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Abstract: A comprehensive framework (from real-time prognostics to maintenance decisions) studying the 

influence of the imperfect prognostics information on maintenance decision is an underexplored area. Thus, we bridge 

the gap and propose a new comprehensive maintenance support system. First, a new sensor-based prognostics module 

was modelled employing the Weibull time-to-event recurrent neural network. In which, the prognostics competence 

was enhanced by predicting the parameters of failure distribution despite a single time-to-failure. In conjunction, new 

predictive maintenance (PdM) planning model was framed through a tradeoff between corrective maintenance and 

lost remaining life due to PdM. This optimises the time for maintenance via all gathered operational and maintenance 

cost parameters from the historical data. Its performance is highlighted with a case study on maintenance planning of 

cutting tools within a manufacturing facility. We provide systematic sensitivity analysis and discuss the impact of the 

imperfect prognostics information on maintenance decisions. Results show that uncertainty, regarding prediction, 

drops as time goes on; and as the uncertainty drops, the maintenance timing gets closer to the remaining useful life. 

This is expected as the risk of making the wrong decision decreases.  

Keywords: Prognostics, Predictive Replacement, Maintenance Planning, Recurrent Neural Network

1. Introduction 

Much of maintenance today is either corrective 

(replacing asset after it fails) or preventive (assuming a 

certain level of degradation, with no input from the asset 

itself, and maintaining asset on a fixed schedule whether 

required or not). Both situations are exceedingly inefficient. 

Thus, predictive maintenance (forecasting the asset 

remaining useful life and attaining maintenance decisions) 

gotten huge consideration in the literature throughout the 

most recent decade [1]. For instance, a novel integrated 

diagnostics and prognostics system using support vector 

machine was presented in [2]. In [3], many approaches to 

remaining useful life (RUL) assessment using physics and 

data-driven based methods are reviewed. It is observed that 

available approaches just spotlight on the prognostics step 

and don't think about the maintenance decisions, which are 

addressed independently. For instance, [4, 5] dealt to the 

post-prognostics issue but with assumption that the 

prognostics data of the asset is available. Nonetheless, both 

of the groups don’t give an extensive system (from real-

time prognostics to maintenance decisions) researching the 

effect of the imperfect prognostics on maintenance 

decision. Consequently, this work put forward a new 

comprehensive maintenance support system. 

First, a sensor-based real-time prognostics module is 

formulated employing Weibull time-to-event recurrent 

neural network (WTTE-RNN). It is innovatively modelled 

to project a detailed picture of the asset’s reliability via 

predicting a probability of failure distribution, in contrast 

to predicting time-to-failure. This is coupled with new 

predictive maintenance (PdM) planning model. Which, 

resourcefully creates a tradeoff between corrective 

maintenance (CM) cost and PdM cost. Facilitating the 

determination of the optimal time for maintenance that 

minimises the overall system maintenance cost. Also, we 

analysed how imperfect prognostic information influences 

maintenance decisions. Critical insights are underlined viz. 

uncertainty regarding prediction drops as time goes on;  as 

the uncertainty drops, the maintenance timing gets closer to 

the RUL since the risk of making a wrong decision 

decreases. Based on this analysis, guidelines are offered for 

a manager that helps improve his chances of making the 

right maintenance decisions. This study acts as a proof of 

concept, showing the importance of utilising prognostics 

information in maintenance planning.  

The novel contribution of this paper is in the 

conceptualisation of a comprehensive maintenance support 

system; satisfying the vital necessities: a) the real-time 

prognostics approach that can be extensively realized for 

several systems; b) the flexible maintenance decision 

model evaluating rapidly different operational and 

maintenance costs; c) considering the implications  of 

imperfect prognostics on maintenance decisions to find the 

right moment for performing maintenance activities. 

Having such a comprehensive system, the supervisor can 

design the maintenance exercises all the more viably to 

diminish machine downtimes and improve the production 

stream. The added contribution lies in results. Performance 

of the framework is proven via a case study from a 
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manufacturing environment and complimented with a 

systematic sensitivity analysis.  

2. Methodology 

2.1. Prognostics Module 

In the recent technical literature, a large variety of 

prognostic applications estimating the time-to-failure have 

been reported [6]. In contrast to predicting time-to-failure, 

predicting probability distribution projects a detailed 

picture of the asset’s reliability. Hence, in this paper, a new 

sensor-based real-time prognostics module is built 

employing the WTTE-RNN. Herein, we combine the 

survival theory with recurrent neural networks [7] to work 

out multivariate time-to-event estimation problem. For 

fulfilment, the relevant mathematics is given. One can refer 

[8] for more inside information. Herein, a log-likelihood 

loss function is offered that eases up training a RNN to 

predict the two governing parameters (shape parameter (𝜃) 

and scale parameter ( 𝜂 )) of a Weibull probability 

distribution of the time-to-failure. The prognostics module 

take a vector of sensor values as an input; representing the 

asset’s current health condition at a given time, based on 

which the recurrent neural network (RNN) estimates (𝜃, 𝜂). 

The log-likelihood loss function to be maximized by the 

RNN is: 

𝑙𝑜𝑔(𝐿)  =  ∑ ∑ 𝑙𝑜𝑔[ 𝑃𝑟( 𝑌𝑡
𝑛  =  𝑦𝑡

𝑛| 𝑥𝑜:𝑡
𝑛 )

𝑇𝑛

𝑡=0

]

𝑁

𝑛=1

 

(1) 

The prognostics module tries to maximise the 

probability of estimated time-to-failure ( 𝑌𝑡
𝑛 ) being 

equivalent to the actual time-to-failure (𝑦𝑡
𝑛) for a available 

vector of sensor features (𝑥). The summations (∑ ∑ .𝑇𝑛
𝑡=0

𝑁
𝑛=1 ) 

are made over every trajectories (𝑁) and over every time-

steps for every trajectory (𝑇𝑛). The probabilities appearing 

in equation 1 are gotten via survival analysis. For a discrete 

event (failure) case, and where the time-to-failure follows 

Weibull distribution, the loss function can be shown as:   

𝑙𝑜𝑔(𝐿𝑑)  =  ∑ ∑ (𝑙𝑜𝑔 {𝑒𝑥𝑝 [(
𝑦𝑡

𝑛
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𝜂
𝑡
𝑛

)

𝜃𝑡
𝑛

 

𝑇𝑛

𝑡=0

𝑁

𝑛=1

−  (
𝑦𝑡

𝑛
 

𝜂
𝑡
𝑛

)

𝜃𝑡
𝑛

]  −  1}  

− (
𝑦𝑡

𝑛
 
+  1

𝜂
𝑡
𝑛

)

𝜃𝑡
𝑛

 ) 

(2) 

where 𝜂𝑡
𝑛 and 𝜃𝑡

𝑛 are the scale and shape parameters of 

the Weibull distribution respectively, and 𝑦𝑡
𝑛 is the time-to-

failure at every time step 𝑡 and trajectory 𝑛. In summary, 

the RNN tries to find the weights so that the 𝑙𝑜𝑔(𝐿𝑑) 

described in equation 2 is maximized. The output (failure 

probability distribution) of the prognostics module is 

coupled with PdM planning model. 

2.2. Predictive Maintenance Planning Model 

We consider an industrial facility; comprising of a single 

asset system with time-to-failure complying Weibull 

distribution. In this, failure is viewed as asset degradation 

(𝐹𝐴𝐷) because of wear and tear. It is assumed that whenever 

failure is observed, corrective replacement (CR) is carried 

out, leading to a CR cost. The unexpected failure of the 

asset due to degradation can increase the risk and safety 

hazards. Accordingly, predictive replacement (PdR) of the 

asset is actioned to bring down the probability of asset 

failure and reduce the risk of an unexpected failure. 

However, PdR brings additional time and funds. Therefore, 

PdR optimization is executed to trade-off the failure and 

PdR cost. To exhibit the benefits of PdM, a cost model is 

developed via capturing the various costs pertaining to the 

industrial operation; which are governed via failures and 

PdM planning. The economic objective is to minimize the 

expected total cost per unit time of carrying out predictive 

maintenance ([𝐸𝑇𝐶](𝑃𝑑𝑀) ) by choosing the optimal time 

for PdR (𝑂𝑃𝑑𝑅). Herein, [𝐸𝑇𝐶](𝑃𝑑𝑀)  is the proportion of 

the addition of the expected total cost of carrying CR due 

to asset degradation (𝐸[(𝐶𝐶𝑅)𝐹𝐴𝐷
]) and PdR (𝐸[𝐶𝑃𝑑𝑅]) to 

the planning period/evaluation time ( 𝐸𝑇 ) for which the 

analysis is done. It is written as follows: 

[𝐸𝑇𝐶](𝑃𝑑𝑀) = (𝐸[(𝐶𝐶𝑅)𝐹𝐴𝐷
] +  𝐸[𝐶𝑃𝑑𝑅]) 𝐸𝑇⁄  (3) 

Theoretic and numerical models of constitutional costs 

in [𝐸𝑇𝐶](𝑃𝑑𝑀) are detailed in following sub-sections. 

2.1.1. Corrective Replacement Cost 

Assuming the system is stopped during the replacement. 

Taking (𝐶𝐶𝑅)𝐹𝐴𝐷
as the cost of corrective replacement due 

to asset degradation letting in the downtime cost. 

Consequently, the expected cost of carrying corrective 

replacement owing to asset degradation (𝐸[(𝐶𝐶𝑅)𝐹𝐴𝐷
]) is 

taken as: 

𝐸[(𝐶𝐶𝑅)𝐹𝐴𝐷
] = {𝐴𝐶𝑅 × [𝑃𝑟 × 𝐶𝑙𝑝 + 𝐶𝐿] + 𝐶𝐹𝐶𝑅}  

× 𝐹(𝐸𝑇)𝜃,𝜂 

(4) 

where,  𝐴𝐶𝑅 × [𝑃𝑟 × 𝐶𝑙𝑝 + 𝐶𝐿] is the downtime cost 

owing to CR, 𝐴𝐶𝑅 is mean time to perform the corrective 

replacement (hours), 𝑃𝑟  is the production rate    

(products/hours), 𝐶𝑙𝑝 is the cost of lost production (GBP), 

𝐶𝐿  is the cost of the labour (GBP/hours), 𝐶𝐹𝐶𝑅  is a fixed 

cost of corrective replacement (letting in the cost of asset 

replacement) and 𝐹(𝐸𝑇)𝜃,𝜂 is the cumulative probability of 

failure owing to asset degradation for a given evaluation 

time as a function of given shape ( 𝜃 ) and scale (η) 

parameter. 

2.1.2. Predictive Replacement Cost 

In general, the cost per PdR of the asset is modelled to 

let in the downtime cost due to a replacement, labour, and 

asset cost. The replaced asset always has some useful 

remaining life; usually not looked at in PdR cost [9]. An 

comprehensive model, considering the effect of lost 

remaining life in overall PdR cost, will be increasingly 

critical. Therefore, in our model, the effect of asset lost 
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remaining life is also modelled in PdR cost. This will 

prompt optimum utilization of the asset life. RUL is the 

residual life of the asset after a certain time. Here, the 

proposed model captures the real-time RUL information of 

the asset with the help of failure probability distribution 

acquired as an output from the prognostics module. 

Moreover, we take the cost of lost remaining life (𝐶𝐿𝑅𝑈𝐿𝑖) 

relative to mean life cost. It is assumed that the asset cost is 

uniformly distributed over the lifetime of the asset [10]; the 

𝐶𝐿𝑅𝑈𝐿𝑖 is given as: 

𝐶𝐿𝑅𝑈𝐿𝑖  = (𝐶𝐴 𝐴𝐿⁄ ) × 𝜂𝑖Γ(1 +
1

𝜃𝑖
) 

(5) 

where 𝐶𝐴 is the cost of the asset (GBP), 𝐴𝐿 is the mean 

life of the asset (hours). 

The function 𝜂𝑖Γ(1 +
1

𝜃𝑖
) gives the RUL of the asset in 

hours at a given point of time. Therefore, the total cost per 

predictive replacement is given as:  

𝐸 [𝐶𝑃𝑑𝑅] = {𝐴𝑃𝑑𝑅 × [𝑃𝑟 × 𝐶𝑙𝑝 + 𝐶𝐿] + 𝐶𝐹𝑃𝑑𝑅

+ 𝐶𝐿𝑅𝑈𝐿𝑖} 

(6) 

where 𝐴𝑃𝑑𝑅 × [𝑃𝑟 × 𝐶𝑙𝑝 + 𝐶𝐿]  is the downtime cost 

owing to PdR, 𝐴𝑃𝑑𝑅 is mean time to perform predictive 

replacement (hours), 𝐶𝐹𝑃𝑑𝑅  is a fixed cost of predictive 

replacement (GBP) (letting in the cost of asset 

replacement).  

For assessing the optimal time for predictive 

replacement (𝑂𝑃𝑑𝑅), a balance is created between the cost 

of the lost remaining life of the asset with maintenance and 

failure costs. The addition of both the costs; [𝐸𝑇𝐶](𝑃𝑑𝑀)  is 

calculated for each time step of the operation to be made by 

the asset, and corresponding to minimum cost; optimal 

predictive replacement cost along with the optimal time for 

predictive replacement is obtained.  

3. Real Life Case Study 

In this section, the proposed methodology is verified on 

the cutting tool degradation data set from reliability and 

prognostics repository; provided by Industrial and Systems 

Engineering, IIT Indore, India. This data set is generated 

for the prognostics and health management studies [11]. 

This is yielded by a testing platform furnished with a CNC 

milling machine and sensors viz. dynamometer, etc. The 

primary objective was to provide real-life historical data at 

different operating conditions for a population of identical 

cutting tools with cutting force sensor data that characterise 

the degradation of tools along with their entire operational 

life. In the present study, the data considered comprises of 

six identical cutting tools operated at a fixed operating 

condition. Herein, cutting force signal in feed direction is 

measured for every 0.07 hours’ of operation for each tool 

until complete failure. As the pre-processing step, a total of 

six statistical features like average cutting force, summary 

statistics organised by the group, root mean squared value, 

signal power, and maximum force level are extracted from 

cutting force signals for every time steps (0.07 hours’) to 

represent the degradation of the tools.  

3.1. Performance Assessment of the 

Prognostics Module 

An exhaustive performance investigation of the 

prognostics module is executed to distinguish the 

robustness and applicability in a real industrial 

environment. Consequently, we divided the data into two 

subsets: training data (4 tools) and testing data (2 tools). All 

four trajectories in training data correspond to the same 

failure type (Breakage) and operating conditions. The 

trajectories are all of the different lengths and comprise the 

same number of sensor features. Moreover, the noise 

associated with the sensor values are random and can be 

filtered using a moving average. Therefore, the trajectories 

are cleaned (rolling average with window size 10), and the 

values are normalised. Finally, we get a training dataset of 

4 run-to-failures with six features corresponding to each 

time step.  
We demonstrate training WTTE-RNN, with one long 

short-term memory (LSTM) layer. The architecture for the 

RNN is 15*10*20*10*5 with the 15 neuron layer being the 

LSTM layer. Two sets of experiments (for two assets from 

testing data; test ID I and II) were performed to analyse the 

performance. This is evaluated by plotting each output 

performance of the prognostics module, as appeared in Fig. 

1 and 2. The perception from this figure shows that each 

actual and predicted RUL are near to one another. 

Showcasing that the prognostics module is robust in 

prognosticating the RUL of the asset. To further compare 

and gauge the performance, mean absolute error (MAE) is 

computed. In this, MAE measures how the module makes 

close RUL predictions to the actual RUL. The MAE value 

of 1.14 and 0.41 from prognostics module displays 

predicted RUL is close to the actual RUL, demonstrating 

the applicability of the module in a real-life. This guarantee 

of a proficient predictive maintenance framework 

dependent on a timely cautioning of upcoming failures. 

 
Fig. 1. Results for test ID I 

 
Fig. 2. Results for test ID II 
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3.2. Predictive Maintenance Framework 

We consider a production facility representing of the 

cutting tool as a single component machine producing mild 

steel plates. All gathered operational cost parameters from 

the historical data are mentioned in Table 1. The cost of the 

cutting tool (𝐶𝐴) utilized in the process is 3000 GBP. The 

mean life of the tool is computed by historical failure data, 

and given as 3.90 hours. As per maintenance history, the 

mean time to carry out corrective ( 𝐴𝐶𝑅 ) and predictive 

(𝐴𝑃𝑑𝑅) replacement tasks are 0.6 hours respectively. The 

fixed cost of corrective ( 𝐶𝐹𝐶𝑅 ) and predictive ( 𝐶𝐹𝑃𝑑𝑅 ) 

replacement is 3000 GBP separately.  

 

Parameter 

Production 

rate    𝑃𝑟 
(Product/h) 

Cost of lost production 

𝐶𝑙𝑝 (GBP/product) 

Cost of the 

labour 𝐶𝐿 
(GBP/h) 

Value 8 60 100 

Table 1. Parameters utilised in the case study 

3.2.1. Implications of Imperfect Prognostics 
Information on Maintenance Decisions 

To analyse the implications of imperfect prognostics 

information on maintenance decisions, we evaluate the  
[𝐸𝑇𝐶](𝑃𝑑𝑀)  at every 10th time step of the test assets. 

Herein, for each test asset ID; we run the prognostics 

module at a different time step (T1, T2…Tn) and predict the 

probability distribution (𝜃 and 𝜂) and estimate the variance.  

These parameters ( 𝜃  and  𝜂 ) are feed to the predictive 

maintenance planning model to obtain the optimal time for 

predictive replacement ( 𝑂𝑃𝑑𝑅 ). Table 2 presents the 

detailed results for both the test assets.  

The variance of the distribution give details about the 

uncertainty in prediction (higher variance means higher 

prediction uncertainty). At the initial stage of the operation 

when there is very less information about the health 

condition of the asset, the variance will be higher; implying 

higher uncertainty in prediction. Though, as time goes on, 

and we have more information about the asset health, the 

variance will reduce; implying lower uncertainty in 

prediction. In that line, figure 3 shows the probability 

density function (PDF) for test asset ID I at first and second 

time steps.  It can be observed that at T1, the PDF is very 

wide, with the variance being 1.90. This is because the 

predicted 𝜃 and 𝜂 at time step T1 having high uncertainty. 

As it’s the first point of prediction and there is lack of 

information in terms of asset condition. However, as time 

goes on and we obtain more information about asset 

condition, the uncertainty in predicted θ and η gets reduced. 

It is evident as the PDF at T2 gets squeezed; with 80.53% 

lesser variance than time step T1; displaying the uncertainty 

drop. This become further clearer from figure 4 and 5; 

which shows the PDF for all time steps for test asset ID I 

and II. This implies that the uncertainty regarding 

prediction, drops as time goes on. On the other hand, figure 

6 and 7 shows the predicted RUL and optimal time for 

replacement ( 𝑂𝑃𝑑𝑅). It can be observed that at time step T1 

the optimal time for PdR is far from the predicted RUL. 

Though, at time step T5 the optimal time for PdR is very 

close to the predicted RUL. This is again because of the 

uncertainty drop in the prediction. This implies that as the 

uncertainty drops the maintenance timing gets closer to the 

remaining useful life; since the risk of making a wrong 

decision decreases. Accordingly, the guideline for 

operational planner from this is to not to stick to the initial 

optimal maintenance plan but dynamically update the 

predictive maintenance plan as time goes on. So as to make 

the maintenance decision at the right time. 

 
Fig. 3. PDF plot at T1 and T2 for ID I  

 
Fig. 4. PDF plot for T1 to T7 for ID I 

 
Fig. 5. PDF plot for T1 to T4 for ID II 
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estimation of the fixed cost of a predictive replacement 

should be done accurately.  
       

  Time (Ti) h Predicted 𝜼 (h) Predicted 𝜽 Variance  RUL (h) Optimal time for replacement 𝑂𝑃𝑑𝑅 (h) 

T
es

t 
A

ss
et

 I
D

 I
 

T1 = 0.07 5.38 3.96 1.90 4.87 4.08 

T2 = 0.70 2.40 3.98 0.37 2.17 1.36 

T3 = 1.40 2.95 3.98 0.57 2.67 1.65 

T4 = 2.10 1.39 3.97 0.13 1.26 0.41 

T5 = 2.80 0.66 3.95 0.03 0.60 0.17 

T6 = 3.50 0.46 3.93 0.01 0.41 0.15 

T7 = 4.20 0.72 3.96 0.03 0.65 0.17 

T8 = 4.90 0.02 1.65 0.00 0.02 0 

T
es

t 
A

ss
et

 I
D

 I
I T1 = 0.07 2.70 3.98 0.48 2.45 1.72 

T2 = 0.70 3.29 3.98 0.71 2.98 2.04 

T3 = 1.40 3.33 3.98 0.73 3.02 2.04 

T4 = 2.10 1.48 3.97 0.14 1.34 0.63 

T5 = 2.80 0.11 3.50 0.00 0.10 0.01 

T6 = 3.50 0.03 1.97 0.00 0.02 0 

 Table 2. Implementation results for both test assets 

Table 3. Systematic sensitivity analysis 

Design Parameter Optimal Time for Replacement 𝑂𝑃𝑑𝑅 (h) 

Range 3.59-4.86 

Table 4. Range of optimal design parameter acquired through sensitivity analysis 

 

Fig. 6. RUL Vs optimal time for PdR for T1 to T8 for ID I 

 

Fig. 7. RUL Vs optimal time for PdR for T1 to T6 for ID II 
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Parameter 
Base 
Level 

-
20% 

-
10% 

+10% +20% 

Expected total cost per unit time of carrying out predictive 

maintenance ([𝐸𝑇𝐶](𝑃𝑑𝑀) ) Range 

Base Level -20% -10% +10% +20% 

𝐴𝑃𝑑𝑅 0.6 0.48 0.54 0.66 0.72 1008.86 994.57 1001.71 1016.00 1023.52 
994.57-
1023.52 

𝐶𝑙𝑝 60 48 54 66 72 1008.86 993.69 1001.28 1016.38 1023.90 
993.69-

1023.90 

𝐶𝐿 100 80 90 110 120 1008.86 1005.73 1007.28 1010.42 1011.99 
1005.73-
1011.99 

𝐶𝐹𝑃𝑑𝑅 3000 2400 2700 3300 3600 1008.86 885.64 947.25 1070.46 1132.06 
885.64-

1132.06 

𝐶𝐴 3000 2400 2700 3300 3600 1008.86 975.52 994.91 1020.00 1026.06 
975.52-
1026.06 

𝐴𝐶𝑅 0.6 0.48 0.54 0.66 0.72 1008.86 1004.87 1006.89 1010.85 1012.76 
1004.87-

1012.76 

𝐶𝐹𝐶𝑅 3000 2400 2700 3300 3600 1008.86 965.61 990.01 1024.54 1038.05 
965.61-
1038.05 
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Fig. 8. Expected total cost Vs percentage change of the model parameters

Conclusion  

This paper formulates, a comprehensive framework 

from real-time prognostics to maintenance decisions. The 

intention was to render manufactures with a complete 

maintenance support system to instantaneously prevent 

asset performance degradation and unexpected failures. 

The key offerings of this paper are underlined here after: 

a) For the prognostics phase, a new sensor-based 

prognostics module was modelled employing the WTTE-

RNN. In which, the prognostics competence was enhanced 

by predicting the parameters of failure distribution despite 

a single time-to-failure, and therefore, the offered approach 

delivers a superior response to real-world requirements. 

b) For the post-prognostics phase, a new predictive 

maintenance planning model was framed through a trade-

off between corrective maintenance and lost remaining life 

due to predictive maintenance. Allowing rapid optimisation 

of time for maintenance via all gathered operational and 

maintenance cost parameters.  

c) Its performance is highlighted via a case study 

from a manufacturing environment; complimented with 

systematic sensitivity analysis. The influence of the 

imperfect prognostics information on maintenance 

decisions is debated. Showcasing interesting insights viz. 

the uncertainty regarding prediction drops as time goes on; 

and as the uncertainty drops the maintenance timing gets 

closer to the remaining useful life; since the risk of making 

a wrong decision decreases.  

In essence, it is an entire cognitive operation from 

carrying out the prognostics to making maintenance 

decisions. Such complete models integrating monitoring 

characteristics, prognostics, and maintenance assessment 

can give rise to fruitful discussions.  
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