, one has to 

define two surfaces of the cell as suggested by Lei et al.[16] In 

this mathematical description the upper and the lower 
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surfaces can be described by a polynomial function that 

reads:  

𝑓𝑓(𝑥𝑥,𝑦𝑦) = α0 + α1𝑥𝑥2 + α2𝑦𝑦2 + α3𝑥𝑥4 + α4𝑦𝑦4 + α5𝑥𝑥2𝑦𝑦2 7.1 

where α0, α1,…,α5 are fitting coefficients determined by the 

specific shape of the cell. The boundaries of the cell on the 

𝑥𝑥-𝑦𝑦 plane are defined as:  

�
𝑥𝑥
𝑏𝑏1
�
𝑝𝑝

+ �
𝑦𝑦
𝑏𝑏2
�
𝑝𝑝

= 1 7.2 

where 𝑏𝑏1, 𝑏𝑏2 and 𝑝𝑝 vary for different cell morphology. For a 

sickle cell 𝑏𝑏1 = 5.80, 𝑏𝑏2 = 3.05 and 𝑝𝑝 = 1.54, while the values 

of the coefficients α0, α1,…,α5 for the upper and lower halves 

of the cell are reported in Table 7.1. In Figure 7.1-b is shown 

a 3D rendering of the cell surface obtained via eq. 7.1 with 

the parameters reported in Table 7.1. 
 

 𝛼𝛼0 𝛼𝛼1 𝛼𝛼2 𝛼𝛼3 𝛼𝛼4 𝛼𝛼5 

𝑆𝑆𝑙𝑙  -0.81 -0.11 -6.78×10-3 2.12×10-2 2.01×10-2 2.84×10-2 

𝑆𝑆𝑢𝑢 1.36 -0.04 0.31 -1.69×10-3 -3.60×10-2 -2.77×10-2 

Table 7-1. Fitting parameters for the lower (𝑆𝑆𝑙𝑙) and upper (𝑆𝑆𝑢𝑢) surface of 

the sickle cell.  
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Figure 7.1. Scanning electron micrograph of healthy and sickled 

erythrocyte (a). Image adapted from [15]. 3D rendering of the sickle cell 

morphology generated through eq. 7.1. 

7.3. Ray tracing methods 

Unlike a healthy RBC, the symmetry of the sickled cell 

is much reduced, and the mathematical description relies on 

describing the upper and lower surfaces separately. For this 

reason, alternative strategies to perform the ray trace and 

extract the point of intersection with an optical ray, and the 

unit normal vector at the point of intersection are required. A 

possible solution requires the subdivision of the cell's surface 

in triangular meshes which are then intersected with the 

incoming light rays.[17] The surface meshing can be obtained 

by a points cloud describing the cell surface via the MatLab 

function alphaShape, Figure 7.2-a. Once the surface is 

subdivided in a set of triangles, one has to calculate the 
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intersection points between the light ray and the cell surface 

(i.e. set of triangles). Several algorithms able to perform this 

task have been developed, but the Möller–Trumbore ray-

triangle intersection algorithm is one of the fastest.[18] This 

algorithm is implemented in the MatLab function 

TriangleRayIntersection developed by Jarek Tuszynski.[19]  

 
Figure 7.2. a) Surface triangulation for a sickle cell (with surface described 

by Eq. 7.1), and ray trace for 25 optical ray (b). In red the incoming ray, in 

grey the ray travelling within the cell and in orange the exiting ray. In blue 

are visualised the points of intersections.  

Moreover, the unit normal vector can be readily 

calculated via the cross product between the edges of the 

triangle within which the ray intersects the cell's surface. This 

code is coupled with optical tweezers in geometrical optics 

(OTGO) program writing a new object.[20] Importantly, this 
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new object is able to perform ray optics calculations for every 

particle which surface is not analytically defined (e.g. points 

cloud generated for the two portion of the sickle cell). As an 

example, in Figure 7.2-b is shown a ray trace for a sickle cell 

in a single-beam optical tweezer.  

7.4. Code testing 

To verify the calculations made with the new 

algorithm, I compare the output of the standard OTGO code 

with the newly written code for a simple geometrical shape 

like a sphere for which the standard OTGO object uses an 

analytical definition. For this initial tests, I consider a single-

beam optical tweezers (SBOT) centred in (0, 0, 0), the 

wavelength of the incoming beam is 𝜆𝜆 = 1.064 μm, and the 

beam power is 5 mW. The particle diameter is 3 μm, the 

refractive index of the particle is 1.38 while those of the 

surrounding medium is 1.33. 

Figure 7.3-a shows the force-displacements curves 

obtained with the new object for particle displacements along 

the 𝑥𝑥-direction. As expected, 𝐹𝐹𝑥𝑥(𝑥𝑥) decreases linearly and 

vanishes with negative slope at 𝑥𝑥𝑒𝑒𝑒𝑒 = 0 μm, while 𝐹𝐹𝑦𝑦(𝑥𝑥) and 

𝐹𝐹𝑧𝑧(𝑥𝑥) fluctuate around 0. In Figure 7.3-b and -c are shown the 

direct comparisons between the calculations made with the 

standard OTGO object and the new code for 𝐹𝐹𝑥𝑥(𝑥𝑥) and 𝐹𝐹𝑧𝑧(𝑧𝑧), 

respectively. Here, it is clearly evident that the numerical 
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results obtained with the new algorithm are in complete 

agreement with those obtained with the standard OTGO 

object.  

 
Figure 7.3. a) Force-displacements curve along the 𝑥𝑥-direction for a 

spherical particle calculated with the new algorithm in terms of the 

Cartesian components. Comparison for 𝐹𝐹𝑥𝑥(𝑥𝑥) and 𝐹𝐹𝑧𝑧(𝑧𝑧) for the new code 

(numerical) and the standard OTGO object (analytical) in (b) and (c), 

respectively. (d) Optical torque acting on an ellipsoid for rotation around 

the 𝑥𝑥-axis calculated with the standard OTGO object (analytical) and with 

the new code (numerical). 

Lastly, since the most general cases involve non-

spherical particles, I tested also the ability of the new object 

to calculate the optical torque (𝜏𝜏) generated by a SBOT. For 

this test, I used an ellipsoid (semi axes: 𝑎𝑎 = 4 μm, 𝑏𝑏 = 4 μm, 

c) d) 
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𝑐𝑐 = 1 μm). In a SBOT the ellipsoidal particle experiences a 

torque that confines the major axis of ellipsoid on the optical 

axis and a restoring torque must be clearly visible for this 

rotation. Figure 7.3-d shows the direct comparison of the 

optical torque calculated with the standard OTGO object 

(sphere or ellipse) with that obtained with the new code 

(mesh). Here, it is possible to appreciate that the numerical 

results are essentially overlapped, confirming the ability of 

the new code to calculate the optical force and torque 

correctly.  

It must be mentioned that the number of meshes is a 

critical parameter. In fact, if the number of meshes is not 

sufficiently high, the precision of the calculations decreases 

considerably leading to numerical errors. On the other hand, 

a very high number of meshes would increase the calculation 

precision but the computation time becomes considerably 

longer making it unpractical for some applications. Therefore, 

the right trade-off between computation time and precision of 

the calculations must be adapted to the specific task (e.g. 

static equilibrium searching or dynamic equilibrium 

searching). The right trade-off between the number of 

meshes and the computations accuracy could be explored by 

evaluating the convergence of the new algorithm towards the 

standard OTGO method used for this calculation. To test this, 

one can calculate the optical forces and torques acting on an 
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ellipsoid with the aforementioned properties at 1·103 random 

location and orientation with the new object (keeping the 

number of light ray fixed). Then, the total optical forces and 

torques at each location and orientation can be directly 

compared to the results obtained through the standard 

OTGO object for an ellipsoid at the same location and 

orientation. This can be repeated for ellipsoids approximated 

with an increasing number of triangular meshes. For 

example, if the surface of the ellipsoid is subdivided into 92 

triangular meshes one obtains a NMSE in respect to standard 

method of ~8·10-2 (and ~4·10-1 for the optical torques). On 

the other hand, if one uses 1740 triangular meshes to 

approximate the surface of the object one obtains a NMSE of 

~2·10-3 (and ~3·10-2 for the optical torques). However, the 

computation time increases from ~3·102 s to ~9·102 s when 

the number of meshes is increased ~20 times. 

7.5. Dynamic equilibrium searching 

As mentioned previously, the shape of sickle cell is 

highly complex, and the equilibrium configuration of the cell 

within a double-beam optical tweezers is not a priori obvious. 

For this reason, I follow the approach adopted in chapter 4 

and I use the dynamic equilibrium searching to obtain a 

possible equilibrium configuration for the sickle cell.  
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The parameters describing the incoming beams, the 

solution, the cell physical properties and the simulation 

parameters are unchanged in respect to those reported in 

chapter 3 for a double-beam optical tweezer, with the 

exception that the distance between the two beams' foci, 

here, is 9 μm. With this separation, the two beams' foci fall 

within the cell's tips, avoiding any interaction with the central 

portion of the cell. Yet, the numerical scheme to simulate the 

particle's dynamic in a force-field is unchanged and follows 

what reported in chapter 4. 

As previously, the numerical investigation starts by 

calculating the diffusion the tensor (𝑫𝑫) for the particle under 

investigation via winHYDRO++.[21] In calculating 𝑫𝑫, the sickle 

cell is oriented with its major axis along the 𝑥𝑥-direction as 

schematically depicted in Figure 7.1-b. In the current case 𝑫𝑫 
reads: 

𝑫𝑫𝑡𝑡𝑡𝑡 = �
7.116 × 10−14 7.373 × 10−21 −2.483 × 10−20
−1.310 ×. 10−20 6.391 × 10−14 −2.729 × 10−21
−9.602 × 10−20 9.612 × 10−21 5.902 × 10−14

� 7.3 

𝑫𝑫𝑟𝑟𝑟𝑟=        

𝑫𝑫𝑡𝑡𝑡𝑡
𝑇𝑇 = �

5.920 × 10−15 6.897 × 10−10 1.153 × 10−15
6.897 × 10−10 −1.311 × 10−15 2.412 × 10−16
9.618 × 10−16 −8.168 × 10−17 −4.448 × 10−16

� 7.4 
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𝑫𝑫𝑟𝑟𝑟𝑟 = �
4.287 × 10−03 3.516 × 10−10 −1.051 × 10−09
1.387 × 10−09 2.300 × 10−03 2.635 × 10−10
−1.018 × 10−11 −3.078 × 10−10 2.361 × 10−03

� 7.5 

In eq. 7.3-7.5 are reported the 3 x 3 blocks of 𝑫𝑫. The 

numerical values of 𝑫𝑫𝑡𝑡𝑡𝑡 and 𝑫𝑫𝑡𝑡𝑡𝑡
𝑇𝑇 show that the coupling 

between rotation and translation around 𝑥𝑥 and 𝑦𝑦-direction are 

several order of magnitude higher in respect to the other 

terms. This is a consequence of the cell shape and represent 

a major difference in respect to the healthy RBC. Therefore, 

I expect a strong coupling in the cell's motion intrinsically due 

to the cell hydrodynamics.  

I now proceed to identify the equilibrium configuration 

of sRBC in a DBOT exploiting the dynamic equilibrium 

searching method. Initially, the centre of mass of the cell is 

placed at the origin of the fixed reference frame, and the cell 

is orientated along the 𝑥𝑥-direction in its flat configuration (i.e. 

the concave portion faces downward). Therefore, the light 

beams are turned on at 𝑡𝑡 = 0 s, and the simulation are let to 

proceed with ∆𝑡𝑡 = 0.001 s for 10 s.  
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Figure 7.4. a) 3D-trajectory of the centre of mass of a sRBC over a 

simulation time of 10 s. (b) Position of the centre of sRBC as a function of 

time in terms of the Cartesian co-ordinates, and (c) cell rotation around the 

axis of the fixed reference frame (i.e. 𝑥𝑥- (𝛼𝛼), 𝑦𝑦- (𝛽𝛽), and 𝑧𝑧- (𝛾𝛾)). (d) sRBC at 

the equilibrium configuration. The red star indicates the position of the 

beams' foci, while the blue dot represents the origin of the fixed frame of 

reference. 

Figure 7.4-a shows the 3D-trajectory of the sRBC 

centre of mass while in Figure 7.4-b and -c are shown the 

position of the sRBC centre of mass in terms of the Cartesian 

co-ordinates, and the cell rotation around the 𝑥𝑥- (𝛼𝛼), 𝑦𝑦- (𝛽𝛽), 

and 𝑧𝑧-axis (𝛾𝛾) of the fixed reference frame, respectively. 

Initially, under the influence of the scattering force, the cell 

c) d) 
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migrates from its initial position (i.e. 𝑥𝑥 = 0, 𝑦𝑦 = 0, 𝑧𝑧 = 0) along 

the optical axis towards positive 𝒛𝒛�. This motion is not 

accompanied by any re-orientation or strong motion along 

the transverse directions. Lately, the cell finds its equilibrium 

configuration within few milliseconds at 𝑥𝑥 = 0.006 ± 0.001 

μm, 𝑦𝑦 = 0.002 ± 0.001 μm, and 𝑧𝑧 = 1.586 ± 0.0515 μm, 

without any significant rotation around any axis (α = 0.021 ±

0.005°, 𝛽𝛽 = 0 ± 0.02°, 𝛾𝛾 = 0 ± 0.001°) as shown in Figure 

7.4-c and -d. Figure 7.5 shows the correlation plots between 

the translations and the rotations. Here along the diagonal 

are present the histogram of each co-ordinate while the off-

diagonal plots shown the correlation between two co-

ordinates. From this plot, it is immediately evident that some 

terms are strongly correlated (𝑥𝑥 − β and 𝑦𝑦 − α, correlation 

coefficient < −0.7 and > 0.7, respectively), while others are 

essentially non-correlated or weakly correlated. This 

suggests that some cross-terms are present also in the 

stiffness matrix, and that the decay of the autocorrelation 

functions are not single or double exponentials, but a sum of 

multiple exponentials which are not easily identifiable. 
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Figure 7.5. Translation-rotation correlation plots. 

To verify the presence of cross-terms in the stiffness 

matrix (i.e. 𝐹𝐹𝑥𝑥 = −𝑘𝑘𝑥𝑥𝑥𝑥 − 𝑘𝑘′β) I evaluate 𝐹𝐹𝑥𝑥(𝛽𝛽), 𝐹𝐹𝑦𝑦(𝛼𝛼), 𝜏𝜏𝑥𝑥(𝑦𝑦) 

and 𝜏𝜏𝑦𝑦(𝑥𝑥). Figure 7.6 and -b show that 𝐹𝐹𝑥𝑥(𝛽𝛽) and 𝜏𝜏𝑥𝑥(𝑦𝑦) have 

unstable equilibrium positions and orientations causing a 

continuous 'circulating' motion of the cell within the optical 

trap. Similarly, 𝐹𝐹𝑦𝑦(𝛼𝛼) and 𝜏𝜏𝑦𝑦(𝑥𝑥) shows the presence of 

strongly coupled terms, Figure 7.6 and -d. These findings 

confirms that strong coupling are present also in the stiffness 

matrix.  
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Figure 7.6. Force-rotations and torque-displacements curve for 𝐹𝐹𝑥𝑥(𝛽𝛽) (a), 

𝜏𝜏𝑥𝑥(𝑦𝑦) (b), 𝐹𝐹𝑦𝑦(𝛼𝛼) (c), and 𝜏𝜏𝑦𝑦(𝑥𝑥) (d).  

Now I evaluate the auto-correlation function as I 

introduced in chapter 6. From Figure 7.7-a, -b and -c, it is 

possible to observe that 𝐶𝐶𝑥𝑥𝑥𝑥(τ), 𝐶𝐶𝑦𝑦𝑦𝑦(𝜏𝜏) and 𝐶𝐶𝑧𝑧𝑧𝑧(τ) decay as 

multiple exponentials characterized by different ω. Therefore, 

it is not possible to resort on the modelling reported in chapter 

6 to characterise the trap constant. Indeed, for this reason, 

new methodologies, as for example FORMA[22] must be 

adapted to the current case to characterise the trap constant 

or new one must be developed.  

d) c) 
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Figure 7.7. Autocorrelation function for the centre of mass of the cell for the 

𝑥𝑥-direction (a), 𝑦𝑦-direction (b), and 𝑧𝑧-direction (c).  

The peculiar morphology of the sickle cell, however, 

also permits an alternative equilibrium configuration similar to 

the 'folded' configuration (i.e. rotated of 90° around the 𝑥𝑥-

axis) found for a healthy RBC. In Figure 7.8 are shown the 

results for a simulation of sickle cell in its 'folded' 

configuration carried out with the same parameters used 

previously. Here, the only difference is the total beams' power 

is set at 40 mW (i.e. 20 mW each beam). The beam power is 

increased to make any possible shifting in the cell 

configuration more visible.  
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Figure 7.8. a) 3D-trajectory of the centre of mass of a sRBC over a 

simulation time of 10 s. (b) Position of the centre of sRBC as a function of 

time in terms of the Cartesian co-ordinates, and (c) cell rotation around the 

axis of the fixed reference frame (i.e. 𝑥𝑥- (𝛼𝛼), 𝑦𝑦- (𝛽𝛽), and 𝑧𝑧- (𝛾𝛾)). (d) sRBC at 

the equilibrium configuration. The red star indicates the position of the 

beams' foci, while the blue dot represents the origin of the fixed frame of 

reference. 

Initially, the cell, centred in (0, 0, 0) in its 'folded' 

configuration, starts to migrate towards -𝒚𝒚� and stabilize at 

approximately 𝑦𝑦𝑒𝑒𝑒𝑒=-1 μm because of the cell morphology. 

Simultaneously, the cell migrates towards +𝒛𝒛� and stabilize at 

around 𝑧𝑧𝑒𝑒𝑒𝑒=+0.25 μm, while the centre of mass of the cell 

d) c) 
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floats around 𝑥𝑥𝑒𝑒𝑒𝑒=0, Figure 7.8-a and -b. Interestingly, the 

cell seems to be confined in its 'folded' configuration as 

illustrated in Figure 7.8-c and -d. This is a major difference in 

respect with a healthy RBC trapped by double-beams optical 

tweezers. In fact, in the latter case, an increase in the beams' 

power would result in a stiffer trap but the cell would not 

change its equilibrium orientation. These findings are also 

supported by experiments in which alternative equilibrium 

orientations have never been observed so far. Indeed, 

because of the cell morphology, the RBC would remain 

aligned with the beams' propagation direction. 
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7.6. Chapter summary 

In this chapter, I briefly introduced a methodology to 

perform the ray-tracing and to calculate the optical forces and 

torques on asymmetrical particle which surface is not easily 

described by a single function. Indeed, a particle surface 

description as a points cloud is the only feature necessary to 

perform the geometrical optics calculation. In particular, the 

points cloud is meshed in a set of triangles and a ray-triangle 

intersection algorithm is used to extract the necessary 

information (i.e. point of intersection and normal line to the 

point of intersection) to complete the ray trace and to 

calculate the optical forces and torques. The new algorithm 

showed to be in good agreement with the standard method 

used to calculate the optical forces and torques in the 

geometrical optics approximation. Importantly, the new 

method was applied to identify the equilibrium position of a 

sickle cell, a pathological RBC morphology, via the dynamic 

equilibrium searching. Even though an equilibrium 

configuration is easily identified, the extrapolation of the trap 

constants from the particle trajectories is not trivial because 

of the strong coupling between rotations and translations. A 

new theory able to extract the trap constant must be 

developed or adapted from the current available 

methodology but remains outside the scope of the thesis. 
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Importantly, the geometrical optics calculation performed 

with the presented methodology can be expanded to any 

particle shape, and can also be used as a training data set 

for a neural network as introduced in chapter 6. 
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8. CONCLUSION 

In this thesis, I presented a comprehensive study on 

the theoretical investigation of erythrocyte optical trapping via 

optical tweezers exploiting the geometrical optics 

approximation. The thesis was subdivided in two parts. Part 

I is divided in two chapters where I briefly introduced the 

structure, the biology and the physiology of erythrocytes and 

the physics that is used throughout the thesis. Part II is 

stranded in five chapters where I presented the results 

obtained during my studies.  

In the first chapter of Part II, I presented a theoretical 

investigation of the optical trapping of a healthy RBC when 

trapped by a single- or multi-beams optical tweezers. The 

investigation highlight how the biconcave shape is critical in 

determining the rays’ path, the optical forces and torques, 

and thus the equilibrium configuration of a healthy RBC. The 

methodology used to explore the equilibrium configuration of 

the healthy RBC within an optical trap has been showed for 

a single-beam optical tweezers, and then, has been applied 

to investigate the possibility to completely confine a RBC in 

space by means of a double-beam optical tweezers. 

Moreover, it has also been shown that using three or four 

beams in a very symmetric arrangements confines the cell in 
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its 'flat' configuration in very good agreement with the 

experimental evidence. 

In the second chapter of Part II, I studied how a 

reconfigurable triple-beam optical tweezers can control the 

orientation and the position of a healthy RBC using two 

different methods for the identification of the equilibrium 

configuration. The static equilibrium searching proven to be 

an excellent scheme to explore the trapping mechanism if the 

equilibrium configuration of the cell is known from 

experiments or if the trap configuration assumes simple 

geometrical arrangements. However, as the complexity of 

the trap configuration increases, the static equilibrium 

searching becomes too difficult in identifying the final 

configuration of the cell within the optical trap. For this 

reason, simulating the non-spherical particles' Brownian 

dynamics within the force-field demonstrated to be an 

essential step. In fact, with the dynamic equilibrium searching 

has been possible to identify the final equilibrium position and 

orientation even in highly complex light distribution patterns.  

In the third chapter of Part II, I reported a numerical 

investigation on the application of light-sheet optical tweezers 

in RBC research. Initially, I verified the possibility to optically 

trap an RBC with a light-sheet of infinite width. Subsequently, 

I demonstrated how a light-sheet optical tweezers is able to 

completely confine a healthy RBC, both spatially and 
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rotationally. A complete trapping was obtained if the light-

sheet had a width comparable to the cell diameter. Since with 

a light-sheet tweezers the RBC is confined in a specific plane, 

the rotation of the light-sheet can be used to deliberately re-

orient the cell via the simple light-sheet rotation.  

In the fourth chapter of Part II, it was introduced a 

preliminary study carried out in collaboration with Nano-Soft 

Lab at CNR in Messina, Italy. In this work, we trained an 

artificial neural network (NN) to predict the optical forces and 

torques generated by a single-beam optical tweezers on a 

healthy RBC. The NN is demonstrated to be able to predict 

the optical forces and torques with higher accuracy and in 

significantly shorter computation time compared to 

geometrical optics calculation. Moreover, the NN can be 

used to predict optical forces and torques for multiple-beams 

optical tweezers, and thanks to the higher computational 

efficiency, the NN is used to simulate the Brownian dynamic 

of a trapped RBC in a double-beam optical tweezers. Lastly, 

the results of the simulation are used to extract the trap 

constants via the auto-correlation method.  

In the fifth chapter of Part II, I briefly introduced a 

methodology to perform the geometrical optics calculation on 

asymmetrical particle which surface is described only by a 

points cloud. The points cloud is subdivided in a set of 

interconnected triangles and a ray-triangle intersection 



 242 

algorithm is used to extract the necessary information to 

complete the ray trace and to calculate the optical forces and 

torques. The new algorithm demonstrated to be in good 

agreement with the standard method used to calculate the 

optical forces and torques. Importantly, this new method has 

been coupled with the dynamic equilibrium searching to 

identify the equilibrium configuration of a pathological RBC 

morphology. Notably, the geometrical optics calculation 

performed with the presented methodology can be expanded 

to any particle shape, and can also be used as a training data 

set for a neural network. 

The implemented numerical procedure can be 

exploited by experimentalists to tweak various parameters. 

For example, one can explore light beams with various 

intensity distributions (e.g. Laguerre-Gaussian beam or 

Hermite-Gaussian beam) to analyse the effect on trapping a  

healthy or an unhealthy erythrocyte. Another example that 

can be explored is the distance between the two beams' foci 

in a double-beam optical tweezers for elongation 

experiments. Of great interest, for both theorists and 

experimentalists, is the possibility to simulate the light stress 

distribution on the surface of the cell. This calculation can be 

coupled to finite difference (and/or elements) method or other 

numerical techniques to simulate the deformation of a red 

blood cell in response to the optical pressure for a given set 
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of input. Such methodologies can also be useful to extract 

real world values regarding the biomechanics of the cell. 

Also, the numerical method here developed can be exploited 

to investigate new theoretical framework for the calibration of 

optical tweezers.  

In performing numerical experiments some 

simplifying approximations have been made which impacts 

several aspects of my work. One great example is the 

approximation of the cell as a rigid body with fixed and 

predefined morphological features (e.g. dimple depth). This 

could limit the possibility to compare quantitatively numerical 

experiments with the real world outcome of a direct 

investigation, nevertheless a good qualitative agreement has 

been already shown. Yet, the rigid body approximation 

(currently) limits the applicability of the developed NN to the 

basic case of a healthy RBC. Though, in future a more 

sophisticated neural network could be trained to predict 

optical stress distribution, cells deformation, and the new 

optical forces/torques acting on the deformed RBC for a 

given set of inputs. Although, the generation of the training 

data set could be a formidable task. Notwithstanding the 

limitations, in the current thesis the power of the method has 

been demonstrated for an important task like the trap 

calibration. These said, a detailed experimental validation of 
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the numerical method is still required to identify the boundary 

of applicability of the numerical framework here presented.  

Overall, in this thesis, the great potential of the 

geometrical optics approximation has been exploited in full 

and different methodologies have developed to study various 

aspect of optical trapping healthy and unhealthy red blood 

cell. Taken as whole the work presented in this thesis offers 

an advancement in the theoretical understanding of the red 

blood cell optical trapping through optical tweezers.  
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9. FUTURE OUTLOOK 

The great potential of the methods developed in this 

thesis has a farther reach outside the red blood cell research. 

The methodologies developed in chapter 6 and 7 can be a 

great advantage for the entire optical tweezers community. In 

fact, the possibility to calculate optical forces on particle with 

a non-well-defined geometry could be used in other fields as 

for example in calculating the optical forces acting 

astronomical dust particles (an example is shown in Figure 

9.1), microplastics, or on any other residues derived from 

human activity. In addition, all these calculations can be 

coupled with machine learning algorithm to improve the 

calculations speed. The work in this thesis, therefore, 

extends the capabilities of geometrical optics to describing 

forces and torques on irregularly shaped objects, with 

expected impact not just in physics, but medicine and 

environmental science also. 
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Figure 9.1. Ray trace for an irregularly shaped particle. The ray trace has 

been performed with the methodology explained in chapter 7.  
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10. APPENDIX 

10.1. Ray triangle intersection with Möller–
Trumbore algorithm 

The principal information that need to be extracted to 

perform the ray trace are the point of intersection and the 

normal line to the point of intersection. However, if the particle 

lacks of simple geometrical description, one has to resort on 

the meshing of the surface in a set of triangles to perform 

geometrical optics calculations. This requires a new 

algorithm to extract the necessary information. Here I briefly 

details the maths behind the Möller–Trumbore's ray-triangle 

intersection method used in chapter 7, and extensively 

discussed in [1]. 

A light-ray can be defined by its origin (𝑶𝑶), its direction 

(𝑫𝑫), and a single scalar 𝑡𝑡 that defines a point along the light-

ray: 

𝑹𝑹(𝑡𝑡) = 𝑶𝑶 + 𝑡𝑡𝑫𝑫. 𝐴𝐴. 1 

Here, the light-ray has to be intersected with all the 

triangles that composes the particle surface. In this algorithm, 

the authors made use of the barycentric co-ordinate to define 
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any point inside the triangle with vertices (𝑽𝑽0, 𝑽𝑽1, 𝑽𝑽2). 

Following this definition, a point in a triangle is given by:  

𝑻𝑻(𝑢𝑢, 𝑣𝑣) = (1 − 𝑢𝑢 − 𝑣𝑣)𝑽𝑽0 + 𝑢𝑢𝑽𝑽1 + 𝑣𝑣𝑽𝑽2 𝐴𝐴. 2 

where (𝑢𝑢, 𝑣𝑣) are the barycentric co-ordinates, which must fulfil 

𝑢𝑢 ≥ 0, 𝑣𝑣 ≥ 0, and 𝑢𝑢 + 𝑣𝑣 ≤ 1. To find the intersection one has 

to equate eq. A.1 and A.2 and solve for 𝑢𝑢, 𝑣𝑣 and 𝑡𝑡, as follow:  

𝑶𝑶 − 𝑡𝑡𝑫𝑫 = (1 − 𝑢𝑢 − 𝑣𝑣)𝑽𝑽0 + 𝑢𝑢𝑽𝑽1 + 𝑣𝑣𝑽𝑽2 𝐴𝐴. 3 

distributing the first terms on the right hand side, and 

grouping the similar terms, one obtains:  

𝑶𝑶 − 𝑽𝑽0 = −𝑡𝑡𝑫𝑫 + 𝑢𝑢(𝑽𝑽1 − 𝑽𝑽0) − 𝑣𝑣(𝑽𝑽2 − 𝑽𝑽0) 𝐴𝐴. 4 

denoting 𝑬𝑬1 = 𝑽𝑽1 − 𝑽𝑽0, 𝑬𝑬2 = 𝑽𝑽2 − 𝑽𝑽0, and 𝑻𝑻 = 𝑶𝑶 − 𝑽𝑽0, eq. 

A.4 can be written in matrix form as: 

[−𝑫𝑫 𝑬𝑬1 𝑬𝑬2] �
𝑡𝑡
𝑢𝑢
𝑣𝑣
� = 𝑻𝑻. 𝐴𝐴. 5 

Eq. A.5 is solved using the Cramer's rules: 
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�
𝑡𝑡
𝑢𝑢
𝑣𝑣
� =

1
|−𝑫𝑫,𝑬𝑬1,𝑬𝑬2| �

|𝑻𝑻,𝑬𝑬1,𝑬𝑬2|
|−𝑫𝑫,𝑻𝑻,𝑬𝑬2|
|−𝑫𝑫,𝑬𝑬1,𝑻𝑻|

� . 𝐴𝐴. 6 

From linear algebra it is know that |𝑨𝑨,𝑩𝑩,𝑪𝑪| = −(𝑨𝑨 × 𝑪𝑪) ∙ 𝑩𝑩 =

−(𝑪𝑪 × 𝑩𝑩) ∙ 𝑨𝑨, Therefore Eq. A.6 can be rewritten as:  

�
𝑡𝑡
𝑢𝑢
𝑣𝑣
� =

1
(𝑫𝑫 × 𝑬𝑬2) ∙ 𝑬𝑬1

�
(𝑻𝑻 × 𝑬𝑬1) ∙ 𝑬𝑬2
(𝑫𝑫 × 𝑬𝑬2) ∙ 𝑻𝑻
(𝑻𝑻 × 𝑬𝑬2) ∙ 𝑫𝑫

� =
1

𝑷𝑷 ∙ 𝑬𝑬1
�
𝑸𝑸 ∙ 𝑬𝑬2
𝑷𝑷 ∙ 𝑻𝑻
𝑸𝑸 ∙ 𝑫𝑫

� 𝐴𝐴. 7 

where 𝑷𝑷 = (𝑫𝑫 × 𝑬𝑬2) and 𝑸𝑸 = (𝑻𝑻 × 𝑬𝑬1). In the algorithm 

implementation, all calculations are delayed until they are not 

needed. For example 𝑣𝑣 is not calculated until the value of 𝑢𝑢 

is found to be in an acceptable range.  

The second necessary information is the unit normal 

line (𝑵𝑵) to the point of intersection. The latter can be readily 

calculated via the cross-product of the edge of the triangle, 

and it is then used to determine if the light ray 𝑹𝑹 strike the 

surface from outside (Figure A.1-a) or from inside the particle 

(Figure A.1-b), or if it is parallel to the triangle. This test, apart 

determining the direction of the light ray incidence, is used to 

further increase the computationally efficiency of the 

algorithm avoiding unnecessary calculation (i.e. when the 

light ray is parallel to the triangle). 
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Figure A.10.1. The unit normal vector (𝑵𝑵) to a triangle can be readily 

calculated as the cross-product between the triangle edges 𝑨𝑨 and 𝑩𝑩. In (a) 

a light-ray 𝑹𝑹 is striking the surface of the particle from outside the particle, 

and thus the dot product 𝑫𝑫 · 𝑵𝑵 < 0, where 𝑫𝑫 is the direction of the light-ray, 

since the vector are antiparallel. In (b), 𝑹𝑹 hits the particle surface from 

inside the particle volume and thus 𝑫𝑫 · 𝑵𝑵 > 0. A third event can occur when 

the 𝑹𝑹 and 𝑵𝑵 are perpendicular 𝑫𝑫 · 𝑵𝑵 = 0, not shown. 
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