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Abstract. We introduce the beta model for random hypergraphs in order to represent
the occurrence of multi-way interactions among agents in a social network. This model
builds upon and generalizes the well-studied beta model for random graphs, which in-
stead only considers pairwise interactions. We provide two algorithms for fitting the
model parameters, IPS (iterative proportional scaling) and fixed point algorithm, prove
that both algorithms converge if maximum likelihood estimator (MLE) exists, and pro-
vide algorithmic and geometric ways of dealing the issue of MLE existence.
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1 Introduction

Social network models [8] are statistical models for the joint occurrence of random edges
in a graph, as a means to model social interactions among agents in a population of
interest. These models typically focus on representing only binary relations between
individuals. As a result, when one is interested in higher-order (k-ary) interactions,
statistical models based on graphs may be ine↵ective or inadequate. Examples of k-ary
relations are plentiful, and include forum or committee membership, co-authorship on
scientific papers, or proximity of groups of people in photographs. These datasets have
been studied by replacing each k-dimensional group with a number of binary relations
(in particular,

�

k

2

�

of them, which form a clique), thus extracting binary information from
the data, and then modeling and studying the resulting graph. Such a process inevitably
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causes information loss. For instance, let us consider statisticians Adam (A), Barbara
(B), Cassandra (C), and David (D), see Figure 1. Suppose the authors wrote three
papers in following groups: (A, B, C), (A, D), (C, D). Representing this information as
a graph with edges between any two individuals who have co-authored a paper provides
a graph G with edges {(A, B), (B, C), (C, D), (A, C)}. A hypergraph H representing this
information would instead use the exact groups as hyperedges and, unlike G, would be
able to represent additional properties of such interactions, including how many papers
were coauthored by these four individuals; see Figure 1. If, in addition, A is more
likely to write a 3-author paper than a 2-author paper, this requires modeling separately
the probabilities of these collaborations. Despite the growing needs of practical values,
models for random hypergraphs are relatively few and simple. Random hypergraphs have
been studied ([7]) as generalizations of the simple Erdös-Rényi model [4] for networks;
[5] considers an application of random tripartite hypergraphs to Flickr photo-tag data.

Motivation Higher-order interactions in networks

Example

Reducing the co-authorship data set to a graph would give G the
union of the two triangles ABC, and ACD.
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Figure : H1, G, H2

V = {A, B, C, D}
E(H1) = {ABC, AD, CD}.

E(G) = {AB, AC, AD, BC, CD}
E(H2) = {ABC, ACD}.

Q. How many papers gave rise to G? 3? 2? 5?
So how can we model random hypergraphs?
Use the degree sequence;
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Figure 1. Distinct hypergraphs H and H 0 reduced to same graph G (left, right, middle).

In this paper we introduce a simple and natural class of statistical models for random
hypergraphs, which we term hypergraph beta models, that allows one to model directly
simultaneous higher-order (and not only binary) interactions among individuals in a
network. As its name suggests, our model arises as a natural extension of the well-
studied beta model for random graphs, the exponential family for undirected networks
which assumes independent edges and whose minimal su�cient statistics vector is the
degree sequence of the graph. It is a special class of the more general of p1 models [6]
which assume independent edges and parametrize the probability of each edge by the
propensity of the two endpoint nodes. This model has been studied extensively; see
[2, 3, 9, 10, 11], which give, among other results, methods for model fitting.

Below we formalize the class of the beta models for hypergraphs. Just like the
graph beta model, these are natural exponential random graph models over hypergraphs
which postulate independent edges and whose su�cient statistics are the (hypergraph)
degree sequences. Our contributions are two-fold: first we formalize three classes of
linear exponential families for random hypergraphs of increasing degree of complexity
and derive the corresponding su�cient statistics and moment equations for obtaining the
maximum likelihood estimator (MLE) of the model parameters. Secondly, we design two
iterative algorithms for fitting these models that do not require evaluating the gradient or
Hessian of the likelihood function and can therefore be applied to large data: a variant of
the IPS algorithm and a fixed point iterative algorithm to compute the MLE of the edge
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probabilities and of the natural parameters, respectively. We show that both algorithms
will converge if the MLE exists. Finally, we illustrate our results and methods with some
simulations.

As our analysis reveals, the study of the theoretical and asymptotic properties of
hypergraph beta models is especially challenging, more so than with the ordinary beta
model. The complexity of the new models, in turn, leads to the problem of optimizing
a complex likelihood function. Indeed, when the MLE does not exist, optimizing the
likelihood function becomes highly non-trivial and, to a large extent, unsolved for our
model as well as for many other discrete linear exponential families. To this end, we
describe a geometric way for dealing with the issue of existence of the MLE for these
models and gain further insights into this di�cult problem with simulation experiments.

2 The hypergraph beta model: three variants

A hypergraph H is a pair (V, F ), where V = {v1, . . . , vn} is a set of nodes (vertices) and F
is a family of non-empty subsets of V of cardinality di↵erent than 1; the elements of F are
called the hyperedges (or simply edges) of H. In a k-uniform hypergraph, all edges are of
size k. We restrict ourselves to the set H

n

of hypergraphs on n nodes, where nodes have a
distinctive labeling. Let E = E

n

be the set of all realizable hyperedges for a hypergraph
on n nodes. While E can in principle be the set of all possible hyperedges, below we will
consider more parsimonious models in which E is restricted to be a structured subset
of edges. Thus we may write a hypergraph x = (V, F ) 2 H

n

as the zero/one vector
x = {x

e

, e 2 E}, where x
e

= 1 for e 2 F and x
e

= 0 for e 2 E \ F . The degree of a node
in x is the number of edges it belongs to; the degree information for x is summarized in
the degree sequence vector whose ith entry is the degree d

i

(x) of node i in x.
Hypergraph beta models are families of probability distributions over H

n

which pos-
tulate that the hyperedges occur independently. In details, let p = {p

e

: e 2 E
n

} be a vec-
tor of probabilities whose eth coordinate indicates the probability of observing the hyper-
edge e. We will assume p

e

2 (0, 1). Every such vector p parametrizes a beta-hypergraph
model as follows: the probability of observing the hypergraph x = {x

e

, e 2 E} is

P(x) =
Y

e2E
pxe
e

(1 � p
e

)1�xe . (1)

The graph beta model is a simple instance of this model, with E = {(i, j), 1  i < j  n}.
The

�

n

2

�

edge probabilities are parametrized as p
i,j

= e�i+�j/(1 + e�i+�j ), for i < j and
some real vector � = (�1, . . . ,�n).

Various social network modeling considerations for node interactions require a flexible
class of models adaptable to those settings. Thus, we introduce three variants of the
beta model for hypergraphs with independent edges in the form of linear exponential
families: beta models for uniform hypergraphs, for general hypergraphs, and for layered
uniform hypergraphs. For each, we provide an exponential family parametrization in
minimal form and describe the corresponding minimal su�cient statistics.
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Uniform hypergraphs. The probability of a size-k hyperedge e = i1 . . . i
k

appearing
in the hypergraph is parametrized by a vector � 2 R

n as follows:

p
i1,...,ik =

e�i1+...+�ik

1 + e�i1+...+�ik
(2)

with q
i1,...,ik = 1 � p

i1,...,ik = 1

1+e

�i1
+...+�ik

, for all i1 < · · · < i
n

. In terms of odds ratios,

log
p
i1,...,ik

q
i1,...,ik

= �
i1 + . . . + �

ik . (3)

In order to write the model in exponential family form, we abuse notation and define
for each hyperedge e 2 F , �̃

e

=
P

i2e �i. In addition, let
�[n]
k

�

be the set of all subsets of
size k of the set {1, . . . , n}. By using (1), we obtain

P
�

(x) =
exp

n

P

e2([n]
k ) �̃exe

o

Q

e2([n]
k ) 1 + e�̃e

= exp

(

X

i2V
d
i

(x)�
i

�  (�)

)

,

where d
i

is the degree of the node i in x. Then it is clear that the su�cient statistics for
the k�uniform beta model are the entries of the degree sequence vector of the hypergraph,
(d1(x), . . . , d

n

(x)), and the normalizing constant is

 (�) =
P

e2([n]
k ) log(1 + e�̃e). (4)

Layered uniform hypergraphs. Allowing for various size edges has the advantage
of controlling the propensity of each individual to belong to a size-k group independently
for distinct k’s. Let r be the (natural bound for the) maximum size of a hyperedge that
appears in x. This model is then parametrized by r � 1 vectors in R

n as follows:

p
i1,i2,...,ik =

e
�

(k)
i1

+�

(k)
i2

+...+�

(k)
ik

1 + e
�

(k)
i1

+�

(k)
i2

+...+�

(k)
ik

where, for each k = 2, . . . , r, �(k) = (�(k)1 , . . . ,�
(k)
n

). There are (r � 1)n parameters in
this parametrization. By using (1) again, we obtain

P
�

(x) =
r

Y

k=2

Y

e2([n]
k )

e�̃
(k)
e xe

1 + e�̃
(k)
e

= exp

(

r

X

k=2

X

i2V
d
(k)
i

(x)�(k)
i

�  (�)

)

,

where d
(k)
i

is the number of hyperedges of size k to which node i belongs in x. Notice that

the vector of su�cient statistics in this case is d = (d(2)1 (x), . . . , d(2)
n

(x), d(3)1 (x), . . . , d(3)
n

(x),

. . . , d
(r)
1 (x), . . . , d(r)(x)

n

), and the normalizing constant is

 (�) =
P

r

k=2

P

e2([n]
k ) log(1 + e�̃

(k)
e ). (5)
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General hypergraphs. In the third variant of the model we define one parameter for
each node, controlling the propensity of that node to be in a relation of any size. The
probability of observing a hypergraph x is thus

P
�

(x) =
exp

n

P

r

k=2

P

e2([n]
k ) �̃exe

o

Q

r

k=2

Q

e2([n]
k ) 1 + e�̃e

= exp

(

X

i2V
d
i

(x)�
i

�  (�)

)

.

The vector of su�cient statistics is then d = (d1(x), . . . d
n

(x)), where d
i

(x) =
P

r

k=2 d
(k)
i

(x),

and the normalizing constant is  (�) =
P

r

k=2

P

e2([n]
k ) log(1 + e�̃e).

3 Parameter estimation

Iterative proportional scaling algorithms. From the theory of exponential fami-
lies, it is known that the MLE �̂ satisfies the following system of equations:

@ (�̂)

@�̂
i

= d̄
i

, for i 2 {1, . . . , n}, (6)

where d̄ is the average observed degree sequence. By using (4), we then obtain

X

s2([n]\{i}
k�1 )

e
ˆ̃
�s+�̂i

1 + e
ˆ̃
�s+�̂i

= d̄
i

, for i 2 {1, . . . , n}, (7)

which is itself equivalent to
P

s2([n]\{i}
k�1 ) p̂

s,i

= d̄
i

, for i 2 {1, . . . , n}.

Iterative proportional scaling (IPS) algorithms fit the necessary margins of a provided
table, whose elements correspond to the mean-value parameters (in this case probabilities
of observing an edge). We design the following IPS algorithm for computing p̂.

Algorithm 3.1. Define A = (a
i1,...,ik) to be an n ⇥ · · · ⇥ n k-way table with margins

d̄1, . . . , d̄n for all its layers. Set the following structural zeros on the table: a
i1,...,ik = 0

if i
a

= i
b

for at least one pair a 6= b, 1  a, b  k. (Note that there are n(n �
1) . . . (n � (k � 1)) non-zero elements in the table.) Place 2ē/(n(n � 1) . . . (n � (k � 1)))
on all other elements of the matrix, where 2ē =

P

n

i=1 d̄
i

. Then apply the following

iterative (t + 1)st step for every element a
i1,...,ik : a

(t+1)
i1,...,ik

= a
(t)
i1,...,ik

(F (t)
i1

. . . F
(t)
ik

)1/k,

where F
ib(t) = d

ib/
P

s2([n]\{ib}
k�1 ) a

(s)
ib,is

.

IPS algorithms are known to converge to elements of the limiting matrix (p̂
i1,...,ik)

which are unique and preserve all the marginals (see e.g. [1]). Solving the system (3)
for every 1  i1 < · · · < i

k

 n provides �̂. Algorithm 3.1 can be adjusted for layered
uniform and general hypergraph beta models.
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For layered k-uniform hypergraphs, by using (12) and (5) we obtain for i 2 {1, . . . , n}
and k 2 {2, . . . , r},

X

s2([n]\{i}
k�1 )

p̂
s,i

= d̄
(k)
i

. (8)

Therefore, we can apply Algorithm 3.1 to (r � 1) k-way tables similar to those of the
k-uniform case, where k ranges from 2 to r.

For general hypergraphs, we similarly obtain

r

X

k=2

X

s2([n]\{i}
k�1 )

p̂
s,i

= d̄
i

, for i 2 {1, . . . , n}. (9)

In this case we apply the IPS algorithm to the following table: Define A = (a
i1,...,ik) to

be a k-way table of size (n+1)⇥ (n+1)⇥ · · ·⇥ (n+1) consisting of labels (?, 1, 2, . . . , n)
with margins d̄?, d̄1, . . . , d̄n for all its layers, where d̄? does not need to be known or
calculated. We also set the following structural zeros in the table: a

i1,...,ik = 0 if (1)
i
a

= i
b

6= ? for at least one pair a 6= b, 1  a, b  k; (2) i1 = · · · = i
k

= ? except
possibly for one i

b

. We apply Algorithm 3.1 as in the k-uniform case except the fact
that we do not fit the d̄? margins. We read the elements of the limiting matrix of from,
p̂?,s

as p̂
s

, which corresponds to a lower dimensional probability.

Fixed Point Algorithms. An alternative method for computing MLE is based on
[3]. In the k-uniform case, for i 2 {1, . . . , n}, Equation (7) can be rewritten as

�̂
i

= log d
i

� log
X

s2([n]\{i}
k�1 )

e
ˆ̃
�s

1 + e
ˆ̃
�s+�̂i

:= '
i

⇣

�̂
⌘

. (10)

Therefore, in order to find �̂, it is su�cient to find the fixed point of the function '.

Algorithm 3.2. Start from any �̂(0) and define �̂(l+1) = '(�̂(l)) for l = 0, 1, 2, . . . .

Theorem 3.3. If the MLE exists, Algorithm 3.2 converges geometrically fast; if the
MLE does not exist there is a diverging subsequence in {�̂(i)}.

The proof is omitted due to space limitations. For the other models, the above theory
can be easily generalized. For the layered models and general hypergraph models, we
apply the same algorithm to obtain the fixed points of the following functions respectively
for i 2 {1, . . . , n} and k 2 {2, . . . , r} and i 2 {1, . . . , n}.

'
i

(�̂(k)) := log d
(k)
i

� log
X

s2([n]\{i}
k�1 )

e�̂
(k)
s

1 + e�̂
(k)
s +�̂

(k)
i

; (11)

'
i

(�̂) := log d
i

� log
r

X

k=2

X

s2([n]\{i}
k�1 )

e
ˆ̃
�s

1 + e
ˆ̃
�s+�̂i

. (12)
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4 Simulations and Analysis

MLE. We use the fixed point algorithm to estimate the natural parameters for hyper-
graph beta models, examine non-existence of MLE and compare the layered and general
variants of the model on simulated data. Note that most dense hypergraphs, when re-
duced to binary relations give the complete graph, for which the MLE does not exist.
In contrast, MLE is expected to exist for the hypergraph beta model in this case.

Example 4.1. We simulate a hypergraph H = (V, F ) drawn from the beta model for 3-
uniform hypergraphs on 10 vertices with � = (�5.05, �0.57, 2.87, 4.85, 1.98, �6.69, �3.95,
5.97, �6.61, �4.24). The average simulated degree sequence of hypergraphs drawn from
this model is d̄ = (6.28, 10.70, 17.59, 20.81, 16.55, 4.41, 7.47, 23.02, 4.50, 7.17), and the av-
erage simulated density of the corresponding hypergraph is 0.33. Algorithm 3.2 provides
the following MLE estimate using d̄ as the su�cient statistic: �̂ = (�4.94, �0.58, 2.81, 4.76,
1.94, �6.55, �3.86, 5.86, �6.48, �4.15). Note that ||� � �̂||1 = 0.14.

For a larger example, we select a � value giving rise to 3-uniform hypergraphs on
100 vertices with density 0.44, and obtain a closer estimate: ||� � �̂||1 = 0.12.

Example 4.2. Theorem 3.3 guarantees that if �̂ is the solution to the ML equations (10),
(12), or (12), then the sequence of �-estimates that the fixed point algorithm produces
will converge to �̂; else there will be a divergent subsequence. To detect a divergent
sequence in practice, we either look for a periodic subsequence, or for a number with
large absolute value in the sequence that seems to be growing, sometimes quite slowly.
From (2), since e�ik /(1+e�ik ) converges to 1 quickly (e10/(1+e10) > 0.9999), for graphs
with small number of nodes (i.e. far from the asymptotic behavior), it is plausible to
conclude that the corresponding mean value parameter is approximately 0 or 1, and hence
the MLE does not exist. Figure 2 demonstrates MLE existence against edge densities
for random hypergraphs with a fixed edge-density. Interestingly, in this restricted class,
our simulations give evidence of a transition from non-existence of the MLE to existence
as the density of the hypergraphs increases. The transition point seems to depend on
both the number of vertices and the edge sizes allowed in the model.

Model fitting: Layered versus general hypergraph beta models. Consider the
two variants of the beta model for non-uniform hypergraphs: the general model, with

one parameter �
i

per node i, and the layered model, with one parameter �(k)
i

per node i
and edge size k. Since the former can be considered a submodel of the latter by setting

certain constraints on �(k)
i

, k 2 {1, . . . , r}, we compare the fit of these two models using

the likelihood ratio test with test statistics � = 2 log L(�̂layered) � 2 log L(�̂general). Our
experiments indicate that the layered model fits significantly better than the general case.
Using 100 random sequences on 10 vertices, with allowed edge-sizes 2 and 3, we obtain
the average observed test statistics 53.649, in the critical region for 0.005 significance
level, (25.188, 1), for chi-square with 10 degrees of freedom. The layered model fits
significantly better for significance level 0.05 in all 100 cases, and 97 and 94 times better
for significance levels 0.01 and 0.005, respectively.
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Figure 2. MLE existence against edge density; top row: 3-uniform beta on 25, 50, 100 vertices;
bottom row: 4- and 2-uniform on 25 vertices, {2,3}-uniform on 50 vertices.
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