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Abstract 

Capacity planning in the telecommunications industry aims to maximise the effectiveness of 

implemented bandwidth equipment whilst allowing for equipment to be upgraded without a 

loss of service. The better implemented hardware can be configured, the better the service 

provided to the consumers can be. Additionally, the easier it is to rearrange that existing 

hardware with minimum loss of service to the consumer, the easier it is to remove older 

equipment and replace it with newer more effect equipment. The newer equipment can provide 

more bandwidth whilst consuming less power and producing less heat, lowering the overall 

operating costs and carbon footprint of a large scale network.   

Resilient routing is the idea of providing multiple independent non-intersecting routes between 

two locations within a graph. For telecommunications organisations this can be used to reduce 

the downtime faced by consumers if there is a fault within a network. It can also be used to 

provide assurances to customers that rely on a network connection such as: financial 

institutions or government agencies.   

This thesis looks at capacity planning within telecommunications with the aspiration of 

creating a set of optimisation systems that can rearrange data exchange hardware to maximise 

their performance with minimal cost and minimising downtime while allowing adaptations to 

an exchange’s configuration in order to perform upgrades.   

The proposed systems were developed with data from British Telecom (BT) and are either 

deployed or are planned to be in the near future. In many cases the data used is confidential, 

but when this is the case an equivalent open source data set has been used for transparency.  

As a result of this thesis the Heated Stack (HS) algorithm was created which has been shown 

to outperform the popular and successful NSGA-II algorithm by up to 92 % and NSGA-III by 

up to 69% at general optimisation tasks. HS also outperforms NSGA-II in 100% of the physical 
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capacity planning experiments run and NSGA-II in 68% of the physical capacity planning 

experiments run. Additionally, as a result of this thesis the N-Non-Intersecting-Routing 

algorithm was shown to outperform Dijkstra’s algorithm by up to 38% at resilient routing. 

Finally, a new method of performing configuration planning through backwards induction with 

Monte Carlo Tree Search was proposed.  
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Chapter 1. Introduction 

1.1 Introduction to network capacity optimisation and planning 

The internet, data and interconnectivity are a fact of modern life being used as part of every 

aspect of people lives, from communication to commerce, from work to entertainment it is an 

inescapable fact of life that network connections are used for everything. This has only been 

compounded by the Covid-19 global pandemic with people remaining physically apart and 

relying more and more on network connections to maintain a normal life. In the United 

Kingdom this network is underpinned and maintained by the organisation known as British 

Telecom (BT).  

BT maintains a network comprised of two divisions; the access network and the core network. 

The access network is used to connect consumers to the core network and utilises a variety of 

technologies including: copper cables, fibre optic cables, satellites and cellular networks such 

as 4G and 5G, and it can be extended to use any number of new technologies. The core network 

connects the nation together and to the rest of the world allowing access to the internet and is 

made up of data exchanges and high capacity fibre optic cabling. The work undertaken as part 

of this thesis focuses on the core network solving a variety of problems in network planning 

and routing.  

Routing is the act of finding a path between locations with a navigable area, be this roads, a 

data network or the ocean. Routing is an everyday fact of life, many aspects of people’s 

everyday using routing to achieve a goal these include: public transport [1], resource gathering 

[2], data networks [3], video games [4], and shipping [5].  In most cases of routing the idea is 

to find the shortest path between two locations, but this is not always the case sometimes there 

are other metrics that need to be considered. Sometimes the shortest path is not the optimal 

one, there could be other considerations that need to be taken into account such as in aviation, 
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the need to fly around a county with a closed airspace, or in the case of a bus or lorry the roads 

taken must be suitable for the vehicle to traverse. 

As an increasing number of people connect more and more devices to the internet ever-present 

demand for bandwidth is set to increase [6]. To keep up with this demand networking 

infrastructure must be upgraded and improved in a constant never-ending cycle. 

Telecommunication networks are a complicated interconnected web of equipment, cables and 

locations making upgrades a complex, expensive and time consuming procedure.  

Capacity optimisation and planning are widely used terms that are used for any number of 

applications including: supply chains [7], optical networks [8] bandwidth predications [9] and 

resource management in  manufacturing [10]. In all of these cases there is a general overarching 

consensus that capacity management is the maximisation of resources in order to get the highest 

utilisation possible. In the case of supply chains this would be ensuring that each part of the 

supply chain is used at its most efficient be it transportation or storage. In the case of optical 

networks capacity management refers to the fibre optic cables and the associated hardware.   

For the purposes of this thesis the terms capacity management and capacity planning refer to 

telecommunication networks in relation to their bandwidth and routing capacities.  

1.2 Research questions and contributions to science  

Given that this thesis uses real-world data and solves real-world problems it is important to 

take into account the considerations of BT, in the form of their business objectives. Given that, 

a consumer is defined as someone that uses the telecommunications network for data purposes 

including: households, corporate entities or a government organisations. There are two 

important consumer focused business objectives of telecommunications capacity planning and 

optimisation that must be followed. First a consumer’s connection must be reliable with 

disconnections being minimised and as infrequent as possible, but if a consumer is 
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disconnected they must be reconnected as quickly as possible. Secondly the bandwidth capacity 

given to a consumer must increase with the demands of a modern interconnected society. This 

thesis embodies these business objectives with its overarching goal which is to improve the 

speed, effectiveness and reliability of capacity planning and optimisation within large scale 

telecommunication networks by decreasing down time and increasing the speed at which 

upgrades can be performed to an exchange. In order to achieve this goal a subset of aims must 

achieved: 

I. How to provide assurances of the steps taken to keep a reliable connection between 

two endpoints in a complex network. 

II. How to provide those same assurances in a network when the data used for routing is 

uncertain or in constant flux. 

III. How an ideal version of the current networking infrastructure would be configured to 

allow planned upgrades to be implemented. 

IV. How to make changes to the network infrastructure without disconnecting consumers 

for extended periods of time. 

In order to achieve these 4 aims 5 interconnected tasks have been achieved and will be 

discussed in this thesis which uphold the business objectives of telecommunication capacity 

planning and management: 

 Perform a comparison into techniques that can perform multi-path resilient routing and 

determine if one can outperform the currently implemented technique of Dijkstra’s 

algorithm.  

 A comparison of type-1 and interval type-2 fuzzy logic for uncertainty handling in 

resilient routing as part of the selected aforementioned technique resulting in effective 

and consistent multi path resilient routing in uncertain environments.  
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 The creation of a novel evolutionary algorithm to optimise virtual groups within 

exchange hardware which are used for bandwidth allocation.  

 Improving the aforementioned novel evolutionary algorithm to optimise existing 

exchange hardware allowing planned upgrades to exchange equipment.  

 A step-by-step guide of how to implement changes to the exchange allowing for the 

optimised solutions to become reality whilst minimising consumer downtime.  

The work presented within this thesis is being used to solve real world problems faced by BT 

and are used as improvements to pre-existing solutions. BT had an automated solution to 

problem I mentioned above but the introduction of the new technique described in this thesis 

has a 38% improvement over the pre-existing technique by decreasing costs and increasing 

network reliability. BT had no solution to problem II prior to the implemented solution 

presented in this thesis. There was no automated solution to problem III prior the work 

undertaken by this thesis and the optimisation was being completed by hand. Finally there was 

no automated solution to problem IV with the planning being completed by hand.  

1.3 Thesis layout 

This thesis is structured as follows: Chapter 2 gives an overview of the problems and some of 

the existing solutions to capacity planning and routing. Introducing what an optimisation 

problem is, describing some relevant generic computer science problems and discussing the 

composition of the communications network provided by BT. It then introduces routing whilst 

establishing some popular and effective routing methods, providing a detailed description of 

resilient routing whilst describing what makes an optimal resilient route and why they are 

required. Chapter 2 describes the concept of an uncertain environment and gives a detailed 

overview into capacity planning in telecommunications. 
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Chapter 3 describes fuzzy logic systems giving a detailed description of fuzzy logic in general 

whilst describing the difference between type-1 and interval type-2 fuzzy logic.  

Chapter 4 provides an overview of simulated annealing and genetic algorithms. Beginning by 

describing the functionality of the single objective techniques of simulated annealing and 

genetic algorithms. It then moves on to the more complex and capable multi-objective genetic 

algorithms of NSGA-II and NSGA-III, finalising with constrain handling techniques and an 

introduction to the hyper volume indicator.  

Chapter 5 presents the N-Non-Intersecting-Routing algorithm (NNIR) and how it is used to 

solve the resilient routeing problem with the experiments performed on a real-world 

confidential telecoms network and an open source road network.  

Chapter 6 expands upon the work from the NNIR algorithm in Chapter 5. Applying fuzzy logic 

to the NNIR algorithm allowing it to operate in uncertain and dynamic environments.  

Chapter 7 introduces the Heated Stack algorithm (HS) describing its implementation and 

comparing it to NSGA-II at the digital capacity planning problem.  

Chapter 8 expands upon the HS introduced in Chapter 7 making improvements to its 

performance and applying it to the physical capacity planning problem. In this chapter HS is 

compared to NSGA-III at the physical capacity planning problem. Due to the confidentiality 

of the data used in the capacity planning problems in Chapters 7 and 8, HS is compared to a 

set of open source optimisation problems ensuring transparency in the results.  

Chapter 9 presents Monte Carlo Tree Search with backwards induction for network 

configuration planning. This technique is used as a final solution sorting and representation 

tool for capacity planning with HS.  
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Finally, Chapter 10 presents the conclusion of this thesis, the real world impact and the 

potential future work.  
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Chapter 2. Overview of Capacity planning and routing 

2.1 What is an optimisation problem 

In the English language the word “problem” can be defined as a question to be considered, 

solved or answered. The word “optimisation” can be defined as the design of a system or 

process to make it as good as it can possibly be. Therefore, by bringing these two definitions 

together it can be determined that at the very least an optimisation problem is the design of a 

system or process that needs to be solved or answered.  Optimisation problems exist throughout 

the everyday life of most people and they solve them without even thinking about it. These can 

be simple problems such as “What is the fastest way to travel from home to work”, or “How 

do I get all of the cups and plates into a dishwasher”. These problems increase in complexity 

to problems such as “How to design a car chassis” [11] or “ How to design the most efficient 

radio antenna” [12]. So optimisation problems can come in varying degrees of complexity with 

some problems being trivial to solve and others being more complex. In Computational 

Complexity theory a problem’s decision complexity can be classified by its NP-Hardness, 

where a harder problem cannot be solved by a non-deterministic Turing machine in polynomial 

time [13].  

2.1.1 Multi armed bandit problem  

An optimisation problem can be tackled from many different perspectives thus it is important 

to understand how to solve a problem with the correct methodology. In machine learning there 

is the theoretical problem of the Multi-Armed Bandit [14],[15] where a set of sequential 

decisions can be enacted to achieve a reward. The goal of the multi armed bandit problem is to 

with minimal decisions maximise the reward or pay out. The classic example of this is the 

casino gambler in front of a row of slot machines, where they want to win on a slot machine 

whilst spending as little money as possible. If the decision faced by the gambler is which of the 

slot machines to play and for how long for until they try a different machine, then they must 
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use their limited funds in the most optimal way in order to maximise the rewards. By taking 

the gambler’s problem we can determine that there are two methods of solving methodologies 

to solve this problem; Exploration and Exploitation. In exploration the gambler could in-turn 

make one decision on each slot machine, only repeating a slot machine once they have all been 

visited, continuing this process until they exhaust their supply of money with the hope that at 

least one of the slot machines will pay out. In exploitation the gambler could pick one slot 

machine and only play that one using their entire money supply in the hopes that eventually 

the slot machine will pay out. A plan could be formulated for the gambler by using both of 

these techniques in varying degrees allowing of them to both explore and exploit.  

This idea of exploration and exploitation is a core idea of optimisation and they are regularly 

seen as opposite to each other where a balance must be achieved in order to attempt to achieve 

a global optima. Exploration is allowing a worse state to arise in order to find better states later, 

whereas exploitation is only allowing better states to exist and never making a state worse.  

2.1.2 Evaluation and Progressive Improvements 

Problems can be solved through the use of iterative and exhaustive methods. These methods 

look at a set of parameters that can be manipulated and change them in order to find the best 

solution. The idea of exhaustively searching through all the potential solutions could work for 

the simplest problems, but as problems become more complex they require more intelligent 

optimisation strategies. Once a problem becomes increasingly complex and its NP-Hardness 

increases it can become impossible to exhaustively search all possible states. Therefore, 

computational optimisation strategies are used to make informed decisions to achieve a goal.  

Given a problem has a goal and a set of decision variables representing the state of the problem 

and that the same decision variables can be manipulated, an optimisation strategy can be used 

in order to attempt to generate optimal solution [16].  An optimisation strategy should be able 
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to make progressive improvement upon a state until it terminates or no better solution can be 

found. In order for an optimisation strategy to make these progressive improvements it needs 

to be able to define the quality of a potential solution which is determined by evaluating a 

solution against a goal [16].  This goal should be represented by a mathematical function that 

uses the information represented in the decision variables to determine a score. This score is 

either a minimisation or maximisation function to determine how well a potential solution 

fulfils the goals of the optimisation problem.  

2.2 Generic Computer Science Problems 

Within the field of computer science there are many theoretical problems that can be attributed 

to real-world problems. These problems can used as a good basis to solve and understand many 

real-world problems.  

2.2.1 The Knapsack Problem 

In the Knapsack Problem (KP) there is a given set of items which each have a value and weight 

and that given sack or container can contain up to a set weight. A subset of the item must be 

selected to  maximise the value within the container without going over the weight constraint 

[17]. Fig 2.1 shows a visualisation of this problem with five items of varying weight and value, 

and also a sack that can contain up to a maximum weight of 15kg. Which of these items should 

be put into the sack in order to maximise the value in the bag? What if the objective was not to 

just maximise the value in the sack but to also use as much of the sack’s weight constant, does 

that change the solution?  
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 Fig 2.1 Visualisation of the knapsack problem [18] 

It poses the question of which item to put into the bag and which to leave out to be the most 

efficient. The KP can be extended and manipulated to have many more objectives and 

constraints put upon it. The KP is known to be a NP-Complete optimisation and is a well-

researched area of computer science [19], [20] and can be applied to a multitude of real world 

problems.  

2.2.2 The Bin Packing Problem 

The Bin Packing problem, is defined as set of objects with varying size and an infinite number 

of bins or containers of equal size. The objective is to put all of the objects into the minimum 

number of bins as possible, without exceeding the maximum size limit of the bin, thus packing 

the bins as efficiently as possible [21] [22]. Additional constraints can be put on each bin, such 

as having a minimum or maximum number of items in each bin, or not allowing two certain 

objects to be present in the same bin.   
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Fig. 2.2 Unsolved bin packing example. 

Fig 2.2 shows an example of the Bin Packing problem with 10 items of varying size that need 

to fit into a number of bins with a fixed size, this example shows three bins but more could be 

used if they didn’t fit, as the number of bins is infinite.  
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Fig 2.3 Solved bin packing example 

Fig 2.3 shows the solved version of Fig 2.2 where the 10 items have been allocated to their 

bins. None of the bins constraints have been violated and all of the items have been packed. 

The items do not need to be packed in order to achieve the most efficient packing as seen in 

Bin I where items 1, 2, 3, 8 have been packed. Bin packing is a well-researched problem area 

with many different algorithms solving many different versions of the problem [23].  

2.3 Telecommunications Infrastructure Composition and Problems  

The internet, data and interconnectivity have become integral to the modern way of life, being 

used as part of their personal or professional lives. People require a fast and reliable internet 

connection across the nation. In the United Kingdom this service is predominantly supplied by 

British Telecom (BT), whose services are broken down into two divisions, BT and Open Reach. 

BT provide the core network which connects a set of exchanges together and to the wider 

world. Open Reach provide access network which connects consumers and business to the core 

network. Open Reach provides the access network through a wide variety of technologies such 

as: copper cable, fibre optics, radio signals (4G/5G), satellites and it can always be upgraded 

to use any new technology.  
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2.3.1 The Core Network 

The core network provided by BT is comprised of three major components; the exchange, 

metro nodes and the ducts connecting them all together. The exchange is where the majority 

of the work is done routing packets between locations. The metro nodes work as repeaters and 

junctions, amplifying signals that could degrade over time or joining two pathways together. 

A duct is a pathway containing cables of varying types, be it copper or fibre optic.  

 

Fig 2.4 Example representation of the core network 

Fig 2.4 shows an example representation of the core network in a graph with the exchanges 

and metro nodes represented as vertices and the ducts as edges. As shown in Fig 2.4 metro 

nodes are not a requirement to connect two exchanges together, they can be connected to 

another metro node or an exchange. They can also be used as junctions to connect to more than 

two ducts at one time.  

2.3.2 The Exchange 

The exchange is the most complex and important part of the core network and are situated 

across the country with every major town in the UK having at least one that services the town 

and surrounding area. The exchange comprises of three types of equipment; cooling, power 

and bandwidth. Cooling equipment is used to ensure optimal environmental conditions by 

managing the heat produced by the power and bandwidth equipment and consists of heatsinks, 

fans and thermal shielding. The power equipment provides energy for both the cooling and 
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bandwidth equipment and consists of transformers and cables. The bandwidth equipment is 

used to route data packets to the correct locations. Bandwidth equipment consists of; racks, 

sub-racks, cards, sub-cards and ports.  

 

Fig 2.5 Bandwidth equipment layout within the exchange. 

Fig 2.5 shows the layout of the bandwidth equipment within the exchange. Traversing down 

the tree, the equipment has a one-to-many or a one-to-one relationship and sub equipment is 

optional with some configurations requiring it and some not. The location is the physical 

geographical location of the exchange. The rack provides housing, power and cooling for sub-

racks and cards. A card provides a position for cables to be interfaced into the ports.  Each port 

in use has a cable in it, which in turn houses some digital infrastructure. This digital 

infrastructure could be a service such as voice or dedicated government or financial connects, 

or the infrastructure could be a Virtual Local area network (VLan).   
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Fig 2.6 Example digital infrastructure associated with a single port 

Fig 2.6 is an extension of the tree structure shown in Fig 2.5 and shows an example of the 

digital infrastructure that could be associated with a single port. A VLan is a management 

technique for groups of service and customers and one port can have many VLans but one 

VLan can only be associated with one port. Each VLan can have one or more Service Virtual 

Local Area Network (SVLan) as its child in the tree structure. Each SVLan is used to house 

either a set of Services or a set Customer Virtual Local Area Network (CVLan). A CVLan 

represents a group of access customers, such as households, business or organisations.  

2.4 Routing and Resilient Routing 

Routing problems are something that people face every day of their lives and is an important 

skill that most people have and don’t even realise it. Routing can be used for a multitude of 

different problems; the Traveling Salesman Problem (TSP) [24] is one such example of a 

routing problem that has a wide variety of uses, including: sales, logistics and delivery. The 

goal of the TSP is to find the shortest path that visits all vertices and returns to the starting 

location. The most well-known routing problem is point to point routing, where the goal is to 

get from a start location to an end location in the shortest distance. Point to point routing is 



17 

 

used in a wide variety of domains including navigation, digital packet transfers and system 

design.  

2.4.1 Dijkstra’s Algorithm  

Dijkstra’s Algorithm [25] created by Edsger W. Dijkstra in 1965 is a greedy search algorithm 

used in graph theory. The algorithm was originally created for routing between computer 

systems within a network and is seen as one of the simplest and most effective routing 

algorithms. It has been used in a wide variety of domains from: robotic controllers [26] to 

parking lot planning and operations [27]. The algorithm is not without pitfalls, it cannot deal 

with negative numbers and it is slow at routing in networks with a high number of vertices and 

edges. Fig 2.7 shows pseudo code for Dijkstra’s algorithm.   

 

Fig 2.7 Pseudo code for Dijkstra’s Algorithm 

The algorithm goes through the graph one vertex at a time, exploring and expanding as it goes. 

From the source location it calculates the distance to all neighbouring vertices. It then picks the 

lowest distance from the unvisited and accessible vertices from across the graph and calculates 
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the distance from it to each unvisited neighbour. It does this whilst still taking into account the 

distance from the path already taken and updates the neighbours’ distance if it is lower. It 

repeats this process until it reaches the destination vertex at which point it has a list of vertices 

that represent the route from the source to the destination. 

2.4.2 A-Star Algorithm 

The A-Star Algorithm [28] was first published in 1968 by Peter Hart, Nils Nilsson and Bertram 

Raphael and is an extension to Dijkstra’s Algorithm. It achieves the same optimal results as 

Dijkstra’s Algorithm but has a reduced time complexity at the cost of an increased space 

complexity [29]. A-Star Algorithm has seen widespread success in multiple domains but 

appears to have had the most success in the video games industry [30], [4].  It uses a modified 

version of the search procedure in Dijkstra’s Algorithm by introducing a heuristic that indicates 

an estimated distance between the current vertex and the destination vertex. Just like Dijkstra’s 

Algorithm it cannot deal with negative edge costs, but unlike Dijkstra it performs much better 

in larger networks, given that the heuristic used is accurate. An inaccurate heurist can ruin the 

graph traversal, and make it slower than Dijkstra’s Algorithm in any sized network.  
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Fig 2.8 Pseudo code for A-Star Algorithm 

Fig 2.8 shows pseudo code for the A-star Algorithm. The pseudo code for the A-Star Algorithm 

is almost the same as that of Dijkstra in Fig 2.7 but there are three differences. Firstly the 

heuristic data needs to be pre-calculated. In a distance graph, the Euclidian distance between 

each vertex and the destination vertex could be used as the heuristic values. Secondly the 

distance of the source is now set to its heuristic distance not zero. Finally, anytime distance is 

updated, the heuristic distance is incorporated.  With these changes the distance comparison 

will now use the distance between two locations and the heuristic distance.  

2.4.3 Resilient Routing 

Data routing is a complicated procedure and there are many requirements placed upon it, one 

of these such requirements is a reliable connection. Different services offered by BT require 

different levels of assurances when it comes to connection reliability. For example if the 

connection to your typical household consumer was interrupted for some reason it would be an 

inconvenience for them but not vital that it remained connected. Whereas some consumers 

require a connection at all times and will pay to get assurances that their connection has a 
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backup in place. These customers include: television entertainment companies such as the 

British Broadcasting Corporation (BBC) and Independent Television (ITV), government 

institutions such as the Ministry of Defence (MOD) and the National Health Service (NHS), or 

finally big financial institutions trading on the stock markets such as NatWest or Barclays 

Banks.  This back up connection is known as a resilient route or resilient line. Resilient Routing 

is the act of having two or more routes between the start and finish locations of the proposed 

route. These resilient routes must not intersect to create a single point of failure (SPoF)[31]. 

This allows for system to effortless and seamlessly switch to the backup or resilient route if 

something happens to the primary route without a loss of service to the consumer. 

There are some problems that are important not to confuse with the Resilient Routing problem. 

TSP is one such problem that has many wides spread practical applications but is not the same 

as Resilient Routing. The basic idea of TSP [24] is that an agent must travel through a graph 

visiting each vertex in the cheapest way possible and then returning to the starting position. 

Another problem that is very similar but should not be confused with Resilient Routing is the 

idea of Quality of Service (QoS) routing [32]. Albeit that Resilient Routing is used for QoS, 

QoS routing doesn’t have the same set of constraints set upon it, and thus can use different 

techniques.  

2.4.3.1 Resilience Optimality 

Fig 2.9 shows an example of Resilient Routing when solved by Dijkstra’s Algorithm. The route 

depicted by the vertices [A, B, C, I] is the shortest path and the primary route at a cost of 29. 

The resilient route as depicted by the vertices [A, F, G, H, I] has a cost of 40 does not intersect 

with the primary route, apart from at the start and finish locations, therefore there are no SPoF 

across the network and it classifies as the resilient route.  
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Fig 2.9 Resilient Routing example using Dijkstra’s algorithm to solve the route [33] 

As this is a service that BT offers the customer would be expected to pay for both lines thus 

more than doubling the cost to the customer. The primary route depicted by Dijkstra in Fig 2.9 

is the shortest path, and the resilient route is the next shortest path. Individually Dijkstra 

provides the cheapest routes, but once combined into one cost they are no longer the optimal 

costing routes, the cost of the primary and the resilient routes combined into one solution is 69.  

 

Fig 2.10 Resilient Routing example that has the optimal solution. [33] 
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Fig 2.10 shows an optimal solution for the same graph as shown in Fig 2.9. In Fig 2.10 the 

primary route is depicted by the vertices [A, B, D, E, I] at a cost of 32 and the resilient route is 

depicted by the vertices [A, F, C, I] at a cost of 34. By comparing the graphs and results from 

the Fig 2.9 and Fig 2.10, the total cost of entire solution is reduced from 69 to 66. This reduction 

is possible by forcing the primary route to take a less optimal path allowing for the resilient 

route to take a more optimal one. The cost of the primary route is increased by 5 but the resilient 

route’s cost is decreased by 8, giving us our total cost of 66.  

2.4.3.2 Resilience Blocking 

Fig 2.11 shows an example of a graph where resilient route is possible but not achieved through 

the use of Dijkstra’s Algorithm. In this example the primary route is depicted by the vertices 

[A, B, D, F, G] at a cost of 27. There is no resilient route between the start and finish locations 

in Fig 2.11. The route presented between the start and finish locations is optimal for one route, 

but a resilience service could not be offered as the primary route blocks it.  

 

Fig 2.11 Example Graph where resilient routing is blocked with Dijkstra’s Algorithm 

Fig 2.12 Shows an optimal example of Fig 2.11 where a resilient route has been found. In Fig 

2.12 the primary route is depicted by the vertices [A, B, D, G] with a cost of 35. The resilient 

route in Fig 2.12 is depicted by the vertices [A, C, E, F, G] with a cost of 57.  So now a resilient 
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solution to the graph exists with a total cost of 92. This is possible by forcing the primary route 

to take a sub-optimal route opening up the possibility of a resilient route.   

 

Fig 2.12 Example Graph where both the primary and resilient routes have been found  

2.5 Uncertain environment  

The Collins English dictionary defines uncertain as “not able to be accurately known or 

predicated” or as “not precisely determined, established, or decided” [34]. The Collins English 

dictionary defines environment as “external conditions or surroundings” [34]. If we combined 

these two definitions together an uncertain environment would mean an external surrounding 

that could not be precisely determined.  Applying this to the field for Artificial Intelligence 

(AI) it can be seen as an unknown or imprecise data set.  

AI requires data, be this pre-collected data stored into a file such as a database or a comma 

separated value file (CSV). Alternatively the information could be collected in real-time by a 

sensor such as a thermostat or a radar. But in all scenarios data is required and at a high quality, 

but in some cases this is not possible. This can be for several different reasons. In the case of 

pre-collected data it could be that there are several conflicting data sources. These data sources 

are usually very similar but there is no way to determine that one of them is correct, so all data 

sources must be used. In the case of sensors, it is generally good practice to ensure that multiple 
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sources are taken to ensure a more accurate result, these data sources will not always match up 

and give one clear result.  

Evaluation is a core part of the AI process and requires accurate metrics in order to function 

properly. In this context evaluation means a way to score or determine the quality of something 

by using a mathematical function. With an unknown or unreliable set of numbers a 

mathematical function cannot give a reliable result. Therefore as routing and optimisation need 

to evaluate potential solutions they require good data from a certain environment to be able to 

give a high quality result.  

2.5 Overview of Capacity Planning 

Capacity planning is the idea of planning for the usage or storage of some product or service 

over a period of time. Capacity planning can be applied to many different fields. Multi agent 

systems have been used in manufacturing [35], specifically in production capacities and 

scheduling of a machine-building enterprise. Statistical modelling has been used in virtual 

machine deployment [36] where they are modelling the amount of physical hardware required 

to contain virtualised operating servers. System dynamics have been used within closed loop 

supply chains [37] for understanding and adjustments to a closed loop system, to allow prices 

to change as elements of the loop change. Multi-objective optimisation have been shown to be 

effective in supply chain management [7] where they try to maximise profits whilst minimising 

risks.  

There are many different types of capacity planning but they all have a somewhat similar set 

of goals: to increase the capacity of a service (supply chain, virtual machine or production 

capabilities) whilst keeping the costs as low as possible. Capacity planning in 

telecommunications is no different with some overarching goals: to reduce costs whilst 
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increasing the available capacity or utilisation. Within BT there are two types of bandwidth 

capacity planning within an exchange; Digital and Physical.  

2.5.1 Digital Capacity Planning in Telecommunications 

In the telecoms industry, products and services are assigned to physical ports on cards within 

data exchanges. These products and services arranged across multiple digital layers as shown 

in Section 2.3.2 The Exchange and more specifically Fig 2.6 Example Digital Infrastructure 

associated with a single port. Each of these services have their own set of requirements and 

constraints, which are broken down into technical and business constraints. Technical 

requirements and constraints are hard and must be met and cannot be broken, otherwise the 

software would not function. Business requirements and constraints are soft and therefore can 

be broken, but it is extremely preferable to meet them as they line up with overarching goals 

of BT.  

The Knap Sack problem and the Bin Packing problems are classic computer science problems 

covered in Sections 2.2.1 and 2.2.2 respectively. Digital capacity planning closely resembles 

something in between these two problems but there are some differences. In Bin Packing there 

are an unlimited number of bins that equally sized objects must all fit within. In the Knap Sack 

problem there is one container that the maximum number of the maximum valued objects must 

fit within. Whereas in the digital capacity planning problem there are a fixed number of bins 

that all the objects must fit within and those objects are themselves containers that must fit 

another subset of objects within. In Section 2.3.2 VLans, SVLans and CVLans are introduced, 

these three elements together create three layers of capacity bins. CVLans have a utilisation 

value that represents how much bandwidth they consume. SVLans contain a number of 

CVLans and have a limit to their capacity, and VLans contain a number of SVLans and also 

have a limit to their capacity.  
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Fig 2.13 Demonstration of Utilisation in capacity bins [38] 

Fig 2.13 shows an example of how utilisation of varying sizes can be placed within the allotted 

capacity without overflowing the available space within a capacity bin. In the example the 

capacity bin is the SVLan and the utilisation in the CVLan. Now this is a simple example with 

three bins and 23 objects, but in actuality the number of SVLans (bins) and CVLans 

(utilisation) is much greater. One physical port can contain multiple VLans, one VLan can 

contain anywhere up to 100 SVLans and each SVLan can contain up to 2500 CVLans. Very 

quickly a concern becomes the problem of scale, to add to this utilisation is based upon 

customer bandwidth usage, which changes by the minute. The objectives of digital capacity 

planning are to ensure that the VLans and by extension the SVLans do not breach the limit of 

a physical port’s bandwidth capability.  

2.5.2 Physical Capacity Planning in Telecommunications 

A data exchange is a vital part of the telecoms industry and it serves as core part of a nations 

networking infrastructure. In Section 2.3.2 it was established that an exchange is made up of 

three types of equipment; power, cooling and bandwidth. Physical capacity planning in 

telecommunication is regarding the physical equipment within the exchange. The capacity of 

the cooling system is the simplest and cheapest to upgrade. The power system is by far the 
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most expensive system to upgrade and requires the complete shutdown of a data exchange for 

an extended period of time to upgrade which is unacceptable. The bandwidth systems consume 

the most power and generate most of the heat, but newer bandwidth equipment has higher 

capacity whilst being more power and thermally efficient. The bandwidth infrastructure is 

therefore the priority as it reduces the requirements on the other two types of equipment whilst 

also increasing the bandwidth available.  

The bandwidth system is by far the most complicated to upgrade for a multitude of reasons: 

Firstly, the system is highly interconnected and any disruption to one set networking card can 

have effects to other cards either at the same physical location or elsewhere in the network. 

Secondly, different services on each card have their own set of requirements that must be met, 

some of these include: digital capacity planning, resilient routeing, card and service 

incompatibilities and bandwidth restrictions. Thirdly most exchanges have been incrementally 

improved overtime, so they are at their power and cooling capacities so new equipment can’t 

be added and then service migrated. Finally it’s a live system so any work undertaken to 

upgrade it must be done with minimal disruption to the network, as consumers must not be left 

without service for any extend period of time. In order to achieve this minimal disruption to 

consumer connectivity upgrades must be completed in a two hour time window.  

To solve these problems the algorithmic concept of divide and conquer [39] is employed to 

split the process down into smaller processes and then solve them individually. In an ideal 

world that process would go something like this; Identify the parts of the system that need to 

upgraded first, then remove all the services from it and unplug all the cables, and replace it 

with the new piece of equipment so it can be used by those same services and more.  Then 

move onto the next piece of bandwidth equipment and repeat the process, but this time there is 

more bandwidth capacity as the new piece of equipment is in place and should have a greater 

ability to satisfy the bandwidth demand.  
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Fig 2.14, Fig 2.15 & Fig 2.16 show an example of how ports can be moved in order to remove 

a card from a networking device such as a rack. In the example shown in Fig 2.14 Card F is 

selected to be removed and thus all the filled ports on that card must be moved. Fig 2.15 shows 

the location that the ports have been moved too, with two moved to Card A, three to Card B, 

one moved to Card D, one moved to Card E, one moved to Card G, three moved to Card H 

and one moved to Card J.  Fig 2.16 shows that all ports on Card F have been emptied and that 

card can now be removed without causing any issues. Looking at Fig 2.16 you can see that 

cables within the ports have been moved to different ports across the device and don’t need to 

all be on the same card after the move.  

 

Fig 2.14 Physical Capacity Planning Example before port move 
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Fig 2.15 Physical Capacity Planning Example during move 

 

Fig 2.16 Physical Capacity Planning example after move 

Unlike the example, the real-world problem is much more complex with a multitude of 

constants set upon each port and there is not always enough space to move the ports around 

like this, but the example in as an ideal scenario and works to demonstrate the problem.  
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Chapter 3. An Overview of Fuzzy Logic Systems 

Fuzzy Logic was presented by Lotfi Zadeh who first published in his paper “Fuzzy Sets” [40] 

where he introduced the core ideas of Fuzzy Logic which did set the stage for a myriad of 

extensions to the theory and applications of that theory. In traditional logic something can exist 

as one of two states “True and False” but that is not how humans understand the real world, we 

don’t understand everything in a binary state, it’s understood as a continuous set of states. 

Additionally when people communicate they don’t convey information in a precise manor they 

tend to use a word or label that can convey that information in a high enough level of detail. A 

prime example of this is how people discuss temperature. If you asked someone if it was warm 

outside, it is unlikely that they would respond with the answer “its 22.6° C outside” it is much 

more likely they would say “it’s nice out” or “it’s ok outside”. Fuzzy Logic takes this idea of 

the imprecisions of human linguistic language and converts it into a mathematical function, 

allowing information to exist in an imprecise non binary fashion, known as a linguistic variable 

[41]. Most commonly the Mamdani methods of Fuzzy Logic implications are used within 

software and they used for the Fuzzy Logic process in this thesis [42]. 

Fuzzy Logic excels at modelling the uncertainty of inputs, with Type-1 and Type-2 modelling 

different levels of uncertainty. Type-1 and Type-2 Fuzzy Logic has been hugely successful 

across a multitude of domains, showing that it can perform well on its own as a control system 

[43] [44] or classifier [45][46]. It can work well in conjunction with other techniques such as 

evolutionary algorithms [47], image processing [48] and neural networks [49].  
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3.1 Type-1 Fuzzy Logic System 

 

Fig 3.1 Type-1 Fuzzy Logic System [50] 

Fig 3.1 shows the outline of a Type-1 Fuzzy Logic Controller (FLC), consisting of four parts; 

fuzzifier, rules, inference and the output processor also commonly known as the defuzzifier 

[50]. The system takes crisp real numbers and passes them to the fuzzifier which uses Fuzzy 

Sets to transform those values into fuzzy values. These values are passed into the inference 

which uses the rules to transform the values into output fuzzy values using output Fuzzy Sets. 

Finally, the output processor transforms them into back into crisp numbers that can be used 

outside of the Fuzzy Logic system. 

3.1.1 Type-1 Membership Functions 

In Fuzzy Logic membership functions are represented as μF(x) and have a linguistic variable 

associated with them which is used to bind the firing strength of a particular membership 

function to its rule, allowing the sets to be interpreted by the rules in the inference stage. 

Membership functions can take any number of geometric shapes the most common being; 

Triangles, Trapezoids, Gaussians, and Singletons. Fig 3.2 shows these shapes.  
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Fig 3.2 (a) Triangle. (b) Trapezoid. (c) Gaussian. (d) Singleton. 

The y axis of a membership function indicates the membership degree and the x axis indicates 

the crisp inputs of a given problem domain. The membership degree is calculated differently 

for each shape. With the singleton being either 0 or 1 as it can only be on the singleton point 

or not on the point as shown in equation 3.1. 

 

The firing strength of the other three shapes are determined by the intersection of the y axis 

given an x axis point. Equation 3.2 shows the calculation for a triangle given that a, b, and c 

are the points of the triangle in order [50].   
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The membership value of a trapezoid is found using equation 3.3 given than a, b, c and d are 

the points of the trapezoid in order [50]. 

 

The membership value of a Gaussian membership function is calculated using equation 3.4. 

 

Input membership functions perform at their best when they overlap, allowing a crisp input to 

exist as part of multiple input classes. The crisp value x is input into a fuzzy system allowing 

the input to be in both the Low and Medium membership functions at the same time to varying 

degrees.  
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Fig 3.3 Example of Type-1 Fuzzy Set for a heating problem.  

Fig 3.3 shows an example input membership function with three input sets Low, Medium and 

High. In this example all three input sets are triangles and the crisp input set of 13 the 

membership values are 0.6 Low and 0.13 Medium.  

3.1.2 Rules and Inference 

Once the input membership functions have determined the membership degree of each of the 

inputs, the fuzzified inputs are passed to inference engine which utilises the rules. The rules 

are used to map inputs to desired outputs working as a mechanism to control the systems 

behaviour in linguistic terminology. Rules are logic IF-THEN statements, with the IF being the 

antecedent and the THEN being the consequent [50]. There are two major types of rule in a 

FLC with AND rules shown in equation 3.5 and OR rules shown in equation 3.6.  
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Where x denotes the input and F denotes the membership function, these two together make 

the antecedent and G is the consequent denoting output membership function.  

TABLE 3.1 Example Rules for a Heating Problem 

 

Table 3.1 shows the rules base for the Heating Problem example. In this example imagine that 

there are two thermostats in two rooms and the system is designed to control the temperature 

in these two rooms. Using the membership values from Fig 3.3 of 0.6 Low and 0.13 Medium 

for thermometer one, and introducing some new values of 0.8 Medium and 0.1 High given an 

input value of 16, which rules are fired can be determined. In this example the rules are AND 

so the rules R1, R2, R5 and R6 fire, giving the consequence for the fuzzy system for 

defuzzification.  

Inference is the process of determining which rules fire and by how much. The amount a rule 

fires is known as fuzzy implication based upon two parts: the membership values of a rules 

antecedent and its t-norm operator [50].  There are lots of t-norm operators and selecting the 

correct one is based upon what the conditional of the IF-THEN rule is. The two most common 
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t-norms for AND logical rules are minimum and product shown in equation 3.7 and 3.8 

respectively.  

 

Continuing the heating example from Fig 3.3 and Table 3.1 using minimum as the t-norm the 

inference value for the rules are shown in Table 3.2. The four rules have their values ready for 

defuzzification and the consequent of each rule is known.  

TABLE 3.2 Inferred rules with their minimum values for the heating example 

 

3.1.3 Defuzzification 

There are several different methods of defuzzification some of which include: centre of sets, 

centroid, height and modified height [50]. For defuzzification to take place the output sets must 

have a set of membership functions much like our input. In the case of our heating problem 

(Fig 3.3, Table 3.1, Table 3.2) there would be three output sets: Low, Medium and High as 

seen in Fig 3.4. Each membership function indicates a temperature that would be preferable for 

the heating system to reach. 
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Fig 3.4 Output Membership Functions for the Heating Example 

Centre of Sets (CoS) defuzzification is the simplest method, by taking the centre sum of all the 

output set c multiplied by their firing strengths f  taken from inference and divided by the sum 

of the firing strengths as shown in equation 3.9 [50]. 

 

Centroid defuzzification is very similar to CoS but instead of using the centre of the set, the 

centre of mass or centroid of the shape is used.  This adds the computational complexity of 

calculating the centroid of each output membership function, but if these functions never 

change this can be pre-calculated before runtime execution.  Equation 3.10 [50] shows the 

centroid defuzzification method, with Com denoting the centre of mass of a given output shape 

and f denoting the firing strength taken form inference.  
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3.2 Interval Type-2 Fuzzy Logic System  

 

Fig 3.5 Type-2 Fuzzy Logic System.[43] 

An Interval Type-2 Fuzzy Logic Controller (IT2FLC) is an extension of a Type-1 FLC. Fig 3.5 

shows the IT2FLC. Notice the new step, type-reducer. This is used to convert a Type-2 fuzzy 

output sets into a Type-1 fuzzy sets in order to defuzzify them into a crisp number. It uses the 

same ideas of fuzzification of uncertain information, rules inference and defuzzification, but 

some of these steps are extended. It has advantages over a Type-1 FLC with its ability to 

represent a larger array of information in an uncertain environment [51].   

3.2.1 Interval Type-2 Membership Functions  

Whilst the IT2FLC is more computationally expensive it has a better capability to model 

uncertainty than its Type-1 counterpart. This increased capability comes from how it models 

fuzzy sets, with Type-2 membership functions using a footprint of uncertainty (FOU) [52] [51]. 

An interval Type-2 set can be seen as a collection of embedded Type-1 sets [53]. The firing 

strength of a Type-2 set is depicted as an interval set with an upper and lower firing strength 

as shown in equation 3.11.   
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 Fig 3.6 shows a Type-2 membership function with its shaded FOU.  In this example “12.5” is 

the crisp input value, the type-2 membership function has membership values bounded by an 

upper membership value 0.5 and a lower membership value 0.16.  

 

Fig 3.6 Interval Type-2 Fuzzy Set. 

3.2.2 Type Reduction and Defuzzification 

Type reduction is the act of converting the information of Type-2 sets into Type-1 sets for 

defuzzification. There are many different techniques of type reduction including: centre of sets, 

centroid, height and modified height. In all of these techniques a type reduced set is represented 

as an interval set as seen in equation 3.12 [50]. 
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Centre of set type reduction is the simplest and computationally the least expensive of all the 

listed techniques and is computed with equation 3.13 [50] where Ycos is an interval set 

determined by its two points as seen in equation 3.12.  

 

The centroids of the interval Type-2 outputs set must computed prior calculating Ycos, through 

the use of the interval consequence equation shown in equation 3.14 [50].  

 

The type reduced set can now be defuzzified as seen in equation 3.15. As the type reduced set 

is an interval set it can be defuzzified by taking the average of the two interval values. 
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Chapter 4. Overview of Simulated Annealing & Single and 

Multi-Objective Genetic Algorithms  

Optimisation is a vast and varied field of computational intelligence and many different types 

of techniques exist. Evolutionary Algorithms is one such type of technique whereby one or 

more solutions are progressively improved to produce a better solution, some examples 

include; Genetic Algorithms[54], Big Bang Big Crunch [55] and Simulated Annealing [56]. 

Another type of optimisation algorithm is swarm intelligence optimisers, in which a group of 

agents work together to move towards a common goal, some examples include; Ant Colony 

Optimisation [57] and Particle Swarm Optimisation [58]. Routing algorithms such as Dijkstra’s 

Algorithm [25] and A-Star [28] can be seen as types of optimisation algorithm as they must 

find the optimal path through a graph.  

One of the simplest optimisation algorithms is the hill climbing algorithm which performs an 

iterative search in a local area. Starting with a random solution within the search space it 

evaluates that solution giving it a score. From the initial solution it proposes minor changes 

only accepting them if they produce an improvement to the solution, rejecting changes that 

would reduce the score of a solution.  
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Fig 4.1 Hill climbing score example indicting the local and global minima problem 

 Fig 4.1 shows an example of how the hill climbing algorithm’s score would increase over time, 

whilst also showing the biggest drawback of this technique. Between iterations 0 and 15 there 

is a continuous improvement of the score, but at iteration 16 the score decreases, so the hill 

climbing algorithm would stop at iteration 15 indicating that it was the best possible solution. 

By looking at Fig 4.1 it is clear that this isn’t the case, the best score and thus solution is to be 

found at iteration 25. In this example iteration 15 is the local minima or the best solution that 

the optimisation algorithm can find, whereas iteration 25 is the global optima or the best 

solution possible for the given problem. The hill climbing algorithm has this drawback due to 

the fact it is solely exploitative and not explorative (see Section 2.1) in its search, only accepting 

solutions that improve its score.   
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4.1 Single Objective Optimisation 

In optimisation an object is used to guide the search towards the desirable outcome. An 

objective can come in many different forms but mostly appear as minimisation or 

maximisation. A minimisation objective could be something such as minimising costs, power 

usage or wastage. A maximisation objective could be something such as maximising output, 

tensile strength or signal reception.  

4.1.1 Simulated Annealing 

Simulated Annealing was designed by S. Kirkpatrick in the 1980s [56]. It is based upon the 

idea of annealing which is the method of forging metals such as iron in smithing. Taking the 

idea of annealing and applying it as a statistical model, with its influences taken from the 

Metropolis Algorithm [59]. The basic idea of annealing is to introduce energy or heat into a 

material allowing it to be more easily manipulated, but as material cools overtime it can become 

increasingly more difficult to make changes. Larger changes are easy to make early on in the 

process whilst the material is in a high energy state and only smaller changes are possible as 

the material cools, eventually it would be impossible to make large changes to the material 

without comprising it integrity [60]. 
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Fig 4.2 Flowchart of simulated annealing  

 Fig 4.2 shows a flowchart for simulated annealing. It begins by creating an initial random state 

for the solution and setting an initial temperature for the system. A solution S is represented by 

a set of decision variables, or in other words a set of variables that can be manipulated to affect 

the objective function. Fig 4.3 shows how a solution could be represented visually with the 

letters A-H representing decision variables.  

 

Fig 4.3 Simulated annealing solution made up of decision variable.  

The flowchart in Fig 4.2 then moves onto the main loop in which there are three stages, 

temperature reduction, propose random change and determine acceptance. The temperature 

within simulated annealing is used to govern how likely a proposed change is to be accepted. 
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By reducing temperature it becomes less likely that undesirable changes will be accepted, 

pushing the algorithm from an explorative state to an exploitative state. After temperature 

reduction a random change is made to the solution and stored as a copy ST preserving the 

original.  The copy ST is then evaluated for acceptance and if it passes the evaluation ST 

becomes S replacing the solution S. If it fails the evaluation ST is discarded and the next 

iteration of the loop continues. The acceptance criteria of the evaluation uses the Boltzmann 

probability factor [61], incorporating temperature and the fitness score of ST. Fitness score is 

a measure of how effectively a given solution fulfils the objective of the optimisation.  

4.1.2 Genetic Algorithms 

Genetic Algorithms (GA) [54]  draw inspiration from nature using the core ideas of evolution 

and survival of the fittest to produce optimised solutions. In nature animals mostly reproduce 

in pairs producing a number of offspring with genetic material from each parent. Sometimes 

mutations occur within that mating process and one more of the offspring has some new genetic 

material that is not present in either parent. In some cases this new genetic material can provide 

an advantage over other member of the same species, asserting dominance in the gene pool, 

this is known as survival of the fittest where only the best members of a population thrive. 

Once the offspring are older they too will produce offspring introducing a new generation into 

the world continuing the cycle of evolution and survival of the fittest. GA’s have been 

successful in a multitude of different applications from Antenna Design [12], Access Point 

Design [62], and Fuzzy Logic Controller Design [63] . Fig 4.4 shows a flowchart indicting the 

different stages of a GA, over the following subsections each part of this flowchart will be 

explained in detail.  
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Fig 4.4 Flowchart of a Genetic Algorithm 

4.1.2.1 Population  

A potential solution to a problem is represented as a member of the population [54]. Each 

member of the population is represented as a chromosome comprised of a set of genes. Fig 4.5 

shows a visualisation of three different chromosomes each containing 8 genes and different 

encoding styles.  

 

Fig 4.5 Chromosome and gene representation with different gene encoding  

(a) Problem Specific. (b) Binary. (c) Real Value. 
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Each gene represents a single decisions variable, with decisions variables being the mutable 

information that effects evaluation. The number of genes in a GA is problem dependant as each 

problem would have a differing number of decision variables. In nature groups of the same 

species make a gene pool, allowing for genetic diversity and a competition for the best mate to 

exist. These ideas have been takes for a GA so multiple chromosomes exist in a gene pool 

allowing for genetic diversity and competition for the best mate.  

In order for the cycle of evolution to exist and progress within a GA there must be an initial 

population to mate and evolve. The initial population is built in the population function prior 

to the looping mechanism. Due to the chromosome being problem dependant so is the creation 

of the initial population, but there are two overarching strategies to the creation of an initial 

population. Firstly they could be built randomly by just putting genes together in any order. 

Secondly it could be built by an expert in the domain knowledge as a good starting point for 

optimisation. In some cases it can be best to combine these two strategies together and produce 

a random assortment of chromosome based upon an expert designed chromosome.  

4.1.2.2 Evaluation & Selection 

For optimisation to exist there must be an overarching goal guiding the search space known as 

the objective. Each chromosome in the population is rated against this evaluation function for 

fitness with fitness representing how well a member of the population fulfils the objectives. 

With each member of the population given a fitness score they can now be put into an order or 

ranking, making it easy to determine how each member of the population compares to one and 

other.  

Selection is the process of determining which members of the population will be picked to 

create offspring and thus increase the members of the gene pool. There are two popular styles 

of selection known as roulette wheel and tournament selection [64]. In roulette wheel two 
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members of the population are picked randomly for crossover, with no member being picked 

more than once. In tournament selection the population is split into two groups randomly and 

then sorted based upon their evaluated fitness score, then in order one member of each group 

is selected for crossover until all population members have a partner for crossover.  

4.1.2.3 Crossover & Mutation 

In nature two members of a species must mate in order to produce offspring and increase the 

size of the population. In a GA this process is known as crossover as information from each 

parent is taken and crossed together to produce a number of offspring. There are many different 

methods of crossover including single point crossover, multi-point crossover and uniform 

binary crossover [65].  In single point crossover the chromosomes are split at one point and 

half of each parent is passed onto the offspring chromosomes. This is shown in Fig 4.6 where 

two children are produced from two parents. In the example the split point is in the middle 

splitting the genes in the chromosome equally, but the split point could be anywhere in the 

chromosome.  

 

Fig 4.6 Visualisation of single point crossover 



49 

 

Multi point crossover is similar to single point crossover but this time there is more than one 

split point allowing for different sections of the chromosomes to be used. An advantage of 

using this is that if a specific set of genes must be kept together they can be. Fig 4.7 shows a 

visualisation of how multi split crossover can occur with two split points.  

 

Fig 4.7 Visualisation of a multi-point crossover 

The third crossover technique is the uniform binary crossover which can only be used for 

chromosomes that are represented by binary. In this technique each child is a copy of one of 

the parents then the crossover mark filter is applied to each child. The crossover mark filter 

also known as the crossover mark indicates which bit is to be flipped. The crossover mark is 

randomly generated every time crossover is initiated.  Fig 4.8 shows a visualisation of this 

technique with the “0” bit indicating that the bit is not flipped and the “1” bit indicating the 

crossover bit is to be flipped.  
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Fig 4.8 Visualisation of binary uniform crossover 

Sometimes in nature during reproduction the offspring will have minor changes in their genetic 

material that where not inherited from either parent this is known as mutation. This idea has 

been applied to GAs allowing the offspring to have new unseen genes, known as mutation [66]. 

After any of these crossover techniques there is a random chance that the mutation operator 

will activate, this is a tuneable value for a GA, with more frequent changes pushing the 

algorithm to be more explorative, whereas less frequent changes make the algorithm more 

exploitative. Once these offspring have been created and had the chance for mutation they are 

added to the general population in preparation for the next generation.  

4.1.2.4 Population Reduction and Generations 

In nature animals can die in any number of ways controlling the size of the population. In a GA 

the members of the population cannot die so they must be removed. At the end of every 

generation the population is evaluated and ranked based upon their fitness scores, then the 

population is reduced to a predetermined size with the worst performing members being 

removed first, this includes the newly created members of the population from crossover [67]. 

A GA takes place over a number of generations, halting when a predefined number of 
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generations have passed. At which point the best performing member of the population is 

returned as the solution and the algorithm finishes.  

A GA exploits the solution space through the combined mechanism of population reduction 

and to a lesser extent selection if tournament selection is used. It explores the solution space 

through the use of the mutation operator introducing new genes randomly to see if they have 

an advantageous effect. It can use the roulette wheel selection method to help with this 

exploration process by allowing any two members to crossover. The tuneable parameters of a 

GA include: the number of generations, the number of population members and the likelihood 

of mutation.  

4.2 Multi Objective Optimisation 

Multi objective optimisation is much like single objective optimisation but as the name 

suggests there is more than one objective. For comparison; in single objective optimisation 

there could be an objective to maximise the output of an assembly line, but in this example it 

would never take into account the cost of doing so, effectively saying there is infinite money 

to solve this issue. This is where multi objective optimisation steps in, looking at the same 

example there are now two objectives, maximise the output of an assembly line and minimize 

costs. This case is much more sensible as the desired objective exists whilst ensuing the costs 

don’t get out of hand. There are several successful multi objective optimisation algorithms 

including; cARMOEA[68], AnD [69], CMMO [70], NSGA-II [71] and NSGA-III [72].  

4.2.1 Dominance & Pareto Front 

Ranking and evaluation in optimisation is core to determining the worth of a potential solution 

to a problem. When there is more than one objective evaluation in the traditional sense 

(comparing the scores of solutions) is no longer possible. This is where domination [73] is used 

to compare solutions and determine an order for those solutions. Domination is achieved 
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through the use of 2 rules [73][74]. Given there are two solutions A and B that both have more 

than one objective. A is dominant over B if all of A’s objectives are no worse performing than 

B’s objectives and at least one of A’s objectives is better performing than one of B’s objectives, 

otherwise A is not dominant over B.  

In a population-based optimisation algorithm, dominance rules will sort the population into 

groups of equally evaluated solutions but those groups will be ranked into order.  Each group 

represents a front of solutions Fig 4.9 shows an example of these fronts, with every solution on 

front 1 better than every solution on front 2, and so on.  

 

Fig 4.9 Example of fronts in domination 

In multi objective optimisation there is this concept of Pareto optimality [75] [76]. A Pareto 

optimal solutions are a set of solutions that cannot be improved upon without compromising 

one of the objectives.  So a Pareto front represents the best possible front that could be found 

for a problem. In most but not all cases of multi objective optimisation the objectives are 

conflicting, producing more than one solution in each front, but if the objectives are 

complimentary then there will be only one solution in each set.   
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4.2.3 NSGA-II 

Non-Dominant Sorting Genetic Algorithm II (NSGA-II) [77] is a well-used optimisation 

algorithm across a wide array of domains including: workforce optimisation [78], strategic 

network design [79] and furnace scheduling on rolling production [80]. As an extension of the 

single objective GA it uses very similar functionality of selection, crossover, mutation and 

population control. The biggest differences occur during sorting for selection and population 

reduction being sorted in a two stages, first with the domination rules (Section 4.2.1) and 

second with the crowding distance metric being applied to each front. Crowding distance 

functions as a density metric calculating how closely grouped members of a front are together. 

Crowding distance is measured by taking the Euclidean distance between two members of the 

population. Equation 4.1 indicates how to calculate Euclidian distance, where p1 and q1 are 

objective values from one solution and p2 and q2 are objective values from a second solution. 

 

Tournament selection is used as part of NSGA-II with the population being randomly split into 

two groups of equal size and sorted for crossover, with the members of each group mating in 

descending order until the worst performing solution from each group have performed 

crossover.  During population reduction the worst performing members of the population are 

removed. Fig 4.10 depicts the sorting and reduction process, showing the old population and 

the new population for the next generation.  
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Fig 4.10 NSGA-II population reduction sorting 

4.2.4 NSGA-III 

Non-Dominant Sorting Genetic Algorithm-III (NSGA-III) [72] is an iteration of NSGA-II 

again following the same GA ideas of selection, crossover, mutation and reduction. Once again 

using the domination rules (Section 4.2.1) for sorting, but the crowding distance metric has 

been done away with and replaced with the Niche-Preservation operator to sort the contents of 

each front. The Niche-Preservation operator has three stages: Normalise, Associate and Niche-

Preservation. To normalise the maximum and minimum values each of the objective function 

must be known, the minimum value is simply the smallest value possible for each objective 

and can be pre-cached prior to exertion. The maximum value of each objective is more 

computationally expensive as it must be calculated dynamically during execution every 

generation. Equation 4.2 shows the normalisation equation, with the min and max values 

calculated as described above and fOi being the specific objective value that is being 

normalised.  
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Every solution now has a set N-dimensional normalised coordinate associated with it where N 

represents the number of objectives. The next stage is to associate these coordinates with a 

point on a pre-calculated reference plane. The reference plane can either be created using a 

systematic approach or designed by the programmer. In the NSGA-III paper, it is suggested 

that the Das and Dennis’s [81] systemic approach can be used to apply the points onto the 

plane. Fig 4.11 shows a 3-dimensional normalised reference plane. The reference points are 

equidistantly spaced across it, with the points f1(0,0,1), f2(1,0,0) and f3(1,0,0) at the corners of 

the normalised plane.  

 

Fig 4.11 Visualisation of a 3-dimensional reference plan [72]  

The association operator works slightly differently from this point onwards for selection and 

population reduction, the following explanation is for population reduction. The association 

operator places N-dimensional points on the reference plane in two stages, firstly in batches 

and then individually. The batches are placed from each of the fronts in descending order, with 

the first front placed first then the second front next and so on, until the placement of an 

additional front would infringe upon the maximum population limit. At which point they are 
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placed individually based upon a set of criteria as part of the Niche-Preservation operation. Fig 

4.12 shows a visualization of the placement of front members and how they are broken down 

into the batch placement and the individual placement.  

 

Fig 4.12 Visualization of which members of the population are placed on the reference plane 

Once the members of the batch placement are on the reference plane they each need to be 

associated with one of the reference points. A point is associated to the closet reference point, 

when the distance calculated between is the perpendicular distance between a point and the 

reference line.  The reference line is defined as a line from the origin passing through a 

reference point. Fig 4.13 shows a visualisation of a set of points and how they are associated 

with reference lines.  
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Fig 4.13 A visualisation of points and the distances to the associated reference lines and 

therefore associated reference points  

The remaining points due to be placed individually are placed with the Niche-Preservation 

operation. There are two reference planes for this operation and first is the reference plane with 

all the points added in the batches, and second a new plane that shall be referred to as the niche 

plane in order to avoid confusion between the two. This new plane has the same reference 

points as the reference plane with all of the point from the next front (shown as the second front 

in Fig 4.12) associated to those reference points.  

Niche-Preservation happens in an iterative loop until the number of points on the reference 

plane is equal to the max population size, as each point represents a member of the population 

after all. Prior to this loop a set of all the reference points is collected called S. First a reference 

point in set S is identified with the minimum number of associated points on the reference 

plane, we shall call this the Sp. If there is more than one point that fulfils the requirements to 

become Sp, then one is picked at random.  If Sp has points associated with it on the niche plane, 
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then the one with the smallest distance to Sp reference line is selected. Once a point is selected 

it is removed from the niche plane, and added to the reference plane. If there are no points 

associated with Sp on the niche plane, then Sp is removed from the set S and the next iteration 

of the loop begins if appropriate.  

As said earlier this operation is different for selection, as all members of the population can be 

added in the batch stage. Members of the population are sorted for selection at two levels, first 

they are sorted by their fronts, and then by their perpendicular distances to the reference points. 

NSGA-III is seen to be an improvement to NSGA-II at the cost of computational complexity 

[72].  

4.3 Constraint Handling  

As the complexity of problems increase they begin to incorporate constraints along with 

objectives, which is known to be too difficult for Evolutionary Algorithms to handle  [82]. A 

constraint is a rule that works alongside the objectives in order to achieve the desired result of 

optimisation. During optimisation, solutions that break the constraints are allowed to exist as 

an explorative step during the search. Any solutions that break one or more of the constraints 

are known as infeasible solutions, whereas a solution that doesn’t break any constraints is 

known as a feasible solution. Two solutions can break a different number of constraints making 

them both infeasible but to different degrees, therefore there are degrees of infeasibility. There 

are two major types of constraints: a single constraint commonly named simple constraint and 

a bound constraint. A single constraint such as the sum of two numbers cannot be greater than 

a set value, and a bound constraint where a number must fall within a range.  The search space 

can be divided up into a number of regions based upon how they are broken down. Constrained 

problems can be broken down into four types each having a different search space. [83]:  

Type I: The constrained Pareto front is the same as the bound-constrained Pareto front.  
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Type II:  The constrained Pareto front is a subset of the bound-constrained Pareto set. 

Type III: Some portions of the constrained Pareto front are the same as the bound constrained 

Pareto front.  

Type IV: The intersection of both Pareto sets is null and they have no common region.  

Knowing how these types of problems exist allow a mapping of the search space to exists prior 

to optimisation in order to see if a feasible solution is possible from the space. Each problem 

type has different mapped area in the search space.  

In order to optimise with constraints, Constraint Handling Techniques (CHT) need to be 

incorporated into a given optimisation algorithm. Three popular CHT include: the constrained 

dominance principle [71] [84], self-adaptive penalty function [85]  and stochastic ranking [86]. 

NSGA-II and NSGA-III use the dominance principle as their CHT which extends the idea of 

the dominance rules to include constraint dominance. This extension to the rules happens prior 

to the dominance rules. Given there are two solutions and both have a set of objective scores 

and a set of constraints violation values, the rules can be used to split the population into fronts.  

Solution A constraint dominates solution B if A is feasible and B is infeasible. Solution A 

constraint dominates solution B if both solution A and B are both infeasible but A has a lower 

constricts violation count than B. If Solution A and Solution B are both feasible then the normal 

domination rules apply (Section 4.2.1).  

4.4 Hyper Volume Indicator 

As multi-objective optimisation algorithms have become more complex and better at solving 

multi-objective problems, it has become harder to determine the quality of an algorithm. This 

difficulty comes from the fact that by their nature multi objective problems rarely get a single 

solution as the result. As sets of solutions from the same front are returned from an algorithm, 
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this makes it very difficult to determine if one front is better than another if they don’t dominate 

one another.  

The Hyper-Volume Indicator (HVI) [87] [88] has come to the forefront as a methodology of 

evaluating the quality of a solution fronts.  The HVI is an extension of the Lebesgue measure 

[89] invented by Henri Lebesgue. The Lebesgue measure is a standard way of measuring the 

subset of an N-dimensional Euclidian Space.  

A solution front exists within an N-dimensional space where N represents the number of 

objectives. The HVI is used to determine an approximation of the area explored by an algorithm 

and the density of solution across the solution front. A larger value indicates the area has been 

well explored across with solutions on the extreme edge of the possible solution front, it also 

indicates that members of the population are well spaced across the solution front. A smaller 

value shows that the problem space has not been well searched and that solutions on the 

solution front are densely grouped together. 
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Chapter 5. NNIR: N-Non-Intersecting-Routing Algorithm 

for Multi-Path Resilient Routing in Telecommunications 

Applications. 

Large telecoms companies nowadays have a global presence with locations across continents 

and it is important that these locations stay connected at all times. These connections are 

maintained through the utilisation of networking infrastructure as described in Section 2.3. 

Locations across Europe are connected through the use of metro nodes, ducts and data 

exchanges as described in Section 2.3.1. With locations connected together it is important that 

data packets can be transferred across a network as efficiently and quickly as possible. This 

efficiency can be assured by the use of a routing algorithm such as Dijkstra’s algorithm or the 

A-Star algorithm, as described in Section 2.4.1 and Section 2.4.2 respectively. These 

algorithms work perfectly but only when the networks infrastructure is operating as intended, 

but there are many reasons why a network ceases to work as intended. This could be something 

as simple as a power failure in the network, or it could be due to an increase in network activity 

slowing the network to a crawl, alternately it could be something more malicious such as 

network attack.  

Traditional routing algorithms are particularly vulnerable to single points of failure (SPoF) [31] 

[90]. When a portion of a network graph fails, be it an edge or a vertex, and that portion is 

being used by a route the route is no longer valid. Traditional routing methods are not capable 

of being prepared to deal with these problems instantaneously, they would require the 

recalculation of thousands of routes. This is where resilient routing as described in Section 

2.4.3 becomes useful. With the primary route being unusable, having a secondary pre-

calculated route that uses none of the same infrastructure apart from the start and finish 

locations, allows the network to instantaneously switch over to this back up route with minimal 

loss of service.  
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In resilient routing it is important to know that the cost of the N routes is the total cost of the 

solution. This is due to the objective of resilient routing is to provide N routes between two 

locations as the lowest total cost without the routes ever sharing infrastructure apart from the 

start and finish locations.  

In this chapter the N-Non-Intersecting-Routing-Algorithm (NNIR) will be introduced with a 

detailed description of its methodology, experiments and results which was originally 

presented in a journal paper in International Journal of Computational Intelligence Systems 

published in 2020 [33].  

5.1 The NNIR Algorithm 

Fig 5.1 shows an overview of the proposed N-Non-Intersecting-Routing-Algorithm (NNIR) 

which consists of two major parts, Dijkstra’s algorithm, and a Genetic Algorithm (GA). The 

GA runs for a number of generations returning the best ranked member of the population.  For 

simplicity all descriptions in this chapter will be under the assumption that only two routes are 

required, but the algorithm can easily be scaled up to use more routes.  
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Fig 5.1 An overview of the N-Non-Intersecting-Routing Algorithm (NNIR) 

The algorithm begins by calculating a route between the start and finish locations using 

Dijkstra’s algorithm to calculate a primary route. If a route can’t be found the algorithm 

terminates. If a route can be found it removes all vertices and edges in the primary route from 

the graph with exception to the start and finish locations as these locations are required for the 

calculation of the secondary route. It then moves on to calculate another route using Dijkstra’s 
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algorithm to produce the secondary route. A primary and secondary route cannot always be 

found this way, but if they are found this way these two routes are the worst-case solution.  

5.1.1 Solution Representation and Population Initialisation 

The routes found by Dijkstra’s algorithm are passed into the Genetic Algorithm (GA) to be 

used as part of the initial population. Each member of the population is comprised of one or 

more chromosomes. The number of chromosomes is based upon the number of desired routes, 

with N-1 chromosomes if N is the number of desired routes.  Each chromosome is comprised 

of a set of genes with each gene representing a location in the network, known as vertex in 

graph theory. Fig 5.2 shows an example of how a chromosome is represented in NNIR with 

the start and finish locations.  

 

Fig 5.2 Example Chromosome in NNIR with the start and finish locations labelled 

The start and finish locations are bound to the first and last position in the chromosome, they 

can never occupy another location in the chromosome without making it invalid. The order of 

the genes in the chromosome denotes the route taken to get between two locations. In Fig 5.2 

the route is shown as A, B, C, D, E, F, G. Due to the nature of routing and that not all routes 

are of the same length, a chromosomes length is variable and can be changed as required. A 

solution is represented by N-1 chromosomes and one final route that is always calculated with 

Dijkstra’s algorithm.  
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In a GA it is important to start with a high enough genetic diversity in order to explore the 

problem space effectively whilst ensuring that all solutions are still valid. To that end the 

population initialisation process uses the primary and secondary routes from Dijkstra’s 

algorithm as part of the initial population. The rest of the initial population is calculated in an 

iterative process by randomly removing a small portion of the vertices in the graph and using 

Dijkstra’s to calculate N routes between the starts and finish locations with N-1 of them 

becoming chromosomes as part of one solution, and the final route being stored. Fig 5.3 shows 

the iterative process used to create the initial population.  

 

Fig 5.3 Flow chart for the population initialisation process in the GA of NNIR 

There are three conditions used during vertices removal that guide the randomness. First the 

start and finish locations cannot be removed as this would not allow Dijkstra’s algorithm to 

produce a route. Second at least 10% of the network must be removed so enough of the network 

is missing every iteration to allow for differences in the initial population. Finally, at least 10% 

of the shortest path must be removed so that the Dijkstra’s Algorithm doesn’t create a set of 

chromosomes with the same shortest path.  There is one final constraint to be considered when 
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producing the initial population; no duplicate solutions are allowed to be added to the 

population. Using these rules will help guide the GA into having a diverse initial population to 

search the problem space.  

5.1.2 Evaluation and Selection 

A GA requires an evaluation function to fulfil the objectives of the optimisation. The objective 

of resilient routing is to produce a set of routes between start and finish locations with the 

lowest total cost that doesn’t intersect at any point, ensuring there is no SPoF. The evaluation 

function uses the edge costs to calculate the fastness of each population member. The equations 

5.1 and 5.2 denote how this cost is calculated. The total cost of a solution is comprised of two 

parts: the cumulative cost (CC) (the cost of all vertices of the routes represented by a solution) 

and the route discount (RD). RD is calculated in equation 5.1 where RD is equal to the desired 

number of routes (N) minus the number of solution routes (SR).  

 

The total cost as shown in equation 5.2 is represented as a fraction so that all fitness values are 

represented as an interval value [0, 1], 1 over CC to power of RD.  The denominator of equation 

5.2 is the CC to the power of RD so that route discount can make solutions that do not reach 

the desired number of routes score exponentially worse by the number of routes that they are 

missing.  As routing in most cases is looking to minimise the costs, NNIR treats fitness function 

as a maximisation function, in any cases where the cost is to be maximised so the fitness 

function should be minimised.  

The GA in NNIR uses the tournament selection process [64] to pick which members of the 

population are chosen to be crossed over. The population is randomly split into two equal sets 
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and then crossover is performed on the best of each set produce new members of the population. 

Once the best members have been crossed over the next best members do the same to produce 

new population members, this continues iteratively until all solutions have been used to create 

offspring. This strategy helps the idea of survival of the fittest propagate through the population 

over the course of several generation.   

5.1.3 Offspring Creation  

In a traditional GA, new members of the population are added through the combined use of the 

crossover and mutation operators. In NNIR this is still the case with the addition of the repair 

operator, which ensures the validity of offspring prior to them being added to the population. 

The crossover operator is key to exploiting the best information within the chromosomes, to 

this end single point crossover is used within NNIR. The single point is randomly selected in 

each parent solution independently. An example of crossover is shown in Fig 5.4. The example 

shows the range that the parents can have the split point, parent one has a range between E-G 

and parent two has a range between B-F. Parent one’s split point is picked between K-T and 

parent two’s is between D-E. Then the offspring are created in the standard split point way, 

with half of each parent used to make up each offspring.  
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Fig 5.4 Crossover example in NNIR with the randomly split point and dynamically sized 

chromosomes 

Crossover is great at exploiting the current search space when combined with the tournament 

selection but it has a limited ability to explore new solutions. This is why there is a need for 

the mutation operator to create minor changes within the chromosome to introduce new 

information into the search space. Mutation occurs by random chance so that not all members 

of the population are mutated, otherwise crossover would not be able to exploit for potentially 

beneficial solutions. A gene (vertex) from a newly created child is selected at random, the first 

and last genes are excluded from this random selection. The gene selected is then removed 
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from the chromosome and replaced with a different vertex (every vertex is represented by a 

gene). The vertices that can be selected as a replacement follow one simple rule. The new 

vertex to be inserted into the chromosome must be a different vertex connected to the previous 

vertex. If there are no such vertices to connect then put the originally connected vertex back 

into the chromosome and try a different vertex randomly excluding any vertices that have 

previously been selected for mutation. If none of the genes (vertices) can fulfil this rule then 

mutation is not possible and the operator exits without performing mutation.  

The repair operator is an integral part of NNIR, without it search times are much larger. The 

repair operator is used to reduce the incorrect number of solutions generated by crossover & 

mutation. There are two sub operations used to repair a chromosome namely loop removal and 

reconnection.  

Loop removal is a simple but effective way of reducing invalid chromosomes. Fig 5.5 shows 

loop removal, if a loop is detected by a vertex being visited more than once, every element of 

the loop is removed. One of the constraints of resilient routing problem is that no edge of vertex 

can be visited more than once. Due to the nature of the crossover and mutation operators it is 

common for loops or cycles to occur in the graph.  
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Fig 5.5 Visualisation of loop removal 

Reconnection is the more computationally expensive of the two repair methods, but it repairs 

chromosomes far more effectively. The method iterates through a chromosome to find if any 

genes are not connected to the next. If two genes are found to not be connected then Dijkstra’s 

algorithm is used to find a route between them in an attempt to reconnect them. These new 

genes are then inserted into the chromosome in between the disconnect genes. The key 

constraints of the problem still apply and if a chromosome uses the same edge or vertex more 

than once loop removal is run again. 

Due to nature of the information being represented by the chromosomes they are extremely 

fragile and prone to inaccurate solutions. The repair operator is an effective tool to combat 

these issues and help the GA to perform a search of the problem space.  

Once the crossover, mutation and repair have taken place for all the chromosomes in a single 

solution the final route is calculated with Dijkstra’s algorithm. This is an easy way to find the 

last route in a solution which is guaranteed to be the shortest route left available without 

breaking any of the problem constraints.   
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5.2 Experiments & Results  

In order to prove the validity of NNIR a set of experiments across two data sets has taken place. 

Firstly, as a baseline comparison between NNIR and traditional routing methods, this is so that 

any possible improvements that NNIR has over traditional routing methods can be established. 

Secondly, in order to establish a comparison between the GA present in NNIR with another 

Evolutionary Algorithm.   

During the experiments there are two metrics to take note of: first is a total cumulative cost in 

other words the fitness function, second is the existence of a resilient route where one was not 

present prior. This second metric is more important that the first, as the idea of resilient routing 

is to provide multiple non intersecting routes between two locations.  

The comparison to traditional routing methods is between NNIR, Dijkstra’s Algorithm and the 

A-Star Algorithm.  The comparison of Evolutionary Algorithms is between NNIR with its GA, 

and NNIR with Simulated Annealing. Dijkstra’s Algorithm and the A-Star Algorithms have 

been selected due to their success in a wide array of route applications [2], [91]. Simulated 

Annealing has been selected for comparison as it’s a very successful optimisation algorithm 

[60] and has shown success in the Traveling Salesman problem [24] which is a different routing 

problem. For this problem to ensure a fair comparison Simulated Annealing has been given 

access to the repair operator in an attempt to make more solutions presented by Simulated 

Annealing valid. Simulated Annealing also uses the mutation operator from the NNIR GA to 

make changes to its solution. Just as within NNIR the final route is found through the use of 

Dijkstra’s algorithm.  

All the experiments presented are for a two route scenario (where N = 2) which shall be referred 

to as the primary and secondary routes. The experiments undertaken are across two data sets: 

a Telecoms Data set, provided by British Telecom. The other data set is an open source data 
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set taken from the Ordinate Survey of the road network for the town of Exeter, UK [92]. The 

road data is openly available for use whereas the BT data is confidential data.  The telecoms 

data set is the origin of the resilient routing problem and initially illuminated the need for this 

type of algorithm. Whereas the Ordinate Survey Road data set has been selected for two 

reasons: first to show the algorithm can be applied to a differing domain and secondly to allow 

anyone to reproduce the experiments presented.  

During an execution of one experiment start and finish locations are selected at random, with 

no start and finish location picked more than once in order to stop experiment duplication. The 

Telecoms data set has 250 discrete routing scenarios and the Road data set has 500 discrete 

routing scenarios. The results of the experiments are presented in three areas: blocking where 

Dijkstra’s algorithm cannot find the resilient route, sub-optimal where Dijkstra’s algorithm 

finds both the primary route and the resilient route but the total cost is not the lowest possible, 

and finally the combined results which shows the other two scenarios in one result.  

5.2.1 The Blocking Results 

In Section 2.4.3.2 an explanation of resilience blocking is given, where we describe that 

resilience blocking exists when the shortest path uses key vertices that would allow for multiple 

paths to exist between two locations. It is not always possible to find a secondary route between 

two locations as there may be only one route to a location.  

In Table 5.1, we can see that NNIR gives the largest number solutions in both data sets with 

70% in the Telecoms data set and 36.8% in the Road data set. Simulated Annealing is the next 

best performing with 64% in the Telecoms data set and 24.2 % in the Road data set. Finally 

Dijkstra’s algorithm and the A-Star algorithm have the same results with 50% in the Telecoms 

data set and 24.2% in the Road data set. Curiously Simulated Annealing, Dijkstra’s Algorithm 

and A-Star all found the same quantity of resilient routes in the Road data set.  
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TABLE 5.1 The number of solutions where the given algorithm finds a resilient route across 

both data sets 

 

Due to the nature of the roads in the UK and particularly in urban areas such as Exeter, the road 

data set has many dead ends (a road that has the same entrance and exit), which explains why 

the number of resilient routes is much lower. This nature also explains why all algorithms 

perform much worse on the road data set than the telecoms data set.  

In order to achieve resilience in cases that have been blocked NNIR increases the cost of the 

primary route, thus freeing up critical infrastructure and allowing it to be used for the resilient 

route.  Fig 5.6 shows the percentage increase in the primary route cost to allow a resilient route 

to exist when using the NNIR algorithm. Both the Telecoms and the Road data sets are 

represented in the graph with the Telecoms being the left most of each range represented in 

blue, the Road data is the right most of each range represented in orange.  The majority of the 

Road data set cases are within 0-1% increase range, therefore by increasing the primary route 

cost by a very small margin a resilient route can be found.  The Telecommunications data set 

on the other hand is much more spread across the possible ranges, but notable in 7 cases a 2-

3% increase and in 6 cases a 10-11% increase allows for a resilient route to be found.  
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Fig 5.6 Distribution of primary route cost increase as part of the blocking example 

5.2.2 Cost Reduction Results 

The cost reduction scenario is described in Section 2.4.3.1, where we describe that the total 

cost of all routes determines optimality not just the cost of a single route. For this reason we 

say that traditional routing algorithms do not find the optimally shortest routes when combined 

together, but by increasing the cost of the primary route it allows for a resilient route to take a 

more optimal path, reducing the total cost of both routes combined. The following experiment 

compares NNIR, Simulated Annealing and A-Star to a baseline result from Dijkstra’s 

algorithm. 

In Table 5.2 the number of cases where the total cost of the two routes is less than Dijkstra’s 

algorithm. NNIR has the best reduction in both data sets with an 18% reduction in the Telecoms 

data set and 17.8% reduction in the Road data set. The A-Star Algorithm doesn’t present an 

improvement in either of the data sets. This is due to the similarities between Dijkstra’s 

Algorithm and the A-Star Algorithm with them both being inherently greedy in their search 
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strategy. Simulated Annealing does not perform well in either of the data sets with no 

improvement in the Telecoms data set and a small improvement of 0.6% in the Road data set.  

TABLE 5.2 Percentage of cases with a reduction in the total cost when compared to 

Dijkstra’s Algorithm in the cost reduction example 

 

Just like in the blocking scenario in order to produce a more optimal result the cost of the 

primary route must be increased, that increase is shown in Fig 5.7. Fig 5.7 shows the increase 

in the primary route cost found by NNIR when compared to the baseline primary route cost 

found by Dijkstra’s algorithm. The majority of the Road data increases the cost of the primary 

route are between 0-1% and it’s mostly clustered to the lower end of the scale. Whereas the 

Telecoms data is spread across the scale with one case having an increase of between 80-81%. 

In all of these cases the total cost of both routes combined is now lower than the routes found 

by Dijkstra’s algorithm.  
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Fig 5.7 Distribution of Primary Route Cost Increase as part of the solution to the cost 

reduction scenario 

Fig 5.8 shows the distribution of the decrease in the total cost of both routes combined found 

by NNIR when compared to Dijkstra’s algorithm. The majority case in the Telecoms data sets 

have a small reduction of between 0-1% with two cases having a reduction between 24-25%. 

On the Road data set the reduction is spread more across the range of reductions with some 

being smaller and one being 20-21%. 
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Fig 5.8. Distribution of Cases with a Reduction in Total Cost NNIR VS Dijkstra’s Algorithm 

for the cost reduction scenario 

5.2.3 Combined Results 

Section 5.2.1 & Section 5.2.2 gave a more granular breakdown of the results whereas this 

section aims to give a boarder representation of the results. Table 5.3 demonstrates the 

combined results to that end, using both the blocking and cost reduction results to show the 

improvement presented by NNIR over Dijkstra’s algorithm.  

TABLE 5.3 Total of improvement of NNIR over Dijkstra’s algorithm on the resilient routing 

problem when a total improvement is defined as a combination of the blocking scenario and 

the cost reduction scenario 

 

 By combining both scenarios NNIR outperforms Dijkstra’s Algorithm on the Telecoms data 

set by in a total of 95 out of 250 cases, this is an improvement in 38% of cases. On the Road 

data set NNIR outperforms Dijkstra’s Algorithm in 152 out of 500 cases which is an 
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improvement of 30.4%. NNIR was designed with the intention of being used on the Telecoms 

data set which shows in the results, although the Road data set indicates that it is applicable in 

other domains that can be represented as a graph.  Additionally, due to the highly constrained 

nature of this problem, it seems reasonable to suggest that population base evolutionary 

algorithms perform much better. The primary purpose of the NNIR algorithm was to reduce 

costs, but these experiments show that it is also very capable at finding new resilient routes 

where Dijkstra couldn’t. 

5.3 Discussion 

This chapter introduced a solution to the resilient routing problem namely the NNIR algorithm 

whilst also showing the need for such an algorithm by comparing it to Dijkstra’s Algorithm, 

A-Star and Simulated Annealing. The resilient routing problem is a real-world problem faced 

by BT and has been implemented into tools currently in use. Fig 5.9 and Fig 5.10 show screen 

shots from one such tool. This tool is used for pricing for corporate customers that require 

multiple dedicated lines between two locations, or as it’s known within the literature resilient 

routing. Fig 5.9 and 5.10 show routes in central Europe, the primary route is shown in black 

and the resilient route is shown in blue. 
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Fig 5.9. (a) Shortest path available when using Dijkstra’s algorithm (the blocking Scenario) 

(b) Shortest path available when using NNIR (the blocking Scenario) 

 

 

Fig 5.10. (a) Shortest path available when using Dijkstra’s algorithm  

(the cost reduction example)  

(b) Shortest path available when using NNIR (the cost reduction example) 
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In the results sections of this chapter the distance reductions are rather small percentages, but 

when considering that some connections in the Telecoms data sets are routes across continents 

small percentages added up to reasonable sums of money. With the NNIR algorithm integrated 

into the pricing tool BT have been able to offer more competitive pricing outperforming 

competitors for contracts, thus proving the commercial value of the NNIR algorithm to BT.  

This chapter showed that by increasing the cost of a primary route a more optimal resilient 

route can be found, making the entire solution more optimal in 38% of cases of the Telecoms 

data set and 30.4% of case in the Road data set. Amazingly the Telecoms data set with an 

increase in the primary route of up to 81% can still result in a more optimal solution, with the 

total cost of both routes lower than the solution presented by Dijkstra’s algorithm.  Not every 

possible route has been evaluated in these data sets but a large sample has been taken from 

both. The Road data set was selected for two reasons first to show that the resilient routing 

problem and by extension NNIR can be applied to differing domains.  Secondly to ensure there 

was transparency in the experiments as the Road data is open source whereas the Telecoms 

data is confidential.  

Everything outlined in this chapter has be published in the journal paper NNIR: N-Non-

Intersecting-Routing Algorithm for Multi-Path Resilient Routing in Telecommunications 

Applications [33]. The next chapter will discuss how NNIR deals with uncertain environments 

through the use of a Fuzzy Logic System.  
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Chapter 6. A Fuzzy Genetic System for Resilient Routing in 

Uncertain Dynamic Telecommunication Networks  

Large telecoms companies have a global presence with thousands of locations in a single nation 

but sometimes even this is not enough for all of their needs so they will use infrastructure from 

their competitors.  In Section 2.4.3 the idea of resilient routing was introduced, then in Chapter 

5 the N-Non-Intersecting-Routing-Algorithm (NNIR) was introduced and shown to be an 

effective solution to the resilient routing problem. In Section 2.5 the idea of uncertain 

environments was introduced. In resilient routing, an uncertain environment can arise from 

three scenarios. First the data internally to the telecoms company about routing costs can be 

inconsistent as the information is sourced from multiple sources. These routing costs can 

include; distances, latency or service volume.  Secondly, if a competitor’s infrastructure is used 

then there are no assurances of the accuracy of the data provided, this is not through malice but 

just an unfortunate fact about telecoms networks. Finally, sometimes routing is performed on 

data that is dynamic or in an ever-changing state such as latency or network bandwidth so it 

can be difficult to determine a shortest path through it.  

In this chapter the work was originally presented across two conference papers in FUZZ-IEEE 

2019 [93] and WCCI 2020 [94]. This chapter presents a set of modifications to the NNIR 

algorithm in order to allow it to function effectively in uncertain environments. These changes 

take in the form of Fuzzy Logic controller. In Section 6.1, the type-1 extensions are presented. 

In Section 6.2 the type-2 extensions are presented. In Section 6.3 the experiments and results 

from both extensions are presented. Finally in Section 6.4, there is a discussion about the work 

from the two conference papers and what has been presented in the preceding sections of this 

chapter.  
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6.1 NNIR in uncertain environments with type-1 fuzzy logic 

NNIR is used the same as described in Chapter 5 with some modification to the evaluation 

function. The evaluation function is critical to the operation of the GA in NNIR ranking the 

population for selection and population reduction. The modifications to the evaluation function 

allow for uncertainties in the data to be interpreted by a Type-1 Fuzzy Logic system. The 

evaluation function uses the same principle of Route Discount known as RD shown in equation 

6.1, where N is the desired number of routes and SR is the number of routes in a solution and 

FS is the Fuzzy Score produced by the Fuzzy Logic system.  RD works on the same principle 

as in Chapter 5 but the equation is different to ensure that it still has the desired effect on the 

total cost. 

 

The total cost on the other hand has been changed to incorporate the crisp value from the Fuzzy 

Logic system FS, and a new conflict resolution metric NLC.  NLC is a count of the number of 

edges in the solution, but to ensure it has a minimal effect on the overall fitness function and is 

only used when it is needed it has been scaled by 0.25.  Equation 6.2 shows this new evaluation 

equation.  

 

The Fuzzy Score or FS is a cumulative cost calculated on every edge in a route prior to being 

used in the evaluation equation. The Type-1 Fuzzy Logic controller has two inputs and one 

output. The inputs are named “Local Input” and “Global Input”, named this due to where the 

information comes from for the generation of the input sets. The local input is dynamically 

generated for every vertex. Fig 6.1 shows the membership functions for local input, with its 
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three inputs “LOW”, “MEDIUM” and “HIGH”.  The local input membership function has 

three points P1, P2 and P3 which are extracted from the edges of a given vertex. P1 is the 

minimum cost from the given vertex, P2 is the mean cost from a given vertex and finally P3 is 

the maximum cost from a given vertex. To increase execution speed each of these input 

member functions can be pre-calculated prior to execution.  

 

Fig 6.1 Local input of a Type-1 input Membership function, with three inputs LOW, 

MEDIUM, HIGH 

There is only one global input membership function for the entire network and it is generated 

from the edge cost values from across the network. Fig 6.2 shows the global input membership 

function, which has five inputs named “VLOW”, “LOW”, “MEDIUM”, “HIGH” and 

“VHIGH”. The global input membership function has five points taken from the graph P1, P2, 

P3, P4 and P5. These points are mapped to the points of a box plot [95], with P1 as the 

minimum, P2 as the lower quartile, P3 as the median, P4 as the upper quartile and P5 as the 

maximum value.  The output membership function named output uses the same values as the 

global input member ship function with five outputs “VLOW”, “LOW”, “MEDIUM”, “HIGH” 
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and “VHIGH”. The membership functions for the output set uses the same values of P1, P2, 

P3, P4 and P5 so all information is extracted from the data.   

 

Fig 6.2 Global input of a Type-1 input membership function, with five inputs VLOW, LOW, 

MEDIUM, HIGH, VHIGH and a boxplot showing how the membership functions are 

generated.  

 

The local input membership function works as a comparison between the edges in the route to 

the other edges available at the same vertex, whereas the global input membership function 

works as comparison of the given edge cost to the cost of all the vertices in the graph. The 

output membership functions are based on the same information as the global input 

membership functions, using the cost information from the edges in the network to ensure that 

all the outputs are correctly scaled to one and other. In order to connect the input to the outputs 

a rule base is required for inference, Table 6.1 shows such a rule base.  
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TABLE 6.1 The rules used in the Type-1 fuzzy logic system for evaluation within NNIR 

 

The Fuzzy Logic uses the minimum function for inference and the centre of set defuzzification 

method.  With the input sets, the rules base, the output set and the established the entire Fuzzy 

Logic system can now be used within NNIR. The experiment undertaken with this system will 

be described in Section 6.3 and the results in Section 6.4.  

6.2 NNIR in uncertain environments with interval type-2 fuzzy logic 

NNIR is used as described in Chapter 5 with additions to its evaluation function similar to that 

described in Section 6.1 but now with the use of an interval Type-2 Fuzzy Logic controller 

(IT2FLC). An interval Type-2 system can be seen as an extension to the Type-1 version 

presented in Section 6.1. In general the interval Type-2 fuzzy logic is seen to be an 

improvement over Type-1 Fuzzy Logic at handling uncertainty at the cost of computational 

complexity [44], [96].  
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The evaluation function equations are the same as presented in Section 6.1 with a Type-2 Fuzzy 

Logic controller used to calculate the FS values. (Equations 6.3 and 6.4 as shown below for 

reader convenience, albeit they are the same as equations 6.1 and 6.2). RD represents the route 

discount, used to ensure there the desired number of routes in a solution. N represents the 

desired number of routes and SR represents the number of routes in the given solution.  NLC 

represents the number of edges in the solution and are scaled by 0.25 to reduce its effect on the 

total cost, NLC exists as tie breaker in case two solutions have the FS and RD.  

 

The interval Type-2 Fuzzy Logic system much like its Type-1 predecessor has two inputs, the 

local input and the global input. The local input is calculated from the edges cost values at each 

vertex, whereas the global input is based upon the costs of every edge in the graph. Fig 6.3 

shows the local input membership functions and Fig 6.4 show the global input membership 

function each with their footprints of uncertainty. As the points P1, P2 and P3 are all taken 

from the edge costs of the evaluated vertex corresponding to the minimum, mean and maximum 

values, as are the footprints of uncertainty. A new value D is calculated for each point, which 

is obtained by taking the 10% of the distance between two points. For example, if P1 is 10 and 

P2 is 20 then the corresponding D value is 1. The D value is then used to calculate the values 

that describe the footprint of uncertainty with a membership function. With the left and right 

points of the footprint of uncertainty equal to the P value plus or minus D. Once again in the 

global input membership function the values of P1, P2, P3, P4 and P5 are calculated from a 

box plot as described in Section 6.1.  
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Fig 6.3 Local input of a Type-2 input Membership function with its footprints of uncertainty, 

and with three inputs LOW, MEDIUM, HIGH. 

 

Fig 6.4 Global input of a Type-2 input membership function with its footprints of uncertainty, 

and with five inputs VLOW, LOW, MEDIUM, HIGH, VHIGH and a boxplot showing how the 

membership functions are generated. 
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The output membership functions used have the same values as the global membership function 

shown in Fig 6.4 with the footprint of uncertainty calculated in the same methodology.  A 

Fuzzy Logic controller is incomplete without a rule base to tie the inputs to the outputs, Table 

6.2 shows the rule base for IT2FLC. The minimum function has been used within rule inference 

and the centre of sets type reduction was used to enable defuzzification.  

TABLE 6.2 The rule base used for the interval Type-2 fuzzy logic controller for the evaluation 

within NNIR 

 

 

6.3 Experiments & Results 

The same experiment has been undertaken for both the Type-1 and Type-2 Fuzzy Logic 

systems allowing for a comparison of their performance. The goal of the system is to be able 

to perform resilient routing in uncertain environments characterised within a real-world 

telecommunications network. The experiments have been set out in such a way to look for 
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consistency in routes, given differing edge values within the graph. To this end 10 versions of 

the same graph exist with different values for each of the edges. Each data set is corresponding 

to one graph, but they are all within a 10% variation of a source graph, from which the other 

graphs have been generated. The graph its self represents British Telecoms’ European network, 

it is vast and complex allowing for many different routes between geographic locations across 

the continent.  

Each graph is run against three versions of the NNIR algorithm. First the original crisp version 

of NNIR without a Fuzzy Logic evaluation system. Second the Type-1 version of NNIR with 

the Fuzzy Logic evaluation system as described in Section 6.1. Finally the interval Type-2 

versions of NNIR with the Fuzzy Logic evaluation system as described in Section 6.2. Ten 

scenarios are selected randomly, with a scenario described as trying to establish a primary and 

resilient route between two locations. Each scenario is run with each dataset on each system, 

therefore each scenario is run 30 times.  

There are four metrics used to determine the quality of the results from each system. First 

metric is the number of Unique Routes (how many times does a route occur once). Second 

metric is the number of Routes of Multiple Occurrence (how many routes occurred more than 

once). Third metric is Max Same Route (a count of how many times the most common route 

occurred). The final metric is the Number of Independent Routes (a count of how many routes 

there are that have occurred once or more).  The best performing system will minimise the 

value of Unique Routes and Number of Independent Routes whilst maximising the Max Same 

Route. The most important metric is Unique Routes because if this value is zero is means no 

route has only occurred once.  
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TABLE 6.3 Average routing results across the 10 routing scenario  

 

 

Table 6.3 shows the average results over the 10 routes scenarios for the three versions of the 

system. The crisp version has the highest average number of Unique Routes at 3.6. The Type-

1 version of the system has a slight reduction in the number of Unique Routes at 3.4 whereas 

the Type-2 system has a much larger reduction at 2.3. The crisp system has the highest average 

number of Routes of Multiple Occurrence with a reduction seen by the Type-1 system to 1.8 

and a further reduction by the Type-2 system to 1.6.  When it comes to the Max Same Route 

metric the crisp system has the worst result of 3.6, with a progressive improvement from Type-

1 to Type-2 with 4.4 and 6.2 respectively. Finally the Number of Independent Routes shows a 

decrease from crisp at 5.6 to Type-1 as 5.4 to Type-2 at 4. Not one of these metrics can show 

in full the performance of the system.  The crisp system has relatively low average number of 

Max Same Routes with a slight improvement being shown by the Type-1 system, and a much 

larger improvement by the Type-2 system. This metric indicates that the Type-1 system will 

find the same route for a given problem in 44% of cases, whilst the Type-2 system will find 

the same route in 62% of cases the. The crisp system on the other hand will only find the same 

route in 36% of cases, showing that by this metric the Type-1 is an improvement of 8% over 

the crisp system whilst the Type-2 system has an improvement of 26% over the crisp system 

and an 18% improvement over the Type-1 system.  
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Table 6.4 shows the best and worst performing routing scenarios for all three of the systems. 

The best scenario for the crisp system presents 7 identical routes and then 3 identical routes, 

with no unique routes. The worst case crisp logic has the worst possible outcome with 10 

different routes as they are all unique. The best case for Type-1 is only slightly better than that 

provided by the crisp system, with 8 scenarios having the same route and the other 2 sharing a 

route. The best case for Type-1 system is a definite improvement over the crisp system, with 8 

routes occurring once and 1 route occurring twice. Finally, the best case for the Type-2 systems 

is the best possible outcome with all 10 scenarios using the same route. The worst case for the 

Type-2 system is better than its crisp and Type-1 counter parts with 6 unique routes and 2 lots 

of 2 routes being the same.   

TABLE 6.4 The best and worst performing routing scenarios for each of the three versions of 

NNIR 

 

By looking at all of the metrics it is shown that there is a progressive improvement in the system 

from crisp to Type-1 and again to Type-2. This can be seen with the reduction in the number 
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of Unique Routes, Routes of Multiple Occurrence and the Number of Independent Routes whilst 

the number of times the Max Same Route occurred increases.  

6.4 Discussion 

In this chapter the idea of resilient routing in uncertain environments along with two potential 

solutions to this problem were introduced. These solutions took the form of the NNIR algorithm 

with a Type-1 or Type-2 Fuzzy Logic controller built into the evaluation operation. This is a 

real-world problem faced by British Telecom, and the interval Type-2 version of the system is 

now in use. This problem presented an interesting predicament as the optimal solution in the 

experiments was not always the shortest path, as it is known from work in Chapter 5 that the 

crisp system will always find the shortest path. Unfortunately when the data can’t be trusted 

creating an uncertain environment it is more important to find a route that is short and consistent 

if the costs of the edges in the graph change. This is due the fact that changing one of these 

routes can be costly and time consuming.  

The work undertaken as shown in the chapter resulted in two conference papers: 

 A Fuzzy Genetic System for Resilient Routing in Uncertain Dynamic Telecommunication 

Networks  [93] 

 A Type-2 Fuzzy Genetic Approach to Uncertain & Dynamic Resilient Routing within 

Telecommunications Networks [94] 

These papers and the contents of this chapter show that there is an improvement in resilient 

routing in uncertain environments through the use of Fuzzy Logic as part of the evaluation 

process.  It is also shown that there is a progressive improvement from Type-1 to Type-2 Fuzzy 

Logic.  

Once uncertainties have been dealt with that brings a conclusion to the NNIR algorithm for 

now but it has an application as part of the wider problem solution. The next chapter will 
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introduce the Heated Stack Algorithm (HS) and its initial applications digital capacity 

management.    
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Chapter 7. A Type-2 Fuzzy Multi-Objective Multi-

Chromosomal Optimisation for Capacity Planning within 

Telecommunication Networks  

Single objective optimisation is a well-developed field with many different algorithms 

providing optimal solutions across many domains. The natural extension to single objective 

optimisation is multi-objective optimisation. A popular and successful optimisation algorithm 

is Non-dominant Sorting Genetic Algorithm two (NSGA-II). The operation of NSGA-II is 

described in Section 4.2.3 and is known to produce high quality solutions in many scenarios 

[71], [79], [86].  

In this chapter the Heated Stack algorithm (HS) a multi-objective evolutionary algorithm with 

a Type-2 Fuzzy Logic controller will be introduced. The set of experiments presented in this 

chapter are based on the digital capacity planning with its SVLans and CVLans as introduced 

in Section 2.5.1. The content of this chapter was first presented at FUZZ-IEEE 2021 with a 

conference paper [38]. 

7.1 The Heated Stack Algorithm 

The Heated Stack algorithm is an evolutionary algorithm with a temperature system, taking 

inspiration from the popular and successful optimisation algorithms NSGA-II [77] and 

Simulated Annealing [56]. HS is a population based evolutionary algorithm employing a Fuzzy 

Logic controlled temperature system used for sorting and crossover manipulation. It uses the 

ideas of population, generations, selection, crossover and mutation from a Genetic Algorithm 

(GA).  Fig 7.1 shows a flow chart of the algorithmic process, notice its similarity to GA but 

with the addition of the temperature control mechanism.   
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Fig 7.1. An overview of the Heated Stack Algorithm with its temperature initialisation and 

reduction 

As demonstrated by Fig 7.1 HS begins with the creation of the initial population, it then 

evaluates the initial population for the first generation. The system then cycles through a 

predetermined set of generations whilst in each generation using selection to sort the population 

for crossover. Every new member of the population created by crossover has a chance to 

mutate, the new members of the population are then evaluated for population reduction and the 

temperature of every remaining member of the population is then reduced. The stopping criteria 

of the number of generations passed is checked and either it stops returning the optimal solution 

front or the next generation beings.  
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7.1.1 Solution Representation and Population Initialisation 

 In the HS a solution is represented in a three layered structure namely “Stack”, “Chromosome” 

and “Gene” as shown in Fig 7.2.   

 

Fig 7.2. The solution representation with its three layers of genes chromosomes and the stack  

As seen in Fig 7.2 a stack can have many chromosomes housed within it and each chromosome 

can have a number of genes, with each stack representing one potential solution to a problem. 

The number of chromosomes in a stack and the number of genes in a chromosome are variable 

and problem dependant. Each chromosome has its own temperature value that is initialised to 

a specific problem dependant value. Initial temperature is a tuneable value but a value of around 

the value of 1000 tends to be a good starting point. Due to the temperature being based upon 

each chromosome, the temperature of a stack is the sum of its chromosomal temperatures.  The 

genes of a chromosome can be encoded in much the same as a GA, with real values, binary, or 

some more abstract representations such vertices in a graph or CVLans in a virtual capacity 

management problem.  

The initial population is generated much the same way as in a GA with the problem and gene’s 

encoding heavily influencing the initialisation process. The capability of having a multi-

chromosomal representation allows for easier representation of problems that have a low 
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degree of separation in the objective space, but a high degree of separation in its decision 

variables. Multi chromosomal representation is at its most useful when a problem has a set of 

decision variables that rarely interact but their objectives are deeply dependant on all of the 

decision variables.  Some examples of this include: digital capacity planning, physical capacity 

planning and resilient routing. During population initialisation each chromosome has a 

temperature variable set to the initial temperature value which will be manipulated every 

generation.  

7.1.2 Evaluation and Population Sorting for Selection & Population Reduction 

Every solution has its own assigned set of scores according to the optimisation objective, these 

scores much like in a GA are used to determine the quality of each potential solution. These 

scores are used to sort the population into fronts based upon the domination rules introduced 

in Section 4.2.1. Once on a front the crowding distance of every solution is determined exactly 

the same as if it were NSGA-II using the Euclidian distance between solutions on the objective 

as described in Section 4.2.3. These fronts are used as the first stage of the sorting process used 

for selection and population reduction.  

Selection with HS uses the principle of survival of the fittest, where the best members of the 

population are split randomly into two groups and ranked, with the best ranked being picked 

for crossover. After the population has been sorted into fronts, each front needs to be sorted 

into a priority order, which is used for both the selection ranking and population reduction 

ranking. The ranking within a front is sorted by an Interval Type-2 Fuzzy Logic Controller 

(IT2FLC) using temperature and crowding distance as the inputs.  Fig 7.3 shows an example 

of this ranking for selection visualised. In this example, the population has been randomly split 

into two sets, with each set sorted into its fronts and each front sorted based upon the sorting 

fuzzy logic system.  
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Fig 7.3. Visualisation of sorting as part of selection  

The IT2FLC for sorting is used for both selection and population reduction, with its inputs 

being temperature and crowding distance. Temperature has three input membership functions 

labelled: “LOW”, “MEDIUM” and “HIGH”. Crowding distance has five input membership 

functions labelled: “VLOW”, “LOW”, “MEDIUM”, “HIGH” and “VHIGH”. Being that an 

IT2FLC has been used, each of the inputs has a footprint of uncertainty (FoU). Fig 7.4 shows 

the input temperature membership functions, the values of temperature are scaled between 0-1 

therefore the inputs to the FLC are normalised. This normalisation is shown in equation 7.1 

with a minimum value 0 and the maximum set to initial temperature value of a stack and with 

x being the specific temperature of the stack being sorted. Fig 7.5 shows the crowding distance 

input membership functions.  Once again the input membership function values are scaled 

between 0-1, so the input to the membership function must also be normalised between 0-1. In 

order to normalise the crowding distance equation 7.1 is used with the minimum value set to 
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0, the maximum value set to the largest crowding distance in the current population and x set 

to the crowding distance of a given stack.  

 

 

Fig 7.4 Temperature input membership function for sorting with its footprint of uncertainty 
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Fig 7.5 Crowding distance input membership function for sorting with its footprint of 

uncertainty. 

TABLE 7.1. The rules for the sorting IT2FLC 
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Fig 7.6 Output membership functions for the sorting IT2FLC 

The IT2FLC uses the rule base shown in Table 7.1 with two inputs and one output using the 

minimum inference method and the centre of sets type reduction method. The output set used 

is shown in Fig 7.6, once every member of the population has a value from the FLC they are 

sorted into ascending order within their fronts. This means that a lower output from the FLC 

indicates a more preferable solution for selection.   

This process of sorting into fronts and then sorting fronts with the IT2FLC is used for both 

selection and population reduction. In regards to sorting for population reduction, only the final 

front that has population members needs to be sorted as the prior fronts will already be in the 

new population in their entirety. Fig 7.7 shows a visualisation of the portion of the front that is 

sorted within the sorting FLC for population reduction.   
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Fig 7.7. Visualisation of the parts of the population that need to be sorted for population 

reduction 

7.1.3 Offspring Creation 

In HS offspring are created through the use of the crossover and mutation operators. Members 

of the population are selected for crossover with the selection operator taking into account their 

temperature and crowding distance.  Crossover takes place on the chromosomal level, in the 

digital capacity planning problem occurring with a corresponding chromosome from the other 

parent as seen in Fig 7.8. It is a problem dependant decision to decide which chromosomes to 

crossover, much like how the crossover strategy in a GA is a problem dependent decision.  
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Fig 7.8 Example of two parents (P1, P2) demonstrating which chromosomes crossover 

Crossover in the HS is affected by the temperature of the two parent solutions, with a 

temperature comparison determining how much information to take from each parent solution.  

This decision is determined through the use an IT2FLC with two inputs and one output. The 

inputs are the temperature of the parent solutions, with the output determining crossover 

quantity. Both inputs use the same Type-2 input membership functions. As seen in Fig 7.9, 

these inputs have three labels: “LOW”, “MEDIUM” and “HIGH”.  The inputs to this fuzzy 

system are between 0-1 therefore temperature of each chromosome must be normalised 

between 0-1. The rule base for the IT2FLC is show in Table 7.2, it uses centre of set type 

reduction and the minimum inference method and the output sets are shown in Fig 7.10.  
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Fig 7.9 Input membership function for temperature as part of the crossover quantity FLC 

TABLE 7.2 Rules for the crossover quantity FLC 
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Fig 7.10 Output membership functions for crossover quality 

As crossover is at the chromosomal level as is this IT2FLC, the crossover quality is determined 

for each child chromosome individually. For example if there are 3 chromosomes in each 

parent solution and each crossover operation is due to create two offspring then the FLC will 

be run 6 times. Once for each crossover that occurs with one parent being the first input for the 

first child chromosome and the second parent being the first input for the second child. Fig 

7.11 demonstrates and example of which chromosomes crossover within the two parent stacks. 

 

Fig 7.11 Demonstration of which chromosomes crossover over in the Stack  
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Crossover in the digital capacity planning problem works by taking a copy of parent P1 

randomly replacing genes with the appropriate counter parts from the other parent P2. The 

number of genes replaced is represented by the crossover quality. For example if P1 is the first 

input and P2 is the second input then the first offspring is a copy of P1 with a number of genes 

randomly replaced by the P2 counterpart, then P1 and P2 swap as inputs. Fig 7.12 shows an 

example of this crossover taking place with 2 parents and 2 children.   

 

Fig 7.12 Example of crossover between chromosomes 

In the final stage of crossover each chromosome inherits its temperature from its parent with 

the highest temperature. Once inherited the temperature is increased by a small amount. In the 

case of the digital capacity planning problem this is an increase of 10%.  The quantity that the 

temperature increases by is a tuneable value, much like mutation chance in a GA.  

Once crossover has occurred throughout the entire stack, there is random chance that mutation 

can happen. A predetermined amount of the genes are randomly swapped throughout a stack. 

Each gene can only be swapped once, ensuing that mutation doesn’t make a change and revert 

it in the same operation.  
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7.1.4 Temperature 

At the end of every generation the population is reduced based upon the sorting described in 

Section 7.1.2 which incorporates the temperature of solutions into its decision making process. 

During crossover a comparison of parent temperatures is used to determine how much 

information should be passed onto the next generation from each parent as described in Section 

7.1.3. During crossover new members of the population are created with a higher temperature 

than that of their parents, introducing a temperature gain into the algorithm. But in order to 

maintain a balance over temperature in the population the temperature of every population 

member must be periodically reduced every generation. Given that every solution has its own 

temperature at a specific generation TG and that the temperature reduced Tr has been set 

temperature of the next generation TG+1 can be calculated as shown in equation 7.2. 

Temperature for the next generation is the temperature of the current generation reduced by 

some small amount, this is expressed as a multiplication in equation 7.2 thus the reduction is 

one minus the specified amount.  

 

In the case of the digital capacity planning problem the temperature is reduced by 10% every 

generation. With these temperature manipulation mechanisms in place the effects of 

temperature on population reduction and crossover become less prominent overtime allowing 

more traditional ranking to effect the decision making. Due to temperature in some cases 

potentially more promising members of the population are not prioritised as part of selection 

and sometimes even removed from the population.  This is a purposeful design choice of the 

algorithm, allowing worse performing member of the population to contribute genetic 

information to the overall population prior to being removed. This effect happens as temperate 

has a strong influence on the population sorting.  
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7.2 Experiments and Results 

In the case of the digital capacity planning problem the goal of the system was to be able to 

reorganise the customers represented on VLans in the form of SVLans and CVLans. In order 

to establish the quality of the results a comparison between HS and NSGA-II was undertaken. 

This comparison is a simple yet effect one with the dominance of a solution front determining 

which algorithm performs better at this problem. A dominance comparison is used due to the 

problem being a multi-objective problem. In order to keep the comparison as fair as possible 

the experiment is run 15 times with three different configurations of population size and 

number of generations. NSGA-II and HS have the same mutation change and crossover 

strategy with NSGA-II taking 50% of each of it parents’ genes as opposed to the variable 

amount in HS.  

Prior to the comparison between NSGA-II and HS first an internal comparison of HS is 

performed, comparing a Type-1 FLC and an IT2FLC to determine if the increased 

computational complexity of Type-2 fuzzy logic yields better results.  In this comparison the 

experiment is run 25 times with a configuration of 250 generations with a max population of 

250. The results to this comparison are shown in table 7.3 

TABLE 7.3 Type-1 and Tpye-2 comparison within the Heated Stack algorithm 

 

As seen in Table 7.3 18 out of the 25 times the experiment was run Type-2 Fuzzy Logic 

provided a dominate solution front whereas in 7 out of the 25 times Type-1 Fuzzy Logic 

provides a dominant solution front. This shows that Type-1 is capable of providing a dominant 
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solution front, but Type-2 provides is more consistent at 72 % of the time. From this point 

onwards the HS will be using an IT2FLC as it tends to yield better results.   

Table 7.4 shows the results from the comparison between the HS and NSGA-II, in these 

experiments three configurations are used to see how NSGA-II and HS performs. The 

configurations are as follows: 100 generations with a max population of 100, 250 generations 

with max population of 250 and finally 500 generations with a max population of 500.  

TABLE 7.4. Comparison between HS and NSGA-II 

 

As shown in Table 7.4, the first case with a configuration of 100 population and generations 

the difference between NSGA-II and HS is very small with them providing almost the same 

result, not indicating that either is a better algorithm at the digital capacity planning problem. 

In the second case with the configuration of 250 population and generations HS is producing a 

dominant result in 12 of the 15 cases showing that it is slightly better than NSGA-II at this 

problem. Finally in the last configuration with 500 population and generations HS is producing 

a dominant result in 14 out of the 15 cases, clearly showing that it is producing a better result 

for this problem when given an increased number of generations and population members 

allowing temperature the time to work as intended.  

7.3 Discussion  

In this chapter the Heated Stack Algorithm was introduced for the digital capacity planning 

problem. HS is an NSGA-II inspired multi-objective evolutionary algorithm with a temperature 
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control system. It has been shown that HS outperforms NSGA-II at the digital capacity 

planning problem and that a Type-2 version of HS will outperform its Type-1 counterpart.  

The Heated Stack has been designed with capacity planning problems in mind hence the 

solution representation having the three layers of gene, chromosome and stack, which is no 

coincidence that it is very similar to the digital capacity planning problem representation of 

VLan, SVLan and CVLan.  

The key aspect of the HS is its temperature used to guide the population through the search 

space by manipulating crossover, selection and population reduction. As seen in the 

experiments, the temperature mechanism requires a larger number of generations to be able to 

perform. Temperature is used to balance exploration and exploitation, allowing worse members 

of the population to mate with more promising ones. During crossover temperature is increased 

to allow new solutions more time in the population, and if they are promising now they will be 

able to pass the temperature increase onto the next generation, propagating the effects of 

temperature over the course of multiple generations. Temperature reduces every generation 

meaning the oldest member of the population will have the lowest temperatures. Fig 7.13 shows 

the median temperature of the population over the course of an experiment with 250 population 

members for 250 generations.  
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Fig 7.13 Median temperature of the population of the course of 250 generations 

 In Fig 7.13 it can be seen that the median temperature in the population decreases over the 

course of a number of generations. In several occasions the median temperature increases by 

small amounts, such as around generation 40 and 170. In one case the median temperature rises 

rapidly (at around generation 240) implying lots of new members of the population were 

created from one another in quick succession.  Due to the temperature system effects on HS 

being controlled through the FLC, the FLCs have been designed to change if HS is in an 

explorative state or exploitative state, with a high temperature indicating exploration and a low 

temperature indicating exploitation.  

The content of this chapter was first presented at FUZZ-IEEE 2021 in a conference paper 

named “A Type-2 Fuzzy Multi-Objective Multi-Chromosomal Optimisation for Capacity 

Planning within Telecommunication Networks” [38].  

In the next chapter the progression of the HS as a more general purpose optimisation algorithm 

will be presented whilst also being used to tackle the much more complex and constrained 

problem of physical capacity planning.  
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Chapter 8. A Heated Stack based Type-2 Fuzzy Multi-

Objective Optimisation System for Telecommunications 

Capacity Planning 

 

As the complexity of multi-objective problems has increased the introduction of constraints 

was inevitable. In order to deal with this, evolutionary algorithms have been adapted to deal 

with constraints as seen in Section 4.3. NSGA-II and NSGA-III (Section 4.2.3 & Section 4.2.4) 

are both known to be capable optimisation algorithms that can take constraints into account. 

 In the previous chapter the Heated Stack Algorithm was introduced as a multi objective 

evolutionary algorithm for the digital capacity planning problem (Section 2.5.1). It was shown 

to be more effective than NSGA-II at solving this problem whilst also showing that there was 

an increase in the quality of results by using a Type-2 system over its Type-1 counterpart. The 

effectiveness of HS is good when compared to NSGA-II but more effective methods exist in 

the literature, so the algorithm has been improved in order to be capable of comparison with 

one of the best evolutionary algorithms in the literature, namely NSGA-III.  

In this chapter the changes to the HS will be outlined and a description of how the HS is used 

to solve the physical capacity planning problem (as seen in Section 2.5.2) shall be given. The 

physical capacity planning problem is a constrained multi-objective problem, so an explanation 

of the constraint handling technique used in HS will also be given. Additionally, to show the 

capabilities of the HS a set of open-source problems will be optimised, allowing for 

reproducibility of results.  
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8.1 The Heated Stack Improvements 

The HS is the same as described in Chapter 7 with its generational operations of crossover, 

selection, mutation, population reduction and temperature reduction. It still has a focus on using 

temperature to manipulate whether the system is in an explorative or exploitative state.  

The HS algorithm does however have one minor change to its sorting system. In the previous 

version the sorting Fuzzy Logic system took its inspiration from NSGA-II using temperature 

and crowding distance as the inputs. In the improved version HS uses the distance metric from 

the Niche-Preservation operation as seen in Section 4.2.4 instead of the crowding distance. In 

NSGA-III Niche-Preservation is used in conjunction with the domination rules to rank the 

population for selection and population reduction. In HS the population is ranked by the 

domination rules and then placed upon a reference plane much the same as NSGA-III, but this 

is where the similarities end.  

In NSGA-III, only the members of the population with the lowest distance are allowed into the 

next generation in the case of population reduction and in the case of selection the population 

members with the lowest distance are the best ranked.  In the HS members of the population 

placed upon the reference plane allowing their distances to be calculated. The distance of a 

given population member is used as an input to the FLC alongside its temperature. In order to 

calculate the niche distance there must be a normalised reference plane. An equidistance 

reference plane with a number of reference points equalling that to the maximum population 

size is used, as seen in Fig 8.1.  
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Fig 8.1. Example of an equidistance refinance plane in a three dimensional space [72]   

In order to use the reference plane the objective values of each population member must been 

normalised between 0-1, using the normalisation equation as seen in equation 8.1. Given that 

the objective functions are minimisation objectives, the minimum value for normalisation is 

the lowest possible value an objective can be. The maximum value is the largest value seen so 

far across all generations and finally x is the objective value of a given solution.  

 

As seen in a GA and in the HS sorting is used for two processes: selection and population 

reduction. In both cases the fuzzy logic system is used to sort the members of the fronts after 

they have been sorted by the domination rules. In the case of population reduction, the members 

of the final front that is capable of contributing to the next generation need to be sorted, this is 

visualised in Fig 8.2.  
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Fig 8.2 Visualisation of population that needs to be sorted for population reduction 

In the case of selection, the population is broken down into two sets randomly then each of 

these sets must be sorted. This sorting happens in two stages, first into their fronts and then 

each of the fronts is sorted by the FLC.  Fig 8.3 shows the input fuzzy set for temperature, Fig 

8.4 shows the input set for niche distance, Table 8.1 shows the rules and Fig 8.5 shows the 

output set of the sorting FLC. The new sorting FLC is identical to the previous version, but this 

version uses the niche distance as opposed to crowding distance. Otherwise HS is unchanged 

in its operations to as described in Chapter 7.  
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Fig 8.3. Input membership function for temperature, as part of the sorting FLC 

 

Fig 8.4 Input membership function for niche distance, as part of the sorting FLC 
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TABLE 8.1 Rules for the sorting FLC 

 

 

 

Fig 8.5 Output membership functions as part of the sorting FLC 
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8.2 Experiments and Results 

There are two data sets used for the experiment in this section, firstly the Telecoms data set 

presented by British Telecom, the second are a set of open source problems from the IEEE 

Congress on Evolutionary Computation (CEC). Due to the sensitive nature of the Telecoms 

data set I am unable to go into extended detail, whereas the CEC data sets are openly available 

online.  

In the physical capacity planning problem as described in Section 2.5.2 the goal of the system 

is to reorganise which ports are occupied by cables. This reorganisation allows for older 

bandwidth equipment to be replaced with new more effective equipment. The experiments are 

using a real data set representing part of a networking exchange. The data is highly constrained 

with lots of specific constraints but only 4 general constraints, made up of 1000s of decisions 

variables but with only two objectives.  

Every year the conference GECCO (the Genetic and Evolutionary Computation Conference) 

and CEC (Congress on Evolutionary Computation) run a wide array of competitions. These 

competitions provide open source data sets for many different problems. From the selection of 

competitions and data sets the best fit for HS are the Real-World Multi-Objective Constrained 

Optimisation otherwise known as the Constrained Multi-Objective Problem (CMOP)[97]. A 

subset of these problems have been selected for the experimentation. The problems vary 

between 2-3 objectives and between 2-10 constraints, Table 8.2 outlines these problems. 
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8.2.1 Open Source Problems 

TABLE 8.2 List of open source Constrained Multi Objective Problems used in the Heated 

Stack Experiments 

 

Each problem shown in Table 8.2 is used in a comparison between HS, NSGA-II and NSGA-

III. NSGA-II has been selected for comparison as it is a popular multi-objective optimisation 

algorithm and as it was used in the last set of HS experiments. NSGA-III has been selected for 

comparison as it is a direct influence on HS, additionally it is listed as one of the joint top 

performing algorithms in the competition.  

The experiment undertaken uses the Hyper Volume Indicator (HVI) as the performance metric 

as described in Section 4.4. The HVI is used due to its acceptance in both GECCO and CEC 
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as an appropriate metric for optimisation algorithm comparison. The algorithm that produces 

the higher HVI creates a better solution front and thus is the better algorithm in this instance. 

In order to validate the results found by using the HVI, the solution fronts are checked for 

domination to ensure that the HVI is accurately portraying the solution picture. The comparison 

between HS, NSGA-II and NSGA-III uses three different configurations across the 

experiments, as shown in Table 8.3.  

TABLE 8.3 List of the open source experiments and their configurations 

 

The comparisons are conducted at different configurations to try and generate a clearer picture 

of the overall performance of each algorithm. For each of the 13 experiments the open source 

problems are run 25 times with each of the 6 configurations, therefore a total of 1950 

experiments are conducted. Fig 8.6, Fig 8.7 and Fig 8.8 show the comparisons of NSGA-II and 

HS at each of the configurations, each graph shows a count of which algorithm produced the 

higher HVI for each problem.  

 



121 

 

 

Fig 8.6. A comparison of NSGA-II and HS with a configuration of 100 population members 

for 100 generations. 

 

Fig 8.7. A comparison of NSGA-II and HS with a configuration of 250 population members 

for 250 generations 

 

Fig 8.8. A comparison of NSGA-II and HS with a configuration of 500 population members 

for 500 generations 
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Fig 8.6 shows that in HS has a larger HVI more often in 11 out of the 13 open source problems. 

Fig 8.7 an improvement in the performance of HS with 12 out of the 13 open source problems 

having a larger HVI more often. Fig 8.8 shows the same result a Fig 8.7 with HS having a 

higher HVI move often in 12 of the 13 problems.  This comparison reinforces the result from 

Chapter 7 and is to be expected especially after the changes made to the HS.  

Fig 8.9, Fig 8.10 and Fig 8.11 show the comparison between NSGA-III and HS at each of the 

configurations, again each graph shows a count of which algorithm produced the higher HVI 

for each of the problems.   

 

Fig 8.9. A comparison of NSGA-III and HS with a configuration of 100 population members 

for 100 generations

 

Fig 8.10. A comparison of NSGA-III and HS with a configuration of 250 population members 

for 250 generations 
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Fig 8.11. A comparison of NSGA-III and HS with a configuration of 500 population members 

for 500 generations 

Fig 8.9 shows the results of the comparison between NSGA-III and HS, it indicates that HS 

only returns a larger HVI more often in 4 out of the 13 problems. Fig 8.10 shows little 

improvement over the results in Fig 8.9 with HS having a larger HVI more often than NSGA-

III in only 5 out of the 13 cases, showing that NSGA-III is still better performing overall. Fig 

8.11 shows a notable improvement over the results in Fig 8.9 and Fig 8.10. In Fig 8.11 HS has 

a better HVI more often in 9 out of 13 cases, this is a drastic improvement over the previous 

configurations. But it is to be expected that HS will perform better with an extend number of 

generations as it gives temperature time to move the algorithm between explorative and 

exploitive states.  

Table 8.4 shows a comparison of median HVI values of NSGA-II, NSGA-III and HS for the 

500 population and 500 for generations experiment. This comparison is presented in this table 

with the median values as the comparisons in Fig 8.6 – 8.11 do not paint an accurate picture of 

the results.  
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TABLE 8.4 Median comparison of hyper volume indicator values between NSGA-II, NAGA-

III and HS with the configuration of 500 maximum population and 500 generations for the 

open source problems. 

 

 

Table 8.4 shows the results in a different light to how they are represented in Fig 8.6- Fig 8.11 

but it shows the same story. The final row of Table 8.4 named Totals, collected the averages 

of the median values for comparison, and count the number of times HS outperforms NSGA-

II and NSGA-III. NSGA-II is by far the worst performing out of the three algorithms with HS 

producing a better result on average in 92.3% of cases.  NSGA-III outperforms NGSA-II in 11 

of the 13 cases only being outperformed in problem RCM05 and RCM18. HS outperforms 

NSGA-III in 69.2% of the cases. NSGA-II performs exceptionally well at RCM05 out 

performing both NSGA-III and HS, whereas RCM18 NSGA-II only outperforms NSGA-III by 

a small margin but is itself outperformed by HS. Looking at the final row of Table 8.4 it 

summarises that HS will on average outperform NSGA-II and NSGA-III.  
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8.2.2 Capacity Planning Problem 

The main purpose of HS is to optimise the capacity planning problems faced by BT. This 

problem is comprised of two objectives with four constraints using 1200 decision variables 

represented in the multi-layered structure of the Heated Stack.  Fig 8.12 shows a comparison 

between NSGA-II and HS for the three configurations of the number of generations and the 

maximum number of the population members. Fig 8.13 shows the same comparison but 

between NSGA-III and HS. In all six cases each experiment was performed 25 times, totalling 

150 experiments.   

 

Fig 8.12. Comparison of NSGA-II and HS in the three different algorithm configurations over 

the course of the 25 experiments 

Fig 8.12 shows that HS drastically outperforms NSGA-II in all three configurations with an 

outperformance in every single experiment in the 500, 500 configuration. Fig 8.13 shows the 

comparison between HS and NSGA-III, NSGA-III performs much better than NSGA-II when 

compared to HS. In the first scenario (100, 100) NSGA-III outperforms HS in 21 of the 25 

experiments, in the second scenario (250, 250) HS outperforms NSGA-III in 14 of the 25 

experiments, in the final scenario (500, 500) HS outperforms NSGA-III in 17 of the 25 cases.  
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8.13. Comparison of NSGA-III and HS in the three different algorithm configurations over the course of the 25 

experiments. 

Once again looking at the information presented by Fig 8.12 and Fig 8.13 alone is not enough 

to get an accurate picture of results. Table 8.5 shows the median HVI values of the experiments 

in each of the configurations for each of the algorithms. 

TABLE 8.5 Median Hyper Volume Indicator values for the NSGA-II, NSGA-III and HS in the 

three difference algorithmic configurations.  

 

Looking at Table 8.5 it shows that HS produces a better median HVI value than NSGA-II in 

all three configurations. The table also shows the NSGA-III produces a better median value 

than NSGA-II in all configurations. Finally it shows that HS produces a better median value 

than NSGA-II in 2 of the 3 configurations. HS is only outperformed by NSGA-III in the first 

scenario, but it has a major increase in its median value in the second and third scenarios. 
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Capacity planning is not a simple problem to solve but the ability to move cables around in an 

exchange is a one of the most difficult and important steps to get correct. The results from both 

sets of experiments (capacity planning and CMOP) show that HS is a capable optimisation 

algorithm given that it has enough iterations for temperature to have an effect on the 

algorithm’s search.   

8.3 Discussion 

This chapter has presented the changes to the Heated Stack algorithm namely the way it uses 

distance within its sorting IT2FLC. It also presented a far more comprehensive set of open 

source experiments that proves the ability of HS as a general optimisation algorithm.   

The results from both sets of experiments show that HS can outperform NSGA-II without any 

real issues and given that it has enough iterations for temperature to have an effect it can also 

outperform NSGA-III. These iterations are required to allow the IT2FLC time to use all the 

rules throughout its rules base and push the algorithm between exploration and exploitation. 

The system is in a high state of exploration when temperature is high and a high state of 

exploitation when temperature is low.  The work presented in this Chapter is currently under 

review by the Elsevier journal named “Knowledge-Based Systems”. 

Given that the Heated Stack can be used to effectively optimise ports as part of the physical 

capacity planning problem the next step is to construct a plan that can be followed by an 

engineer in order to make the changes to the exchange.  There are some difficulties that come 

with this due to the fact that an exchange is a live part of the networking infrastructure and any 

changes made must not disconnect consumers from the network for extended period of time. 

The next chapter will present a solution to this problem in the form Monte Carlo Tree Search 

(MCTS) using backward induction.  
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Chapter 9. Backwards Induction using Monte Carlo Tree 

Search for Network Configuration Planning 

There are many constraints upon a networking exchange that deal with compatibility, 

functionality or are set in place as part of a wider business goal. One of the most important 

objectives of BT as an organisation is to minimise down time, in other words to ensure that 

people have a connection to the network for the maximum amount of time possible. As part of 

this goal any changes to the bandwidth infrastructure within the exchange must happen 

overnight, specifically between the hours of 0200 and 0600. All changes must also be reversible 

within that time frame as well. Therefore, half of the time can be used to make changes and 

half to reverse the changes if something went wrong meaning the 4-hour time slot to make 

changes is actually a 2-hour timeslot. 

The work presented in Chapter 8 on the optimisation of physical capacity planning provides a 

set of solutions to the optimal configuration of the cables indicating which port should have 

which cable in it. In an ideal world to reconfigure the networking exchange every cable would 

be unplugged and moved to their new locations. This is unfortunately not possible as it would 

take days if not weeks in most locations to make changes like this. As previously stated, there 

is only a 2-hour window every night to make changes. Therefore, a step-by-step plan of how 

the changes presented by the Heated Stack should be made is required.  

This chapter begins with an explanation of Monte-Carlo Tree Search (MCTS) and how through 

the use of backwards induction it can be applied to capacity planning solution representation. 

Then a simple worked example of the solution representation in the format of a step-by-step 

guide.  
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9.1 MCTS  

Monte-Carlo Tree Search (MCTS) [98] is a heuristic tree search algorithm that has generated 

a lot of attention in recent years with success in board games such as Go and Chess [99]. MCTS 

is a powerful technique in searching through possible states when actions can be taken to 

manipulate the state. Prime examples of this are board games and video games.  

Given that a tree can represent a problem and rewards can be applied to each move represented, 

MCTS can be used to search the problem space. MCTS operates over the course of 4 stages: 

Selection, Expansion, Simulation and Backpropagation. These four stages can be seen in Fig 

9.1.  

 

Fig 9.1. A Visualisation of the four stages of MCTS: Selection, Expansion, Simulation and 

Backpropagation 

In the first stage the node for expansion and simulation is selected, in Fig 9.1 this is node E. 

Selection is based upon a calculation known as the UCB1 or UCT algorithm  [100] [101] which 

tries to balance exploration and exploitation. The equation for UCB1 is shown in equation 9.1 
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where xj is the average reward obtained from the node j, nj is the number of times a node has 

been visited and n is the total number of nodes visited in the tree.  

 

The next stage of MCTS is expansion, where new nodes are added to the selected node, in the 

case of Fig 9.1 only the one node F is added. The third stage is the simulation phase, sometimes 

known as rollout shown as the downwards line under node F in Fig 9.1. In simulation a random 

set of moves are taken until a terminal state or a stopping criteria have been reached [102]. The 

simulation is then evaluated and the score is stored in the node. The final stage of MCTS is the 

backpropagation where information is passed up the tree to each of the parent nodes. The score 

of a child is added to its parent score and the number of visits is incremented by one. For 

example in Fig 9.1 the score from the simulation is passed from node F to node E and the 

number of visits to node E is incremented by one. The new score at node E is passed up to its 

parent node B and node B has its number of visits incremented.  

The four stages of MCTS continue until the tree search is terminated by reaching its goal state 

or by an outside influence, for example a user or it has been running for a designated amount 

of time. One of the powerful aspects of MCTS is that it can be stopped at any time returning 

the best solution that it has found thus far, hence its success in games in single player [103] and 

multi-player games [104].  

9.2 Achieving Backwards Induction with MCTS for Network Configuration 

Planning 

In Chapter 7 and Chapter 8 the idea of using HS to optimise physical and digital capacity 

planning was introduced. The solutions presented by HS are optimal solutions, showing how 

the hardware and software should be configured, which is great albeit useless without a plan 
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of how to implement those configurations. So BT require an implementable solution that gives 

a step by step guide from the current configuration to the optimal configuration. This is where 

MCTS can be used to perform backwards induction.  

Backwards induction is the idea of traversing a problem space from the goal state back to an 

origin state [105]. Usually only applied to games or anything that has game-like quality such 

as economics, backwards indication is seen as an effective way to find an optimal strategy. A 

prime example of this is completing a maze. A maze can be harder to complete from its start 

state to the goal state than it is to complete backwards (from the goal to the start).  

For MCTS to function optimally it requires a state can be manipulated through actions plus an 

evaluation function and a goal to search towards. By using the principles of backwards 

induction the traversal of the problem space can be achieved with MCTS. By starting at the 

goal state (the output of HS) and making changes that abide by the constraints of the problem 

it is possible to determine a set of steps that can be used to reorder the cables in an exchange.  

This technique presents two interesting qualities due to the fact that HS produces a set of 

solutions each representing an equally valid optimal solution. Firstly it can be used to determine 

optimal configurations that are not possible to implement without breaking any of the problem 

constraints. As the optimal solution presented by HS does not break any constraints but making 

the changes in a step-by-step may break the constraints, MCTS can be used to find the solutions 

that does break the constraints in this step by step manner.  Secondly it can be used as another 

evaluation stage to determine which of the optimal solutions are the easiest, fastest and cheapest 

to implement.  

9.3 A Simple Example Solution Representation 

Due to the sensitive nature of the contents of a networking exchange a simple example solution 

has been created in order to demonstrate the results of backwards induction through the use of 
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MCTS. A given problem has origin and goal states as seen in Fig 9.2 then a set of moves can 

be set out to rearrange the state. In the example, when an element is moved the other elements 

shift to the left or right to fill the vacant space. Fig 9.3 shows the set of moves required to 

manipulate the origin state to the goal state.  

 

Fig 9.2. Example problem’s origin state and goal states with their indexes annotated 

 

Fig 9.3. The list of moves required in order to get from the origin state to the goal state.  

The moves shown in Fig 9.3 must be performed in order to move between the origin state and 

the goal state. Fig 9.4 shows in a step-by-step guide how the elements are moved around to 

manipulate the state.  In the first move element A is moved to index 6 moving all the other 

elements once to the left.  In the second move element B is moved to index 4, moving elements 

F, E, D and C once to the left. In the third move element C is moved to index 5, moving 
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elements G, B, F, E, and D once to the left. In the fourth and final move element D is moved 

to index 4, moving elements G, B, F and E once to the left. 

 

Fig 9.4 Step-by-Step representation of the state changes by performing the moves presented 

in Fig 9.3 

The set of moves used for this example were found through the use of MCTS. The output of 

the MCTS is the set of moves required to make the changes to the state. In the case of the 

telecommunications capacity planning problems the set of moves represent the cables that must 

be moved. In the actual capacity planning application, a cable can only be moved to an 

unoccupied port on a card and the other ports are not shifted to the left as they are in the 

example.   
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9.4 Discussion 

In this chapter the idea of using MCTS to perform backwards induction was introduced, using 

this technique to determine a strategy of implementing the optimal solution from HS without 

breaking any of the implementation constraints. There a wide variety of very specific 

constraints set upon the networking equipment and one overarching constraint when it comes 

to making configuration changes; any changes made to the exchange must be made within a 2-

hour time window.  This time window exists for two reasons: firstly so any downtime as a 

result of these changes is during the period of time in which the least bandwidth is required 

therefore minimising disruption. Secondly so any unsuccessful changes can be reverted with 

another 2-hour time window and still have minimal disruption.    

Currently at BT the task of allocating a set of moves to make changes to the equipment is done 

by hand without any specific software aid, meaning that even simple changes can takes hours 

and more complex changes can take days to plan. But by using MCTS even the more complex 

planning problems can be solved with minimal human effort in a fraction of the time.   

There are two additional benefits to using MCTS to produce this plan. In multi-objective 

optimisation a front or set of solutions are returned as the answer to the objectives, this front 

can comprise of one or more solutions. MCTS for network configuration planning can be used 

to rank the members of this front by any number of attributes including: how easy it is to 

implement the changes, the cost of the changes or the speed at which the changes are possible. 

The second benefit is that an optimal solution may not break any of the constraints, but there 

is no series of steps that can get from the current configuration to a configuration presented by 

HS without breaking some the constraints. MCTS can find these cases and remove them from 

HS’s resulting solution front, therefore reducing the members of the resulting solution front 

that require a human decision in the final step.   
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Chapter 10. Conclusion and Future Work 

In this thesis, three distinct systems have been discussed: the N-Non-Intersecting-Routing 

algorithm (NNIR) for resilient routing, the Heated Stack algorithm (HS) for digital and physical 

capacity planning and backwards induction through the use of Monte Carlo Tree Search 

(MCTS) for configuration planning. These three systems work together solving different 

aspects of the wider aim of the thesis.  

10.1 Conclusion 

The overarching goal of this thesis is to improve the speed, effectiveness and reliability of 

capacity planning and optimisation within large scale telecommunication networks by 

decreasing down time and increasing the speed at which upgrades can be performed to an 

exchange. This goal is broken down into four aims: 

I. How to provide assurances steps have been taken to keep a reliable connection between 

two endpoints in a complex network. 

II. How to provide those same assurances in a network when the data used for routing is 

uncertain or in constant flux. 

III. How an ideal version of the current networking infrastructure would be configured to 

allow planned upgrades to be implemented. 

IV. How to make changes to the network infrastructure to without disconnecting 

consumers for extended periods of time. 

These four aims are constructed taking into account British Telecom’s business objectives for 

telecommunications capacity planning and optimisation, which are as follows: first a 

consumer’s connection must be reliable with disconnections being minimised and as infrequent 

as possible, but if a consumer is disconnected they must be reconnected as quickly as possible. 
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Second the bandwidth capacity given to a consumer must increase with the demands of a 

modern interconnected society. 

Five interconnected tasks that fulfil the aims of the thesis have been achieved resulting in the 

main body of work in this thesis and are as follows: 

 Perform a comparison into techniques that can perform multi-path resilient routing and 

determine if one can outperform the currently implemented technique of Dijkstra’s 

algorithm.  

This was achieved by performing a comparison between traditional routing methods and single 

objective optimisation algorithms (as seen in Chapter 5). When the traditional methods are 

represented by Dijkstra’s algorithm and the A-Star algorithm, and the single objective 

evolutionary algorithms are represented by a Genetic Algorithm (GA) and Simulated 

Annealing (SA). In the experiments (Section 5.2) it was found that a modified GA that utilised 

Dijkstra’s algorithm named NNIR outperformed the traditional routing methods and SA. Both 

traditional methods found the same result and found a shortest optimal primary route and a 

shortest optimal resilient route when evaluated individually, but when evaluated together as 

single solution these two routes are no longer consider optimal. SA didn’t perform much better 

than the traditional methods only slightly outperforming them. NNIR on the other hand could 

find a cheaper resilient route in 18% of cases when considering both routes as a single solution 

seeing, whilst in 20% of cases finding resilient routes where Dijkstra’s algorithm couldn’t.  

 A comparison of type-1 and interval type-2 fuzzy logic for uncertainty handling in 

resilient routing as part of the selected aforementioned technique resulting in effective 

and consistent multi path resilient routing in uncertain environments.  

This was achieved through an extension to the NNIR algorithm to include a fuzzy logic system 

(as seen in Chapter 6). A comparison between use of NNIR with a crisp system and NNIR with 
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type-1 Fuzzy Logic Controller (FLC) and NNIR with an Interval Type-2 Fuzzy Logic 

Controller (IT2FLC) was performed. In the results (Section 6.3) it was shown that there was a 

progressive improvement from a crisp to a type-1 FLC to an IT2FLC, at finding a consistent 

route more often in an uncertain or dynamic environment.  

 The creation of a novel evolutionary algorithm to optimise virtual groups within 

exchange hardware which are used for bandwidth allocation.  

This was achieved through the creation of the Heated Stack algorithm (HS) a multi-objective 

evolutionary algorithm with type-2 controlled fuzzy temperature system (as seen in Chapter 7). 

This temperature system is used to control the extent that the algorithm is focusing on 

exploration or exploitation. The system greatly benefited from the use of type-2 fuzzy logic to 

control the temperature systems as the comparison between type-1 and type-2 showed that the 

type-2 system outperform its type-1 counterpart in72% of cases. The heated stack proved to be 

an affective evolutionary algorithm at this specific task outperforming the popular and 

successful NSGA-II in 93% of cases.  

 Improving the aforementioned novel evolutionary algorithm to optimise existing 

exchange hardware allowing planned upgrades to exchange equipment.  

This was achieved through some simple modifications to the population sorting system which 

greatly improved its performance, whilst also adding the ability to handle constraints within 

optimisation (as seen in Chapter 8). HS was applied to the task of optimising hardware 

configurations within an exchange showing to that it performed better than NSGA-II 100% 

cases and NSGA-III in 68% of cases allowing exchange upgrades to take place (as seen in 

Section 8.2.2). In addition to the physical capacity planning problem HS was compared to and 

outperformed NSAG-II in 92 % of cases and NSGA-III in 69% of cases on a set of open-source 

constrained problems (as seen in Section 8.2.1). The heated stack works well as an optimisation 
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algorithm given that it has enough generations for temperature to guide the search space back 

and forth between exploration and exploitation.  

 A step-by-step guide of how implement changes to the exchange allowing for the 

optimised solutions to become reality whilst minimising consumer downtime.  

This was achieved with the proposed Monte Carlo Tree Search (MCTS) using the idea of 

backwards induction (as seen in Chapter 9). The set of solutions presented by HS are useless 

without a step by step guide of how to implement the changes from the initial configuration to 

one of the optimal ones presented by HS. MCTS is used to create this guide whilst also serving 

a secondary function, allowing a final ranking of the set of solutions presented by HS. It can 

determine the cost and viability of each solution whilst eliminating any solution that would 

break the constraints of actually implementing the solution, as they are different to the 

optimisation constraints.  

The combination of these five tasks has resulted in the completion of the overarching goal of 

thesis. Creating system that delivers a faster and better solution than what was in use a BT for 

these problems.  

10.2 Real-World Impact 

The speed, effectiveness and reliability of capacity planning and optimisation has been 

improved within BT through the use of the HS algorithm. As prior to the implementation of 

this technique all capacity planning optimisation was done by hand without any specific 

software aid. Now HS is used to aid in the planning process showing what an optimal 

configuration of the exchange would look like in digital capacity planning, allowing those 

changes to be made increasing speed and reliability. HS is also used to allocate cables to ports 

allowing parts of the exchange hardware to be removed without a loss of service to the 
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consumers. The work undertaken as part of the capacity management with HS has been 

patented [106] by BT as they believe it is an idea worth protecting.  

Backwards induction through MCTS is not currently in use at BT but should be in use in the 

near future. With the use of MCTS the most efficient set of changes to the exchange can be 

made decreasing downtime and increasing the speed at which upgrades can be performed.   

NNIR is not yet integrated into the wider network allowing for seamless switching of packet 

routing, but that is being explored. Currently it has taken on another role, being used as part of 

a pricing tool to outbid competitors across the Europe for routing contracts. The tool and thus 

the use of the NNIR algorithm has already proved its worth by securing several contracts that 

would not have otherwise been obtained in the past.  Prior to the use of NNIR this pricing tool 

used Dijkstra’s Algorithm to obtain the shortest resilient routes. The work undertaken as part 

of resilient routing with NNIR has been patented [107] by BT as they believe it is an idea worth 

protecting.  

These outcomes show that AI technologies are having a real-world influence on business 

profits and the decision making process. These techniques include: Genetic Algorithms, Fuzzy 

Logic, the Heated Stack and Monte Carlo Tree Search. 

10.3 Future Work 

There are several avenues of exploration that could result in future work these encompass one 

of the three area, the NNIR algorithm, the Heated Stack or MCTS.  

The heated stack has already proved itself as a high quality optimisation algorithm, but there 

are always improvements to be made. Firstly the temperature of each chromosome could 

change independently based on how promising the information within the chromosomes is 

allowing for the fuzzy crossover system to play a greater role in the balancing for exploration 

and exploitation. Secondly, the temperature reduction system of the HS should not just be a 
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single consistent reduction of temperature it should be based upon the information within the 

population. This would require the IT2FLC for temperature control to be modified based upon 

the new reduction system otherwise members of the population would not be correctly sorted.  

Efforts should be made to improve the execution speed of the Heated Stack allowing it to be 

used in application that could require it in real time. This would be difficult to make run in 

under 5 minutes, but for an optimisation application users should be willing to wait given that 

there is some feedback about the progress of optimisation.  

Backwards induction with MCTS could be integrated into HS at the evaluation stage, allowing 

members of the population to be ranked by the configuration implementation constraints not 

just the optimisation constraints. Additionally when this next layer of evaluation happens, it 

should be linked to temperature as not to impact its control over exploration.  

MCTS for Backwards induction should be explored in greater detail with an array of 

experiment across different problems to identify its strengths and weaknesses as an explainable 

AI tool.  

Exploration and exploitation are controlled by the UCB equation within MCTS, at its core this 

trade-off between exploration and exploitation is one of uncertainty. IT2FLC is well known to 

be an effective strategy at handling uncertainty so a fuzzy system that decides which node to 

expand next should be investigated. 

NNIR has shown that traditional routing methods are not able to perform adequately at the 

resilient routing problem. NNIR should be extended to deal with multiple objectives and 

constraints allowing for a fair comparison of NNIR to HS at the resilient routing problem. 

NNIR could be streamline to allow it to operate much faster to allow it to be used by application 

that require real-time routing solutions.  
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Glossary 

Agent: An entity that exist in an environment and can observe and act upon that environment.  

Crisp: Using real numbers, or to be used without Fuzzy numbers/sets.   

Decision Variables: A set of variables that can be manipulated in-order to effect the evaluated 

value.   

Edge: The connection between two vertices in graph theory.  

Exploitation: The act of trying to improve upon a known state, with the intention of always 

improving the evaluated score.  

Exploration: The act of looking for new or unseen states, that don’t necessarily improve the 

evaluated score.  

Global Minima: The actual best state that cannot be improved upon.  

Local Minima: A state that appears the best that can’t be improved upon without making the 

whole system worse. 

Objective: A goal that can be represented as function to be maximised or minimised as a 

numerical score.   

Objective space: A region in which the objective scores can exist, and moved across through 

the manipulation of the search space.  

Optimisation: The act of selecting a set of variables in-order to maximise or minimise some 

evaluation function.  

Search space: A region in which the decision variable can exist, and the entire area that can be 

traversed during optimisation.  

Solution: A set of decision variable that represent a state found by artificial intelligence.  
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Vertex / Vertices: A single point or location in graph theory. 

 


