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Abstract

Identifiability is a highly prized property of statistical models. This thesis
investigates this property in nonlinear models encountered in two fields of statis-
tics: representation learning and causal discovery. In representation learning,
identifiability leads to learning interpretable and reproducible representations,
while in causal discovery, it is necessary for the estimation of correct causal
directions.

We begin by leveraging recent advances in nonlinear ICA to show that
the latent space of a VAE is identifiable up to a permutation and pointwise
nonlinear transformations of its components. A factorized prior distribution
over the latent variables conditioned on an auxiliary observed variable, such as
a class label or nearly any other observation, is required for our result. We also
extend previous identifiability results in nonlinear ICA to the case of noisy or
undercomplete observations, and incorporate them into a maximum likelihood
framework.

Our second contribution is to develop the Independently Modulated Com-
ponent Analysis (IMCA) framework, a generalization of nonlinear ICA to
non-independent latent variables. We show that we can drop the independence
assumption in ICA while maintaining identifiability, resulting in a very flexible
and generic framework for principled disentangled representation learning. This
finding is predicated on the existence of an auxiliary variable that modulates
the joint distribution of the latent variables in a factorizable manner.

As a third contribution, we extend the identifiability theory to a broad family
of conditional energy-based models (EBMs). This novel model generalizes earlier
results by removing any distributional assumptions on the representations,
which are ubiquitous in the latent variable setting. The conditional EBM can
learn identifiable overcomplete representations and has universal approximation
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capabilities.
Finally, we investigate a connection between the framework of autoregressive

normalizing flow models and causal discovery. Causal models derived from
affine autoregressive flows are shown to be identifiable, generalizing the well-
known additive noise model. Using normalizing flows, we can compute the
exact likelihood of the causal model, which is subsequently used to derive a
likelihood ratio measure for causal discovery. They are also invertible, making
them perfectly suitable for performing causal inference tasks like interventions
and counterfactuals.
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Impact statement

Probabilistic models are a class of machine learning algorithms that define prob-
ability distributions across a wide range of mathematical objects, from simple
scalars to multi-dimensional pictures and text sequences. Recent developments
in deep neural networks have significantly improved the capabilities of such
models and heightened interest in them. Within this class of models, expressing
the observations as a complicated transformation of a lower-dimensional latent
variable is becoming increasingly common. Subsequently, the latent code may
be employed in tasks like image classification or compressed sensing.

Identifiability, which allows us to learn repeatable and interpretable rep-
resentations, is a desired characteristic that such models lack. Identifiable
representations are often more appropriate for the task at hand, and they have
a substantial impact on learning performance and training robustness. More-
over, they can help state-of-the-art models perform even better in challenging
applications like blind source separation, causal discovery, transfer learning,
and zero-shot learning, to mention a few.

This thesis establishes theoretical identifiability guarantees for large families
of deep probabilistic models which hold regardless of the type of data or the
practical implementation. We believe this will pave the way for the widespread
use of identifiable models in a variety of applications.
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Chapter 1

Introduction

Identifiability is a property of probabilistic models that is required for exact
inference of the model parameters: a model is identifiable when two distinct
parameters result in two different probability distributions. This thesis addresses
the problem of identifiability in deep probabilistic models. More specifically, we
begin by discussing its absence in popular representation learning approaches
and then propose conditions under which this can be rectified. The identifiability
of a new causal model derived from normalizing flows is next investigated, and
we show how autoregressive flows are particularly well suited for a variety of
causal inference tasks.

This thesis’ methodology is based in large part on a set of mathematical
tools and probabilistic models that we describe in Sections 1.1 to 1.3 of this
introductory chapter. These sections are not intended to be a comprehensive
overview of the subjects presented; instead, they are meant to give the essential
context in order to motivate and develop the work discussed in Chapters 2 to 5.
These tools serve as building blocks for the models that are developed in the
remaining chapters. Section 1.4 gives a detailed overview of the contributions
of each chapter as well as the structure of the thesis. Finally, the notations
used in this thesis are introduced in Section 1.5.

1.1 Mathematical preliminaries

Probabilistic models. At its core, machine learning takes a probabilistic
approach to data modelling. The observed data is assumed to be generated by
a random process that follows a set of probabilistic assumptions. The “true”
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1. Introduction

unknown probability distribution P0 underlying the data is approximated by
a probabilistic model, which is defined as a pair (X ,P) of a set of possible
observations X and a set of probability distributions P = {Pθ : θ ∈ Θ} with
parameter θ. The model is said to be well specified if there exists a θ ∈ Θ such
that Pθ = P0. Although it is not often the case that the model contains the true
distribution, the goal remains to find the best approximation Pθ∗ ≈ P0 with
optimal parameter θ∗ from the data itself. Probabilistic models can be used to
make predictions, generate new samples, make inference about missing values,
extract useful information from the data, among many other applications.

As an example, consider that we flipped a possibly biased coin N times.
A coin toss only has two outcomes: heads with probability θ ∈ [0, 1], or tails
with probability 1− θ. This event can be modelled by a probabilistic model
consisting of Bernoulli distributions: P = {Berθ : θ ∈ [0, 1]} over the binary set
X = {0, 1}. The coin flips D = {x(1), . . . , x(N)} are independent and identically
distributed (I.I.D): independent because the outcome of one coin toss bears no
influence on the rest of the outcomes, and identically distributed because they
originate from the same coin, and thus are all Berθ-distributed.

One of the most commonly used probabilistic models is the exponential
family (Koopman, 1936; Kupperman, 1958; Andersen, 1970). It is a set of
probability distributions whose probability density or mass function can be
written as

pθ(x) = Q(x) exp
[
T(x)⊤λ(θ)− Γ(θ)

]
, (1.1)

where Q(x), T(x), λ(θ) and Γ(θ) are known functions. The exponential family
includes the Bernoulli, Gaussian and Laplace distributions amongst many
other. A more detailed overview of the exponential family and some of its
useful properties can be found in Appendix 1.B.

Likelihood function. Given a dataset D of i.i.d observations, we can define
the likelihood function L(θ) as the probability of observing the data given the
parameter θ:

L(θ) = Pθ(x(1), . . . ,x(N)) =
N∏

i=1
Pθ(x(i)). (1.2)

The second equality in the definition above is a result of the independence1

of the random variables x(1), . . . ,x(N). The likelihood function L(θ) can be
1See Appendix 1.A for a brief overview on statistical independence.
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used as a means to estimate the optimal parameter θ∗. Intuitively, it is less
likely to observe the dataset D under alternative parameters θ, since the data
was generated from Pθ∗ . Thus, the likelihood function is maximal for θ = θ∗.
This estimation technique is known as maximum likelihood estimation (MLE)
(Wilks, 1938).

As an illustration, let us go back to the previous example. Suppose that
Nh = 600 out of N = 1000 coin flips were heads. We want to estimate the
probability of flipping heads on the next toss using MLE. Using equation (1.2)
and the definition of the Bernoulli distribution, the likelihood for the model is

L(θ) = Berθ(D) = θNh(1− θ)N−Nh .

To find the value θ∗ that maximizes L, we can differentiate the above expression
with respect to its argument θ, and solve for zero. For the coin toss, the
likelihood is maximal for θ∗ = Nh/N = 0.6, at which it takes the extremely
small value L(0.6) = 0.66000.4400 ≈ 5.184× 10−293.

We often use the logarithm of the likelihood (or log-likelihood) ℓ(θ) :=
logL(θ) for maximum likelihood estimation. This does not change the opti-
mization landscape since the logarithm is a strictly increasing function, and
has the benefit of transforming the product in equation (1.2) into a sum over
an I.I.D sample. Incidentally, the logarithm also addresses the problem of
extremely small values, and makes differentiating easier for many common
probabilistic models, especially when using exponential family distributions
defined in equation (1.1). The maximum likelihood estimator is consistent.
This means that given an infinite amount of data, we can estimate the optimal
parameter θ∗ with arbitrary precision.

Latent variable models. Directly modelling the distribution of an observed
variable x often leads to simple, “single-stage” probabilistic models, which
often have closed-form expressions for learning and inference. However, this
comes at the expense of expressiveness. Latent variable models are a class of
probabilistic models that offers an alternative approach to modelling complex
distributions. They posit the existence of a unobserved, latent variable z, from
which the observation x is generated through a deterministic or stochastic
transformation.

25



1. Introduction

Typically, the joint probability density or mass function of a latent variable
model has the following structure:

pθ(x, z) = pθ(x|z)pθ(z).

This approach allows us to combine simple distributions into richer, more
flexible forms. For example, we can model each of pθ(z) and pθ(x|z) as an
exponential family distribution (1.1). Yet, the resulting observed probability
density or mass function

pθ(x) =
∫
pθ(x|z)pθ(z)dz

can still model a rich class of data distributions.

Identifiability. A probabilistic model P is said to be identifiable if the
mapping θ ∈ Θ 7→ (x ∈ X 7→ Pθ(x)) is injective:

(Pθ1(x) = Pθ2(x), ∀x ∈ X ) =⇒ θ1 = θ2. (1.3)

In other words, if two parameters θ1 and θ2 generate the same distribution
over the set of observations X , then they are necessarily equal.

Identifiability is an important property of probabilistic models. It enables
precise parameter estimation in the limit of infinite data samples. In fact, the
consistency of MLE (and other parameter estimation techniques) is premised on
the identifiability of the probabilistic model: under the identifiability condition,
the likelihood function L(θ) has a unique maximum at θ∗.

It is important to note that identifiability is a property of the probabilistic
model and not of the estimation method. To illustrate this, we consider the
previous coin toss example but defined in two different ways. First, the Bernoulli
model above directly models the outcome of a coin flip as a Bernoulli-distributed
random variable and is identifiable. To see this, let (θ1, θ2) ∈ Θ2 such that
Berθ1(x) = Berθ2(x) for x ∈ {0, 1}. Since Berθ(1) = θ, we conclude that θ1 = θ2

and that the model is identifiable.
Now imagine that we do not have access to a real coin, but rather to a

computer with a random number generator that can only generate samples
from a Gaussian distribution with mean µ and variance σ2. Tossing a coin in
this case proceeds in two steps: we first draw a sample z(i) ∼ N (µ, σ2), then
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we assign heads to x(i) if z(i) ≥ 0 and tails otherwise. This is effectively a latent
variable model with parameters (µ, σ) and can be expressed as

z(i) ∼ N (µ, σ2),
x(i) = 1(z(i) ≥ 0).

This model is identifiable if two different values of the parameter θ = (µ, σ)
result in two different observed distributions. The observed random variable x is
Bernoulli distributed with parameter θ̃ depending on µ and σ. This relationship
is

θ̃ = P(z ≥ 0) = 1− P(z < 0) = 1− ϕ
(
−µ
σ

)
,

where ϕ is the cumulative distribution function2 (CDF) of the standard (zero
mean and unit variance) Gaussian distribution. Crucially, the value of θ̃
depends on the ratio µ/σ, which takes the same value for infinitely many pairs
(µ, σ), which means that this model is not identifiable.

The definition of identifiability in equation (1.3) may be limiting in some
fields of machine learning. We will later (Section 2.4.1) introduce the notion
of identifiability up to equivalence class, which is more adaptable and better
suited for applications like representation learning and causal discovery.

1.2 Identifiability in representation learning

Recent advances in data collection have resulted in very large datasets, in-
cluding images (LeCun et al., 1998; Deng et al., 2009; Krizhevsky, 2009), 3D
shapes (Chang et al., 2015), text (Marcus et al., 1993; Maas et al., 2011), music
(Bertin-Mahieux et al., 2011), and graphs and networks (Yanardag and Vish-
wanathan, 2015; Hu et al., 2020). As the amount and complexity of the data
grew, most of the work in machine learning research went towards developing
preprocessing pipelines to assist the extraction of meaningful information from
large datasets, allowing for efficient learning. With the rise of deep learning,
preprocessing shifted from hand-crafted expertise-based feature engineering
to utilizing neural networks to implicitly learn useful representations. This is
known as representation learning, and it has grown to be one of the modern
pillars of machine learning. Deep representations are now widely used in many

2The CDF of a continuous random variable X is defined as FX(x) = P(X < x).
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machine learning applications, including speech recognition and processing
(Dahl et al., 2011; Seide et al., 2011), natural language processing (Bengio et al.,
2003; Devlin et al., 2019), action recognition (Korbar et al., 2018), domain
adaptation (Wang and Deng, 2018), and many more.

Learning good representations can have a significant impact on the perfor-
mance of machine learning algorithms (Bengio et al., 2013). A representation’s
quality is frequently characterized by its capacity to improve the performance
of a downstream task in which the user is actually engaged. This criterion,
however, is only meaningful when such a task exists and is clearly defined,
which usually amounts to classification or regression on labelled datasets3. A
better criterion for assessing the quality of a representation should be inherent
to the representation itself, rather than reliant on the context or task in which
it may be employed. To this end, recent lines of research aim to learn represen-
tations that are true to the explanatory factors of variation behind the data.
This desideratum is formalized by the notion of identifiability. Fundamentally,
an identifiable and sufficiently flexible probabilistic model can only learn one
representation in the limit of infinite data: the ground truth generative factors.
Identifiability is necessary for learning representations that are semantically
meaningful, reproducible, interpretable and better suited for downstream tasks
(Schmidhuber et al., 1996; Bengio et al., 2013; Peters et al., 2017).

In this section, we will briefly review recent methods for representation
learning that aim to learn the ground truth generative factors. In particular,
we will focus on nonlinear Independent Component Analysis (ICA) (Hyvärinen
and Morioka, 2016; Hyvärinen and Morioka, 2017; Hyvärinen et al., 2019), as
well as the related field of disentangled representation learning (Higgins et al.,
2017; Chen et al., 2018; Esmaeili et al., 2019). This thesis builds on recent
advances in nonlinear ICA to propose novel methods for learning identifiable
representations.

1.2.1 Disentangled representation learning

Many methods like probabilistic component analysis (Tipping and Bishop,
1999) and variational autoencoders (Kingma and Welling, 2014; Rezende et al.,

3Because labelling is a costly and time-consuming endeavour, only a small percentage of
today’s datasets are labelled.
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2014) learn a posterior distribution over a lower-dimensional latent variable. It
is hoped that such a posterior will correspond to the underlying distribution of
statistically independent sources of variation. A new line of research is being
developed for the related goal of learning disentangled representations (Alemi
et al., 2017; Higgins et al., 2017; Burgess et al., 2018; Chen et al., 2018; Kim
and Mnih, 2018; Mathieu et al., 2018; Esmaeili et al., 2019).

In brief, a disentangled representation is one in which single latent compo-
nents are responsive to changes in a single generative factor (Bengio et al., 2013;
Burgess et al., 2018). The objective is to isolate the influence of all factors
of variation, which translates to learning a representation with independent
components. The majority of previous efforts on disentanglement are based on
variational autoencoders (VAEs) and employ regularized objectives to encourage
the latent representation to align with the independent components of variation.
This is accomplished by augmenting a VAE’s loss with hyperparameters that
favour a factorized latent representation.

Variational autoencoders. We begin with a brief overview of VAEs (Kingma
and Welling, 2014; Rezende et al., 2014), which serve as the foundation for
most of the recent disentanglement methods (Higgins et al., 2017; Zhao et al.,
2017; Achille and Soatto, 2018; Burgess et al., 2018; Chen et al., 2018; Kim
and Mnih, 2018; Mathieu et al., 2018; Esmaeili et al., 2019; Gao et al., 2019).
VAEs are a latent variable model aimed at reproducing samples from a given
dataset. We suppose that the observation x is generated by a latent variable z
through a random process consisting of a prior pθ(z) and a likelihood pθ(x|z),
also known as a decoder . Much of this process is concealed, such as the optimal
parameter θ∗ and the latent variable values for each observed data point. To
perform inference or learning, a variational posterior distribution (also known
as an encoder) qϕ(z|x) is introduced, which is used to approximate the often
intractable posterior pθ(z|x). The encoder and the decoder define a probabilis-
tic autoencoder. The VAE objective is traditionally defined in terms of a lower
bound L on the empirical expectation of the log-likelihood over a dataset D:

EpD(x) [log pθ(x)] = EpD(x)[KL(qϕ(z|x)∥pθ(z|x))] + L(θ,ϕ),

where

L(θ,ϕ) = EpD(x)
[
Eqϕ(z|x) [log pθ(x|z)]−KL(qϕ(z|x)∥pθ(z))

]
. (1.4)
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The loss L is a lower bound on the data-log-likelihood called the evidence
lower bound (ELBO). We can learn flexible models with a VAE by utilizing
neural networks to parametrize the various distributions in equation (1.4). For
efficiency, we frequently make assumptions about the form of the distributions
in the generative process. Most importantly, pθ(z) is assumed to have a diagonal
covariance, typically a standard Gaussian distribution, implying that the latent
components are independent. This independence assumption serves as the
foundation for VAE-based disentanglement methods.

β-VAE. Higgins et al. (2017) introduced β-VAE, a variant where a positive
hyperparameter is added to the original VAE objective (1.4). The variational
lower bound becomes

Lβ(θ,ϕ) = EpD(x)
[
Eqϕ(z|x) [log pθ(x|z)]− βKL(qϕ(z|x)∥pθ(z))

]
. (1.5)

The idea behind introducing the β parameter is to encourage a more disentan-
gled latent representation. When the parameter β is set to a large value, the
posterior distribution is forced to align with the factorized prior distribution.

FactorVAE and β-TC-VAE. The Kullback-Leibler divergence between
the prior pθ(z) and the variational posterior qϕ(z|x) in equation (1.5) can be
further decomposed into

KL(qϕ(z|x)∥pθ(z)) = I(x, z) + KL(qϕ(z)∥
∏

i

qϕ(zi)) +
∑

i

KL(qϕ(zi)∥pθ(zi)),

(1.6)
where I(x, z) denotes the mutual information between x and z and qϕ(z) =∫
qϕ(z|x)pD(x)dx. Therefore, when β > 1, the β-VAE also penalizes the

mutual information I(x, z), effectively constraining the capacity of the VAE
bottleneck, which results in a loss of information about the observations. Chen
et al. (2018) and Kim and Mnih (2018) contend that penalizing the mutual
information I(x, z) is undesirable for disentanglement. Instead, they propose
to penalize the total correlation term KL(qϕ(z)∥∏i qϕ(zi)) in equation (1.6).
Because total correlation is a measure of dependency between random variables,
imposing such a penalty forces the model to find statistically independent
latent components. The resulting models, FactorVAE (Kim and Mnih, 2018)
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and β-TC-VAE (Chen et al., 2018), minimize an alternative lower bound:

LT C(θ,ϕ) = L(θ,ϕ)− βKL(qϕ(z)∥
∏

i

qϕ(zi)). (1.7)

Since the total correlation is intractable, Kim and Mnih (2018) propose an
estimate using the density ratio trick (Nguyen et al., 2010; Sugiyama et al.,
2012), which entails training a classifier/discriminator to approximate the
density ratio that emerges in the KL term. Concurrently, Chen et al. (2018)
present a stochastic biased Monte-Carlo estimate for the terms involved in
computing the total correlation. When the hyperparameter β in equation (1.7)
is positive, it encourages the aggregated posterior qϕ(z) to have independent
marginals without penalizing the mutual information I(x, z)).

Disentangled representations are not necessarily identifiable. Many
methods learn disentangled representations by imposing independence on the
latent variables and adding regularization terms to the VAE objective in an
ad-hoc manner (Kumar et al., 2017; Zhao et al., 2017; Achille and Soatto, 2018;
Esmaeili et al., 2019; Gao et al., 2019). Unfortunately, these techniques do not
provide any theoretical identifiability guarantees.

In fact, disentangled representations are not identifiable in general. In other
words, learning nonlinear models that seek independence results in arbitrary
representations that are not always related to the ground truth factors of
variation. A large scale empirical study conducted by Locatello et al. (2019)
showed that the proposed models for disentanglement exhibit substantial
variance depending on hyperparameters and random seeds. Unsupervised
learning of identifiable nonlinear representations has long been known to be
theoretically impossible (Hyvärinen and Pajunen, 1999) without any inductive
biases. Mathieu et al. (2018), Rolinek et al. (2018), and Locatello et al. (2019)
address the issue of identifiability, or lack thereof, in deep latent variable models,
particularly VAEs, demonstrating that isotropic prior distributions always lead
to rotational invariance in the ELBO.

1.2.2 Independent component analysis

Within representation learning, identifiability has mostly been studied in the
context of independent component analysis (ICA) (Comon, 1994). In ICA, the
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observations are considered to be a mixture of independent source variables.
The goal is to learn an “unmixing” transformation capable of recovering the
original sources based on their independence and the observed mixture.

In this section, we briefly introduce the basic concepts and identifiability
theory of linear ICA. We then review the recent advances in nonlinear ICA,
which are the starting point for most of the work presented in this thesis.

1.2.2.1 Linear ICA

Over the decades, ICA has been extensively studied in the linear setting, where
the mixing is considered to be a matrix (Comon, 1994; Bell and Sejnowski, 1995;
Hyvärinen, 1999; Cardoso, 2001; Hyvärinen et al., 2001; Pham and Cardoso,
2001; Hyvärinen et al., 2003; Plumbley, 2003; Hyvärinen and Hurri, 2004; Le
et al., 2011; Pfister et al., 2019; Podosinnikova et al., 2019), with applications
in finance (Back and Weigend, 1997; Oja et al., 2000), study of functional
magnetic resonance imaging (fMRI) data (McKeown et al., 1998; McKeown
and Sejnowski, 1998; Calhoun et al., 2003), document analysis (Bingham et al.,
2002; Podosinnikova et al., 2015), astronomy (Nuzillard and Bijaoui, 2000),
analysis of electroencephalography (EEG) data (Makeig et al., 1996; Makeig et
al., 1997; Delorme et al., 2007; Milne et al., 2009), and many more. Essentially,
if at most one of the source variables is Gaussian, linear ICA is identifiable
up to permutation and scaling of the components. In this section, we briefly
review the linear ICA model. The following exposition is based on the seminal
paper by Comon (1994) as well as the monograph on linear ICA by Hyvärinen
et al. (2001).

Consider a latent source variable s which is transformed through an unknown
linear mixing into observations x:

x = As, (1.8)

where A ∈ Rd×d is an invertible matrix.
We want to know if we can recover the original but unknown signal s while

making no or only very weak assumptions on its distribution. The difficulty is
that both the distribution of s and the mixing matrix A are unknown, making
it impossible to determine whether a solution to the problem is related to
the true generative process. This problem is known as blind source separation
(BSS).
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Comon (1994) proposed the framework of Independent Component Analysis
(ICA), which is an estimation technique that provides an affirmative answer to
the question, by only making two weak assumptions:

1. The components s1, . . . sd of the source variable s are independent:

p(s) =
∏

i

pi(si). (1.9)

2. At most one component has a Gaussian distribution.

Under these assumptions, the model (1.8) is identifiable, meaning that the
linear mixing, as well as the true source variable, can be estimated. Linear ICA
achieves this goal by simply learning an unmixing matrix B such that

z := Bx (1.10)

has independent components. Before we state the main identifiability result,
we note that the linear ICA problem has two indeterminacies. To see this, let
ai be the i-th column of A, and write equation (1.8) as:

x =
d∑

i=1
siai.

Then it is clear that the ICA problem is invariant to permutation and scaling
of the independent components.

The main identifiability result of linear ICA is summarized by the following
theorem.

Theorem 1.1 (Comon (1994), Theorem 11 adapted). Let s be a random
vector that satisfies assumptions 1 and 2, i.e. it has independent components,
of which at most one is Gaussian. Let C be an orthogonal d× d matrix and
z = Cs. Then the components zi of z are independent if and only if C = DP,
with D diagonal and P a permutation matrix.

Theorem 1.1 shows that outside of the ambiguities mentioned above, the
linear ICA problem is identifiable. A reconstruction z = Bx = BAs = Cs has
independent components if and only if it is equal to a permutation and scaling
of the components of s. In other words, based on independence alone, if (A, s)
is a solution to the ICA problem (1.8), then all the other solutions necessarily
have the form (AP−1D−1,DPs) where P is a permutation matrix and D is a
diagonal matrix.
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1.2.2.2 Nonlinear ICA

A straightforward generalization of ICA to the nonlinear setting would assume
that a set of independent random vectors are mixed into identically distributed
observations through an arbitrary but usually smooth transformation. The
matrix A in the linear ICA model in equations (1.8) and (1.9) is replaced by
an invertible mixing function f : Rd → Rd:

x = f(s),
p(s) =

∏
i

pi(si).
(1.11)

The goal of nonlinear ICA is to learn an unmixing function g that generalizes
the unmixing matrix B in equation (1.10) such that

z := g(x) (1.12)

has independent components. In the linear setting, solving the blind source
separation (BSS) problem of recovering the original signal s is equivalent
to finding independent components through ICA. However, a fundamental
problem with nonlinear ICA is that solutions to equation (1.12) such that z has
independent components exist, and they are highly non-unique. As a result,
they are not necessarily meaningfully related to the solution to nonlinear BSS.

In reality, in the nonlinear case, identifiability is a far more difficult aim
to achieve. If s1 and s2 are independent random variables, then so are h1(s1)
and h2(s2) for any functions h1 and h2. Component-wise transformations
h(s) := (h1(s1), . . . , hd(sd)) as well as permutation of the components are thus
unavoidable indeterminacies of nonlinear BSS.

The real problem is that the unidentifiability of nonlinear ICA extends
beyond these two ambiguities: two independent components si and sj can
be mixed nonlinearly while remaining statistically independent. Nonlinear
transformations introduce numerous degrees of freedom, rendering the problem
ill-defined. Hyvärinen and Pajunen (1999) demonstrated that it is always
possible to construct a representation z = g(x) with independent components
that is nonetheless a nonlinear mixture of the underlying independent generative
factors. This construction can be traced back to Darmois (1953), which showed
that for any two independent variables ξ1, ξ2, we can construct infinitely many
random variables y1 = f1(ξ1, ξ2) and y2 = f2(ξ1, ξ2) that are also independent.
This unidentifiability result is summarized by the following theorem.
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Theorem 1.2 (Hyvärinen and Pajunen (1999), Theorem 1 adapted). Let x
be a random vector of any distribution. Then there exists a transformation
g : Rd → [0, 1]d such that z = g(x) has a uniform distribution. In particular,
the components zi ∈ z are independent.

The function g in Theorem 1.2 is constructed through an iterative procedure
analogous to Gram-Schmidt orthogonalization, by recursively applying the
conditional cumulative distribution function (CDF) of x:

zi = gi(x1:i) :=
∫ xi

−∞
p(x̃i|x1:i−1)dx̃i. (1.13)

This theorem indicates that nonlinear ICA is unidentifiable, which can be seen
in few different ways. To begin, it is clear from equation (1.13) that z1 = g1(x1)
is a monotonic transformation of the observed variable x1. By simply permuting
the elements of x before applying g, we conclude that any of the xi can be
taken as one of the independent components, which is unrealistic. Another
corollary of the construction (1.13) is that the transformation g := (g1, . . . , gd)
as well as its inverse have a triangular Jacobian matrix. If the true mixing f in
equation (1.11) has a full Jacobian, then z is necessarily a nonlinear mixing of
the original source s. Indeed, if this was not the case, we would have

f = P ◦ h ◦ g−1, (1.14)

where P and h formalize the permutation and component-wise scaling ambigu-
ities of nonlinear BSS. The right-hand side of equation (1.14) has a triangular
Jacobian (up to permutation) whereas the left-hand side has a full Jacobian,
which is not possible.

To make nonlinear ICA models identifiable, additional information is needed,
which can be in the form of structural constraints on the mixing (Hecht-Nielsen,
1995; Pajunen et al., 1996; Taleb and Jutten, 1999; Lappalainen and Honkela,
2000; Eriksson and Koivunen, 2002) or by restricting the distribution of the
latent variables (Harmeling et al., 2003; Hosseini and Jutten, 2003; Jutten
et al., 2004; Sprekeler et al., 2014).

In recent years, there has been a renaissance in identifiability results that
follow this second approach of constraining the distribution of the independent
components. Sprekeler et al. (2014) assume that the independent components
are autocorrelated time series; Hyvärinen and Morioka (2016) assume that
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they are non-stationary time series; Hyvärinen and Morioka (2017) assume
that they have general non-Gaussian temporal dependencies; Hyvärinen et al.
(2019) assume that we have access to an auxiliary variable that modulates
the distribution of the independent components; and Gresele et al. (2020)
assume that we have multiple views of the same independent components.
These models achieved significant progress towards providing identifiability
guarantees by integrating side information into the generative model. We
briefly review the works of Hyvärinen and Morioka (2016) and Hyvärinen et al.
(2019) as they are of particular interest for the models discussed in this thesis.

Nonlinear ICA by Time Contrastive Learning. Time Contrastive Learn-
ing (TCL) introduced by Hyvärinen and Morioka (2016) is a method for non-
linear ICA based on the assumption that while the sources are independent,
they are also non-stationary time series. This implies that they can be divided
into known non-overlapping segments, such that their distributions vary across
segments. The non-stationarity is supposed to be slow compared to the sam-
pling rate, allowing us to consider the distributions inside each segment to be
constant over time, and resulting in a piece-wise stationary distribution across
segments. Formally, given a segment index τ ∈ T , where T is a finite set of
indices, the distribution of each latent component zi within that segment is
modelled as an exponential family:

log pτ (zi) = log qi,0(zi) +
k∑

j=1
λi,j(τ)qi,j(zi)− logZi(λi,1(τ), . . . , λi,k(τ)), (1.15)

where qi,0 is a stationary baseline and qi := (qi,1, . . . , qi,k) is the sufficient
statistic for the exponential family of the source zi. Note that the parameters
λi := (λi,1, . . . , λi,k) depend on the segment index, indicating that the distribu-
tions of the sources change across segments. It follows from equation (1.15)
that the observations are piece-wise stationary.

TCL recovers the inverse transformation f−1 by self-supervised learning,
where the goal is to classify original data points against segment indices in a
multinomial classification task. To this end, TCL employed a deep network
consisting of a feature extractor h(x; η) with parameters η in the form of
a neural network, followed by a final classifying layer (e.g. softmax). The
theory of TCL, as stated in Theorem 1 of Hyvärinen and Morioka (2016), is
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premised on the fact that in order to optimally classify observations into their
corresponding segments, the feature extractor h(x; η) must learn about the
changes in the underlying distribution of latent sources. The theory shows that
the method can learn the independent components up to pointwise nonlinear
transformations and a linear transformation A. It is further proposed that a
linear ICA can recover the linear mixing A if the number of segments grows to
infinity and the segment distributions are random in a certain sense, but this
latter assumption is unrealistic in applications where the number of segments
is small.

Nonlinear ICA using auxiliary variables. A more recent development in
nonlinear ICA is given by Hyvärinen et al. (2019). The observations x are still
assumed to be a nonlinear invertible transformation of latent sources z. The
key element in this model that leads to identifiability is that each source zi is
dependent on some observed auxiliary variable u, but independent of all the
other sources conditional on u:

x = f(z),
p(z|u) =

∏
i

pi(zi|u).

This formulation is so general that it subsumes previous models by Hyvärinen
and Morioka (2016) and Hyvärinen and Morioka (2017) in the sense of the data
model. In fact, in the case of non-stationary sources, the auxiliary variable u
can be the segment label. More generally, the auxiliary variable u can be a class
label, the index of a pixel in an image, the description of an image, the sound
of a video, amongst others. The estimation technique is considerably different
from TCL in that it learns the unmixing function using a self-supervised binary
discrimination task based on randomization. More specifically, new data is
constructed from the observations x and u to obtain two datasets

x̃ = (x,u),
x̃∗ = (x,u∗),

where u∗ is drawn randomly from the distribution of u and independent of x.
Then, nonlinear logistic regression is performed using a regression function of
the form r(x,u) = ∑d

i=1 ψi(hi(x),u) to discriminate between actual samples x̃
and shuffled samples x̃∗.
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According to the generative model, the observed and the auxiliary variables
in the non-shuffled dataset x̃ are linked through a shared latent variable,
whereas this link is broken in the shuffled dataset x̃∗. Thus, the regression
function makes use of a feature extractor denoted h(x) like in TCL, the purpose
of which is to extract the latent features that allow distinguishing between the
two datasets.

The identifiability theory of Hyvärinen et al. (2019) stipulates that the
model is identifiable up to component-wise invertible transformations, provided
that the latent distribution pi(zi|u) satisfies some regularity constraints. In the
particular case of the exponential family distribution

log p(zi|u) = log qi,0(zi)+
k∑

j=1
λi,j(u)qi,j(zi)− logZi(λi,1(u), . . . , λi,k(u)), (1.16)

the regularity constraints are much simpler, but the identifiability guarantees
are weakened:

• If k > 1 in equation (1.16), then the same identifiability result holds.

• If k = 1, then it is only possible to recover the latent variables up to an
unknown linear transformation A, that can be solved by linear ICA, like
in TCL.

1.3 Identifiability in causal discovery

Causal models are a crucial part in modern scientific endeavour (Spirtes et al.,
2000; Pearl, 2009a; Van der Laan and Rose, 2018; Glymour et al., 2019). Many
of the questions that drive scientific progress are not associational in nature,
but are rather about identifying causal relations and the laws that govern them.
Causal understanding is important to many applications like development
of medical treatments (Imai and Van Dyk, 2004), medical imaging (Castro
et al., 2020), advertising (Bottou et al., 2013), econometrics (Heckman, 2008),
genetics (Murphy and Mian, 1999) psychology (Foster, 2010; Grosz et al., 2020),
sociology (Gangl, 2010), policy making (Kreif and DiazOrdaz, 2019), machine
learning (Schölkopf, 2019; Goyal et al., 2020; Teshima et al., 2020; Wu and
Fukumizu, 2020; Yang et al., 2020) and many others.

38



1.3. Identifiability in causal discovery

Randomized controlled trials are the gold standard for determining causal
relationships: by altering and manipulating some aspects of a system, we can
examine how the rest of its features react. These trials allow researchers to
acquire a causal understanding of the underlying mechanisms as well as an
estimate of the magnitude of the causal relationships. They may also be used
to predict the effect of explicit manipulations (interventions) to a system or
to answer questions about what would happen if we did things differently
to the naturally occurring process (counterfactuals). Unfortunately, such
studies are often prohibitively expensive to carry out, or they may pose certain
ethical concerns (Spirtes and Zhang, 2016). As a result, it is critical to create
mathematical tools and procedures for performing causal discovery (uncovering
causal relations) and causal inference (intervening on certain aspects of the
data and answering counterfactual inquiries) from raw observational data. Such
data is collected from trials that the researcher has no control over because of
the aforementioned ethical or cost constraints.

1.3.1 Structural equation models

The framework of structural equation models4 (SEMs) (Bollen, 1989) is a
mathematical tool that can be used to encapsulate causal knowledge, as well as
answer interventional and counterfactual queries (Pearl, 2009b). Fundamentally,
SEMs define a generative model that describes the interactions of a set of
observations X = (X1, . . . , Xd) with a set of mutually independent disturbances
or noise variables N = (N1, . . . , Nd). They consist of a collection of equations
of the form

Xj = fj(PAj, Nj), j = 1, . . . , d, (1.17)

where PAj ⊆ {X1, . . . , Xd} \Xj are called the parents of the variable Xj. An
SEM is often associated with a directed acyclic graph (DAG) G called the
causal graph. Each node of G corresponds to an observed variable Xj, and the
edges are drawn from each parent to its direct effects. SEMs are very powerful:
not only do they describe the set of all distributions, they can be used to
perform interventions and answer counterfactual queries by changing the noise
distribution or the causal mechanism in one or more of the equations (1.17).

4Structural Equation Models (SEM) are sometimes referred to as Structural Causal
Models (SCM) or Functional Causal Models (FCM).
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SEM are only useful for causal discovery if they define an identifiable causal
model. A causal model is said to be identifiable if we can distinguish between
cause and effect. In fact, the SEM (1.17) is a probabilistic model over the
variables (X,N), parametrized by the causal functions (f1, . . . , fd) and the noise
distribution. Under the identifiability assumption, two SEMs that define the
same observational distribution over X have the same parameters. In particular,
they define the same causal ordering over the variables (X1, . . . , Xd). As an
illustration, consider the bivariate case, where we only have two observations
X and Y . If we assume that X is the cause of Y , then the causal model is
identifiable if a function that expresses X in terms of the hypothetical cause
Y and an independent error term cannot be found within the limitations
of the SEM. Unfortunately, without restrictions, the causal direction of the
general SEM (1.17) is not identifiable (Zhang et al., 2015a). The source of this
unidentifiability is the same as in nonlinear ICA: general nonlinear mappings
provide far too much flexibility, which implies that we may always represent any
variable as the cause of another. In fact, the proof of unidentifiability of general
SEMs is based on the unidentifiability theory of nonlinear ICA (Hyvärinen and
Pajunen, 1999).

In order to accomplish identifiability, causal discovery algorithms generally
adopt one of two techniques. The first approach is to impose constraints
on the functions fj that define the SEM (1.17), such as linear models with
non-Gaussian noise (Shimizu et al., 2006; Shimizu et al., 2011; Lacerda et al.,
2012; Hyvärinen and Smith, 2013; Zheng et al., 2018), nonlinear additive noise
models (ANM) (Hoyer et al., 2009; Peters et al., 2014; Bloebaum et al., 2018),
or post-nonlinear models (PNL) (Zhang and Hyvärinen, 2009). The second
approach is to consider unconstrained SEMs while imposing constraints on
the distribution of the disturbances. Such approaches frequently impose non-
stationarity limitations on the distribution of the latent disturbances (Peters
et al., 2016; Monti et al., 2019), or make assumptions about the existence of
exogenous factors (Zhang et al., 2017). Generally, causal discovery research
can be split into two main axes: finding constraints under which an SEM is
identifiable, and proposing methods for the estimation of said SEM.

The remainder of this section will focus on nonlinear causal models, as they
are the most relevant to this thesis. We will begin by giving a brief overview of
the most notable identifiable nonlinear causal models, then discuss the several
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estimation methods that were proposed in the literature.

1.3.2 Identifiable nonlinear causal models

In this subsection, we will review three of the most notable identifiable nonlinear
causal models. The additive noise model (ANM) (Hoyer et al., 2009) and the
post-nonlinear model (PNL) (Zhang and Hyvärinen, 2009) restrict the form
of the causal functions in the SEM to achieve identifiability, whereas the non-
stationary nonlinear SEM model (NonSENS) (Peters et al., 2016; Monti et al.,
2019) achieves it by positing the non-stationarity of the latent disturbances.

Additive noise model (ANM). Hoyer et al. (2009) introduced the additive
noise model, in which the SEM has the form

Xj = fj(PAj) +Nj,

and the noise variables N are both mutually independent and independent of
X. Their theoretical identifiability results focuses on the case of two variables
X1 and X2. It stipulates that if X1 → X2, then we can’t write X1 = g(X2) + Ñ

for some function g and noise Ñ ⊥⊥ X2 that is independent of X2. Essentially,
the SEM is asymmetrical with respect to X1 and X2 and can only describe
the natural cause-effect relationship. In other words, it is identifiable. Peters
et al. (2014) generalized the identifiability result to the case of more than two
variables.

Post-nonlinear model (PNL). Zhang and Hyvärinen (2009) introduced
the post-nonlinear model, which generalizes ANM by adding a subsequent
invertible mapping gj:

Xj = gj(fj(PAj) +Nj).

The noise variables N are still assumed to be mutually independent and
independent of the causes. The authors show that the bivariate PNL model
is identifiable in most cases and enumerate five special situations in which
the model is not identifiable. This identifiability theory generalizes that of
ANM, which is a special case when gj is the identity mapping. Note that we
can reduce the PNL model to an ANM if we transform the effect through
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the inverse of the mapping gj, the transformed variable g−1
j (Xj) being totally

correlated with the original effect Xj.

Non-stationary nonlinear SEM model (NonSENS). The two causal
models discussed above attained identifiability by restricting the functional form
of the causal mechanisms in the SEM. An alternative approach that leads to
identifiability is to introduce constraints on the data distribution. Peters et al.
(2016) and Monti et al. (2019) assume that the data is collected across a range
of experimental settings e ∈ E , which is effectively a form of non-stationarity:

Xe
j = fj(PAe

j , N
e
j ), ∀e ∈ E .

The causal mechanisms fj are assumed to be the same for all the experimental
settings.

Peters et al. (2016) focused on the case of linear models for which they proved
identifiability and robustness to model misspecification. Monti et al. (2019)
introduced the name NonSENS, and considered general nonlinear relationships
between cause, noise and effect. Under the assumption of non-stationarity,
they show that the causal model is identifiable even in such a general case
by leveraging recent results in the theory of nonlinear ICA (Hyvärinen and
Morioka, 2016; Hyvärinen et al., 2019).

1.3.3 Estimation methods for causal discovery

The works discussed in the previous section, as well as others (Hyvärinen
and Smith, 2013; Peters et al., 2014; Bloebaum et al., 2018), also proposed
estimation methods for causal discovery. This section provides a quick overview
of these three models and the accompanying estimating methods, discussing
their strengths and weaknesses.

Regression with subsequent independence tests (RESIT). Hoyer et al.
(2009) proposed a constraint-based estimation method for bivariate additive
noise models. A generalization to multivariate models as well as the name
RESIT was proposed by Peters et al. (2014). This approach requires least-
squares regressions in both directions X2 → X1 and X1 → X2, essentially
learning an estimate of the independent disturbances N1 and N2. RESIT then

42



1.3. Identifiability in causal discovery

proceeds with a series of independence tests between the residuals and the causes.
If N1 ⊥⊥ X2, then we can deduce from the identifiability property that the
causal direction is X2 → X1, and similarly if N1 ⊥⊥ X1. If both independence
tests fail or succeed with the same confidence, we cannot conclude on the causal
direction.

Choosing a suitable regression model for RESIT is not trivial. On the
one hand, a simple model might not capture the causal relation in the right
direction well. On the other hand, a complex model is prone to overfitting in
the wrong direction, resulting in a more independent residual.

Furthermore, Hoyer et al. (2009) only proposed a method for causal discovery,
with no discussion of the ability to answer interventional and counterfactual
queries from RESIT. Peters et al. (2014) also do not claim the ability to predict
counterfactual statements.

Finally, RESIT is a constraint-based method that is especially dependent
on its underlying assumptions, in particular on the assumption of faithfulness
which will typically not be satisfied in the presence of latent confounders5.
This means that if the additive noise assumption fails, RESIT will also fail,
regardless of regression class. Peters et al. (2014) proposed an an alternative
score-based estimation method that does not require independence tests.

Regression-error based causal inference (RECI). Bloebaum et al. (2018)
proposed an alternative method for estimating the causal direction in bivariate
additive noise models. It is also based on least-squares regressions in both
directions X2 → X1 and X1 → X2. However, unlike RESIT, RECI compares
the magnitudes of the residuals to each other to deduce the causal direction.
They rely on the fact that the expected variance of the effect given the cause is
lower than that of the cause given the effect. The direction with the smaller
residual magnitude corresponds to the true causal ordering.

Choosing a suitable regression model for RECI is also not trivial. As stated
by Bloebaum et al. (2018), a very flexible regression class can reduce the perfor-
mance of RECI because it is prone to overfitting. A simple regression function,
on the other hand, will not be able to explain all the variance in the data,
resulting in residuals that do not reflect the true causal direction. Importantly,

5A confounder is a hidden variable that affects both dependent and independent variables,
resulting in spurious associations in the causal graph.
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if the additive noise assumption fails, RECI, regardless of regression class, will
fail.

Contrary to what the name of the method might suggest, and similarly to
Hoyer et al. (2009) and Peters et al. (2014), the authors focused their efforts
on developing a causal discovery method and did not discuss causal inference
(interventions and counterfactuals).

Likelihood ratio measure of causal direction. Given the vulnerability
of constraint-based methods, one can look to explore score-based approaches.
Such methods do not depend on independence tests but instead seek to perform
model comparison based on adequately defined score functions. For example,
Hyvärinen and Smith (2013) considered the likelihood ratio as a score function
and used it to measure the causal direction between a pair of variables (X1, X2).
Briefly, one would need to compute the likelihood under two candidate models:
X1 → X2 and X2 → X1. Then, the log-likelihood ratio is defined as the
difference in log-likelihoods under the two models:

R = L1→2 − L2→1. (1.18)

We conclude that the correct causal direction is X1 → X2 if R is positive, and
X2 → X1 instead.

We should highlight that this likelihood ratio measure of causal direction
was initially created for LiNGAM, a linear model based on non-Gaussianity
(Shimizu et al., 2006). Hyvärinen and Smith (2013) suggested an extension of
likelihood ratios to ANM, as well as a heuristic approximation that roughly
amounts to RECI. Monti et al. (2019) also proposed an extension of likelihood
ratios to nonlinear non-stationary causal models.

Other estimation methods. LiNGAM (Shimizu et al., 2006; Shimizu et al.,
2011) and NO-TEARS (Zheng et al., 2018) are methods designed for linear
causal models. LiNGAM estimates a linear acyclic SEM by solving a linear
ICA problem based on the assumption of non-Gaussianity. It is identifiable
due to the identifiability of the equivalent ICA model. In contrast, NO-TEARS
attempts to estimate a linear Gaussian SEM by solving a non-combinatorial
constrained optimization problem. The identifiability theory is thus significantly
weaker. The adjacency matrix and its inverse can then be used to perform
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interventions and answer counterfactual queries. Monti et al. (2019) proposed
an estimation method of the NonSENS model based on solving nonlinear ICA,
akin to Shimizu et al. (2006).

1.4 Contributions and structure of the thesis

In this section, we start with a brief summary of the outline and contributions of
this thesis, before going into details about the main contributions of Chapters 2
to 5. The list of publications upon which these chapters are based is given at
the end of the section.

1.4.1 Structure and contributions in brief

The first three chapters of this thesis are dedicated to the identifiability theory
of deep probabilistic models. We provide sufficient conditions under which the
representations learned by very broad families of models are unique up to trivial
ambiguities. In Chapter 2, we begin by establishing a principled connection
between variational autoencoders and an identifiable nonlinear ICA model. Our
identifiability theory borrows the idea of auxiliary variables from Hyvärinen et al.
(2019) and extends it by incorporating noisy observations and undercomplete
representations. Then, in Chapter 3, we present a novel framework called
Independently Modulated Component Analysis (IMCA), which generalizes
nonlinear ICA to allow for non-independent latent variables while retaining
identifiability. This is accomplished by assuming the presence of an auxiliary
variable that modulates the latent distribution. In Chapter 4, we develop
a large family of conditional energy-based models that incorporates feature
extractors to learn identifiable representations. The conditioning variable
plays a similar role to the auxiliary variable in Hyvärinen et al. (2019), and
the identifiability results apply to overcomplete representations while needing
relatively few assumptions.

Finally, in Chapter 5, we work towards developing a new identifiable causal
model derived from affine autoregressive normalizing flows (Rezende and Mo-
hamed, 2015; Huang et al., 2018), which are intrinsically connected to SEMs.
This affine causal model generalizes the additive noise model (Hoyer et al.,
2009) by adding a cause-dependent coefficient to the noise variable in the SEM.
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In addition, we show that autoregressive normalizing flows can be used to build
a novel approach for causal discovery based on likelihood ratios. The resulting
framework can also answer interventional and counterfactual queries thanks to
the invertibility of normalizing flows.

1.4.2 Detailed contributions

Contributions of Chapter 2. Inspired by the prevalence of variational
autoencoders in disentangled representation learning, this chapter aims to
bring the identifiability guarantees of nonlinear ICA into the realm of VAEs.
More specifically, we borrow the concept of auxiliary variables from Hyvärinen
et al. (2019), and combine it with a VAE to define a generative model where
posteriors are non-degenerate:

p(z|u) =
∏

i

p(zi|u),

x = f(z) + ε.

The auxiliary variable u controls the prior distribution but is independent
of x given the latent variable z. The resulting framework, called iVAE or
identifiable VAE, might look similar to semi-supervised learning methods in
the VAE context due to the inclusion of the auxiliary variable u. However,
the auxiliary variable u can play a more general role (Hyvärinen et al., 2019).
For instance, in time series, it can simply be the time index or history; in
audiovisual data, it can be either one of the modalities, where the other is
used as an observation. More importantly, and to our knowledge, there is no
proof of identifiability in the semi-supervised literature. The following points
summarize the contributions of the chapter:

(i) Show the unidentifiability of nonlinear latent variable models
with any prior: The unidentifiability of nonlinear ICA has been known
for decades now (Hyvärinen and Pajunen, 1999). Locatello et al. (2019)
rediscovered this result when investigating disentangled representation
learning. Both works show that it is impossible to recover the original
components after a nonlinear mixing when using a factorized prior. In
this chapter, we expand this result and demonstrate that it holds for any
prior, including non-factorizing ones. This showcases that this problem
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is fundamentally ill-defined and that using inductive biases is necessary
for identifiability.

(ii) Provide an estimation method of nonlinear ICA that is based on
maximum likelihood estimation (MLE): Using a VAE to estimate
the latent sources offers several benefits over the self-supervised heuristics
previously employed in nonlinear ICA (Hyvärinen and Morioka, 2016;
Hyvärinen et al., 2019). Maximum likelihood estimation is robust to some
failure modes which occur in the context of self-supervised methods, as we
demonstrate in a series of experiments where the surrogate classification
task in the self-supervised methods fails, resulting in learning the wrong
features. Furthermore, the ELBO objective may be used for model
selection and validation. Finally, we prove a tight link between maximum
likelihood estimation and the maximization of independence of the latent
components via total correlation (Watanabe, 1960). Note that, unlike
prior work on disentanglement, we do not introduce hyperparameters
to penalize the different terms of the ELBO. Instead, we compute the
standard evidence lower bound to the log-likelihood log p(x|u).

(iii) Prove the identifiability of a large family with conditional ex-
ponential family prior: Hyvärinen and Morioka (2016) proved iden-
tifiability up to a linear transformation of the latent components when
the prior distribution is an exponential family. Hyvärinen et al. (2019)
proved a stronger identifiability up to component-wise transformation
by considering more general prior distributions that fulfil some relatively
strict regularity constraints. In this chapter, we choose to focus on the
conditional exponential family (1.16) for p(zi|u), because they lead to
simpler assumptions. However, we prove that the model has the stronger
identifiability, effectively combining the best of Hyvärinen and Morioka
(2016) and Hyvärinen et al. (2019). We further prove that the case k = 1,
considered only weakly identifiable by Hyvärinen et al. (2019), also bene-
fits from the stronger identifiability guarantees if the sufficient statistics
qi,1 are monotonic.

(iv) Generalize the nonlinear ICA model to noisy and undercom-
plete observations: The theory of nonlinear ICA assumes that the
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observations are a noise-free and invertible transformation of the latent
components: x = f(z) for a bijective f . This is not very realistic because
noise is ubiquitous in practice and the number of factors of variation is
often assumed to be much smaller than the dimension of the data. In
this chapter, we propose to change the generative model to x = f(z) + ε,
where ε is a noise variable, and f is only supposed to be injective, and
show that the identifiability theory of nonlinear ICA holds for this model.
Most importantly, the estimation method developed here is the first that
can estimate a model in the presence of noise and with a smaller number
of components.

Contributions of Chapter 3. This chapter explores the identifiability of
latent variable models in which the latent components are not necessarily inde-
pendent. We introduce the framework of independently modulated component
analysis (IMCA), in which the latent variables have a distribution of the form

log p(z|u) = log q0(z) +
∑

i

qi(zi)⊤λi(u)− Z(u), (1.19)

where q0 is a base measure that is not necessarily factorized. The critical
assumption for identifiability is the use of an auxiliary variable like in Hyvärinen
et al. (2019), which independently modulates the distributions of the latent
components. The main contributions of this chapter are:

(i) Prove the identifiability of a model without independent latent
components: Identifiability is often studied within the context of latent
variable models with independent components like ICA. Even in linear
models, very few works study identifiability outside of this assumption
(Hyvärinen and Hurri, 2004; Monti and Hyvärinen, 2018). The IMCA
framework introduced above generalizes nonlinear ICA by allowing the
latent components to have a dependence through the base measure q0.
We first prove that the identifiability guarantees developed for nonlinear
ICA in Chapter 2 also hold for IMCA, which results in a more general
framework for principled learning of identifiable representations. Second,
we prove that we can further drop the assumption of independent mod-
ulation, while maintaining a weaker form of identifiability up to linear
transformation.

48



1.4. Contributions and structure of the thesis

(ii) Show that some of the estimation methods developed for nonlin-
ear ICA also work for IMCA: Nonlinear ICA can be estimated through
self-supervised schemes (Hyvärinen and Morioka, 2016; Hyvärinen and
Morioka, 2017; Hyvärinen et al., 2019) or maximum likelihood estimation
(Chapter 2). In this chapter, we show that both these approaches can be
used for the estimation of IMCA.

Contributions of Chapter 4. Representation learning methods, including
disentanglement methods and nonlinear ICA, could be divided into two broad
classes: generative approaches and feature extraction approaches. The methods
discussed so far are generative: we posit the existence of latent variables that
are at the origin of the observed data. The goal is to invert the generative
process and recover the original value of these latent factors. In this chapter, we
develop an identifiable feature extraction approach for representation learning.
To this end, we introduce conditional energy-based models that incorporate
feature extractors to learn latent representations. More specifically, denote by
x an observed variable, and u a conditioning variable. The model family has a
density of the form

p(x|u) ∝ exp
(
−f(x)⊤g(u)

)
. (1.20)

The functions f and g are feature extractors used to learn representations from
the observations and the conditioning variable, respectively. The conditioning
variable u here plays a similar role to the auxiliary variable in iVAE (Chapter 2).
This model, which we call identifiable conditional energy-based deep model, or
ICE-BeeM for short, benefits from the tremendous flexibility and generality
of energy-based models (EBMs) and drops all assumptions on the learned
representations. The following points summarize the contributions of this
chapter:

(i) Prove the identifiability of a family of conditional energy-based
models: Identifiability is defined differently in feature extraction based
approaches. Since there is no latent variable that is explicitly modelled,
we express identifiability in terms of the similarity between two repre-
sentations learned by two different models (1.20) from the same dataset.
We show in this chapter that our conditional energy-based model has two
types of identifiability. The first is weak identifiability akin to that of
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Hyvärinen and Morioka (2016), where two representations are equal up
to a linear transformation: f(x) = Af̃(x) + b. In applications where the
representations are used in a downstream classification task, this weak
identifiability form is often sufficient. The second is a stronger identifia-
bility akin to that of Hyvärinen et al. (2019), where two representations
are equal up a permutation and a scaling: fi(x) = af̃i′(x) + b. The
identifiability results developed in this chapter make fewer assumptions
than earlier work on nonlinear ICA, all the while being stronger.

(ii) Extend the identifiability results to overcomplete representa-
tions: In Chapter 2, we developed a framework for nonlinear ICA which
is capable of learning identifiable undercomplete representations. In
this chapter, we extend the weak identifiability up to linear scaling to
overcomplete representations, where dim(f(x)) ≥ dim(x). This is the
first such identifiability result in the nonlinear setting. Moreover, the
energy-based model (1.20) can be shown to have universal approximation
capability if the dimension of the feature extractor is not constrained.
This reinforces the importance of extending identifiability to overcomplete
representations.

(iii) Prove the identifiability of a neural network architecture: The
recent theory of identifiability focused on providing functional conditions
for identifiability in the abstraction of the network architecture. While
this makes these results more general, such works are a bit removed
from the reality of neural network training. In this chapter, we translate
the functional identifiability assumptions into a set of constraints on
the architecture of a multilayer perceptron (MLP). This is the first step
towards bridging the gap between theory and practice.

(iv) Propose a novel method for the estimation of identifiable latent
variable models: The identifiability of the conditional energy-based
model makes it a prime candidate for the estimation of identifiable latent
variable models. Combined with its flexibility, it gives ICE-BeeM an edge
over previous methods like iVAE (Chapter 2) and TCL (Hyvärinen and
Morioka, 2016) in learning the original components in nonlinear ICA and
IMCA (Chapter 3). More specifically, under the IMCA model (1.19), the
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likelihood can be written as log p(x|u) = log p(z|u) + h(x), where h is
a function that groups all the terms that only depends on x. Assume
that ICE-BeeM has learned the log-probability density function exactly.
Then, by equating the IMCA likelihood (1.19) to equation (1.20), we have,
purely heuristically, that fi(x) = qi(zi), which means that the feature
extractor recovers the latent variables up to component-wise nonlinear
functions. This is made rigorous in the chapter.

(v) Large scale experimental validation on image datasets: The
chapter validates the theoretical identifiability findings by comparing
multiple representations learned from image datasets for different random
initialisations. The benefits of identifiability are then explored in two
applications: transfer learning and semi-supervised learning, in which
ICE-BeeM comes up on top of the baselines. We conclude this chapter by
showing that our method is competitive against state-of-the-art methods
in learning the components of nonlinear ICA and IMCA models.

Contributions of Chapter 5. In this chapter, we prove the identifiability
of a new causal model that generalizes additive noise models. The new model
is inspired by a family of variational inference models called normalizing
flows. Normalizing flows define the density of observations X as a series of
invertible transformations of a latent variable N with a simpler distribution.
Autoregressive normalizing flows (Dinh et al., 2014; Dinh et al., 2016; Huang
et al., 2018) use transformations of the form

Xj = τj(Nj; PAj), (1.21)

where PAj are the variables that precede Xj in the autoregressive ordering.
Equation (1.21) is very similar to an SEM (1.17), suggesting that autoregressive
normalizing flows have an intrinsic causal ordering. This makes the resulting
framework, which we call causal autoregressive flows (CAREFL) an excellent
candidate to perform causal discovery and inference, as summarized by the
following contributions:

(i) Prove the identifiability of a new affine causal model: Autore-
gressive normalizing flows are known for their flexibility and expressivity.
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To derive an identifiable causal model from an autoregressive flow, we
restrict the transformer τj in equation (1.21) to be an affine function of
the noise, with intercept and bias parametrized by the causes:

Xj = fj(PAj) + gj(PAj)Nj, (1.22)

where gj is a positive function, and fj is arbitrary. In this chapter, we
prove an identifiability result of this model in the bivariate case. In
brief, assume that observations (X1, X2) follow the model X2 = f2(X1) +
g2(X1)N2. If N2 and X1 statistically independent and at least one of
them is Gaussian, and f2 is invertible and nonlinear, then the inverse
model X1 = f1(X2) + g1(X2)N1 for a Gaussian N1 cannot hold. In our
model, in stark contrast to the PNL model, it is not possible to apply
a fixed (as in not a function of the cause) transformation to the effect
to revert to an additive noise model. This chapter thus presents a novel
identifiability result in the context of non-additive noise models, which
complements that of the ANM and PNL models.

(ii) Develop a new nonlinear measure of causal direction based on
normalizing flows: One of the strengths of normalizing flows is that
they allow for easy evaluation of the likelihood. In this chapter, we
leverage this property to propose a measure of causal direction based
on likelihood ratios, extending the work of Hyvärinen and Smith (2013)
to nonlinear SEMs. We approach bivariate causal discovery as a model
selection problem and compare two candidate models: X1 → X2 against
X1 ← X2. The likelihood ratio is defined analogously to equation (1.18)
as R = logL1→2 − logL2→1. One of the main challenges encountered
when computing the likelihood, and more generally the ratio R is that
often times we have to evaluate a log-determinant of a Jacobian, which is
not trivial. This is why the likelihood ratio measure has been primarily
used in the context of linear SEMs. Autoregressive flows are designed
specifically to make the evaluation of Jacobian terms easy and are thus
well suited to obtain a nonlinear measure of causal direction. Finally,
unlike in RESIT (Hoyer et al., 2009; Peters et al., 2014) and RECI
(Bloebaum et al., 2018), CAREFL doesn’t suffer from having very flexible
classes of functions in equation (1.22), which gives it an edge over these
methods, even for the estimation of ANM.
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(iii) Show that normalizing flows are well suited for interventional
and counterfactual queries: Another valuable property of normalizing
flows is that they can be easily inverted. In this chapter, we leverage
this property to evaluate interventional and counterfactual statements
using autoregressive flows. These often require inverting the SEM to
update the distribution of the disturbances according to a counterfactual
observation.

1.4.3 Publications

The four main chapters of this thesis are based on the following publications.
Source code for all proposed methods is publicly available.

1. Chapter 2: Variational autoencoders and nonlinear ICA

I. Khemakhem, D.P. Kingma, R.P. Monti, A. Hyvärinen. “Variational
Autoencoders and Nonlinear ICA: A Unifying Framework”. In AISTATS,
2020.

Code: https://github.com/ilkhem/ivae

2. Chapter 3: Independently modulated component analysis and Chapter 4:
Identifiable conditional energy-based models

I. Khemakhem, R.P. Monti, D.P. Kingma, A. Hyvärinen. “ICE-BeeM:
Identifiable Conditional Energy-Based Deep Models”. In NeurIPS, 2020.
(Spotlight presentation)

Code: https://github.com/ilkhem/icebeem

3. Chapter 5: Causal autoregressive flows

I. Khemakhem, R.P. Monti, R. Leech, A. Hyvärinen. “Causal Autore-
gressive Flows”. In AISTATS, 2021.

Code: https://github.com/ilkhem/carefl

1.5 Notation and terminology

All through the thesis, we follow a general set of principles for the mathematical
notations:
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1. Introduction

• We use a capital letter in boldface, for example A, to denote matrices.

• Vectors are denoted by lower-case letters in boldface, for example v. This
also applies to vector-valued functions. A notable exception to this rule
is the sufficient statistic T of an exponential family (or any function that
plays a similar role), which is a vector.

• Indexing the components of a vector is done with a subscript notation.

• Indexing the elements of a dataset is done with a superscript notation
between brackets.

The notation and terminology employed throughout this thesis is as follows:

Rm×n : Set of real-valued m× n matrices

det A : Determinant of matrix A

vol A : Volume of matrix A — vol A def=
√

det(A⊤A)

dim(v) : Dimension of vector v

rank(M) : Rank of matrix M

diag v : Square matrix whose diagonal entries are the elements of v

span(S) : Linear span or linear hull of a set of vectors S

Jf : Jacobian matrix of a vector-valued function f

∇g : Gradient of a scalar function g

⟨· , ·⟩ : Dot product

{. . .} : Set of objects

[a, b] : Real interval

[[a, b]] : Integer set — [[a, b]] def= [a, b] ∩ Z

E[ · ] : Expectation of an event

P(A) : Probability of an event A
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1.5. Notation and terminology

x ∼ p : Sample x from probability distribution with density p

µLeb : Lebesgue measure

| · | : Absolute value

∥ · ∥ : Norm

C(X ) : Set of continuous functions on X

Sn : Set of permutations of [[1, n]]

KL( · ∥ · ) : Kullback-Leibler divergence

F [ · ] : Fourier transform
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Appendices to Chapter 1

1.A Statistical independence

Statistical independence is a key concept in the theory of independent com-
ponent analysis and one of the primary assumptions we will make for the
identifiable models provided in this thesis. In this section, we briefly review
the definition of statistical independence, as well as a useful corollary of inde-
pendence.

Definition 1.3 (Statistical independence). Let X1, . . . , Xn be n random
variables on X , where n ≥ 2. These random variables are said to be mutually
independent (or simply independent) if for any functions h1, . . . , hn on X such
that E[|hi(Xi)|] < +∞, the following holds:

E
[∏

i

hi(Xi)
]

=
∏

i

E [hi(Xi)] . (1.23)

If all the Xi are continuous random variables, then condition (1.23) is equivalent
to:

pX(x1, . . . , xn) =
∏

i

pXi
(xi).

Proposition 1.4. Let X1 and X2 be two independent random variables, such
that E [|X1|2] < +∞ and E [|X2|2] < +∞. Then their covariance is equal to
zero: cov(X1, X2) = 0.

Proof. This is an immediate corollary from equation (1.23) when h1 and h2 are
the identity function, since cov(X1, X2) = E [X1X2]− E [X1]E [X2].

1.B Exponential family

In this section, we briefly review the exponential family, which is a popular
parametric set of probability distributions.

Let PΘ = {pθ,θ ∈ Θ} be a probabilistic model, where Θ is the parameter
space.
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1.B. Exponential family

Definition 1.5 (Sufficient statistic). A function T is called a sufficient
statistic for a model PΘ if and only if

∀θ ∈ Θ, pθ(x) = h(x)g(T(x); θ)

for some scalar function h and g.

In other words, the statistic T contains all the information needed for the
maximum likelihood estimation of θ from a dataset of observations.

Definition 1.6 (Exponential family). Let x be a random variable on X ⊂ Rd.
The exponential family is a parametric set of distributions whose probability
density function can be written as

pθ(x) = Q(x)
Z(λ)e

⟨T(x),λ(θ)⟩ = Q(x)e⟨T(x),λ(θ)⟩−Γ(λ), (1.24)

where

• T : Rd → Rk is called the sufficient statistic,

• θ ∈ Θ is the parameter,

• λ ∈ Rk is the natural parameter,

• Q : Rd → R is the base measure,

• Z(λ) is the normalization constant

• Γ(λ) = logZ(λ) is the log-partition function.

To alleviate notations, we will drop the reference to θ when it is clear from
context which parameter we refer to. The form of equation (1.24) is not unique.
We can add terms to T(x) and λ(θ) that are constant in θ, which can then
be offset in Q(x) outside of the exponential. In the remainder of this thesis,
the dimension k ∈ N \ {0} of the sufficient statistic and natural parameter is
always considered to be minimal, meaning that we can’t rewrite the density pθ

to have the form (1.24) with a smaller k′ < k. We call k the size of p.
A very natural corollary follows from this assumption:

Lemma 1.7. Consider an exponential family distribution with k ≥ 2 com-
ponents. If there exists α ∈ Rk such that Tk(x) = ∑k−1

i=1 αiTi(x) + αk, then
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α = 0. In particular, the components of the sufficient statistic T are linearly
independent.

Proof. Suppose the components (T1, . . . , Tk) of the sufficient statistic are not
linearly independent. Then ∃α ∈ Rk\{0} such that ∀x ∈ Rd,

∑k
i=1 αiTi(x) = 0.

Suppose αk ̸= 0 (up to rearrangement of the indices), then we can write Tk as
a function of the remaining Ti, i < k, contradicting the minimality of k.

The exponential family is comprehensive and includes many of the most com-
mon distributions used in statistics, including the Gaussian, gamma, Wishart,
exponential and Bernoulli, to name a few.

Example 1.8 (Gaussian distribution). The univariate Gaussian distribution
with parameters θ = (µ, σ2) is part of the exponential family. Its density has
the form

pθ(x) = 1√
2πσ2

exp
(
−(x− µ)2

2σ2

)
,

which can be written in the form (1.24) with T(x) = (x, x2), Q(x) = 1/2π and
λ =

(
µ
σ2 ,− 1

2σ2

)
. □

Example 1.9 (Laplace distribution). The Laplace distribution with mean µ

and scale b has a density of the form

pθ(x) = 1
2b exp

(
− |x− µ|

b

)
.

Despite the presence of an exponential in its density, the Laplace distribution
with unknown mean and scale is not an exponential family distribution. This is
because, unlike the squaring in the density of a Gaussian variable, the absolute
value cannot be expanded into a dot-product of terms that either depend on
x or θ = (µ, b). However, when the mean µ is fixed, the Laplace distribution
becomes part of the exponential family with sufficient statistic T (x) = |x− µ|
and natural parameter λ = −1

b
. □

1.B.1 Conditional exponential family

Given two random variables x and y on X ⊂ Rd and Y ⊂ Rm respectively, we
propose to extend Definition 1.6 to a family of conditional densities pθ(x|y).
We modify equation (1.24) by making the natural parameter λ a function of
the conditioning variable y.
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1.B. Exponential family

Definition 1.10 (Conditional exponential family). Let (x,y) be a random
variable on X × Y ⊂ Rd × Rm. The conditional exponential family of x given
y has a density of the form

pθ(x|y) = Q(x)e⟨T(x),λ(y)⟩−Γ(y), (1.25)

where the natural parameter λ : Y → Rk is a function of the conditioning
variable y, and Γ(y) := Γ(λ(y)).

1.B.2 Exponential family and independence

Let x be a d-dimensional random vector that belongs to the exponential
family. When its components are independent — i.e. xi ⊥⊥ xj, ∀i ̸= j — the
density (1.24) takes a factorial form:

pθ(x) =
d∏

i=1
pi(xi),

pi(xi) = Qi(xi)e⟨Ti(xi),λi⟩−Γi(λi),

where each of the pi is an exponential family of size ki. The joint density pθ is
also an exponential family of size k such that:

Q(x) =
d∏

i=1
Qi(xi),

T(x) = (T1(x1), . . . ,Td(xd)),
λ = (λ1, . . . ,λd),

k =
d∑

i=1
ki.

If the components of x are only independent given a conditioning variable y,
then the same decomposition holds for the conditional exponential family (1.25):

p(x|y) =
d∏

i=1
pi(xi|y),

pi(xi|y) = Qi(xi)e⟨Ti(xi),λi(y)⟩−Γi(y).
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Chapter 2

Variational autoencoders and nonlinear
ICA

The framework of variational autoencoders allows us to efficiently learn deep
latent variable models, such that the model’s marginal distribution over observed
variables fits the data. Often, we are interested in going a step further and want
to approximate the true joint distribution over observed and latent variables,
including the true prior and posterior distributions over latent variables. This
is known to be generally impossible due to the unidentifiability of the model.
We address this issue by showing that for a broad family of deep latent
variable models, identifying the true joint distribution over observed and latent
variables is actually possible up to very simple transformations, thus achieving
a principled and powerful form of disentanglement. Our result requires a
factorized prior distribution over the latent variables that is conditioned on
an additionally observed variable, such as a class label or almost any other
observation. We build on recent developments in nonlinear ICA, which we
extend to the case with noisy or undercomplete observations integrated into a
maximum likelihood framework. The result also trivially contains identifiable
flow-based generative models as a particular case.

This chapter is based on Khemakhem et al. (2020a).
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2. Variational autoencoders and nonlinear ICA

2.1 Introduction

The framework of variational autoencoders (VAEs, Kingma and Welling, 2014;
Rezende et al., 2014) and its extensions (e.g. Burda et al., 2015; Kingma et al.,
2016; Tucker et al., 2018; Maaløe et al., 2019) offers a scalable set of techniques
for learning deep latent variable models and corresponding inference models.
The theory behind VAEs tells us how they can be optimised towards an objective
function that corresponds to a lower bound of the marginal likelihood of the
data, also called the evidence lower bound (ELBO). With VAEs, we can, in
principle, learn flexible models of data such that, after optimisation, the model’s
implicit marginal distribution over the observed variables approximates their
true (but unknown) distribution. We can also efficiently synthesise pseudo-data
from the model.

However, we are often interested in going further and want to learn the
true joint distribution over observed and latent variables. This is generally a
challenging task since, by definition, we only ever observe the observed variables,
never the latent variables; therefore, we cannot directly estimate their joint
distribution. However, if we could somehow achieve this task and learn the true
joint distribution, this would imply that we have also learned to approximate
the true prior and posterior distributions over latent variables. Learning about
these distributions can be very interesting for various purposes, for example,
learning about the latent structure behind the data or infer the latent variables
from which the data originated. Such inference is potentially useful for various
downstream tasks.

Learning the true joint distribution is only possible when the model is
identifiable, as we will explain. The original VAE theory does not tell us when
this is the case; it only tells us how to optimise the model’s parameters such that
its (marginal) distribution over the observed variables matches the data. The
original theory does not tell us if or when we learn the correct joint distribution
over observed and latent variables.

Almost no literature exists on achieving this goal. A pocket of the VAE
literature works towards the related goal of disentanglement, but offers no
proofs or theoretic guarantees of identifiability of the model or its variables.
The most prominent of such models are β-VAEs and their extensions (Higgins
et al., 2017; Burgess et al., 2018; Chen et al., 2018; Higgins et al., 2018;
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2.1. Introduction

Kim and Mnih, 2018; Esmaeili et al., 2019), in which the authors introduce
adjustable hyperparameters in the VAE objective to encourage disentanglement.
Other work attempts to find maximally independent components through the
GAN framework (Brakel and Bengio, 2017). However, models in these earlier
works are unidentifiable due to non-conditional latent priors, as has been seen
empirically (Locatello et al., 2019), and as we will show formally below.

Recent work in nonlinear Independent Component Analysis (ICA) theory
(Hyvärinen and Morioka, 2016; Hyvärinen and Morioka, 2017; Hyvärinen et al.,
2019) provided the first identifiability results for deep latent variable models.
Nonlinear ICA provides a rigorous framework for recovering independent latent
variables that were transformed by some invertible nonlinear transformation
into the data. Some special but not very restrictive conditions are necessary
since it is known that when the function from latent to observed variables
is nonlinear, the general problem is ill-posed, and one cannot recover the
independent latent variables (Hyvärinen and Pajunen, 1999). However, existing
nonlinear ICA methods do not learn to model the data distribution (pdf), nor
do they allow us to synthesise pseudo-data.

In this chapter, we show that the joint distribution over observed and
latent variables in VAEs is identifiable and learnable under relatively mild
conditions, thus bridging the gap between VAEs and nonlinear ICA. To this
end, we establish a principled connection between VAEs and an identifiable
nonlinear ICA model, providing a unified view of two complementary methods
in unsupervised representation learning. This integration is achieved by using a
latent prior that has a factorised distribution that is conditioned on additionally
observed variables, such as a class label, time index, or almost any other further
observation. Our theoretical results trivially apply to any consistent parameter
estimation method for deep latent variable models, not just the VAE framework.
We found the VAE a logical choice since it allows for efficient latent variable
inference and scales to large datasets and models.

Finally, we put our theoretical results to the test in experiments. Perhaps
most notably, we find that on a synthetic dataset with a known ground-truth
model, our method with an identifiable VAE indeed learns to closely approxi-
mate the true joint distribution over observed and latent variables, in contrast
with a baseline non-identifiable model. It also improves the performance of
nonlinear ICA-based causal discovery methods.
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2. Variational autoencoders and nonlinear ICA

2.2 Unidentifiability of deep latent variable
models

Consider an observed data variable (random vector) x ∈ Rd, and a latent
random vector z ∈ Rn. A common deep latent variable model has the following
structure:

pθ(x, z) = pθ(x|z)pθ(z), (2.1)

where θ ∈ Θ is a vector of parameters, pθ(z) is called a prior distribution over
the latent variables. The distribution pθ(x|z), often parametrized with a neural
network called the decoder, tells us how the distribution on x depends on the
values of z. The model then gives rise to the observed distribution of the data
as:

pθ(x) =
∫
pθ(x, z)dz. (2.2)

Assuming pθ(x|z) is modelled by a deep neural network, this can model a rich
class of data distributions pθ(x).

We assume that we observe data which is generated from an underlying
joint distribution pθ∗(x, z) = pθ∗(x|z)pθ∗(z) where θ∗ are its true but unknown
parameters. We then collect a dataset of observations of x:

D = {x(1), . . . ,x(N)} where z∗(i) ∼ pθ∗(z),
x(i) ∼ pθ∗(x|z∗(i)).

Note that the original values z∗(i) of the latent variables z are by definition not
observed and unknown. The ICA literature, including this chapter, uses the
term sources to refer to z∗(i). Also note that we could just as well have written:
x(i) ∼ pθ∗(x).

The VAE framework (Kingma and Welling, 2014; Rezende et al., 2014)
allows us to efficiently optimize the parameters θ of such models towards
the (approximate) maximum marginal likelihood objective, such that after
optimization:

pθ(x) ≈ pθ∗(x). (2.3)

In other words, after optimization, we have then estimated the marginal density
of x.
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2.2. Unidentifiability of deep latent variable models

Remark 2.1 (Parameter Space vs Function Space). In this chapter, we use
slightly non-standard notation and nomenclature: we use θ ∈ Θ to refer to the
model parameters in function space. In contrast, let w ∈ W refer to the space
of original neural network parameters (weights and biases) in which we usually
perform gradient ascent.

The VAE model actually learns a full generative model pθ(x, z) and an
inference model qϕ(z|x) that approximates its posterior pθ(z|x). The problem
is that we generally have no guarantees about what these learned distributions
actually are: all we know is that the marginal distribution over x is meaningful
(2.3). The rest of the learned distributions are, generally, quite meaningless.

What we are looking for is models for which the following implication holds
for all (x, z):

∀(θ,θ′) : pθ(x) = pθ′(x) =⇒ θ = θ′. (2.4)

That is: if any two different choices of model parameter θ and θ′ lead to
the same marginal density pθ(x), then this would imply that they are equal
and thus have matching joint distributions pθ(x, z). This means that if we
learn a parameter θ that fits the data perfectly: pθ(x) = pθ∗(x), which is
the ideal case of equation (2.3)), then its joint density also matches perfectly:
pθ(x, z) = pθ∗(x, z). If the joint density matches, this also means that we found
the correct prior pθ(z) = pθ∗(z) and correct posteriors pθ(z|x) = pθ∗(z|x). In
case of VAEs, we can then also use the inference model qϕ(z|x) to efficiently
perform inference over the sources z∗ from which the data originates.

The general problem here is a lack of identifiability guarantees of the deep
latent variable model. We illustrate this by showing that any model with
unconditional latent distribution pθ(z) is unidentifiable, i.e. that equation (2.4)
does not hold. In this case, we can always find transformations of z that change
its value but not its distribution. For a spherical Gaussian distribution pθ(z),
for example, applying a rotation keeps its distribution the same. We can then
incorporate this transformation as the first operation in pθ(x|z). This will not
change pθ(x), but it will change pθ(z|x), since now the values of x come from
different values of z. This is an example of a broad class of commonly used
models that are non-identifiable. We show rigorously in Appendix 2.C that, in
fact, models with any form of unconditional prior pθ(z) are unidentifiable.
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2. Variational autoencoders and nonlinear ICA

2.3 An identifiable model based on
conditionally factorial priors

This section defines a broad family of deep latent variable, identifiable models
and shows how to estimate the model and its posterior through the VAE
framework. We call this family of models, together with its estimation method,
identifiable VAE, or iVAE for short.

2.3.1 Definition of proposed model

The primary assumption leading to identifiability is a conditionally factorized
prior distribution over the latent variables pθ(z|u), where u is an additionally
observed variable (Hyvärinen et al., 2019). The variable u could be, for example,
the time index in a time series (Hyvärinen and Morioka, 2016), previous data
points in a time series, a (possibly noisy) class label, or another concurrently
observed variable.

Formally, let x ∈ Rd, and u ∈ Rm be two observed random variables, and
z ∈ Rn (lower-dimensional, n ≤ d) a latent variable. Let θ = (f ,T,λ) be the
parameters of the following conditional generative model:

pθ(x, z|u) = pf (x|z)pT,λ(z|u), (2.5)

where we first define

pf (x|z) = pε(x− f(z)), (2.6)

which means that the value of x can be decomposed as x = f(z) + ε where
ε is an independent noise variable with probability density function pε(ε),
i.e. ε is independent of z or f . We assume that the function f : Rn → Rd is
injective; but it can be an arbitrarily complicated nonlinear function apart from
injectivity. For the sake of analysis, we treat the function f itself as a model
parameter; however, in practice, we can use flexible function approximators
such as neural networks.

Remark 2.2 (Discrete observations). We can use a well-known logistic model
to replace the additive Gaussian noise in equation (2.6) to model discrete
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observations. For example, in the binary case, let:

m = sigmoid(f(z)), (2.7)
x ∼ Bernoulli(m), (2.8)

where sigmoid() is the element-wise sigmoid nonlinearity. However, the mapping
z→ x can no longer be injective by the very nature of discrete variables. This
is one of the key assumptions in our identifiability theory, which can no longer
hold. The discrete observation case requires a bespoke identifiability proof.
Nevertheless, we provide experiments in Section 2.5.2 which strongly suggest
that identifiability is achievable in such a setting.

We describe the model above with noisy and continuous-valued observations
x = f(z) + ε. However, our identifiability results also apply to non-noisy
observations x = f(z), which are a special case of equation (2.6) where pε(ε)
is Gaussian with infinitesimal variance. For these reasons, we can use flow-
based generative models (Dinh et al., 2014) for pθ(x|z), while maintaining
identifiability.

The prior on the latent variables pθ(z|u) is assumed to be conditionally
factorial, where each element of zi ∈ z has a univariate exponential family
distribution given conditioning variable u. The conditioning on u is through
an arbitrary function λ(u) (such as a look-up table or neural network) that
outputs the individual exponential family parameters λi,j. The probability
density function is thus given by:

pT,λ(z|u) =
∏

i

Qi(zi)
Zi(u) exp

 k∑
j=1

Ti,j(zi)λi,j(u)
 , (2.9)

where Qi is the base measure, Zi(u) is the normalizing constant and Ti =
(Ti,1, . . . , Ti,k) are the sufficient statistics and λi(u) = (λi,1(u), . . . , λi,k(u)) the
corresponding parameters, crucially depending on u. Finally, k, the dimension
of each sufficient statistic, is fixed (not estimated). Note that exponential
families have universal approximation capabilities, so this assumption is not
very restrictive (Sriperumbudur et al., 2017).

2.3.2 Estimation by VAE

Next, we propose a practical estimation method for the model introduced above.
Consider we have a dataset D =

{(
x(1),u(1)

)
, . . . ,

(
x(N),u(N)

)}
of observations
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2. Variational autoencoders and nonlinear ICA

generated according to the generative model defined in equation (2.5). We
propose to use a VAE as a means of learning the true generating parameters
θ∗ := (f∗,T∗,λ∗), up to the indeterminacies discussed below.

VAEs are a framework that simultaneously learns a deep latent generative
model and a variational approximation qϕ(z|x,u) of its true posterior pθ(z|x,u),
the latter being often intractable. Denote by

pθ(x|u) =
∫
pθ(x, z|u)dz

the conditional marginal distribution of the observations, and with qD(x,u)
we denote the empirical data distribution given by dataset D. VAEs learn the
vector of parameters (θ,ϕ) by maximizing L(θ,ϕ), a lower bound on the data
log-likelihood defined by:

EqD [log pθ(x|u)] ≥
L(θ,ϕ) := EqD

[
Eqϕ(z|x,u) [log pθ(x, z|u)− log qϕ(z|x,u)]

]
. (2.10)

We use the reparametrization trick (Kingma and Welling, 2014) to sample from
qϕ(z|x,u). This trick provides a low-variance stochastic estimator for gradients
of the lower bound with respect to ϕ. The training algorithm is the same as in
a regular VAE. Estimates of the latent variables can be obtained by sampling
from the variational posterior.

VAEs, like any maximum likelihood estimation method, requires the densi-
ties to be normalized. To this end, in practice, we choose the prior pθ(z|u) to
be a Gaussian location-scale family, which is widely used with VAEs.

Remark 2.3. As mentioned in Section 2.3.1, our model contains normalizing
flows as a special case when the variance Var(ε) = 0 and the mixing function f
is parametrized as an invertible flow (Rezende and Mohamed, 2015). Thus, as
an alternative estimation method, we could then optimize the log-likelihood
directly:

EqD(x,u)[log pθ(x|u)] = EqD(x,u)
[
log pθ(f−1(z)|u) + log |Jf−1(x)|

]
,

where Jf−1 is easy to compute. The conclusion on consistency given in Sec-
tion 2.4.5 still holds in this case. This approach was studied in subsequent
work by Sorrenson et al. (2020).
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2.3. An identifiable model based on conditionally factorial priors

2.3.3 Identifiability and consistency results

As discussed in Section 2.2, identifiability as defined by equation (2.4) is very
hard to achieve in deep latent variable models. As a first step towards an
identifiable model, we seek to recover the model parameters or the latent
variables up to trivial transformations. Here, we state our results informally
on this weaker form of identifiability of the model —a rigorous treatment is
given in Section 2.4. Consider for simplicity the case of no noise and sufficient
statistics of size k = 1, and define Ti := Ti,1. Then we can recover z which are
related to the original z∗ as follows:

(T ∗1 (z∗1), . . . , T ∗n(z∗n)) = A(T1(z1), . . . , Tn(zn)) (2.11)

for an invertible matrix A. That is, we can recover the original latent variables
up to component-wise (pointwise) transformations T ∗i and Ti, which are defined
as the sufficient statistics of exponential families, and up to a subsequent
linear transformation A. Importantly, the linear transformation A can often
be resolved by excluding families where, roughly speaking, only the location
(mean) is changing. Then A is simply a permutation matrix, and equation (2.11)
becomes

T ∗i (z∗i ) = Ti′(zi′) (2.12)

for a permuted index i′. Thus, the only real indeterminacy is often the
component-wise transformations of the latent variables, which is a fundamen-
tal indeterminacy of nonlinear ICA, and may be inconsequential in many
applications.

2.3.4 Interpretation as nonlinear ICA

Now we show how the model above is closely related to previous work on
nonlinear ICA. In nonlinear ICA, we assume observations x ∈ Rd, which are
the result of an unknown (but invertible) transformation f of latent variables
z ∈ Rd:

x = f(z), (2.13)

where z are assumed to follow a factorized (but typically unknown) distribution
p(z) = ∏d

i=1 pi(zi). This model is essentially a deep generative model. The
difference to the definition above is mainly in the lack of noise and the equality
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2. Variational autoencoders and nonlinear ICA

of the dimensions: The transformation f is deterministic and invertible. Thus,
any posteriors would be degenerate.

The goal is then to recover (identify) f−1, which gives the independent
components as z = f−1(x), based on a dataset of observations of x alone. Thus,
the goal of nonlinear ICA was always identifiability, which is in general not
attained by deep latent variable models, as was discussed in Section 2.2 above.

To obtain identifiability, we either have to restrict f (for instance, make
it linear) or introduce some additional constraints on the distribution of the
sources z. Recently, three new nonlinear ICA frameworks (Hyvärinen and
Morioka, 2016; Hyvärinen and Morioka, 2017; Hyvärinen et al., 2019) exploring
the latter direction were proposed, in which it is possible to recover identifiable
sources, up to some trivial transformations.

The framework introduced by Hyvärinen et al. (2019) is particularly close
to what we proposed above. However, there are several significant differences.
First, here we define a generative model where posteriors are non-degenerate,
which allows us to show an explicit connection to VAE. We are thus also able to
perform maximum likelihood estimation in terms of evidence lower bound, while
previous nonlinear ICA used more heuristic self-supervised schemes. Computing
a lower bound on the likelihood is useful, for example, for model selection and
validation. In addition, we can prove a tight link between maximum likelihood
estimation and maximization of independence of latent variables, as discussed
in Appendix 2.E. We also learn both the forward and backward models, which
allows for recovering independent latent variables from data and generating
new data. The forward model is also likely to help investigate the meaning of
the latent variables. At the same time, we can provide stronger identifiability
results that apply to more general models than recent theory. In particular,
we consider the case where the number of latent variables is smaller than the
number of observed variables and is corrupted by noise. Given the popularity
of VAEs, our current framework should thus be of interest.

2.3.5 Relation to previous work on disentanglement

The iVAE framework might look similar to semi-supervised learning methods
in the VAE context due to the inclusion of the auxiliary variable u. However,
the auxiliary variable u can play a more general role. For instance, in time
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series, it can simply be the time index or history; in audiovisual data, it can be
either one of the modalities, where the other is used as an observation. More
importantly, there is no proof of identifiability in the semi-supervised literature.

The question of identifiability, or lack thereof, in deep latent variable
models, especially VAEs, has been tackled in work related to disentanglement.
In Mathieu et al. (2018), Rolinek et al. (2018), and Locatello et al. (2019) the
authors show how isotropic priors lead to rotation invariance in the ELBO.
We proved here (Section 2.2 and Appendix 2.C) a much more general result:
unconditional priors lead to unidentifiable models. Unlike what this chapter
sets to do, these works focused on showcasing this problem, or how it can be
avoided in practice, and didn’t provide alternative models that can be shown
to be identifiable. The proof of identifiability presented in this chapter applies
to the generative model itself, regardless of the estimation method. This is
why the role of the encoder, which has been claimed to have a central role in
some of the work cited above was not the focus of the analysis presented here.

2.4 Identifiability theory

Now we state the main technical results of this chapter. The proofs are in
Appendix 2.B.

Notations. Let Z ⊂ Rn and X ⊂ Rd be the domain and the image of f
in equation (2.6), respectively, and U ⊂ Rm the support of the distribution
of u. We denote by f−1 the inverse defined from X → Z. We suppose that
Z, X and U are open sets. We denote by T(z) := (T1(z1), . . . ,Tn(zn)) =
(T1,1(z1) . . . , Tn,k(zn)) ∈ Rnk the vector of sufficient statistics of (2.9), λ(u) =
(λ1(u), . . . ,λn(u)) = (λ1,1(u), . . . , λn,k(u)) ∈ Rnk the vector of its parame-
ters. Finally Θ = {θ := (f ,T,λ)} is the domain of parameters describing
equation (2.5).

2.4.1 Identifiability up to equivalence class

Traditionally, a probabilistic model P = {Pθ : θ ∈ Θ} is said to be identifiable
if the mapping θ 7→ Pθ is bijective, i.e.

Pθ1 = Pθ2 =⇒ θ1 = θ2. (2.14)
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This implication is too strong and often impractical for many statistical models.
For example, as discussed in Section 1.2.2.1, linear ICA is only identifiable up
to scaling and permutation of the independent components. Neural networks
are a more contemporary example for which this definition is too restrictive: it
is well known that there is a many-to-one mapping from the space of weights
and biases parametrizing the network to its function space.

We can relax the definition (2.14) by only requiring the parameters θ1 and
θ2 to be “equivalent” to each other. An equivalence relation is a binary relation
between pairs of elements of a set X and is defined as follows:

Definition 2.4 (Equivalence relation). A relation ∼ on a set X is called an
equivalence relation if and only if it satisfies the following three properties:

• Reflexive: x ∼ x, ∀x ⊂ X .

• Transitive: x ∼ y and y ∼ z implies x ∼ z, ∀x, y, z ∈ X .

• Symmetric: x ∼ y implies y ∼ x, ∀x, y ∈ X .

A classical example of equivalence relations is the modulo operation in
arithmetic. For each x ∈ X , the equivalence class of x denoted [x] is defined
as [x] = {y ∈ X : y ∼ x}, i.e. the set of all the elements of X which are
∼-related to x. The set of all equivalence classes induced by ∼ forms a
partition of X into disjoint subsets. This partition, denoted X /∼ is defined as
X /∼ = {[x] : x ∈ X} is called the quotient set of X by ∼.

We can use equivalence relations to formalize the types of ambiguities for a
given statistical model. This leads to the new definition of identifiability up to
equivalence class:

Definition 2.5 (Identifiability up to equivalence class). Let P = {Pθ : θ ∈ Θ}
be a probabilistic model, and let ∼ be an equivalence relation on Θ. We say
that the model P is identifiable up to ∼ (or ∼-identifiable) if

Pθ1 = Pθ2 =⇒ θ1 ∼ θ2. (2.15)

The elements of the quotient space Θ /∼ are called the identifiability classes.

This definition can be met by any probabilistic model is if the equivalence
relation is very broad. For example, if we define the equivalence relation on
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the space of parameters of a VAE that define the same observed distribution,
then by virtue of the unidentifiability (Section 2.2) and the ability of a VAE to
approximate data densities very well, the parameter space will be constituted
of very few classes of equivalence.

For Definition 2.5 to be non-vacuous, we need to carefully select an equiv-
alence relation that only reflects the indeterminacies of the task at hand. In
linear ICA for instance, the mixing matrix is uniquely recovered up to a scaled
permutation. The permutation is irrelevant, and the scaling is circumvented
by whitening the data. This means that linear ICA is not identifiable in the
strictest sense. But if we consider two model parameters to be equivalent if they
are equal up to permutation and scaling, linear ICA becomes identifiable up
to this equivalence class. This example, as well as others of useful equivalence
classes for identifiability, are discussed in more detail in Appendix 2.D.

For the purpose of this chapter, we define two equivalence relations on the
set of parameters Θ of the model (2.5).

Definition 2.6. Let ∼ be the equivalence relation on Θ defined as follows:

(f ,T,λ) ∼ (f̃ , T̃, λ̃) ⇐⇒ ∃A, c | T(f−1(x)) = AT̃(f̃−1(x)) + c,∀x ∈ X ,
(2.16)

where A is an nk × nk matrix and c is a vector
If A is invertible, we denote this relation by ∼A. If A is a block permutation

matrix, where each block linearly transforms Ti into T̃i′, we denote it by ∼P.

2.4.2 Strongly exponential family

The role of the auxiliary variable u in equation (2.9) is to control the distribution
of the latent variable z through the natural parameter λ : U → Rnk. This
modulation is crucial because it reduces the degrees of freedom of the latent
distribution, making identifiability a more attainable goal.

To this end, we introduce the strongly exponential family, a subclass of the
exponential family, defined as follows.

Definition 2.7 (Strongly exponential distributions). We say that an expo-
nential family distribution is strongly exponential if for any subset X ⊂ Rd the
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following is true:(
∃λ ∈ Rk | ∀x ∈ X , ⟨T(x),λ⟩ = const

)
=⇒ (µLeb(X ) = 0 or λ = 0) , (2.17)

where µLeb is the Lebesgue measure.

In other words, the density of a strongly exponential distribution has almost
surely the exponential component in its expression and can only be reduced to
the base measure on a set of measure zero. Useful properties of the strongly
exponential family are discussed in Appendix 2.A.

Example 2.8. The strongly exponential family is very general and includes
most of the usual exponential family distributions like the Gaussian, Laplace,
Pareto, Chi-squared, Gamma, Beta, etc.

On the other hand, consider an exponential family distribution whose
density function is

p(x) = e−x2

Z(λ) exp (θ1 min(0, x)− θ2 max(0, x)) .

This density sums to 1, and Z(λ) is well defined. Yet, for x ∈ (−∞, o) and
for λ = (0, λ2) for any value of λ2, the dot-product T(x)⊤λ = 0, which means
that p is not strongly exponential. □

2.4.3 General results

The following theorem gives the main identifiability result of this chapter. An
alternative formulation is discussed in Appendix 2.B.2.

Theorem 2.9. Assume that we observe data sampled from a generative model
defined according to equations (2.5) to (2.9), with parameters (f ,T,λ). Assume
the following holds:

(i) The set {x ∈ X |φε(x) = 0} has measure zero, where φε is the character-
istic function of the density pε defined in equation (2.6).

(ii) The mixing function f in equation (2.6) is injective.

(iii) The distributions of the independent latents are all strongly exponential
(Definition 2.7).
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(iv) There exist nk + 1 distinct points u0, . . . ,unk such that the matrix

L = (λ(u1)− λ(u0), . . . ,λ(unk)− λ(u0)) (2.18)

of size nk × nk is invertible.

then the parameters (f ,T,λ) are ∼A-identifiable.

This theorem guarantees a basic form of identifiability of the generative
model (2.5). In fact, suppose the data was generated according to the set
of parameters (f ,T,λ), and let (f̃ , T̃, λ̃) be the parameters obtained from
some learning algorithm (supposed consistent in the limit of infinite data) that
perfectly approximates the marginal distribution of the observations. Then the
theorem says that necessarily (f̃ , T̃, λ̃) ∼A (f ,T,λ). If there were no noise, this
would mean that the learned transformation f̃ transforms the observations into
latents z̃ = f̃−1(x) that are equal to the true generative latents z = f−1(x), up
to a linear invertible transformation (the matrix A) and pointwise nonlinearities
(in the form of T and T̃). With noise, we obtain the posteriors of the latents
up to an analogous indeterminacy.

Remark 2.10 (Understanding assumption (iv) in Theorem 2.9). Let u0 be
an arbitrary point in its support U , and

h(u) =
(
λ1,1(u)− λ1,1(u0), . . . , λn,k(u)− λn,k(u0)

)
∈ Rnk.

Saying that there exists nk distinct points u1 to unk (all different from u0) such
that L is invertible is equivalent to saying that the vectors (h(u1), . . . ,h(unk))
are linearly independent in Rnk. Let us suppose for a second that for any such
choice of points, these vectors are not linearly independent. This means that
h(U) is necessarily included in a subspace of Rnk of dimension at most nk − 1.
Such a subspace has measure zero in Rnk. Thus, if h(U) is not included in a
subset of measure zero in Rnk, this cannot be true, and there exists a set of
points u1 to unk (all different from u0) such that L is invertible. This implies
that as long as the λi,j(u) are generated randomly and independently, then
almost surely, h(U) will not be included in any such subset with measure zero,
and the assumption holds.

We next give a simple example where this assumption always holds. Sup-
pose n = 2 and k = 1, and that the auxiliary variable is a positive scalar.
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Consider sources zi ∼ N (0, λi(u)) that are distributed according to Gaussian
distributions with zero mean and variances modulated as follows:

λ1(u) = u,

λ2(u) = u2.

Because the functions u 7→ u and u 7→ u2 are linearly independent (as functions),
then for any choice of “pivot” point u0, for instance u0 = 1, and any choice of
distinct nonzero scalars u1 and u2, the columns of the matrix L := (λ(u1)−
1,λ(u2)− 1) are linearly independent, and the matrix is invertible.

2.4.4 Characterization of the linear indeterminacy

The equivalence relation ∼A provides a useful form of identifiability, but it is
very desirable to remove the linear indeterminacy A, and reduce the equivalence
relation to ∼P by analogy with linear ICA where such matrix is resolved up to a
permutation and signed scaling. We present in this section sufficient conditions
for such reduction and special cases to avoid.

We will start by giving two theorems that provide sufficient conditions.
Theorem 2.11 deals with the more general case k ≥ 2, while Theorem 2.12
deals with the special case k = 1.

Theorem 2.11 (k ≥ 2). Assume the hypotheses of Theorem 2.9 hold, and
that k ≥ 2. Further assume:

(i) The sufficient statistics Ti,j in equation (2.9) are twice differentiable.

(ii) The mixing function f has all second order cross derivatives.

then the parameters (f ,T,λ) are ∼P-identifiable.

Theorem 2.12 (k = 1). Assume the hypotheses of Theorem 2.9 hold, and
that k = 1. Further assume:

(i) The sufficient statistics Ti,1 are not monotonic (strictly increasing or
decreasing).

(ii) All partial derivatives of f are continuous.

then the parameters (f ,T,λ) are ∼P-identifiable.
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These two theorems imply that in most cases f̃−1 ◦ f : Z → Z is a pointwise
nonlinearity, (i.e. each of its components is a function of only one zi) which
essentially means that the estimated latent variable z̃ are equal to a permutation
and a pointwise nonlinearity of the original latent variables (z1, . . . , zn). To the
best of our knowledge, this kind of identifiability is stronger than any previous
literature results (Hyvärinen and Morioka, 2016; Hyvärinen and Morioka, 2017;
Hyvärinen et al., 2019) and is considered sufficient in many applications, like
linear classification in a downstream task or for use in causal discovery.

There are very special cases where a linear indeterminacy cannot be resolved,
as summarized by the following proposition.

Proposition 2.13. Assume that k = 1, and that

(i) Ti,1(zi) = zi for all i.

(ii) Qi(zi) = 1 or Qi(zi) = e−z2
i for all i.

Then A can not be reduced to a permutation matrix.

This proposition stipulates that if the components are Gaussian (or ex-
ponential in the case of non-negative components) and only the location is
changing, we cannot hope to reduce the matrix A in ∼A to a permutation. To
prove this in the Gaussian case, we simply consider orthogonal transformations
of the latent variables, which all give rise to the same observational distribution
with a simple adjustment of parameters.

2.4.5 Consistency of estimation

The theory above further implies a consistency result on the VAE. If the
variational distribution qϕ is a broad parametric family that includes the true
posterior, then we have the following result.

Theorem 2.14. Assume the following:

(i) The family of distributions qϕ(z|x,u) contains pf ,T,λ(z|x,u).

(ii) We maximize L(θ,ϕ) with respect to both θ and ϕ.

then in the limit of infinite data, the VAE learns the true parameters θ∗ :=
(f∗,T∗,λ∗) up to the equivalence class defined by ∼ in equation (2.16).
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2.5 Experiments1

2.5.1 Mean correlation coefficient as a measure of
identifiability

To measure the quality of a reconstruction z found by an ICA algorithm, we
need to design a measure of identifiability that is invariant to the ambiguities
of ICA.

To this end, let ρ : X ×Y → [0, 1] be a measure of dependence (also known
as correlation coefficient) between two random variables x ∈ X and y ∈ Y.
We can use ρ to compare zi ∈ z to a true source component z∗i ∈ z∗: if z is
a perfect reconstruction of z∗, then ρ(zi, z

∗
i ) should be equal to 1 for all i. In

truth, however, there is a permutation and component-wise transformation
indeterminacies between z and z∗. In the case of linear ICA, the component-wise
transformation is simply scaling by a scalar.

The invariance to component-wise transformation can be inherited from
the measure of dependence ρ. For example. Pearson’s correlation coefficient
(Pearson and Galton, 1895) defined as

ρp(x,y) = |cov(x,y)|√
cov(x,x) cov(y,y)

is invariant to linear transformation of x and y which we can use to circumvent
any scaling ambiguity.

To account for the permutation invariance, we can use the independence
property of z and z∗. In an ideal scenario, the correlation ρp(zi, z

∗
j ) should

be zero for all j except for one. Thus, by computing all pairs of correlation
coefficients between the components zi of z and the components z∗j of z∗, we
can find the optimal permutation by solving a linear sum assignment problem
(Kuhn, 1955; Bertsekas, 1992). We subsequently average over all correlation
coefficients to define the mean correlation coefficient (MCC) metric.

As an illustrative example, let x ∈ R2 be a bivariate random variable such
that x1 ⊥⊥ x2, and let y = (2x2,

x1
2 ). If we don’t account for any permutations,

then the average correlation is equal to 1
2
∑

i ρp(xi, yi) = 0 because x1 ⊥⊥ x2. In
reality though, y and x are perfectly correlated, since the value of x completely

1Code to reproduce the experiments is available at https://github.com/ilkhem/ivae.
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determines that of y. Thus, we have to find the optimal permutation of the
elements of y in order to maximise the average correlation.

The MCC was used as performance metric in recent work on nonlinear ICA
(Hyvärinen and Morioka, 2016; Hyvärinen et al., 2019). In this section, we
introduce a new definition that formalises this measure.

Definition 2.15 (Mean correlation coefficient). Let ρ : X × Y → [0, 1] be a
measure of dependence. We define the mean correlation coefficient function as:

Ψρ(x,y) = max
σ∈Sd

1
d

d∑
i=1

ρ(xi, yσ(i)). (2.19)

The MCC measure is invariant by permutation and component-wise trans-
formations. The latter is limited to the class of invariances satisfied by the
measure of dependence ρ. For example, Pearson’s correlation coefficient ρp

(Pearson and Galton, 1895) is invariant to linear transformations, which makes
Ψρp well adapted as an identifiability measure for linear ICA. Spearman’s rank
correlation coefficient ρr (Spearman, 1904) is invariant to monotonic transfor-
mations. To use the MCC as an identifiability measure for nonlinear ICA, it is
best to combine it with a dependence measure ρ that is invariant to any point-
wise nonlinearity. One such measure is the randomized dependence coefficient
(Lopez-Paz et al., 2013, RDC) which satisfies ρrdc(x,y) = ρrdc(f(x), g(y)) for
bijective functions f, g, and ρrdc(x,y) = 1 if for functions f or g, y = f(x) or
x = g(y). The MCC Ψρrdc is a useful measure of identifiability for nonlinear
ICA models.

2.5.2 Simulations on nonlinear ICA data

Dataset 1: non-stationary data. We run simulations on data used previ-
ously in the nonlinear ICA literature (Hyvärinen and Morioka, 2016; Hyvärinen
et al., 2019). We generate synthetic datasets where the sources are non-
stationary Gaussian time series: we divide the sources into M segments of L
samples each. The conditioning variable u (subsequently denoted u because it
is scalar) is the segment label, and its distribution is uniform on the integer
set [[1,M ]]. Within each segment, the conditional prior distribution is chosen
from the family (2.9) for small k. When k = 2, we used mean and variance
modulated Gaussian distribution. When k = 1, we used variance modulated
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Gaussian or Laplace (to fall within the hypotheses of Theorem 2.12). The
true parameters λi were randomly and independently generated across the
segments and the components from a non degenerate distributions to satisfy
assumption (iv) of Theorem 2.9. Following Hyvärinen et al. (2019), we mix the
sources using a multi-layer perceptron (MLP) and add small Gaussian noise.

Dataset 2: significant mean modulated data. Here, we generated non-
stationary 2D data from a modified dataset as follows: we generate z∗|u ∼
N (µ(u), diag(σ2(u)) where u is the segment index, µ1(u) = 0 for all u and
µ2(u) = αγ(u) where α ∈ R and γ is a permutation. Essentially, the mean of the
second source, z∗2 , is significantly modulated by the segment index. An example
is plotted in Figure [2.7b]. The variance σ2(u) is generated randomly and
independently across the segments. We then mix the sources into observations
x such that x1 = MLP(z∗1 , z∗2) and x2 = z∗2 , thus preserving the significant
modulation of the mean in x2. We note that this is just one of many potential
mappings from z to x which could have been employed to yield significant
mean modulation in x2 across segments. TCL learns to unmix observations, x,
by solving a surrogate classification task. Formally, TCL seeks to train a deep
network to accurately classify each observation into its corresponding segment.
As such, the dataset mentioned above is designed to highlight the following
limitation of TCL: due to its reliance on optimising a self-supervised objective,
it can fail to recover latent variables when the associated task is too easy. In
fact, by choosing a large enough value of the separation parameter α (in our
experiments α = 2), it is possible to classify samples by looking at the mean of
x2.

Model specification. Our estimates of the latent variables are generated
from the variational posterior qϕ(z|u,x), for which we chose the following form:
qϕ(z|x,u) = N (z|g(x,u; ϕg), diag σ2(x,u; ϕσ)), a multivariate Gaussian with
a diagonal covariance. The noise distribution pε is Gaussian with small variance.
The functional parameters of the decoder and the inference model, as well
as the conditional prior are chosen to be MLPs. We use an Adam optimizer
(Kingma and Ba, 2014) to update the parameters of the network by maximizing
L(θ,ϕ) in equation (2.10). The architectural and hyperparameter choices are
detailed in Appendix 2.F.1.
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(a) pθ∗(z|u) (b) pθ∗(x|u) (c) pθ(z|x, u) (d) pVAE(z|x)

Figure 2.1: Visualization of both observation and latent spaces in the case
n = d = 2 and where the number of segments is M = 5 (segments are colour
coded). First, data is generated in (a)-(b) as follows: (a) samples from the true
distribution of the sources pθ∗(z|u): Gaussian with non stationary mean and
variance, (b) are observations sampled from pθ∗(x|z). Second, after learning
both a vanilla VAE and an iVAE models, we plot in (c) the latent variables
sampled from the posterior qϕ(z|x,u) of the iVAE and in (d) the latent variables
sampled from the posterior of the vanilla VAE.

2D example. First, we show a visualisation of identifiability of iVAE in a 2D
case in Figure [2.1], where we plot the original sources, observed data and the
posterior distributions learned by our model, compared to a vanilla VAE. Our
method recovers the original sources up to trivial indeterminacies (rotation
and sign flip), whereas the VAE fails to correctly separate the latent variables.

Comparison to VAE variants. We compared the performance of iVAE
to a vanilla VAE. We used the same network architecture for both models,
with the sole exception of the addition of the conditional prior in iVAE . When
the data is centred, the VAE prior is Gaussian or Laplace. We also compared
the performance to two models from the disentanglement literature, namely
a β-VAE (Higgins et al., 2017) and a β-TC-VAE (Chen et al., 2018). The
parameter β of the β-VAE and the parameters α, β and γ for β-TC-VAE were
chosen by following the instructions of their respective authors. We trained
these 4 models on the dataset described above, with M = 40, L = 1000,
d = 5 and n ∈ [2, 5]. Figure [2.2a] compares performances obtained from an
optimal choice of parameters achieved by iVAE and the three models discussed
above when the dimension of the latent space equals the dimension of the data
(n = d = 5). iVAE achieved an MCC score of above 95%, whereas the other
three models fail at finding a good estimation of the true parameters. We
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Figure 2.2: Performance of iVAE in recovering the true sources, compared to
VAE, β-VAE and β-TC-VAE, for M = 40, L = 1000 and d = 5 (and n = 5 for
(a)).

further investigated the impact of the latent dimension on the performance
in Figure [2.2b]. iVAE has much higher correlations than the three other
models, especially as the dimension increases. Further visualization are in
Appendix 2.F.3.

Comparison to TCL. Next, we compared our method to previous nonlinear
ICA methods, namely TCL by Hyvärinen and Morioka (2016), which is based
on a self-supervised classification task (see Section 1.2.2.2 for a brief review on
TCL). We run simulations on the same dataset as Figure [2.2a], where we varied
the number of segments from 10 to 50. Our method slightly outperformed
TCL in our experiments. The results are reported in Figure [2.3a]. Note that
according to Hyvärinen et al. (2019), TCL performs best among previously
proposed methods for this kind of data.

Finally, we wanted to show that our method is robust to some failure modes
that occur in self-supervised methods. The theory of TCL is premised on the
notion that to accurately classify observations into their relative segments, the
model must learn the true log-densities of sources within each segment. While
such theory will hold in the limit of infinite data, we considered here a special
case where accurate classification did not require learning the log-densities
very precisely. This was achieved by generating synthetic data where x2 alone
contained sufficient information to perform classification, by making the mean of
x2 significantly modulated across segments (dataset 2 in Section 2.5.2). In such
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Figure 2.3: (a) Performance of iVAE in comparison to TCL in recovering the
true sources on normal data (b) Performance of iVAE in comparison to TCL in
recovering the true sources on easy to classify data.

a setting, TCL is able to obtain high classification accuracy without unmixing
observations, resulting in its failure to recover latent variables as reflected
in Figure [2.3b]. In contrast, the proposed iVAE, by virtue of optimising a
maximum likelihood objective, does not suffer from such degenerate behaviour.

Discrete observations. To further test the capabilities of our method, we
tested it on discrete data and compared its identifiability performance to a
vanilla VAE. The dimensions of the data and latent variables are d = 100 and
n = 10. The results are shown in Figure [2.4a] and prove that our method is
capable of performing discrete ICA.

Dimensionality selection and reduction. The examples in Figure [2.2]
already showcased dimensionality reduction. In Figure [2.2b] for example, we
have a mismatch between the dimensions of the latent variables and observations.
In real-world ICA applications, we usually do not know the dimension of the
latent variables beforehand. One way to guess it is to use the ELBO as a proxy
to select the dimension. Our method enables this when compared to previous
nonlinear ICA methods like TCL (Hyvärinen and Morioka, 2016). This is
showcased in Figure [2.4b], where the real dimensions of the simulated data
are d∗ = 80 and n∗ = 15, and we run multiple experiments where we vary the
latent dimensions between 2 and 40. We can see that the ELBO can be a good
proxy for dimension selection since it has a “knee” around the right value of
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the dimension.

Hyperparameter selection. One important benefit of the proposed method
is that it seeks to optimise an objective function derived from the marginal
log-likelihood of observations. As such, it follows that we may employ the
ELBO to perform hyperparameter selection. To verify this claim, we run
experiments for various distinct choices of hyperparameters (for example, the
dimension of hidden layers, number of hidden layers in the estimation network,
learning rate, nonlinearities) on a synthetic dataset. Results are provided in
Figure [2.4c] which serves to empirically demonstrate that the ELBO is indeed
a good proxy for how accurately we can recover the true latent variables. In
contrast, alternative methods for nonlinear ICA, such as TCL, do not provide
principled and reliable proxies which reflect the accuracy of estimated latent
sources.

2.5.3 Application to causal discovery

An important application of ICA methods is within the domain of causal
discovery (Peters et al., 2017). The use of ICA methods in this domain
is premised on the equivalence between a (nonlinear) ICA model and the
corresponding structural equation model (SEM). Such a connection was initially
exploited in the linear case (Shimizu et al., 2006) and extended to the nonlinear
case by Monti et al. (2019) who employed TCL.

Briefly, consider data x = (x1, x2). The goal is to establish if the causal
direction is x1 → x2, or x2 → x1, or conclude that no (acyclic) causal rela-
tionship exists. Assuming x1 → x2, then the problem can be described by the
following SEM: x1 = f1(n1), x2 = f2(x1, n2) where f = (f1, f2) is a (possibly
nonlinear) mapping and n = (n1, n2) are latent disturbances that are assumed
to be independent. The above SEM can be seen as a nonlinear ICA model
where latent disturbances, n, are the sources. As such, we may perform causal
discovery by first recovering latent disturbances (using TCL or iVAE) and then
running a series of independence tests. Formally, if x1 → x2 then, denoting
statistical independence by ⊥⊥, it suffices to verify that x1 ⊥⊥ n2 whereas
x1 ⊥̸⊥ n1, x2 ⊥̸⊥ n1 and x2 ⊥̸⊥ n2. Such an approach can be extended beyond
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Figure 2.4: (a) Performance of iVAE and VAE on discrete ICA task. (b)
Evolution of the post training ELBO as a function of the latent dimension.
The real dimension of the data is d∗ = 80 and the real dimension of the latent
space is n∗ = 15. We observe an elbow at around 15, thus successfully guessing
the real dimension. (c) ELBO as a function of the performance. Each star is
an experiment run for a different set of hyperparameters.

two-dimensional observations as described in Monti et al. (2019), and is called
Nonlinear SEM Estimation based on Non-Stationarity (NonSENS).

Throughout all causal discovery experiments, we employ HSIC as a general
test of statistical independence (Gretton et al., 2005). It is important to note
that the aforementioned testing procedure can produce one of three decisions:
x1 → x2, x2 → x1 or a third decision which states that no acyclic causal
direction can be determined. The first two outcomes correspond to identifying
the causal structure and will occur when we fail to reject the null hypothesis in
only one of the four tests. Whereas the third decision (no evidence of acyclic
causal structure) will be reported when either there is evidence to reject the
null in all four tests, or we fail to reject the null more than once. Typically,
this will occur if the nonlinear unmixing has failed to accurately recover the
true latent sources.
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Figure 2.5: (a) Performance of nonlinear causal discovery for “normal” data,
where iVAE or TCL are employed to recover latent disturbances. (b) Similarly,
but when underlying sources display significant mean modulation across seg-
ments, making them easy to classify. (c) Classification accuracy of TCL when
applied on data displaying significant mean modulation. We note that the
accuracy of TCL is significantly above a random classifier, indicating that the
surrogate classification problem employed in TCL training has been effectively
optimized.

2.5.3.1 Simulated data

Experiments on “normal” simulated data. The data generation process
used by Monti et al. (2019, Section 4) is similar to the one we described in
Section 2.5.2, with the difference that the mixing should be in such a way
that we get an acyclic causal relationship between the observations. This
can be achieved by ensuring weight matrices in the mixing network are all
lower-triangular, thereby introducing acyclic causal structure over observations.
When comparing iVAE and TCL in this setting, we report the proportion
of times the correct causal direction is reported. The results are reported in
Figure [2.5a] where we note that both TCL and iVAE perform comparably.
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Experiments on significant mean modulated data. As a further experi-
ment, we consider causal discovery in the scenario where one or both of the
underlying sources demonstrate a significant mean modulation as shown in Fig-
ure [2.7]. In such a setting, the surrogate classification problem, which is solved
as part of TCL training, becomes significantly easier to the extent that TCL no
longer needs to learn an accurate representation of the log-density of sources
within each segment. This is to the detriment of TCL as it implies that it
cannot accurately recover latent sources and therefore fails at the task of causal
discovery, as seen in Figure [2.5b]. This is a result of the fact that iVAE directly
optimises the log-likelihood as opposed to a surrogate classification problem.
Moreover, Figure [2.5c] visualises the mean classification accuracy for TCL as
a function of the number of segments. We note that TCL consistently obtains
classification accuracy that are significantly better than random classification.
This provides evidence that the poor performance of TCL in the context of data
with significant mean modulations is not a result of sub-optimal optimisation
but are instead a negative consequence of TCL’s reliance on solving a surrogate
classification problem to perform nonlinear unmixing.

2.5.3.2 Real world fMRI data

To further demonstrate the benefits of iVAE as compared to TCL, both
algorithms were employed to learn the causal structure from fMRI data collected
by Poldrack et al. (2015) (see details in Appendix 2.F.2). The recovered causal
graphs are shown in Figure [2.6]. Edges indicate causal relations between
regions: blue edges are anatomically feasible whilst red edges are not. There is
significant overlap between the estimated causal networks, but in the case of
iVAE both anatomically incorrect edges (between CA1 and ERc, and CA1 and
DG) actually correspond to indirect causal effects. This contrasts with TCL
where incorrect edges are incompatible with anatomical structure and cannot
be explained as indirect effects.

2.6 Conclusion

Unsupervised learning can have many different goals, such as: (i) approximate
the data distribution, (ii) generate new samples, (iii) learn useful features,
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Figure 2.6: Estimated causal graph on hippocampal fMRI data unmixing of
sources is achieved via iVAE (left) or TCL (right). Blue edges are feasible given
anatomical connectivity, red edges are not.

and above all (iv) learn the original latent code that generated the data
(identifiability). Deep latent variable models typically implemented by VAEs
are an excellent framework to achieve (i), and are thus our first building block.
The nonlinear ICA model developed by Hyvärinen and Morioka (2016) and
Hyvärinen et al. (2019) is the only existing framework to provably achieve (iv).
We bring these two pieces together to create our new model termed iVAE .
In particular, this is the first rigorous proof of identifiability in the context of
VAEs. Our model in fact checks all the four boxes above that are desired in
unsupervised learning.

The advantage of the new framework over typical deep latent variable
models used with VAEs is that we actually recover the original latents, thus
providing principled disentanglement. On the other hand, the advantages of
this algorithm for solving nonlinear ICA over previous self-supervised heuristics
are several; briefly, we significantly strengthen the identifiability results, we
obtain the likelihood and can use MLE, we learn a forward model as well and
can generate new data, and we consider the more general cases of noisy data
with fewer components.
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2.A. Properties of the strongly exponential family

Appendices to Chapter 2

2.A Properties of the strongly exponential
family

In this section, we give helpful properties of the strongly exponential family,
which will be useful to prove the identifiability theorems. Some properties
apply to univariate densities — as is duly specified.

Lemma 2.16. Consider a univariate strongly exponential family distribution
such that its sufficient statistic T is differentiable almost surely. Then T ′i ̸= 0
almost everywhere on R for all 1 ≤ i ≤ k.

Proof. Suppose that p is strongly exponential, and let X = ∪i{x ∈ R, T ′i (x) ̸=
0}. Chose any λ ∈ Rk \ {0}. Then ∀x ∈ X , ⟨T′(x),λ⟩ = 0. By integrating, we
find that ⟨T(x),λ⟩ = const. By hypothesis, this means that µLeb(X ) = 0.

Lemma 2.17. Consider a univariate strongly exponential distribution of size
k ≥ 2 with sufficient statistic T(x) = (T1(x), . . . , Tk(x)). Further assume that
T is differentiable almost everywhere.

Then there exist k distinct values x1 to xk such that (T′(x1), . . . ,T′(xk))
are linearly independent in Rk.

Proof. Suppose that for any choice of such k points (x1, . . . , xk), the vector
family (T′(x1), . . . ,T′(xk)) is never linearly independent. That means that
T′(R) is included in a subspace of Rk of dimension at most k − 1.

Let λ be a non zero vector that is orthogonal to T′(R). Then for all x ∈ R,
we have ⟨T′(x),λ⟩ = 0. By integrating we find that ⟨T(x),λ⟩ = const. Since
this is true for all x ∈ R and for a λ ̸= 0, we conclude that the distribution is
not strongly exponential, which contradicts our hypothesis.

Lemma 2.18. Consider a strongly exponential distribution of size k ≥ 2.
Further assume that T is differentiable almost everywhere. Then there exist
k + 1 distinct values x(0) to x(k) such that the matrix

R =
(
T(x(1))−T(x(0)), . . . ,T(x(k))−T(x(0))

)
∈ Rk×k
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2. Variational autoencoders and nonlinear ICA

is invertible.

Proof. Suppose that for a given x(0), we can’t find points x(1) to x(k) such that
the matrix R is not invertible. Then the function g(x) = T(x)−T(x(0)) would
live in a k−1 dimensional subspace of Rk. This means that we can find a nonzero
θ ∈ Rk such that g(x)⊤θ = 0, which implies that T(x)⊤θ = T(x(0))⊤θ = const
for any x ∈ X . This contradicts the assumption that the distribution is strongly
exponential. Therefore we have that R is invertible.

Lemma 2.19. Consider a univariate strongly exponential distribution of size
k ≥ 2 with sufficient statistic T. Further assume that T is twice differentiable
almost everywhere. Then

dim
(
span

{
(T ′i (x), T ′′i (x))⊤ , 1 ≤ i ≤ k

})
≥ 2 (2.20)

almost everywhere on R.

Proof. Suppose there exists a set X of measure greater than zero where equa-
tion (2.20) doesn’t hold. This means that the vectors [T ′i (x), T ′′i (x)]⊤ are
collinear for any i and for all x ∈ X . In particular, it means that there ex-
ists α ∈ Rk \ {0} s.t. ∑

i αiT
′
i (x) = 0. By integrating, we get ⟨T(x),α⟩ =

const, ∀x ∈ X . Since l(X ) > 0, this contradicts equation (2.17).

Lemma 2.20. Consider n univariate strongly exponential distributions of
size k ≥ 2 with respective sufficient statistics Tj = (Tj,1, . . . Tj,k), 1 ≤ j ≤ n.
Further assume that the sufficient statistics are twice differentiable. Define
the vectors e(j,i) ∈ R2n, such that e(j,i) =

(
0, . . . , 0, T ′j,i, T

′′
j,i, 0, . . . , 0

)
, where the

nonzero entries are at indices (2j, 2j + 1). Finally, let x := (x1, . . . , xn) ∈ Rn.
Then the matrix

e(x) := (e(1,1)(x1), . . . , e(1,k)(x1), . . . e(n,1)(xn), . . . , e(n,k)(xn)) (2.21)

of size (2n× nk) has rank 2n almost everywhere on Rn.

Proof. It is easy to see that the matrix e(x) has at least rank n, because by
varying the index j in e(j,i) we change the position of the nonzero entries. By
changing the index i, we change the component within the same sufficient
statistic. Now fix j and consider the submatrix

[
e(j,1)(xj), . . . , e(j,k)(xj)

]
. By

using Lemma 2.19, we deduce that this submatrix has rank greater or equal
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to 2 because its columns span a subspace of dimensions greater or equal to 2
almost everywhere on R. Thus, we conclude that the rank of e(x) is 2n almost
everywhere on Rn.

2.B Proofs

2.B.1 Identifiability proofs

Proposition 2.21. The binary relations ∼A and ∼P defined in Definition 2.6
are equivalence relations on Θ.

Proof. The following proof applies to both ∼A and ∼P which we will simply
denote by ∼.

It is clear that ∼ is reflexive and symmetric. Let ((f ,T,λ), (f̃ , T̃, λ̃),
(f ,T,λ)) ∈ Θ3, s.t. (f ,T,λ) ∼ (f̃ , T̃, λ̃) and (f ,T,λ) ∼ (f ,T,λ). Then
∃A1,A2 and c1, c2 s.t.

T(f−1(x)) = A1T̃(f̃−1(x)) + c1 and
T(f−1(x)) = A2T(f−1(x)) + c2

= A2A1T̃(f̃−1(x)) + A2c1 + c2

= A3T̃(f̃−1(x)) + c3,

(2.22)

and thus (f̃ , T̃, λ̃) ∼ (f ,T,λ).

Proof of Theorem 2.9. The proof of this Theorem is done in three steps:

1. In the first step, we use a simple convolutional trick made possible by
assumption (i), to transform the equality of observed data distributions
into equality of noiseless distributions. In other words, it simplifies the
noisy case into a noiseless case. This step results in equation (2.32).

2. The second step consists of removing all terms that are either a function
of observations x or auxiliary variables u. This is done by introducing
the points provided by assumption (iv), and using u0 as a “pivot”. This
is simply done in equations equations (2.32) to (2.35).

3. The last step of the proof is slightly technical. The the goal is to show that
the linear transformation is invertible thus resulting in an equivalence
relation. This is where we use assumption (iii).
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Step I We introduce here the volume of a matrix denoted vol A as the
product of the singular values of A. When A is full column rank, vol A =√

det A⊤A, and when A is invertible, vol A = |det A|. The matrix volume can
be used in the change of variable formula as a replacement for the absolute
determinant of the Jacobian (Ben-Israel, 1999). This is most useful when
the Jacobian is a rectangular matrix (n < d). Suppose we have two sets of
parameters (f ,T,λ) and (f̃ , T̃, λ̃) such that pf ,T,λ(x|u) = pf̃ ,T̃,λ̃(x|u) for all
pairs (x,u). Then:

∫
Z
pT,λ(z|u)pf (x|z)dz =

∫
Z
pT̃,λ̃(z|u)pf̃ (x|z)dz (2.23)

⇒
∫
Z
pT,λ(z|u)pε(x− f(z))dz =

∫
Z
pT̃,λ̃(z|u)pε(x− f̃(z))dz (2.24)

⇒

∫
X
pT,λ(f−1(x̄)|u) vol Jf−1(x̄)pε(x− x̄)dx̄ =∫

X
pT̃,λ̃(f̃−1(x̄)|u) vol Jf̃−1(x̄)pε(x− x̄)dx̄

(2.25)

⇒
∫
Rd
p̃T,λ,f ,u(x̄)pε(x− x̄)dx̄ =

∫
Rd
p̃T̃,λ̃,f̃ ,u(x̄)pε(x− x̄)dx̄ (2.26)

⇒ (p̃T,λ,f ,u ∗ pε)(x) = (p̃T̃,λ̃,f̃ ,u ∗ pε)(x) (2.27)
⇒ F [p̃T,λ,f ,u](ω)φε(ω) = F [p̃T̃,λ̃,f̃ ,u](ω)φε(ω) (2.28)
⇒ F [p̃T,λ,f ,u](ω) = F [p̃T̃,λ̃,f̃ ,u](ω) (2.29)
⇒ p̃T,λ,f ,u(x) = p̃T̃,λ̃,f̃ ,u(x) (2.30)

where:

• in equation (2.25), J denotes the Jacobian, and we made the change of
variable x̄ = f(z) on the left hand side, and x̄ = f̃(z) on the right hand
side.

• in equation (2.26), we introduced

p̃T,λ,f ,u(x) = pT,λ(f−1(x)|u) vol Jf−1(x)1X (x) (2.31)

on the left hand side, and similarly on the right hand side.

• in equation (2.27), we used ∗ for the convolution operator.

• in equation (2.28), we used F [.] to designate the Fourier transform, and
where φε = F [pε] (by definition of the characteristic function).
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• in equation (2.29), we dropped φε(ω) from both sides as it is nonzero
almost everywhere (by assumption (i)).

Equation (2.30) is valid for all (x,u) ∈ X × U . What is basically says is
that for the distributions to be the same after adding the noise, the noise-free
distributions have to be the same. Note that x here is a general variable and
we are actually dealing with the noise-free probability densities.

Step II By taking the logarithm on both sides of equation (2.30) and
replacing pT,λ by its expression from (2.9), we get:

log vol Jf−1(x) +
n∑

i=1
(logQi(f−1

i (x))− logZi(u) +
k∑

j=1
Ti,j(f−1

i (x))λi,j(u)) =

log vol Jf̃−1(x) +
n∑

i=1
(log Q̃i(f̃−1

i (x))− log Z̃i(u) +
k∑

j=1
T̃i,j(f̃−1

i (x))λ̃i,j(u)).

(2.32)

Let u0, . . . ,unk be the points provided by assumption (iv) of the Theorem,
and define λ(u) = λ(u)− λ(u0). We plug each of those ul in (2.32) to obtain
nk+1 such equations. We subtract the first equation for u0 from the remaining
nk equations to get for l = 1, . . . , nk:

⟨T(f−1(x)),λ(ul)⟩+
∑

i

log Zi(u0)
Zi(ul)

= ⟨T̃(f̃−1(x)), λ̃(ul)⟩+
∑

i

log Z̃i(u0)
Z̃i(ul)

.

(2.33)
Let L bet the matrix defined in assumption (iv), and L̃ similarly defined

for λ̃ (L̃ is not necessarily invertible). Define bl = ∑
i log Z̃i(u0)Zi(ul)

Zi(u0)Z̃i(ul)
and b the

vector of all bl for l = 1, . . . , nk. Expressing (2.33) for all points ul in matrix
form, we get:

L⊤T(f−1(x)) = L̃⊤T̃(f̃−1(x)) + b. (2.34)

We multiply both sides of (2.34) by the transpose of the inverse of L⊤ from
the left to find:

T(f−1(x)) = AT̃(f̃−1(x)) + c, (2.35)

where A = L−⊤L̃ and c = L−⊤b.
Step III Now by definition of T and according to assumption (iii), its

Jacobian exists and is an nk × n matrix of rank n. This implies that the
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Jacobian of T̃ ◦ f̃−1 exists and is of rank n and so is A. We distinguish two
cases:

• If k = 1, then this means that A is invertible (because A is n× n).

• If k > 1, define x̄ = f−1(x) and Ti(x̄i) = (Ti,1(x̄i), . . . Ti,k(x̄i)). According
to Lemma 2.17, for each i ∈ [1, . . . , n] there exist k points x̄1

i , . . . , x̄
k
i

such that (T′i(x̄1
i ), . . . ,T′i(x̄k

i )) are linearly independent. Collect those
points into k vectors (x̄1, . . . , x̄k), and concatenate the k Jacobians JT(x̄l)
evaluated at each of those vectors horizontally into the matrix V =
(JT(x̄1), . . . ,JT(x̄k)) (and similarly define Ṽ as the concatenation of the
Jacobians of T̃(f̃−1 ◦ f(x̄)) evaluated at those points). Then the matrix
V is invertible (through a combination of Lemma 2.17 and the fact that
each component of T̃ is univariate). By differentiating (2.35) for each xl,
we get (in matrix form):

V = AṼ. (2.36)

The invertibility of V implies the invertibility of A and Ṽ.

Hence, (2.35) and the invertibility of A mean that (f̃ , T̃, λ̃) ∼ (f ,T,λ).
Moreover, we have the following observations:

• the invertibility of A and L imply that L̃ is invertible,

• because the Jacobian of T̃ ◦ f̃−1 is full rank and f̃ is injective (hence its
Jacobian is full rank too), JT̃ has to be full rank too, and T̃ ′i,j(z) ̸= 0
almost everywhere.

• the real equivalence class of identifiability may actually be narrower that
what is defined by ∼, as the matrix A and the vector c here have very
specific forms, and are functions of λ and λ̃.

This concludes the proof.

Proof of Theorem 2.11. The proof of this Theorem is done in two main steps.

1. The first step is to show that f̃−1 ◦ f is a pointwise function. This is done
by showing that the product of any two distinct partial derivatives of any
component is always zero. Along with invertibility, this means that each
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component depends exactly on one variable. This is where we use the
two additional assumptions required by the Theorem.

2. In the second step, we plug the result of the first step in the equation
that resulted from Theorem 2.9 (see equation (2.42)). The fact that T,
T̃ and f̃−1 ◦ f are all pointwise functions implies that A is necessarily a
permutation matrix.

Step I In this Theorem we suppose that k ≥ 2. The assumptions of
Theorem 2.9 hold, and so we have

T(f−1(x)) = AT̃(f̃−1(x)) + c (2.37)

for an invertible A ∈ Rnk×nk. We will index A by four indices (i, l, a, b), where
1 ≤ i ≤ n, 1 ≤ l ≤ k refer to the rows and 1 ≤ a ≤ n, 1 ≤ b ≤ k to the columns.
Let v(z) = f̃−1 ◦ f(z) : Z → Z. Note that v is bijective because f and f̃ are
injective. Our goal is to show that vi(z) is a function of only one zji

, for all i.
We will denote by vs

i := ∂vi

∂zs
(z), and vst

i := ∂2vi

∂zs∂zt
(z). For each 1 ≤ i ≤ n and

1 ≤ l ≤ k, we get by differentiating (2.37) with respect to zs:

δisT
′
i,l(zi) =

∑
a,b

Ai,l,a,bT̃
′
a,b(va(z))vs

a(z), (2.38)

and by differentiating (2.38) with respect to zt, t > s:

0 =
∑
a,b

Ai,l,a,b

(
T̃ ′a,b(va(z))vs,t

a (z) + T̃ ′′a,b(va(z))vs
a(z)vt

a(z)
)
. (2.39)

This equation is valid for all pairs (s, t), t > s. Define

Ba(z) :=
(
v1,2

a (z), . . . , vn−1,n
a (z)

)
∈ R

n(n−1)
2 ,

Ca(z) :=
(
v1

a(z)v2
a(z), . . . , vn−1

a (z)vn
a (z)

)
∈ R

n(n−1)
2 ,

M(z) := (B1(z),C1(z), . . . ,Bn(z),Cn(z)) ∈ R
n(n−1)

2 ×2n,

and let
e(a,b) := (0, . . . , 0, T ′a,b, T

′′
a,b, 0, . . . , 0) ∈ R2n

such that the nonzero entries are at indices (2a, 2a+ 1) and

e(z) := (e(1,1)(z1), . . . , e(1,k)(z1), . . . , e(n,1)(zn), . . . , e(n,k)(zn)) ∈ R2n×nk.
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Finally, denote by Ai,l the (i, l)-th row of A. Then by grouping equation (2.39)
for all valid pairs (s, t) and pairs (i, l) and writing it in matrix form, we get:

M(z)e(z)A = 0. (2.40)

Now by Lemma 2.20, we know that e(z) has rank 2n almost surely on Z.
Since A is invertible, it is full rank, and thus rank(e (z)A) = 2n almost surely
on Z. It suffices then to multiply by its pseudo-inverse from the right to get

M(z) = 0. (2.41)

In particular, Ca(z) = 0 for all 1 ≤ a ≤ n. This means that the Jacobian of
v at each z has at most one nonzero entry in each row. By invertibility and
continuity of Jv, we deduce that the location of the nonzero entries are fixed
and do not change as a function of z. This proves that f̃−1 ◦ f is pointwise
nonlinearity.

Step II Let T(z) = T̃(v(z)) + A−1c. T is a composition of a permutation
and pointwise nonlinearity. Without any loss of generality, we assume that
the permutation in T is the identity. Plugging this back into equation (2.37)
yields:

T(z) = AT(z). (2.42)

Let D = A−1. The last equation is valid for every component:

T i,l(zi) =
∑
a,b

Di,l,a,bTa,b(za). (2.43)

By differentiating both sides with respect to zs where s ̸= i we get

0 =
∑

b

Di,l,s,bT
′
s,b(zs). (2.44)

By Lemma 1.7, we get Di,l,s,b = 0 for all 1 ≤ b ≤ k. Since equation (2.44) is
valid for all l and all s ̸= i, we deduce that the matrix D has a block diagonal
form:

D =


D1

. . .
Dn

 . (2.45)

We conclude that A has the same block diagonal form. Each block i transforms
Ti(z) into Ti(z), which achieves the proof.

96



2.B. Proofs

Proof of Theorem 2.12. This proof uses concepts borrowed from differential
geometry. A good reference is the monograph by Lee (2003).

By defining v = f−1 ◦ f̃ , equation (2.35) implies that each function Ti ◦ vi

can be written as a separable sum, i.e. a sum of n maps where each map hi,a

is function of only one component za.

Intuitively, since Ti is not monotonic, it admits a local extremum (supposed
to be a minimum). By working locally around this minimum, we can suppose
that it is global and attained at a unique point yi. The smoothness condition
on v imply that the manifold where Ti ◦ vi is minimized has dimension n− 1.
This is where we need assumption (ii) of the Theorem.

On the other hand, because of the separability in the sum, each non constant
hi,k (minimized as a consequence of minimizing Ti ◦ vi) introduces a constraint
on this manifold that reduces its dimension by 1. That’s why we can only have
one non constant hi,k for each i.

In this Theorem we suppose that k = 1. For simplicity, we drop the
exponential family component index: Ti := Ti,1. By introducing v = f−1 ◦ f̃
and hi,a(za) = Ai,aT̃a(za) + ci

n
into equation (2.35), we can rewrite it as:

Ti(vi(z)) =
n∑

a=1
hi,a(za) (2.46)

for all 1 ≤ i ≤ n.

By assumption, hi,a is not monotonic, and so is Ti. So for each a, there
exists ỹi,a where hi,a reaches an extremum, which we suppose is a minimum
without loss of generality. This implies that Ti ◦ vi reaches a minimum at
ỹi := (ỹi,1, . . . , ỹi,n), which in turn implies that yi := vi(ỹi) is a point where Ti

reaches a local minimum. Let U be an open set centered around yi, and let
Ṽ := v−1

i [U ] the preimage of U by vi. Because vi is continuous, Ṽ is open in
Rn and non-empty because ỹi ∈ Ṽ . We can then restrict ourselves to a cube
V ⊂ Ṽ that contains ỹi which can be written as V = V1 × · · · × Vn where each
Va is an open interval in R.

We can chose U such that Ti has only one minimum that is reached at yi.
This is possible because T ′i ̸= 0 almost everywhere by hypothesis. Similarly,
we chose the cube V such that each hi,a either has only one minimum that is
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2. Variational autoencoders and nonlinear ICA

reached at ỹi,a, or is constant (possible by setting Ai,a = 0). Define

mi = min
z∈V

Ti ◦ vi(z) ∈ R, (2.47)

µi,a = min
za∈Va

hi,a(za) ∈ R, (2.48)

for which we have mi = ∑
a µi,a.

Define the sets Ci = {z ∈ V |Ti ◦vi(z) = mi} , C̃i,a = {z ∈ V |hi,a(za) = µi,a}
and C̃i = ∩aC̃i,a. We trivially have C̃i ⊂ Ci. Next, we prove that Ci ⊂ C̃i.
Let z ∈ Ci, and suppose z /∈ C̃i. Then there exist an index k, ε ∈ R and z̃ =
(z1, . . . , zk + ε, . . . , zn) such that mi = ∑

a hi,a(za) > ∑
a hi,a(z̃a) ≥ ∑a µi,a = mi

which is not possible. Thus z ∈ C̃i. Hence, C̃i = Ci.
Since mi is only reached at yi, we have Ci = {z ∈ V |vi(z) = yi}. By

hypothesis, vi is of class C1, and its Jacobian is nonzero everywhere on V (by
invertibility of v). Then, by Corollary 5.14 in Lee (2003), we conclude that Ci

is a smooth (C1) submanifold of co-dimension 1 in Rn, and so is C̃i by equality.
On the other hand, if hi,a is not constant, then it reaches its minimum

µi,a at only one point ỹi,a in Va. In this case, C̃i,a = V[1,i−1] × {ỹi,a} × V[i+1,n].
Suppose that there exist two different indices a ̸= b, such that hi,a and hi,b are
not constant. Then C̃i,a ∩ C̃i,b is a submanifold of co-dimension 2. This would
contradict the fact that the co-dimension of C̃i is 1.

Thus, exactly one of the hi,a is not constant for each i. This implies that
the i-th row of matrix A has exactly one nonzero entry. The nonzero entry
should occupy a different position in each row to guarantee invertibility, which
proves that A is a scaled permutation matrix. Plugging this back into equation
(2.35) implies that f̃ ◦ f is a pointwise nonlinearity.

Proof of Proposition 2.13. For simplicity, denote

Q(z) :=
∏

i

Qi(zi),

Z(u) :=
∏

i

Zi(u).

Let A be an orthogonal matrix and z̃ = Az It is easy to check that z̃ ∼ pθ̃(z̃|u)
where this new exponential family is defined by the quantities Q̃ = Q, T̃ = T,
λ̃ = Aλ and Z̃ = Z. In particular, the base measure Q does not change when
Qi(zi) = 1 or Qi(zi) = e−z2

i because such a Q is a rotationally invariant function
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of z. Further, we have

⟨z,λ(u)⟩ = ⟨A⊤z̃,λ(u)⟩ = ⟨z̃,Aλ(u)⟩ = ⟨z̃, λ̃(u)⟩. (2.49)

Finally let f̃ = f ◦A⊤, and θ̃ :=
(
f̃ , T̃, λ̃

)
. We get:

pθ(x|u) =
∫
pθ(x|z)pθ(z|u)dz (2.50)

=
∫
pε(x− f(z))Q(z)

Z(u) exp(⟨z,λ(u)⟩)dz (2.51)

=
∫
pε(x− f̃(z̃)) Q̃(z̃)

Z̃(u)
exp(⟨z̃, λ̃(u)⟩)dz̃ (2.52)

= pθ̃(x|u), (2.53)

where in equation (2.52) we made the change of variable z̃ = Az, and removed
the Jacobian because it is equal to 1. We then see that it is not possible to
distinguish between θ and θ̃ based on the observed data distribution.

2.B.2 Identifiability under alternative assumptions

The weak identifiability of Theorem 2.9 can be derived under an alternative
set of assumptions, as is summarized by the following result.

Theorem 2.22. Assume that we observe data sampled from a generative
model defined according to (2.5)-(2.9), with parameters (f ,T,λ). Assume the
following holds:

(i) The set {x ∈ X |φε(x) = 0} has measure zero, where φε is the character-
istic function of the density pε defined in (2.6).

(ii) The mixing function f in (2.6) is injective.

(iii) The sufficient statistics Ti,j in (2.9) are differentiable almost everywhere,
and T ′i,j ̸= 0 almost everywhere for all 1 ≤ i ≤ n and 1 ≤ j ≤ k.

(iv) λ is differentiable, and there exists u0 ∈ U such that Jλ(u0) is invertible.

then the parameters (f ,T,λ) are ∼-identifiable. Moreover, if there exists
(f̃ , T̃, λ̃) such that pf̃ ,T̃,λ̃(x|u) = pf ,T,λ(x|u), then T̃ and λ̃ verify assump-
tions (iii) and (iv).
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2. Variational autoencoders and nonlinear ICA

Proof. The start of the proof is similar to the proof of Theorem 2.9. When we
get to equation (2.32):

log vol Jf−1(x) +
n∑

i=1
(logQi(f−1

i (x))− logZi(u) +
k∑

j=1
Ti,j(f−1

i (x))λi,j(u)) =

log vol Jf̃−1(x) +
n∑

i=1
(log Q̃i(f̃−1

i (x))− log Z̃i(u) +
k∑

j=1
T̃i,j(f̃−1

i (x))λ̃i,j(u)).

(2.54)

We take the derivative of both sides with respect to u (assuming that λ̃ is
also differentiable). All terms depending on x only disappear, and we are left
with:ivae:

Jλ(u)⊤T(f−1(x))−
∑

i

∇ logZi(u) = Jλ̃(u)⊤T̃(f̃−1(x))−
∑

i

∇ log Z̃i(u).

(2.55)
By evaluating both sides at u0 provided by assumption (iv), and multiplying
both sides by Jλ(u0)−⊤ (invertible by hypothesis), we find:

T(f−1(x)) = AT̃(f̃−1(x)) + c, (2.56)

where A = Jλ(u0)−⊤Jλ̃(u0)⊤ and c = ∑
i∇ log Zi(u0)

Z̃i(u0) . The rest of the proof
follows proof of Theorem 2.9, where in the last part we deduce that Jλ̃(u0) is
invertible.

2.B.3 Consistency proof

Proof of Theorem 2.14. The loss (2.10) can be written as follows:

L(θ,ϕ) = log pθ(x|u)−KL(qϕ(z|x,u)∥pθ(z|x,u)). (2.57)

If the family qϕ(z|x,u) is large enough to include pθ(z|x,u), then by optimizing
the loss over its parameter ϕ, we will minimize the KL term, eventually
reaching zero, and the loss will be equal to the log-likelihood. The VAE in
this case inherits all the properties of maximum likelihood estimation. In
this particular case, since our identifiability is guaranteed up to equivalence
classes, the consistency of MLE means that we converge to the equivalence
class (Theorem 2.9) of true parameter θ∗ i.e. in the limit of infinite data. This
is easy to show because true identifiability is one of the assumptions for MLE
consistency, replacing it by identifiability up to equivalence class doesn’t change
the proof but only the conclusion.
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2.C Unidentifiability of generative models
with unconditional prior

In this section, we present two well-known proofs of unidentifiability of gener-
ative models. The first proof is simpler and considers factorial priors, which
are widely-used in deep generative models and the VAE literature. The sec-
ond proof is extremely general, and shows how any random vector can be
transformed into independent components, in particular components which are
standardized Gaussian. Thus, we see how in the general nonlinear case, there is
little hope of finding the original latent variables based on the (unconditional,
marginal) statistics of x alone.

2.C.1 Factorial priors

Let us start with factorial, Gaussian priors. In other words, let z ∼ pθ(z) =
N(0, I). Now, a well-known result says that any orthogonal transformation of z
has exactly the same distribution. Thus, we could transform the latent variable
by any orthogonal transformation z′ = Mz, and cancel that transformation in
p(x|z) (e.g. in the first layer of the neural network), and we would get exactly
the same observed data (and thus obviously the same distribution of observed
data) with z′.

Formally we have

pz′(ξ) = pz(M⊤ξ)| det M| = 1
(2π)d/2 exp(−1

2∥M
⊤ξ∥2) (2.58)

= 1
(2π)d/2 exp(−1

2∥ξ∥
2) = pz(ξ), (2.59)

where we have used the fact that the determinant of an orthogonal matrix is
equal to unity.

This result applies easily to any factorial prior. For zi of any distribu-
tion, we can transform it to a uniform distribution by Fi(zi) where Fi is the
cumulative distribution function of zi. Next, we can transform it into stan-
dardized Gaussian by Φ−1(Fi(zi)) where Φ is the standardized Gaussian CDF.
After this transformation, we can again take any orthogonal transformation
without changing the distribution. And we can even transform back to the
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2. Variational autoencoders and nonlinear ICA

same marginal distributions by F−1
i (Φ(.)). Thus, the original latents are not

identifiable.

2.C.2 General priors

The second proof comes from the theory of nonlinear ICA (Hyvärinen and
Pajunen, 1999), from which the following theorem is adapted.

Theorem 2.23 (Hyvärinen and Pajunen (1999), Theorem 1). Let z be a
d-dimensional random vector of any distribution. Then there exists a transfor-
mation g : Rd → Rd such that the components of z′ := g(z) are independent,
and each component has a standardized Gaussian distribution. In particular, z′1
equals a monotonic transformation of z1.

The proof is based on an iterative procedure reminiscent of Gram-Schmidt,
where a new variable can always be transformed to be independent of any
previously considered variables, which is why z1 is essentially unchanged.

This Theorem means that there are infinitely many ways of defining indepen-
dent components z that nonlinearly generated an observation x. This is because
we can first transform z any way we like and then apply the Theorem. The
arbitrariness of the components is seen in the fact that we will always find that
one arbitrary chosen variable in the transformation is one of the independent
components. This is in some sense an alternative kind of indeterminacy to the
one in the previous section.

In particular, we can even apply this Theorem on the observed data, taking
x instead of z. Then, in the case of factorial priors, just permuting the data
variables, we would arrive at the conclusion that any of the xi can be taken to
be one of the independent components, which is absurd.

Now, to apply this theory in the case of a general prior on z, it is enough
to point out that we can transform any variable into independent Gaussian
variables, apply any orthogonal transformation, then invert the transformation
in the Theorem, and we get a nonlinear transformation z′ = g−1(Mg(z)) which
has exactly the same distribution as z but is a complex nonlinear transformation.
Thus, no matter what the prior may be, by looking at the data alone, it is not
possible to recover the true latents based an unconditional prior distribution,
in the general nonlinear case.
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2.D Identifiability up to equivalence class:
examples

As an illustration of identifiability up to equivalence class, let’s consider the
identifiability in linear ICA.

Example 2.24 (Identifiability of linear ICA). Reconsider the linear ICA
setting, where we have observations that are a linear mixing of independent
source variables:

x = As,

ps(s) =
∏

i

pi(si),
(2.60)

where A ∈ Rd×d is an orthogonal mixing matrix (we can always transform the
linear ICA problem into one where the mixing is orthogonal — this is called
whitening (see Hyvärinen et al., 2001, for more details)).

The theory of linear ICA says that a solution to the problem (2.60) exists
if at most one of the components si is normally distributed. This solution is
unique up to a permutation and a scaling of the components, as stated by
Theorem 1.1.

To formalize this in terms of an equivalence relation, let FICA = A × P,
where A is the set of orthogonal matrices and P is the set of distributions with
at most one Gaussian marginal. We define the following equivalence relation
on FICA:

(A, p) ∼ICA (Ã, p̃) ⇐⇒ ∃D,P s.t. (A, p) =
(
ÃP−1D−1, (DP)#p̃

)
, (2.61)

where D is a diagonal matrix, P is a permutation matrix, and (DP)#p̃ is the
push-forward density of p̃ by DP. The equivalence relation ∼ICA characterizes
the solutions to the linear ICA problem in terms of the equivalence class of the
true generative model (A∗, p∗). In other words, (A, p) is a solution of (2.60) if
and only if (A, p) ∼ICA (A∗, p∗). □

Another useful example of equivalence class is in representation learning,
where we often use a neural network to learn a set of features that are subse-
quently used in a classification task. Features can be considered equivalent if
they do not change the boundaries of this task.
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Example 2.25 (Indeterminacy of the parameters in linear classification).
Given a set of observations and binary labels D =

{
(x1, y1), . . . , (xN , yN)

}
, we

seek to learn a classifier to predict a label y from an observation x. To this end,
we consider a simple liner classifier f with weight vector w, combined with a
feature extractor ϕ:

f(x; w,ϕ) = w⊤ϕ(x).

We ignore the bias term as it can simply be absorbed into w.
The vector ϕ(x) represents a set of features that are learnt from the obser-

vations, and can tremendously improve the flexibility of the linear classifier.
In fact, it is common in the representation learning community to learn so-
phisticated features from data, which are then used in a simple downstream
classification or regression task. Here, we will similarly consider that learning
the feature extractor is decoupled from the classification task, where we only
look to find an optimal w.

Learning the weights w is often done by solving

min
w

1
N

N∑
i=1

L
(
f(xi; w,ϕ), yi

)
+ λ∥w∥2, (2.62)

where λ is a hyperparameter which ensures that the norm of the weights is well
controlled, and L is a loss function that measures the discrepancy between the
score f i := f(xi; w,ϕ) and the label yi. An example of such loss is the hinge
loss used in support vector machines: L(f i, yi) = max(0, 1− yif i).

Denote by w∗ the solution to the above classification problem when using
the features ϕ. Now suppose that we used another feature extractor ϕ̃ that
is equal to ϕ up to an orthogonal linear transformation: ϕ̃ = Aϕ. Then the
optimal solution w̃∗ to the classification problem (2.62) when using ϕ̃ is related
to w∗ via: w̃∗ = Aw∗. The pairs (w̃∗, ϕ̃) and (w∗,ϕ) both impose the same
boundary between the two classes in this binary classification task.

Thus, we can define an equivalence relation ∼lin over the set of admissible
weights and feature extractors:

(w̃, ϕ̃) ∼lin (w,ϕ) ⇐⇒ (w̃, ϕ̃) = (Aw,Aϕ). (2.63)

The equivalence relation ∼lin characterizes the solutions of this supervised
classification task in the sense that multiplying the feature extractor by a linear
transformation doesn’t change the solution to the problem. □
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2.E Link between maximum likelihood and
total correlation

Consider the noiseless case:

x = f(z), (2.64)
p(z|u) =

∏
i

pi(zi|u), (2.65)

where the components of the latent variable are independent given the auxiliary
variable u. We can relate the log-likelihood of the data to the total correlation
of the latent variables. To see this connection, let’s use the change of variable
formula in the expression of the log-likelihood:

Ep(x,u) [log p(x|u)] = Ep(z,u)

[∑
i

log pi(zi|u)− log |Jf (z)|
]

(2.66)

= −Ep(z,u) [log |Jf (z)|]−
∑

i

H(zi|u), (2.67)

where H(zi|u) is the conditional differential entropy of zi given u. The same
change of variable formula applied to H(x|u) yields:

H(x|u) = H(z|u) + Ep(z,u) [log |Jf (z)|] , (2.68)

which we then use in the expression of the conditional total correlation:

TC(z|u) :=
∑

i

H(zi|u)−H(z|u)

=
∑

i

H(zi|u)−H(x|u) + Ep(z,u) [log |Jf (z)|] .
(2.69)

Putting equations (2.67) and (2.69) together, we get:

Ep(x,u)[log p(x|u)] = −TC(z|u)−H(x|u). (2.70)

The last term in this equation is a function of the data only and is thus
a constant. An algorithm which learns to maximize the data likelihood is
decreasing the total correlation of the latent variable. The total correlation is
measure of independence as it is equal to zero if and only if the components
of the latent variable are independent. Thus, by using a VAE to maximize a
lower bound on the data likelihood, we are trying to learn an estimate of the
inverse of the mixing function that gives the most independent components.
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2.F Experimental protocol and additional
experiments

(a)

z∗1
z∗2

(b)

Figure 2.7: Visualization of various sources following the generative distri-
bution detailed in equation (2.9). (a) single source with segment modulated
variance; (b) two sources where the mean of the second source, z∗2 , is significantly
modulated as a function of the segment, thus potentially serving to greatly
facilitate the surrogate classification task performed in TCL.

2.F.1 Details of implementation for VAE experiments

We give here more detail on the data generation process for our simulations. The
dataset is described in Section 2.5.2. The conditioning variable u (subsequently
denoted u because it is scalar) is the segment label, and its distribution is
uniform on the integer set [[1,M ]]. Within each segment, the conditional
prior distribution is chosen from the family (2.9), where k = 1, Ti,1(zi) = z2

i

and Qi(zi) = 1, and the true λi were randomly and independently generated
across the segments and the components so that the variances have a uniform
distribution on [.5, 3]. We sample latent variable z from these distribution, and
then mix them using a 4-layer multi-layer perceptron (MLP). An example of
what the sources look like is plotted in Figure [2.7a]. We finally add small noise
(σ2 = 0.01) to the observations. When comparing to previous ICA methods,
we omit this step, as these methods are for the noiseless case.

For the decoder (2.6), we chose pε = N (0, σ2
εI) a zero mean Gaussian, where

the scalar σ2
ε controls the noise level. We fix the noise level σ2 = 0.01. As for

the inference model, we let qϕ(z|x, u) = N (z|g(x, u; ϕg), diag σ2(x, u; ϕσ)) be
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a multivariate Gaussian with a diagonal covariance. The functional parameters
of the decoder (f) and the inference model (g, σ2) as well as the conditional
prior (λ) are chosen to be MLPs, where the dimension of the hidden layers is
varied between 10 and 200, the activation function is a leaky ReLU, and the
number of layers is chosen from {3, 4, 5, 6}. Mini-batches are of size 64, and
the learning rate of the Adam optimizer is chosen from {0.01, 0.001}. We also
use a scheduler to decay the learning rate as a function of epochs.

To implement the VAE, we followed Kingma and Welling (2014). We
made sure the range of the hyperparameters (mainly number of layers and
dimension of hidden layers) of the VAE is large enough for it to be comparable
in complexity to our method (which has the extra λ network to learn). To
implement a β-VAE, we followed the instructions of Higgins et al. (2017) for
the choice of hyperparameter β, which was chosen in the set [1, 45]. Similarly,
we followed Chen et al. (2018) for the choice of the hyperparameters α, β and
γ when implementing a β-TC-VAE: we chose α = γ = 1 and β was chosen in
the set [1, 35].

2.F.2 Hippocampal fMRI data

Here we provide further details relating to the resting-state Hippocampal
data provided by Poldrack et al. (2015) and studied in Section 2.5.3, closely
following the earlier causal work using TCL by Monti et al. (2019). The data
corresponds to daily fMRI scans from a single individual (Caucasian male, aged
45) collected over a period of 84 successive days. We consider data collected
from each day as corresponding to a distinct segment, encoded in u. Within
each day 518 BOLD observations are provided across the following six brain
regions: perirhinal cortex (PRc), parahippocampal cortex (PHc), entorhinal
cortex (ERc), subiculum (Sub), CA1 and CA3/Dentate Gyrus (DG).

2.F.3 Additional experiments

As a further visualization, we compare iVAE to VAE on a series of experiments
on real and simulated data. The results reported in Figures [2.8] to [2.15] show
that iVAE is better suited for learning identifiable representations than a basic
VAE.
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Figure 2.8: Comparison of the recovered latents of our model to the latents
recovered by a vanilla VAE. The dashed blue line is the true source signal,
and the recovered latents are in solid coloured lines. We also reported the
correlation coefficients for every (source, latent) pair.
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Figure 2.9: Comparison of the recovered latents of our model to the latents
recovered by a vanilla VAE, a β-VAE and a β-TC-VAE, where the dimension
of the data is d = 40, and the dimension of the latents is n = 10, the number
of segments is M = 40 and the number of samples per segment is L = 4000.
The dashed blue line is the true source signal, and the recovered latents are in
solid coloured lines. We reported the correlation coefficients for every (source,
latent) pair.
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(b) VAE

Figure 2.10: MNIST: Visualization of the latent space in 2D. The iVAE latents
occupy more space, and are slightly more separated than the VAE latents,
especially in the centre near zero. We still see the same clustering of classes for
both models.

(a) u = 2 (b) u = 6

Figure 2.11: MNIST: Visualizations of the data manifold generated from a
traversal of the latent space in 2D, conditioned on u = 2 and u = 6. The
traversal is achieved by transforming the unit square through the inverse
cumulative distribution function of a Gaussian parametrized by the learned
means and variances for each class.
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(a) VAE (b) iVAE (c) restricted iVAE

Figure 2.12: MNIST: Samples from the learned generative model after learning
for 10 epochs. a) We sample from the Gaussian prior, and then through the
decoder b) We sample labels uniformly between 1 and 9, then sample from
the conditional Gaussian prior, and finally through the decoder. c) We sample
latents from the conditional prior conditioned on u = 4, then through the
decoder.
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(b) VAE

Figure 2.13: FMNIST: Visualization of the latent space in 2D. Similarly to
MNIST, the iVAE latents occupy more space, and are slightly more separated
than the VAE latents.
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2. Variational autoencoders and nonlinear ICA

(a) u = 7 (b) u = 9

Figure 2.14: FMNIST: Visualizations of the data manifold generated from
a traversal of the latent space in 2D, conditioned on u = 7 and u = 9. The
traversal is achieved by transforming the unit square through the inverse
cumulative distribution function of a Gaussian parametrized by the learned
means and variances for each class. a) The latent dimensions encode the shoe
type (from sneakers to dress shoes) and the shoe size (from small to big). b)
The y dimension encodes the heel size, but the x dimension doesn’t seem to
encode any information about the data.

(a) VAE (b) iVAE (c) restricted iVAE

Figure 2.15: FMNIST: Samples from the learned generative model after
learning for 10 epochs. a) We sample from the Gaussian prior, and then
through the decoder b) We sample labels uniformly between 1 and 9, then
sample from the conditional Gaussian prior, and finally through the decoder.
c) We sample latents from the conditional prior conditioned on one class, then
through the decoder.
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Chapter 3

Independently modulated component
analysis

The identifiability of nonlinear probabilistic models has been receiving consid-
erable attention lately in the machine learning community. The most recent
identifiability results for latent variable models can be found in the nonlinear
ICA literature. Most notably, these results required that the latent variables
are independent given an additionally observed auxiliary variable. However, the
need for (conditional) independence can sometimes be seen as a limitation, for
example in the context of learning disentangled representations. In the present
chapter, we prove that we can relax the assumption of independence while
maintaining identifiability, providing a very flexible and general framework for
principled disentangled representation learning. We show that the access to
an auxiliary variable ensures a weak form of identifiability regardless of inde-
pendence. More importantly, we introduce the novel Independently Modulated
Component Analysis (IMCA) framework: it requires that conditioning by an
auxiliary variable changes the joint distribution of the latents in a factorizable
way, while allowing them to share an arbitrary base measure. IMCA enjoys
the same identifiability guarantees as nonlinear ICA, while being more general
and flexible.

This chapter is based on Khemakhem et al. (2020b).
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3. Independently modulated component analysis

3.1 Introduction

Unsupervised feature learning is one of the fundamental challenges in machine
learning. Whilst such a field has recently enjoyed great empirical success, it
is widely acknowledged that existing methods do not enjoy strong theoretical
guarantees. An increasingly important area for theoretical research is to
demonstrate that specific models are identifiable, which means that the true
parameters of the underlying model can be uniquely recovered in the limit of
infinite data.

Within representation learning, results relating to identifiability were con-
strained to consider linear latent variable models and mainly studied within
the context of independent component analysis (Comon, 1994, ICA), which
assumes that the observed variable x is a result of a mixing of source variables
z with independent components. It was acknowledged that generalizing the
theory of ICA to the realm of nonlinear transformations was not possible,
primarily due to the flexibility of such maps, which could yield arbitrary latent
variables (Hyvärinen and Pajunen, 1999).

Thanks to recent advances, it is now understood that nonlinear latent
variable models may also be identifiable given some additional auxiliary variables
(Hyvärinen and Morioka, 2016; Hyvärinen and Morioka, 2017; Hyvärinen et al.,
2019; Khemakhem et al., 2020a). The purpose of this auxiliary variable serves
to introduce additional constraints over the distribution over latent variables,
which are typically required to be conditionally independent given the auxiliary
variable. More precisely, the latent variables z have a density of the form
p(z|u) = ∏

i pi(zi|u).
This avenue of research has thus formalized the trade-off between the

expressivity of the mapping between latent variables to observations (from
linear to nonlinear) and the distributional assumptions over latent variables
(from independent to conditionally independent given auxiliary variables).
However, hardly any identifiability theory exists for the non-independent case,
and the need for (conditional) independence in order to obtain identifiability
results remains a limitation. This is particularly the case in disentangled
representation learning, where independence is seen as too severe a restriction.

In this chapter, we propose to relax the assumption of independence while
maintaining identifiability. This was achieved before in the linear case (Hyväri-
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nen and Hurri, 2004; Monti and Hyvärinen, 2018), and we believe it can also be
achieved in the nonlinear setting. To this effect, we introduce the Independently
Modulated Component Analysis (IMCA) framework: a generative model where
the latent variables are dependent through an arbitrary base measure, leading to
an arbitrary global dependency structure. To achieve identifiability, we assume
that the latent joint density has a part that is modulated in a factorizable
way when conditioned by an auxiliary variable (such as time index, history, or
another data source). The central contribution of this chapter is a thorough
analysis of the identifiability of such a model, which generalizes nonlinear ICA.

3.2 Independently modulated component
analysis

3.2.1 Definition of the generative model

Assume we observe a random variable x ∈ Rd as a result of a nonlinear trans-
formation f of a latent variable (also called source) z ∈ Rd whose distribution
is conditioned on an auxiliary variable u that is also observed:

z ∼ pθ(z|u),
x = f(z).

(3.1)

With a slight abuse of notations, we will use θ to denote the parameters of the
prior as well as the mixing function f .

In the nonlinear ICA model of Chapter 2, the prior components zi ∈ z each
has a univariate exponential family distribution given u. In this chapter, we
look at a specific instance of the multivariate exponential family that generalises
the densities produced by a product of univariate exponential families by only
having a part of its density factor across the components of the random variable
z.

Definition 3.1 (Exponentially factorial distributions). We say that a multi-
variate exponential family distribution is exponentially factorial if its density
p(z) has the form

p(z) = Q(z)
d∏

i=1
eTi(zi)⊤λi−Γ(λ). (3.2)
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We similarly define the conditional exponentially factorial distribution by requir-
ing the natural parameter λ := (λ1, . . . ,λd) to be a function of the conditioning
variable u:

p(z|u) = Q(z)e
∑

i
Ti(zi)⊤λi(u)−Γ(u). (3.3)

The exponential term of an exponentially factorial distribution factors
across components. This means that the sufficient statistic is decomposed of d
mappings, each function of only one component of the random variable z. We
emphasise that the base measure Q(z) is not necessarily factorial, which can
lead to the latent components zi ∈ z being dependent on each other.

Equations (3.1) and (3.3) together define a nonparametric model with
parameters θ = (f ,T,λ, Q). For the special case Q(z) = ∏

i Qi(zi), the distri-
bution of z factors across dimensions, and the components zi are independent.
Then the generative model gives rise to a nonlinear ICA model, and it was
studied to a great depth in Chapter 2. In particular, that chapter presented
sufficient conditions that lead to strong identifiability of the model which allows
for the recovery of the latent variables up to permutation and nonlinear scaling.

It is possible to generalise this model by allowing for an arbitrary base mea-
sure Q(z), i.e. the components of the latent variable are no longer independent,
as Q does not necessarily factorise across dimensions. However, it is crucial
that the components of the latent variables are independently modulated given
the auxiliary variable u, and that through the term exp(∑i Ti(zi)⊤λi(u)).

This new framework is called Independently Modulated Component Analysis
(IMCA). Section 3.2.3 shows that the strong identifiability guarantees developed
for nonlinear ICA can be extended to IMCA, yielding a more general and more
flexible principled framework for representation learning and disentanglement.

3.2.2 Identifiability

The concept of identifiability is core to this chapter. As such, it is important
to understand the different views one can have of this concept. Recall the
definition of identifiability, seen in equation (2.4) of Section 2.4.1:

Pθ1 = Pθ2 =⇒ θ1 = θ2.

In other words, a model is identifiable if different values of the parameters
must generate different probability distributions. This definition, however, is
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very restrictive and impractical. Often, the identifiability form we can prove
for a model is equality of the parameters up to some indeterminacies. This
can be understood as an equivalence relation between parameters, as detailed
in Section 2.4.1. For this reason, we will use the concept of identifiability
up to equivalence class, introduced in Definition 2.5. Identifiability in this
context implies that the equivalence class of the ground truth parameter can
be uniquely recovered from observations.

An example of indeterminacy that is relevant to us here comes from the
literature on the variational inference of latent variable models: two parameters
are equivalent if they map to the same inference distribution (Chapter 2).
In this chapter, we will say that a generative model is identifiable if we can
uniquely recover the latent variables up to two ambiguities, namely a linear
mapping and pointwise nonlinear transformations:

Definition 3.2. Consider two different sets of parameters θ = (f ,T,λ, Q)
and θ′ = (f ′,T′,λ′, Q′), defining two densities pθ and pθ′. We say that the
IMCA model is strongly identifiable if

pθ(x|u) = pθ′(x|u) =⇒ θ ∼P θ′,

θ ∼P θ′ ⇐⇒ ∀i,Ti(zi) = AiT′γ(i)(z′γ(i)) + bi,
(3.4)

where γ is a permutation, Ai is an invertible matrix, and bi a vector, ∀i ∈ [[1, d]].
We say that it is weakly identifiable if

pθ(x|u) = pθ′(x|u) =⇒ θ ∼A θ′,

θ ∼A θ′ ⇐⇒ T(z) = AT′(z′) + b,
(3.5)

where A is an invertible matrix, and b a vector.

3.2.3 Theoretical analysis

There is a particular class of exponential families for which we can only prove
a weak form of identifiability. Informally, the auxiliary variable should be able,
through modulation of the prior distribution, to break the symmetries of the
latent space. A similar situation arises in linear ICA with Gaussian distributions,
the symmetries of which are problematic when proving identifiability.
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Definition 3.3 (Quasi-location exponential distributions). We say that a
univariate exponential family distribution with density p(y) = Q(y)eT(y)⊤λ−Γ(λ)

is in the quasi-location family if:

(i) dim(T) = 1.

(ii) T is monotonic (either non-decreasing or non-increasing).

We say that that a multivariate distribution is quasi-location exponential if all
its univariate marginals are quasi-location exponential.

As a simple illustration, the Gaussian family with fixed variance is a quasi-
location family, but with fixed mean it is not. This is because in the first case,
the sufficient statistic is T (y) = y is a monotonic scalar function, while in the
second case it is T (y) = y2, a non-monotonic scalar function.

3.2.3.1 Identifiability of the general case

As mentioned in Section 3.2, the IMCA model described by equations (3.1)
and (3.3) generalises previous nonlinear ICA models by relaxing the indepen-
dence assumption required for the latent variables. We propose here to extend
the identifiability theory of nonlinear ICA developed in Hyvärinen et al. (2019)
and Khemakhem et al. (2020a) to this new framework.

We start by providing a weaker form of identifiability guarantee that applies
to the general case, including quasi-location families.

Theorem 3.4. Assume the following:

(i) The observed data follows the exponential IMCA model of equations (3.1)
and (3.3).

(ii) The mixing function f : Rd → Rd is invertible.

(iii) The conditional latent distribution p(z|u) is strongly exponential (Defini-
tion 2.7), and its sufficient statistic is differentiable.

(iv) There exist k + 1 distinct points u0, . . . ,uk such that the matrix

L = (λ(u1)− λ(u0), . . . ,λ(uk)− λ(u0))

of size k × k is invertible, where k = ∑d
i=1 dim(Ti).
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Then the IMCA model is weakly identifiable.

See Appendix 3.A for the proof. This theorem extends the basic identifi-
ability result of Theorem 2.9 in Chapter 2. It proves a general identifiability
results without the restriction of having independent latent variables. This was
previously not considered to be possible and could only be demonstrated in very
specific circumstances and under very restrictive additional assumptions (e.g.,
Monti and Hyvärinen (2018) require both non-negativity and orthonormality of
a mixing matrix in the linear case). In the nonlinear case, to prove Theorem 3.4,
we still require that the latent variables are only dependent through the base
measure, while still being independently modulated through the auxiliary vari-
able u. This (and the necessity of having an auxiliary variable) is the price to
pay for obtaining identifiability in a nonlinear setting.

3.2.3.2 Identifiability of the non quasi-location family

The identifiability result of Theorem 3.4 is weak because of the presence of the
linear transformation A in equation (3.5). It turns out that by excluding the
quasi-location family (Definition 3.3), we can remove this matrix and achieve a
stronger form of identifiability. The main technical result of this chapter is the
following theorem, proved in Appendix 3.A.

Theorem 3.5. Assume that the assumptions of Theorem 3.4 hold. Further
assume one of the two following sets of assumptions:

(v) The sufficient statistic in (3.3) is twice differentiable and dim(Tl) ≥ 2, ∀l.

(vi) The mixing function f is a D2-diffeomorphisms1.

or

(v)’ dim(Tl) = 1 and Tl is non-monotonic ∀l.

(vi)’ The mixing function f is a C1-diffeomorphism2.

Then the IMCA model is strongly identifiable.
1invertible, all second order cross-derivatives of the function and its inverse exist but

aren’t necessarily continuous
2invertible, all partial derivatives of the function and its inverse exist and are continuous
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This form of identifiability mirrors the strongest results proven for nonlinear
ICA in Theorems 2.9 and 2.11 of Chapter 2, without requiring that the latent
components be independent. As far as we know, this is the first proof of the
kind for nonlinear representation learning. We further note that this theorem
generalises even the existing identifiability theory of the linear case.

3.2.3.3 Identifiability in the total absence of independence

The identifiability results presented above by Theorems 3.4 and 3.5 are made
possible by the assumption of independent modulation (3.3). It might be
desirable to forgo such an assumption, and consider a general exponential
family distribution for the latent variable:

p(z|u) = Q(z)e⟨T(z),λ(u)⟩−Γ(λ). (3.6)

It turns out that, thanks to the modulation of the parameters λ by the auxiliary
variable u, the weak identifiability result of equation (3.5) still holds for a
model described by equations (3.1) and (3.6), as summarized by the following
result, which we prove in Appendix 3.A.

Theorem 3.6. Assume the following:

1. The observed data follows the model described by equations (3.1) and (3.6).

2. The mixing function f : Rd → Rd is invertible.

3. The conditional latent distribution p(z|u) is strongly exponential (Defini-
tion 2.7), and its sufficient statistic is differentiable.

4. There exist k + 1 distinct points u0, . . . ,uk such that the matrix

L = (λ(u1)− λ(u0), . . . ,λ(uk)− λ(u0))

of size k × k is invertible, where k = ∑d
i=1 dim(Ti).

Then the model is weakly identifiable.
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3.3 Estimation of IMCA

A recent development in nonlinear ICA is given by Hyvärinen et al. (2019)
where the authors assume they observe data x = f(z) following a noiseless
conditional nonlinear ICA model p(z|u) = ∏

i pi(zi|u). For estimation, they
rely on a self-supervised binary discrimination task based on randomization to
learn the unmixing function. It turns out that this approach can also be used
to estimate the sources in an IMCA model.

More specifically, we suppose that we observe data (x,u) that follows the
exponential IMCA model of equations (3.1) and (3.3). Following Hyvärinen
et al. (2019) we start by constructing new data from the observations x and u
to obtain two datasets

x̃ = (x,u), (3.7)
x̃∗ = (x,u∗), (3.8)

where u∗ is a random value from the distribution of u and independent of x.
We then proceed by defining a binary classification task, where we consider the
set of all {x̃, x̃∗} as data points to be classified, and whether they come from
the randomised dataset or not as labels. In particular, we train a deep neural
network using binary logistic regression to perform this classification task. The
last hidden layer of the neural network is a feature extractor denoted s(x). The
purpose of the feature extractor is therefore to extract the relevant features
which will allow to distinguish between the true dataset x̃ and the randomised
dataset x̃∗. The final layer of the network is simply linear, and the regression
function takes the form

r(x,u) = s(x)⊤v(u) + a(x) + b(u). (3.9)

By learning to optimize for this regression task, the feature extractor s
will approximate the true source variables, as is summarized by the following
theorem, proved in Appendix 3.B.

Theorem 3.7 (Hyvärinen et al. (2019), adapted). Assume that the assump-
tions of Theorems 3.4 and 3.5. Further assume that we train a nonlinear logistic
regression with universal approximation capability to discriminate between x̃ in
equation (3.7) and x̃∗ in equation (3.8) with the regression function r(x,u) in
equation (3.9), where the feature extractor has dimension d.
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Then in the limit of infinite data, the components si(x) of the regression
function (3.9) give the latent components up to pointwise nonlinearities.

Another recent development in nonlinear ICA estimation was detailed in
Chapter 2, where a different approach for the estimation of nonlinear ICA
was proposed. We can recover the independent sources using an identifiable
VAE (iVAE) conditional on an auxiliary variable u. The theory of iVAE is
premised on the consistency of maximum likelihood training and the flexibility
of VAEs in approximating densities. It was shown that given enough data,
a variational posterior qϕ(z|x,u) learns to approximate the true posterior
distribution pθ(z|x,u), and can thus be used to invert the mixing function.
The iVAE, like a regular VAE, is trained by maximizing a lower bound (ELBO)
on the data log-likelihood (Kingma and Welling, 2014). Given a dataset D of
observations (x,u), the ELBO L (θ,ϕ) is given by

EpD [log pθ(x|u)] ≥ L(θ,ϕ) = EpD

[
Eqϕ(z|x,u) [log pθ(x, z|u)− log qϕ(z|x,u)]

]
.

(3.10)
While this framework has been developed for nonlinear ICA, the proofs for

the identifiability results can be generalized for IMCA. This is summarized by
the following theorem, proved in Appendix 3.B.

Theorem 3.8. Assume that the assumptions of Theorems 3.4 and 3.5. Further
assume that the family of distributions qϕ(z|x,u) contains pθ(z|x,u), and that
we maximize L(θ,ϕ) in equation (3.10) with respect to both θ and ϕ.

Then in the limit of infinite data, the VAE learns the true parameters θ∗ of
the model (3.1), up to the equivalence class of strong identifiability, defined in
equation (3.4).

Finally, while both these nonlinear ICA methods can be adapted for the
estimation of IMCA, they are not without their limitations. On the one hand,
the self-supervised approaches rely on heuristic schemes and are statistically
inefficient. On the other hand, the likelihood-based approach used in iVAE
requires normalized densities. Normalizing constants are notoriously hard
to compute in high dimensions, especially when the densities at play are
multivariate and do not factor into products of univariate densities due to
a lack of independence. That is why we propose a novel estimation method
based on energy-based modelling in Chapter 4, which attempts to solve these
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limitations. We also relegate all the experimental validation of the estimation
of IMCA to the next chapter.

3.4 Conclusion

We introduce the Independently Modulated Component Analysis (IMCA)
framework: a generative model that generalizes previous nonlinear ICA models
(Hyvärinen et al., 2019; Khemakhem et al., 2020a) by allowing the latent
variables to be dependent, while retaining the identifiability guarantees. The
dependence between the latent components is achieved by using an arbitrary
base measure for their joint distribution.

The key assumption for identifiability is to assume that the latent joint
density has a part that is modulated in a factorizable way when conditioned by
an auxiliary variable (such as time index, history, or another data source). The
central contribution of this chapter is a thorough analysis of the identifiability
of IMCA. Our proofs extend previous ones to the non-independent case, and
are the most general to date, even when considering linear ICA theory.

Finally, we show that some of the previous nonlinear ICA estimation meth-
ods can be easily adapted for the estimation of IMCA. The empirical validation
is relegated to Chapter 4 after introducing a novel estimation technique.
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Appendices to Chapter 3

3.A Identifiability proofs

If a distribution is both strongly exponential and exponentially factorial, then
it satisfies many of the properties discussed in Appendix 2.A for the univariate
strongly exponential family, as is summarized by the following proposition.

Proposition 3.9. If a density pθ is both strongly exponential and exponentially
factorial, then the conclusions of Lemmas 2.16 to 2.20 apply to the individual
sufficient statistics Ti in equation (3.2).

This means that we can use Lemmas 2.16 to 2.20 in the proofs above, even
if the densities in question are not univariate.

Proof of Theorem 3.4. Consider two different sets of parameters (f ,T,λ, Q)
and (f̃ , T̃, λ̃, Q̃), defining two conditional latent densities p(z|u) and p̃(z|u).
Let g := f−1 and g̃ := f̃−1 Suppose that the density of the observations arising
from these two different models are equal:

p(x|u) = p̃(x|u), (3.11)
log p(g(x)|u)− log |det Jg(x)| = log p(g̃(x)|u)− log |det Jg̃(x)| ,

(3.12)

logQ(g(x)) + T(g(z))⊤λ(u)− Γ(u)− log |det Jg(x)| =
log Q̃(g̃(x)) + T̃(g̃(z))⊤λ̃(u)− Γ̃(u)− log |det Jg̃(x)| .

(3.13)

Let u0, . . . ,uk be the points provided by assumption (iii) of the theorem for T,
where k = ∑

i ki, and ki = dim(Ti). We plug each of those ul in equation (3.13)
to obtain k + 1 such equations. Then, we subtract the first equation for u0

from the remaining k equations to get for l = 1, . . . , k:

T(z)⊤(λ(ul)− λ(u0))−G(ul) = T̃(z)⊤(λ̃(ul)− λ̃(u0))− G̃(ul), (3.14)

where we grouped terms that are only a function of ul in G and G̃.
The crucial point here is that the non factorial terms Q(g(x)) and Q̃(g̃(x))

cancel out when we take these differences. This is what allows us to generalize
the identifiability results of nonlinear ICA to IMCA.
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Let L bet the matrix defined in assumption (iv), and L̃ := (. . . , λ̃(ul) −
λ̃(u0), . . . ). Define b = (. . . , G(ul)− G̃(ul), . . . ). Expressing equation (3.14)
for all points ul in matrix form, we get:

L̃⊤T̃(z) = L⊤T(z)− b (3.15)

By assumption (iv), L is invertible, and thus we can write

T(z) = AT̃(z) + c, (3.16)

where c = −L−⊤b and A = L−⊤L̃⊤.
To prove that A is invertible, we first take the gradient of equation (3.16)

with respect to z. The Jacobian JT of T is a matrix of size k × d. Its
columns are independent because each Ti is only a function of zi, and thus
the nonzero entries of each column are in different rows. This means that
its rank is d (since k = ∑d

i=1 ki ≥ d). This is not enough to prove that A is
invertible though. For that, we consider the functions Ti for which ki > 1: for
each of these functions, using Lemma 2.17, there exists points z(1)

i , . . . , z
(ki)
i

such that (T′i(z
(1)
i ), . . . ,T′i(z

(ki)
i )) are independent. Collate these points into

kmax := maxi ki vectors z(j) := (z(j)
1 , . . . z

(j)
d ), where for each i, z(j)

i = z
(1)
i if

j > ki, and z(1)
i is a point such that Ti(z(1)

i ) ̸= 0 if ki = 1. We plug these vectors
into equation (3.16) after differentiating it, and collate the dkmax equations in
vector form:

M = AM̃, (3.17)

where M :=
(
. . . ,JT(z(j)), . . .

)
and M̃ :=

(
. . . ,JT̃(z(j)), . . .

)
. Now the matrix

M is of size k × dkmax, and it has exactly k independent columns by definition
of the points z(j). This means that M is of rank k, which in turn implies that
rank(A) ≥ k. Since A is a k × k matrix, we conclude that A is invertible.

Proof of Theorem 3.5. The conclusion of Theorem 3.4 mirrors the one devel-
oped by Khemakhem et al. (2020a) for nonlinear ICA. In fact, the idea behind
the IMCA framework was to show that the factorial modulation of the latent
variable by the auxiliary variable is a strong assumption, which allows us to
relax independence without sacrificing any identifiability guarantees. To prove
the stronger form of identifiability of equation (3.4), we can simply make the
same assumptions as Khemakhem et al. (2020a, Theorems 2, 3), and refer to
their proof.
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Proof of Theorem 3.6. We start by considering two different sets of parameters
θ = (f ,T,λ, Q) and θ̃ = (f̃ , T̃, λ̃, Q̃), defining two conditional latent densities
p(z|u) and p̃(z|u). Note that in the proof of Theorem 3.4, equations (3.11)
to (3.16) do not make use of the fact that the prior distribution is exponentially
factorial. In fact the latter is only invoked to justify the use of Lemma 2.17 to
prove that the matrix A in equation (3.16) is invertible.

Here, we will use a slightly different approach. We start from

T(z) = AT̃(z) + c. (3.18)

Let z(0) ∈ Rd, and define g(z) = T(z) − T(z(0)) and similarly for g̃(z).
By Lemma 2.18, since p(z|u) is strongly exponential, there exists k points
z(1), . . . , z(k) such that R =

(
T(z(1))−T(z(0)), . . . ,T(z(k))−T(z(0))

)
∈ Rk×k

is invertible. By defining R̃ similarly to R and plugging all this in equa-
tion (3.18), we get

R = AR̃. (3.19)

Since R is invertible, we can conclude that A is also invertible, and that the
IMCA model is weakly identifiable.

3.B Estimation proofs

Proof of Theorem 3.7. The proof of this theorem is inspired from Hyvärinen
et al. (2019). By well known theory, after convergence of logistic regression, the
regression function equals the difference of the log-densities of the two classes:

d∑
i=1

si(x)vi(u) + a(x) + b(u) = log px̃(x,u)− log px̃∗(x,u∗) (3.20)

= log p(z,u) + log |Jg(x)|
− log p(z)p(u)− log |Jg(x)|

(3.21)

= log p(z|u)− log p(z) (3.22)

= logQ(z)− logZ(u) +
d∑

i=1
Ti(zi)⊤λi(u)

− log p(z),
(3.23)

where g = f̃−1 and Jg(x) is the Jacobian matrix of g at point x. Let u0, . . . ,uk

be the point provided by assumption (iv). We plug each of those uk in
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3.B. Estimation proofs

equation (3.20) to obtain k + 1 such equations. We subtract the first equation
for u0 from the remaining k equations to get for l = 1, . . . , k:

d∑
i=1

si(x)(vi(ul)− vi(u0)) + (b(ul)− b(u0))− log Z(ul)
Z(u0)

=

d∑
i=1

Ti(zi)⊤(λi(ul)− λi(u0)). (3.24)

Interestingly, the term logQ(z) cancels out. The rest of the proof is similar to
Theorems 3.4 and 3.5. By defining and L = (. . . ,λ(ul) − λ(u0), . . .) ∈ Rk×k

and V = (. . . ,v(ul) − v(u0), . . .) ∈ Rk×d, and grouping all other terms in b,
we get

L⊤T(z) = V⊤s(x) + b. (3.25)

Since L is invertible, this equation is equivalent to

T(z) = As(x) + c, (3.26)

where A = L−⊤V⊤ ∈ Rk×d and c = L−⊤b. This looks very similar to
equation (3.16), but this time, the matrix A is not square, albeit full column
rank. This makes it harder to mimic the proof of Theorem 3.5 to prove that the
self-supervised learning scheme can be used to learn the true latent components
up to permutation and nonlinear scaling (strong identifiability).

We can alleviate this by slightly altering the form of the regression function
(3.9). We need to make the effective dimension of the feature extractor s match
k = ∑

i ki, the total dimension of the sufficient statistic T.
Let Hki

the function that repeats its scalar input ki times:

Hki
(x) = (x, . . . , x) ∈ Rki (3.27)

By using the alternative regression function

r̃(x,u) =
d∑

i=1
Hki

(si(x))⊤vi(u) + a(x) + b(u), (3.28)

where vi ∈ Rki , and similar arguments as above, we get

d∑
i=1

Hki
(si(x))⊤(vi(ul)− vi(u0)) + (b(ul)− b(u0))− log Z(ul)

Z(u0)
=

d∑
i=1

Ti(zi)⊤(λi(ul)− λi(u0)). (3.29)
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3. Independently modulated component analysis

We then proceed as above, with the difference that the matrix A ∈ Rk×k is
now square.

By simply substituting T̃ by s in the proof of Theorems 3.4 and 3.5, we
can use the same reasoning to conclude.

Proof of Theorem 3.8. The identifiability results of Theorems 3.4 and 3.5 match
those developed for nonlinear ICA models by Khemakhem et al. (2020a). Their
consistency proof builds on the identifiability up to equivalence class of the
model and can thus be applied to IMCA without modification. We give a
summary of the proof below.

The ELBO (3.10) can be written as

L(θ,ϕ) = log pθ(x|u)−KL(qϕ(z|x,u)∥pθ(z|x,u)). (3.30)

If the family qϕ(z|x,u) is large enough to include pθ(z|x,u), then by optimizing
the loss over its parameter ϕ, we will minimize the KL term, eventually reaching
zero, and the loss will be equal to the log-likelihood. The VAE in this case
inherits all the properties of maximum likelihood estimation. In particular,
MLE is consistent. This consistency entails that MLE will converge to the
true parameter θ∗ if a model is identifiable. In our case, since we only have
identifiability up to an equivalence class, the consistency of MLE can only
guarantee that we learn the true parameter up to this equivalence class, which
is what we seek to achieve.
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Chapter 4

Identifiable conditional energy-based
models

We consider the identifiability theory of probabilistic models and establish
sufficient conditions under which the representations learned by a very broad
family of conditional energy-based models are unique in function space, up
to a simple transformation. In our model family, the energy function is the
dot-product between two feature extractors, one for the dependent variable,
and one for the conditioning variable. We show that under mild conditions,
the features are unique up to scaling and permutation. Our results extend
recent developments in nonlinear ICA, and in fact, they lead to an important
generalization of ICA models. In particular, we show that our model can be
used to estimate the components in the framework of Independently Modulated
Component Analysis (IMCA), a new generalization of nonlinear ICA that
relaxes the independence assumption. A thorough empirical study shows
that representations learned by our model from real-world image datasets are
identifiable and improve performance in transfer learning and semi-supervised
learning tasks.

This chapter is based on Khemakhem et al. (2020b).
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4. Identifiable conditional energy-based models

4.1 Introduction

A central question in unsupervised deep learning is how to learn nonlinear
representations that are a faithful reconstruction of the true latent variables
behind the data. This allows us to learn representations that are semantically
meaningful, interpretable and useful for downstream tasks. Identifiability is
fundamental for meaningful and principled disentanglement and in applications
such as causal discovery. However, this is a challenging task: by definition, we
never observe the latent variables; the only information directly available to us
is given by the observed variables. Learning the true representations is only
possible when the representation is identifiable: if, in the limit of infinite data,
only a single representation function can fit the data. Conversely, if multiple
representation functions can fit the observations in the limit of infinite data,
then the true representation function is unidentifiable.

Until recently (Hyvärinen and Morioka, 2016; Hyvärinen and Morioka,
2017), results relating to identifiability of (explicit and implicit) latent variable
models were mainly constrained to linear models (as in linear ICA for example),
as it was acknowledged that the flexibility of nonlinear mappings could yield
arbitrary latent variables which fulfil model assumptions such as independence
(Hyvärinen and Pajunen, 1999). However, it is now understood that nonlinear
deep latent variable models can be identifiable provided we observe some
additional auxiliary variables such that the latent variables are conditionally
independent given the auxiliary variable. The approach was introduced using
self-supervised learning by Hyvärinen et al. (2019), and Khemakhem et al.
(2020a) explicited a connection between nonlinear ICA and the framework of
variational autoencoders. It was shortly followed by work by Sorrenson et al.
(2020), where a similar connection was made to flow-based models (Rezende and
Mohamed, 2015). This signals the importance of identifiability in popular deep
generative models. These works formalized a trade-off between distributional
assumptions over latent variables (from linear and independent to nonlinear
but conditionally independent given auxiliary variables) that would lead to
identifiability.

We extend this trend to a broad family of (unnormalized) conditional energy-
based models (EBM), using insight from the nonlinear ICA theory. EBMs
offer unparalleled flexibility, mainly because they do not require the modelled
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4.1. Introduction

densities to be normalized nor easy to sample from. The energy function we will
consider is defined in two steps: we learn two feature extractors, parametrized
by neural networks, one for each of the observed variables (dependent and
conditioning); then, we set the energy function to be the dot-product of the
learned features. The modelled conditional densities are defined to be the
exponential of the negative energy function.

The theoretical contribution of this chapter is to provide a set of sufficient
mild conditions to be satisfied by the feature extractors, which would guarantee
their identifiability: they learn representations that are unique up to a linear
transformation. In addition, by slightly altering the definition of the energy
function, we prove that the linear transformation is essentially a permutation.
These conditions are functional, i.e. they abstract away the architecture of
the networks. Moreover, our conditional EBM generalizes previous results by
altogether dropping any distributional assumptions on the representations—
which are ubiquitous in the latent variable case. Finally, most of our theoretical
results hold for overcomplete representations, which means that unlike the
earlier works cited above, our model can even be shown to have universal
approximation capabilities. Effectively, this makes our family of models very
flexible and adaptable to practical problems. We call this model Identifiable
Conditional Energy-Based deep Models, or ICE-BeeM for short.

Besides, while recent identifiability theory focused on providing functional
conditions for identifiability, such work is a bit removed from the reality of
neural network training. Here, we provide a neural network architecture based
on fully connected layers, for which the functional conditions hold and is thus
identifiable. This is the first step to bridge the gap between theoretically
identifiable models and ones that can be implemented in practice.

As an application of our identifiability results, we show that, after fitting
the conditional model to the data, a careful design of ICE-BeeM allows the
feature extractor to uniquely recover the latent variables that generated the
observations according to a nonlinear ICA, or, more generally, an IMCA model.
This solves many of the limitations of previously proposed estimation methods
(Hyvärinen et al., 2019; Khemakhem et al., 2020a). As a further, somewhat
different application of our results, we show how identifiability of ICE-BeeM
can be leveraged for transfer and semi-supervised learning. Finally, we show
empirically that ICE-BeeM learns identifiable representations from real-world

131



4. Identifiable conditional energy-based models

image datasets. In fact, we believe that the identifiability results are generally
important for a principled application of EBMs, whether for the purposes of
disentanglement or otherwise.

4.2 Identifiable conditional energy-based deep
models

In this section, we define ICE-BeeM, and study its properties. All proofs can
be found in Appendix 4.C.

4.2.1 Model definition

We collect a dataset of observations consisting of tuples (x,y), where x ∈ X ⊂
Rdx is the main variable of interest, also called the dependent variable, and
y ∈ Y ⊂ Rdy is an auxiliary variable also called the conditioning variable.

Consider two feature extractors fθ(x) ∈ Rdz and gθ(y) ∈ Rdz , which we
parametrize by neural networks, and where θ is the vector of weights and biases.
To alleviate notations, we will drop θ when it’s clear which quantities we refer
to. These feature extractors are used to define the conditional energy function

Eθ(x|y) = fθ(x)⊤gθ(y). (4.1)

The parameter θ lives in the space Θ, which is defined such that the normalizing
constant Z(y,θ) is finite:

Θ =
{

θ : Z(y; θ) =
∫
X

exp(−Eθ(x|y))dx <∞
}

Our family of conditional energy-based models has the form:

pθ(x|y) = exp(−fθ(x)⊤gθ(y))
Z(y; θ) . (4.2)

As we will see later, this choice of the energy function is not restrictive, as our
model has powerful theoretical guarantees: universal approximation capabilities
and strong identifiability properties. There exists a multitude of methods we
can use to estimate this model (Hyvärinen, 2005; Gutmann and Hyvärinen,
2010; Ceylan and Gutmann, 2018; Uehara et al., 2020). In this chapter, we
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4.2. Identifiable conditional energy-based deep models

will use Flow Contrastive Estimation (Gao et al., 2020) and Denoising Score
Matching (Vincent, 2011), which are discussed and extended to the conditional
case in Appendix 4.B.

4.2.2 Identifiability

As stated earlier, we want our model to learn meaningful representations of
the dependent and conditioning variables. In particular, when learning two
different models of the family (4.2) from the same dataset, we want the learned
features to be very similar.

This similarity between representations is better expressed as an equivalence
relation on the parameters θ of the network, which would characterize the
form of identifiability we will end up with for our energy model. This notion of
identifiability up to equivalence class was introduced in Section 2.4.1 to address
the fact that there typically exist many choices of neural network parameters
θ that map to the same point in function-space. In our case, it is given by the
following definitions:

Definition 4.1 (Weak identifiability). Let ∼f
w and ∼g

w be equivalence relations
on Θ defined as:

θ ∼f
w θ′ ⇔ ∀x, fθ(x) = Afθ′(x) + c,

θ ∼g
w θ′ ⇔ ∀x,gθ(y) = Bgθ′(y) + e,

(4.3)

where A and B are (dz × dz)-matrices, whose ranks are at least min(dz, dx)
and min(dz, dy) respectively, and c and e are vectors.

Definition 4.2 (Strong identifiability). Let ∼f
s and ∼g

s be the equivalence
relations on Θ defined as:

θ ∼f
s θ′ ⇔ ∀i, ∀x, fi,θ(x) = aifσ(i),θ′(x) + ci,

θ ∼g
s θ′ ⇔ ∀i, ∀x, gi,θ(x) = bigγ(i),θ′(x) + ei,

(4.4)

where σ and γ are permutations of [[1, n]], ai and bi are nonzero scalars and ci

and ei are scalars.

Two parameters are thus considered equivalent if they parametrize two
feature extractors that are equal up to a linear transformation (4.3) or a
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scaled permutation (4.4). The subscripts w and s stand for weak and strong,
respectively.

Remark 4.3. The relation ∼f
w in equation (4.3) is an equivalence relation

in the strict term only if A is full rank. If A is not full rank (which is
only possible if dz > dx, given the rest of assumptions), then the relation is
not necessarily symmetric. This is not a real problem, and can be fixed by
changing the definition to: “there exists A1,A2 such that fθ = A1fθ′ + c1 and
fθ′ = A2fθ + c2”. In the remainder, we use the simpler version of Definition 4.1
for clarity.

Identifiability in the context of probability densities modelled by neural net-
works can be seen as a study of the degeneracy of the networks. In applications
where the representations are used in a downstream classification task, the
weak identifiability (4.3) may be enough. It guarantees that the hyperplanes
defining the boundaries between classes in the feature space are consistent, up
to a global rotation, and thus the downstream task may be unaffected. Strong
identifiability (4.4), on the other hand, is crucial in applications where such
rotation is undesirable. For example, Monti et al. (2019) propose an algorithm
for causal discovery based on independence tests between the observations and
latent variables learnt by solving a nonlinear ICA task. The tested indepen-
dences only hold for the true latent noise variables. If one were to learn the
latent variables only up to a rotation, such a causal analysis method would not
work.

4.2.2.1 Weak identifiability

This initial form of identifiability requires very few assumptions on the feature
extractors f and g. In fact, the conditions we develop here are easy to satisfy
in practice, and we will see how in Section 4.3. Most importantly, our result
also covers the case where the number of features is larger than the number of
observed variables. As far as we know, this is the first identifiability result that
extends to overcomplete representations in the nonlinear setting. The following
theorem summarizes the main result.

Theorem 4.4. Let ∼f
w and ∼g

w be the equivalence relations in equation (4.3).
Assume that for any choice of parameter θ:
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4.2. Identifiable conditional energy-based deep models

1. The feature extractor fθ is differentiable, and its Jacobian Jfθ
is full rank.

2. There exist dz + 1 points y0, . . . ,ydz such that the matrix

Rθ =
(
gθ(y1)− gθ(y0), . . . ,gθ(ydz)− gθ(y0)

)
of size dz × dz is invertible.

then pθ(x|y) = pθ′(x|y) =⇒ θ ∼f
w θ′, where ∼f

w is defined in equation (4.3).
With fθ and gθ switched, the same conclusion applies to gθ: pθ(x|y) =

pθ′(x|y) =⇒ θ ∼g
w θ′, where ∼g

w is defined in equation (4.3).
Finally, if both assumptions 1 and 2 are satisfied by both feature extractors

fθ and gθ, then the matrices A and B in equation (4.3) have full row rank
equal to dz.

Remark 4.5 (Intuition behind assumption 2). Assumption 2 requires that the
conditioning feature extractor g has an image that is rich enough. Intuitively,
this relaxes the amount of flexibility the main feature extractor f would need
to have if g were to be very simple. It implies that the search for f will be
naturally restricted to a smaller space, for which we can prove identifiability.

Remark 4.6 (Proof under weaker assumptions). Assumption 1 of full rank
Jacobian can be weakened without changing the conclusion of Theorem 4.4, by
instead supposing that:

1.’ There exists a point x0 ∈ Rd where the Jacobian Jfθ
of fθ exists and is

invertible.

In addition, this condition can be scrapped altogether if we relax the
definition of the equivalence class in remark 4.3 to have no conditions on
the ranks of matrices A1 and A2. This, however, comes at the expense of a
relatively weak and potentially meaningless equivalence class.

Finally, assumption 2 of Theorem 4.4 can be replaced by requiring the
Jacobian of gθ to be differentiable and full rank in at least one point, but this
is only possible if the conditioning variable is continuous.

4.2.2.2 Strong identifiability

We propose two different alterations to our energy function which will both allow
for the stronger form of identifiability defined by ∼f

s and ∼g
s in equation (4.4).
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We will focus on f , but the same results hold for g by a simple transposition
of assumptions. Importantly, we will suppose that the output dimension dz is
smaller than the input dimension dx.

The first approach is based on restricting the feature extractor f to be non-
negative. This will put constraints on the matrix A defining the equivalence
relation ∼f

w: loosely speaking, if A induces a rotation in space, then it will
violate the non-negativity constraint since the only rotation that maps the
positive orthant of the plan to itself is the identity. As a result, the matrix A
can only be a scaled permutation matrix, as is summarized by the following
theorem.

Theorem 4.7. Assume that dz ≤ dx and that the assumptions of Theorem 4.4
hold. Further assume that, for any choice of parameter θ:

3. The feature extractor fθ is surjective, and its image is Rdz
+ .

Then pθ(x|y) = pθ′(x|y) =⇒ θ ∼f
s θ′, where ∼f

s is defined in equation (4.4).

The second alteration is based on augmenting f by its square, computed
element-wise. This effectively results in the 2dz-dimensional feature extractor

f̃(x) = (. . . , fi(x), f 2
i (x), . . . ) ∈ R2dz . (4.5)

This augmented feature map is combined with a 2dz-dimensional feature map
g̃(y) ∈ R2dz for the conditioning variable y, to define an augmented energy
function

Ẽ(x|y) = f̃(x)⊤g̃(y). (4.6)

The augmented feature extractor contains positive entries (the squares). By
applying Theorem 4.4 to f̃ , these positive entries will put constraints on the
form of the matrix A defining the equivalence relation ∼f

w. This will ultimately
lead to stronger identifiability results for the original feature extractor f . The
advantage of this modelling trick is that it does not require the features to be
positive. In fact, the squared entries only serve the purpose of constraining A.
However, it makes the effective size of the feature extractor equal to 2dz. This
is summarized by the following identifiability result:
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4.2. Identifiable conditional energy-based deep models

Theorem 4.8. Assume that dz ≤ dx and that the assumptions of Theorem 4.4
hold. Further assume that we use the augmented energy function Ẽ(x|y) in
equation (4.6), and that, for any choice of parameter θ, the following holds:

4. The feature extractor fθ is differentiable and surjective and its Jacobian
Jfθ

is full rank.

5. There exist 2dz + 1 points y0, . . . ,y2dz such that the matrix

R̃θ =
(
g̃θ(y1)− g̃θ(y0), . . . , g̃θ(y2dz)− g̃θ(y0)

)
of size 2dz × 2dz is invertible.

Then pθ(x|y) = pθ′(x|y) =⇒ θ ∼f
s θ′, where ∼f

s is defined in equation (4.4).

These two theorems are important as they prove very strong identifiability
results for a conditional energy-based model. As far as we know, our results
require the least amount of assumptions in recent theoretical work for functional
identifiability of deep learning models (Khemakhem et al., 2020a; Sorrenson
et al., 2020). Most importantly, we do not make any assumption on the
distribution of the latent features.

4.2.3 Universal approximation capability

With a potentially overcomplete network, we can further achieve a universal
approximation of the data distribution. It might initially seem that this is an
impossible endeavour given the somehow restricted form of the energy function.
However, if we also consider the dimension dz of f and g as an additional
architectural parameter that we can change at will, then we can always find an
arbitrarily good approximation of the conditional probability density function.
This is summarized by the following theorem:

Theorem 4.9. Let p(x|y) be a conditional probability density. Assume that
X and Y are compact Hausdorff spaces1 and that p(x|y) > 0 almost surely
∀(x,y) ∈ X × Y. Further assume that the class of functions fθ and gθ defined
by θ ∈ Θ are dense in the set of continuous functions on X and Y, respectively.

1See Definitions 4.15 and 4.16 in Appendix 4.C.3
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Then for each ε > 0, there exists (θ, dz) ∈ Θ×N, where dz is the dimension
of f , such that

sup
(x,y)∈X×Y

|pθ(x|y)− p(x|y)| < ε.

This means that our model can approximate any conditional distribution
that is positive on its compact support arbitrarily well. In practice, the optimal
dimension dz of the feature extractors can be estimated using cross-validation
for instance. It is possible that to achieve a near-perfect approximation, we
require a value of dz that is larger than the dimension of the input. This is
why it is crucial that our identifiability result from Theorem 4.4 covers the
overcomplete case as well and highlights the importance of our contribution in
comparison to previous identifiable deep models.

4.3 An identifiable neural network
architecture

In this section, we give a concrete example of a neural network architecture that
satisfies the functional assumptions of Theorems 4.4, 4.7 and 4.8. We suppose
that the networks f and g are parametrized as multi-layer perceptrons (MLP).
More specifically, consider an MLP with L layers, where each layer consists of
a linear mapping with weight matrix Wl ∈ Rdl×dl−1 and bias bl ∈ Rdl , followed
by an activation function hl. Consider the following architecture:

(A) The activation functions hl are LeakyReLUs2, ∀l ∈ [[1, L− 1]].

(B) The weight matrices Wl are full rank (its rank is equal to its smaller
dimension), ∀l ∈ [[1, L]].

(C) The row dimension of the weight matrices are either monotonically increas-
ing or decreasing: dl ≥ dl+1,∀l ∈ [[0, L− 1]] or dl ≤ dl+1,∀l ∈ [[0, L− 1]].

(D) All submatrices of Wl of size dl × dl are invertible if dl < dl+1, ∀l ∈
[[0, L− 1]].

This architecture satisfies the assumptions of Theorems 4.4, 4.7 and 4.8, as is
stated by the propositions below.

2A LeakyReLU has the form hl(x) = max(0, x) + α min(0, x), α ∈ (0, 1).
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Proposition 4.10. Consider an MLP f whose architecture satisfies assump-
tions (A) to (C), then f satisfies assumption 1. If in addition, dL ≤ d0, then
f satisfies assumption 4. Finally, if on top of that, we apply a ReLU (or
any positive activation function) to the output of the network, then f satisfies
assumption 3.

Proposition 4.11. Consider a nonlinear MLP g whose architecture satisfies
assumptions (A), (B) and (D). Then, g satisfies assumptions 2 and 5.

While assumptions (A) to (D) might seem a bit restrictive, they serve the
important goal of giving sufficient architectural conditions that correspond to
the purely functional assumptions of Theorems 4.4, 4.7 and 4.8. Note that the
full rank assumptions are necessary to ensure that the learnt representations are
not degenerate since we lose information with low-rank matrices. In practice,
random initialisation of floating-point parameters, which are then optimized
with stochastic updates (SGD), will result in weight matrices that are almost
certainly full rank.

Remark 4.12 (Linear MLPs). The particular case of linear feature extractors
is quite interesting. If dz ≤ dy and the feature extractor g satisfies the
assumptions of Proposition 4.10, then assumption 2 is trivially satisfied. On
the other hand, if dz > dy, then assumption 2 can’t hold when the network
is linear. This signals that it is important to use deep nonlinear networks to
parametrize the feature extractors, at least in the overcomplete case.

4.4 Applications

4.4.1 Estimation of identifiable latent variable models

Next, we show how ICE-BeeM relates to the independently modulated compo-
nent analysis framework (IMCA), a generative latent variable model introduced
in Chapter 3 We show how we can use our energy-based model to estimate the
latent components. The proofs can be found in Appendix 4.E.

Model definition. Assume we observe a random variable x ∈ Rdx as a result
of a nonlinear transformation h of a latent variable z ∈ Rdz . We assume the
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distribution of z is conditioned on an auxiliary variable y ∈ Rdy , which is also
observed:

z ∼ p(z|y),
x = h(z).

(4.7)

We start by supposing here that dx = dz = d. The main modelling assumption
we make on the latent variable is that its density has the following form:

p(z|y) = Q(z)e
∑dz

i=1 Ti(zi)⊤λi(y)−Γ(y), (4.8)

where Q(z) is a base measure and Γ(y) is the conditional normalizing constant.
Crucially, the exponential term factorizes across components: the sufficient
statistic T of this exponential family is composed of d functions that are each
a function of only one component zi of the latent variable z.

Equations (4.7) and (4.8) together define a nonparametric model with
parameters (h,T,λ, Q). For the special case Q(z) = ∏

i Qi(zi), the distribution
of z factorizes across dimensions, and the components zi are independent. Then
the generative model gives rise to a nonlinear ICA model, and it was studied
to a great depth in Chapter 2.

In Chapter 3, we proposed to generalize such earlier models by allowing for
an arbitrary base measure Q(z), i.e. the components of the latent variable are
no longer independent, as Q does not necessarily factorize across dimensions.

Estimation by ICE-BeeM. Guided by the strong identifiability results
above, we suggest augmenting our feature extractor f by output activation
functions, resulting in the modified feature map

f̃(x) = (H1(f1(x)), . . . ,Hd(fd(x))). (4.9)

In Section 4.2.2.2 for instance, we used Hi(x) = (x, x2). These output nonlinear-
ities play the role of sufficient statistics to the learnt representation fθ(x), and
have a double purpose: to allow for strong identifiability results, and to match
the dimensions of the components Ti of sufficient statistic in equation (4.8).
This augmented feature map is used to define an ICE-BeeM, which in turn is
fitted to the data. The identifiability properties of ICE-BeeM, in conjunction
with those of IMCA, result in the feature extractor f to learn the true latent
variables, as summarized by the following Theorem.

140



4.4. Applications

Theorem 4.13. Assume:

(i) The observed data follows the exponential IMCA model of equations (4.7)
and (4.8).

(ii) The mixing function h is a D2-diffeomorphism3.

(iii) The sufficient statistics Ti are twice differentiable, and the functions
Tij ∈ Ti are linearly independent on any subset of X of measure greater
than zero4. Furthermore, they all satisfy dim(Ti) ≥ 2, ∀i; or dim(Ti) = 1
and Ti is non-monotonic ∀i.

(iv) There exist k + 1 distinct points y0, . . . ,yk such that the matrix

L = (λ(y1)− λ(y0), . . . ,λ(yk)− λ(y0))

of size k × k is invertible, where k = ∑d
i=1 dim(Ti).

(v) We use a consistent estimator to fit the model (4.2) to the conditional
density p(x|y), where we assume the feature extractor f(x) to be a D2-
diffeomorphism and d-dimensional, and the vector-valued pointwise non-
linearities Hi to be differentiable, and their dimensions to be chosen from
(dim(T1), . . . , dim(Td)) without replacement.

Then, in the limit of infinite data,

Hi(fi(x)) = AiTγ(i)(zγ(i)) + bi, (4.10)

where γ is a permutation of [[1, d]] such that dim(Hi) = dim(Tγ(i)) and Ai is
an invertible square matrix; that is: we can recover the latent variables up to a
block permutation linear transformation and pointwise nonlinearities.

Dimensionality reduction. In practice, it is a natural desire to have the
feature extractor reduce the dimension of the data, as it is usually very large.
This has been achieved in nonlinear ICA before (Hyvärinen and Morioka,
2016; Khemakhem et al., 2020a). It turns out that we can also incorporate
dimensionality reduction in IMCA and its estimation by ICE-BeeM, under
some assumptions.

3h is invertible, all second order cross-derivatives of the function and its inverse exist.
4In other words, p(z|u) is strongly exponential, see Definition 2.7.
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Suppose that only n out of d components of the latent variable are modulated
by the auxiliary variable y. In other words, we assume that the parameters
λn+1:d(y) are constant, and we can write its density as

p(z|y) = Q(z)e
∑n

i=1 Ti(zi)⊤λi(y)−Γ(y). (4.11)

The term e
∑d

i=n+1 Ti(zi)⊤λi is simply absorbed into Q(z). In this case, the feature
extractor f(x) ∈ Rd is still capable of recovering the n modulated components.
This is summarised by the following theorem.

Theorem 4.14. Assume the assumptions of Theorem 4.13 hold. Further
assume:

(vi) Only n < d components of the latent variable are modulated, and its
density has the form (4.11).

(vii) The feature extractor f has the form f(x) = (f∗(x), f †(x)) where f∗(x) ∈
Rn, and the auxiliary feature extractor g has the form g(y) = (g∗(y),g†)
where g∗(y) ∈ Rn and g† is constant.

Then f∗ recovers the n modulated latent components as per equation (4.10).

4.4.2 Transfer learning

As a second practical application of our framework where identifiability is
important, we consider meta-learning, particularly multi-task and transfer
learning. Assume we have N datasets, which could be, for instance, different
subjects in biomedical settings or different image datasets. This fits well with
our framework, where y = 1, . . . , N is now the index of the dataset, or “task”.
The key question in such a setting is how we can leverage all the observations to
better model every single dataset and especially transfer knowledge of existing
models to a new dataset.

To this end, we propose an intuitively appealing approach, where we approx-
imate the unnormalized log-pdf in y-th dataset p(x; y) by a linear combination
of a learned “basis” functions fi,θ as

log p(x; y) + logZ(θ) ≈
k∑

i=1
gi(y)fi,θ(x), (4.12)
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where the gi(y) are scalar parameters as a function of y, which act as coefficients
in the basis (fi,θ)i. This linear approximation is nothing else than a special
case of ICE-BeeM, but here, we interpret such an approximation as a linear
approximation in log-pdf space. In fact, what we are doing is a kind of PCA
in the set of probability distributions p(x; y). Such “probability space” PCA
allows the models for the different datasets to learn from each other, as in the
classical idea of denoising by projection onto the PCA subspace.

In transfer learning, we observe a new dataset, with distribution p(x; ynew)
for ynew = N + 1. Based on our decomposition, we approximate p(x; ynew) as in
equation (4.12). This leads to a drastic simplification: we can learn the basis
functions fi,θ from the first N datasets, then we only need to estimate the k
scalar parameters gi(ynew) for the new dataset. The coefficients are likely to be
sparse as well, which provides an additional penalty.

Reducing the transfer learning to the estimation of the gi(ynew) clearly
requires that we have estimated the true fi up to a linear transformation,
which is the weaker form of identifiability in Theorem 4.4. This is because
the sum in equation (4.12) is essentially a dot-product, which is invariant to
linear transformations. Moreover, using a sparsity penalty is only meaningful
if we have the true fi without any linear mixing, which requires the stronger
identifiability in Theorems 4.7 and 4.8.

Finally, training can be done by any method for EBM estimation. In
particular, it is very easy by score matching because equation (4.12) is an
exponential family for fixed fi (Hyvärinen, 2007).

4.5 Experiments5

4.5.1 Identifiability of representations on image
datasets

We explore the importance of identifiability and the applicability of ICE-
BeeM in a series of experiments on image datasets (MNIST, FashionMNIST,
CIFAR10 and CIFAR100). First, we investigate the identifiability of ICE-BeeM
by comparing representations obtained from different random initialisations,

5Code to reproduce the experiments is available at https://github.com/ilkhem/icebeem.
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4. Identifiable conditional energy-based models

using an unconditional EBM as a baseline. We further present applications
to transfer and semi-supervised learning, where we find identifiability leads to
significant improvements. Throghout these experiments, the class label is used
as the conditioning variable y. The different architectures used throughout
these experiments are described in Appendix 4.A.1.

Quantifying identifiability. We start by quantifying the identifiability of
the representations learned from image datasets, which serves to empirically
validate Theorems 4.4, 4.7 and 4.8. Briefly, these theorems provided conditions
for weak and strong identifiability of latent representations, respectively.

We propose to study the weak and strong identifiability properties of both
conditional and unconditional EBMs by training such models multiple times
using distinct random initialisations. We subsequently compute the mean corre-
lation coefficient (MCC, see Appendix 4.A.2) between learned representations
obtained via distinct random initialisations; consistent high MCCs indicate
the model is identifiable. In the context of weak identifiability, we consider
the MCC up to a linear transformation A, as defined in (4.3). Throughout
experiments, we employ canonical correlation analysis (CCA) to learn the linear
mapping A. However, our main interest is studying the strong identifiability of
EBM architectures, defined in (4.4). To this end we consider the MCC directly
on inferred representations (i.e., without a linear mapping A).

Both an ICE-BeeM model and an unconditional EBM were trained on three
different image datasets: MNIST, CIFAR 10 and 100. For each dataset, we train
models using 20 different random initialisations and compare inferred represen-
tations. Conditional denoising score matching (CDSM, see Appendix 4.B.1) was
employed to train all networks. Results presented in Figures [4.1a] and [4.1b]
show that for ICE-BeeM, the representations were more consistent, both in the
weak and the strong case, thus validating our theory. See Appendix 4.A.3.1 for
further details and experiments.

Application to transfer learning. Second, we present an application of
ICE-BeeM to transfer learning, as discussed in Section 4.4.2. We suppose that
the auxiliary variable y ∈ R is the index of a dataset or a task. We propose to
approximate the unnormalized log-pdf in y-th dataset log p(x|y) by a linear
combination of a learned “basis” functions fi,θ as log p(x; y) + logZ(θ) ≈
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Figure 4.1: Quantifying the identifiability of learnt representations using MCC
(higher is better).
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Figure 4.2: Transfer learning onto unseen classes using denoising score matching
objective (lower is better).
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Dataset f · gθ f · 1 fθ · gθ fθ · 1

MNIST 2.95 23.43 4.22 3.64
CIFAR10 8.03 23.08 8.37 8.16

Table 4.1: Transfer learning — CDSM objective (lower is better)

Dataset ICE-BeeM Uncond. EBM
FMNIST 77.07± 1.39 56.33± 3.18
CIFAR10 64.42± 1.09 51.88± 1.33

Table 4.2: Semi-supervised learning — Classification Accuracy (higher is better)

∑k
i=1 gi(y)fi,θ(x), where the gi(y) are scalar parameters that act as coefficients

in the basis (fi,θ). The basis functions are first learned from the available
datasets. For a new dataset ynew, the basis is fixed, while the scalar coefficients
gi(ynew are learned.

To this end, an ICE-BeeM model was trained on classes 0-7 of MNIST
and CIFAR10 using the CDSM objective. After training, we fix f and learn
gθ(ynew) for the unseen classes (we denote this by f · gθ; unseen classes are
8 & 9). We allow gθ to be parametrized by a vector for each class, which
leads to a drastic simplification for the new classes. We compare against
a baseline where both fθ and gθ are trained directly on data from unseen
classes only (i.e. there is no transfer learning—denoted fθ · gθ). Results are
presented in Figures [4.2a] and [4.2b] where we vary the sample size of the
unseen classes and report the CDSM objective. Overall, the use of a pretrained
f network improves performance, demonstrating effective transfer learning. We
also compare against a baseline where we just evaluate the pretrained f on the
new classes, while fixing g = 1 (without learning the new coefficients—denoted
f · 1); and a baseline where we estimate an unconditional EBM using new
classes only (no transfer—denoted fθ · 1).

The average CDSM scores are reported in Table [4.1], where the transfer
learning with an identifiable EBM (i.e., using ICE-BeeM) performs best. See
Appendix 4.A.3.2 for further details and experiments. We note here that based
on strong identifiability, we could impose sparsity on the coefficients gi(y),
which might improve the results even further.
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Figure 4.3: Simulations on synthetic nonlinear ICA/IMCA data. The perfor-
mance is measured using the MCC metric (higher is better).

Application to semi-supervised learning. Finally, we also highlight
the benefits of identifiability in the context of semi-supervised learning. We
compared training both an identifiable ICE-BeeM model and an unconditional
(non-identifiable) EBM on classes 0-7 and employing the learned features fθ

to classify unseen classes 8-9 using logistic regression. In both cases, training
proceeded via CDSM.

Table [4.2] reports the classification accuracy over unseen classes. We note
that ICE-BeeM obtains significantly higher classification accuracy, which we
attribute to the identifiable nature of its representations. See Appendix 4.A.3.3
for further details and experiments.

4.5.2 IMCA and nonlinear ICA simulations

We run a series of simulations comparing ICE-BeeM to previous nonlinear ICA
methods such as iVAE (Khemakhem et al., 2020a) and TCL (Hyvärinen and
Morioka, 2016). We generate non-stationary 5-dimensional synthetic datasets,
where data is divided into segments, and the conditioning variable y is defined
as a segment index.

First, we let the data follow a nonlinear ICA model, which is a special
case of equation (4.7) where the base measure µ(z), is factorial. Following
Hyvärinen and Morioka (2016), the z are generated according to isotropic
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Gaussian distributions with distinct precisions λ(y) determined by the segment
index.

Second, we let the data follow an IMCA model where the base measure µ(z)
is not factorial. We set it to be a Gaussian term with a fixed but non-diagonal
covariance matrix. More specifically, we randomly generate an invertible and
symmetric matrix Σ0 ∈ Rd×d, such that µ(z) ∝ e−0.5z⊤Σ−1

0 z. The covariance
matrix of each segment is now equal to Σ(y) = (Σ−1

0 + diag(λ(y)))−1, meaning
the latent variables are no longer conditionally independent. In both cases, a
randomly initialized neural network with a varying number of layers, L ∈ {2, 4},
was employed to generate the nonlinear mixing function h. The data generation
process and the employed architectures are detailed in Appendix 4.A.3.4.

In the case of ICE-BeeM, conditional flow contrastive estimation (CFCE,
see Appendix 4.B.2) was employed to estimate network parameters. To evaluate
the performance of the method, we compute the mean correlation coefficient
(MCC, see Appendix 4.A.2) between the true latent variables and the recovered
latent variables estimated by all three methods. Results for nonlinear ICA are
provided in Figure [4.3a], where we note that ICE-BeeM performs competitively
with respect to both iVAE and TCL. We note that as the depth L of the mixing
network increases, the performance of all methods decreases. Results for
IMCA are provided in Figure [4.3b] where ICE-BeeM outperforms alternative
nonlinear ICA methods, particularly when L = 4. This is because such other
methods implicitly assume latent variables are conditionally independent and
are therefore misspecified, whereas in ICE-BeeM, no distributional assumptions
on the latent space are made.

4.6 Conclusion

We proposed a new identifiable conditional energy-based deep model, or ICE-
BeeM for short, for unsupervised representation learning. This is probably
the first energy-based model to benefit from rigorous identifiability results.
Crucially, the model benefits from the tremendous flexibility and generality of
EBMs. We even prove a universal approximation capability for the model.

Empirically, we showed on real-world image datasets that this model learns
identifiable representations in the sense that the representations do not change
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arbitrarily from one run to another, and that such representations improve
performance in a transfer learning and semi-supervised learning applications.
We believe this paves the way for many new applications of EBMs, by giving
them a theoretically sound basis.
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Appendices to Chapter 4
This chapter has 5 main appendices:

• Appendix 4.A: we give extensive details on the experimental setup, as
well as additional experiments.

• Appendix 4.B: we discuss the estimation algorithms we used with ICE-
BeeM and how they can be extended to the conditional setting.

• Appendix 4.C: we prove the identifiability of ICE-BeeM and its universal
approximation capability.

• Appendix 4.D: we prove the identifiability of a neural network architecture
based on fully connected layers.

• Appendix 4.E: we show how ICE-BeeM estimates IMCA.

4.A Experimental protocol

4.A.1 Architectures and hyperparameters

In this section, we describe the neural network architectures used for the
experiments of Section 4.5.1, on the image datasets (MNIST, FashionMNIST,
CIFAR10 and CIFAR100).

We can distinguish three different types of configurations:

1. A series of fully connected layers — denoted MLP. This configuration
satisfies the assumptions of Section 4.3.

2. A mix of convolutional and fully connected layers — denoted ConvMLP.
We expect this configuration to work better than an MLP for images.

3. A variant of a RefineNet (Lin et al., 2017), following Song and Ermon
(2019), which implements skip connections to help low level information
reach the top layers — denoted for simplicity Unet (RefineNets are modern
variants of U-net architectures). This configuration is very advanced and
complicated, and serves to test if identifiable representations can be learnt
for modern architectures.

150



4.A. Experimental protocol

The detailed architectures are in Table [4.3].
After choosing one of the configurations, we can further chose to reduce

the dimensionality of the features (dz < dx), to use it in conjunction with
positive features (assumption 3 of Theorem 4.7) or with augmented features
(assumption 4 of Theorem 4.7). This results in the following nomenclature,
where we will take as an example a ConvMLP network:

• If we reduce the dimension of the latent space (dz < dx)—for example
dz = 50, we denote the configuration by ConvMLP-50.

• If we used positive features, we denote the configuration by ConvMLP-p.

• If we used augmented features, we denote the configuration by ConvMLP-
a.

• We can also have a mix of the above, for examples ConvMLP-50p.

• We can also have non of the above, in which case we simply write
ConvMLP—implying that dz = dx.

We summarize the configurations used for the different experiments of
Section 4.5.1 in Table [4.4].

For all the experiments, we used the Adam optimizer (Kingma and Ba, 2014)
to update the parameters of the networks. We used a learning rate of 0.001,
and (β1, β2) = (0.9, 0.999); amsgrad was turned off, as well as weight decay.
Data was fed to the networks in mini-batches of size 63, and the training was
done for 5000 iterations (no visible improvements in the results were observed
after this many iterations). For CIFAR10 and CIFAR100 experiments, we
introduced a random horizontal flip to the data, with probability 0.5.

We used conditional denoising score matching (CDSM, Appendix 4.B.1) to
train the energy models. The noise parameter used is σ = 0.01.

4.A.2 The MCC metric

To quantify identifiability, we use the mean correlation coefficient (MCC)
developed in Section 2.5.1. Ideally, we should combine the MCC with a
measure of independence that is invariant to nonlinear transformations, like
the randomized dependence coefficient (Lopez-Paz et al., 2013, RDC).
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Configuration Architecture Comment
Input: dx = w × w × nc nc: channels, w: width/height

MNIST: nc = 1, w = 28
FashionMNIST: nc = 1, w = 28

CIFAR10: nc = 3, w = 32
Output: dz CIFAR100: nc = 3, w = 32

MLP Input: dx

FC 512, LeakyReLU(0.1)
FC 384, LeakyReLU(0.1)
Dropout(0.1)
FC 256, LeakyReLU(0.1)
FC 256, LeakyReLU(0.1)
FC dz

ConvMLP Input: dx = w × w × nc stride 1 for all conv. layers
Conv w × w × 32 padding 1, filter size 3
BatchNorm, ReLU
Conv w × w × 64 padding 1, filter size 3
BatchNorm, ReLU
MaxPool w

2 ×
w
2 × 64

Conv w
2 ×

w
2 × 128 padding 1, filter size 3

BatchNorm, ReLU
Conv w

2 ×
w
2 × 256 padding 1, filter size 3

BatchNorm, ReLU
MaxPool w

4 ×
w
4 × 256

Conv 1× 1× 256 padding 0, filter size w
4

Dropout(0.1)
FC 256, LeakyReLU(0.1)
FC dz

Unet Input: dx = w × w × nc stride 1 for all conv. layers
Conv w × w × 64 padding 1, filter size 3
4-cascaded RefineNet see Song and Ermon (2019)
| activation: ELU exponential LU
| norm.: InstanceNorm+ see Song and Ermon (2019)
InstanceNorm+, ELU
Conv w × w × nc padding 1, filter size 3
FC dz only if dz < dx

Table 4.3: Architecture detail
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Fig./Tab. Dataset Description Configuration
Figure [4.1a] MNIST Iden. of representations Unet-a
Figure [4.1b] CIFAR10 Iden. of representations Unet
Figure [4.1b] CIFAR100 Iden. of representations Unet
Figure [4.2a] MNIST Transfer learning ConvMLP-50
Figure [4.2b] CIFAR10 Transfer learning ConvMLP-90
Table [4.1] MNIST Transfer learning ConvMLP-50
Table [4.1] CIFAR10 Transfer learning ConvMLP-90
Table [4.2] FashionMNIST Semi-supervised learning ConvMLP-50
Table [4.2] CIFAR10 Semi-supervised learning ConvMLP-50p

Table 4.4: Architectures used in the experiments

When the ground truth is unknown (Section 4.5.1—real image datasets),
we compare pairs of learnt representations, each from a different random
initialisation. A consistently high MCC means that changing the random state
of the model doesn’t drastically change the learnt representations.

When the latent ground truth is known (Section 4.5.2—IMCA and nonlinear
ICA simulations, for instance), we can test for identifiability of the components
by comparing the recovered latents to this ground truth. A high MCC means
that we recovered the true latents.

4.A.3 Further experiments

4.A.3.1 Quality of representations

We argued that conditioning enables EBMs to learn identifiable representations.
The results in Section 4.5.1 validate this. The plots presented in Figures [4.1a]
and [4.1b] were produced using the Unet configuration, described in Table [4.4].
This architecture is complex and deep, and involves multiple layers for which
a thorough theoretical analysis is very difficult, unlike MLPs for instance. In
addition, the dimension of the latent space was chosen to be equal to that of the
input space. Intuitively, we would expect that the chance of learning arbitrary
representations increases as we increase the number of features because this
increases the entropy of the system.

This allows us to challenge the capabilities of ICE-BeeM, and test its limits.
We concluded from the results that the theory presented here does benefit
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modern deep learning architectures. This experiment serves to empirically
validate our theoretical result, and is the first of its kind in recent identifiability
literature, which focused on validating the theory on simulated data with well
know ground truth.

The matrix A in equation (4.3) and the permutation σ in equation (4.4)
were learnt from the first half of the test partition for each dataset. The
evaluation of the MCCs was done on the remaining half of the test dataset.

We present further plots detailing the quality of the learnt representations
on MNIST, FashionMNIST, CIFAR10 and CIFAR100 for a variety of different
configurations in Figures [4.4] to [4.6].

4.A.3.2 Transfer learning experiments

The pre-training was done on labels 0-7 from the train partition for MNIST,
FashionMNIST and CIFAR10, and on labels 0-84 from the train partition for
CIFAR100. The second (transfer) step was done on labels 8-9 from the train
partition for MNIST, FashionMNIST and CIFAR10, and on and labels 85-99
the train partition for CIFAR100.

We considered a subset of size 6000 to produce the values in Table [4.1].
This table should be read in conjunction with Figures [4.2a] and [4.2b] for a
proper evaluation of performance.

We present further plots and results of transfer learning experiments in
Figures [4.8] to [4.10] and Tables [4.5] to [4.8] ran on MNIST, FashionMNIST,
CIFAR10 and CIFAR100 respectively, for a variety of different configurations.
for different configurations and datasets. We considered a subset of size 6000
to produce the values in these Tables. We expect the baseline where we don’t
perform transfer learning to perform comparatively for such a subset size:
transfer learning is mostly important when data is scarce. For the complete
picture, this table should be read in conjunction with Figures [4.8] to [4.10].

As an additional way to visualize the results, Figure [4.7a] shows unseen
MNIST samples (taken across all possible classes) which are assigned high con-
fidence of belonging to the “new” class 8 after transfer learning, indicating that
the ICE-BeeM model has learnt a reasonable distribution over unseen classes.
By comparison the case where no transfer learning is employed Figure [4.7b]),
incorrectly assigns high confidences to other digits.
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Figure 4.4: Further experiments on the strong identifiability of learnt repre-
sentations using the ConvMLP architecture on MNIST and FashionMNIST.
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(c) C10 - ConvMLP-200/200p
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(d) C100 - ConvMLP-50/50p
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(e) C100 - ConvMLP-90/90p
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(f) C100 - ConvMLP-200/200p

Figure 4.5: Further experiments on the strong identifiability of learnt repre-
sentations using the ConvMLP architecture on CIFAR10 and CIFAR100.
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Configuration f · gθ f · 1 fθ · gθ fθ · 1

ConvMLP-50 2.95± 0.02 23.43± 0.04 4.22± 0.15 3.64± 0.10
ConvMLP-50p 2.79± 0.00 796.99± 0.86 10.13± 4.74 3.63± 0.09
ConvMLP-90 2.94± 0.01 12.18± 0.03 4.29± 0.13 3.67± 0.12
ConvMLP-90p 3.03± 0.01 694.94± 1.03 10.22± 4.63 3.70± 0.12
ConvMLP-200 2.91± 0.01 27.70± 0.02 4.29± 0.12 3.74± 0.09
ConvMLP-200p 2.95± 0.01 805.45± 3.56 12.08± 3.79 3.71± 0.13
Unet 2.23± 0.01 10.04± 0.01 3.44± 0.03 2.97± 0.25
Unet-a 2.29± 0.01 6.18± 0.00 3.44± 0.02 6.27± 4.21
Unet-p 14.00± 0.01 14.08± 0.00 11.97± 4.01 6.14± 4.17
Unet-50a 2.61± 0.02 14.24± 0.01 3.79± 0.56 2.92± 0.20
MLP-50 13.99± 0.01 13.99± 0.01 14.00± 0.01 14.00± 0.01
MLP-50p 13.99± 0.01 14.00± 0.01 14.00± 0.01 14.00± 0.01
MLP-90 14.00± 0.01 14.00± 0.01 14.00± 0.01 13.99± 0.01
MLP-90p 13.99± 0.01 14.00± 0.01 14.00± 0.01 14.00± 0.01
MLP-200 13.99± 0.01 14.00± 0.01 14.00± 0.01 14.00± 0.01
MLP-200p 13.99± 0.01 13.99± 0.01 14.00± 0.01 14.00± 0.01

Table 4.5: Transfer learning — CDSM score on MNIST

Configuration f · gθ f · 1 fθ · gθ fθ · 1

ConvMLP-50 7.88± 0.01 9.82± 0.03 7.88± 0.07 7.18± 0.25
ConvMLP-50p 8.00± 0.02 197.84± 2.27 7.92± 0.18 7.10± 0.24
ConvMLP-90 8.09± 0.02 10.86± 0.04 7.88± 0.05 7.14± 0.24
ConvMLP-90p 7.94± 0.01 197.93± 2.33 7.87± 0.13 7.13± 0.20
ConvMLP-200 7.98± 0.00 15.86± 0.01 7.91± 0.16 7.17± 0.21
ConvMLP-200p 7.86± 0.01 196.14± 2.07 7.81± 0.15 7.11± 0.15
Unet 6.47± 0.02 277.56± 1.06 6.52± 0.03 6.46± 0.07
Unet-a 6.60± 0.02 24.62± 0.02 6.52± 0.02 6.41± 0.01
MLP-50 13.99± 0.01 14.00± 0.01 13.99± 0.01 14.00± 0.01
MLP-200 13.99± 0.01 14.00± 0.01 13.99± 0.01 14.00± 0.01

Table 4.6: Transfer learning — CDSM score on FashionMNIST
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(a) MNIST - Unet
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(b) CIFAR10 - Unet
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(c) CIFAR100 - Unet

Figure 4.6: Further experiments on the identifiability of representations using
the Unet architecture on image datasets.

(a) Transfer learning, fθ fixed (b) Baseline, both fθ and gθ estimated

Figure 4.7: Further results for transfer learning experiments on MNIST. In
the case of transfer learning 99 out of a hundred returned digits are class 8
compared to only 58 in the baseline.

4.A.3.3 Semi-supervised learning

In this experiment, we train both an identifiable ICE-BeeM model and an
unconditional (non-identifiable) EBM on classes 0-7. The purpose of this step
is to learn a feature extractor fθ that is able of learning meaningful features
from the images. To test the quality of the features learnt by both models (the
ICE-BeeM, and the unconditional EBM), we use the feature map fθ to classify
unseen samples from classes 8-9. Results show that ICE-BeeM outperforms
the unconditional baseline in this classification task. We attribute this to the
identifiability of ICE-BeeM: our model seems to be performing a principled
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(a) MNIST - ConvMLP-50
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(b) MNIST - ConvMLP-200
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(c) FMNIST - ConvMLP-90
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(d) FMNIST - ConvMLP-90p
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(e) CIFAR10 - ConvMLP-200
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(f) CIFAR10 - ConvMLP-200p

Figure 4.8: Further transfer learning — the dataset/configuration combo are
reported in the captions.
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(a) CIFAR100 - ConvMLP-50
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(b) CIFAR100 - ConvMLP-50p

1000 2000 3000 4000 5000 6000
Train dataset size

2

4

6

8

10

12

CD
SM

 O
bj

ec
tiv

e 
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(c) MNIST - Unet
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(d) MNIST - Unet-a
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(f) FMNIST - Unet-a

Figure 4.9: Further transfer learning — the dataset/configuration combo are
reported in the captions.
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(a) CIFAR10 - Unet

1000 2000 3000 4000 5000 6000
Train dataset size

0

10

20

30

40

CD
SM

 O
bj

ec
tiv

e 
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(b) CIFAR10 - Unet-a

1000 2000 3000 4000 5000 6000
Train dataset size

7.2

7.4

7.6

7.8

8.0

8.2

8.4

8.6

CD
SM

 O
bj

ec
tiv

e 
(s

ca
le

d)

Transfer learning
Transfer
Baseline

(c) CIFAR100 - Unet
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(d) CIFAR100 - Unet-a

Figure 4.10: Further transfer learning — the dataset/configuration combo are
reported in the captions.

Configuration f · gθ f · 1 fθ · gθ fθ · 1

ConvMLP-50 8.02± 0.01 32.09± 0.07 8.36± 0.03 8.15± 0.03
ConvMLP-50p 8.04± 0.02 412.15± 2.54 8.35± 0.04 8.17± 0.01
ConvMLP-90 8.03± 0.01 23.08± 0.04 8.37± 0.02 8.16± 0.05
ConvMLP-90p 8.05± 0.01 408.51± 2.30 8.37± 0.04 8.16± 0.01
ConvMLP-200 8.02± 0.02 13.35± 0.01 8.41± 0.07 8.13± 0.03
ConvMLP-200p 8.06± 0.01 509.09± 2.31 8.35± 0.02 8.11± 0.03
Unet 7.29± 0.01 118.93± 0.34 7.51± 0.05 9.21± 3.43
Unet-a 7.18± 0.01 18.73± 0.01 7.48± 0.09 7.47± 0.13
Unet-50a 7.30± 0.05 16.41± 0.00 7.64± 0.26 7.27± 0.03
MLP-50 16.00± 0.00 16.00± 0.00 16.00± 0.00 16.00± 0.00
MLP-200 16.00± 0.01 16.00± 0.00 16.00± 0.01 16.00± 0.00

Table 4.7: Transfer learning — CDSM score on CIFAR10
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4. Identifiable conditional energy-based models

Configuration f · gθ f · 1 fθ · gθ fθ · 1

ConvMLP-50 8.25± 0.01 45.19± 0.15 8.69± 0.04 8.59± 0.02
ConvMLP-50p 8.24± 0.01 2560.77± 7.15 8.68± 0.04 8.61± 0.04
ConvMLP-90 8.23± 0.01 8.74± 0.01 8.68± 0.05 8.61± 0.03
ConvMLP-90p 8.25± 0.01 3018.50± 7.27 8.65± 0.02 8.58± 0.03
ConvMLP-200 8.26± 0.01 42.80± 0.09 8.69± 0.06 8.59± 0.03
ConvMLP-200p 8.18± 0.01 3827.36± 16.14 8.65± 0.07 8.63± 0.05
Unet 7.41± 0.02 106.28± 0.75 7.77± 0.05 8.38± 0.55
Unet-a 7.39± 0.02 11.15± 0.01 7.82± 0.42 9.35± 3.33
Unet-50a 7.54± 0.01 15.95± 0.00 7.97± 0.13 7.60± 0.05
MLP-50p 16.00± 0.01 16.00± 0.00 16.00± 0.00 16.00± 0.00
MLP-200p 16.00± 0.01 16.00± 0.00 16.00± 0.00 16.00± 0.00

Table 4.8: Transfer learning — CDSM score on CIFAR100

form of disentanglement by learning features that are faithful to the unknown
factors of variation in the data.

Training was done on labels 0-7, using the train partition for MNIST,
FashionMNIST and CIFAR10. Evaluation was done on labels 8-9, using the
test partition for all three datasets. This data was in turn partitioned for the
classification into a train and test split. The split proportion is 15% for MNIST
and FashionMNIST, and 33% for CIFAR10 and CIFAR100.

We present further results for the semi-supervised learning experiments in
Tables [4.9] to [4.11], ran on MNIST, FashionMNIST, CIFAR10 respectively,
for a variety of different configurations.

4.A.3.4 IMCA and nonlinear ICA simulations

We give here more detail on the data generation process for the simulations in
Section 4.5.2, as well as the architectures used.

Data generation. We generate 5-dimensional synthetic datasets following
the nonlinear ICA model which is a special case of equation (4.7) where the
base measure, µ(z), is factorial. In particular, we set it to µ(z) = 1. As
such, latent variables are conditionally independent given segment labels. The
sources are divided into M = 8 segments, and the conditioning variable y is
defined to be the segment index, uniformly drawn from the integer set [[1,M ]].
Following Hyvärinen and Morioka (2016), the z are generated according to
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Configuration ICE-BeeM Unconditional EBM
ConvMLP-50 76.98± 1.61 62.82± 1.48
ConvMLP-50p 88.46± 1.14 66.58± 2.64
ConvMLP-90 78.93± 1.51 71.61± 1.71
ConvMLP-90p 78.66± 1.91 69.13± 1.49
ConvMLP-200 81.21± 2.6 71.48± 2.23
ConvMLP-200p 77.38± 1.32 68.99± 1.68
MLP-50 91.74± 1.72 85.77± 1.14
MLP-50p 92.21± 1.74 84.56± 1.1
MLP-90 95.17± 0.46 85.91± 2.07
MLP-90p 94.97± 0.7 85.97± 1.61
MLP-200 94.36± 1.28 89.26± 1.7
MLP-200p 91.81± 2.33 90.87± 1.05
Unet 97.79± 0.34 98.39± 0.68
Unet-a 97.18± 0.5 97.79± 0.78
Unet-50a 97.52± 0.4 97.92± 0.49
Unet-20a 95.64± 0.7 92.08± 1.71

Table 4.9: Semi-supervised learning — classification accuracy on MNIST

Configuration ICE-BeeM Unconditional EBM
ConvMLP-50 77.07± 1.39 56.33± 3.18
ConvMLP-50p 71.67± 1.85 57.6± 2.24
ConvMLP-90 74.13± 1.86 57.73± 3.12
ConvMLP-90p 70.87± 1.13 60.07± 2.9
ConvMLP-200 81.4± 1.93 68.27± 2.78
ConvMLP-200p 78.47± 0.96 57.47± 2.62
MLP-50 98.07± 1.06 90.47± 1.56
MLP-50p 97.6± 0.53 90.47± 1.56
MLP-90 97.8± 0.34 94.4± 0.53
MLP-90p 97.8± 0.34 94.4± 0.53
MLP-200 98.6± 0.49 94.87± 0.96
MLP-200p 98.6± 0.65 95.33± 1.05
Unet 99.67± 0.3 99.93± 0.13
Unet-a 99.53± 0.16 99.87± 0.16

Table 4.10: Semi-spervised learning — classification accuracy on
FashionMNIST
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Configuration ICE-BeeM Unconditional EBM
ConvMLP-50 69.36± 2.23 56.39± 1.0
ConvMLP-50p 64.42± 1.09 51.88± 1.33
ConvMLP-90 68.24± 2.0 52.82± 0.95
ConvMLP-90p 66.18± 1.01 52.33± 1.73
ConvMLP-200 64.73± 1.36 54.18± 1.09
ConvMLP-200p 66.3± 0.99 54.48± 1.28
MLP-50 68.73± 1.35 70.27± 2.67
MLP-50p 69.82± 1.78 69.36± 2.3
MLP-90 71.58± 1.21 72.85± 1.16
MLP-90p 71.12± 1.64 72.85± 1.16
MLP-200 72.39± 1.92 72.97± 1.75
MLP-200p 70.94± 1.25 71.97± 2.29
Unet 80.27± 4.0 80.58± 0.9
Unet-a 80.48± 1.45 80.48± 1.45
Unet-50a 77.64± 1.02 73.79± 0.81
Unet-20a 74.21± 0.73 68.82± 0.67

Table 4.11: Semi-supervised learning — classification accuracy on CIFAR10

isotropic Gaussian distributions with distinct precisions λ(y) determined by
the segment index. Second, we perform the same experiment but on data
generated from an IMCA model where the base measure µ(z) is not factorial.
More specifically, we randomly generate an invertible and symmetric matrix
Σ0 ∈ Rd×d, such that µ(z) ∝ e−0.5z⊤Σ−1

0 z. As before, we define λ(y) to be the
distinct conditional precisions. The precision matrix of each segment is now
equal to Σ(y)−1 = Σ−1

0 + diag(λ(y))−1, meaning the latent variables are no
longer conditionally independent.

For both nonlinear ICA and IMCA data, a randomly initialized neural
network with varying number of layers, L ∈ {2, 4}, was employed to generate
the nonlinear mixing function h. Leaky ReLU with negative slope equal to
0.1 was employed as the activation function in order to ensure the network
was invertible. The hidden dimensions of the mixing network are equal to the
latent dimension dx, and the output dimension is dx = dz.

Baseline methods. The first baseline we compare to is TCL (Hyvärinen
and Morioka, 2016), which is a self-supervised method for nonlinear ICA
based on the non-stationarity of the sources. TCL learns to invert the mixing
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function h, by performing a surrogate classification task, where the goal is to
classify original observations against their segment indices in a multinomial
classification task. Its theory is premised on the fact that the feature extractor
used for the classification has to extract meaningful latents in order to perform
well in the classification task.

The second baseline is iVAE (Khemakhem et al., 2020a), a nonlinear ICA
method which uses an identifiable VAE to recover the independent sources. Its
theory is premised on the consistency of maximum likelihood training, and
on the flexibility of VAEs in approximating densities. They show that given
enough data, the variational posterior learns to approximate the true posterior
distribution, and can thus be used to invert the mixing function. The iVAE,
like a regular VAE, is trained by maximizing the ELBO (Kingma and Welling,
2014).

Training of ICE-BeeM via flow contrastive estimation. To demon-
strate that ICE-BeeM can be trained by any method for training EBMs, we
switched from denoising score matching to flow contrastive estimation (FCE,
Appendix 4.B.2). As a contrastive flow, we used a normalizing flow model
(Rezende and Mohamed, 2015), with an isotropic and tractable base distribu-
tion. It is then transformed by a 10-layer flow, where each layer is made of a
succession of a neural spline flow (Durkan et al., 2019a), an invertible 1 × 1
convolution (Kingma and Dhariwal, 2018), and an ActNorm layer (Kingma and
Dhariwal, 2018). The flow parameters are updated by and Adam optimizer,
with a learning rate of 10−5.

Used architectures. The architectures used to produce Figures [4.3a]
and [4.3b] are summarized by Table [4.12].

4.B Estimation algorithms

It is important to note that the identifiability results presented above apply to
conditional EBMs in general. As such, we may employ any of the wide variety
of methods which have been proposed for the estimation of unnormalized EBMs.
In this chapter, we used two different options with good results for both: flow
contrastive estimation (Gao et al., 2020) and denoising score matching (Vincent,

165



4. Identifiable conditional energy-based models

Model Optimizer Architecture
Input dx = 5
Condition one hot enc. dy = M = 8
Latent dz = dx = 5
Num. layers L ∈ {2, 4}

ICE-BeeM Adam fθ (L+ 1)-layer MLP
lr 3.10−4 batch norm after each FC

hidden dim 32
LeakyReLU(0.1) act

gθ (dz × dy) learnable matrix
iVAE Adam Encoder p(z|x) Normal

lr 10−3 3-layer MLP
hidden dim 2dx

LeakyReLU(0.1) act
Decoder p(x|z,y) Normal

3-layer MLP
hidden dim 2dx

LeakyReLU(0.1) act
Prior p(z|y) Normal

3-layer MLP
hidden dim 2dx

LeakyReLU(0.1) act
TCL Momentum 0.9 L-layer MLP

lr 0.01 FC 2dx, maxout(2)
exp decay 0.1 (L− 2)× [FC dx, maxout(2)]

FC dx, absolute value

Table 4.12: Architectures used in nonlinear ICA and IMCA simulations

2011). We can extend both techniques to the conditional case straightforwardly,
as we discuss below.

4.B.1 Conditional denoising score matching

Score matching is a well-known method for learning unnormalized models
(Hyvärinen, 2005). However, a well-known problem with the original score
matching objective is that it is difficult to use with neural networks because of
the many differentiations involved. To solve this issue, Vincent (2011) proposed
a stochastic approximation which can be interpreted as denoising the data, and
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which works efficiently in deep networks (Saremi et al., 2018; Song and Ermon,
2019).

The original score matching objective can be extended to the conditional
setting in a natural way: for a fixed y, we compute the conditional score
matching objective: J(θ,y) = Ep(x|y) ∥∇x log pθ(x|y)−∇x log p(x|y)∥2, and
then average over all values of y (Arbel and Gretton, 2018). The expression of
the conditional score matching objective is then:

JCSM(θ) = Ep(x,y) ∥∇x log pθ(x|y)−∇x log p(x|y)∥2 . (4.13)

We build on the work of Vincent (2011) and introduce a conditional denoising
score matching objective by replacing the unknown density by a kernel density
estimator. Formally, given a dataset of observations

D =
{(

x(1),y(1)
)
, . . . ,

(
x(N),y(N)

)}
,

we first derive nonparametric kernel density estimates of p(x,y) and p(y),
which we then use to derive the estimate for p(x|y) using the product rule.
These estimates have the forms:

qb(y) = Ey′∼qD [lb(y|y′)] , (4.14)
qab(x,y) = E(x′,y′)∼qD [ka(x|x′)lb(y|y′)] , (4.15)

qab(x|y) = qab(x,y)
qb(y) , (4.16)

where ka and lb are bounded kernel functions defined on X and Y and with
bandwidths a and b, respectively. The bandwidths satisfy a = aN and b = bN ,
and are positive bandwidth sequences which decay to 0 as N → +∞, where N
is the size of the dataset D. In the following, we assume that the bandwidth
sequences are equal (a = b = σ).

We replace p(x,y) and p(x|y) in (4.13) by their estimates qσ(x,y) and
qσ(x|y), to arrive at the new objective

JCSMσ(θ) = Eqσ(x,y) ∥∇x log pθ(x|y)−∇x log qσ(x|y)∥2 , (4.17)

which is the conditional score matching objective when applied to the nonpara-
metric estimates of the unknown target density. We will show below that it is
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equivalent to a simpler objective, in which we only need to compute gradients
of the conditioning kernel kσ(x|x′):

JCDSMσ(θ) = E∥∇x log pθ(x|y)−∇x log kσ(x|x′)∥2, (4.18)

where the expectation is taken with respect to pD(x′,y′)kσ(x|x′)lσ(y|y′). We
call this objective conditional denoising score matching. Its extrema landscape
is the same as JCSMσ , but it has the advantage of being simpler to evaluate
and interpret.

From CSM to CDSM. We will show here that the stochastic approximation
used in denoising score matching can also be used for the conditional case to
get to the CDSM objective (4.18) from the CSM objective (4.17):

JCSMσ(θ) = Eqσ(x,y)

∥∥∥∥∥∇x log pθ(x|y)
qσ(x|y)

∥∥∥∥∥
2

(4.19)

= Eqσ(x,y) ∥∇x log pθ(x|y)∥2 − S(θ) + C1, (4.20)

where C1 is a constant term that only depends on qσ(x|y), and

S(θ) = Eqσ(x,y)⟨∇x log pθ(x|y),∇x log qσ(x|y)⟩

=
∫
qσ(x,y)⟨∇x log pθ(x|y), ∇xqσ(x|y)

qσ(x|y) ⟩dxdy

=
∫
qσ(y)⟨∇x log pθ(x|y),∇xqσ(x|y)⟩dxdy

=
∫
qσ(y)⟨∇x log pθ(x|y),∇x

∫
pD(x′,y′)kσ(x|x′)lσ(y|y′)dx′dy′

qσ(y) ⟩dxdy

=
∫
pD(x′,y′)l(y|y′)k(x|x′)⟨∇x log pθ(x|y),∇x log kσ(x|x′)⟩dx′dy′dxdy

(4.21)

= EpD(x′,y′)kσ(x|x′)lσ(y|y′)⟨∇x log pθ(x|y),∇x log kσ(x|x′)⟩,

where k = kσ and l = lσ in equation (4.21). Plugging this back into equation
(4.20), we find that

JCSMσ(θ) = E∥∇x log pθ(x|y)−∇x log kσ(x|x′)∥2 + C1 − C2

= JCDSMσ(θ) + C1 − C2,

where the expectation is with respect to pD(x′,y′)kσ(x|x′)lσ(y|y′) and C2 is
another constant that is only a function of kσ(x|x′). □
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4.B. Estimation algorithms

Choice of kernels in practice. The CDSM loss developed above works
with any choice of kernels that satisfy the aforementioned constrains on their
bandwidths. We give now two examples of kernels we can use in practice.

First, we need to select a kernel kσ for the observation x. A good choice is
the Gaussian kernel

kσ(x|x′) = 1√
2πσ2d

e−
∥x−x′∥2

2σ2 . (4.22)

Sampling from the Gaussian kernel is fairly straightforward, and the gradient
of its logarithm has a simple expression:

∇x log kσ(x|x′) = x′ − x
σ2 . (4.23)

Second, we need to sample noisy observation from the auxiliary variable
y. If it is also continuous, then we can chose lσ to be a Gaussian kernel as
well. When y is discrete (such as a class label), however, the Gaussian kernel
can’t be used. Instead, we chose to use discrete kernels (Kokonendji and Kiesse,
2011). An example of such kernel when y can take c different values is

lσ(y|y′) = (1− σ)1y=y′ + σ

c− 11y ̸=y′ . (4.24)

In particular, we will use the identity kernel lσ(y|y′) = 1y=y′ in practice, which
is a special case of the discrete kernel (4.24) where σ = 0.

With this choice of kernels, the expression of the loss becomes

JCDSMσ(θ) = EpD(x′, y)kσ(x|x′)

∥∥∥∥∥∇x log pθ(x|y) + x− x′

σ2

∥∥∥∥∥
2

. (4.25)

4.B.2 Conditional flow contrastive estimation

Flow-contrastive estimation (FCE) can be seen as an extension of noise-
contrastive estimation (Gutmann and Hyvärinen, 2012, NCE), which seeks
to learn unnormalized EBMs by solving a surrogate classification task. The
proposed classification task seeks to discriminate between the true data and
some synthetic noise data based on the log-odds ratio of the EBM and the
noise distribution. However, a limitation of NCE is the need to specify a noise
distribution which can be sampled from and whose log-density can be evaluated
pointwise but which also shares some of the empirical properties of the observed
data. To address this concern Gao et al. (2020) propose to employ a flow model
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4. Identifiable conditional energy-based models

as the contrast noise distribution. FCE seeks to simultaneously learn both
an unnormalized EBM as well as a flow model for the contrast noise in an
alternating fashion.

FCE learns the parameter for the density pθ of an EBM by performing a
surrogate classification task: noise is generated from a noise distribution qα

which is parametrized as a flow model, and a logistic regression is performed
to classify observation into real data samples or noise samples. The objective
function is simply the log-odds:

JFCE(θ,α) = Epdata(x) log pθ(x)
qα(x) + pθ(x) + Eqα(x) log qα(x)

qα(x) + pθ(x) . (4.26)

This objective is minimized with respect to θ and maximized with respect to α:
the EBM and the flow model are playing a min-max game. This objective can
be extended to the conditional case naturally: we replace the model density by
the conditional density pθ(x|y).

We naturally get a conditional version for FCE by learning a conditional
EBM (see Gao et al., 2020, eq. 12). In this case, it follows that noise samples
should also be associated with a conditioning variable, y. One way we can
achieve this is by considering a conditional flow. This also has the additional
benefit that an improved flow should lead to better estimation of EBM. Alter-
natively, a standard (non-conditional) flow could be employed, but this would
require marginalizing over the conditioning variable, y. The objective simply
becomes:

JCFCE(θ,α)

= Epdata(x,y) log pθ(x|y)
qα(x,y) + pθ(x|y) + Eqα(x,y) log qα(x,y)

qα(x,y) + pθ(x|y) . (4.27)

We can write the flow density as qα(x,y) = p(y)qα(x|y). This is particularly
useful when the conditioning variable y is discrete, like for instance the index
of a dataset or a segment, as we can draw a index from a uniform distribution,
and use the conditional flow to sample an observation.
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4.C. Identifiability of the conditional energy-based model

4.C Identifiability of the conditional
energy-based model

Recall the form of our conditional energy model

pθ(x|y) = Z(y; θ)−1 exp
(
−fθ(x)⊤gθ(y)

)
. (4.28)

We present in this section the proofs for the different forms of identifiability
that is guaranteed for the feature extractors f and g. We will focus on the
proofs for the feature extractor f , as the proofs for the feature extractor g are
very similar.

For the rest of the Appendix, we will denote by d = dx, m = dy and n = dz.

4.C.1 Weak identifiability

Proof of Theorem 4.4. We will only prove this theorem for the feature extractor
f . The proof for g is very similar. Suppose assumptions 1 and 2 hold.

Consider two parameters θ and θ̃ such that

pθ(x|y) = pθ̃(x|y). (4.29)

Then, by applying the logarithm to both sides, we get:

logZ(y; θ)− fθ(x)⊤gθ(y) = logZ(y; θ̃)− fθ̃(x)⊤gθ̃(y). (4.30)

Consider the points y0, . . . ,yn provided by assumption 2 for gθ. We plug each
of these points in equation (4.30) to obtain n+ 1 such equations. We subtract
the first equation for y0 from the remaining n equations, and write the resulting
equations in matrix form:

Rfθ(x) = R̃fθ̃(x) + b, (4.31)

where R = (. . . ,gθ(yl) − gθ(y0), . . . ), R̃ = (. . . ,gθ̃(yl) − gθ̃(y0), . . . ), and
b = (. . . , log Z(yl;θ)

Z(yl;θ̃) − log Z(y0;θ)
Z(y0;θ̃) , . . . ). Since R is invertible (by assumption 2),

we multiply by its inverse from the left to get:

fθ(x) = Afθ̃(x) + c, (4.32)
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4. Identifiable conditional energy-based models

where A = R−1R̃ and c = R−1b. Now since fθ is differentiable and its Jacobian
is full rank assumption 1), by differentiating the last equation we deduce that
rank(A) ≥ min(n, d), which in turn proves that θ ∼f

w θ̃.
Finally, suppose that in addition, assumption 2 holds for the feature extrac-

tor fθ. Then there exists x0, . . .xn such that Q := (. . . , fθ(xi) − fθ(x0), . . . ).
Plugging these n + 1 points into equation (4.32), and subtracting the first
equation for x0 from the remaining n equations, we get

Q = A(. . . , fθ̃(xi)− fθ̃(x0), . . . ). (4.33)

Since Q is an n× n invertible matrix, we conclude that A is also invertible,
which concludes the proof.

4.C.2 Strong identifiability

Proof of Theorem 4.7. We will prove here a more general version where we
assume that each component fi of the feature extractor f has a global minimum
that is reached, instead of being necessarily non-negative.

Consider two different parameters θ and θ̃ such that:

pθ(x|y) = pθ̃(x|y). (4.34)

To simplify notations, denote by f = fθ and f̃ = fθ̃. We start the proof from
the conclusion of Theorem 4.4, since its assumptions hold:

f(x) = Af̃(x) + c, (4.35)

where A is an invertible n× n matrix and c a constant vector. Without loss
of generality, we can suppose that fi has an infimum equal to zero, simply by
subtracting inf fi, and including in c, and similarly for f̃ . We will also suppose
that the infima are reached, as the next argument would hold if we change
exact minima by limits.

Now since f ≥ 0 and is surjective, then there exists x0 ∈ Rd such that
f(x0) = 0. This implies that c = −Af̃(x0), and that f(x) = A(f̃(x)− f̃(x0)).
Define h(x) = f̃(x)− f̃(x0). We know that f̃ ≥ 0 and is surjective, and so h is
also surjective, and its image includes Rn

+. Let I = (e1, . . . , en) be the matrix
of canonical basis vectors, or positive scalar multiples of the canonical basis

172



4.C. Identifiability of the conditional energy-based model

vectors ei. These must be mapped to the non-negative quadrant, so AI must
be non-negative, which implies that A must be non-negative.

Denote by B = A−1. B is also non-negative for the same reasons described
above. Denote the rows of A by ai and the columns of B by bj . We have by
definition of inverse:

a⊤i bj = δij, (4.36)

where if i = j then δij = 1, else δij = 0. Now, assume there is a row ak which
has at least two nonzero entries. By the property above, d− 1 of the vectors bj

must have zero dot-product with that vector. By non-negativity of B and A,
those d− 1 vectors must have zeros in the at least two indices corresponding
to the nonzeros of ak. But that means they can only span a d− 2-dimensional
subspace, and all the bj together can only span a d− 1-dimensional subspace.
This is in contradiction of the invertibility of B. Thus, each ai can have only
one nonzero entry, which, together with the invertibility of A, proves it is a
scaled permutation matrix.

Thus, there exists a permutation σ of [[1, n]], such that

fi(x) = ai,σ(i)f̃σ(i)(x) + ci, (4.37)

which concludes the proof.

Proof of Theorem 4.8. Similarly to the proof of Theorem 4.7, we pass the
features fi through the nonlinear function Hi(fi) = (fi, f

2
i ) which produces the

augmented features f̃ introduced in Section 4.2.2.2.
Consider two different parameters θ and θ̃ such that

pθ(x|y) = pθ̃(x|y). (4.38)

Since we have similar assumptions to Theorem 4.4, we will skip the first part
of the proof and make the same conclusion, where the equivalence up to linear
transformation here applies to H(fθ) and H(fθ̃):

H(fθ(x)) = AH(fθ̃(x)) + c, (4.39)

where A is a 2n × 2n matrix of rank at least n because Jf and JH are full
rank (A is not necessarily invertible yet, but this will be proven later) and c a
constant vector. By replacing H by its expression, we getfθ(x)

f2
θ (x)

 =
A(1) A(2)

A(3) A(4)

fθ̃(x)
f2
θ̃
(x)

+
α

β

 , (4.40)

173



4. Identifiable conditional energy-based models

where each A(i) is an n × n matrix, and c = (α,β). To simplify notations,
denote by h = fθ̃. We will also drop reference to θ and θ̃. The first n lines in
the previous equation are

fi(x) =
n∑

j=1
A

(1)
ij hj(x) + A

(2)
ij h

2
j(x) + αi, (4.41)

and the last n lines are

f 2
i (x) =

n∑
j=1

A
(3)
ij hj(x) + A

(4)
ij h

2
j(x) + βi. (4.42)

Fix an index i in equations (4.41) and (4.42). To alleviate notations and
reduce the number of subscripts and superscripts, we introduce aj = A

(1)
ij ,

bj = A
(2)
ij , cj = A

(3)
ij , dj = A

(4)
ij , α = αi and β = βi. This proof is done in 5

steps. Note that the surjectivity assumption is key for the rest of the proof,
and it requires that we set the dimension of the feature extractor to be lower
than the dimension of the observations.

By equating equations (4.41) and (4.42) after squaring, we get, using our
new notations:∑

j

ajhj(x) + bjh
2
j(x) + α

2

=
∑

j

cjhj(x) + djh
2
j(x) + β. (4.43)

Step 1. First, since h is surjective, there exists a point where it is equal to
zero. Evaluating equation (4.43) at this point shows that β = α2.

Step 2. Second, the left hand side of equation (4.43) has terms raised to
the power 4. These terms grow to infinity much faster than the rest of the
terms of the rhs and the lhs. It is thus equal to zero. More rigorously, consider
the vectors el(y) = (0, . . . , y, . . . , 0) ∈ Rn where the only non zero entry is y
at the l-th position. Each of these vectors has a preimage by h (since it is
surjective), which we denote by xl(y). By evaluating equation (4.43) at each of
these points, we get

(aly + bly
2 + α)2 = cly + dly

2 + β. (4.44)

Divide both sides of this equation by y4, then take the limit y →∞. The right
hand side will converge to 0, while the left hand side will converge to bl, which
shows that bl = 0. By doing this process for all l ∈ [[1, n]], we can show that
b = 0.
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Step 3. So far, we’ve shown that equation (4.43) becomes, after expanding
the square in the lhs, and writing ∑j ajhj(x) = a⊤h(x):

(a⊤h(x))2 + 2αa⊤h(x) + α2 =
∑

j

cjhj(x) + djh
2
j(x) + α2. (4.45)

Let’s again consider the vectors el(y) from earlier, and their preimages xl(y).
By evaluating equation (4.45) at the points xl(y), we get

a2
l y

2 + 2αaly + α2 = cly + dly
2 + α2. (4.46)

Divide both sides by y, and take the limit y → 0. The lhs converges to 2αal,
while the rhs converges to cl. Since this is valid for all l ∈ [[1, n]], we conclude
that c = 2αa. It also follows that d = a2.

Step 4. Injecting this back into equation (4.45), and writing ∑j djh
2
j(x) =

h(x)⊤ diag(d)h(x), we are left with

(a⊤h(x))2 = h(x)⊤ diag(d)h(x). (4.47)

By applying the trace operator to both sides of this equation, and rearranging
terms, we get

trace
((

aa⊤ − diag(d)
)

h(x)h(x)⊤
)

= 0, (4.48)

which is of the form trace(C⊤B(x)) = 0. This is a dot product on the space
Sn of n × n symmetric matrices (both C and B(x) are symmetric!), which
is a vector space of dimension n(n+1)

2 . If we can show that the matrix C is
orthogonal to a basis of Sn, then we can conclude that C = 0.

For this, let (ej)1≤j≤n be the Euclidean basis of Rn, where each vector ej

has one nonzero entry equal to 1 at index j, and let (Eij)1≤i≤n,1≤j≤n be the
Euclidean basis of Rn×n, where each matrix Eij has only one nonzero entry
equal to 1 at row i and column j.

Now since h is surjective, there exists xj such that

h(xj) = ej, (4.49)
h(xj)h(xj)⊤ = eje⊤j = Ejj. (4.50)

The n different xj give us our first n matrices we will use to construct a basis
of Sn. We now need to find n(n−1)

2 remaining basis matrices. For this, consider
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the sums (ej + el)1≤j<l≤n, of which there is exactly n(n−1)
2 . Each of these sums

of vectors have a preimage xj,l by h, and h(xj,l)h(xj,l)⊤ = (ej + el)(ej + el)⊤ =
Ejj + Ell + (Eil + Eli), which is a matrix in Sn that is linearly independent of
all Ejj, and all other (es + et)(es + et)⊤ where (s, t) ̸= (j, l) because they have
nonzero entries at different rows and columns.

We have then found n(n+1)
2 distinct vectors (x1, . . . ,xn,x1,2, . . . ,xn−1,n) such

that their images by hh⊤ form a basis of Sn. If we now evaluate equation (4.48)
at each of these points, we find that the matrix aa⊤ − diag(d) is orthogonal
to a basis of Sn, which implies that it is necessarily equal to 0. This in turn
implies that aa⊤ is a diagonal matrix, and that ajal = 0 for all j ̸= l, which
implies that at most one aj is nonzero.

Step 5. So far, we have proven that, among other things, A(2)
i,j = 0 for all i, j.

We now go back to equation (4.41), which we can write as

f(x) = A(1)h(x) + α. (4.51)

Both f and h are differentiable, and according to assumption 4, Jf has rank
n (it is full rank and n ≤ d). Thus, by differentiating the last equation, we
conclude that A(1) has rank n, and is thus invertible.

Conclusion. We’ve shown that fi(x) = ajhj(x) + αi, where aj = A
(1)
ij . This

is valid for all i ∈ [[1, n]]. Now since A(1) is invertible, the nonzero entry A(1)
ij has

to be in a different column for each row, otherwise some rows will be linearly
dependent. Thus, there exists a permutation σ of [[1, n]], such that A(1)

iσ(i) ̸= 0,
and we deduce that

fi(x) = aσ(i)hσ(i)(x) + αi, (4.52)

which concludes the proof.
From the second conclusion of step 3, we have that d = a2. Combined with

the fact that exactly one element of a is nonzero such that A(1) is full rank, this
implies that A(4) is also full rank, which in turn means that A is full rank.

4.C.3 Universal approximation capability

Proof of Theorem 4.9. We consider here two cases.
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Continuous auxiliary variable. Recall the form of our model:

log pθ(x|y) = − logZ(y)− f(x)⊤g(y). (4.53)

By parametrizing each of fi, gi as neural networks, these functions can ap-
proximate continuous function on their respective domains arbitrarily well
(Hornik, 1991). According to Lemma 4.19, this implies that any continuous
function on X × Y can be approximated arbitrarily well by a term of the form
−f(x)⊤g(y). In other words, any continuous function can be approximated by
log pθ(x|y) + logZ(y) for some θ, where Z(y) captures the difference in scale
between the function in question and the normalized density pθ(x|y). We apply
this result to log p(x|y): for any ε > 0, there exists (θ, n) ∈ Θ× N such that:

sup
x,y

∣∣∣∣∣log p(x|y) +
n∑

i=1
fi(x; θ)gi(y; θ)

∣∣∣∣∣ < ε. (4.54)

Since p(x|y) > 0 a.s. on X × Y, log p(x|y) is finite and bounded. So is the
term −∑n

i=1 fi(x; θ)gi(y; θ). We can then use the fact that exp is Lipschitz on
compacts to conclude for p(x|y), to conclude that:

sup
x,y
|p(x|y)− pθ(x|y)| < Kε, (4.55)

where K is the Lipschitz constant of exp, which concludes the proof.

Discrete auxiliary variable. If y is discrete and Y is compact, then y only
takes finitely many values. In this case, we do not need Lemma 4.19 for the
proof. g(y) can simply be a lookup table, and we learn different approximations
for each fixed value of y, since f has the universal approximation capability,
which concludes the proof.

We introduce few definitions as well as a lemma that will be useful for the
proof of Theorem 4.9.

Definition 4.15 (Hausdorff space). A topological space X is said to be a
Hausdorff space if for any pair of disjoint points (u, v) ∈ X 2, there exists two
disjoint open subsets U ,V ⊆ X such that u ∈ U and v ∈ V.

Definition 4.16 (Compact space). A topological space X is said to be a
compact space if any cover of X has a finite subcover.
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In other words, X is compact if for every collection C of open subsets of X
such that X = ∪c∈Cc, there exist a finite subset F ⊂ C such that X = ∪c∈F c.

In particular, if X is a subset of an Euclidean space, it is compact if and
only if it is closed and bounded.

Definition 4.17 (Unital sub-algebra and point separation). Let K be a
compact Hausdorff space. Consider the Banach algebra C(K) equipped with the
supremum norm ∥f∥∞ = supt∈K |f(t)|. Then:

1. A ∈ C(K) is a unital sub-algebra if:

(i) 1 ⊂ A.

(ii) for all f, g ∈ A and α, β ∈ R, we have αf + βg ∈ A and fg ∈ A.

2. A ⊂ C(K) separates points of K if ∀s, t ∈ K such that s ̸= t, ∃f ∈ A s.t.
f(s) ̸= f(t).

Theorem 4.18 (Stone-Weirstrass, Brosowski and Deutsch (1981)). Let K be
a compact Hausdorff space, and A a unital sub-algebra of C(K) which separates
points of K. Then A is dense in C(K).

Denote by C(X ) (respectively C(Y) and C(X × Y)) the Banach algebra of
continuous functions from X (respectively Y and X ×Y) to R. For any subsets
of functions FX ⊂ C(X ) and FY ⊂ C(Y), let FX ⊗FY := {∑n

i=1 figi|n ∈ N, fi ∈
FX , gi ∈ FY} be the set of all linear combinations of products of functions from
FX and FY to R. Universal approximation is expressed in terms of set density:
for instance, the set of functions FX have universal approximation of C(X ) if
it is dense in it, i.e. for any function f in C(X ), we can always find a limit
of a sequence of functions fn of FX that converges to it. We mathematically
express density by writing FX = C(X ).

We have the following universal density result on the density of a cartesian
product of dense sets:

Lemma 4.19 (Universal approximation capability). Suppose the following:

(i) X and Y are compact Hausdorff spaces.

(ii) FX = C(X ) and FY = C(Y)
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then FX ⊗FY = C(X ×Y). All completions here are with respect to the infinity
norm.

Proof. We prove this theorem in two steps:

1. We first prove that FX ⊗FY is dense in C(X )⊗C(Y) using the hypotheses
the lemma.

2. we prove that C(X )⊗ C(Y) is dense in C(X × Y) using Theorem 4.18.

Step 1. Let ε > 0. Let h ∈ C(X ) ⊗ C(Y). Then there exists k ∈ N and
functions fi ∈ C(X ) and gi ∈ C(Y) such that h = ∑k

i=1 figi. For each i, since
FY dense in C(Y), there exists g̃i ∈ FY such that ∥gi − g̃i∥∞ < ε

2k∥fi∥∞
. From

FX dense in C(X ), there exists f̃i ∈ FX such that ∥fi − f̃i∥∞ < ε
2k∥g̃i∥∞

. We
then have

∥figi − f̃ig̃i∥∞ = ∥figi − fig̃i + fig̃i − f̃ig̃i∥∞ (4.56)
≤ ∥fi∥∞ ∥gi − g̃i∥∞ + ∥g̃i∥∞ ∥fi − f̃i∥∞ (4.57)

<
ε

k
. (4.58)

Using this, we conclude that

∥h−
k∑

i=1
f̃ig̃i∥∞ ≤

k∑
i=1
∥figi − f̃ig̃i∥∞ < ε, (4.59)

which proves that FX ⊗FY is dense in C(X )⊗ C(Y).

Step 2. We will use the Stone-Weirstrass theorem for this step. It is enough
to show that:

(i) X × Y is a compact Hausdorff space.

(ii) C(X )⊗ C(Y) ⊂ C(X × Y).

(iii) C(X )⊗ C(Y) is a unital sub-algebra of C(X × Y) (see Definition 4.17).

(iv) C(X )⊗ C(Y) separates points in X × Y (see Definition 4.17).

To prove (i), we use the fact that every finite product of compact spaces is
a compact space, and every finite product of Hausdorff spaces is a Hausdorff
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space. Points (ii) and (iii) are easy to verify. To prove (iv), let (x,y) and
(x′,y′) be distinct points in X × Y . Assume that x ̸= x′ (we proceed similarly
if y ̸= y′). Define the continuous function f ∈ C(X ) such that f(x) ̸= 0 and
f(x′) = 0. Then for g = 1 ∈ C(Y), we have f(x)g(y) = f(x) ̸= 0 = f(x′)g(y′).

All the conditions required to use the Stone-Weirestrass Theorem are verified,
and we can conclude that C(X )⊗ C(Y) is dense in C(X × Y)

Conclusion. Combining the results of steps 1 and 2, we conclude that
FX ⊗FY is dense in C(X × Y).

4.D An identifiable architecture

Proof of Proposition 4.10. Let f be an MLP that satisfies assumptions (A)
to (C). Using Lemma 4.20, we conclude that f satisfies assumptions 1 and 4.
Applying a ReLU to the output of f constraints its image to Rn, which makes
it satisfy assumption 3.

Proof of Proposition 4.11. Let g be an MLP that satisfies assumptions (A),
(B) and (D). Using Lemma 4.21, we conclude that g satisfies assumptions 2
and 5.

Lemma 4.20. Consider an MLP with L layers, where each layer consists of
a linear mapping with weight matrix Wl ∈ Rdl×dl−1 and bias bl, followed by an
activation function. Assume

a. All activation functions are LeakyReLUs.

b. All weight matrices Wl are full rank.

c. The row dimension of the weight matrices are either monotonically increas-
ing or decreasing: dl ≥ dl+1,∀l ∈ [[0, L− 1]] or dl ≤ dl+1, ∀l ∈ [[0, L− 1]].

Then the MLP has a full rank Jacobian almost everywhere. If in addition,
dL ≤ d0, then the MLP is surjective.
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4.D. An identifiable architecture

Proof. Denote by x the input to the MLP, and by xl the output of layer l:

x0 = x, (4.60)
xl = Wlxl−1 + bl, (4.61)
xl = h(Wlxl−1 + bl) = h(xl), (4.62)

h(y) = αy1y<0 + y1y>0, (4.63)

with h in equation (4.62) is an activation function applied to each element of
its input, and α ∈ (0, 1).

Denote by vl ∈ Rdl the vector whose elements are

vl
k = h′(xl

k) =
1 if xl

k > 0
α if xl

k < 0
, (4.64)

which is undefined if xl
k = 0, and by Vl = diag(vl). Note that Vl is a function

of its input, and thus of x, but we keep this implicit for simplicity. Using these
notations, and the fact that h is piece-wise linear, we can write,

xL = h(xL) = VLxL = VLWLxL−1 + VLbL−1 = · · · = VLx + bL
, (4.65)

where Vl = VlWlVl−1Wl−1 . . .V1W1, b0 = 0 and bl = Vlbl + VlWlb
l−1.

This is of course only possible if xl
k ≠ 0 for all l ∈ [[1, L]] and all k ∈ [[1, dl]]. As

such, define the set

N =
L⋃

l=1

dl⋃
k=1

{
x ∈ Rd|xl

k = 0
}

=
L⋃

l=1

dl⋃
k=1

{
x ∈ Rd|(vl

k)⊤x + b
l

k = 0
}
, (4.66)

where vl
k is the k-th row of Vl. For each x /∈ N , we have that Vl is full rank,

and, using Lemma 4.23, Vl is also a full rank matrix.
While it is true that bl

k and vl
k are functions of x, yet they only take a

finite number of values. Thus, the set
{
x ∈ Rd|(vl

k)⊤x + b
l

k = 0
}

is included
in the union over all the values taken by b

j

k and vj
k up to layer l. For each

of these values, the set becomes a dot product between a row of Vj which is
independent of the input x, and is nonzero because Vj is full rank; such set has
measure zero in Rd. Thus, N is included in a finite union of sets of measure
zero, which implies that it also has measure zero.

Now, for all x /∈ N , ∂xL

∂x exists, and can be computed using the chain rule:

∂xL

∂x
=

1∏
l=L

∂xl

∂xl−1 =
1∏

l=L

∂xl

∂xl

∂xl

∂xl−1 =
1∏

l=L

VlWl = VL (4.67)
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4. Identifiable conditional energy-based models

which is full rank. Thus, the MLP has a full rank Jacobian almost everywhere.
The surjectivity is easy to prove since h is surjective and so is xl as a

function of xl−1 if dl−1 ≥ dl and rank(Wl) = dl.

Lemma 4.21. Consider an MLP g with L layers, where each layer consists
of a linear mapping with weight matrix Wl ∈ Rdl×dl−1 and bias bl, followed by
an activation function. Assume

a. All activation functions are LeakyReLUs.

b. All weight matrices Wl are full rank.

c. All submatrices of Wl of size dl × dl are invertible if dl < dl+1.

Then there exist dL + 1 points y0, . . . ,ydL such that the matrix

R =
(
g(y1)− g(y0), . . . ,g(ydL)− g(y0)

)
is invertible.

Proof. Let y0 be an arbitrary point in Rd0 . Without loss of generality, suppose
that g(y0) = 0. This is because y 7→ g(y)− g(y0) is still an MLP that satisfies
all the assumptions above. If for any choice of points y1 to ydL , the matrix
R defined above isn’t invertible, then this means that g(Rd0) is necessarily
included in a subspace of RdL of dimension at most dL − 1. In other words,
this would imply that the functions g1, . . . , gdL

are not linearly independent.
However, this is in contradiction with the result of Lemma 4.29, which stipulates
that g1, . . . , gdL

are linearly independent, provided all weight matrices satisfy
the assumptions of the lemma (which are the same as the assumptions made
in this proposition).

Thus, we can conclude that there exist dL + 1 points y0, . . . ,ydL such that
the matrix R =

(
g(y1)− g(y0), . . . ,g(ydL)− g(y0)

)
is invertible.

Lemma 4.22. Denote by σmin(A) the smallest singular value of a matrix A.
Let M be an m× n matrix, and N be an n× p matrix, such that m ≤ n ≤ p or
m ≥ n ≥ p. Then σmin(MN) ≥ σmin(M)σmin(N).

Proof. The proof in the case m ≥ n ≥ p can be found in Arbel et al. (2018,
Lemma 10), but we provide a proof here for completeness, and for the other
case m ≤ n ≤ p.
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4.D. An identifiable architecture

Let Rn
∗ := Rn \ {0}, and λmin(A) the smallest eigenvalue of A. Recall that

for a matrix A ∈ Rn×m, with m ≥ n,

σmin(A) =
√
λmin(A⊤A) =

√
inf

x∈Rn
∗

x⊤A⊤Ax
x⊤x

= inf
x∈Rn

∗

∥Ax∥
∥x∥

. (4.68)

Thus, if the null space of N is non trivial, then σmin(N) = 0, and the inequality
is satisfied. Otherwise, we have Nx ̸= 0, ∀x ∈ Rn

∗ ,

σmin(MN) = inf
x∈Rp

∗

∥MNx∥
∥x∥

= inf
x∈Rp

∗

∥MNx∥ ∥Nx∥
∥Nx∥ ∥x∥

≥
(

inf
x∈Rp

∗

∥MNx∥
∥Nx∥

)(
inf

x∈Rp
∗

∥Nx∥
∥x∥

)

≥
(

inf
x∈Rn

∗

∥Mx∥
∥x∥

)(
inf

x∈Rp
∗

∥Nx∥
∥x∥

)
= σmin(M)σmin(N).

If, instead, A ∈ Rm×n with m ≤ n, then

σmin(A) =
√
λmin(AA⊤) =

√
inf

x∈Rm
∗

x⊤AA⊤x
x⊤x

= inf
x∈Rm

∗

∥∥∥A⊤x
∥∥∥

∥x∥
. (4.69)

Similarly, if the null space of M⊤ is non trivial, then σmin(M⊤) = σmin(M) = 0,
and the inequality holds. Otherwise, we have M⊤x ̸= 0, ∀x ∈ Rm

∗ ,

σmin(MN) = inf
x∈Rm

∗

∥∥∥N⊤M⊤x
∥∥∥

∥x∥

= inf
x∈Rm

∗

∥∥∥N⊤M⊤x
∥∥∥ ∥∥∥M⊤x

∥∥∥
∥M⊤x∥ ∥x∥

≥

 inf
x∈Rm

∗

∥∥∥N⊤M⊤x
∥∥∥

∥M⊤x∥

 inf
x∈Rm

∗

∥∥∥M⊤x
∥∥∥

∥x∥


≥

 inf
x∈Rn

∗

∥∥∥N⊤x
∥∥∥

∥x∥

 inf
x∈Rm

∗

∥∥∥M⊤x
∥∥∥

∥x∥


= σmin(N)σmin(M),

which concludes the proof.
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4. Identifiable conditional energy-based models

Lemma 4.23. Consider a finite sequence of matrices (Mi)1≤i≤p, with Mi ∈
Rni−1×ni. If Mi is full rank for all i ∈ [[1, p]], and either n0 ≤ n1 ≤ . . . ≤ np or
n0 ≥ n1 ≥ . . . ≥ np, then the product M1M2 . . .Mp is also full rank.

Proof. If two matrices M1 and M2 with ordered dimensions are full rank, then
σmin(M1) > 0 and σmin(M2) > 0. According to Lemma 4.22, this implies that
σmin(M1M2) > 0, and that M1M2 is full rank. The proof for p ≥ 3 is done by
induction on p.

Lemma 4.24. Let A be an n× n invertible matrix. Denote by an the n-th
row of A. Then the matrix B ∈ Rn+1,n+1 such that

B =



γ1

A ...
γn−1

λ

an 1


(4.70)

is invertible for any choice of γ1, . . . , γn−1, and for λ ̸= 1.

Proof. Denote by bi the i-th row of B. Let α1, . . . , αn+1 such that

n+1∑
i=1

αibi = 0. (4.71)

Then in particular, by looking at the first n lines of this vectorial equation, we
have that ∑n−1

i=1 αiai + (αn + αn+1)an = 0. Since A is invertible, its rows are
linearly independent, and thus αn = −αn+1 and αi = 0, ∀i < n. Plugging this
back into equation (4.71), and looking closely at the last equation, we have
that (1− λ)αn = 0, and we conclude that αn+1 = αn = 0 (because λ ̸= 1), and
that B is invertible.

Lemma 4.25. Consider n affine functions fi : x ∈ Rd 7→ a⊤i x + bi, such
that the matrix A ∈ Rn×d whose rows are the ai is full column rank, and
all its submatrices of size d × d are invertible if d < n. Then there exist n
non-empty regions H1, . . . ,Hn of Rd defined by the signs of the functions fi

(for instance, H = {x ∈ Rn|∀i, fi(x) > 0}) such that the matrix sn ∈ Rn×n

defined as Sn
i,j = signx∈Hi

(fj(x)) is invertible.
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4.D. An identifiable architecture

Proof. We will prove this Lemma by induction on n the number of functions
fi. Denote by Vi = {x ∈ Rd|fi(x) = 0}. The sign of fi changes if we cross the
hyperplan Vi.

First, suppose that n = 2. By assumption, we now that a1 ̸∝ a2, and
thus the hyperplans V1 and V2 are not parallel and divide Rd into 4 regions.
This implies that the regions H1 = {x ∈ Rd|a⊤1 x + b1 > 0, a⊤2 x + b2 > 0} and
H2 = {x ∈ Rd|a⊤1 x + b1 > 0, a⊤2 x + b2 < 0} are not empty.

Second, suppose that there exists n regions H1, . . .Hn such that the matrix
sn is invertible. Consider the affine function fn+1 = a⊤n+1x + bn+1. The
hyperplan Vn+1 = {x ∈ Rd|fn+1(x) = 0} intersects at least one of the regions
H1, . . .Hn. This is because (. . . , ai, . . . )i∈J) are linearly independent for any J
of size min(d, n + 1) such that n + 1 ∈ J , and thus there exists i0 such that
an+1 ̸∝ ai0 . Suppose without loss of generality that this region is Hn. Denote
by H̃n = {x ∈ Rn|x ∈ Hn, fn+1(x) < 0} ⊂ Hn. Now consider the matrix s̃n

such that S̃n
n,j = signx∈H̃n

(fj(x)) and S̃n
i,j = Sn

i,j. Because H̃n ⊂ Hn, we have
that signx∈Hn

(fj(x)) = signx∈H̃n
(fj(x)) and thus s̃n = sn, which implies that

s̃n is also invertible. Now define Hn+1 = {x ∈ Rn|x ∈ Hn, fn+1(x) > 0} ⊂ Hn.
Again, the inclusion implies that signx∈Hn

(fj(x)) = signx∈H̃n
(fj(x)). Finally,

consider the regions H1, . . . ,Hn−1, H̃n,Hn+1, and the matrix sn+1 defined on
those regions. Then

sn+1 =



u1

sn ...
un−1

−1
sn

n 1


, (4.72)

where ui = signx∈Hi
fn+1(x) and sn

n is the n-th line of sn. According to
Lemma 4.24, sn+1 is invertible, which achieves the proof.

Lemma 4.26. Let h denote a LeakyReLU activation function with slope
λ ∈ [0, 1) (if λ = 0, then h is simply a ReLU). Consider n piece-wise affine
functions gi : x ∈ Rd 7→ h(a⊤i x + bi), such that the matrix A ∈ Rn×d whose
rows are the ai is full column rank, and all its submatrices of size d × d are
invertible if d < n. Then the functions g1, . . . , gn are linearly independent,
and their generalized slopes (as piece-wise affine functions) are also linearly
independent.
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4. Identifiable conditional energy-based models

Proof. Let fi = a⊤i x + bi such that gi = h(fi) = 1fi≥0fi + 1fi<0λfi.
The assumptions of Lemma 4.25 are met for the function f1, . . . , fn, and

we conclude that there exists n regions H1, . . . ,Hn such that the matrix

sn =
(

sign
x∈Hi

(fj(x))
)

i,j

(4.73)

is invertible. Define the matrix s̃ where we replace all entries of sn by λ if they
are equal to −1. Then s̃ is invertible (in fact, to see this, consider the proof of
the previous lemma with the slightly unconventional choice of sign function
sign(x) = λ if x < 0).

Now consider α1, . . . , αn such that
n∑

i=1
αigi = 0. (4.74)

Let k ∈ [[1, n]], and evaluate this equation at x ∈ Hk. After taking the gradient
with respect to x, we get∑

i

(1x∈Hk,fi(x)≥0 + λ1x∈Hk,fi(x)<0)αiai = 0. (4.75)

Denote by s̃k the k-th line of the matrix s̃, and define el = (α1a1,l, . . . , αnan,l) ∈
Rn. We can write the l-th line of equation (4.75) as:

s̃⊤k el = 0. (4.76)

Collating these equations for a fixed l and k ∈ [[1, n]], we get

s̃el = 0, (4.77)

which implies that el = 0 because s is invertible. In particular, αiai,l = 0 for all
i ∈ [[1, n]] and l ∈ [[1, d]]. This implies that A⊤J αJ = 0, where J ⊂ [[1, n]] of size
min(n, d), AJ = (ai,l)i∈J,l∈[[1,d]] ∈ Rd×d is a submatrix of A and αJ = (αi)i∈J ∈
Rd. Since we know, by assumption, that AJ is invertible for any choice of
set of indices J (relevant when n > d), we conclude that α = 0 and that the
functions g1, . . . , gn are linearly independent.

Each function gi is a piece-wise affine function, with a “generalized slope”
equal to ãi(x) = (1fi≥0(x)+λ1fi<0(x))ai. As a corollary of the independence of
g1, . . . gn, we can conclude that the slopes ã1(x), . . . , ãn(x) are also independent.
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Lemma 4.27. Let f = (f1, . . . , fn) be a vector-valued function defined on Rd.
We suppose that f1, . . . , fn are linearly independent piece-wise affine functions,
and that their generalized slopes a1(x), . . . , an(x) are also linearly independent.
Consider m piece-wise affine functions gi : x ∈ Rd 7→ c⊤i f(x) + di, such that
the matrix C ∈ Rm×n whose rows are the ci is full column rank, and all its
submatrices of size n×n are invertible if n < m. Then there exist m non-empty
regions K1, . . . ,Km of Rd defined by the signs of the functions gi such that the
matrix Tm ∈ Rm×m defined as Tm

i,j = signx∈Ki
(gj(x)) is invertible.

Proof. Denote by c̃i(x) the generalized slope of the piece-wise affine function
gi: c̃i(x) = ∑

j ci,jaj(x). The key is to show than under the assumptions made
here, the slopes (. . . , c̃i(x), . . . )i∈J are linearly independent for any choice of
subset J ⊂ [[1,m]] of size min(m,n).

If m > n, chose a subset J ∈ [[1,m]] of size n, and let (αi)i∈J such that∑
i∈J αic̃i(x) = 0. By replacing c̃i by its expression, we get:

∑
j

(
∑

i

αici,j)aj(x) = 0. (4.78)

Since a1, . . . ,an are linearly independent, we conclude that ∑i∈J αici,j = 0
for all j ∈ [[1, n]]. This, along with the full rank assumption on C prove that
(αi)i∈J = 0 and that (. . . , c̃i(x), . . . )i∈J are linearly independent. We can use
the same argument if, instead, m ≤ n, where J = [[1,m]], and conclude.

The rest of the proof follows the same argument of the proof of Lemma 4.25:
we proceed by induction on m. For m = 2, we know that c̃1 ̸∝ c̃2, and so the
“generalized hyperplans” defined by these two vectors divide Rd into at least
3 different regions, 2 of which yield a matrix T2 that is invertible. Then, if
the result hold for m, then the hyperplan defined by the generalized slope of
the (m+ 1)-th piece-wise affine function gm+1 necessarily intersects one of the
regions K1, . . . ,Km since for any subset J of size min(m+1, n) s.t. (m+1) ∈ J ,
the generalized slopes (. . . , c̃i(x), . . . )i∈J are linearly independent. The rest is
identical to Lemma 4.25.

Lemma 4.28. Let h denote a LeakyReLU activation function with slope λ ∈
[0, 1) (if λ = 0, then h is simply a ReLU), and f = (f1, . . . , fn) be a vector-valued
function defined on Rd. We suppose that f1, . . . , fn are linearly independent
piece-wise affine functions, and that their generalized slopes a1(x), . . . ,an(x)
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are also linearly independent. Consider m piece-wise affine functions gi : x ∈
Rd 7→ h(c⊤i f(x) + di), such that the matrix C ∈ Rm×n whose rows are the ci is
full column rank, and all its submatrices of size n× n are invertible if n < m.
Then the functions g1, . . . , gm are linearly independent, and their generalized
slopes are also linearly independent.

Proof. Let g̃i = c⊤i f + di such that gi = h(g̃i). The assumptions of Lemma 4.27
are met for the functions g̃1, . . . , g̃m, and we conclude that there exists m
regions K1, . . . ,Km such that Tm =

(
signx∈Ki

(g̃j(x))
)

i,j
is invertible. Let T̃

the invertible matrix equal to Tm after substituting −1 for λ.
Now consider α1, . . . , αm such that ∑m

i=1 αigi = 0 After taking the gradient
with respect to x, we get

∑
j

(
∑

i

αi(1g̃i≥0(x) + λ1g̃i<0(x))ci,j)aj(x) = 0. (4.79)

Since a1, . . . , an are independent, we conclude that
∑

i

αi(1g̃i≥0(x) + λ1g̃i<0(x))ci,j, (4.80)

for all j ∈ [[1,m]]. This in turn implies that
∑

i

αi(1g̃i≥0(x) + λ1g̃i<0(x))ci = 0. (4.81)

Let k ∈ [[1,m]], and evaluate the last equation at x ∈ Kk:
∑

i

(1x∈Hk,fi(x)≥0 + λ1x∈Hk,fi(x)<0)αici = 0 (4.82)

This last equation is similar to equation (4.75), and we can use the same
argument used for the proof of Lemma 4.26 here (using T̃ instead of s̃) and
deduce that αi = 0 for all i.

We conclude that g1, . . . , gm are linearly independent, and so are their
generalized slopes as a consequence.

Lemma 4.29. Let fL = (fL
1 , . . . , f

L
dL

) be the output of an L-layer MLP (we
assume that L ≥ 2: there is at least one nonlinearity) that satisfies:

(a.) All activation functions are LeakyReLUs with slope λ ∈ [0, 1) (if λ = 0,
then the activation function is simply a ReLU).
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4.E. Latent variable estimation in generative models

(b.) All weight matrices Wl ∈ Rdl+1×dl are full rank, and all submatrices of
Wl of size dl × dl are invertible if dl < dl+1.

Then fL
1 , . . . , f

L
dL

are linearly independent. In addition, all the intermediate
features (f l

1, . . . , f
l
dl

) are also linearly independent.

Proof. We prove the Lemma by induction on the number of layers L ≥ 2. If
L = 2, then by Lemma 4.26, we conclude that f1, . . . , fn are independent. If
we suppose the result hold for L ≥ 2, we can use Lemma 4.28 to prove that it
also holds for L+ 1. Finally, since all layers satisfy the same conditions, the
conclusion also applies to intermediate layers.

4.E Latent variable estimation in generative
models

Recall the generative model of IMCA: we observe a random variable x ∈ Rd

as a result of a nonlinear transformation h of a latent variable z ∈ Rd whose
distribution is conditioned on an auxiliary variable y that is also observed:

z ∼ p(z|y), (4.83)
x = h(z). (4.84)

We assume the latent variable in the IMCA model has a density of the form

p(z|y) = Q(z)e
∑

i
Ti(zi)⊤λi(y)−Γ(y), (4.85)

where Q is not necessarily factorial.
Further, we will suppose that the density p(z|y) is strongly exponential

(Definition 2.7).
If we suppose that only n out of d components of the latent variable are

modulated by the auxiliary variable y (equivalently, if we suppose that the
parameters λn+1:d(y) are constant), then we can write its density as

p(z|y) = Q(z)e
∑n

i=1 Ti(zi)⊤λi(y)−Γ(y). (4.86)

The term e
∑d

i=n+1 Ti(zi)⊤λi is absorbed into Q(z). This last expression will be
useful for dimensionality reduction.
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To estimate the latent variables of the IMCA model, we fit an augmented
version of our energy model

pθ(x|y) = Z(y; θ)−1 exp
(
−H(fθ(x))⊤gθ(y)

)
, (4.87)

where H(f(x)) = (H1(f1(x)), . . . ,Hd(fd(x))), and each Hl is a (nonlinear)
output activation. An example of such map is Hl(x) = (x, x2).

In this section, we present the proofs for the estimation of the Independently
Modulated Component Analysis by an identifiable energy model. These proofs
are based on similar ideas and techniques to previous proofs, but are different
enough that we can’t forgo them.

4.E.1 Assumptions

We will decompose Theorem 4.13 into two sub-theorems, which will make the
proof easier to understand, but also more adaptable into future work. For the
sake of clarity, we will separate its assumptions into smaller assumptions, and
refer to them when needed in the proofs. Assumptions (ix) and (x) are only
needed for the proof of Theorem 4.14.

(i) The observed data follows the IMCA model of equations (4.83) to (4.85).

(ii) The mixing function h : Rd → Rd in equation (4.84) is invertible.

(iii) The sufficient statistics Ti in equation (4.85) are differentiable, and
the functions Tij ∈ Ti are linearly independent on any subset of X of
measure greater than zero. In other words, pθ(z|u) is strongly exponential
(Definition 2.7).

(iv) There exist k + 1 distinct points y0, . . . ,yk such that the matrix

L = (λ(y1)− λ(y0), . . . ,λ(yk)− λ(y0))

of size k × k is invertible, where k = ∑d
i=1 dim(Ti).

(v) We fit the model (4.87) to the conditional density p(x|y), where we
assume the feature extractor f(x) to be differentiable, d-dimensional, and
the pointwise nonlinearity H to be differentiable and k-dimensional, and
the dimension of its vector-valued components Hl to be chosen from
(dim(T1), . . . , dim(Td)) without replacement.
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4.E. Latent variable estimation in generative models

(vi) The sufficient statistic in equation (4.85) is twice differentiable and
dim(Tl) ≥ 2, ∀l.

(vii) The mixing function h is a D2-diffeomorphisms.

(viii) The feature extractor f in equation (4.87) is a D2-diffeomorphism.

(vi’) dim(Tl) = 1 and Tl is non-monotonic ∀l.

(vii’) The mixing function h is a C1-diffeomorphism.

(viii’) The feature extractor f in equation (4.87) is a C1-diffeomorphism, and
the nonlinearities Hl have a unique extremum.

(ix) Only n ≤ d components of the latent variable are modulated, and its
density has the form (4.86).

(x) The feature extractor f has the form f(x) = (f1(x), f2(x)) where f1(x) ∈
Rn, and the auxiliary feature extractor g has the form g(y) = (g1(y), g2)
where g1(y) ∈ Rn and g2 is constant.

4.E.2 Proofs

Proof of Theorem 4.13. As mentioned above, we decompose Theorem 4.13 into
two smaller results, summarized below by Theorems 4.30 and 4.31. The reader
should refer to their proofs for the proof of this Theorem.

Theorem 4.30. Assume assumptions (i) to (v) hold. Then, after convergence
of our model pθ(x|y) to the true density p(x|y), we can recover the latent
variables up to an invertible linear transformation and pointwise nonlinearities,
i.e.

H(f(x)) = AT(z) + b, (4.88)

where A is an invertible matrix.

Proof. We fit our density model (4.87) to the conditional density p(x|y), setting
the dimension of the feature extractor f to be equal to d, and the dimensions
of the output nonlinearities Hl chosen from (dim(T1), . . . , dim(Td)), as per
assumption (v):

Z(y)−1 exp H(f(x))⊤g(y) = p(x|y), (4.89)
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by doing the change of variable x = h(z), taking the log on both sides, we get:

− logZ(y) + H(f(x))⊤g(y) = log p(z|y)− log |det Jh−1(x)| (4.90)

= logQ(h−1(x)) + T(z)⊤λ(y)− Γ(y)
− log |det Jh−1(x)| .

(4.91)

Let y0, . . . ,yk be the points provided by assumption (iv) of the theorem,
where k = ∑

i ki, and ki = dim(Ti). Define λ(y) = λ(y) − λ(y0), Γ(y) =
Γ(y)− Γ(y0), g(y) = g(y)− g(y0) and Z(y) = logZ(y)− logZ(y0). We plug
each of those yl in equation (4.91) to obtain k+ 1 such equations. We subtract
the first equation for y0 from the remaining k equations to get for l = 1, . . . , k

−Z(yl) + H(f(x))⊤g(yl) = T(z)⊤λ(yl)− Γ(yl). (4.92)

The crucial point here is that the non factorial terms Q(g(x)) and Q̃(g̃(x))
cancel out when we take these differences. This is what allows us to generalize
the identifiability results of nonlinear ICA to the context of IMCA.

Let L bet the matrix defined in assumption (iv), and L̃ := (. . . ,g(yl), . . . ).
Define b = (. . . , Z(yl)− Γ(yl), . . . ). Expressing equation (4.92) for all points
yl in matrix form, we get

L̃⊤H(f(x)) = L⊤T(z) + b. (4.93)

By assumption (iv), L is invertible, and thus we can write

T(z) = AH(f(x)) + c, (4.94)

where c = L−⊤b and A = L−⊤L̃⊤.
To prove that A is invertible, we first take the gradient of equation (4.94)

with respect to z. The Jacobian JT of T is a matrix of size k × d. Its
columns are independent because each Ti is only a function of zi, and thus
the nonzero entries of each column are in different rows. This means that
its rank is d (since k = ∑d

i=1 ki ≥ d). This is not enough to prove that A is
invertible though. For that, we consider the functions Ti for which ki > 1: for
each of these functions, using Lemma 2.17, there exists points z(1)

i , . . . , z
(ki)
i

such that (T′i(z
(1)
i ), . . . ,T′i(z

(ki)
i )) are independent. Collate these points into
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kmax := maxi ki vectors z(j) := (z(j)
1 , . . . z

(j)
d ), where for each i, z(j)

i = z
(1)
i if

j > ki, and z(1)
i is a point such that Ti(z(1)

i ) ̸= 0 if ki = 1. We plug these vectors
into equation (4.94) after differentiating it, and collate the dkmax equations in
vector form:

M = AM̃, (4.95)

where M := (. . . ,JT(z(j)), . . . ) and M̃ := (. . . ,JH◦f◦h(z(j)), . . . ). Now the
matrix M is of size k × dkmax, and it has exactly k independent columns by
definition of the points z(j). This means that M is of rank k, which in turn
implies that rank(A) ≥ k. Since A is a k × k matrix, we conclude that A is
invertible.

The theorem above shows a first step in identifiability which holds up to
a linear transformation. This is similar to Hyvärinen et al. (2019), but here
we allow for dependencies between components. We can further sharpen the
result, in line with Khemakhem et al. (2020a) even in this non-independent
case as follows:

Theorem 4.31. Assume assumptions (i) to (v) hold. Further assume that
either assumptions (vi) to (viii) or assumptions (vi’) to (viii’) hold. Then
equation (4.88) can be reduced to the component level, i.e. for each i ∈ [[1, d]]:

Hi(fi(x)) = AiTγ(i)(zγ(i)) + bi, (4.96)

where γ is a permutation of [[1, d]] such that dim(Hi) = dim(Tγ(i)) and Ai a
square invertible matrix.

Proof. We prove this theorem separately for both sets of assumptions.

Multi-dimensional sufficient statistics: assumptions (vi) and (viii)
We suppose that ki ≥ 2, ∀i.
The assumptions of Theorem 4.30 hold, and so we have

H(f(h(z))) = AT(z) + c, (4.97)

for an invertible A ∈ Rk×k. We will index A by four indices (i, l, a, b), where
1 ≤ i ≤ d, 1 ≤ l ≤ ki refer to the rows and 1 ≤ a ≤ d, 1 ≤ b ≤ ka to the
columns.
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Let y = f ◦ h(z). Since both f and h are D2-diffeomorphisms assump-
tions (vii) and (viii)), we can invert this relation and write z = v(y). We
introduce the notations vs

i (y) := ∂vi

∂ys
(y), vst

i (y) := ∂2vi

∂ys∂yt
(y), T ′a,b(z) = dTa,b

dz
(z),

T ′′a,b(z) = d2Ta,b

dz
(z) and H ′a,b(y) = dHa,b

dy
(y). Each line of equation (4.97) can be

written as

Hi,l(yi) =
d∑

a=1

ki∑
b=1

Ai,l,a,bTa,b(va(y)) + ca,b, (4.98)

for i ≤ d, l ≤ ki. The first step is to show that vi(y) is a function of only one
yji

, for all i ≤ d. by differentiating equation (4.98) with respect to ys, s ≤ d:

δisH
′
i,l(yi) =

d∑
a=1

ki∑
b=1

Ai,l,a,bT
′
a,b(va(y))vs

a(y), (4.99)

and by differentiating equation (4.99) with respect to yt, s < t ≤ d:

0 =
∑
a,b

Ai,l,a,b

(
T ′a,b(va(y))vs,t

a (y) + T ′′a,b(va(y))vs
a(y)vt

a(y)
)
. (4.100)

This equation is valid for all pairs (s, t), t > s. Define

Ba(y) :=
(
v1,2

a (y), . . . , vd−1,d
a (y)

)
∈ R

d(d−1)
2 , (4.101)

Ca(y) :=
(
v1

a(y)v2
a(y), . . . , vd−1

a (y)vd
a(y)

)
∈ R

d(d−1)
2 , (4.102)

M(y) := (B1(y),C1(y), . . . ,Bd(y),Cd(y)) ∈ R
d(d+1)

2 ×2d, (4.103)
e(a,b) := (0, . . . , 0, T ′a,b, T

′′
a,b, 0, . . . , 0) ∈ R2d, (4.104)

e(y) := (e(1,1)(y1), . . . , e(1,k1)(y1), . . . , e(d,1)(yd), . . . , e(d,kd)(yd)) ∈ R2d×k,

(4.105)

such that the nonzero entries of e(a,b) in equation (4.104) are at indices (2a, 2a+
1). Then by grouping equation (4.100) for all valid pairs (s, t) and pairs (i, l)
and writing it in matrix form, we get

M(y)e(y)A = 0. (4.106)

Now by Lemma 2.20, we know that e(y) has rank 2d almost surely on Z.
Since A is invertible, it is full rank, and thus rank(e (y)A) = 2d almost surely
on Z. It suffices then to multiply by its pseudo-inverse from the right to get

M(y) = 0. (4.107)
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In particular, Ca(y) = 0 for all 1 ≤ a ≤ d. This means that the Jacobian
of v at each y has at most one nonzero entry in each row. By invertibility
and continuity of Jv, we deduce that the location of the nonzero entries are
fixed and do not change as a function of y. We deduce that there exists a
permutation σ of [[1, d]] such that each of the vi(y) = vi(yσ(i)), and the same
would apply to v−1. Without any loss of generality, we assume that σ is the
identity.

Now let H(z) = H ◦ v−1(y) − c. This function is a pointwise function
because H and v−1 are such functions. Plugging this back into equation (4.97)
yields

H(z) = AT(z). (4.108)

The last equation is valid for every component:

H i,l(zi) =
∑
a,b

Ai,l,a,bTa,b(za). (4.109)

By differentiating both sides with respect to zs where s ̸= i we get

0 =
∑

b

Ai,l,s,bT
′
s,b(zs). (4.110)

By Lemma 1.7, we get Ai,l,s,b = 0 for all 1 ≤ b ≤ k. Since equation (4.110) is
valid for all l and all s ̸= i, we deduce that the matrix A has a block diagonal
form:

A =


A1

. . .
An

 , (4.111)

which achieves the proof.

One-dimensional sufficient statistics: assumptions (vi’) to (viii’) We
now suppose that ki = 1, ∀i.
The proof of Khemakhem et al. (2020a, Theorem 3) can be used here, where
we define v = (f ◦ h)−1 and hi,a(ya) = Di,aHa(ya) −Di,aca, where D = A−1.
We can then rewrite equation (4.98) for every component as

Ti(vi(z)) =
d∑

a=1
hi,a(za), (4.112)
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which is the same as equation (45) of Khemakhem et al. (2020a). All the
assumptions required to prove their theorem are met in our case, and the
rest of their proof would simply apply here to prove that A is a permutation
matrix.

In practice, one could hope to have the feature extractor reduce the dimen-
sion of the data, as it is usually very large. This has been achieved in nonlinear
ICA before (Hyvärinen and Morioka, 2016; Khemakhem et al., 2020a). It turns
out that we can also incorporate dimensionality reduction in IMCA and its
estimation by ICE-BeeM, under some assumptions.

Proof of Theorem 4.14. The proof of Theorem 4.30 in this case is unchanged.
Simply, we update the total dimension of matrix L here to k = ∑n

i=1 dim(Ti).
When we evaluate equation (4.91) on these points y0, . . . ,yk, the constant term
g2 and the non-modulated components cancel out, and we are left with the
equation

L̃⊤H1:n(f1(x)) = L⊤T1:n(z) + b. (4.113)

We then use similar arguments to the proof of Theorem 4.30 to conclude that

H1:n(f1(x)) = AT1:n(z) + c, (4.114)

where A ∈ Rn×n a square invertible matrix. At this point, we can make the
same conclusion as Theorem 4.30, while reducing the dimension of the latent
space.

We now explain how we can extend Theorem 4.31 to the lower dimensional
latent space case. Note that we still assume that f = (f1, f2) is a diffeomorphism
per assumptions (viii) and (viii’). We can then still define v = (f ◦ h)−1.

We consider now two cases like in the proof of Theorem 4.31.

One-dimensional sufficient statistics Let D = A−1 and define

hi,a(ya) = Di,aHa(ya)−Di,aca. (4.115)

We can still write equation (4.114) like equation (4.112) as

Ti(vi(y)) =
n∑

a=1
hi,a(ya), (4.116)

for all i ≤ n. The assumptions required for the proof are still met, despite
reducing the dimension from d to n. This interesting fact is also used for the
proof of Theorem 4.8 as well, which achieves this part of the proof.
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Multi-dimensional sufficient statistics We rewrite equation (4.114) as

Hi,l(yi) =
n∑

a=1

ki∑
b=1

Ai,l,a,bTa,b(va(y)) + ca,b, (4.117)

for all i ≤ n, l ≤ ki. We proceed similarly to the proof of Theorem 4.31,
replacing all mentions of d by n and keeping all differentiations to indices
t, s ≤ n, up to equation (4.107), after which we can conclude that vs

i v
t
i = 0 for

all i ≤ n, and all s, t ≤ n. This is not enough to conclude that each of the vi is
only function of one yji

.
For that, we go back to equation (4.117) and differentiate it with respect to

ys, s > n:

0 =
d∑

a=1

ki∑
b=1

Ai,l,a,bT
′
a,b(va(y))vs

a(y), (4.118)

which is valid for all i ≤ n, l ≤ ki. Since A is invertible, we can conclude
that T ′a,b(va(y))vs

a(y) = 0 for all a ≤ n and s > n. Since we only consider
strongly exponential distributions (assumption (iii)), and using Lemma 2.16,
we conclude that T ′a,b(va(y)) ̸= 0 almost everywhere, and that vs

a(y) = 0, for all
s > n. This, in addition to the fact that vs

i v
t
i = 0 for all i ≤ n, and all s, t ≤ n

allows us to conclude that the first n components of v are each only a function
of one different yj because v is a diffeomorphism and its Jacobian is continuous.
Finally, we can use this fact to deduce that A is a block permutation matrix,
which achieves the proof.
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Chapter 5

Causal autoregressive flows

Normalizing flows and causality, two apparently unrelated fields, have recently
received considerable attention in the machine learning community. This
chapter highlights an intrinsic correspondence between a simple family of
autoregressive normalizing flows and identifiable causal models. We exploit the
fact that autoregressive flow architectures define an ordering over variables,
analogous to a causal ordering, to show that they are well-suited to performing
a range of causal inference tasks, ranging from causal discovery to making
interventional and counterfactual predictions. First, we show that causal models
derived from both affine and additive autoregressive flows with fixed orderings
over variables are identifiable, i.e. the true direction of causal influence can
be recovered. This provides a generalization of the additive noise model well-
known in causal discovery. Second, we derive a bivariate measure of causal
direction based on likelihood ratios, leveraging the fact that flow models can
estimate normalized log-densities of data. Third, we demonstrate that flows
naturally allow for direct evaluation of both interventional and counterfactual
queries, the latter being possible due to the invertible nature of normalizing
flows. Finally, throughout a series of experiments on synthetic and real data,
the proposed method is shown to outperform current approaches for causal
discovery and make accurate interventional and counterfactual predictions.

This chapter is based on Khemakhem et al. (2021).
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5. Causal autoregressive flows

5.1 Introduction

Causal models play a fundamental role in modern scientific endeavour (Spirtes
et al., 2000; Pearl, 2009a). Many of the questions which drive scientific
research are not associational but rather causal in nature. While randomized
controlled studies are the gold standard for understanding the underlying causal
mechanisms of a system, such experiments are often unethical, too expensive,
or technically impossible. In the absence of randomized controlled trials, the
framework of structural equation models (SEMs) can be used to encapsulate
causal knowledge as well as to answer interventional and counterfactual queries
(Pearl, 2009b). At a fundamental level, SEMs define a generative model for
data based on causal relationships, and contain strictly more information than
their corresponding causal graph and law.

The first step in performing causal inference is to determine the underlying
causal graph. Whilst this can be achieved in several ways (e.g., randomized
study, expert judgement), data-driven approaches using purely observational
data, termed causal discovery, are often employed. The challenge for causal
discovery algorithms is that given a (typically empirical) data distribution one
can write many different SEMs that could generate such distribution (Zhang
et al., 2015b; Spirtes and Zhang, 2016). In other words, the causal structure is
unidentifiable in the absence of any constraints.

Causal discovery algorithms typically take one of two approaches to achieve
identifiability. The first approach is to introduce constraints over the family of
functions present in the SEM, for example, assuming all causal dependencies
are linear, or that disturbances are additive (Shimizu et al., 2006; Hoyer et al.,
2009; Shimizu et al., 2011; Peters et al., 2014; Bloebaum et al., 2018; Zheng
et al., 2018). While such approaches have been subsequently extended to
allow for bijective transformations (Zhang and Hyvärinen, 2009), they often
introduce unverifiable assumptions over the true underlying SEM. An alternative
approach is to consider unconstrained causal models whilst introducing further
assumptions over the data distribution. These methods often introduce non-
stationarity constraints on the distribution of latent variables (Peters et al.,
2016; Monti et al., 2019) or assume exogenous variables are present (Zhang
et al., 2017).

In the present chapter, we consider the first approach, i.e. constraining the
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functions defining the causal relationships, and combine it with the framework
of normalizing flows recently developed in deep learning literature.

Normalizing flows (Papamakarios et al., 2019; Kobyzev et al., 2020) provide
a general way of constructing flexible generative models with tractable distri-
butions, where both sampling and density estimation are efficient and exact.
Flows model the data as an invertible transformation of some noise variable,
whose distribution is often chosen to be simple, and make use of the change of
variable formula in order to express the data density. This formula requires
the evaluation of the Jacobian determinant of the transformation.

Autoregressive normalizing flows (Kingma et al., 2016; Papamakarios et al.,
2017; Huang et al., 2018) purposefully yield a triangular Jacobian matrix,
and the Jacobian determinant can be computed in linear time. Importantly
for our purposes, the autoregressive structure in such flows is specified by an
ordering on the input variables, and each output variable is only a function
of the input variables that precede it in the ordering. Different architectures
for autoregressive flows have been proposed, ranging from simple additive and
affine transformations (Dinh et al., 2014; Dinh et al., 2016), to more complex
cubic and neural spline transformations (Durkan et al., 2019b; Durkan et al.,
2019a). Flows have been increasingly popular, with applications in density
estimation (Dinh et al., 2016; Papamakarios et al., 2017), variational inference
(Rezende and Mohamed, 2015; Kingma et al., 2016) and image generation
(Kingma and Dhariwal, 2018; Durkan et al., 2019a), to name a few. Active
research is conducted to increase the expressivity and flexibility of flow models
while maintaining the invertibility and sampling efficiency.

In this chapter, we consider the ordering of variables in an autoregressive flow
model from a causal perspective and highlight the similarities between SEMs
and autoregressive flows. We show that under some constraints, autoregressive
flow models are well suited to performing a variety of causal inference tasks.
As a first contribution, we focus on affine normalizing flows and show that
they define an identifiable causal model. In the bivariate data case, the
relationship between cause x, independent noise n and effect y in this model
can be mathematically expressed by y = f(x) + v(x)n, where f denotes the
nonlinear effect of the cause, and v > 0 is a noise modulation function that
depends on the cause. This causal model is a new generalization of the well-
known additive noise model, and the proof of its identifiability constitutes the
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main theoretical result of this manuscript. We then leverage the properties
of flows to perform causal discovery and inference in such models. First, we
use the fact that flows can efficiently evaluate exact likelihoods to propose a
nonlinear measure of causal direction based on likelihood ratios, with ensuing
optimality properties. Second, we show that when autoregressive flow models
are conditioned upon the correct causal ordering, they can be used to accurately
answer interventional and counterfactual queries. Finally, we show that our
method performs favourably on a range of experiments, both on synthetic and
real data when compared to previous methods.

5.2 Preliminaries

5.2.1 Structural equation models

Suppose we observe d-dimensional random variables x = (x1, . . . , xd) with joint
distribution Px. A structural equation model (SEM) is here defined as a tuple
S = (S,Pn) of a collection S of d structural equations

Sj : xj = fj(paj, nj), j = 1, . . . , d, (5.1)

together with a joint distribution Pn over latent disturbance (noise) variables
nj, which are assumed to be mutually independent. We write paj to denote
the parents of the variable xj. The SEM defines the observational distribution
of the random vector x: sampling from Px is equivalent to sampling from Pn

and propagating the samples through S. The causal graph G, associated with
an SEM (5.1), is a graph consisting of one node corresponding to each variable
xj; throughout this chapter, we assume G is a directed acyclic graph (DAG).

It is well known that for a DAG, there exists a causal ordering (or permu-
tation) π of the nodes, such that π(i) < π(j) if the variable xi precedes the
variable xj in the DAG (but such an ordering is not necessarily unique). Thus,
given the causal ordering of the associated DAG we may re-write equation (5.1)
as

xj = fj

(
x<π(j), nj

)
, j = 1, . . . , d, (5.2)

where x<π(j) = {xi : π(i) < π(j)} denotes all variables before xj in the causal
ordering. Moreover, in the above definition of SEMs, we allow fj to be any
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(possibly nonlinear) function. Zhang et al. (2015a) proved that the causal
direction of the general SEM (5.1) is not identifiable without constraints. To
this end, the causal discovery community has focused on specific special cases in
order to obtain identifiability results as well as provide practical algorithms. In
particular, the additive noise model (Hoyer et al., 2009, ANM), which assumes
the noise is additive, is of interest to us in the rest of this manuscript, and its
SEM has the form

xj = fj(x<π(j)) + nj, j = 1, . . . , d. (5.3)

5.2.2 Autoregressive normalizing flows

Normalizing flow models seek to express the log-density of observations x ∈ Rd

as an invertible and differentiable transformation T of latent variables z ∈ Rd,
which follow a simple (typically factorial) base distribution that has density
pz(z). The generative model implied under such a framework is:

z ∼ pz(z), x = T(z).

This allows for the density of x to be obtained via a change of variables as
follows:

px(x) = pz(T−1(x)) |det JT−1(x)| .

Typically, T or T−1 will be implemented with neural networks. Very often,
normalizing flow models are obtained by chaining together different transfor-
mations T1, . . . ,Tk from the same family to obtain T = T1 ◦ · · · ◦Tk, while
remaining invertible and differentiable. The Jacobian determinant of T can
simply be computed from the Jacobian determinants of the sub-transformations
Tl: As such, an important consideration is ensuring the Jacobian determinant
of each of the sub-transformations to be efficiently calculated.

Autoregressive flows use transformations that are designed precisely to
enable simple Jacobian computation by restricting their Jacobian matrices to
be lower triangular (Huang et al., 2018). In this case, the transformation T
has the form

xj = τj(zj,x<π(j)), (5.4)

where π is a permutation that specifies an autoregressive structure on x and
the functions τj (called transformers) are invertible with respect to their first
arguments and are parametrized by their second argument.
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5.3 Causal autoregressive flow model

The ideas presented in this manuscript highlight the similarities between
equations (5.2) and (5.4). In particular, both models explicitly define an
ordering over variables and both models assume the latent variables (denoted
by n or z respectively) follow simple, factorial distributions. Hereafter, we
will use z to denote both latent disturbances in an SEM and latent variables
in an autoregressive flow model. Throughout the remainder of this chapter,
we will look to build upon these similarities in order to employ autoregressive
flow models for causal inference. First, we explicit in Section 5.3.1 the general
conditions under which such correspondence is possible. Then, we consider
bivariate affine flows in Section 5.3.2, and show that they define a causal model
that is identifiable, and which generalizes existing models, particularly additive
noise models. In Section 5.3.3, we present our measure of causal direction based
on the ratio of the likelihoods under two alternative flow models corresponding
to different causal orderings. Finally, Section 5.3.4 presents an extension to
the multivariate case. The causal model as well as the flow-based likelihood
ratio measure of causal direction constitute the causal autoregressive flow
(CAREFL) model.

5.3.1 From autoregressive flow models to SEMs

There are some constraints we need to make on how we define autoregressive
normalizing flows so that they remain compatible with causal models:

(I) Fixed ordering: When chaining together different autoregressive trans-
formations T1, . . . ,Tk into T = T1 ◦ · · · ◦Tk, the ordering π of the input
variables should be the same for all sub-transformations.

(II) Affine/additive transformations: The transformers τj in (5.4) take
what is called an affine form:

τj(u,v) = esj(v)u+ tj(v), (5.5)

where an additive transformation is a special case with sj = 0.

Constraint (I) ensures that composing transformations maintains the au-
toregressive structure of the flow, so as to respect the correspondence with
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the SEM (5.2). In fact, if all sub-transformations Tl are autoregressive and
follow the same ordering π, then T is also autoregressive and follows π (see
Appendix 5.A.2 for a proof). We emphasize this point here because it is con-
trary to the common practice of changing the ordering π throughout the flow
to make sure all input variables interact with each other (Germain et al., 2015;
Dinh et al., 2016; Kingma and Dhariwal, 2018). This practice aims to improve
the model’s flexibility, which is the subject of our next point.

Constraint (II) ensures that the flow model is not too flexible, and in
particular, cannot approximate any density. In fact, the causal ordering of
autoregressive flows with universal approximation capability is not identifiable.
A proof can be found using the theory of nonlinear ICA (Hyvärinen and Pajunen,
1999): we can autoregressively, and in any order, transform any random vector
into independent components with simple distributions. Such an autoregressive
transformation was described in more detail in equation (1.13) of Section 1.2.2.2.
In other words, for any two variables x1 and x2, we can construct another
variable z2 such that z2 ⊥⊥ x1. Such construction is invertible for x2, meaning
that we can write x2 as a function of (x1, z2). Similarly, the same treatment
can be done in the reverse order, to construct a variable z1 that is independent
of x2, such that x1 is a function of (x2, z1). That is, any two variables would be
symmetric according to the SEM. This contradicts the definition of identifiability
of a causal model, which states that the transformation T from the noise z to
the observed variable x has a unique causal ordering. Since our primary goal
in this chapter is to use flows for causal discovery and inference, we shall not
use recent methods which emphasize improving the flexibility and expressivity
of flow models for density estimation and generative modelling (Durkan et al.,
2019b; Durkan et al., 2019a; Müller et al., 2019). Fortunately, flows based on
additive and affine transformations, as defined above (based on the work of Dinh
et al. (2016)), are not universal density approximators (see Appendix 5.A.3 for
a proof).

Finally, note that constraints (I) and (II) only limit the expressivity of
flows as universal density approximators. In contrast, the coefficients sj and tj
of the affine transformer (5.5), when parametrized as neural networks, can be
universal function approximators. This property of universal approximation
of the functional relationships is desirable in practice, and is preserved when
stacking normalizing flows (see Appendix 5.A.4 for a proof).
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5.3.2 Model definition and identifiability

Suppose we observe bivariate data x = (x1, x2) ∈ R2. Underlying the data,
there is a causal ordering described by a permutation π of the set {1, 2}, where
π = (1, 2) if x1 → x2 and π = (2, 1) otherwise.

As per constraints (I) and (II), let T1, . . . ,Tk be k ≥ 1 affine autoregressive
transformations—i.e. of the form (5.4) where the transformers τj are affine
functions (5.5)—with ordering π, and let T = T1 ◦ · · · ◦Tk. Then T is also an
affine transformation (see Appendix 5.A.2 for a proof). As mentioned earlier,
such composability is a central and well-known property of affine flows: the
ordering stays the same, and the composition is still an affine flow.

The flow T defines the following SEM on the observations x:

xj = esj(x<π(j))zj + tj(x<π(j)), j = 1, 2, (5.6)

where z1, z2 are statistically independent latent noise variables, and sj(x<π(j))
and tj(x<π(j)) are defined constant (with respect to x) for π(j) = 1. Equa-
tion (5.6) defines our proposed causal model where the noise is not merely
added to some function of the cause (as typical in existing models) but also
modulated by the cause.

As a special case, if the transformations Tl, l = 1, . . . , k are additive (in the
sense defined above), then the flow T is also additive, and s1 = s2 = 0. In such
a special case, equation (5.6) is part of the additive noise model family (5.3),
which was proven to be identifiable by Hoyer et al. (2009).

Next, We present a simple and non-technical version of our identifiability
result, which states that the more general affine causal model (5.6) is identifiable
when the noise variable z is Gaussian.

Theorem 5.1 (A simplified identifiability result). Assume x = (x1, x2) follows
the model described by equation (5.6), with z1, z2 statistically independent, and
the function tj linking cause to effect is nonlinear and invertible. If z1 and z2

are Gaussian, the model is identifiable (i.e., π is uniquely defined). Alternatively
(Hoyer et al., 2009), if s1 = s2 = 0, the model is identifiable for any (factorial)
distribution of the noise variables z1 and z2.

More rigorously, Definition 5.2 and Theorem 5.3 below summarize the
two scenarios under which the causal model defined by an affine flow is not
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5.3. Causal autoregressive flow model

identifiable. In particular, if the function tj in equation (5.6) linking cause to
effect is invertible and nonlinear, then none of these scenarios can hold. In
addition, the proof in Appendix 5.A.1 only requires one of the noise variables
to be Gaussian.

Definition 5.2 (Log-mix-rational-log distributions). Consider the family of
scalars (α, γ, δ, β, α0, β0, γ0, δ0) ∈ R≥0×R2

>0×R5 such that one of the following
conditions holds:

• α > 0, α2
0 < αδ and β2 < 4αγ.

• α = β = α0 = 0 and β2
0 < δ.

We say that a density px of a continuous variable x is log-mix-rational-log if it
has the form

log px(x) = −1
2δx

2 + δ0x+ 1
2

(α0x
2 + β0x+ γ0)2

αx2 + βx+ γ
− 1

2 log(αx2 +βx+ γ) + const.

We say that px is strictly log-mix-rational-log if α > 0.

Note that the Gaussian distribution is part of the log-mix-rational-log family,
for α = β = α0 = 0. If α ̸= 0, then the log-mix-rational-log family is not part
of the exponential family.

Theorem 5.3 (Identifiability of the affine causal model). Assume the data
follows the model

y = f(x) + v(x)n,

where n is a standardized Gaussian independent of x, f and v are twice-
differentiable scalar functions defined on R and v > 0.
If a backward model exists, i.e. the data also follows the same model in the
other direction

x = g(y) + w(y)m,

where m is a standardized Gaussian independent of y and w > 0, then one of
the following scenarios must hold:

1. (v, f) =
(

1
Q
, P

Q

)
and (w, g) =

(
1

Q′ ,
P ′

Q′

)
where Q,Q′ are polynomials of

degree two, Q,Q′ > 0, P, P ′ are polynomials of degree two or less, and
px, py are strictly log-mix-rational-log. In particular, lim−∞ v = lim+∞ v =
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5. Causal autoregressive flows

0+, lim−∞ f = lim+∞ f < ∞, lim−∞w = lim+∞w = 0+, lim−∞ g =
lim+∞ g <∞ and f, v, g, w are not invertible.

2. v, w are constant, f, g are linear and px, py are Gaussian densities.

Note that while both Theorems 5.1 and 5.3 assume that at least one noise
variable is Gaussian, we believe that the identifiability result also holds for
general noise. We show that empirically in Section 5.5.

5.3.3 Choosing causal direction using likelihood ratio

Next, we use our flow-based framework to develop a concrete method for
estimating the causal direction, i.e. π. We follow Hyvärinen and Smith (2013)
and pose causal discovery as a statistical testing problem which we solve by
likelihood ratio testing. We seek to compare two candidate models which
can be seen as corresponding to two hypotheses: x1 → x2 against x1 ←
x2. Likelihood ratios are, in general, an attractive way to deciding between
alternative hypotheses (models) because they have been proven to be uniformly
most powerful, at least when testing “simple” hypotheses (Neyman and Pearson,
1933). However, in our special case, the framework in fact reduces to simply
choosing the causal direction that has a higher likelihood.

Normalizing flows allow for easy and exact evaluation of the likelihoods.
If we assume the causal ordering π = (1, 2), then the likelihood of an affine
autoregressive flow is:

logLπ=(1,2)(x) =
log pz1

(
e−s1(x1 − t1)

)
+ log pz2

(
e−s2(x1)(x2 − t2(x1))

)
− s1 − s2(x1).

We propose to fit two affine autoregressive flow models (5.6), each conditioned
on a distinct causal order over variables: π = (1, 2) or π = (2, 1). For each
candidate model, we train parameters for each flow via maximum likelihood. In
order to avoid overfitting, we look to evaluate log-likelihood for each model over
a held out testing dataset. As such, the proposed measure of causal direction
is defined as:

R = E
[
logLπ=(1,2)(xtest; xtrain)

]
− E

[
logLπ=(2,1)(xtest; xtrain)

]
, (5.7)
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where E
[
logLπ=(1,2)(xtest; xtrain)

]
is the empirical expectation of the estimated

log-likelihood evaluated on unseen test data xtest. If R is positive, we conclude
that x1 is the causal variable, and if R is negative, we conclude that x2 is the
causal variable.

5.3.4 Extension to multivariate data

We can generalize the likelihood ratio measure developed in Section 5.3.3 to
the multivariate case by computing the log-likelihood logLπ for each ordering
π, and accept the ordering with the highest log-likelihood as the true causal
ordering of the data. This procedure is only feasible for small values of d since
the number of permutations of [[1, d]] grows exponentially with d. An alternative
approach is to employ the bivariate likelihood ratio (5.7) in conjunction with a
traditional constraint-based method such as the PC algorithm (Spirtes et al.,
2000), similarly to Zhang and Hyvärinen (2009). The PC algorithm is first
used to estimate, up to the Markov equivalence class, the skeleton of the DAG
G that describes the causal structure of the data and orient as many edges as
possible. Then, the remaining edges are oriented using the bivariate likelihood
ratio measure proposed above.

We can also extend the likelihood ratio measure in a different way: we
can identify the causal direction between pairs of multivariate variables. More
specifically, consider two random vectors (x1,x2) ∈ R2d, and suppose that
x1 → x2. Then they can be described by the following SEM:

x1 = es1 ⊙ z1 + t1,

x2 = es2(x1) ⊙ z2 + t2(x1),

where (z1, z2) is the vector of latent noise variables that are supposed inde-
pendent, si and ti are vector-valued instead of scalar-valued, and ⊙ denotes
the element-wise product. The likelihood ratio measure (5.7) can be used
straightforwardly here to find the correct causal direction between x1 and x2,
and is implemented in practice using coupling-layer-based normalizing flows
(Dinh et al., 2016). Note that while the identifiability theory was developed
for the bivariate case, our experiments in Section 5.5 show that it also holds
for this case of two multivariate xi. This is the first model that can readily
perform causal discovery over groups of multivariate variables.
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5. Causal autoregressive flows

5.4 Causal inference using autoregressive
flows

This section demonstrates how normalising flow architectures may be employed
to perform both interventional and counterfactual queries. We assume that
the true causal ordering over variables has been resolved (e.g., as the result of
expert judgement or obtained via the method described in Section 5.3).

5.4.1 Interventions

It is possible to manipulate an SEM S to create interventional distributions
over x. As described in Pearl (2009a), intervention on a given variable xi defines
a new mutilated generative model where the structural equation associated
with variable xi is replaced by the interventional value, while keeping the rest
of the equations (5.4) fixed. Interventions are very useful in understanding
causal relationships. If, under the assumption of faithfulness, intervening on a
variable xi changes the marginal distribution of another variable xj, then it is
likely that xi has some causal effect on xj . Conversely, if intervening on xj does
not change the marginal distribution of xi, then the latter is not a descendant
of xj . We follow Pearl (2009a) and denote by do(xi = α) the interventions that
puts a point mass on xi.

Autoregressive flow modelling allows us to answer interventional queries
easily. After fitting a flow model (5.4) conditioned on the right causal ordering
(assumed known) to the data, we change the structural equation for variable
xi from xi = τi(zi,x<π(i)) to xi = α. This breaks the edges from x<π(i) to xi,
and puts a point mass on the latent variable zi. Thereafter, we can directly
draw samples from the distribution ∏j ̸=i pzj

for all remaining latent variables
zj ̸=i. Finally, we obtain a sample for xdo(xi=α) by propagating these samples
through the flow, which allows us to compute empirical estimates of the
interventional distribution. This avoids having to invert the flow and compute
zi = τ−1

i (xi,x<π(i)). However, in the case of affine autoregressive flows, τ−1

is readily available and can be used to parallelise the above algorithm. In
fact, we can compute zi = τ−1

i (xi,x<π(i)), sample zj ̸=i, then propagate the
concatenated z forward through the flow to obtain xdo(xi=α). Note that the
value of x<π(i) is required to infer zi, which will break the parallelism. But
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5.4. Causal inference using autoregressive flows

since the same value is used to parametrize τi and τ−1
i , any value v can be

used as long as τi(τ−1
i (α,v),v) = α. In our implementation, we chose v = 0.

The sequential and parallel implementation are summarized by Algorithms 1
and 2 respectively.

Algorithm 1 Generate samples from an interventional distribution (sequential)
Input: interventional variable xi, intervention value α, number of samples
S
for s = 1 to S do

sample z(s) from flow base distribution (the value of zi can be discarded)
set xi(s) = α
for j = π−1(1) to π−1(d); j ̸= i do

compute observation xj(s) = τj(zj(s),x<π(j)(s))
end for

end for
Return: interventional sample X = {x(s) : s = 1, . . . , S}

Algorithm 2 Generate samples from an interventional distribution (parallel)
Input: interventional variable xi, intervention value α, number of samples
S
for s = 1 to S do

sample z(s) from flow base distribution (the value of zi can be discarded)
set zi(s) = τ−1 (α,0)
compute x(s) = T(z(s))

end for
Return: interventional sample X = {x(s) : s = 1, . . . , S}

5.4.2 Counterfactuals

A counterfactual query seeks to quantify statements of the form: what would
the value for variable xi have been if variable xj had taken value α, given that we
have observed x = xobs? The fundamental difference between an interventional
and counterfactual query is that the former seeks to marginalise over latent
variables, whereas the latter conditions on them.

Given a set of structural equations and an observation xobs, we follow the
notation of Pearl (2009a) and write xi,xj←α(z) to denote the value of xi under
the counterfactual that xj ← α. As detailed by Pearl (2009b), counterfactual
inference involves three steps: abduction, action and prediction:
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1. Abduction: given an observation xobs, infer the conditional distribu-
tion/values over latent variables zobs. This is non-trivial for most causal
models. However, since flow models readily give access to both forward
and backward transformation between observations and latent variables
(Kingma et al., 2016; Papamakarios et al., 2017; Durkan et al., 2019a),
this first step can be readily evaluated as zobs = T−1(xobs).

2. Action: substitute the values of zobs with the values based on the
counterfactual query, xxj←α. More concretely, for a counterfactual, xxj←α,
we replace the structural equations for xj with xj = α and adjust the
inferred value of latent zobs

j accordingly.

3. Prediction: compute the implied distribution over x by propagating the
latent variables zobs through the structural equation models.

The second and third steps mirror those taken when making interventional
predictions: the structural equation for the counterfactual variable is fixed at
α, and the structural equations are propagated forward. The only difference
here is that the latent samples are drawn from their new distribution: in fact,
conditioning on x = xobs changes the distribution of the latent variables by
putting a point mass on z = T−1(xobs). This is summarized in Algorithm 3.

Algorithm 3 Answer a counterfactual query
Input: observed data xobs, counterfactual variable xj and value α

1. Abduction: infer zobs = T−1(xobs)
2. Action: (a) set zobs

j,xj←α = τ−1
j (α,xobs

<π(j))
(b) set zobs

i,xj←α = zobs
i for i ̸= j

3. Prediction: pass zobs
xj←α forward through the flow T

Return: xxj←α = T(zobs
xj←α)

5.5 Experiments1

5.5.1 Causal discovery

We compare the performance of CAREFL on a range of synthetic and real
world data, against several alternative methods: the linear likelihood ratio

1Code to reproduce the experiments is available at https://github.com/ilkhem/carefl.
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Figure 5.1: Performance on synthetic data generated under distinct SEMs.
We note that for all five SEMs CAREFL performs competitively and is able to
robustly identify the underlying causal direction.

method of Hyvärinen and Smith (2013), the additive noise model (ANM)
method of Hoyer et al. (2009) and Peters et al. (2014), and the Regression Error
Causal Inference (RECI) method of Bloebaum et al. (2018). For CAREFL, we
considered the more general affine flows, as well as the special case of additive
flows (denoted CAREFL-NS, for “non-scaled”), where sj = 0 in (5.6). For
ANM, we considered both a Gaussian process and a neural network as the
regression class. Experimental details can be found in Appendix 5.B.

5.5.1.1 Synthetic data

We consider a series of synthetic experiments where the underlying causal
model is known. Data was generated according to the following SEM:

x1 = z1,

x2 = f(x1, z2),
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where z1, z2 follow a standard Laplace distribution. We consider three distinct
forms for f : (i) linear, where f(x1, z2) = αx1 + z2; (ii) nonlinear with addi-
tive noise, where f(x1, z2) = x1 + αx3

1 + z2; (iii) nonlinear with modulated
noise, where f(x1, z2) = σ(x1) + 1

2x
2
1 + σ(x1)z2; (iv) nonlinear with nonlinear

noise, where f(x1, z2) = σ (σ (αx1) + z2). We write σ to denote the sigmoid
nonlinearity. We also consider a high dimensional SEM:

x1 = z1 ∈ R10,

x2 = g(x1, z2) ∈ R10,

where z1 and z2 follow standard Laplace distribution, and for each i ∈ [[1, 10]],
gi has one of the following forms, picked at random:

(i) a function of all inputs gi(x1, z2) = σ(σ(∑j x1,j) + zi);

(ii) a function of the first half of the input gi(x1, z2) = σ(σ(∑j≤5 x1,j) + zi);

(iii) a function of the second half of the input gi(x1, z2) = σ(∑j>5 σ(x1,j)j−5 +
zi).

For each distinct class of SEMs, we consider the performance of each
algorithm under various distinct sample sizes ranging from N = 25 to N = 500
samples. Furthermore, each experiment is repeated 250 times. For each
repetition, the causal ordering is selected at random. We implemented CAREFL
by stacking two affine flows (5.6), where sj and tj are feed-forward networks
with one hidden layer of dimension 10.

Results are presented in Figure [5.1]. Only CAREFL is able to consistently
uncover the true causal direction in all situations. We note that the same
architecture and training parameters were employed throughout all experiments,
highlighting the fact that the proposed method is agnostic to the nature of the
true underlying causal relationship.

We note that while the identifiability results of Theorem 5.1 are premised
on Gaussian noise variables, the simulations used a Laplace distribution instead.
This proves that the Gaussianity assumption is sufficient but not necessary for
identifiability to hold.
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Figure 5.2: Impact of prior mismatch on the performance of CAREFL. The
prior of each flow is fixed to a Laplace distribution, while the noise distribution
is chosen to be either a Laplace, Student-t or Gaussian distribution.

Robustness to prior misspecification. In the simulations above, the prior
distribution of the flow was chosen to be a Laplace distribution, matching the
noise distribution. To investigate CAREFL’s robustness to prior mismatch, we
run additional simulations where the flow prior is still a Laplace distribution,
but the noise distribution is changed. The remaining architectural parameters
are kept the same as the simulations above. The results are shown in Figure [5.2].
We see that the performance stays the same. We also note that in the following
subsection, we will consider real-world datasets where we did not set the
underlying (unknown) noise distribution while maintaining better performance
when compared to alternative methods.

Exploring flow architectures. As discussed in Section 5.3.1, stacking
multiple autoregressive flows on top of each other is equivalent to using a single
autoregressive flow with a wide hidden layer. To explore this aspect, we run
multiple experiments where each flow is an MLP with one hidden layer and a
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Figure 5.3: Impact of changing the width (w) versus the depth (d) of the
normalizing flow in CAREFL.

LeakyReLU activation, in which we vary the width of the hidden layer and the
number of stacked flows. We empirically observed that stacking multiple layers
in the flows leads to better performance, as reported by Figure [5.3].

5.5.1.2 Real data

Cause effect pairs data. We also consider the performance of the proposed
method on the cause-effect pairs benchmark dataset (Mooij et al., 2016). This
benchmark consists of 108 distinct bivariate datasets where the objective
is to distinguish between cause and effect. For each dataset, two separate
autoregressive flow models were trained conditional on π = (1, 2) or π = (2, 1)
and the log-likelihood ratio was evaluated as in equation (5.7) to determine
the causal variable. Results are presented in Table [5.1]. We note that the
proposed method performs better than alternative algorithms.

Arrow of time on EEG data. Finally, we consider the performance of
CAREFL in inferring the arrow of time from open-access electroencephalogram
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CAREFL Linear LR ANM RECI
73 % 66% 69 % 69%

Table 5.1: Percentage of correct causal variables identified over 108 pairs from
the Cause Effect Pairs benchmark.
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Figure 5.4: Performance on finding the arrow of time of EEG data, as a function
of decision rate (percentage of channels — sorted by decreasing confidence —
we have to classify).

(EEG) time series (Dornhege et al., 2004). The data consists of 118 EEG
channels for one subject. We only consider the first n time points, where
n ∈ {150, 500}, after which each of the channels is randomly reversed. More
details on the preprocessing can be found in Appendix 5.B.2. The goal is to
correctly infer whether xt → xt+1 or xt+1 → xt for each channel. This is a
good test case for causal methods since the true direction is from the past
to the future. We report in Figure [5.4] the accuracy as a function of the
percentage of channels considered, sorted from highest to lowest confidence (i.e.
by how high the amplitude of the output of each algorithm is). For average
to high confidence, CAREFL is comparable in performance to the baseline
methods but performs better in the low confidence regime. We also note that
the performance of CAREFL improves by increasing the sample size, which is
to be expected from a method based on deep learning.
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Figure 5.5: Mean square error for interventional predictions on simulated data,
generated using equation (5.8). The left and right panels consider linear and
nonlinear interventional distributions.

5.5.2 Interventions

To demonstrate that CAREFL can answer interventional queries, we will
consider both a synthetic controlled example and real-world fMRI data.

Synthetic data. Consider four-dimensional data generated as

x1 = z1, x3 = x1 + c1x
3
2 + z3,

x2 = z2, x4 = c2x
2
1 − x2 + z4,

(5.8)

where each zi is drawn independently from a standard Laplace distribution,
and (c1, c2) are random coefficients. From the SEM above we can derive the
expectations for x3 and x4 under an intervention do(X1 = α) as being α and
c2α

2 respectively.
We compare CAREFL against the regression function from an additive

noise model (Hoyer et al., 2009, ANM), where the regression is either linear or
a Gaussian process. Figure [5.5] visualizes the expected mean squared error
between predicted expectations for x3 and x4 under the intervention do(X1 = α)
for the proposed method, and the true expectations. We note that CAREFL is
able to infer the nature of the true interventional distributions better than the
baseline.
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5.5. Experiments

Algorithm Median abs error (std. dev.)
CAREFL 0.586 (0.048)
ANM 0.655 (0.057)
Linear SEM 0.643 (0.044)

Table 5.2: Median absolute error for interventional predictions in electrical
stimulation fMRI data.

Interventional fMRI data. In order to validate the performance on in-
terventional real-world data, we applied CAREFL to open-access electrical
stimulation fMRI (Thompson et al., 2020). Data were collected across 26 pa-
tients with medically refractory epilepsy, which required surgically implanting
intracranial electrodes in cortical and subcortical locations. FMRI data were
then collected during rest as well as while electrodes were being stimulated.
Whilst each patient had electrodes implanted in slightly different locations,
we identified 16 patients with electrodes in or near the Cingulate Gyrus and
studied these patients exclusively. We further restricted ourselves to studying
the data from the Cingulate Gyrus (CG) and Heschl’s Gyrus (HG), resulting
in bivariate time series per patient. Full data preprocessing and preparation is
described in Appendix 5.B.3.

We compared CAREFL with both linear and additive noise causal models.
Throughout these experiments we assumed the underlying causal structure
between regions was known (with CG→HG) and trained each model using
the resting-state data. Given the trained model, sessions where the CG was
stimulated were treated as interventional sessions, with the task being to predict
fMRI activation in HG given CG activity. Whilst the true underlying DAG will
certainly be more complex than the simple bivariate structure considered here,
these experiments nonetheless serve as a real dataset benchmark through which
to compare various causal inference algorithms. The results are provided in
Table [5.2], where CAREFL is shown to outperform alternative causal models.

5.5.3 Counterfactuals

We continue with the simple 4 dimensional structural equation model described
in equation (5.8). We assume we observe xobs = (2.00, 1.50, 0.81,−0.28) and
consider the counterfactual values under two distinct scenarios: (i) the expected
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Figure 5.6: Counterfactual predictions for variables x3 and x4. Note that flow
is able to obtain accurate counterfactual predictions for a range of values of α.

counterfactual value of x3 if x2 = α instead of x1 = 2; (ii) the expected coun-
terfactual value of x4 if x1 = α instead of x1 = 2. Counterfactual predictions
require us to infer the values of latent variables, called abduction step by Pearl
(2009b). This is non-trivial for most causal models but can be easily achieved
with CAREFL due to the invertibility of flow models. Figure [5.6] demonstrates
that CAREFL can indeed make accurate counterfactual predictions.

5.6 Related methods

Existing identifiability results on causal models other than additive noise models
are limited. To our knowledge, the other notable and identifiable non-additive
noise models are the post-nonlinear model (Zhang and Hyvärinen, 2009, PNL)
and the non-stationary nonlinear SEM model (Monti et al., 2019, NonSENS).
The PNL model assumes that the cause x and the effect y are related through
the equation y = f2(f1(x) +n), where n is a noise variable independent of x. In
contrast to affine flows, the function f2 is fixed (in the sense of not modulated
by the cause x), while being nonlinear as opposed to affine. By applying its
inverse f−1

2 to y, we actually end up with an additive noise model.
In our model, in stark contrast to the PNL model, it is not possible to apply

a fixed (as in not a function of the cause) transformation to the effect to revert
back to an additive noise model. This is the main reason why the existing
identifiability theory does not cover our causal model (5.6). Theorem 5.3 thus
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presents a novel identifiability result in the context of non-additive noise models,
and the proposed estimation algorithm benefits from it, as was shown in our
experiments.

The NonSENS framework allows for general nonlinear relationships between
cause, noise and effect. Assuming access to non-stationary data, it is identifiable
even in such a general case by leveraging recent results in the theory of nonlinear
ICA (Hyvärinen and Morioka, 2016; Hyvärinen et al., 2019; Khemakhem et
al., 2020b; Khemakhem et al., 2020a). In contrast, the proposed model does
restrict the nature of nonlinear relationships but places no assumptions of
non-stationarity, so our model can be applied in more general scenarios. Our
work follows a recent trend of combining flexible generative models (such as
autoregressive flows and VAEs) with structural causal models (Louizos et al.,
2017; Pawlowski et al., 2020; Wehenkel and Louppe, 2020).

In the context of additive noise models, the estimation methods by Hoyer
et al. (2009, ANM) and Bloebaum et al. (2018, RECI) require least-squares
regressions in both directions. RECI then compares the magnitudes of the
residuals, while ANM depends on independence tests between residuals and
causes. Choosing the suitable regression model in both these methods is difficult.
As stated by Bloebaum et al. (2018), a very good regression function can reduce
the performance of ANM and RECI because it decreases the confidence of the
independence tests. We have observed this in our experiments when using
neural networks as the regression class, as seen in Figure [5.1]. Importantly, if
the additive noise assumption fails to hold, both approaches will fail regardless
of the regression class.

CAREFL is specifically leveraging the recent developments in deep learning
with the promise of finding computationally efficient methods and improving
the statistical efficiency (power) by using likelihood ratios. Furthermore, both
ANM and RECI were solely designed for causal discovery, and the invertibility
of the system in order to perform interventions and counterfactuals was not
discussed. So, it is plausible that our model might be preferable even in the
context of additive noise models, in addition to generalizing them.

We note that the likelihood ratio approach by Hyvärinen and Smith (2013)
was originally designed for LiNGAM, which is a linear model based on non-
Gaussianity (Shimizu et al., 2006). An extension of likelihood ratios to nonlinear
ANM was also proposed by Hyvärinen and Smith (2013), together with a
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5. Causal autoregressive flows

heuristic approximation which roughly amounts to RECI.

5.7 Conclusion

We argue that autoregressive flow models are well-suited to causal inference
tasks, ranging from causal discovery to making counterfactual predictions. This
is because we can interpret the ordering of variables in an autoregressive flow
in the framework of SEMs.

We show that affine flows in particular define a new class of causal models,
where the noise is modulated by the cause. For such models, we prove a
completely new causal identifiability result which generalizes additive noise
models. We show how to efficiently learn causal structure by selecting the
ordering with the highest test log-likelihood and thus present a measure of
causal direction based on the likelihood ratio for nonlinear SEMs.

Furthermore, by restricting ourselves to autoregressive flow models we are
able to easily evaluate interventional queries by fixing the interventional variable
whilst sampling from the flow. The invertible property of autoregressive flows
further facilitates the evaluation of counterfactual queries.

In experiments on synthetic and real data, our method outperformed alter-
native methods in causal discovery as well as interventional and counterfactual
predictions.

222



5.A. Proofs and additional results

Appendices to Chapter 5

5.A Proofs and additional results

5.A.1 Identifiability of the affine causal model

Recall the form of the SEM that is defined by an autoregressive affine flow:

xj = esj(x<π(j))zj + tj(x<π(j)), j = 1, 2, (5.9)

where π is a permutation that describes the causal ordering.
The proof for additive flows (s1 = s2 = 0 in equation (5.9)) and general

noise can be found in Hoyer et al. (2009).

Proof of Theorem 5.3. The goal is to prove that the two causal models

y = f(x) + v(x)n, (5.10)
x = g(y) + w(y)m, (5.11)

where n and m have a Gaussian distribution, are only undistinguishable in
very specific and rare cases.

The log-likelihood of the direction (5.10), denoted by p1, is given by

log p1(x, y) = log px(x)− 1
2

(
y − f(x)
v(x)

)2

− log v(x)− 1
2 log 2π, (5.12)

and the log-likelihood of (5.11), denoted by p2, is given by

log p2(x, y) = log py(y)− 1
2

(
x− g(y)
w(y)

)2

− logw(y)− 1
2 log 2π. (5.13)

If the data follows both models, these are equal:

log px(x)− 1
2

(
y − f(x)
v(x)

)2

− log v(x) = log py(y)− 1
2

(
x− g(y)
w(y)

)2

− logw(y).

(5.14)
Denote 1

v(x) by v(x) and likewise for w. Now, take the derivative of both sides
with respect to x:

(log px)′(x)−v(x)(y−f(x))(yv′(x)−(fv)′(x))−(log v)′(x) = −(x−g(y))w2(y).
(5.15)
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5. Causal autoregressive flows

Take the derivative of both sides of this with respect to y:

−v(x)[2yv′(x)−(fv)′(x)−f(x)v′(x)] = −x(w2)′(y)+g′(y)w2(y)+g(y)(w2)′(y).
(5.16)

Again, take the derivative of both sides with respect to x:

−y(v2)′′(x) + [v((fv)′ + fv′)]′(x) = −(w2)′(y), (5.17)

and once more, take the derivative of both sides of this with respect to y:

−(v2)′′(x) = −(w2)′′(y), (5.18)

which is possible only if both sides are constant, which is equivalent to v2 and
w2 being second-order polynomials. In other words,

v2(x) = αx2 + βx+ γ, v2(x) = 1
αx2 + βx+ γ

, (5.19)

where the parameters must be such that the v is always positive. The same
holds for w:

w2(y) = α′y2 + β′y + γ′, w2(y) = 1
α′y2 + β′y + γ′

. (5.20)

Furthermore, equation (5.17) together with the fact that (v2)′′(x) = const
implies that

[v((fv)′ + fv′)]′(x) = [f ′v2 + 2f(v2)′)]′(x) = (fv2)′′(x) = const (5.21)

or
f(x)v2(x) = α0x

2 + β0x+ γ0, (5.22)

which means that f has the following form:

f(x) = α0x
2 + β0x+ γ0

αx2 + βx+ γ
. (5.23)

The same analysis yields a similar form for g:

g(y) = α′0y
2 + β′0y + γ′0

α′x2 + β′x+ γ′
. (5.24)

For v to be always positive, the coefficients (α, β, γ) in equation (5.19) must
satisfy one of the following conditions:
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1. α > 0 and 4αγ − β2 > 0.

2. α = β = 0 and γ > 0.

Similarly, for w to be always positive, the coefficients (α′, β′, γ′) in equa-
tion (5.20) must satisfy one of the following conditions:

1’. α′ > 0 and 4α′γ′ − β′2 > 0.

2’. α′ = β′ = 0 and γ′ > 0.

First case: 1. + 1’.. In the first case, we conclude that v = 1
Q

and f = P
Q

where Q is a polynomial of degree two, Q > 0 and P is a polynomial of degree
two or less. Furthermore, lim−∞ f = lim+∞ f = α0

α
, regardless of whether

α0 is zero or not. This implies that f can’t be invertible. Going back to
equation (5.14) and plugging these expressions:

log px(x) + 1
2 log(αx2 + βx+ γ)− 1

2
(α0x

2 + β0x+ γ0)2

αx2 + βx+ γ

− γ′0x+ 1
2γ
′x2 + (α0x

2 + β0x)y − 1
2(αx2 + βx)y2

= log py(y) + 1
2 log(α′y2 + β′y + γ′)− 1

2
(α′0y2 + β′0y + γ′0)

2

α′y2 + β′y + γ′

− γ0y + 1
2γy

2 + (α′0y2 + β′0y)x− 1
2(α′y2 + β′y)x2, (5.25)

whcih we can write as

A(x)−B(y)−1
2(α−α′)x2y2+

(
α0 −

1
2β
′
)
x2y−

(
α′0 −

1
2β
)
xy2+(β0−β′0)xy = 0,

(5.26)
where

A(x) = log px(x) + 1
2 log(αx2 + βx+ γ) (5.27)

− 1
2

(α0x
2 + β0x+ γ0)2

αx2 + βx+ γ
− γ′0x+ 1

2γ
′x2,

B(y) = log py(y) + 1
2 log(α′y2 + β′y + γ′) (5.28)

− 1
2

(α′0y2 + β′0y + γ′0)
2

α′y2 + β′y + γ′
− γ0y + 1

2γy
2.
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By first setting x = 0 in equation (5.26), we find that A(x) = B(0). Similarly,
by now setting y = 0, we find that B(y) = A(0). This in particular means that
A(x)−B(y) is constant, which, when plugged back in equation (5.26), would
imply that all the monomials are zero. Finally, this would in turn imply the
following:

α = α′, α0 = −1
2β
′, α′0 = −1

2β, β0 = β′0, (5.29)

log px(x) = −1
2γ
′x2 + γ′0x+ 1

2
(α0x

2 + β0x+ γ0)2

αx2 + βx+ γ
− 1

2 log(αx2 + βx+ γ) + C,

(5.30)

log py(y) = −1
2γy

2 + γ0y + 1
2

(α′0y2 + β′0y + γ′0)
2

α′y2 + β′y + γ′
− 1

2 log(α′y2 + β′y + γ′) + C.

(5.31)

Next we need to ensure we have well-defined probability densities. From the
above equations, we can check the coefficient of the quadratic term, which
dominates at infinity, is 1

2α
(α2

0 − αγ′) for px. Requiring this to be negative is
exactly the condition for the density family we made in Definition 5.2.

For py, we get the dominant quadratic term with the coefficient 1
2α′ (α′20 −α′γ),

and with substitutions we find the condition for its negativity as β2 < 4αγ
which is, again, the same as a condition in the Definition.

Second, the constant C has to be such that the probability density functions
integrate to one. In fact, C can be freely chosen, but importantly, it has to
be the same for both densities. As a special case, this constraint is obviously
fulfilled if the densities are the same, i.e. the parameters with and without
prime are the same (α = α′ etc.). We shall show below that such parameter
values can be found.

In fact, we can see how the parameters of the inverse model are determined
from the parameters of the true model as follows. Define

δ := γ′, δ0 := γ′0. (5.32)
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So we can write the above as

log px(x) = −1
2δx

2 + δ0x+ 1
2

(α0x
2 + β0x+ γ0)2

αx2 + βx+ γ
(5.33)

− 1
2 log(αx2 + βx+ γ) + C,

log py(y) = −1
2γy

2 + γ0y + 1
2

(−βy2/2 + β0y + δ0)2

αy2 − 2α0y + δ
(5.34)

− 1
2 log(αy2 − 2α0y + δ) + C,

with

C = A(0) = B(0) = log px(0) + 1
2 log γ − 1

2
γ2

0
γ

= log py(0) + 1
2 log γ′ − 1

2
γ′20
γ′
,

(5.35)
and where all the parameters defining py are now obtained from the parameters
defining px, f, v (which are here denoted by the parameters without prime for
this specific purpose). Likewise, we see that we also get g and w using those
same parameters.

Now, we show that in spite of the different constraints, a solution in this
family does exist. Let us consider the case where px = py, which would ensure
that we can normalize the densities with a common C. This can be achieved
by equating corresponding constants above which only requires

β = −2α0, (5.36)
δ = γ, (5.37)
δ0 = γ0, (5.38)

which is still perfectly possible, even considering the constraints on the param-
eters in the Definition, which can be satisfied by simply taking non-negative
α, γ, γ′, and then fixing α0 to be small enough in absolute value (which implies
the same for β). Thus, a solution for the inverse direction does exist. (But note
we didn’t prove that it exists for data coming from any px, f, v in our family;
we have proven unidentifiability only for some parameter values.)

Second case: 2. + 2’.. In the second case, we have that v is constant.
Going back to equation (5.14), multiplying by −2, plugging the solutions just
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obtained:

− 2 log px(x) + γ

(
y − α0

γ
x2 − β0

γ
x− γ0

γ

)2

− log γ =

− 2 log py(y) + γ′
(
x− α′0

γ′
y2 − β′0

γ′
y − γ′0

γ′

)2

− log γ′, (5.39)

which can be expanded into, after grouping together monomials:

− 2 log px(x) + α2
0
γ
x4 + 2α0β0

γ
x3 +

(
β2

0 + α0γ0

γ
− γ′

)
x2

+ 2
(
β0γ0

γ
+ γ′0

)
x− 2α0x

2y − 2β0xy + const

= −2 log py(y) + α′0
2

γ′
y4 + 2α

′
0β
′
0

γ′
y3 +

(
β′0

2 + α′0γ
′
0

γ′
− γ

)
y2

+ 2
(
β′0γ

′
0

γ′
+ γ0

)
y − 2α′0y2x− 2β′0xy, (5.40)

or again

A(x)−B(y)− 2α0x
2y + 2α′0y2x+ 2(β′0 − β0)xy = const, (5.41)

where

A(x) = −2 log px(x) + α2
0
γ
x4 + 2α0β0

γ
x3 (5.42)

+
(
β2

0 + α0γ0

γ
− γ′

)
x2 + 2

(
β0γ0

γ
+ γ′0

)
x,

B(y) = −2 log py(y) + α′0
2

γ′
y4 + 2α

′
0β
′
0

γ′
y3 (5.43)

+
(
β′0

2 + α′0γ
′
0

γ′
− γ

)
y2 + 2

(
β′0γ

′
0

γ′
+ γ0

)
y.

By setting y = 0 in equation (5.41), we have that A(x) = const for all
x. Similarly, by setting x = 0, we get B(y) = const for all y. We conclude
that the remaining monomials must be zero. In particular, this implies that
α0 = α′0 = 0 and β0 = β′0. This in turn means that f and g are linear.

Finally, by plugging this into equations (5.42) and (5.43), we get:

log px(x) = 1
2

(
β2

0
γ
− γ′

)
x2 +

(
β0γ0

γ
+ γ′0

)
x+ const. (5.44)

log py(y) = 1
2

(
β′0

2

γ′
− γ

)
y2 +

(
β′0γ

′
0

γ′
+ γ0

)
y + const′. (5.45)
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We deduce that x and y must be Gaussian. We don’t prove the normalizability
of the probability density functions in detail here since it is well-known that
such Gaussian, unidentifiable models exist.

Third (and fourth) case: 1. + 2’. or 2. + 1’.. Since these two cases are
symmetric, we will suppose that v is constant (2.) and w is a polynomial of
second degree (1’.). Going back to equation (5.14) and plugging the expressions
for f, v, g, w:

log py(y) + 1
2 log(α′y2 + β′y + γ′)− 1

2
(α′0y2 + β′0y + γ′0)

2

α′y2 + β′y + γ′

− γ0y + 1
2γy

2 + (α′0y2 + β′0y)x− 1
2(α′y2 + β′y)x2

= log px(x) + 1
2 log(γ)− 1

2
(α0x

2 + β0x+ γ0)2

γ

− γ′0x+ 1
2γ
′x2 + (α0x

2 + β0x)y, (5.46)

or again

A(x)−B(y) + 1
2α
′x2y2 +

(
α0 −

1
2β
′
)
x2y − α′0xy2 + (β0 − β′0)xy = 0, (5.47)

where

A(x) = log px(x) + 1
2 log(γ)− 1

2
(α0x

2 + β0x+ γ0)2

γ
(5.48)

− γ′0x+ 1
2γ
′x2,

B(y) = log py(y) + 1
2 log(α′y2 + β′y + γ′)− 1

2
(α′0y2 + β′0y + γ′0)

2

α′y2 + β′y + γ′
(5.49)

− γ0y + 1
2γy

2.

Proceeding like above, we can deduce that A(x)−B(y) is a constant, and that
all the monomials in equation (5.47) are zero. In particular, α′ = 0, which
contradicts 1’.: this third case is thus not possible.

5.A.2 Affine autoregressive flows are transitive

Proposition 5.4. Consider 2 autoregressive transformations f and g with
the same ordering π. Then their composition h = g ◦ f is also an autoregressive
with the same ordering π.
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Proof. Without loss of generality, assume that π is the identity. Let (x,y, z)
be such that

y = f(z), (5.50)
x = g(y) = g ◦ f(z). (5.51)

Since f and g are autoregressive, we can rewrite this system using equation (5.4)
as

yi = τ(zi,y<i), (5.52)
xj = τ ′(yj,x<j). (5.53)

The transformers τ and τ ′ are invertible with respect to their first argument.
Denoting those inverses as α and α′. Then

zi = α(yi, y<i) (5.54)
yj = α′(xj, x<j) (5.55)

And thus,
zi = α(α′(xi, x<i), β(x<i)) (5.56)

for some function β (not necessarily invertible). Since α and α′ are invertible
with respect to their first argument, this means that the mapping xi 7→ zi in
equation (5.56) is also invertible, and we can write

xi = τ ′′(zi, x<i), (5.57)

where τ ′′ is invertible wrt to its first argument. This proves that h = g ◦ f is
also an autoregressive flow.

Proposition 5.5. Consider k affine autoregressive flows T1, . . . ,Tk of the
form (5.6) with the same ordering π. Then their composition T = T1 ◦ · · · ◦Tk

is also an affine autoregressive flow of the form (5.6) with the same ordering π.

Proof. We will suppose that d = 2. The proof for d > 2 is very similar but
requires more complex notations. We will denote by zj

l the j-th (j = 1, 2)
output of the l-th sub-flow. Not that we can parametrize T or T−1 to be an
affine transformation. In these notations, if T follows equation (5.6), then
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zk = z and z0 = x. If instead, T−1 follows equation (5.6), then z0 = z and
zk = x. Each flow l ≥ 1 has the expression:

zl
1 =

(
zl−1

1 − tl1
)
e−sl

1 , (5.58)

zl
2 =

(
zl−1

2 − tl2(zl
1)
)
e−sl

2(zl
1). (5.59)

First, define

sl,k
1 =

k∑
j=l+1

sj
1, (5.60)

t
l,k
1 =

k∑
j=l+1

tj1e
∑j−1

i=l+1 si
1 =

k∑
j=l+1

tj1e
sl,j−1

1 , (5.61)

where all sums are zero if they have no summands. Then it is easy to show by
induction using equation (5.58) that

zl
1 = esl,k

1 zk
1 + t

l,k
1 , ∀l ≤ k, (5.62)

and that
esl,j

1 zj
1 + t

l,j
1 = esl,k

1 zk
1 + t

l,k
1 , ∀l ≤ min(j, k). (5.63)

Second, define

sk
2(u) =

k∑
l=1

sl
2(esl,k

1 u+ t
l,k
1 ), (5.64)

t
k
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1 ). (5.65)

We will show by induction on k that

zk
2 =

(
z0

2 − t
k
2(zk

1 )
)
e−sk

2(zk
1 ). (5.66)

The case for k = 1 trivially holds. Now suppose that equation (5.66) holds for
k ≥ 1, and let’s show it also holds for k + 1. Using equation (5.59), we can
write

zk+1
2 =

(
zk

2 − tk+1
2 (zk+1

1 )
)
e−sk+1

2 (zk+1
1 ). (5.67)

We need to show that
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This can be done using equation (5.63), the fact that zk+1
1 = esk+1,k+1

1 zk+1
1 +

t
k+1,k+1
1 and the definitions of sk

2 and t
k
2, which in turn allows us to conclude

the induction proof.
Finally, by replacing z0 and zk by x and z respectively in equations (5.62)

and (5.66), we have

x1 = es0,k
1 z1 + t

0,k
1 , (5.70)

x2 = esk
2(x1)z2 + t

k
2(x1), (5.71)

which proves the transitivity of affine autoregressive flows.

5.A.3 Affine flows are not universal density
approximators

Proposition 5.6. Let T : Rd → Rd be an affine autoregressive transfor-
mation. Let z be a standard Gaussian, and let x = T(z). Then there is no
parametrization of T such that x has an isotropic Gumbel distribution.

Proof. It is enough to prove this theorem for d = 2. Let x = T(z). Then

log px(x) = log pz(T−1(x)) + log |det JT−1(x)| (5.72)

and

x1 = es1z1 + t1, (5.73)
x2 = es2(x1)z2 + ti(x1). (5.74)

The Jacobian log-determinant of T−1 is simply log |det JT−1(z)| = −s1−s2(x1).
Note that this determinant is only a function of x1. This is the main reason
why affine autoregressive flows are not universal density approximators.

To see this, suppose that x1 and x2 are independent, and that each has a
Gumbel distribution. Plugging this into equation (5.72), we get

−
(
x1 + e−x1

)
−
(
x2 + e−x2

)
=

− s1 − s2(x1)− (x1 − t1)2 e−2s1 − (x2 − t2(x1))2 e−2s2(x1). (5.75)

This equation is valid for all (x1, x2) ∈ R2. In particular, let x1 = 0. Then for
any x2, after rearranging and grouping terms, we get

e−x2 = αx2
2 + βx2 + γ. (5.76)
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This can’t hold for all values of x2, which results in a contradiction. Thus, we
conclude that an affine autoregressive flow can’t represent any distribution,
unlike general unconstrained autoregressive flows.

5.A.4 Universality of the causal function

Proposition 5.7. Consider k affine autoregressive flows T1, . . . ,Tk, and let
T = T1 ◦ · · · ◦Tk. Denote by tlj and sl

j the coefficients of the l-th sub-flow Tl,
and by tkj and sk

j those of T. Suppose that all of the sl
j and tlj are feed-forward

neural networks that have universal approximation capability (assuming all
technical conditions hold). Then t

k
j and sk

j also have universal approximation
capability.

Proof. We will suppose for the proof that d = 2. The proof for d > 2 is similar.
According to Proposition 5.5, T is also an affine autoregressive flow, and t

k
2

and sk
2 have the following expressions:
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where tl,k1 and sl,k
1 are defined in equations (5.60) and (5.61) respectively.

On the one hand, translating and scaling the argument u of sk
2 by tl,k1 and

sl,k
1 only changes the bias and the slope of the input layer of each of the sl

2,
l = 1, . . . , k. Thus, one can interpret equation (5.77) as the output of an
additional final layer of the neural network whose outputs are the sl

2 functions.
The number of flows k in this case increases the width of this final layer. Using
the classical result of the universal approximation theorem of feed-forward
networks with arbitrary width (Hornik, 1991), we conclude that sk

2 also satisfies
such properties.

Interestingly, note that this results holds even if each of the sl
j function

is simply an affine function followed by a nonlinearity (i.e. a 1-hidden layer
feed-forward network).

On the other hand, since each of the tl2 have universal approximation
capability, each can in particular approximate a function of the form u 7→
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fl(u)e
∑l−1

i=1 si
2(es

i,k
1 u+t

i,k
1 ), where fl is a simple affine function followed by a nonlin-

earity σ (i.e. a 1-hidden layer feed-forward network). Thus, tk2 can approximate
a function of the form ∑k

l=1 fl, which, by the same argument used above, will
have universal approximation capability (Hornik, 1991).

5.B Experimental protocol

5.B.1 Architectures and hyperparameters

The optimization was done using Adam, with learning rate lr = 0.001, β =
(0.9, 0.999), along with a scheduler that reduces the learning rate by a factor
of 0.1 on plateaux. All flows use an isotropic Laplace distribution as a prior.
The different architectures and hyperparameter used for the experiments are
as follows:

• Causal discovery simulations: The flow T is a composition of 2
sub-flows T1 and T2. For each of the Tl, both sj and tj are multi-layer
perceptrons (MLPs), with 1 hidden layer and 10 hidden units. Each
direction was trained for 200 epochs, with a mini-batch of 128 data points.
The same architecture was used for all panels of Figure [5.1].

• Cause-effect pairs: The flow T is a composition of 4 sub-flows T1 to
T4. For each of the Tl, both sj and tj are MLPs, with either 1 or 3
hidden layers, each with 5 hidden units. For each direction, we train two
different flows (with 1 or 3 hidden layers), and select the flow that yields
higher test likelihood. Each direction was trained for 750 epochs, with
a mini-batch of 128 data points. For each pair, 80% of the data points
were used for training, and the remaining 20% to evaluate the likelihood.
The same architecture was used to classify all the pairs.

• EEG arrow of time: The flow T is a composition of 4 sub-flows
T1, · · · ,T4. For each of the Tl, both sj and tj are MLPs, with 4 hidden
layers, each with 10 hidden units. Each direction was trained for 400
epochs, with a mini-batch of 32 data points. For each channel, 80% of the
data points were used for training, and the remaining 20% to evaluate the
likelihood. The same architecture was used to classify all the channels.
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• Interventions on simulated data: The flow T is a composition of 5
sub-flows T1, · · · ,T5. For each of the Tl, both sj and tj are MLPs, with
1 hidden layers, each with 10 hidden units. We train the flow, conditioned
on the causal ordering, to fit the correct SEM. Training was done for 750
epochs, with a mini-batch of 32 data points.

• Interventions on es-fMRI data: The flow T is a composition of 5
sub-flows T1, · · · ,T5. For each of the Tl, both sj and tj are MLPs, with
a single hidden layer consisting of 2 hidden units. In order to obtain
interventional predictions, a CAREFL model was first trained using
resting-state fMRI data conditioned upon the causal ordering. Since we
did not seek to infer the causal structure, 100% of the training data was
employed (this is in contrast to causal discovery experiments which only
trained models on 80% of the data).

5.B.2 Preprocessing of EEG data

The openly available EEG data from Dornhege et al. (2004) contains recordings
for 5 healthy subjects. For each subject, the data has been sampled at 100Mhz
and 1000Mhz. For our experiments, we considered subject number 3, and used
the data sampled at 1000Mhz. In particular, we only considered n = 150 and
n = 500 time points. Each of the 118 EEG channels was then reversed with
probability 0.5.

The task is to properly infer the arrow of time for each of the 118 EEG,
considered separately. We transform a univariate time series (xt)t∈[[1,n]] cor-
responding to 1 channel into bivariate causal data by shifting it by a lag
parameter l, to obtain data of the form (xt, xt+l)t∈[[1,n−l]]. For the results plotted
in Figure [5.4], we used three values of lag for ANM, RECI, the linear LR
and CAREFL-NS: l ∈ {1, 2, 3}, which we then combined into one dataset. For
CAREFL, we used only two values of lag: l ∈ {1, 2}.

5.B.3 Preprocessing of functional MRI data

Results included in this manuscript come from preprocessing performed using
FMRIPREP (Esteban et al., 2019), a Nipype based tool (Gorgolewski et al.,
2011). Each T1w (T1-weighted) volume was corrected for INU (intensity non-
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uniformity) using N4BiasFieldCorrection v2.1.0 and skull-stripped using
the OASIS template from antsBrainExtraction.sh v2.1.0 . Brain surfaces
were reconstructed using recon-all from FreeSurfer v6.0.1, and the brain
mask estimated previously was refined with a custom variation of the method
to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical
grey-matter of Mindboggle. Spatial normalization to the ICBM 152 Nonlinear
Asymmetrical template version 2009c was performed through nonlinear registra-
tion with the antsRegistration tool of ANTs v2.1.0, using brain-extracted
versions of both T1w volume and template. Brain tissue segmentation of
cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was
performed on the brain-extracted T1w using fast.

Functional data was slice time corrected using 3dTshift from AFNI
v16.2.07 and motion corrected using mcflirt. This was followed by co-
registration to the corresponding T1w using boundary-based registration
with six degrees of freedom, using bbregister (FreeSurfer v6.0.1). Mo-
tion correcting transformations, BOLD-to-T1w transformation and T1w-to-
template (MNI) warp were concatenated and applied in a single step using
antsApplyTransforms using Lanczos interpolation.

Regional time series were subsequently calculated from the processed FMRI
data (transformed into MNI space) using NiLearn (Abraham et al., 2014) and
the Harvard-Atlas probabilistic atlas, with regions thresholded at 25% proba-
bility and binarised. Given the regional location of intracortical stimulation in
the subjects, FMRI time series from the Cingulate gyrus and Heschl’s gyrus
were selected for analysis.

We note that each patient received surgery and stimulation in different
locations, as determined by their diagnosis and clinical criteria. As such, the
two regions studied were selected so as to include as many subjects as possible
in our experiments. Moreover, the Cingulate gyrus is a region associated with
cognitive processes such as saliency and emotional processing (Vogt, 2019)
whereas Heschl’s gyrus covers primary auditory cortex, associated with early
cortical processing of auditory information; as such connectivity between the
regions captures the interaction between a higher-order heteromodal region
and a unimodal sensory region.
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Thesis summary

Modern neural network methods offer few statistical guarantees — even re-
training the same model architecture with a different initialisation or a slightly
different dataset may lead to a radically different outcome. This is particu-
larly problematic in representation learning, where one often wants the learnt
features to be reproducible and interpretable. Identifiability is an essential
prerequisite to mitigate this behaviour. It has been studied intensively in linear
models, but proved much harder to understand in the nonlinear domain. In
recent years, there has been a resurgence in identifiability results, primarily in
the nonlinear ICA literature. This thesis expands on and extends these findings
across a variety of popular deep learning frameworks. It sheds some light on
the relevance of identifiability for such models and prepares the road for its
application to other contexts and model classes.

The first three chapters of the thesis are devoted to the identifiability of the
representations learnt by some of the most popular deep learning framework.
In Chapter 2, we began by presenting a unifying view of two complementary
unsupervised representation learning methods: nonlinear ICA and variational
autoencoders (VAEs). The resulting framework is the first rigorous demonstra-
tion of identifiability in the setting of VAEs. This offers it an advantage over
conventional deep latent variable models employed with VAEs for representation
learning, because it retrieves the original latent variables, allowing for principled
disentanglement. It is further established that the new maximum-likelihood-
based estimation method has numerous advantages over prior nonlinear ICA
algorithms. In summary, it generalizes to the case of noisy observations and
incomplete representations, is more principled than heuristic self-supervised
approaches in previous studies, and may be used as a proxy for hyperparameter
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selection. Finally, it improves on previous identifiability results by focusing on
factorial exponential families. In Chapter 3, we developed a further generaliza-
tion of this model by removing the independence assumption while retaining
identifiability. This novel framework, termed as Independently Modulated Com-
ponent Analysis, extends nonlinear ICA to the case where the latent variables
can have any global dependence structure as long as they are independently
modulated by another variable such as a time index, history, or noisy labels.
Even when linear ICA theory is taken into account, the new identifiability
results are the most broad to date. Next, we sought to further weaken the
assumptions required for identifiability. To this purpose, Chapter 4 presents
a new identifiable conditional energy-based model (EBM) for unsupervised
representation learning. This is the first energy-based model to benefit from
rigorous identifiability results. The model makes use of EBMs’ flexibility and
generality, extending identifiability results to overcomplete representations and
even having universal approximation capabilities. In addition, we demonstrated
how to use it to estimate latent variables in nonlinear ICA and IMCA models.
On real-world image datasets, we demonstrated empirically that identifiable
representations increase performance in transfer learning and semi-supervised
learning applications. This paves the way for many new applications of EBMs,
by giving them a theoretically sound basis.

The last chapter of this thesis is dedicated to another type of identifiability
required for causal models. We suggested in Chapter 5 to exploit the similarities
between autoregressive normalizing flow models and structural equation models
(SEM), leading to a novel understanding of variable ordering in an autoregressive
flow as the causal ordering of a SEM. We showed that affine flows in particular
define a new class of causal models in which the cause modulates the noise
distribution. We proved a completely new causal identifiability result for such
models, generalizing additive noise models. Subsequently, we argued that
autoregressive flow models are well suited to causal inference tasks, ranging
from causal discovery to making counterfactual predictions. On the one hand,
we demonstrated how to efficiently learn the causal structure by selecting the
ordering with the highest test log-likelihood, therefore offering a measure of
causal direction based on the likelihood ratio for nonlinear SEMs. On the other
hand, and thanks to their invertibility, autoregressive flow models may readily
answer interventional and counterfactual queries.
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Perspectives and future work

Extensions of the nonlinear ICA and IMCA models. The identifiability
theorems presented in Chapters 2 and 3 limit the latent variables to be in the
exponential family. This is done chiefly to reduce the number of assumptions
necessary for such results. More specifically, if we represent the dimension
(order) of the sufficient statistic of the i-th latent variable by ki, then the
identifiability results only apply to two cases: either ki ≥ 2, ∀i or ki = 1, ∀i.
In future work, we can study the mixed setting, or we can expand the IMCA
framework outside of the exponential family setting by building on past work
on nonlinear ICA with more general factorial prior distributions (Hyvärinen
et al., 2019).

Identifiability in the absence of the auxiliary variable. The need for
an auxiliary variable to ensure identifiability is a limitation of the models
described in Chapters 2 to 4. It is already generally understood that dealing
with nonlinear models does not allow for identifiability in general. Auxiliary
variables are one method to break such models’ symmetries, resulting in more
“repeatable” representations and making the models identifiable. A promising
research direction would be to relax or eliminate the need for such auxiliary
variables. This can be accomplished by automatically learning such auxiliary
variables from observations by solving a secondary task for instance (Willetts
and Paige, 2021). Another approach would be to cleverly constrain the nonlinear
mapping between the latent and observed space, while retaining most of the
transformation’ flexibility (Gresele et al., 2021). Finally, we can exploit the
data’s structural dependencies as a naturally present inductive bias to attain
identifiability (Hälvä et al., 2021).

IMCA and causal discovery in the presence of confounding. A poten-
tial application of the IMCA framework that was not explored here is causal
discovery in the presence of confounding. A confounder is a hidden variable
that affects both dependent and independent variables, resulting in spurious
associations in the causal graph. The correspondence between nonlinear ICA
and causal models was recently utilized by Monti et al. (2019) to conduct causal
discovery on non-stationary observational data. We can establish a similar
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relationship between IMCA and confounded structural equation models (SEM)
since the IMCA model allows for the latent (noise) variables to be dependent.
The identifiability of IMCA implies that the causal direction of such an SEM
is likewise identifiable. However, because it is based on independence tests, the
estimation technique of Monti et al. (2019) cannot be used here. Instead, a
non-constraint-based method, such as likelihood ratio measures (Chapter 5),
might be pursued.

Identifiability of intermediate layers. Intermediate layers in neural net-
works are frequently used as useful features for a downstream task. They may
even be preferable in some applications over the representations learned by the
final layer (Mikolov et al., 2013; Alain and Bengio, 2018; Chen et al., 2020). An
intriguing question arises: can the identifiability results of the representations
learnt by ICE-BeeM be generalized to previous layers? In fact, to demonstrate
that the MLP architecture presented in Chapter 4 is identifiable, we used some
form of induction to “propagate identifiability” forward through the network.
Thus, a potential avenue of research is to prove that the intermediate layers
preceding a final MLP "chunk" in a neural network can inherit the identifiability
guarantees of the final layer. Moreover, we can look to prove the identifiability
of more general architectures. Convolutional networks are a suitable initial
choice since they are frequently utilized in image learning and have a strong
mathematical theory (Wiatowski and Bölcskei, 2017).

Identifiability of the affine noise model with non-Gaussian noise. The
identifiability theory of the additive noise model, which is a special case of
the affine noise model, also hold for non-Gaussian noise variables. In trials
using Laplace distributed noise variables, our causal autoregressive flow model
proved successful in estimating the causal direction. Making this rigorous by
expanding the identifiability proof in Chapter 5, using inspiration from Hoyer
et al. (2009) and Zhang and Hyvärinen (2009), is a possible direction for future
research.

240



Bibliography

Abraham, Alexandre, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais,
Andreas Mueller, Jean Kossaifi, Alexandre Gramfort, Bertrand Thirion, and
Gaël Varoquaux. “Machine Learning for Neuroimaging with Scikit-Learn”.
Frontiers in neuroinformatics 8 (2014), p. 14 (cit. on p. 236).

Achille, Alessandro and Stefano Soatto. “Information Dropout: Learning Op-
timal Representations through Noisy Computation”. IEEE transactions
on pattern analysis and machine intelligence 40.12 (2018), pp. 2897–2905
(cit. on pp. 29, 31).

Alain, Guillaume and Yoshua Bengio. “Understanding Intermediate Layers
Using Linear Classifier Probes”. Version 4. Nov. 22, 2018. arXiv: 1610.01644
[cs, stat] (cit. on p. 240).

Alemi, Alexander A., Ben Poole, Ian Fischer, Joshua V. Dillon, Rif A. Saurous,
and Kevin Murphy. “Fixing a Broken ELBO”. Nov. 1, 2017. arXiv: 1711.
00464 [cs, stat] (cit. on p. 29).

Andersen, Erling Bernhard. “Sufficiency and Exponential Families for Discrete
Sample Spaces”. Journal of the American Statistical Association 65.331
(Sept. 1, 1970), pp. 1248–1255. issn: 0162-1459. doi: 10.1080/01621459.
1970.10481160 (cit. on p. 24).

Arbel, Michael and Arthur Gretton. “Kernel Conditional Exponential Family”.
International Conference on Artificial Intelligence and Statistics. PMLR,
Apr. 7, 2018, pp. 1337–1346. arXiv: 1711.05363 (cit. on p. 167).

Arbel, Michael, Danica J Sutherland, Mikołaj Bińkowski, and Arthur Gretton.
“On Gradient Regularizers for MMD GANs”. Advances in Neural Informa-
tion Processing Systems. Vol. 31. Curran Associates, Inc., Nov. 29, 2018.
arXiv: 1805.11565 (cit. on p. 182).

241

https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/1610.01644
https://arxiv.org/abs/1711.00464
https://arxiv.org/abs/1711.00464
https://doi.org/10.1080/01621459.1970.10481160
https://doi.org/10.1080/01621459.1970.10481160
https://arxiv.org/abs/1711.05363
https://arxiv.org/abs/1805.11565


Bibliography

Back, Andrew D. and Andreas S. Weigend. “A First Application of Indepen-
dent Component Analysis to Extracting Structure from Stock Returns”.
International journal of neural systems 8.04 (1997), pp. 473–484 (cit. on
p. 32).

Bell, Anthony J. and Terrence J. Sejnowski. “An Information-Maximization Ap-
proach to Blind Separation and Blind Deconvolution”. Neural computation
7.6 (1995), pp. 1129–1159 (cit. on p. 32).

Ben-Israel, Adi. “The Change-of-Variables Formula Using Matrix Volume”.
SIAM J. Matrix Anal. Appl. 21.1 (Oct. 1999), pp. 300–312. issn: 0895-4798.
doi: 10.1137/S0895479895296896 (cit. on p. 92).

Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Janvin. “A
Neural Probabilistic Language Model”. The journal of machine learning
research 3 (2003), pp. 1137–1155 (cit. on p. 28).

Bengio, Yoshua, Aaron Courville, and Pascal Vincent. “Representation Learning:
A Review and New Perspectives”. IEEE transactions on pattern analysis
and machine intelligence 35.8 (2013), pp. 1798–1828. arXiv: 1206.5538
(cit. on pp. 28, 29).

Bertin-Mahieux, Thierry, Daniel PW Ellis, Brian Whitman, and Paul Lamere.
“The Million Song Dataset”. Proceedings of the 12th International Society
for Music Information Retrieval Conference. 2011. doi: 10.7916/D8NZ8J07
(cit. on p. 27).

Bertsekas, Dimitri P. “Auction Algorithms for Network Flow Problems: A
Tutorial Introduction”. Computational optimization and applications 1.1
(1992), pp. 7–66 (cit. on p. 78).

Bingham, Ella, Jukka Kuusisto, and Krista Lagus. “ICA and SOM in Text
Document Analysis”. Proceedings of the 25th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval.
2002, pp. 361–362 (cit. on p. 32).

Bloebaum, Patrick, Dominik Janzing, Takashi Washio, Shohei Shimizu, and
Bernhard Schölkopf. “Cause-Effect Inference by Comparing Regression
Errors”. International Conference on Artificial Intelligence and Statistics.
2018, pp. 900–909 (cit. on pp. 40, 42, 43, 52, 200, 213, 221).

Bollen, Kenneth A. Structural Equations with Latent Variables. Vol. 210. John
Wiley & Sons, 1989 (cit. on p. 39).

242

https://doi.org/10.1137/S0895479895296896
https://arxiv.org/abs/1206.5538
https://doi.org/10.7916/D8NZ8J07


Bibliography

Bottou, Léon, Jonas Peters, Joaquin Quiñonero-Candela, Denis X. Charles,
D. Max Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed
Snelson. “Counterfactual Reasoning and Learning Systems: The Example of
Computational Advertising.” Journal of Machine Learning Research 14.11
(2013) (cit. on p. 38).

Brakel, Philemon and Yoshua Bengio. “Learning Independent Features with
Adversarial Nets for Non-Linear ICA”. 2017. arXiv: 1710.05050 (cit. on
p. 63).

Brosowski, Bruno and Frank Deutsch. “An Elementary Proof of the Stone-
Weierstrass Theorem”. Proceedings of the American Mathematical Society
(1981), pp. 89–92 (cit. on p. 178).

Burda, Yuri, Roger Grosse, and Ruslan Salakhutdinov. “Importance Weighted
Autoencoders”. Sept. 1, 2015. arXiv: 1509.00519 [cs, stat] (cit. on
p. 62).

Burgess, Christopher P., Irina Higgins, Arka Pal, Loic Matthey, Nick Watters,
Guillaume Desjardins, and Alexander Lerchner. “Understanding Disentan-
gling in β-VAE”. 2018. arXiv: 1804.03599 (cit. on pp. 29, 62).

Calhoun, Vince D., Tulay Adali, Lars Kai Hansen, Jan Larsen, and James J.
Pekar. “ICA of Functional MRI Data: An Overview”. In Proceedings of
the International Workshop on Independent Component Analysis and Blind
Signal Separation. Citeseer, 2003 (cit. on p. 32).

Cardoso, Jean-François. “The Three Easy Routes to Independent Component
Analysis; Contrasts and Geometry”. Proc. ICA. Vol. 2001. Citeseer, 2001,
pp. 1–6 (cit. on p. 32).

Castro, Daniel C., Ian Walker, and Ben Glocker. “Causality Matters in Medical
Imaging”. Nature Communications 11.1 (2020), pp. 1–10 (cit. on p. 38).

Ceylan, Ciwan and Michael U. Gutmann. “Conditional Noise-Contrastive
Estimation of Unnormalised Models”. International Conference on Machine
Learning. PMLR, 2018, pp. 726–734. arXiv: 1806.03664 (cit. on p. 132).

Chang, Angel X., Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing
Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, and Hao
Su. “Shapenet: An Information-Rich 3d Model Repository”. 2015. arXiv:
1512.03012 (cit. on p. 27).

Chen, Ricky T. Q., Xuechen Li, Roger B Grosse, and David K Duvenaud. “Iso-
lating Sources of Disentanglement in Variational Autoencoders”. Advances

243

https://arxiv.org/abs/1710.05050
https://arxiv.org/abs/1509.00519
https://arxiv.org/abs/1804.03599
https://arxiv.org/abs/1806.03664
https://arxiv.org/abs/1512.03012


Bibliography

in Neural Information Processing Systems. Vol. 31. Curran Associates, Inc.,
2018. arXiv: 1802.04942 (cit. on pp. 28–31, 62, 81, 107).

Chen, Ting, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. “A
Simple Framework for Contrastive Learning of Visual Representations”.
June 30, 2020. arXiv: 2002.05709 [cs, stat] (cit. on p. 240).

Comon, Pierre. “Independent Component Analysis, a New Concept?” Signal
processing 36.3 (1994), pp. 287–314 (cit. on pp. 31–33, 114).

Dahl, George E., Dong Yu, Li Deng, and Alex Acero. “Context-Dependent Pre-
Trained Deep Neural Networks for Large-Vocabulary Speech Recognition”.
IEEE Transactions on audio, speech, and language processing 20.1 (2011),
pp. 30–42 (cit. on p. 28).

Darmois, George. “Analyse Générale Des Liaisons Stochastiques: Etude Partic-
ulière de l’analyse Factorielle Linéaire”. Revue de l’Institut International de
Statistique (1953), pp. 2–8 (cit. on p. 34).

Delorme, Arnaud, Terrence Sejnowski, and Scott Makeig. “Enhanced Detection
of Artifacts in EEG Data Using Higher-Order Statistics and Independent
Component Analysis”. Neuroimage 34.4 (2007), pp. 1443–1449 (cit. on
p. 32).

Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Ima-
genet: A Large-Scale Hierarchical Image Database”. IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2009, pp. 248–255 (cit. on
p. 27).

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understand-
ing”. Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers). NAACL-HLT 2019. Minneapolis,
Minnesota: Association for Computational Linguistics, June 2019, pp. 4171–
4186. doi: 10.18653/v1/N19-1423. arXiv: 1810.04805 (cit. on p. 28).

Dinh, Laurent, David Krueger, and Yoshua Bengio. “NICE: Non-linear Inde-
pendent Components Estimation”. Oct. 30, 2014. arXiv: 1410.8516 [cs]
(cit. on pp. 51, 67, 201).

Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio. “Density Estimation
Using Real NVP”. May 27, 2016. arXiv: 1605.08803 [cs, stat] (cit. on
pp. 51, 201, 205, 209).

244

https://arxiv.org/abs/1802.04942
https://arxiv.org/abs/2002.05709
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1605.08803


Bibliography

Dornhege, Guido, Benjamin Blankertz, Gabriel Curio, and Klaus-Robert Müller.
“Boosting Bit Rates in Noninvasive EEG Single-Trial Classifications by
Feature Combination and Multiclass Paradigms”. IEEE transactions on
bio-medical engineering 51.6 (June 2004), pp. 993–1002. issn: 0018-9294.
doi: 10.1109/TBME.2004.827088. pmid: 15188870 (cit. on pp. 217, 235).

Durkan, Conor, Artur Bekasov, Iain Murray, and George Papamakarios. “Neu-
ral Spline Flows”. Advances in Neural Information Processing Systems.
Vol. 32. Curran Associates, Inc., 2019. arXiv: 1906.04032 (cit. on pp. 165,
201, 205, 212).

— “Cubic-Spline Flows”. June 5, 2019. arXiv: 1906.02145 [cs, stat] (cit. on
pp. 201, 205).

Eriksson, Jan and Visa Koivunen. “Blind Identifiability of Class of Nonlin-
ear Instantaneous ICA Models”. 2002 11th European Signal Processing
Conference. IEEE, 2002, pp. 1–4 (cit. on p. 35).

Esmaeili, Babak, Hao Wu, Sarthak Jain, Alican Bozkurt, Narayanaswamy
Siddharth, Brooks Paige, Dana H. Brooks, Jennifer Dy, and Jan-Willem
Meent. “Structured Disentangled Representations”. The 22nd International
Conference on Artificial Intelligence and Statistics. PMLR, 2019, pp. 2525–
2534. arXiv: 1804.02086 (cit. on pp. 28, 29, 31, 63).

Esteban, Oscar, Christopher J. Markiewicz, Ross W. Blair, Craig A. Moodie,
A. Ilkay Isik, Asier Erramuzpe, James D. Kent, Mathias Goncalves, Eliza-
beth DuPre, and Madeleine Snyder. “fMRIPrep: A Robust Preprocessing
Pipeline for Functional MRI”. Nature methods 16.1 (2019), pp. 111–116
(cit. on p. 235).

Foster, E. Michael. “Causal Inference and Developmental Psychology.” Devel-
opmental psychology 46.6 (2010), p. 1454 (cit. on p. 38).

Gangl, Markus. “Causal Inference in Sociological Research”. Annual review of
sociology 36 (2010), pp. 21–47 (cit. on p. 38).

Gao, Ruiqi, Erik Nijkamp, Diederik P. Kingma, Zhen Xu, Andrew M. Dai, and
Ying Nian Wu. “Flow Contrastive Estimation of Energy-Based Models”.
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 7518–7528. arXiv: 1912.00589 (cit. on pp. 133, 165,
169, 170).

Gao, Shuyang, Rob Brekelmans, Greg Ver Steeg, and Aram Galstyan. “Auto-
Encoding Total Correlation Explanation”. The 22nd International Confer-

245

https://doi.org/10.1109/TBME.2004.827088
15188870
https://arxiv.org/abs/1906.04032
https://arxiv.org/abs/1906.02145
https://arxiv.org/abs/1804.02086
https://arxiv.org/abs/1912.00589


Bibliography

ence on Artificial Intelligence and Statistics. PMLR, 2019, pp. 1157–1166
(cit. on pp. 29, 31).

Germain, Mathieu, Karol Gregor, Iain Murray, and Hugo Larochelle. “MADE:
Masked Autoencoder for Distribution Estimation”. Feb. 11, 2015. arXiv:
1502.03509 [cs, stat] (cit. on p. 205).

Glymour, Clark, Kun Zhang, and Peter Spirtes. “Review of Causal Discovery
Methods Based on Graphical Models”. Frontiers in Genetics 10 (June 4,
2019), p. 524. issn: 1664-8021. doi: 10.3389/fgene.2019.00524 (cit. on
p. 38).

Gorgolewski, Krzysztof, Christopher D. Burns, Cindee Madison, Dav Clark,
Yaroslav O. Halchenko, Michael L. Waskom, and Satrajit S. Ghosh. “Nipype:
A Flexible, Lightweight and Extensible Neuroimaging Data Processing
Framework in Python”. Frontiers in neuroinformatics 5 (2011), p. 13 (cit.
on p. 235).

Goyal, Anirudh, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine,
Yoshua Bengio, and Bernhard Schölkopf. “Recurrent Independent Mecha-
nisms”. July 2, 2020. arXiv: 1909.10893 [cs, stat] (cit. on p. 38).

Gresele, Luigi, Paul K. Rubenstein, Arash Mehrjou, Francesco Locatello, and
Bernhard Schölkopf. “The Incomplete Rosetta Stone Problem: Identifiability
Results for Multi-View Nonlinear ICA”. Uncertainty in Artificial Intelligence.
PMLR, 2020, pp. 217–227. arXiv: 1905.06642 (cit. on p. 36).

Gresele, Luigi, Julius von Kügelgen, Vincent Stimper, Bernhard Schölkopf,
and Michel Besserve. “Independent Mechanism Analysis, a New Concept?”
Oct. 28, 2021. arXiv: 2106.05200 [cs, stat] (cit. on p. 239).

Gretton, Arthur, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. “Mea-
suring Statistical Dependence with Hilbert-Schmidt Norms”. International
Conference on Algorithmic Learning Theory. Springer, 2005, pp. 63–77 (cit.
on p. 85).

Grosz, Michael P., Julia M. Rohrer, and Felix Thoemmes. “The Taboo against
Explicit Causal Inference in Nonexperimental Psychology”. Perspectives on
Psychological Science 15.5 (2020), pp. 1243–1255 (cit. on p. 38).

Gutmann, Michael and Aapo Hyvärinen. “Noise-Contrastive Estimation: A
New Estimation Principle for Unnormalized Statistical Models”. Proceedings
of the Thirteenth International Conference on Artificial Intelligence and
Statistics. 2010, pp. 297–304 (cit. on p. 132).

246

https://arxiv.org/abs/1502.03509
https://doi.org/10.3389/fgene.2019.00524
https://arxiv.org/abs/1909.10893
https://arxiv.org/abs/1905.06642
https://arxiv.org/abs/2106.05200


Bibliography

Gutmann, Michael U. and Aapo Hyvärinen. “Noise-Contrastive Estimation
of Unnormalized Statistical Models, with Applications to Natural Image
Statistics”. Journal of Machine Learning Research 13 (Feb 2012), pp. 307–
361 (cit. on p. 169).

Hälvä, Hermanni, Sylvain Le Corff, Luc Lehéricy, Jonathan So, Yongjie Zhu,
Elisabeth Gassiat, and Aapo Hyvärinen. “Disentangling Identifiable Features
from Noisy Data with Structured Nonlinear ICA”. June 17, 2021. arXiv:
2106.09620 [cs, stat] (cit. on p. 239).

Harmeling, Stefan, Andreas Ziehe, Motoaki Kawanabe, and Klaus-Robert
Müller. “Kernel-Based Nonlinear Blind Source Separation”. Neural Compu-
tation 15.5 (2003), pp. 1089–1124 (cit. on p. 35).

Hecht-Nielsen, Robert. “Replicator Neural Networks for Universal Optimal
Source Coding”. Science 269.5232 (1995), pp. 1860–1863 (cit. on p. 35).

Heckman, James J. “Econometric Causality”. International statistical review
76.1 (2008), pp. 1–27 (cit. on p. 38).

Higgins, Irina, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. “Beta-VAE:
Learning Basic Visual Concepts with a Constrained Variational Framework”.
ICLR. ICLR. Vol. 2. 2017 (cit. on pp. 28–30, 62, 81, 107).

Higgins, Irina, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey,
Danilo Rezende, and Alexander Lerchner. “Towards a Definition of Disen-
tangled Representations”. Dec. 5, 2018. arXiv: 1812.02230 [cs, stat]
(cit. on p. 62).

Hornik, Kurt. “Approximation Capabilities of Multilayer Feedforward Net-
works”. Neural Networks 4.2 (Jan. 1, 1991), pp. 251–257. issn: 0893-6080.
doi: 10.1016/0893-6080(91)90009-T (cit. on pp. 177, 233, 234).

Hosseini, Shahram and Christian Jutten. “On the Separability of Nonlinear
Mixtures of Temporally Correlated Sources”. IEEE signal processing letters
10.2 (2003), pp. 43–46 (cit. on p. 35).

Hoyer, Patrik O., Dominik Janzing, Joris M. Mooij, Jonas Peters, and Bern-
hard Schölkopf. “Nonlinear Causal Discovery with Additive Noise Models”.
Advances in Neural Information Processing Systems. 2009, pp. 689–696
(cit. on pp. 40–45, 52, 200, 203, 206, 213, 218, 221, 223, 240).

247

https://arxiv.org/abs/2106.09620
https://arxiv.org/abs/1812.02230
https://doi.org/10.1016/0893-6080(91)90009-T


Bibliography

Hu, Weihua, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen
Liu, Michele Catasta, and Jure Leskovec. “Open Graph Benchmark: Datasets
for Machine Learning on Graphs”. 2020. arXiv: 2005.00687 (cit. on p. 27).

Huang, Chin-Wei, David Krueger, Alexandre Lacoste, and Aaron Courville.
“Neural Autoregressive Flows”. International Conference on Machine Learn-
ing. PMLR, July 3, 2018, pp. 2078–2087. arXiv: 1804.00779 (cit. on pp. 45,
51, 201, 203).

Hyvärinen, Aapo. “Fast and Robust Fixed-Point Algorithms for Independent
Component Analysis”. IEEE transactions on Neural Networks 10.3 (1999),
pp. 626–634 (cit. on p. 32).

Hyvärinen, Aapo and Petteri Pajunen. “Nonlinear Independent Component
Analysis: Existence and Uniqueness Results”. Neural Networks 12.3 (Apr. 1,
1999), pp. 429–439. issn: 0893-6080. doi: 10.1016/S0893-6080(98)00140-
3 (cit. on pp. 31, 34, 35, 40, 46, 63, 102, 114, 130, 205).

Hyvärinen, Aapo, Juha Karhunen, and Erkki Oja. Independent Component
Analysis. John Wiley & Sons, 2001 (cit. on pp. 32, 103).

Hyvärinen, Aapo, Jarmo Hurri, and Jaakko Väyrynen. “Bubbles: A Unifying
Framework for Low-Level Statistical Properties of Natural Image Sequences”.
JOSA A 20.7 (2003), pp. 1237–1252 (cit. on p. 32).

Hyvärinen, Aapo and Jarmo Hurri. “Blind Separation of Sources That Have
Spatiotemporal Variance Dependencies”. Signal Processing. Special Section
on Independent Component Analysis and Beyond 84.2 (Feb. 1, 2004),
pp. 247–254. issn: 0165-1684. doi: 10.1016/j.sigpro.2003.10.010
(cit. on pp. 32, 48, 114).

Hyvärinen, Aapo. “Estimation of Non-Normalized Statistical Models by Score
Matching”. Journal of Machine Learning Research 6 (Apr 2005), pp. 695–
709 (cit. on pp. 132, 166).

— “Some Extensions of Score Matching”. Computational statistics & data
analysis 51.5 (2007), pp. 2499–2512 (cit. on p. 143).

Hyvärinen, Aapo and Stephen M. Smith. “Pairwise Likelihood Ratios for Esti-
mation of Non-Gaussian Structural Equation Models”. Journal of Machine
Learning Research 14 (Jan 2013), pp. 111–152. issn: ISSN 1533-7928 (cit. on
pp. 40, 42, 44, 52, 208, 213, 221).

Hyvärinen, Aapo and Hiroshi Morioka. “Unsupervised Feature Extraction
by Time-Contrastive Learning and Nonlinear ICA”. Advances in Neural

248

https://arxiv.org/abs/2005.00687
https://arxiv.org/abs/1804.00779
https://doi.org/10.1016/S0893-6080(98)00140-3
https://doi.org/10.1016/S0893-6080(98)00140-3
https://doi.org/10.1016/j.sigpro.2003.10.010


Bibliography

Information Processing Systems. 2016, pp. 3765–3773 (cit. on pp. 28, 35–37,
42, 47, 49, 50, 63, 66, 70, 77, 79, 82, 83, 88, 114, 130, 141, 147, 162, 164,
196, 221).

— “Nonlinear ICA of Temporally Dependent Stationary Sources”. Proceedings
of The 20th International Conference on Artificial Intelligence and Statistics.
2017 (cit. on pp. 28, 36, 37, 49, 63, 70, 77, 114, 130).

Hyvärinen, Aapo, Hiroaki Sasaki, and Richard Turner. “Nonlinear ICA Using
Auxiliary Variables and Generalized Contrastive Learning”. Proceedings of
The 22nd International Conference on Artificial Intelligence and Statistics.
Apr. 11, 2019, pp. 859–868 (cit. on pp. 28, 36–38, 42, 45–50, 63, 66, 70, 77,
79, 80, 82, 88, 114, 118, 121, 123, 126, 130, 131, 193, 221, 239).

Imai, Kosuke and David A. Van Dyk. “Causal Inference with General Treatment
Regimes: Generalizing the Propensity Score”. Journal of the American
Statistical Association 99.467 (2004), pp. 854–866 (cit. on p. 38).

Jutten, Christian, Massoud Babaie-Zadeh, and Shahram Hosseini. “Three
Easy Ways for Separating Nonlinear Mixtures?” Signal Processing. Special
Section on Independent Component Analysis and Beyond 84.2 (Feb. 1, 2004),
pp. 217–229. issn: 0165-1684. doi: 10.1016/j.sigpro.2003.10.011 (cit.
on p. 35).

Khemakhem, Ilyes, Diederik P. Kingma, Ricardo Pio Monti, and Aapo Hyväri-
nen. “Variational Autoencoders and Nonlinear ICA: A Unifying Frame-
work”. Proceedings of The 23rd International Conference on Artificial Intel-
ligence and Statistics. Vol. 108. PMLR, June 2020, pp. 2207–2217. arXiv:
1907.04809 (cit. on pp. 61, 114, 118, 123, 125, 128, 130, 131, 137, 141, 147,
165, 193, 195, 196, 221).

Khemakhem, Ilyes, Ricardo Pio Monti, Diederik P. Kingma, and Aapo Hyväri-
nen. “ICE-BeeM: Identifiable Conditional Energy-Based Deep Models”.
Advances in Neural Information Processing Systems. Vol. 33. Dec. 2020.
arXiv: 2002.11537 (cit. on pp. 113, 129, 221).

Khemakhem, Ilyes, Ricardo Pio Monti, Robert Leech, and Aapo Hyvärinen.
“Causal Autoregressive Flows”. Proceedings of The 24th International Con-
ference on Artificial Intelligence and Statistics. The 24th International
Conference on Artificial Intelligence and Statistics. Vol. 130. PMLR, 2021,
pp. 3520–3528. arXiv: 2011.02268 (cit. on p. 199).

249

https://doi.org/10.1016/j.sigpro.2003.10.011
https://arxiv.org/abs/1907.04809
https://arxiv.org/abs/2002.11537
https://arxiv.org/abs/2011.02268


Bibliography

Kim, Hyunjik and Andriy Mnih. “Disentangling by Factorising”. International
Conference on Machine Learning. PMLR, 2018, pp. 2649–2658. arXiv:
1802.05983 (cit. on pp. 29–31, 63).

Kingma, Diederik P. and Max Welling. “Auto-Encoding Variational Bayes”.
Proceedings of the 2nd International Conference on Learning Representations
(ICLR). 2014. arXiv: 1312.6114 (cit. on pp. 28, 29, 62, 64, 68, 107, 122,
165).

Kingma, Diederik P. and Jimmy Ba. “Adam: A Method for Stochastic Opti-
mization”. Dec. 22, 2014. arXiv: 1412.6980 [cs] (cit. on pp. 80, 151).

Kingma, Diederik P., Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,
and Max Welling. “Improved Variational Inference with Inverse Autoregres-
sive Flow”. Advances in Neural Information Processing Systems. Vol. 29.
2016, pp. 4743–4751. arXiv: 1606.04934 (cit. on pp. 62, 201, 212).

Kingma, Diederik P. and Prafulla Dhariwal. “Glow: Generative Flow with
Invertible 1x1 Convolutions”. Advances in Neural Information Processing
Systems. Vol. 31. Curran Associates, Inc., 2018. arXiv: 1807.03039 (cit. on
pp. 165, 201, 205).

Kobyzev, Ivan, Simon J. D. Prince, and Marcus A. Brubaker. “Normalizing
Flows: An Introduction and Review of Current Methods”. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (2020), pp. 1–1. issn:
0162-8828, 2160-9292, 1939-3539. doi: 10.1109/TPAMI.2020.2992934.
arXiv: 1908.09257 (cit. on p. 201).

Kokonendji, Célestin C. and Tristan Senga Kiesse. “Discrete Associated Kernels
Method and Extensions”. Statistical Methodology 8.6 (2011), pp. 497–516
(cit. on p. 169).

Koopman, B. O. “On Distributions Admitting a Sufficient Statistic”. Trans-
actions of the American Mathematical Society 39.3 (1936), pp. 399–409.
issn: 0002-9947, 1088-6850. doi: 10.1090/S0002-9947-1936-1501854-3
(cit. on p. 24).

Korbar, Bruno, Du Tran, and Lorenzo Torresani. “Cooperative Learning of
Audio and Video Models from Self-Supervised Synchronization”. June 30,
2018. arXiv: 1807.00230 [cs] (cit. on p. 28).

Kreif, Noemi and Karla DiazOrdaz. “Machine Learning in Policy Evaluation:
New Tools for Causal Inference”. 2019. arXiv: 1903.00402 (cit. on p. 38).

250

https://arxiv.org/abs/1802.05983
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1606.04934
https://arxiv.org/abs/1807.03039
https://doi.org/10.1109/TPAMI.2020.2992934
https://arxiv.org/abs/1908.09257
https://doi.org/10.1090/S0002-9947-1936-1501854-3
https://arxiv.org/abs/1807.00230
https://arxiv.org/abs/1903.00402


Bibliography

Krizhevsky, A. “Learning Multiple Layers of Features from Tiny Images”. 2009
(cit. on p. 27).

Kuhn, H. W. “The Hungarian Method for the Assignment Problem”. Naval
Research Logistics Quarterly 2.1-2 (Mar. 1, 1955), pp. 83–97. issn: 1931-9193.
doi: 10.1002/nav.3800020109 (cit. on p. 78).

Kumar, Abhishek, Prasanna Sattigeri, and Avinash Balakrishnan. “Variational
Inference of Disentangled Latent Concepts from Unlabeled Observations”.
2017. arXiv: 1711.00848 (cit. on p. 31).

Kupperman, Morton. “Probabilities of Hypotheses and Information-Statistics in
Sampling from Exponential-Class Populations”. The Annals of Mathematical
Statistics 29.2 (June 1958), pp. 571–575. issn: 0003-4851, 2168-8990. doi:
10.1214/aoms/1177706633 (cit. on p. 24).

Lacerda, Gustavo, Peter L. Spirtes, Joseph Ramsey, and Patrik O. Hoyer.
“Discovering Cyclic Causal Models by Independent Components Analysis”.
2012. arXiv: 1206.3273 (cit. on p. 40).

Lappalainen, Harri and Antti Honkela. “Bayesian Non-Linear Independent
Component Analysis by Multi-Layer Perceptrons”. Advances in Independent
Component Analysis. Springer, 2000, pp. 93–121 (cit. on p. 35).

Le, Quoc V., Alexandre Karpenko, Jiquan Ngiam, and Andrew Y. Ng. “ICA
with Reconstruction Cost for Efficient Overcomplete Feature Learning”.
Advances in Neural Information Processing Systems 24. Ed. by J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger. Curran
Associates, Inc., 2011, pp. 1017–1025 (cit. on p. 32).

LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. “Gradient-
Based Learning Applied to Document Recognition”. Proceedings of the
IEEE 86.11 (1998), pp. 2278–2324 (cit. on p. 27).

Lee, John M. Introduction to Smooth Manifolds. Graduate Texts in Mathematics.
New York: Springer-Verlag, 2003. isbn: 978-0-387-21752-9 (cit. on pp. 97,
98).

Lin, Guosheng, Anton Milan, Chunhua Shen, and Ian Reid. “RefineNet: Multi-
Path Refinement Networks for High-Resolution Semantic Segmentation”.
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 1925–1934. arXiv: 1611.06612 (cit. on p. 150).

Locatello, Francesco, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain
Gelly, Bernhard Schölkopf, and Olivier Bachem. “Challenging Common

251

https://doi.org/10.1002/nav.3800020109
https://arxiv.org/abs/1711.00848
https://doi.org/10.1214/aoms/1177706633
https://arxiv.org/abs/1206.3273
https://arxiv.org/abs/1611.06612


Bibliography

Assumptions in the Unsupervised Learning of Disentangled Representations”.
International Conference on Machine Learning. PMLR, 2019, pp. 4114–4124.
arXiv: 1811.12359 (cit. on pp. 31, 46, 63, 71).

Lopez-Paz, David, Philipp Hennig, and Bernhard Schölkopf. “The Random-
ized Dependence Coefficient”. Advances in Neural Information Processing
Systems. Vol. 26. Curran Associates, Inc., 2013 (cit. on pp. 79, 151).

Louizos, Christos, Uri Shalit, Joris Mooij, David Sontag, Richard Zemel, and
Max Welling. “Causal Effect Inference with Deep Latent-Variable Models”.
May 24, 2017. arXiv: 1705.08821 [cs, stat] (cit. on p. 221).

Maaløe, Lars, Marco Fraccaro, Valentin Liévin, and Ole Winther. “BIVA: A
Very Deep Hierarchy of Latent Variables for Generative Modeling”. Advances
in Neural Information Processing Systems. 2019, pp. 6548–6558 (cit. on
p. 62).

Maas, Andrew, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. “Learning Word Vectors for Sentiment Analysis”.
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. 2011, pp. 142–150 (cit. on p. 27).

Makeig, Scott, Anthony Bell, Tzyy-Ping Jung, and Terrence J Sejnowski. “Inde-
pendent Component Analysis of Electroencephalographic Data”. Advances
in Neural Information Processing Systems. Vol. 8. MIT Press, 1996 (cit. on
p. 32).

Makeig, Scott, Tzyy-Ping Jung, Anthony J. Bell, Dara Ghahremani, and
Terrence J. Sejnowski. “Blind Separation of Auditory Event-Related Brain
Responses into Independent Components”. Proceedings of the National
Academy of Sciences 94.20 (1997), pp. 10979–10984 (cit. on p. 32).

Marcus, Mitchell, Beatrice Santorini, and Mary Ann Marcinkiewicz. “Building
a Large Annotated Corpus of English: The Penn Treebank” (1993) (cit. on
p. 27).

Mathieu, Emile, Tom Rainforth, N. Siddharth, and Yee Whye Teh. “Disentan-
gling Disentanglement in Variational Autoencoders”. Dec. 6, 2018. arXiv:
1812.02833 [cs, stat] (cit. on pp. 29, 31, 71).

McKeown, Martin J., Scott Makeig, Greg G. Brown, Tzyy-Ping Jung, Sandra S.
Kindermann, Anthony J. Bell, and Terrence J. Sejnowski. “Analysis of fMRI
Data by Blind Separation into Independent Spatial Components”. Human
brain mapping 6.3 (1998), pp. 160–188 (cit. on p. 32).

252

https://arxiv.org/abs/1811.12359
https://arxiv.org/abs/1705.08821
https://arxiv.org/abs/1812.02833


Bibliography

McKeown, Martin J. and Terrence J. Sejnowski. “Independent Component
Analysis of fMRI Data: Examining the Assumptions”. Human brain mapping
6.5-6 (1998), pp. 368–372 (cit. on p. 32).

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient Esti-
mation of Word Representations in Vector Space”. Sept. 6, 2013. arXiv:
1301.3781 [cs] (cit. on p. 240).

Milne, Elizabeth, Alison Scope, Olivier Pascalis, David Buckley, and Scott
Makeig. “Independent Component Analysis Reveals Atypical Electroen-
cephalographic Activity during Visual Perception in Individuals with Autism”.
Biological psychiatry 65.1 (2009), pp. 22–30 (cit. on p. 32).

Monti, Ricardo Pio and Aapo Hyvärinen. “A Unified Probabilistic Model for
Learning Latent Factors and Their Connectivities from High-Dimensional
Data”. Uncertainty in Artificial Intelligence (Aug. 6, 2018). Ed. by Amir
Globerson and Ricardo Silva, pp. 300–309. issn: 978-0-9966431-3-9. arXiv:
1805.09567 (cit. on pp. 48, 115, 119).

Monti, Ricardo Pio, Kun Zhang, and Aapo Hyvärinen. “Causal Discovery with
General Non-Linear Relationships Using Non-Linear ICA”. 35th Conference
on Uncertainty in Artificial Intelligence, UAI 2019. Vol. 35. 2019 (cit. on
pp. 40–42, 44, 45, 84–86, 107, 134, 200, 220, 239, 240).

Mooij, Joris M., Jonas Peters, Dominik Janzing, Jakob Zscheischler, and Bern-
hard Schölkopf. “Distinguishing Cause from Effect Using Observational
Data: Methods and Benchmarks”. The Journal of Machine Learning Re-
search 17.1 (2016), pp. 1103–1204 (cit. on p. 216).

Müller, Thomas, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan
Novák. “Neural Importance Sampling”. Sept. 3, 2019. arXiv: 1808.03856
[cs, stat] (cit. on p. 205).

Murphy, Kevin and Saira Mian. Modelling Gene Expression Data Using Dy-
namic Bayesian Networks. Citeseer, 1999 (cit. on p. 38).

Neyman, Jerzy and Egon Sharpe Pearson. “IX. On the Problem of the Most
Efficient Tests of Statistical Hypotheses”. Philosophical Transactions of the
Royal Society of London. Series A, Containing Papers of a Mathematical
or Physical Character 231.694-706 (1933), pp. 289–337 (cit. on p. 208).

Nguyen, XuanLong, Martin J. Wainwright, and Michael I. Jordan. “Estimating
Divergence Functionals and the Likelihood Ratio by Convex Risk Minimiza-

253

https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1805.09567
https://arxiv.org/abs/1808.03856
https://arxiv.org/abs/1808.03856


Bibliography

tion”. IEEE Transactions on Information Theory 56.11 (2010), pp. 5847–
5861 (cit. on p. 31).

Nuzillard, Danielle and Albert Bijaoui. “Blind Source Separation and Anal-
ysis of Multispectral Astronomical Images”. Astronomy and Astrophysics
Supplement Series 147.1 (2000), pp. 129–138 (cit. on p. 32).

Oja, E., K. Kiviluoto, and S. Malaroiu. “Independent Component Analysis
for Financial Time Series”. Proceedings of the IEEE 2000 Adaptive Sys-
tems for Signal Processing, Communications, and Control Symposium (Cat.
No.00EX373). Proceedings of the IEEE 2000 Adaptive Systems for Signal
Processing, Communications, and Control Symposium (Cat. No.00EX373).
Oct. 2000, pp. 111–116. doi: 10.1109/ASSPCC.2000.882456 (cit. on p. 32).

Pajunen, Petteri, Aapo Hyvärinen, and Juha Karhunen. “Nonlinear Blind
Source Separation by Self-Organizing Maps”. In Proc. Int. Conf. on Neural
Information Processing. 1996, pp. 1207–1210 (cit. on p. 35).

Papamakarios, George, Theo Pavlakou, and Iain Murray. “Masked Autoregres-
sive Flow for Density Estimation”. Advances in Neural Information Pro-
cessing Systems. Vol. 30. Curran Associates, Inc., 2017. arXiv: 1705.07057
(cit. on pp. 201, 212).

Papamakarios, George, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mo-
hamed, and Balaji Lakshminarayanan. “Normalizing Flows for Probabilistic
Modeling and Inference”. 2019. arXiv: 1912.02762 (cit. on p. 201).

Pawlowski, Nick, Daniel C. Castro, and Ben Glocker. “Deep Structural Causal
Models for Tractable Counterfactual Inference”. Oct. 22, 2020. arXiv: 2006.
06485 [cs, stat] (cit. on p. 221).

Pearl, Judea. Causality. Cambridge: Cambridge University Press, 2009. isbn:
978-0-521-89560-6. doi: 10.1017/CBO9780511803161 (cit. on pp. 38, 200,
210, 211).

— “Causal Inference in Statistics: An Overview”. Statistics Surveys 3 (2009),
pp. 96–146. issn: 1935-7516. doi: 10.1214/09-SS057 (cit. on pp. 39, 200,
211, 220).

Pearson, Karl and Francis Galton. “VII. Note on Regression and Inheritance
in the Case of Two Parents”. Proceedings of the Royal Society of London
58.347-352 (Jan. 1, 1895), pp. 240–242. doi: 10.1098/rspl.1895.0041
(cit. on pp. 78, 79).

254

https://doi.org/10.1109/ASSPCC.2000.882456
https://arxiv.org/abs/1705.07057
https://arxiv.org/abs/1912.02762
https://arxiv.org/abs/2006.06485
https://arxiv.org/abs/2006.06485
https://doi.org/10.1017/CBO9780511803161
https://doi.org/10.1214/09-SS057
https://doi.org/10.1098/rspl.1895.0041


Bibliography

Peters, Jonas, Joris Mooij, Dominik Janzing, and Bernhard Schölkopf. “Causal
Discovery with Continuous Additive Noise Models”. Apr. 6, 2014. arXiv:
1309.6779 [stat] (cit. on pp. 40–44, 52, 200, 213).

Peters, Jonas, Peter Bühlmann, and Nicolai Meinshausen. “Causal Inference
by Using Invariant Prediction: Identification and Confidence Intervals”.
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
78.5 (2016), pp. 947–1012. issn: 1467-9868. doi: 10.1111/rssb.12167
(cit. on pp. 40–42, 200).

Peters, Jonas, Dominik Janzing, and Bernhard Schölkopf. Elements of Causal
Inference: Foundations and Learning Algorithms. Red. by Francis Bach.
Adaptive Computation and Machine Learning Series. Cambridge, MA, USA:
MIT Press, Nov. 29, 2017. 288 pp. isbn: 978-0-262-03731-0 (cit. on pp. 28,
84).

Pfister, Niklas, Sebastian Weichwald, Peter Bühlmann, and Bernhard Schölkopf.
“Robustifying Independent Component Analysis by Adjusting for Group-
Wise Stationary Noise”. Journal of Machine Learning Research 20.147
(2019), pp. 1–50. arXiv: 1806.01094 (cit. on p. 32).

Pham, Dinh-Tuan and J.-F. Cardoso. “Blind Separation of Instantaneous Mix-
tures of Nonstationary Sources”. IEEE Transactions on Signal Processing
49.9 (2001), pp. 1837–1848 (cit. on p. 32).

Plumbley, Mark D. “Algorithms for Nonnegative Independent Component
Analysis”. IEEE Transactions on Neural Networks 14.3 (2003), pp. 534–543
(cit. on p. 32).

Podosinnikova, Anastasia, Francis Bach, and Simon Lacoste-Julien. “Rethinking
LDA: Moment Matching for Discrete ICA”. Advances in Neural Information
Processing Systems 28. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee, M.
Sugiyama, and R. Garnett. Curran Associates, Inc., 2015, pp. 514–522
(cit. on p. 32).

Podosinnikova, Anastasia, Amelia Perry, Alexander Wein, Francis Bach, Alexan-
dre d’Aspremont, and David Sontag. “Overcomplete Independent Compo-
nent Analysis via SDP”. Jan. 24, 2019. arXiv: 1901.08334 [cs, stat]
(cit. on p. 32).

Poldrack, Russell A., Timothy O. Laumann, Oluwasanmi Koyejo, Brenda
Gregory, Ashleigh Hover, Mei-Yen Chen, Krzysztof J. Gorgolewski, Jeffrey
Luci, Sung Jun Joo, Ryan L. Boyd, Scott Hunicke-Smith, Zack Booth

255

https://arxiv.org/abs/1309.6779
https://doi.org/10.1111/rssb.12167
https://arxiv.org/abs/1806.01094
https://arxiv.org/abs/1901.08334


Bibliography

Simpson, Thomas Caven, Vanessa Sochat, James M. Shine, Evan Gordon,
Abraham Z. Snyder, Babatunde Adeyemo, Steven E. Petersen, David C.
Glahn, D. Reese Mckay, Joanne E. Curran, Harald H. H. Göring, Melanie A.
Carless, John Blangero, Robert Dougherty, Alexander Leemans, Daniel A.
Handwerker, Laurie Frick, Edward M. Marcotte, and Jeanette A. Mumford.
“Long-Term Neural and Physiological Phenotyping of a Single Human”.
Nature Communications 6.1 (1 Dec. 9, 2015), p. 8885. issn: 2041-1723. doi:
10.1038/ncomms9885 (cit. on pp. 87, 107).

Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra. “Stochastic
Backpropagation and Approximate Inference in Deep Generative Models”.
Jan. 16, 2014. arXiv: 1401.4082 [cs, stat] (cit. on pp. 28, 29, 62, 64).

Rezende, Danilo Jimenez and Shakir Mohamed. “Variational Inference with
Normalizing Flows”. International Conference on Machine Learning. PMLR,
May 21, 2015, pp. 1530–1538. arXiv: 1505.05770 (cit. on pp. 45, 68, 130,
165, 201).

Rolinek, Michal, Dominik Zietlow, and Georg Martius. “Variational Autoen-
coders Pursue PCA Directions (by Accident)”. Dec. 17, 2018. arXiv: 1812.
06775 [cs, stat] (cit. on pp. 31, 71).

Saremi, Saeed, Arash Mehrjou, Bernhard Schölkopf, and Aapo Hyvärinen.
“Deep Energy Estimator Networks”. 2018. arXiv: 1805.08306 (cit. on
p. 167).

Schmidhuber, Jürgen, Martin Eldracher, and Bernhard Foltin. “Semilinear Pre-
dictability Minimization Produces Well-Known Feature Detectors”. Neural
Computation 8.4 (May 1996), pp. 773–786. issn: 0899-7667. doi: 10.1162/
neco.1996.8.4.773 (cit. on p. 28).

Schölkopf, Bernhard. “Causality for Machine Learning” (Nov. 24, 2019) (cit. on
p. 38).

Seide, Frank, Gang Li, and Dong Yu. “Conversational Speech Transcription
Using Context-Dependent Deep Neural Networks”. Twelfth Annual Confer-
ence of the International Speech Communication Association. 2011 (cit. on
p. 28).

Shimizu, Shohei, Patrik O. Hoyer, Aapo Hyvärinen, and Antti Kerminen.
“A Linear Non-Gaussian Acyclic Model for Causal Discovery”. Journal
of Machine Learning Research 7 (Oct 2006), pp. 2003–2030. issn: ISSN
1533-7928 (cit. on pp. 40, 44, 45, 84, 200, 221).

256

https://doi.org/10.1038/ncomms9885
https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1812.06775
https://arxiv.org/abs/1812.06775
https://arxiv.org/abs/1805.08306
https://doi.org/10.1162/neco.1996.8.4.773
https://doi.org/10.1162/neco.1996.8.4.773


Bibliography

Shimizu, Shohei, Takanori Inazumi, Yasuhiro Sogawa, Aapo Hyvärinen, Yoshi-
nobu Kawahara, Takashi Washio, Patrik O. Hoyer, and Kenneth Bollen.
“DirectLiNGAM: A Direct Method for Learning a Linear Non-Gaussian
Structural Equation Model”. Journal of Machine Learning Research 12
(Apr 2011), pp. 1225–1248 (cit. on pp. 40, 44, 200).

Song, Yang and Stefano Ermon. “Generative Modeling by Estimating Gradients
of the Data Distribution” (July 12, 2019) (cit. on pp. 150, 152, 167).

Sorrenson, Peter, Carsten Rother, and Ullrich Köthe. “Disentanglement by
Nonlinear ICA with General Incompressible-flow Networks (GIN)”. Jan. 14,
2020. arXiv: 2001.04872 [cs, stat] (cit. on pp. 68, 130, 137).

Spearman, C. “The Proof and Measurement of Association between Two
Things”. The American Journal of Psychology 15.1 (1904), pp. 72–101. issn:
0002-9556. doi: 10.2307/1412159. JSTOR: 1412159 (cit. on p. 79).

Spirtes, Peter, Clark N. Glymour, Richard Scheines, and David Heckerman.
Causation, Prediction, and Search. MIT press, 2000 (cit. on pp. 38, 200,
209).

Spirtes, Peter and Kun Zhang. “Causal Discovery and Inference: Concepts and
Recent Methodological Advances”. Applied Informatics 3.1 (Feb. 18, 2016),
p. 3. issn: 2196-0089. doi: 10.1186/s40535-016-0018-x (cit. on pp. 39,
200).

Sprekeler, Henning, Tiziano Zito, and Laurenz Wiskott. “An Extension of Slow
Feature Analysis for Nonlinear Blind Source Separation”. The Journal of
Machine Learning Research 15.1 (2014), pp. 921–947 (cit. on p. 35).

Sriperumbudur, Bharath, Kenji Fukumizu, Arthur Gretton, Aapo Hyvärinen,
and Revant Kumar. “Density Estimation in Infinite Dimensional Exponen-
tial Families”. Journal of Machine Learning Research 18.57 (2017), pp. 1–59.
issn: 1533-7928 (cit. on p. 67).

Sugiyama, Masashi, Taiji Suzuki, and Takafumi Kanamori. “Density-Ratio
Matching under the Bregman Divergence: A Unified Framework of Density-
Ratio Estimation”. Annals of the Institute of Statistical Mathematics 64.5
(2012), pp. 1009–1044 (cit. on p. 31).

Taleb, A. and C. Jutten. “Source Separation in Post-Nonlinear Mixtures”.
IEEE Transactions on Signal Processing 47.10 (Oct. 1999), pp. 2807–2820.
issn: 1941-0476. doi: 10.1109/78.790661 (cit. on p. 35).

257

https://arxiv.org/abs/2001.04872
https://doi.org/10.2307/1412159
http://www.jstor.org/stable/1412159
https://doi.org/10.1186/s40535-016-0018-x
https://doi.org/10.1109/78.790661


Bibliography

Teshima, Takeshi, Issei Sato, and Masashi Sugiyama. “Few-Shot Domain Adap-
tation by Causal Mechanism Transfer”. 2020. arXiv: 2002.03497 (cit. on
p. 38).

Thompson, William Hedley, Remya Nair, Hiroyuki Oya, Oscar Esteban, James
M. Shine, Christopher Petkov, Russell A. Poldrack, Matthew Howard,
and Ralph Adolphs. “Human Es-fMRI Resource: Concurrent Deep-Brain
Stimulation and Whole-Brain Functional MRI”. bioRxiv (May 20, 2020),
p. 2020.05.18.102657. doi: 10.1101/2020.05.18.102657 (cit. on p. 219).

Tipping, Michael E. and Christopher M. Bishop. “Probabilistic Principal Com-
ponent Analysis”. Journal of the Royal Statistical Society: Series B (Statis-
tical Methodology) 61.3 (1999), pp. 611–622 (cit. on p. 28).

Tucker, George, Dieterich Lawson, Shixiang Gu, and Chris J. Maddison. “Dou-
bly Reparameterized Gradient Estimators for Monte Carlo Objectives”.
2018. arXiv: 1810.04152 (cit. on p. 62).

Uehara, Masatoshi, Takafumi Kanamori, Takashi Takenouchi, and Takeru
Matsuda. “A Unified Statistically Efficient Estimation Framework for Un-
normalized Models”. International Conference on Artificial Intelligence and
Statistics. International Conference on Artificial Intelligence and Statistics.
PMLR, June 3, 2020, pp. 809–819 (cit. on p. 132).

Van der Laan, Mark J. and Sherri Rose. Targeted Learning in Data Science:
Causal Inference for Complex Longitudinal Studies. Springer, 2018 (cit. on
p. 38).

Vincent, Pascal. “A Connection between Score Matching and Denoising Autoen-
coders”. Neural computation 23.7 (2011), pp. 1661–1674 (cit. on pp. 133,
165–167).

Vogt, Brent A. “Cingulate Cortex in the Three Limbic Subsystems”. Handbook
of clinical neurology 160 (2019), pp. 39–51 (cit. on p. 236).

Wang, Mei and Weihong Deng. “Deep Visual Domain Adaptation: A Survey”.
Neurocomputing 312 (2018), pp. 135–153 (cit. on p. 28).

Watanabe, Satosi. “Information Theoretical Analysis of Multivariate Corre-
lation”. IBM Journal of research and development 4.1 (1960), pp. 66–82
(cit. on p. 47).

Wehenkel, Antoine and Gilles Louppe. “Graphical Normalizing Flows”. Oct. 13,
2020. arXiv: 2006.02548 [cs, stat] (cit. on p. 221).

258

https://arxiv.org/abs/2002.03497
https://doi.org/10.1101/2020.05.18.102657
https://arxiv.org/abs/1810.04152
https://arxiv.org/abs/2006.02548


Bibliography

Wiatowski, Thomas and Helmut Bölcskei. “A Mathematical Theory of Deep
Convolutional Neural Networks for Feature Extraction”. Oct. 24, 2017.
arXiv: 1512.06293 [cs, math, stat] (cit. on p. 240).

Wilks, S. S. “The Large-Sample Distribution of the Likelihood Ratio for Test-
ing Composite Hypotheses”. The Annals of Mathematical Statistics 9.1
(Mar. 1938), pp. 60–62. issn: 0003-4851, 2168-8990. doi: 10.1214/aoms/
1177732360 (cit. on p. 25).

Willetts, Matthew and Brooks Paige. “I Don’t Need $\mathbf{u}$: Identifiable
Non-Linear ICA Without Side Information”. June 9, 2021. arXiv: 2106.
05238 [cs, stat] (cit. on p. 239).

Wu, Pengzhou and Kenji Fukumizu. “Causal Mosaic: Cause-Effect Inference
via Nonlinear ICA and Ensemble Method”. Jan. 7, 2020. arXiv: 2001.01894
[cs, stat] (cit. on p. 38).

Yanardag, Pinar and S. V. N. Vishwanathan. “Deep Graph Kernels”. Proceed-
ings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2015, pp. 1365–1374 (cit. on p. 27).

Yang, Mengyue, Furui Liu, Zhitang Chen, Xinwei Shen, Jianye Hao, and
Jun Wang. “CausalVAE: Disentangled Representation Learning via Neural
Structural Causal Models”. July 1, 2020. arXiv: 2004.08697 [cs, stat]
(cit. on p. 38).

Zhang, Kun and Aapo Hyvärinen. “On the Identifiability of the Post-Nonlinear
Causal Model”. 25th Conference on Uncertainty in Artificial Intelligence,
UAI 2009. Vol. 35. 2009 (cit. on pp. 40, 41, 200, 209, 220, 240).

Zhang, Kun, Jiji Zhang, and Bernhard Schölkopf. “Distinguishing Cause from
Effect Based on Exogeneity”. Fifteenth Conference on Theoretical Aspects
of Rationality and Knowledge (TARK), 2015. Carnegie Mellon University,
Apr. 22, 2015, pp. 261–271. arXiv: 1504.05651 [cs, stat] (cit. on pp. 40,
203).

Zhang, Kun, Zhikun Wang, Jiji Zhang, and Bernhard Schölkopf. “On Estimation
of Functional Causal Models: General Results and Application to the Post-
Nonlinear Causal Model”. ACM Transactions on Intelligent Systems and
Technology 7.2 (Dec. 17, 2015), 13:1–13:22. issn: 2157-6904. doi: 10.1145/
2700476 (cit. on p. 200).

Zhang, Kun, Biwei Huang, Jiji Zhang, Clark Glymour, and Bernhard Schölkopf.
“Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Esti-

259

https://arxiv.org/abs/1512.06293
https://doi.org/10.1214/aoms/1177732360
https://doi.org/10.1214/aoms/1177732360
https://arxiv.org/abs/2106.05238
https://arxiv.org/abs/2106.05238
https://arxiv.org/abs/2001.01894
https://arxiv.org/abs/2001.01894
https://arxiv.org/abs/2004.08697
https://arxiv.org/abs/1504.05651
https://doi.org/10.1145/2700476
https://doi.org/10.1145/2700476


Bibliography

mation and Orientation Determination”. Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence. Twenty-Sixth In-
ternational Joint Conference on Artificial Intelligence. Melbourne, Australia:
International Joint Conferences on Artificial Intelligence Organization, Aug.
2017, pp. 1347–1353. isbn: 978-0-9992411-0-3. doi: 10.24963/ijcai.2017/
187 (cit. on pp. 40, 200).

Zhao, Shengjia, Jiaming Song, and Stefano Ermon. “InfoVAE: Information
Maximizing Variational Autoencoders”. 2017. arXiv: 1706.02262 (cit. on
pp. 29, 31).

Zheng, Xun, Bryon Aragam, Pradeep K. Ravikumar, and Eric P. Xing. “DAGs
with NO TEARS: Continuous Optimization for Structure Learning”. Ad-
vances in Neural Information Processing Systems. 2018, pp. 9472–9483
(cit. on pp. 40, 44, 200).

260

https://doi.org/10.24963/ijcai.2017/187
https://doi.org/10.24963/ijcai.2017/187
https://arxiv.org/abs/1706.02262

	Abstract
	Impact statement
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Mathematical preliminaries
	Identifiability in representation learning
	Disentangled representation learning
	Independent component analysis

	Identifiability in causal discovery
	Structural equation models
	Identifiable nonlinear causal models
	Estimation methods for causal discovery

	Contributions and structure of the thesis
	Structure and contributions in brief
	Detailed contributions
	Publications

	Notation and terminology
	Appendices to Chapter 1
	Statistical independence
	Exponential family
	Conditional exponential family
	Exponential family and independence


	Variational autoencoders and nonlinear ICA
	Introduction
	Unidentifiability of deep latent variable models
	An identifiable model based on conditionally factorial priors
	Definition of proposed model
	Estimation by VAE
	Identifiability and consistency results
	Interpretation as nonlinear ICA
	Relation to previous work on disentanglement

	Identifiability theory
	Identifiability up to equivalence class
	Strongly exponential family
	General results
	Characterization of the linear indeterminacy
	Consistency of estimation

	Experiments
	Mean correlation coefficient as a measure of identifiability
	Simulations on nonlinear ICA data
	Application to causal discovery

	Conclusion
	Appendices to Chapter 2
	Properties of the strongly exponential family
	Proofs
	Identifiability proofs
	Identifiability under alternative assumptions
	Consistency proof

	Unidentifiability of generative models with unconditional prior
	Factorial priors
	General priors

	Identifiability up to equivalence class: examples
	Link between maximum likelihood and total correlation
	Experimental protocol and additional experiments
	Details of implementation for VAE experiments
	Hippocampal fMRI data
	Additional experiments


	Independently modulated component analysis
	Introduction
	Independently modulated component analysis
	Definition of the generative model
	Identifiability
	Theoretical analysis

	Estimation of IMCA
	Conclusion
	Appendices to Chapter 3
	Identifiability proofs
	Estimation proofs

	Identifiable conditional energy-based models
	Introduction
	Identifiable conditional energy-based deep models
	Model definition
	Identifiability
	Universal approximation capability

	An identifiable neural network architecture
	Applications
	Estimation of identifiable latent variable models
	Transfer learning

	Experiments
	Identifiability of representations on image datasets
	IMCA and nonlinear ICA simulations

	Conclusion
	Appendices to Chapter 4
	Experimental protocol
	Architectures and hyperparameters
	The MCC metric
	Further experiments

	Estimation algorithms
	Conditional denoising score matching
	Conditional flow contrastive estimation

	Identifiability of the conditional energy-based model
	Weak identifiability
	Strong identifiability
	Universal approximation capability

	An identifiable architecture
	Latent variable estimation in generative models
	Assumptions
	Proofs


	Causal autoregressive flows
	Introduction
	Preliminaries
	Structural equation models
	Autoregressive normalizing flows

	Causal autoregressive flow model
	From autoregressive flow models to SEMs
	Model definition and identifiability
	Choosing causal direction using likelihood ratio
	Extension to multivariate data

	Causal inference using autoregressive flows
	Interventions
	Counterfactuals

	Experiments
	Causal discovery
	Interventions
	Counterfactuals

	Related methods
	Conclusion
	Appendices to Chapter 5
	Proofs and additional results
	Identifiability of the affine causal model
	Affine autoregressive flows are transitive
	Affine flows are not universal density approximators
	Universality of the causal function

	Experimental protocol
	Architectures and hyperparameters
	Preprocessing of EEG data
	Preprocessing of functional MRI data


	Conclusion
	Thesis summary
	Perspectives and future work

	Bibliography

