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Abstract

This thesis investigates finite digraph groups and related groups like the gener-
alization of Johnson and Mennicke groups. Cuno and Williams introduced the
term "digraph group" for the first time in [9], 2020. The groups are defined by
non-empty presentations and each relator is in the form R(x, y), where x and y

are distinct generators and R(., .) is defined by some fixed cyclically reduced word
R(a, b) that involves both a and b. There is a directed graph associated with each
of these presentations, where the vertices correspond to the generators and the arcs
correspond to the relators. In Chapter 2, we investigate Cayley digraph groups
to determine whether they are finite cyclic and provide formulae to calculate the
order. In Chapters 3 and 4, the girth of the underlying undirected graph is at
least 4. We show that the resulting groups are non-trivial and cannot be finite of
rank 3 or higher under the condition |V | = |A| − 1 in Chapter 3. We investigate
when the corresponding digraph groups are finite cyclic for |V | 6 |A| in Chapter 4
and we are able to show that the corresponding group of strongly connected and
semi-connected digraphs under certain standard conditions which are known to be
necessary for the digraph group to be finite ((i)− (iv) defined in Preamble 4.1). We
generalise Johnson and Mennicke groups, which are non-cyclic finite groups defined
in terms of a digraph that is a directed triangle to digraphs that are n−vertex
tournaments in Chapter 5. In Chapter 6 we use GAP to perform a computational
investigation into digraph groups with particular relators and we obtain results
whether the corresponding digraph groups are cyclic, abelian, perfect or not. We
also provide their size, derived series, derived length and facts about isomorphism
between them. The relators used correspond to the those used in the Mennicke and
Johnson groups, and some new fixed relators. We obtain digraph presentations of
various 2-groups, 3-groups and perfect groups.
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1
Introduction

1.1 Preamble

This chapter covers the background material and some basic concepts that
are relevant in this thesis. More specific definitions, theorems and lemmas
will be provided in the chapters where they are first used. The ones related to
the graph theory will be given in Section 1.2.1 and the ones related to group
theory will be given in Section 1.2.2. We present digraph groups in Section
1.3 and the thesis outline will be given in Section 1.4. A variety of examples,
figures, and findings should assist the reader in better understanding the
concepts presented in the chapter.

1.2 Basic definitions and notations

1.2.1 Graph theory

We give the essential background relating to the graph theory that we will
use throughout the thesis here. Some of the definitions, lemmas and theorems
will play a significant role in later chapters; others will be used to illustrate
definitions. The definitions used by Bondy and Murty’s book [7] are followed,
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unless otherwise indicated.

Definition 1.2.1. A graph G is a set of vertices V (G) connected by edges
E(G). We call V (G) the vertex set and E(G) the edge set of G. We will
write G = (V,E) which means that V and E are the vertex set and edge set
of G, respectively.

The term graph will be used to mean undirected graph throughout the
thesis for distinguishing from a directed graph.

Definition 1.2.2. Two vertices u and v in an undirected graph G are called
adjacent (or neighbours) in G if u and v are incident with a common edge e
of G. Such an edge e is said to connect u and v.

Definition 1.2.3. We use (u, v) to denote an arc from u to v. For an arc
(u, v), the first vertex u is its tail and the second vertex v is its head. The
head and tail of an arc are its end-vertices. If (u, v) is an arc, we also say
that u dominates v (or v is dominated by u) and denote it by u→ v.

Definition 1.2.4. Two undirected graphs G and H are said to be isomorphic
if there is a bijection, Φ say, from V (G) to V (H) such that g ∼ h in G if and
only if Φ(g) ∼ Φ(h) in H. If G and H are isomorphic, then we write G ' H.

Example 1.2.5. The representation of a digraph by a picture, with points
for the vertices and lines for the edges, is often convenient, attractive or
interesting as in Figure 1.1 where these two undirected graphs in Figure 1.1
are isomorphic to each other.

For clarity, vertices are represented by small circles throughout the thesis.

We will focus on digraphs in this thesis. Therefore, unless otherwise
specified, G = (V,E) mentioned in the rest of this section and chapters are
for directed graphs.

Definition 1.2.6. A directed graph (or digraph) is an undirected graph that
is made up of a set of vertices connected by arcs, where the edges have a
direction associated with them.
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Figure 1.1: Two isomorphic undirected graphs

Definition 1.2.7. If the underlying undirected graphs of two directed graphs
are both isomorphic and oriented in the same direction, then they are isomor-
phic to each other.

The directed digraphs at the top in Figure 1.2 are isomorphic to each other
while the directed digraphs at the bottom in Figure 1.2 are non-isomorphic.

Figure 1.2: Isomorphic and non-isomorphic directed graphs

Definition 1.2.8. [17] For a directed graph, a vertex u is an in-neighbor of
a vertex v if (u, v) ∈ E and an out-neighbor if (v, u) ∈ E.

Definition 1.2.9. [17] Let G = (V,E) and v ∈ V . The in-degree of v
is denoted deg−(v) and its out-degree is denoted deg+(v). A vertex with
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deg−(v) = 0 is called a source, as it has vertices with positive out-degree and
in-degree zero. Similarly, a vertex with deg+(v) = 0 is called a sink, since
it has vertices with positive in-degree and out-degree zero. Vertices whose
in-degree and out-degree sum to one are called leaves.

We denote the number of sources as σ and the number of sinks as τ . The
number of source leaves will be denoted σ1 and the number of sink leaves as
τ1 throughout the thesis.

Definition 1.2.10. A walk consists of an alternating sequence of vertices
and arcs consecutive elements of which are incident, that begins and ends
with a vertex.

Definition 1.2.11. A path is a walk whose vertices are distinct. A trail is a
walk without repeated arcs.

Definition 1.2.12. An undirected graph is said to be connected if any two
of its vertices are joined by a path.

Definition 1.2.13. A digraph is (weakly) connected if its underlying graph
is connected. Otherwise, it is disconnected. A digraph is (semi) connected
if for any vertices u, v there is a u − v path or a v − u path. A digraph is
(strongly) connected or strong if for any vertices u, v, there is a u − v path
and a v − u path.

Figure 1.3: An example of disconnected, connected(weakly) graph, semi
connected digraph and strongly connected digraph

Definition 1.2.14. A Hamiltonian path is a graph path between two vertices
of a graph that visits each vertex exactly once.
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Definition 1.2.15. A Hamiltonian cycle is a graph path that starts from
one vertex and visits each vertex exactly once then returns to the original
vertex.

Definition 1.2.16. An edge with identical ends is called a loop. A cycle is a
path that begins and ends at the same vertex.

Definition 1.2.17. The girth of graph G is the length of the shortest cycle
in the undirected graph G denoted by g(G). A graph with g(G) > 4 is said
to be triangle-free.

All digraphs considered in this thesis do not contain loops. (But may
contain cycles of length three (Chapter 2, 5 and 6) or more (Chapter 2, 3
and 4)).

Definition 1.2.18. A complete graph is a graph in which each pair of graph
vertices is connected by an edge. The complete graph on n vertices is denoted
by Kn.

Definition 1.2.19. A tournament is a digraph obtained by assigning a
direction for each edge in an undirected complete graph. That is, it is an
orientation of a complete graph (see Figure 1.4 on page 13).

The following result concerns strong tournaments, as defined in Defini-
tion 1.2.13.

Lemma 1.2.20 ([8, Theorem 7.9]). Let Γ be a non trivial-strong tournament.
Then each vertex v in V (Γ) is in some directed triangle.

Definition 1.2.21. The score vector of a tournament is the ordered n-tuple
(s1, s2, . . . , sn), where si is is the out-degree of the i’th vertex. We usually
assume that the vertices are labeled in such a way that s1 6 s2 6 . . . 6 sn.

For example, the score vector of tournament with 3 vertices at the top in
Figure 1.4 is (1, 1, 1) and it is (0, 1, 2) at the bottom in Figure 1.4.

We provide a graphical representation of a group that Cayley invented
in 1878. This group is defined by a collection of generators and relations.
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Figure 1.4: The two unlabelled tournaments on three vertices

Cayley digraphs of groups bridge two critical areas of mathematics, graph
theory and group theory, and allow for a study of certain groups, such as
cyclic groups. Cayley digraphs on cyclic groups are used to define Circulant
digraphs. In Chapter 2, we will look at Cayley digraphs for many groups.

Definition 1.2.22 ([34, page 99]). Let G be a finite group and let S be a set
of generators for G. We define a digraph Cay(G:S), called the Cayley digraph
of G with generating set S, as follows:

1. Each element of G is a vertex of Cay(G : S).
2. For x and y in G, there is an arc from x to y if and only if xs = y for

some s ∈ S.

Figure 1.5: The Cayley digraph Cay(Z6, {1, 4})
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1.2.2 Group theory

In this section, we give some background about group theory that will be
used throughout the thesis. The definitions used by [21] are followed, unless
otherwise indicated.

Definition 1.2.23. We write G = 〈X | R 〉 to denote a presentation of a
group G. The elements of X are called generators and those of R defining
relators. A group G is called finitely presented if it has a presentation with
both X and R finite sets.

Definition 1.2.24. The rank of a group G, denoted by rank(G), is the
cardinality of a smallest generating set for G.

Definition 1.2.25. A cyclic group G is a group that can be generated by a
single element a, so every element in G has the form ai for some integer i.

We denote the cyclic group of order n by Zn since the additive group of
Zn is a cyclic group of order n.

Definition 1.2.26. Given any group G, recall that its derived group (or
commutator subgroup) is the group G′ generated by the set of all commutators
{g−1h−1gh | g, h ∈ G} of elements of G. It is clear that G′ E G and that
Gab := G/G′ is abelian. Gab is often called the abelianization of G.

Definition 1.2.27. If the abelianization of the group G is trivial (Gab = 1),
then the group G is a perfect group.

Definition 1.2.28. A group G is called solvable if it has a subnormal series
whose factor groups (quotient groups) are all abelian, that is, if there are
subgroups 1 = G0 < G1 < . . . < Gk = G such that Gj−1 is normal in Gj , and
Gj/Gj−1 is an abelian group, for j = 1, 2, . . . , k.

Definition 1.2.29. Given groups G = 〈X | R 〉 and H = 〈Y | S 〉, their free
product is given by the presentation

G ∗H = 〈X, Y | R, S 〉.
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Unless one of the groups G and H is trivial, the free product (G∗H) is always
infinite.

We use Tietze transformations throughout the thesis and Tietze transfor-
mations are used to transform a given presentation of a group into another
by adding or removing the relations or generators. In 1908, H. Tietze showed
in [26] that given a presentation for a group G,

G = 〈 a, b, c, . . . | P,Q,R . . . 〉

then, any other presentation can be obtained by repeated application of the
following transformations to G.

(T1) Adding a relation: If the words S, T, . . . are derivable from P,Q,R, . . .

then add S, T, . . . to the defining relators in G.

(T2) Removing a relation: If some of the relators, say, S, T, . . . listed among
the defining relators P,Q,R, . . . are derivable from the others, delete
S, T, . . . from the defining relators in G.

(T3) Adding a generator: If K,M, . . . are words in a, b, c, . . . then adjoin the
symbols x, y, . . . to the generating symbols in G and adjoin the relations
x = K, y = M, . . . to the defining relators in G.

(T4) Removing a generator: If some of the defining relations in G take the
form p = V, q = W, . . . where p, q, . . . are generators in G and V,W, . . .
are words in the generators other than p, q, . . . then delete p, q, . . . from
the generators, delete p = V, q = W, . . . from the defining relations,
and replace p, q, . . . by V,W, . . . respectively, in the remaining defining
relators in G.

The transformations (T1)− (T4) are called Tietze transformations.

1.3 Digraph groups and related groups

The underlying undirected graphs in the thesis are connected and finite, and
the groups in the thesis are defined by finite presentations where each relator
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is of the form R(x, y), where x and y are distinct generators and R( · , ·) is
determined by some fixed cyclically reduced word R(a, b) in the free group
generated by a and b that involves both a and b. Such groups were considered
in the paper by Cuno and Williams [9].

We now define a construction of a group presentation from a digraph.
Note that this construction is fundamental to the rest of the thesis. Let Λ
be a finite digraph with vertex set V (Λ) and (directed) arc set A(Λ). The
vertices v ∈ V (Λ) correspond to the generators xv and the arcs (u, v) ∈ A(Λ)
correspond to the relators R(xu, xv) so that the group GΛ(R) is defined by
the presentation

PΛ(R) = 〈xv (v ∈ V (Λ)) | R(xu, xv) ((u, v) ∈ A(Λ)) 〉.

A group is called a digraph group if it is isomorphic to GΛ(R) for some Λ and
R [9].

The terminology of digraph groups were first introduced by Cuno &
Williams in 2020 in the paper [9]. However, the digraph groups have a long
history in the sense that many previously studied classes of groups are in fact
digraph groups (although they are not referred to as such). We now have a
discussion about what has been studied, when the groups can be thought as
digraph groups and the new results obtained in this thesis.

Consider the free group with basis x0, . . . , xn−1 and let w be a word in
the free group, where n > 0. The shift, denoted by θ, is the free group
automorphism mapping xi 7→ xi+1, with subscripts mod n. Then

Pn(w) = 〈x0, . . . , xn−1 | w, θ(w), . . . , θn−1(w) 〉

is called a cyclic presentation, and we write Gn(w) for the corresponding
cyclically presented group [21, page 95].

If w involves exactly two generators then Gn(w) is a digraph group by
setting Λ to be a directed n-cycle, i.e. V (Λ) = {1, 2, . . . , n} and A(Λ) =
{(1, 2), (2, 3), . . . , (n, 1)}.

We will be concerned with investigating when digraph groups are finite
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and if a group is defined by a presentation with more generators than relators,
then it is infinite [25, page 165]. Therefore, we now shall focus on the case
presentations with more relators than generators or equal (|V | 6 |A|). The
first step is balanced presentations which are presentations with an equal
number of generators and relators. We now state a notational convention 1,
partially introduced by Pride in [31] and the Lemma 1.3.3 proved by Cuno &
Williams in [9, page 7] and its proof since it is used to illustrate the techniques
as we will use them frequently throughout the thesis. It is also important
to understand why we have these conditions in our theorems in the next
chapters by the readers. That is why we are including the Lemma 1.3.3 and
its proof here.

Notational convention 1 ([9]). We use α and −β to represent the exponent
sums of a and b in a cyclically reduced word R(a, b), respectively, and K is
used to indicate a group defined by the presentation 〈 a, b | R(a, b) 〉. As far
as cyclic permutation is considered, the word R has the form aα1bβ1 · · · aαtbβt

with t > 1 and αi, βi ∈ Z r {0} (1 6 i 6 t).

The following property is defined by Pride in [31, page 246]: If no non-
empty word of the form akb−` (k, ` ∈ Z) is equal to the identity in that
group, then a two-generator group with generators a and b is said to have
Property W1 (with respect to a and b). Under the hypothesis that the girth of
the underlying undirected graph of Λ is at least 4.

Corollary 1.3.1 ([31, Theorem 4]). Let Λ be a non-empty finite digraph
whose underlying undirected graph has g(G) > 4 and let R(a, b) be as in
notational convention 1. If K has Property W1, then GΛ(R) is infinite.

It is therefore important to study groups that do not have Property W1.

Proposition 1.3.2 ([31, page 248]). If there exist k, ` ∈ Zr{0} with ak = b`

in K, then α 6= 0, β 6= 0, and aα = bβ in K.

Therefore, K does not have Property W1 if and only if α 6= 0, β 6= 0, and
aα = bβ in K.
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We will now state the following Lemma 1.3.3 and Lemma 1.3.3 is a
specialisation of a result due to Pride, which was stated without proof in [31].
The proof was stated in proof [9], which we will frequently use by referring in
the next chapters of this thesis.

Lemma 1.3.3 ([31], [9, page 7]). Let Λ be a non-empty finite digraph whose
underlying undirected graph has girth at least 4 and let R(a, b) be a cyclically
reduced word that involves both a and b. Let R(a, b) be as in notational
convention 1 and |α| > 2 and |β| > 2. If GΛ(R) is finite then (α, β) = 1 and
Λ has at most one source and at most one sink.

Proof. Assume that u ∈ V (Λ). If (u, v) ∈ A(Λ), then a relator R(xu, xv) exists.
The exponent sum of a in R(a, b) is α as defined in notational convention 1.
Thus, the relator R(xu, xv) is transformed into R(xu, 1), i.e. to xαu when the
terminal vertex v is killed (i.e. by adjoining the relation xv = 1). Similarly,
killing the initial vertex u turns the relator R(xu, xv) into xβv .

Let u,w be any two fixed vertices of Λ. Killing all generators xv(v 6= u,w)
shows that GΛ(R) maps onto

〈xu, xw | xαu , xβu, xαw, xβw 〉 = 〈xu, xw | x(α,β)
u , x(α,β)

w 〉 ∼= Z(α,β) ∗ Z(α,β)

Now, if (α, β) > 1, then GΛ(R) is infinite . Therefore, we have that (α, β) = 1.
Assume that u,w ∈ V (Λ) are a source and a sink, respectively, which are

not connected by an arc. If all generators xv (v ∈ V (Λ) r {u,w}) are killed,
then we have that GΛ(R) maps onto Z|α| ∗ Z|β|, which is infinite since |α| > 2
and |β| > 2. As a result, we may consider that an arc exists between each
source and sink.

Now, the next step is that we suppose there are distinct vertices u,w ∈
V (Λ) that are both sources (resp. both sinks). It is clear that these vertices
cannot be connected by an arc. GΛ(R) maps onto Z|α| ∗Z|α| (resp. Z|β| ∗Z|β|),
which is infinite when all generators xv (v ∈ V (Λ) r {u,w}) are killed. Thus,
we may suppose that Λ has a maximum of one source and a maximum of one
sink.
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We will now state Lemma 1.3.4 (a),(b) proved by Cuno & Williams and
(c), (d). It enables us to simplify the presentations that arise in the subsequent
chapters. Therefore, it is stated here for later use without further explanation
throughout the thesis.

Lemma 1.3.4 ([9, Lemma 3.1]). Let R(a, b) be a word such that aα = bβ in
K and let G be a group defined by a presentation 〈X | R 〉. Further suppose
that there are distinct generators xi, xj ∈ X such that R(xi, xj) ∈ R. Then
the following hold:

(a) If xγi ∈ R for some γ ∈ Z with (α, γ) = 1, then every p ∈ Z with
pα ≡ 1 (mod γ) yields a new presentation 〈Xr {xi} | S 〉 of G. The
relators S are obtained from R by removing R(xi, xj) and xγi , replacing
all remaining occurrences of xi by xpβj , and adjoining xβγj .

(b) If xγj ∈ R for some γ ∈ Z with (β, γ) = 1, then every p ∈ Z with
pβ ≡ 1 (mod γ) yields a new presentation 〈Xr {xj} | S 〉 of G. The
relators S are obtained from R by removing R(xi, xj) and xγj , replacing
all remaining occurrences of xj by xpαi , and adjoining xαγi .

(c) if xγi ∈ R for some γ ∈ Z with (α, γ) = 1 then every p ∈ Z with
pα ≡ 1 mod γ yields a new presentation 〈X | S 〉 of G where S =
R ∪ {xix−pβj , xβγj }.

(d) if xγj ∈ R for some γ ∈ Z with (β, γ) = 1 then every p ∈ Z with
pβ ≡ 1 mod γ yields a new presentation 〈X | S 〉 of G where S =
R ∪ {xjx−pαi , xαγi }.

If Λ is a directed n-cycle (n > 4) and R(a, b) is a cyclically reduced word
that involves both a and b, then GΛ(R) can never be finite of rank 3 or
trivial [31]. We now give precise statement and its proof in Theorem 1.3.5
that forms the cornerstone of our thesis. Since we will have directed n-cycle
in the digraphs throughout the thesis mostly, the proof of the Theorem 1.3.5
is given in detail and we will only use it for referring to in the next chapters.
The following Theorem 1.3.5 was stated without proof in [31, Theorem 3],
a proof was given in [6, Lemma 3.4] and a different proof was given in [9,
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Lemma 3.4]. We repeat that proof exactly below here as it is crucial to our
arguments.

Theorem 1.3.5 ([9, Lemma 3.4] [[31, Theorem 3]] , [6, Lemma 3.4] ). Let
R(a, b) be as in Notational convention 1. Further suppose that (α, β) = 1 and
aα = bβ in K. If Λ = Λ(n), where Λ(n) is directed n−cycle (n > 2), then
GΛ(R) ∼= Z|αn−βn|.

Proof. Let V (Λ) = {1, . . . , n} and A(Λ) = {(1, 2), (2, 3), . . . , (n, 1)}. Then

GΛ(R) = 〈x1, . . . , xn | R(x1, x2), R(x2, x3), . . . , R(xn, x1) 〉.

Because aα = bβ in K, if the relator R(xi, xj) is one of the relators in the
presentation above, the equation xαi = xβj holds in GΛ(R). Therefore,

xα
n

1 = xα
n−1β

2 = xα
n−2β2

3 = . . . = xαβ
n−1

n = xβ
n

1 .

Now let γ = αn − βn, then xγ1 = 1 in GΛ(R). Adjoining the relator xγ1 gives

GΛ(R) = 〈x1, . . . , xn | xγ1 , R(x1, x2), R(x2, x3), . . . , R(xn, x1) 〉.

Since (α, β) = 1 we have (α, γ) = 1 so the presentation can be simplified by
using Lemma 1.3.4 (a). Note that (α, βγ) = . . . = (α, βn−2γ) = 1. By choosing
an integer p ∈ Z such that pα ≡ 1 (mod βn−2γ), the congruence pα ≡ 1
simultaneously holds modulo γ, βγ, . . . , βn−2γ. Now, using Lemma 1.3.4 (a)
iteratively gives

GΛ(R) = 〈x1, . . . , xn | xγ1 , R(x1, x2), R(x2, x3), R(x3, x4), . . . , R(xn, x1) 〉

= 〈x2, . . . , xn | xβγ2 , R(x2, x3), R(x3, x4), . . . , R(xn, xpβ2 ) 〉

= 〈x3, . . . , xn | xβ
2γ

3 , R(x3, x4), . . . , R(xn, xp
2β2

3 ) 〉

= . . .

= 〈xn | xβ
n−1γ
n , R(xn, xp

n−1βn−1

n ) 〉

= 〈xn | xβ
n−1γ
n , xα−β(pn−1βn−1)

n 〉

= 〈xn | xrn 〉



1.3 Digraph groups and related groups 21

where

r = (βn−1γ, α− β(pn−1βn−1))

= (γ, α− pn−1βn).

Now, pn−1βn ≡ (pα)pn−1βn = αpnβn = αpn(αn − γ) ≡ αpnαn = α(pα)n ≡
α1n = α (mod γ). So γ divides α− pn−1βn, and hence r = γ = αn − βn and
so

GΛ(R) = 〈xn | xα
n−βn
n 〉 ∼= Z|αn−βn|.

The Theorem 1.3.5 is generalized from cyclic presentations to balanced
presentations (i.e. |V | = |A|) in [9]. We extend the theorem from balanced
presentations to |V | = |A| − 1 in Chapter 3 and to |V | 6 |A| for strongly
connected digraphs in Chapter 4 for |α| > 2, |β| > 2.

In many of our digraphs Γ there will be a configuration which we denote
as Λ(n; m−→) to mean an directed n-cycle and a m path going from the directed
n-cycle or Λ(n; m←−) to mean an directed n-cycle and a m path coming to
the directed n-cycle (see Figure 1.6); Lemma 1.3.6 allows us to replace this
sub-digraph with a vertex v and adding a corresponding relator xPv to the
presentation. To assist the reader in Chapter 3.2(i), we will explain this
reduction in detail, then in later chapters we will use this technique without
further explanation.

Lemma 1.3.6 ([9, Lemma 3.5]). Let R(a, b) be as in notational convention 1.
Further suppose that (α, β) = 1 and aα = bβ in K. Then the following hold:

(a) If Λ = Λ(n; m−→) (n > 2, m > 1), then GΛ(R) ∼= Z|βm(αn−βn)|.

(b) If Λ = Λ(n; m←−) (n > 2, m > 1), then GΛ(R) ∼= Z|αm(αn−βn)|.
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Figure 1.6: Digraphs Λ(6; 3−→) and Λ(5; 2←−)

In 1962, Baumslag-Solitar groups

BS(a, b) = 〈x1, x2 | x−1
2 xa1x2 = xb1 〉

were introduced in [5] and so BS(a, b) = GΓ(x−1
2 xa1x2x

−b
1 ), where Γ consists

of two vertices joined by an arc and it is a digraph group. In 2012, Allcock
studied triangles of Baumslag-Solitar groups in [1] give by the presentation

G(a, b; c, d; e, f) = 〈x1, x2, x3 | x−1
2 xa1x2 = xb1, x

−1
3 xc2x3 = xd2, x

−1
1 xe3x1 = xf3 〉.

Thus, triangles of Baumslag-Solitar groups are digraph groups when a = c =
e = p, b = d = f = q that means G(p, q; p, q; p, q) = GΓ(y−1xpyx−q), where Γ
is the directed 3−cycle, since all labels are equal. We also obtain Mennicke’s
groups when p = 1 that means G(1, q; 1, q; 1, q) = GΓ(y−1xyx−q), with the
presentation

M(q, q, q) = 〈x1, x2, x3 | x−1
1 x2x1 = xq2, x

−1
2 x3x2 = xq3, x

−1
3 x1x3 = xq1 〉,

which are studied in [27]. The group M(q, q, q) is an example of cyclically-
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presented groups as G3(x−1
1 x2x1x

−q
2 ). Thus, Mennicke groups M(q, q, q) are

digraph groups and cyclically presented groups. For all q > 3 the Mennicke
groups M(q, q, q) are finite of rank 3 [27]. These groups have also been
investigated by I.D.Macdonald and by J.W.Wamsley and they showed that
M(a, b, c), which are not necessarily digraph groups except for a = b = c,
is finite whenever |a|, |b|, |c| > 3 in [33]. The proof of this can be found
in [22] and we also stated the detailed proof in Theorem 5.3.2 since we
generalise Mennicke’s group and this result from directed 3-cycle to all strong
tournaments in Chapter 5.

When Λ is a directed n-cycle and q = 2 we obtain Higman’s groups
H(n) [15] and the resulting group is

〈x0, . . . , xn−1 | x−1
i xi+1xi = x2

i+1(0 6 i < n) 〉.

(where subscripts are taken mod n). When n = 3 the resulting group H(3)
is the Mennicke group M(2, 2, 2), which is trivial (see [15, Section 3]). As seen
Higman groups are digraph groups, and they are also cyclically presented
groups as G4(x−1

1 x2x1x
−2
2 ).

Another example that we obtain is given by Johnson’s groups

J(a, b, c) =

〈
x1, x2, x3

∣∣∣∣∣∣∣∣∣
x−1

2 x1x2 = xb−2
2 x−1

1 xb+2
2 ,

x−1
3 x2x3 = xc−2

3 x−1
2 xc+2

3 ,

x−1
1 x3x1 = xa−2

1 x−1
3 xa+2

1

〉

considered in [18], [20] and [21, page 92], which a, b, c are non-zero even
integers are finite. These are the digraph groups GΛ(R) where Λ is the
directed 3-cycle and a = b = c = q, R(a, b) = b−1ab(bq−2a−1bq+2)−1. Thus,
Johnson groups J(q, q, q) are digraph groups and cyclically presented groups.
I also generalise Johnson’s groups and this result in Chapter 5.

Let (xi, xj)mij denote the word of length mij which starts with xi and
alternates between xi and xj . The Artin group associated to a defining graph
Λ has one generator for each vertex of Λ and a relator (xi, xj)mij = (xj, xi)mji
whenever there is an edge connecting vertices xi and xj that has been assigned
the integer mij. Thus, an Artin group is a group with presentation of the
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form

〈x1, x2, . . . , xn | xixjxi . . .︸ ︷︷ ︸
mij

= xjxixj . . .︸ ︷︷ ︸
mji

, for all (xi, xj) ∈ A(Λ) 〉.

This class of Artin groups has been studied in [2], [3]. The class of Artin groups
where the underlying graph is triangle-free has been studied in [30]. Right-
angled Artin groups are Artin groups in which all relators are commutators
between specified generators, commonly known as graph groups or partially
commutative groups. A. Baudisch [4] initially introduced right-angled Artin
groups in the 1970s, and C. Droms further developed them in the 1980s under
the name graph group in [10],[11],[12]. Thus every Right Angled Artin Group
is a digraph group GΓ(aba−1b−1) for some digraph Γ.

Artin groups are digraph groups if each mij is the same. For example,

〈x1, x2, x3 | x1x2x1 = x2x1x2, x2x3x2 = x3x2x3, x3x1x3 = x1x3x1 〉

is an Artin group and a digraph group. However,

〈x1, x2, x3 | x1x2x1x2x1 = x2x1x2x1x2, x2x3x2 = x3x2x3, x3x1x3 = x1x3x1 〉

is an Artin group but not a digraph group since all relations do not have
same form.

Remark 1.3.7 ([9, page 7]). This statement introduces a reflection principle:
Let Λ be any digraph, and R(a, b) be any word. Then, the digraph Λ′ may be
defined as being formed by interchanging every arc with the opposite direction,
and the word R ′(a, b) as the word that results from interchanging the letters
a and b and replacing every letter with its inverse, thus α and β are also
interchanged. Then, GΛ(R) ∼= GΛ′(R ′).

1.4 Thesis outline

In Chapter 2, we investigate the digraph groups corresponding to Circulant
digraphs, Cayley digraphs corresponding to direct sum of cyclic groups,
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quaternion groups and direct product of two groups. Circulant digraphs
can have any girth but the other Cayley graphs have the girth at least 4.
Therefore, Theorem 1.3.5 can be applied in all these cases. But when the
girth of Circulant digraphs is less than 4, then we are supposing (α, β) = 1
and aα = bβ in K = 〈 a, b | R(a, b) 〉. We are able to show that the digraph
group corresponding to each group is finite cyclic and we give the formula to
calculate the order.

In Chapter 3, we specify all possible digraph families under the condition
|V | = |A| − 1 and in most cases, determine when the corresponding groups
are finite cyclic or infinite when the digraph is triangle free. The formulas are
given to calculate the order if the group is finite cyclic. If it is not shown that
it is finite cyclic, then we show that the group presentation can be written in
terms of two generators mostly.

In Chapter 4, we present finite cyclic digraph groups when |V | 6 |A|.
We prove that the corresponding group of strongly connected digraphs and
semi-connected digraphs with one source and no sink, one sink and no source
and no source and no sink is a finite cyclic group. In addition to this, we are
able to show that the corresponding groups for more complicated digraphs
are finite cyclic.

In Chapter 5, in contrast to the first three chapters, we investigate whether
the corresponding group is a non-cyclic finite group or not when the girth of
the digraph is exactly 3. Some examples are done by Mennicke with the word
R(a, b) = a−1bab−q for q > 3 and Johnson R(a, b) = b−1ab(bq−2a−1bq+2)−1

q > 2 and even when the digraph is 3-vertex tournament with no source and
no sink (it is known as 3-vertex strong tournament which means directed
triangle). We generalise Johnson’s and Mennicke’s theorems and their proofs
from the directed triangle case to all strong tournaments.

In Chapter 6, we use computational algebraic software GAP [14] to look
for finite non-cyclic digraph groups for tournaments with up to 12 vertices.
We are giving the exact orders and derived series of the corresponding groups
by creating the tables for all tournaments up to 6-vertex and some examples in
between 7 and 12-vertex tournaments for some fixed words such as Mennicke
when q = 3 that means R(a, b) = a−1bab−3 and for Johnson when q = 2
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that means R(a, b) = ab−1ab−3. Because of computational limitations, we
are unable to find out all results when q > 4 for Johnson and Mennicke
groups. But we provide a table and some theorems in Table 6.9 on page
148, Theorem 6.4.1 and Theorem 6.4.2 for Mennicke when q > 4 to have
some idea about the groups. We will also define some new fixed words and
give the exact order R(a, b) in addition to Mennicke and Johnson such as
R(a, b) = abab3, R(a, b) = abab−2 and R(a, b) = ab2a2b−2. An important point
is that we find 2-groups with Mennicke relator, 3-groups with the new word
R(a, b) = ab2a2b−2 and a perfect group with the new word R(a, b) = abab−2.
We also pose some conjectures based on these experiments.
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2
Circulant Digraphs and Cayley Digraphs
of Groups

2.1 Preamble

This chapter will turn its attention to find out whether or not digraph groups
corresponding to Circulant digraphs (i.e Cayley digraphs of cyclic groups),
and Cayley digraphs of some groups such as direct sum of cyclic groups,
quaternion groups and direct product of two groups are finite cyclic and, if so,
to determine the order. We are able to show that the corresponding groups
are finite cyclic and we provide a formula to calculate the exact order for each
one. We now state the main theorem and prove it section by section.

Definition 2.1.1. ([13, page 429]) The Quaternion group Q2n is given by the
presentation

〈 a, b | a2n, an = b2, b−1ab = a−1 〉.

Theorem A. Let α 6= 0, β 6= 0, (α, β) = 1, αn − βn 6= 0, aα = bβ in K =
〈 a, b | R(a, b) 〉.

(i) If Γ = Cay(Zn, {d1, d2, . . . , dt}),

then GΓ(R) ∼= Z|α(n,d2−d1,d3−d1,...,,dt−d1)−β(n,d2−d1,d3−d1,...,dt−d1)|. (Section 2.2)
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(ii) If Γ = Cay(Zm1 ⊕ Zm2 ⊕ . . .⊕ Zmt , {e1, e2, . . . , et}),

where {e1, e2, . . . , et} = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}

then GΓ(R) ∼= Z|α(m1,m2,...,mt)−β(m1,m2,...,mt)|.(Section 2.3)

(iii) If Γ = Cay(Q2n, {a, b}), then

GΓ(R) ∼=

Z|α−β| if n is odd.

Z|α2−β2| if n is even.
(2.1.1)

(Section 2.4)

(iv) Let H,K be finite groups with generating sets S, T , and identity el-
ements e, f , respectively. Let ΓH = Cay(H,S),ΓK = Cay(K,T ).
Suppose GΓH (R) is finite cyclic, generated by xe and GΓK (R) is fi-
nite cyclic generated by xf . Let Γ = Cay(H × K,S × T ). Then
GΓ(R) ∼= Z|α(N1,...,Np)−β(N1,...,Np)|, where N1, . . . , Np are the lengths of
the directed cycles in Γ. (Section 2.5)

Now we will provide Lemma 2.1.2. Proposition 2.1.3 and Proposition 2.1.4
which we use throughout this chapter.

Lemma 2.1.2. Let α 6= 0, β 6= 0, (α, β) = 1, αn − βn 6= 0, aα = bβ in K =
〈 a, b | R(a, b) 〉. Suppose Γ has a Hamilton path with an initial vertex u and a
terminal vertex v. If Γ has directed cycles including v of length Ni for 1 6 i 6 k

and including u of length Mj for 1 6 j 6 t then GΓ(R) is generated by xu,
which satisfies the relation xα(N1,N2,...,Nk,M1,M2,...,Mt)−β(N1,N2,...,Nk,M1,M2,...,Mt)

u = 1.

Proof. Label the vertices of Γ as 1, 2, ..., n so that 1 → 2 → 3 → · · · →
(n− 1)→ n is the Hamilton path in the statement. Then u = 1 and v = n.

Applying the argument of lines 1− 5 of Theorem 1.3.5 we have xγ0
n = 1

where γ0 = αN1 − βN1 . Now there is an arc (n − 1, n) so there is a relator
R(xn−1, xn) in the set of relators of GΓ(R). Now (β, γ0) = 1 so there exists
p0 ∈ Z such that p0β ≡ 1 mod γ0 so using Lemma 1.3.4 (d) we may adjoin
the relators xnx−p0α

n−1 and xαγ0
n−1. Let γ1 = αγ0.



2.1 Preamble 29

Now there is an arc (n − 2, n − 1) so there is a relator R(xn−2, xn−1).
Now (β, γ1) = 1 so there exists p1 ∈ Z such that p1β ≡ 1 mod γ1, so by
Lemma 1.3.4 (d) we may we may adjoin the relators xn−1x

−p1α
n−2 and xαγ1

n−2,
that is xα

2γ0
n−2 . Let γ2 = αγ1 = α2γ0.

As before we may delete xn−2 and adjoin the relators xn−2x
−p2α
n−3 and xαγ2

n−3,
that is, the relator xα

3γ0
n−3 .

Continuing in this way we obtain a presentation in which each xs (2 6

s 6 n) can be expressed as a power of xs−1 through a relator of the form
xsx

−pα
s−1 and where the generator x1 satisfies the relator xα(n−1)γ0

1 . Note that
we have not removed any relators in this process.

Now let γ(i)
0 = αNi − βNi for each 2 6 i 6 k. Repeating the above

argument with this latest presentation provides a new presentation which also
includes the relator xα

(n−1)γ(i)
0

1 . Other relators of the form xsx
−p(i)α
s−1 (2 6 i 6 n)

will also have been added in this process, but they are not important to us.
Using the relators of the form xsx

−pα
s−1 (2 6 s 6 n) we may remove

generators xn, xn−1, . . . , x3, x2 in turn, leaving a presentation with the single
generator x1. The relators xα(n−1)γ0

1 and xα
(n−1)γ(i)

0
1 for each 2 6 i 6 k remain.

Therefore x(α(n−1)γ0 ,α
(n−1)γ(2)

0 ,...,α
(n−1)γ(k)

0 )
1 = 1.

Now applying the argument of lines 1 − 5 of Theorem 1.3.5 using the
cycle of length Mj for each 1 6 j 6 t involving u we have xγ̄0(j)

1 = 1, where
γ̄

(j)
0 = αMj − βMj . Therefore x(γ̄0,γ̄0(2),...,γ̄0(t))

1 = 1.
Thus, we get

x
(α(n−1)γ0 ,α

(n−1)γ(2)
0 ,...,α

(n−1)γ(k)
0 ,γ̄0,γ̄0(2),...,γ̄0(t))

1 = x
(γ0,γ

(2)
0 ,...,γ

(k)
0 ,γ̄0,γ̄0(2),...,γ̄0(t))

1 = 1
so xα

(N1,N2,...,Nk,M1,M2,...,Mt)−β(N1,N2,...,Nk,M1,M2,...,Mt)

1 = 1, as required.

Proposition 2.1.3. Let α 6= 0, β 6= 0, (α, β) = 1, αn − βn 6= 0, aα = bβ in
K = 〈 a, b | R(a, b) 〉. For any digraph Γ, there is an epimorphism between
GΓ(R) and Z|α−β|.

Proof. The groupGΓ(R) is given by the presentationGΓ(R) = 〈xv(v ∈ V (Γ)) |
R(xu, xv)((u, v) ∈ A(Γ)) 〉.

Let φ : GΓ(R)→ 〈 t | t|α−β| 〉 be given by φ(xv) = t for all v ∈ V (Γ). Then
for any arc (u, v) we have φ(R(xu, xv)) = tα−β = 1, so φ is a homomorphism.
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Since for each 0 6 i < |α− β| and any vertex v ∈ V (Γ) we have φ(xiv) = ti,
so φ is an epimorphism.

Proposition 2.1.4. In the notation of Lemma 2.1.2, if (Ni, Nj) = 1, (Mi,Mj) =
1 or (Ni,Mj) = 1 for any i, j, then GΓ(R) ∼= Z|α−β|.

Proof. It is proved that xα
(N1,N2,...,Nk,M1,M2,...,Mt)−β(N1,N2,...,Nk,M1,M2,...,Mt)

1 = 1 by
Lemma 2.1.2. Suppose now that (Ni, Nj) = 1, (Mi,Mj) = 1 or (Ni,Mj) = 1
for any i, j. Then x|α−β|1 = 1. Therefore GΓ(R) is cyclic, generated by x1, and
x1 satisfies the relation x|α−β|1 = 1 so GΓ(R) is a quotient of the cyclic group
Z|α−β|. But by Proposition 2.1.3 GΓ(R) maps onto Z|α−β| so GΓ(R) ∼= Z|α−β|,
as required.

2.2 Circulant digraphs

Definition 2.2.1. [24] For any natural number n, we use Zn to denote the
additive cyclic group of integers modulo n. For any set of integers A, let
Cay(Zn, A) be digraph whose vertex set is Zn, and in which there is an arc
from u to u + a (modn), for every u ∈ Zn, and every a ∈ A. A digraph is
Circulant if it is isomorphic to Cay(Zn, A), for some choice of n and A.

The following partition below covers all Circulant digraphs and we provide
a proof for each one. We use different technique to prove them but all give
same result as we state in main theorem. Let A be the generating set, then

(i) Theorem 2.2.3 : A = {d1, d2, . . . , dt} and (dj, n) = 1 for some 1 6 j 6 t,

(ii) Theorem 2.2.4: A = {d1, d2, . . . , dt} and (dj, n) > 1 for all 1 6 j 6 t

and (n, d1, d2, . . . , dt) = 1, (n, d2 − d1, d3 − d1, . . . , dt − d1) = 1

(iii) Theorem 2.2.5: A = {d1, d2, . . . , dt} and (dj, n) > 1 for all 1 6 j 6 t

and (n, d1, d2, . . . , dt) = 1, (n, d2 − d1, d3 − d1, . . . , dt − d1) > 1

Theorems 2.2.3, 2.2.4, 2.2.5 will show that if Γ = Cay(Zn, A), then,
GΓ(R) ∼= Z|α(n,d2−d1,d3−d1,...,,dt−d1)−β(n,d2−d1,d3−d1,...,dt−d1)| for (i) − (iii) as in

Theorem A(i). We first provide Lemma 2.2.2 that we use throughout the
sections.
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Lemma 2.2.2. Let Γ = Cay(Zn, {1, d1, d2, . . . , dt}). If α 6= 0, β 6= 0, (α, β) =
1, αn − βn 6= 0, aα = bβ in 〈 a, b | R(a, b) 〉 then

GΓ(R) ∼= Z|α(n,d1−1,d2−1,...,dt−1)−β(n,d1−1,d2−1,...,dt−1)|.

Proof. The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x0, x1 . . . , xn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xi, xi+1), (0 6 i 6 n− 1)
R(xi, xi+d1),
R(xi, xi+d2),
...
R(xi, xi+dt)

〉
.

Let γ = αn − βn, since (α, β) = 1 there exists p, q such that pα + qγ = 1
and hence pα = 1 (modγ). Now xγi = 1 in GΓ(R) since xαni = xα

n−1β
i+1 =

xα
n−2β2

i+2 = . . . = xαβ
n−1

i+n−1 = xβ
n

i . So adjoin relators xγi = 1 for 0 6 i 6 n− 1. If
(i, j) ∈ A(Γ) then xαi = xβj in G so xi = xpα+qγ

i = xpαi = xpβj thus xi = xpβj .
Since (i, i + 1) ∈ A(Γ) then we have xi = xpβi+1(0 6 i 6 n − 1) and thus
xi = x

(pβ)t
i+t for each t > 0. In particular, xi = x

(pβ)n−1−i

n−1 . We adjoin these
relators. We now show that all R(xi, xi+1) for (0 6 i 6 n− 2) are redundant.

R(xi, xi+1) = R(x(pβ)n−1−i

n−1 , x
(pβ)n−1−(i+1)

n−1 )

= x
α(pβ)n−1−i

n−1 x
−β(pβ)n−1−(i+1)

n−1

= xαp
n−1−iβn−1−i−pn−1−i−1βn−1−i

n−1

= x
(pα)pn−2−iβn−1−i−pn−2−iβn−1−i

n−1

= xp
n−2−iβn−1−i−pn−2−iβn−1−i

n−1 since pα ≡ 1 mod γ

= x0
n−1

= 1
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Removing these redundant relators, we get

GΓ(R) =

〈
x0, x1 . . . , xn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xγi , xi = x
(pβ)n−1−i

n−1 , (0 6 i 6 n− 1)
R(xn−1, x0),
R(xi, xi+d1),
R(xi, xi+d2),
...
R(xi, xi+dt)

〉

=

〈
x0, x1 . . . , xn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xγi , xi = x
(pβ)n−1−i

n−1 , (0 6 i 6 n− 1)
R(xn−1, x0),
R(x0, xd1), R(x1, xd1+1), R(x2, xd1+2), . . . ,
R(xn−1, xd1−1),
R(x0, xd2), R(x1, xd2+1), R(x2, xd2+2), . . . ,
R(xn−1, xd2−1),
...
R(x0, xdt), R(x1, xdt+1), R(x2, xdt+2), . . . ,
R(xn−1, xdt−1)

〉
Eliminating x0, x1 . . . , xn−2 using xi = x

(pβ)n−1−i

n−1 for (0 6 i 6 n− 2),

GΓ(R) =

〈
xn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xγn−1,

R(xn−1, x
(pβ)n−1

n−1 ),
R(x(pβ)n−1

n−1 , x
(pβ)n−d1−1

n−1 ), R(x(pβ)n−2

n−1 , x
(pβ)n−d1−2

n−1 ), . . . ,
R(xn−1, x

(pβ)n−d1
n−1 ),

R(x(pβ)n−1

n−1 , x
(pβ)n−d2−1

n−1 ), R(x(pβ)n−2

n−1 , x
(pβ)n−d2−2

n−1 ), . . . ,
R(xn−1, x

(pβ)n−d2
n−1 ),

...
R(x(pβ)n−1

n−1 , x
(pβ)n−dt−1

n−1 ), R(x(pβ)n−2

n−1 , x
(pβ)n−dt−2

n−1 ), . . . ,
R(xn−1, x

(pβ)n−dt
n−1 )

〉
.

We now show that all R(x(pβ)n−1−i

n−1 , x
(pβ)n−1−i−dj

n−1 ) for (0 6 i 6 n− dj), where
1 6 j 6 t, can be written in terms of R(xn−1, x

(pβ)n−dj
n−1 ) so can be eliminated.
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To see this,

R(x(pβ)n−1−i

n−1 , x
(pβ)n−1−i−dj

n−1 ) = x
α(pβ)n−1−i−β(pβ)n−1−i−dj

n−1

= x
(pβ)n−i−1[α−β(pβ)n−dj ]
n−1 by (∗)

= (x[α−β(pβ)n−dj ]
n−1 )(pβ)n−i−1

= R(xn−1, x
(pβ)n−dj
n−1 )(pβ)n−i−1

.

(∗) (pβ)n = pnβn = pn(αn− γ) = (pα)n− pnγ = 1− 0 (mod γ) = 1 (mod γ).
Thus, we get

GΓ(R) = 〈xn−1 | xγn−1, R(xn−1, x
(pβ)n−1

n−1 ), R(xn−1, x
(pβ)n−d1
n−1 ),

R(xn−1, x
(pβ)n−d2
n−1 ), . . . , R(xn−1, x

(pβ)n−dt
n−1 ) 〉

= 〈xn−1 | xγn−1, x
α−β[(pβ)n−1]
n−1 , x

α−β[(pβ)n−d1 ]
n−1 , x

α−β[(pβ)n−d2 ]
n−1 , . . . ,

x
α−β[(pβ)n−dt ]
n−1 〉

= 〈xn−1 | x(γ,α−β[(pβ)n−1],α−β[(pβ)n−d1 ],α−β[(pβ)n−d2 ],...,α−β[(pβ)n−dt ]
n−1 ) 〉.

Let r = (γ, α− β[(pβ)n−1]).

β[(pβ)n−1] ≡ pn−1βn ≡ (pα)pn−1βn since (pα ≡ 1 mod γ)

≡ αpnβn ≡ αpn(αn − γ) since (γ = αn − βn)

≡ α(pα)n − αpnγ ≡ α (mod γ).

So γ divides α− β[(pβ)n−1] , and hence r = γ. Thus,

GΓ(R) = 〈 xn−1 | x(γ,α−β[(pβ)n−d1 ]),α−β[(pβ)n−d2 ]),...,α−β[(pβ)n−dt ])
n−1 〉.
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We have

α− β[(pβ)n−di ] = α− pn−diβn−di+1

≡ α− (pα)pn−diβn−di+1 since (pα ≡ 1 mod γ)

= α− αpn−di+1βn−di+1

= α(1− pn−di+1βn−di+1)

≡ α[pn−di+1αn−di+1 − pn−di+1βn−di+1] since (pα ≡ 1 mod γ)

= αpn−di+1[αn−di+1 − βn−di+1]

Thus, GΓ(R) = 〈xn−1 | x∆
n−1 〉, where ∆ = (γ, αpn−d1+1[αn−d1+1 −

βn−d1+1], αpn−d2+1[αn−d2+1 − βn−d2+1], . . . , αpn−dt+1[αn−dt+1 − βn−dt+1).
Let (p, γ) = d then d | p and d | γ so d | pα + βγ and hence d|1 since

(pα ≡ 1 mod γ). So d = (p, γ) = 1 and we know (α, γ) = 1 by the hypothesis.
Hence (γ, αpn−di+1) = 1. Then our presentation is

GΓ(R) = 〈xn−1 | x(γ,αn−d1+1−βn−d1+1,αn−d2+1−βn−d2+1,...,αn−dt+1−βn−dt+1)
n−1 〉

= 〈xn−1 | xα
(n,n−d1+1,n−d2+1,...,n−dt+1)−β(n,n−d1+1,n−d2+1,...,n−dt+1))

n−1 〉

= 〈xn−1 | xα
(n,1−d1,1−d2,...,1−dt)−β(n,1−d1,1−d2,...,1−dt))

n−1 〉
∼= Z|α(n,d1−1,d2−1,...,dt−1)−β(n,d1−1,d2−1,...,dt−1)|.

Theorem 2.2.3. Let Γ = Cay(Zn, {d1, d2, . . . , dt}). If α 6= 0, β 6= 0, (α, β) =
1, αn − βn 6= 0, aα = bβ in 〈 a, b | R(a, b) 〉 and (d1, n) = 1, then

GΓ(R) ∼= GCay(Zn,{1,d−1
1 d2,d

−1
1 d3,...,d

−1
1 dt})(R)

∼= Z|α(n,d2−d1,d3−d1,...,,dt−d1)−β(n,d2−d1,d3−d1,...,dt−d1)|.

Proof. Firstly, we will show GΓ(R) ∼= GCay(Zn,{1,d−1
1 d2,d

−1
1 d3,...,d

−1
1 dt})(R).

Since (d1, n) = 1, there exists p, q such that pd1 + qn = 1 and pd1 ≡
1 (mod n).

The digraph Cay(Zn, {d1, d2, . . . , dt}) has vertices v0, v1, . . . , vn−1 and arcs
(vi, vi+d1), (vi, vi+d2), . . . , (vi, vi+dt), where i = 0, 1, 2, . . . , n − 1. We may
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relabel the vertices according to the rule vi 7→ upi, where i = 0, 1, 2, . . . , n− 1.
Now, Γ has vertices u0, u1, . . . , un−1 and arcs (upi, upi+pd1), (upi, upi+pd2), . . .,
(upi, upi+pdt). Let j = pi and we know pd1 ≡ 1 (mod n). Then the arcs are
(uj, uj+1), (uj, uj+pd2), . . ., (uj, uj+pdt). This means

GΓ(R) ∼= GCay(Zn,{1,pd2,pd3,...,pdt})(R) ∼= GCay(Zn,{1,d−1
1 d2,d

−1
1 d3,...,d

−1
1 dt})(R)

since p ≡ d−1
1 (mod n). Hence,

GCay(Zn,{1,d−1
1 d2,d

−1
1 d3,...,d

−1
1 dt})

∼= Z|α∆−β∆|, where ∆ = (n, d−1
1 d2−1, d−1

1 d3−
1, . . . , d−1

1 dt − 1) by Lemma 2.2.2. Now our aim is to show

GCay(Zn,{1,d−1
1 d2,d

−1
1 d3,...,d

−1
1 dt})

∼= Z|α(n,d2−d1,d3−d1,...,dt−d1)−β(n,d2−d1,d3−d1,...,dt−d1)|.

Therefore, we need to show (n, d−1
1 dt − 1) = (n, dt − d1) for some 2 6 k 6 t.

Let (n, p) = δ so δ | p and δ | n then δ | pd1 + qn and hence δ | 1 since
(d1, n) = 1 so δ = 1.

We have

(n, d−1
1 d2 − 1, . . . , d−1

1 dt − 1) = (n, pd2 − 1, . . . , pdt − pd1)

since p ≡ d−1
1 (mod n)

= (n, pd2 − pd1, . . . pdt − pd1)

since pd1 ≡ 1 (mod n)

= (n, p(d2 − d1), . . . , p(dt − d1))

= (n, d2 − d1, . . . , dt − d1)

since (n, p) = 1 for 2 6 k 6 t.

Thus, if (d1, n) = 1 , then
GCay(Zn,{d1,d2,...,dt})

∼= Z|α(n,d2−d1,d3−d1,...,dt−d1)−β(n,d2−d1,d3−d1,...,dt−d1)|.

Theorem 2.2.4. Let Γ = Cay(Zn, {d1, d2, . . . , dt}). If α 6= 0, β 6= 0, (α, β) =
1, αn − βn 6= 0, aα = bβ in 〈 a, b | R(a, b) 〉 and (dj, n) > 1 for all 1 6 j 6

t, (n, d1, d2, . . . , dt) = 1, (n, d2 − d1, d3 − d1, . . . , dt − d1) = 1 then
GΓ(R) ∼= Z|α(n,d2−d1,d3−d1,...,,dt−d1)−β(n,d2−d1,d3−d1,...,dt−d1)|

∼= Z|α−β|.

Proof. If we find directed cycles and show their lengths are co-prime to each
other, then we can say that GΓ(R) ∼= Z|α−β| by Proposition 2.1.4.
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Let (d1, d2, . . . , dt) = δ and dj = ajδ (for 1 6 j 6 t , j ∈ Z).
If there is a directed cycle involving r1 arcs labelled by d1, r2 arcs labelled

by d2, . . . , rt arcs labelled by dt then r1d1 + r2d2 + . . .+ rtdt ≡ 0 (mod n) and
note that r1 + r2 + . . .+ rt give the length of the directed cycles.

Consider the congruence r1d1 + r2d2 + . . . + rtdt ≡ 0 (mod n). This
congruence has a solution r1 = n/(n, d1), rj = 0 for all j, and a solution
r2 = n/(n, d2), rj = 0 for all j. That means ri = n/(n, di), rj = 0 for all j
except for when j = i, 1 6 j 6 t.

We now seek a directed cycle where rj 6= 0, for all 1 6 j 6 t.
r1d1 + r2d2 + . . .+ rtdt ≡ 0 mod (n)

⇒ r1a1δ + r2a2δ + . . .+ rtatδ ≡ 0 mod (n)
⇒ δ(r1a1 + r2a2 + . . .+ rtat) ≡ 0 mod (n) since (n, δ) = 1 by the hypothesis
⇒ r1a1 + r2a2 + . . .+ rtat ≡ 0 mod (n)
⇒ ∑t

i=1 riai ≡ 0 mod (n).
For any 2 6 i 6 t, let r1 = n − ai, ri = a1 and rj = 0 for all 2 6 j 6 t,

j 6= i.
⇒ r1a1 +∑t

i=2 riai ≡ 0 mod (n)
⇒ (n− ai)a1 +∑t

i=2 a1ai ≡ 0 mod (n)
⇒ na1 − a1ai + a1ai ≡ 0 mod (n)
⇒ na1 ≡ 0 (mod n).

Thus, we have directed t− 1 cycle as (n− ai + a1) for 2 6 i 6 t. We now
claim that (n, n− a2 + a1, n− a3 + a1, . . . , n− at + a1) = 1.

To see this, we know (n, d2−d1, d3−d1, . . . , dt−d1) = 1 by the hypothesis.
Thus,

1 = (n, d2 − d1, d3 − d1, . . . , dt − d1)

= (n, a2δ − a1δ, a3δ − a1δ, . . . , atδ − a1δ)

= (n, δ(a2 − a1), δ(a3 − a1), . . . , δ(at − a1))

= (n, a2 − a1, a3 − a1, . . . , at − a1) since (n, δ) = 1 by the hypothesis

= (n, n− a2 + a1, n− a3 + a1, . . . , n− at + a1)

Since (n, n− a2 + a1, n− a3 + a1, . . . , n− at + a1) = 1, then (n/(n, d1), n−
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a2 + a1, n− a3 + a1, . . . , n− at + a1) = 1.
Thus we have directed cycles of length n/(n, d1) and (n − ai + a1) for

2 6 i 6 t. And they are co-prime as shown above.
(Zn, {d1, d2, . . . , dt}) is a cyclic group so (Zn, {d1, d2, . . . , dt}) is abelian

and it is known that every connected Cayley digraph on an abelian group
has a Hamiltonian path [16, Theorem 3.1]. Then the result follows from
Proposition 2.1.4. That is, we have proved GΓ(R) ∼= Z|α−β|.

Theorem 2.2.5. Let Γ = Cay(Zn, {d1, d2, . . . , dt}). If α 6= 0, β 6= 0, (α, β) =
1, αn − βn 6= 0, aα = bβ in 〈 a, b | R(a, b) 〉 and (dj, n) > 1 for all 1 6 j 6 t,
(n, d1, d2, . . . , dt) = 1, (n, d2 − d1, d3 − d1, . . . , dt − d1) > 1 then

GΓ(R) ∼= Z|α(n,d2−d1,d3−d1,...,,dt−d1)−β(n,d2−d1,d3−d1,...,dt−d1)|.

Proof. Applying the argument of lines 3 − 10 of Theorem 2.2.4 we have
n/(n, dj) directed cycles for 1 6 j 6 t, and applying the argument of lines
11 − 23 of Theorem 2.2.4 we have n − ai + a1 for all 2 6 i 6 t. Let x the
initial vertex, then it can be written as x(n/(n,d1),n−a2+a1,n−a3+a1,...,n−at+a1) by
Lemma 2.1.2.

We now claim that (n/(n, d1), n/(n, d2), . . . , n/(n, dt), n−a2 +a1, n−a3 +
a1, . . . , n− at + a1) = (n, d2 − d1, d3 − d1, . . . , dt − d1).

To see this, let (n, dj) = kj for 1 6 j 6 t, (d1, d2, . . . , dt) = δ, (n, d2 −
d1, d3 − d1, . . . , dt − d1) = h and (n/(n, d1), n/(n, d2), . . . , n/(n, dt), n − a2 +
a1, n− a3 + a1, . . . , n− at + a1) = X, where dj = ajδ for 1 6 j 6 t.

Let (n, d2 − d1, d3 − d1, . . . , dt − d1) = h and define c1 = n/h and ci =
(di − d1)/h for some ci ∈ Z for 2 6 j 6 t.

X = (n/(n, d1), . . . , n/(n, dt), n− a2 + a1, . . . , n− at + a1)

| (n, n− a2 + a1, n− a3 + a1, . . . , n− at + a1)

then X | (n, a2 − a1, a3 − a1, . . . , at − a1) and so X | (n, (d2 − d1)/δ, (d3 −
d1)/δ, . . . , (dt − d1)/δ).

Also (n, (d2 − d1)/z, (d3 − d1)/z, . . . , (dt − d1)/z) | (n, (d2 − d1), (d3 −
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d1), . . . , (dt − d1)). Thus,

X | (n, d2 − d1, d3 − d1, . . . , dt − d1)⇒ X|h (2.2.1)

Now,

X = (n/k1, n/k2, . . . , n/kt, n− a2 + a1, n− a3 + a1, . . . , n− at + a1)

= (n/k1, n/k2, . . . , n/kt, n− d2/δ + d1/δ, n− d3/δ + d1/δ, . . . ,

n− dt/δ + d1/δ)

= (n/k1, n/k2, . . . , n/kt, n− (d2 − d1)/δ, n− (d3 − d1)/δ, . . . ,

n− (dt − d1)/δ)

= (n/k1, n/k2, . . . , n/kt, hc1 − hc2/δ, hc1 − hc3/δ, . . . , hc1 − hct/δ).

Multiplying both sides by k1k2 . . . ktδ gives
Xk1k2 . . . ktδ = (nk2 . . . ktδ, nk1k3 . . . ktδ, · · · , nk1k2 . . . kt−1δ, hc1k1k2 . . . ktδ−

hc2k1k2 . . . kt, hc1k1k2 . . . ktδ−hc3k1k2 . . . kt, · · · , hc1k1k2 . . . ktδ−hctk1k2 . . . kt).
Now, h | n⇒ h | nk2 . . . ktδ, h | nk1k3 . . . ktδ, up to h | nk1 . . . kt−1δ and
h | hc1k1k2 . . . ktδ − hc2k1k2 . . . kt, h | hc1k1k2 . . . ktδ − hc3k1k2 . . . kt, up

to h | hc1k1k2 . . . ktδ − hctk1k2 . . . kt.
Therefore, h divides right hand side so h | Xk1k2 . . . ktδ.

(h, kj) = (h, (n, dj))

= ((n, d2 − d1, d3 − d1, . . . , dt − d1), (n, dj))

= (n, dj, d2 − d1, d3 − d1, . . . , dt − d1)

= (n, d1, d2, . . . , dt)

= 1 for 1 6 j 6 t

(h, δ) = ((n, d2 − d1, d3 − d1, . . . , dt − d1), (d1, d2, . . . , dt))

= (n, d1, d2, . . . , dt, d2 − d1, d3 − d1, . . . , dt − d1)

= (1, d2 − d1, d3 − d1, . . . , dt − d1)

= 1
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Since (h, kj) = 1 for 1 6 j 6 t and (h, δ) = 1, then

h | X (2.2.2)

Thus h = X by the equations 2.2.1 and 2.2.2. Hence,
Z|α(n,d2−d1,d3−d1,...,dt−d1)−β(n,d2−d1,d3−d1,...,dt−d1)| maps onto GΓ(R).
Now we need to show that GΓ(R) maps onto
Z|α(n,d2−d1,d3−d1,...,,dt−d1)−β(n,d2−d1,d3−d1,...,dt−d1)|.
Let r = (n, d2 − d1, d3 − d1, . . . , , dt − d1). So our aim is to show GΓ(R)

maps onto 〈xn−1 | xα
r−βr
n−1 〉.

mi is defined as φ(xi) = xmin−1 and

mi =



αr−1 i ≡ 0 mod r

βr−1 i ≡ d1 mod r

αβr−2 i ≡ 2d1 mod r

α2βr−3 i ≡ 3d1 mod r
... ...

αr−2β i ≡ (r − 1)d1 mod r

αr−1 i ≡ rd1 mod r

(2.2.3)

dj − d1 ≡ 0 mod r for all 2 6 j 6 t.
dj ≡ d1 mod r.

Is {0, d1, 2d1, . . . , (r − 1)d1}(mod r) equal {0, 1, 2, . . . , (r − 1)}(mod r) ?
We need to discuss this if (d1, r) = 1, then the answer is yes. So
(d1, r) = (d1, n, d2 − d1, d3 − d1, . . . , dt − d1) = (n, d1, d2, . . . , dt) = 1 by

hypothesis. Thus, that is correct so i mod r covers all generators.
We will now show φ(R(xi, xi+dj ) = 1 for each i, j. So φ is a homomorphism.
i ≡ 0 mod r φ(R(xi, xi+d1)) = (xmin−1)α(xmi+d1n−1 )−β = (xm0

n−1)α(xmd1n−1)−β =
(xαr−1

n−1 )α(xβ
r−1

n−1 )−β = xα
r−βr
n−1

i ≡ d1 mod r (xmd1n−1)α(xm2d1
n−1 )−β = (xβ

r−1

n−1 )α(xαβ
r−2

n−1 )−β = 1
i ≡ 2d1 mod r (xm2d1

n−1 )α(xm3d1
n−1 )−β = (xαβ

r−2

n−1 )α(xα
2βr−3

n−1 )−β = 1
...
i ≡ (r − 1)d1 mod r (xm(r−2)d1

n−1 )α(xm(r−1)d1
n−1 )−β = (xα

r−3β2

n−1 )α(xα
r−2β
n−1 )−β = 1
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i ≡ 0 mod r φ(R(xi, xi+dj)) = (xmin−1)α(x
mi+dj
n−1 )−β = (xm0

n−1)α(x
mdj
n−1)−β =

(xαr−1
n−1 )α(xβ

r−1

n−1 )−β = xα
r−βr
n−1

Since dj ≡ d1 mod r for all 2 6 j 6 t

i ≡ dj mod r (x
mdj
n−1)α(x

m2dj
n−1 )−β = (xβ

r−1

n−1 )α(xαβ
r−2

n−1 )−β = 1
i ≡ 2dj mod r (x

m2dj
n−1 )α(x

m3dj
n−1 )−β = (xαβ

r−2

n−1 )α(xα
2βr−3

n−1 )−β = 1
...
i ≡ (r − 1)dj mod r (x

m(r−2)dj
n−1 )α(x

m(r−1)dj
n−1 )−β = (xα

r−3β2

n−1 )α(xα
r−2β
n−1 )−β = 1.

Thus, φ is a homomorphism since each relator maps to the identity. Now
we show that φ is an epimorphism.

αr−1 generates Zαr−βr . Let N = αr − βr, then (αr−1, N) = 1. Therefore,
αr−1 generates ZN . i = (αr−1)K for someK, i ∈ {0, 1, . . . , N−1}. (φ(xo))K =
(αr−1)K = i. Hence, φ(xo) generates Zαr−βr . Thus, φ is onto.

Hence, GΓ(R) ∼= Z|α(n,d2−d1,d3−d1,...,dt−d1)−β(n,d2−d1,d3−d1,...,dt−d1)|.

2.3 Cayley digraphs of direct sum of Cyclic
groups

Theorem 2.3.1. Let Γ = Cay(Zm1 ⊕ Zm2 ⊕ . . .⊕ Zmt , {e1, e2, . . . , et}),
where {e1, e2, . . . , et} = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}.
If α 6= 0, β 6= 0, (α, β) = 1, αn − βn 6= 0, aα = bβ in 〈 a, b | R(a, b) 〉, then
GΓ(R) ∼= Z|α(m1,m2,...,mt)−β(m1,m2,...,mt)|.

Proof. The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x(i1,i2,...,it)

∣∣∣∣∣∣∣∣∣∣∣∣

R(x(i1,i2,...,it), x(i1+1,i2,...,it)) , i1 ∈ [0,m1 − 1]
R(x(i1,i2,...,it), x(i1,i2+1,...,it)) , i2 ∈ [0,m2 − 1]
...
R(x(i1,i2,...,it), x(i1,i2,...,it+1)) , it ∈ [0,mt − 1]

〉
.

If (i, j) ∈ A(Γ) then xαi = xβj in G. Thus,
We have xαm1

(i1,i2,...,it) = xα
m1−1β

(i1+1,i2,...,it) = xα
m1−2β2

(i1+2,i2,...,it) = . . . = xαβ
m1−1

(i1+m1−1,i2,...,it) =
xβ

m1
(i1,i2,...,it) so we may adjoin relators xα

m1−βm1
(i1,i2,...,it) = 1.
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We have xαm2
(i1,i2,...,it) = xα

m2−1β
(i1,i2+1,...,it) = xα

m2−2β2

(i1,i2+2,...,it) = . . . = xαβ
m2−1

(i1,i2+m2−1,...,it) =
xβ

m2
(i1,i2,...,it) so we may adjoin relators xα

m2−βm2
(i1,i2,...,it) = 1.

...
We have xαmt(i1,i2,...,it) = xα

mt−1β
(i1,i2,...,it+1) = xα

mt−2β2

(i1,i2,...,it+2) = . . . = xαβ
mt−1

(i1,i2,...,it+mt−1) =
xβ

mt

(i1,i2,...,it) so we may adjoin relators xα
mt−βmt

(i1,i2,...,it) = 1.
After we adjoin these relators, then our new presentation is

GΓ(R) =

〈
x(i1,i2,...,it)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x(i1,i2,...,it), x(i1+1,i2,...,it)) , i1 ∈ [0,m1 − 1]
R(x(i1,i2,...,it), x(i1,i2+1,...,it)) , i2 ∈ [0,m2 − 1]
...
R(x(i1,i2,...,it), x(i1,i2,...,it+1)) , it ∈ [0,mt − 1]
xα

m1−βm1
(i1,i2,...,it), x

αm2−βm2
(i1,i2,...,it), . . . , x

αmt−βmt
(i1,i2,...,it)

〉
.

Let γs = αms − βms for 1 6 s 6 t, since(α, β) = 1 there exists p, q such that
pα+ qγs = 1 and hence pα = 1 (modγs). If (i, j) ∈ A(Γ) then xαi = xβj in G
so xi = xpα+qγi

i = xpαi = xpβj thus xi = xpβj by Lemma 1.3.4 (a) so we have
this equation

x(i1,i2,...,it) = x
(pβ)
(i1+1,i2,i3,...,it) = x

(pβ)2

(i1+2,i2,i3,...,it) = . . . = x
(pβ)(m1−i1−1)

(m1−1,i2,i3,...,it)

x
(pβ)(m1−i1−1)

(m1−1,i2,i3,...,it) = x
(pβ)(m1−i1−1)+1

(m1−1,i2+1,i3,...,it)

= x
(pβ)(m1−i1−1)+2

(m1−1,i2+2,i3,...,it) = . . . = x
(pβ)(m1−i1−1)+(m2−i2−1)

(m1−1,m2−1,i3,...,it) .

Continuing in this way, we get

x(i1,i2,...,it) = x
(pβ)(m1+m2+...+mt)−(i1+i2+...+it)−t

(m1−1,m2−1,...,mt−1) . (2.3.1)

We adjoin these relations to the presentation.



2.3 Cayley digraphs of direct sum of Cyclic groups 42

Now, let (m1 +m2 + . . .+mt) = y and (i1 + 1 + i2 + . . .+ it) = z. Then

R(x(i1,i2,...,it), x(i1+1,i2,...,it)) = R(x(pβ)(m1+m2+...+mt)−(i1+i2+...+it)−t

(m1−1,m2−1,...,mt−1) ,

x
(pβ)(m1+m2+...+mt)−(i1+1+i2+...+it)−t

(m1−1,m2−1,...,mt−1) )

= R(x(pβ)y−z−t
(m1−1,m2−1,...,mt−1), x

(pβ)y−(z+1)−t

(m1−1,m2−1,...,mt−1))

= x
α[(pβ)y−z−t]−β[(pβ)y−(z+1)−t]
(m1−1,m2−1,...,mt−1)

= xp
y−z−t−1βy−z−t−py−z−t−1βy−z−t

(m1−1,m2−1,...,mt−1)

= x0

= 1.

Similarly

R(x(i1,i2,i3,...,it), x(i1,i2+1,i3...,it)) = 1

R(x(i1,i2,i3...,it), x(i1,i2,i3+1...,it)) = 1
...

R(x(i1,i2,i3...,it), x(i1,i2,i3...,it+1)) = 1

Thus, each of these relations are redundant and so we may remove such
relations from the presentation. We then use the relations (2.3.1) to eliminate
all generators except for
x(m1−1,m2−1,m3−1,...,mt−1),
x(0,m2−1,m3−1,...,mt−1),
x(m1−1,0,m3−1,...,mt−1),
...
x(m1−1,m2−1,m3−1,...,mt−1−1,0)

and the corresponding relations.
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This gives

GΓ(R) =

〈 x(m1−1,m2−1,...,mt−1),

x(0,m2−1,...,mt−1),

x(m1−1,0,...,mt−1),
...
x(m1−1,m2−1,...,0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x(m1−1,m2−1,...,mt−1), x(0,m2−1,...,mt−1)),
R(x(m1−1,m2−1,...,mt−1), x(m1−1,0,...,mt−1)),
...
R(x(m1−1,m2−1,...,mt−1), x(m1−1,m2−1,...,0)),
xα

m1−βm1
(i1,i2,...,it), x

αm2−βm2
(i1,i2,...,it), . . . , x

αmt−βmt
(i1,i2,...,it)

〉

=

〈
x(m1−1,m2−1,...,mt−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x(m1−1,m2−1,...,mt−1), x
(pβ)m1−1)
(m1−1,m2−1,...,mt−1)),

R(x(m1−1,m2−1,...,mt−1), x
(pβ)m2−1)
(m1−1,m2−1,...,mt−1)),

...
R(x(m1−1,m2−1,...,mt−1), x

(pβ)mt−1)
(m1−1,m2−1,...,mt−1)),

xα
m1−βm1

(m1−1,m2−1,...,mt−1), x
αm2−βm2
(m1−1,m2−1,...,mt−1), . . . ,

xα
mt−βmt

(m1−1,m2−1,...,mt−1)

〉
.

Let h = (m1−1,m2−1, . . . ,mt−1) and after substituting in the presentation,
we get

GΓ(R) =
〈
xh

∣∣∣∣∣∣ R(xh, x(pβ)m1−1

h ), R(xh, x(pβ)m2−1

h ), . . . , R(xh, x(pβ)mt−1

h )
xα

m1−βm1
h , xα

m2−βm2
h , . . . , xα

mt−βmt
h

〉

=
〈
xh

∣∣∣∣∣∣ x
α−β(pβ)m1−1

h , x
α−β(pβ)m2−1

h , . . . , x
α−β(pβ)mt−1

h

xα
m1−βm1
h , xα

m2−βm2
h , . . . , xα

mt−βmt
h

〉

= 〈xh | x(α−β(pβ)m1−1,αm1−βm1 )
h , x

(α−β(pβ)m2−1,αm2−βm2 )
h , . . . ,

x
(α−β(pβ)mt−1,αmt−βmt )
h 〉

= 〈xh | x(α−β(pβ)mi−1,αmi−βmi )
h , for 1 6 i 6 t 〉.
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Let γi = αmi − βmi for some 1 6 i 6 t. Then,

β[(pβ)mi−1] = pmi−1βmi

≡ (pα)pmi−1βmi since (pα ≡ 1 mod γi)

≡ αpmiβmi

≡ αpmi(αmi − γi) since (γi = αmi − βmi)

≡ α(pα)mi − αpmiγi
≡ α (mod γi).

So γi divides α− β[(pβ)mi−1]. Thus,

GΛ(R) = 〈xh | xγ1
h , x

γ2
h , . . . , x

γt
h 〉

= 〈xh | x(γ1,γ2,...,γt)
h 〉

= 〈xh | x(αm1−βm1 ,αm2−βm2 ,...,αmt−βmt )
h 〉

= 〈xh | xα
(m1,m2,...,mt)−β(m1,m2,...,mt)

h 〉
∼= Z|α(m1,m2,...,mt)−β(m1,m2,...,mt)|.

2.4 Cayley digraphs of Quaternion groups

Example 2.4.1. The Cayley graph of the figure in the case n = 2 is given
in ([13, page 485]). This figure is also given here.

H = Cay(Q4, {a, b}) = 〈 a, b | a4, a2 = b2, b−1ab = a−1 〉.

Theorem 2.4.2. Let Γ = Cay(Q2n, {a, b}). If α 6= 0, β 6= 0, (α, β) = 1, αn −
βn 6= 0, aα = bβ in 〈 a, b | R(a, b) 〉 then

GΓ(R) ∼=

Z|α−β| if n is odd

Z|α2−β2| if n is even
(2.4.1)
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eH

a

a2

a3

b

ab

a2b

a3b

a a

Figure 2.1: Cay(Q4, {a, b})

Proof. The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
xe, xa, xa2 ,

. . . , xa2n−1 ,

xb, xab, xa2b,

. . . , xa2n−1b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xe, xa), R(xa, xa2), . . . , R(xa2n−1 , xe),
R(xa2n−1b, xa2n−2b), R(xa2n−2b, xa2n−3b), . . . ,
R(xb, xa2n−1b),
R(xe, xb), R(xa, xab), . . . , R(xa2n−1 , xa2n−1b),
R(xanb, xe), R(xan+1b, xa), . . . , R(xa2n−1b, xan−1),
R(xb, xan), R(xab, xan+1), . . . , R(xan−1b, xa2n−1)

〉
=
〈
xai , xaib

∣∣∣∣∣∣ R(xai , xai+1), R(xaib, xai−1b), R(xai , xaib),
R(xan+ib, xai) for 0 6 i 6 2n− 1

〉
.

There is always a Hamiltonian path in Γ as e a−→ a
a−→ a2 a−→ . . .

a−→ a2n−1 b−→
a2n−1b

a−→ a2n−1ba = a2n−2b
a−→ . . .

a−→ ab
a−→ aba = b. Since ba = a−1b by

hypothesis.
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Firstly, we always have a directed cycle in the length of 3n,

e
a−→ a

a−→ a2 a−→ . . .
a−→ a2n−1︸ ︷︷ ︸

2n-1

b−→︸︷︷︸
1

a2n−1b
a−→ a2n−1ba = a2n−2b

a−→ a2n−2ba = a2n−3b
a−→ . . .

a−→ anb︸ ︷︷ ︸
n-1

b−→︸︷︷︸
1

anb2 = anan = a2n = e

Secondly, we always have a directed cycle in the length of 2n,
e

a−→ a
a−→ a2 a−→ . . .

a−→ a2n−1 a−→ a2n = e︸ ︷︷ ︸
2n

.

Thirdly, we always have a directed cycle in the length of 4,
e

b−→ b
b−→ b2 = an

b−→ anb
b−→ anb2 = anan = a2n = e︸ ︷︷ ︸

4

.

Lastly, we always have a directed cycle in the length of n+ 2,
e

a−→ a
a−→ a2 a−→ . . .

a−→ an︸ ︷︷ ︸
n

b−→︸︷︷︸
1

anb
b−→ anb2 = anan = a2n = e︸ ︷︷ ︸

1
Let v be the terminal vertex of the Hamiltonian path and GΓ(R) is

generated by xv, so it is cyclic. Since v is a vertex of directed cycle of length
3n, then xα3n−β3n

v and v is a vertex of directed cycle of length 2n, then xα2n−β2n
v

and v is a vertex of directed cycle of length 4, then xα4−β4
v and lastly v is a

vertex of directed cycle of length n+ 2, then xαn+2−βn+2
v by Lemma 2.1.2.

Hence, the group GΓ(R) is a quotient of

〈xv | xα
3n−β3n

v , xα
2n−β2n

v , xα
4−β4

v , xα
n+2−βn+2

v 〉

= 〈xv | xα
(3n,2n,4,n+2)−β(3n,2n,4,n+2)

v 〉 ∼= Z|α(n,4,n+2)−β(n,4,n+2)|.

Now, (n, 4, n+ 2) = (n, 4, 2) = (n, 2) so Z|α(n,2)−β(n,2)| maps onto GΓ(R).
If n is odd then Z|α−β| maps onto GΓ(R) and therefore GΓ(R) ∼= Z|α−β|

by Proposition 2.1.4.
If n is even then Z|α2−β2| maps onto GΓ(R). Now we claim that if n is

even, GΓ(R) maps onto Z|α2−β2|.

Let GΓ(R) = 〈xv (v ∈ V (Λ)) | R(xu, xv) ((u, v) ∈ A(Λ)) 〉.
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We define the map GΓ(R) φ−→ 〈xn−1 | xα
2−β2

n−1 〉 ∼= Zα2−β2 by

φ(xai) =

x
α
n−1 i even

xβn−1 i odd
(2.4.2)

φ(xaib) =

x
β
n−1 i even

xαn−1 i odd
(2.4.3)

Then

φ(R(xai , xai+1)) = φ(xai)αφ(xai+1)−β =

(xαn−1)α(xβn−1)−β i even

(xβn−1)α(xαn−1)−β i odd
= 1

(2.4.4)

φ(R(xaib, xai+1b)) = φ(xai)αφ(xai+1)−β =

(xβn−1)α(xαn−1)−β i even

(xαn−1)α(xβn−1)−β i odd
= 1

(2.4.5)
So φ is a homomorphism since each relator maps to the identity. Now

(α, β) = 1 so there exist p, q such that pα + qβ = 1. Therefore,
xn−1 = x1

n−1 = xpα+qβ
n−1 = (xαn−1)p(x

β
n−1)q = φ(xpa2)φ(xqa) = φ(xpa2xqa).

Hence, φ is an epimorphism. Thus, GΓ(R) ∼= Z|α2−β2|.

2.5 Cayley digraphs of direct product of two
groups

Theorem 2.5.1. Let H,K be finite groups with generating sets S, T , and
identity elements e, f , respectively. Let ΓH = Cay(H,S),ΓK = Cay(K,T ).
Let α 6= 0, β 6= 0, (α, β) = 1, αn − βn 6= 0, aα = bβ in 〈 a, b | R(a, b) 〉. Suppose
GΓH (R) is finite cyclic, generated by xe and GΓK (R) is finite cyclic generated
by xf . Let Γ = Cay(H × K,S × T ). Then GΓ(R) ∼= Z|α(N1,...,Np)−β(N1,...,Np)|,
where N1, . . . , Np are the length of the directed cycles in Γ.

Proof. Since GΓK is finite cyclic generated by xf , any generator xk of GΓK
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can be written in terms of xf . The arcs of Γ are labelled (s, t) s ∈ S, t ∈ T

V (Γ) = {(h, k) | h ∈ H, k ∈ K} and GΓ(R) = 〈x(h,k) (h ∈ H, k ∈ K) | . . . 〉

Now, fix h in H. There is a path from (h, f) to (h, k) for any k in ΓK . Thus,
since aα = bβ in K = 〈 a, b | R(a, b) 〉 as in [9] any generator x(h,k) can be
written in terms of the generator x(h,f). There is also a path from (e, f) to
(h, f) for each h in ΓH . Thus, any generator x(h,f) can be written in terms of
x(e,f). Therefore any generator x(h,k) can be written in terms of x(e,f). Thus,
GΓR is cyclic.

Since Γ is a Cayley digraph it has a Hamiltonian path with (e, f) as
the terminal vertex. By hypothesis (e, f) is a vertex of directed cycles of
length N1, . . . , Np. Then xα

N1−βN1
(e,f) = 1, xα

N2−βN2
(e,f) = 1, . . . , xα

Np−βNp
(e,f) = 1 by

Lemma 2.1.2. Hence, we get

〈x(e,f) | xα
N1−βN1

(e,f) , xα
N2−βN2

(e,f) , . . . , xα
Np−βNp

(e,f) 〉

= 〈x(e,f) | xα
(N1,N2,N3,...,Np)−β(N1,N2,N3,...,Np)

(e,f) 〉 ∼= Z|α(N1,N2,N3,...,Np)−β(N1,N2,N3,...,Np)|.

Example 2.5.2. LetH = Cay(Q4, {a, b}) = 〈 a, b | a4, a2 = b2, b−1ab = a−1 〉,
K = Cay(Z2, {1}) and

Γ = Cay(H ×K,S × T ) = Cay(Q4 ⊕ Z2, {(a, 0), (b, 0), (e, 1)}), then the
figure of this digraph is in Figure 2.2, below.

In this example, we can find directed cycles in the length of 2, 4, 6, 8, . . .
but it is not possible to find a directed cycle in odd length. For example,
[(e, 0), (b, 0)], [(b, 0), (e, 0)], which is length 2, and [(e, 0), (a, 0)], [(a, 0), (a2, 0)]
[(a2, 0), (a2b, 0)], [(a2b, 0), (e, 0)], which is length 4. Hence, GΓ(R) ∼= Z|α2−β2|.



2.5 Cayley digraphs of direct product of two groups 49

(a, 0) (b, 0) (e, 1)

(e, 0)

(a, 0)

(a2, 0)

(a3, 0)

(b, 0)

(ab, 0)

(a2b, 0)

(a3b, 0)

(e, 1)

(a, 1)

(a2, 1)

(a3, 1)

(b, 1)

(ab, 1)

(a2b, 1)

(a3b, 1)

(a, 0)

(e, 1)

Figure 2.2: Cay(Q4 ⊕ Z2, {(a, 0), (b, 0), (e, 1)})
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Digraph groups with |V | = |A| − 1

3.1 Introduction

Presentations with more generators than relators necessarily define infinite
groups, which can be seen by abelianizing the groups [21, page 84]. Cuno
& Williams [9] investigated digraph groups GΓ(R) where |V (Γ)| = |A(Γ)|
(i.e with equal number of generators as relators) and where the undirected
graph is triangle free (i.e. g(Γ) > 4) and in most cases they proved that the
corresponding group GΓ(R) is either finite cyclic or infinite. Therefore, in
this chapter we investigate the case |V | = |A| − 1. Before defining the classes
of digraphs, we construct the graphs under the following conditions.

(i) Γ connected (if Γ is disconnected with components Γ1,Γ2, . . .ΓN then
GΓ(R) ∼= GΓ1(R) ∗ . . . ∗ GΓN (R). Thus we may assume that Γ is
connected) [7, page 13].

(ii) |V | = |A| − 1 (it is known if |V | > |A|, then the group is infinite [21,
page 84], and Cuno and Williams investigated possible graphs when
|V | = |A| in [9]).

(iii) |α| > 2, |β| > 2 (when α = 1 and β arbitrary or β = 1 and α is arbitrary
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enables us recursively prune the graphs but we will focus on |α| > 2,
|β| > 2 which gives us interesting digraphs).

(iv) 0 6 σ1 6 σ 6 1 and 0 6 τ1 6 τ 6 1, where σ, τ, σ1, τ1 are the number
of sources, sinks, source leaves and sink leaves respectively, (Cuno and
Williams showed why we look between 0 and 1 [9]. It is also explained
in Lemma 1.3.3).

(v) σ > τ and if σ = τ , then σ1 > τ1 (by reflection principle (see Re-
mark 1.3.7)).

Lemma 3.1.1. Under these circumstances (i), (ii), (iv), (v), there are 35
possible digraph families as indicated in Figure 3.4 on page 58 and Figure 3.5
on page 59.

Proof. Since entire digraph is connected (i), there are two possibilities. First
consider the case where the graph has no leaves. There are two possibilities
for the form of the underlying graph. One possibility is that the underlying
graph is constructed by fusing two cycles together with a path between them
(as in Γ1); the other is to connect two cycles along a path common to both
cycles (as in Γ2). The figures are given in Figure 3.1, below where we label
two particular vertices k, l. We now need to direct Γ1 and Γ2 to specify the
possible digraph families.

Γ1 k l

Γ2

k

l

Figure 3.1: Two possible undirected graphs with |V | = |A| − 1.

By conditions (iv) and (v) we have (σ, τ) = (0, 0), (1, 0) or (1, 1).
Case 1: (σ, τ) = (0, 0). Then (σ1, τ1) = (0, 0).
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For Γ1, these two cycles are the directed cycles since they have neither
source nor sink and the path between them could be in any direction (basically
from k to l or l to k) which gives isomorphic to each other and this is (i) in
Figure 3.4 on page 58.

For Γ2, there are 2 · 2 · 2 = 8 cases to direct the undirected graph as 2
for first cycle, 2 for intersection part of the cycles and 2 for second cycle
(basically from k to l or l to k).

(1) If k to l for first cycle, k to l for intersection part of the cycles and k
to l for second cycle, then it is not possible since k is a source which is not
possible.

(2) If k to l for first cycle, k to l for intersection part of the cycles and l
to k for second cycle then this gives the one which is isomorphic to (vii) in
Figure 3.4 on page 58.

(3) If k to l for first cycle, l to k for intersection part of the cycles and k
to l for second cycle then this is (vii) in Figure 3.4.

(4) k to l for first cycle, l to k for intersection part of the cycles and l

to k for second cycle, then this gives the one which is isomorphic to (vii) in
Figure 3.4.

(5) l to k for first cycle, k to l for intersection part of the cycles and k
to l for second cycle, then this gives the one which is isomorphic to (vii) in
Figure 3.4.

(6) l to k for first cycle, k to l for intersection part of the cycles and l

to k for second cycle, then this gives the one which is isomorphic to (vii) in
Figure 3.4.

(7) l to k for first cycle, l to k for intersection part of the cycles and k
to l for second cycle, then this gives the one which is isomorphic to (vii) in
Figure 3.4.

(8) l to k for first cycle, l to k for intersection part of the cycles and l to k
for second cycle, then it is not possible since k is a sink which is not possible.
Case 2: (σ, τ) = (1, 0). Then (σ1, τ1) = (0, 0) or (1, 0)
Case 2(a): (σ, τ) = (1, 0) and (σ1, τ1) = (0, 0).

For Γ1, this source can be either on one of the cycle (does not matter
which one since they are isomorphic to each other) or on the path between
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the cycles. If the source is on the cycle (say on first cycle), then the path
between the cycles is from k to l since k cannot be a sink and the second
cycle has to be a directed cycle since it cannot have one more source or sink.
As a result, this is (ii) in Figure 3.4 on page 58. If the source is on the path
between the cycles (let t be a source k 6 t 6 l), then there is a path from t to
k and t to l and the cycles have to be directed cycles since they cannot have
one more source or sink. As a result, this is (iii) in Figure 3.4 on page 58.

For Γ2, this source can be on the first cycle, intersection of them or the
second cycle. All of them are isomorphic to each other. Therefore, it will
be enough to consider a source on the first cycle. There is a path from the
source to k and l. Then there are 2 · 2 = 4 cases to direct the undirected
graph as 2 for intersection part of the cycles and 2 for second cycle (basically
from k to l or l to k).

(1) If k to l for intersection part of the cycles and k to l for second cycle,
then it is not possible since l is a sink which is not possible.

(2) If k to l for intersection part of the cycles and l to k for second cycle
then this gives the one which is isomorphic to (viii) in Figure 3.4 on page 58.

(3) If l to k for intersection part of the cycles and k to l for second cycle
then this is (viii) in Figure 3.4 on page 58.

(4) l to k for intersection part of the cycles and l to k for second cycle,
then it is not possible since k is a sink which is not possible.
Case 2(b): (σ, τ) = (1, 0) and (σ1, τ1) = (1, 0).

Now, there is a source leaf so to obtain the digraphs in this case we need
to add a source leaf to the Figure 3.1 on page 51. The possibilities are listed
in Figure 3.2 on page 54, below where we label three particular vertices t, k, l.
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Φ1

Φ2 Φ3

Φ4

Φ5

Φ6
Φ7 Φ8

Φ9
Φ10

t k l
k

l k
t

l

t
k

l

k

l

Figure 3.2: Possible undirected graphs with a source leaf for |V | = |A| − 1.

It can be seen that [Φ1 and Φ4], [Φ2 and Φ5], [Φ6,Φ8 and Φ9], [Φ7 and
Φ10] are isomorphic. Therefore, in assigning directions to arcs, it is enough
to consider the graphs Φ1,Φ2,Φ3,Φ6,Φ7. Note that there cannot be another
source or sink.

To direct the graph Φ1 in Figure 3.2 on page 54, there are 4 · 2 · 1 = 8
cases to direct the undirected graph as 4 for first cycle, 2 for intersection part
of the cycles and 1 for second cycle since it has to be a directed cycle.

(1) If t to k for upper part of the cycle and t to k for lower part of the
cycle in first cycle, k to l for intersection part of the cycles, then this is (xii)
in Figure 3.5 on page 59.

(2) If t to k for upper part of the cycle and t to k for lower part of the
cycle in first cycle, l to k for intersection part of the cycles, then it is not
possible since k is a sink which is not possible.

(3) If t to k for upper part of the cycle and k to t for lower part of the
cycle in first cycle, k to l for intersection part of the cycles, then this gives
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the one which is isomorphic to (xiii) in Figure 3.5 on page 59.
(4) If t to k for upper part of the cycle and k to t for lower part of the

cycle in first cycle, l to k for intersection part of the cycles, then this gives
the one which is isomorphic to (xiv) in Figure 3.5.

(5) If k to t for upper part of the cycle and t to k for lower part of the
cycle in first cycle, k to l for intersection part of the cycles, then this gives
the one which is isomorphic to (xiii) in Figure 3.5.

(6) If k to t for upper part of the cycle and t to k for lower part of the
cycle in first cycle, l to k for intersection part of the cycles, then this gives
the one which is isomorphic to (xiv) in Figure 3.5.

(7) If k to t for upper part of the cycle and k to t for lower part of the
cycle in first cycle, k to l for intersection part of the cycles,then it is not
possible since k is a source which is not possible.

(8) If k to t for upper part of the cycle and k to t for lower part of the
cycle in first cycle, l to k for intersection part of the cycles, then it is not
possible since k is a source, which is not possible.

Using same technique, after directing the graphs in Figure 3.2 on page
54, we get (xvii) and (xxxii) for the graph Φ2, (xv), (xvi) for the graph Φ3,
(xxviii),
(xxix), (xxxiv) for the graph Φ6 and (xxiv), (xxv) for the graph Φ7.
Case 3: (σ, τ) = (1, 1). Then (σ1, τ1) = (0, 0), (1, 0) or (1, 1).
Case 3(a): (σ, τ) = (1, 1) and (σ1, τ1) = (0, 0). The resulting digraphs
are (iv), (v), (vi) in Figure 3.4 on page 58 after directing the graphs Γ1 in
Figure 3.1 on page 51 and (ix), (x), (xi) in Figure 3.4 after directing the
graphs Γ2 in Figure 3.1.
Case 3(b): (σ, τ) = (1, 1) and (σ1, τ1) = (1, 0). The resulting digraphs are
(xviii), (xix), (xx) in Figure 3.5 on page 59 after directing the graphs Φ1 in
Figure 3.2 on page 54, (xxiii) and (xxxiii) in Figure 3.5 after directing the
graphs Φ2 in Figure 3.2, (xxi), (xxii) in Figure 3.5 after directing the graphs
Φ3 in Figure 3.2, (xxx), (xxxi), (xxxv) in Figure 3.5 after directing the graphs
Φ6 in Figure 3.2 and (xxvi), (xxvii) in Figure 3.5 after directing the graphs
Φ7 in Figure 3.2.
Case 3(c): (σ, τ) = (1, 1) and (σ1, τ1) = (1, 1). This case cannot occur
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for otherwise the restriction that there is an arc between every source and
every sink implies that it is the digraph consisting of two vertices and one
arc between them, and thus has more vertices than arcs.

We now show that if l, k are vertices of a directed cycle (see Figure 3.3)
then the generator xk can be written in terms of generator xl. Then we will
use this relation in our presentations. We set γ = αl − βl and ζ = β(pα− 1),
where pα ≡ 1 (mod γ).

xl

x1

xl−1

xk−1

xk+1

xk

Figure 3.3: Γ1: set up a relation between xk and xl

Lemma 3.1.2. Suppose that Γ1 is the directed cycle in Figure 3.3 and k, l
are vertices of Γ1 and suppose (α, β) = 1. Let p, q be integers such that
pα + qβ = 1. Then xk = xp

l−kβl−k

l .

Proof. In this case, we have the presentation of GΓ1(R) for Figure 3.3,

〈
x1, x2, . . . , xk . . . , xl

∣∣∣∣∣∣ x
γ
1 , R(x1, x2), R(x2, x3), . . . , R(xk−1, xk),
R(xk, xk+1) . . . , R(xl−1, xl), R(xl, x1)

〉
.

Note that pα ≡ 1 (mod γ), we continue simplifying this presentation by
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Lemma 1.3.4 (a),

GΓ1(R) = 〈x2, . . . , xk . . . , xl | xβγ2 , R(x2, x3), . . . , R(xk−1, xk), R(xk, xk+1),

. . . , R(xl, xpβ2 ) 〉

= 〈x3, . . . , xk . . . , xl | xβ
2γ

3 , R(x3, x4), . . . , R(xk−1, xk), R(xk, xk+1),

. . . , R(xl, xp
2β2

3 ) 〉
...

= 〈xk, xk+1, . . . , xl | xβ
k−1γ
k , R(xk, xk+1), R(xk+1, xk+2), . . . ,

R(xl, xp
k−1βk−1

k ) 〉

= 〈xk, xk+1, . . . , xl | xβ
k−1γ
k , xk = xpβk+1, R(xk, xk+1), R(xk+1, xk+2),

. . . , R(xl, xp
k−1βk−1

k ) 〉

= 〈xk, xk+1, . . . , xl | xβ
k−1γ
k , xk = xpβk+1, R(xpβk+1, xk+1), R(xk+1, xk+2),

. . . , R(xl, xp
kβk

k+1 ) 〉

= 〈xk, xk+1, . . . , xl | xβ
k−1γ
k , xk = xpβk+1, x

β(pα−1)
k+1 , R(xk+1, xk+2),

. . . , R(xl, xp
kβk

k+1 ) 〉

= 〈xk, xk+2, . . . , xl | xβ
k−1γ
k , xk = xp

2β2

k+2 , x
βζ
k+2, R(xk+2, xk+3),

. . . , R(xl, xp
k+1βk+1

k+2 ) 〉

= 〈xk, xk+3, . . . , xl | xβ
k−1γ
k , xk = xp

3β3

k+3 , x
β2ζ
k+3, R(xk+3, xk+4),

. . . , R(xl, xp
k+2βk+2

k+3 ) 〉
...

= 〈xk, xl | xβ
k−1γ
k , xk = xp

l−kβl−k

l , xβ
l−k−1ζ
l , R(xl, xp

l−1βl−1

l ) 〉

= 〈xk, xl | xβ
k−1γ
k , xk = xp

l−kβl−k

l , xβ
l−k−1ζ
l , xp

l−1βl−1−α
l ) 〉

= 〈xk, xl | xβ
k−1γ
k , xk = xp

l−kβl−k

l , xγl 〉.

Hence xk = xp
l−kβl−k

l .

Remark 3.1.3. Suppose (α, β) = 1, l,m > 1 and let γ = αl−βl, η = αm−βm.
Then (α, γ) = (β, η) = 1.



3.1 Introduction 58

This chapter is organised in the following fashion. It will first indicate
the classes of digraphs in Figure 3.4 and 3.5, and state the main theorem.
Afterwards, it will turn its attention to prove whether these corresponding
groups are finite cyclic group or not.

In most cases we are able to determine if GΓ(R) is a finite or infinite; where
we show that it is finite we show that it is cyclic group (i.e. rank(GΓ(R)) = 1)
in which case we give the order. In the case we are unable to determine if the
groups is finite, then we show that rank(GΓ(R)) ∈ {1, 2} except for 3 cases
(x), (xi) and (xxxiv).

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

Figure 3.4: Classes of digraphs without leaf referred to in the statement of
Theorem B
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(xii)

(xiii)

(xiv)

(xv)

(xvi)

(xvii)

(xviii)

(xix)

(xx)

(xxi)

(xxii)

(xxiii)

(xxiv)

(xxv)

(xxvi)

(xxvii)

(xxviii)

(xxix)

(xxx)

(xxxi)

(xxxii)

(xxxiii)

(xxxiv)

(xxxv)

Figure 3.5: Classes of digraphs with leaf referred to in the statement of
Theorem B

Before going to Theorem B, we will explain how we produce Figure 3.4 and
Figure 3.5 by Figure 3.6 in an example. We can present all possible digraphs
with one graph family in Figure 3.6 on page 60. Note that Figure 3.6 could
cover more digraphs than we have. The idea is just to cover all our possible
digraphs with one graph family. We also see what l, n,m, t, r represent in
that example. Note that if ai is not specified, it means ai = 0.

When we get a3, a5, a8, a9, a18, a19, a21, a23, (a17 = 1) and all other ai = 0,
then we create one of the digraph in Figure 3.7 on page 61 (an example of
the digraph families (xxii) in Figure 3.6 ). In that way, we can produce all
digraphs families in Figure 3.4 and Figure 3.5 by Figure 3.6 . When we
investigate digraph in terms of l, n,m, t, r, then we see that l is the number
of arcs of the first directed cycle, which is l = 6, t is the number of arcs plus
one from first directed cycle to the common point in the middle of the path
between two directed cycle. which is t = 4, in that way n = 6,m = 5, r = 3.
a3 + a5 + a8 + a10 = 6, a17 = 1, a18 = 2, a19 = 2, a21 = 2 and a23 = 5 in that
example in Figure 3.7.
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Figure 3.6: A digraph family that covers all possible digraphs of Theorem B
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Figure 3.7: An example how to produce digraphs by Figure 3.6

Theorem B. Let Γ be a non-empty finite digraph such that the number of
generators is one less than the number of relators (|V | = |A| − 1) whose
underlying undirected graph has girth n (n > 4) and let R(a, b) be a cyclically
reduced word that involves both a and b with exponent sums α and −β in a
and b, respectively where |α| > 2, |β| > 2|. If GΓ(R) is finite, then α 6= 0,
β 6= 0, (α, β) = 1, αn − βn 6= 0, aα = bβ in K = 〈 a, b | R(a, b) 〉, GΓ(R)
is non-trivial, and Γ is the graph in Figure 3.4 and 3.5, where the non-zero
ai’s in Figure 3.6 are one of the following (note that in cases (i)− (xi) the
digraphs do not have a leaf, and in cases (xii)− (xxxv) the digraphs have a
leaf).

in which case
(i) a3, a5, a8, a9, a19, a22, a23 ............. GΓ(R) ∼= Z|α(l,m)−β(l,m)|,
(ii) a3, a5, a7, a10, a19, a22, a23 (l < 2k) GΓ(R) ∼= Z|αmin {l−k,|n+l−k−1|}(α(m,2k−l)−β(m,2k−l))| ,

(l > 2k) .................................. GΓ(R) ∼= Z|αmin {k,|n+l−k−1|}(α(m,l−2k)−β(m,l−2k))|,
(l = 2k) .................................. GΓ(R) ∼= Z|αn+l−k−1(αm−βm)|,

(iii) a3, a5, a8, a9, a20, a22, a23 ............. GΓ(R) ∼= Z|αmin {|n−1|,|t−1|}(α(l,m)−β(l,m))|,
(iv) a3, a5, a8, a9, a19, a22, a23(a21 = 1) .. rank(GΓ(R)) ∈ {1, 2},
(v) a4, a6, a7, a10, a19, a22, a23, (a3 = 1) rank(GΓ(R)) ∈ {1, 2},
(vi) a3, a5, a8, a9, a19, a22, a23(a6 = 1) .. rank(GΓ(R)) ∈ {1, 2},
(vii)a4, a5, a8, a10, a14 ....................... GΓ(R) ∼= Z|α(l,m)−β(l,m)|,
(viii)a3, a5, a8, a10, a14(l < 2k) ............ GΓ(R) ∼= Z|αmin {k,l−k}(α(m,2k−l)−β(m,2k−l))|,

(l > 2k) .................................. GΓ(R) ∼= Z|αk(α(m,l−2k)−β(m,l−2k))|,
(l = 2k) .................................. GΓ(R) ∼= Z|αk(αm−βm)|,

(ix) a4, a5, a8, a10, a14, (a3 = 1) ........... rank(GΓ(R)) ∈ {1, 2},
(x) a4, a6, a7, a10, a14, (a3 = 1)............ ?
(xi) a4, a5, a8, a10, a14, (a13 = 1) .......... ?
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in which case
(xii) a1, a3, a5, a7, a10, a19, a22, a23 (l < 2k) GΓ(R) ∼= Z|α(t−1)αmin {l−k,n+l−k−1}(α(m,2k−l)−β(m,2k−l))|,

(l > 2k) ....................................... GΓ(R) ∼= Z|α(t−1)αmin {k,n+l−k−1}(α(m,l−2k)−β(m,l−2k))|,
(l = 2k) ....................................... GΓ(R) ∼= Z|α(t−1)αn+l+t−k−2(αm−βm)|,

(xiii) a1, a4, a6, a7, a10, a19, a22, a23 ............. GΓ(R) ∼= Z|αt−1(α(l,m)−β(l,m))|,
(xiv) a1, a4, a6, a7, a10, a20, a21, a23 ............. GΓ(R) ∼= Z|αt−1(α(l,m)−β(l,m))|,
(xv) a4, a6, a7, a10, a17, a20, a22, a23 ............ GΓ(R) ∼= Z|αr−1αmin {n−t,t−1}(α(l,m)−β(l,m))|,
(xvi) a4, a6, a7, a10, a17, a19, a22, a23 ............ GΓ(R) ∼= Z|αr−1(α(l,m)−βl,m))|,
(xvii) a4, a6, a7, a10, a15, a19, a22, a23 ............ GΓ(R) ∼= Z|αr−1(α(l,m)−β(l,m))|,
(xviii) a4, a6, a7, a10, a15, a20, a21, a23 ............. GΓ(R) ∼= Z|αr−1(α(l,m)−β(l,m))|,
(xix) a2, a4, a6, a8, a9, a20, a21, a23, (a1 = 1) .. rank(GΓ(R)) ∈ {1, 2},
(xx) a3, a5, a8, a9, a19, a22, a23, (a1 = 1)....... rank(GΓ(R)) ∈ {1, 2},
(xxi) a3, a5, a8, a9, a20, a21, a23, (a1 = 1)....... rank(GΓ(R)) ∈ {1, 2},
(xxii) a3, a5, a8, a9, a18, a19, a21, a23, (a17 = 1) rank(GΓ(R)) ∈ {1, 2},
(xxiii) a3, a5, a8, a9, a18, a19, a22, a23, (a17 = 1) rank(GΓ(R)) ∈ {1, 2},
(xxiv) a3, a5, a8, a9, a16, a19, a22, a23, (a15 = 1) rank(GΓ(R)) ∈ {1, 2},
(xxv) a3, a5, a8, a9, a16, a20, a21, a23, (a15 = 1). rank(GΓ(R)) ∈ {1, 2},
(xxvi) a3, a6, a7, a9, a11, a13 ....................... GΓ(R) ∼= Z|αn−1(α(l,m)−β(l,m))|,
(xxvii)a4, a5, a8, a10, a11, a14 ...................... GΓ(R) ∼= Z|αn−1(α(l,m)−β(l,m))|,
(xxviii)a1, a3, a5, a8, a9, a13 ......................... GΓ(R) ∼= Z|αn−1(αl−βl)|,
(xxix) a1, a3, a5, a8, a10, a14(l 6 2k) ............. GΓ(R) ∼= Z|αn−1αk(α(m,l−2k)−β(m,l−2k))|),

(l > 2k) ....................................... GΓ(R) ∼= Z|αn−1αmin {k,l−k}(β(m,2k−l)−α(m,2k−l))|),
(xxx) a1, a3, a5, a8, a9, a14 ........................ GΓ(R) ∼= Z|αk+l+n−t−1(αm−βm)|),
(xxxi) a3, a6, a7, a9, a12, a13, (a11 = 1) .......... rank(GΓ(R)) ∈ {1, 2},
(xxxii)a4, a5, a8, a10, a12, a14, (a11 = 1) ......... rank(GΓ(R)) ∈ {1, 2},
(xxxiii)a2, a4, a5, a8, a9, a14, (a1 = 1) ............ rank(GΓ(R)) ∈ {1, 2},
(xxxiv)a2, a3, a5, a8, a9, a14, (a1 = 1) ............. rank(GΓ(R)) ∈ {1, 2, . . . , n},
(xxxv)a2, a3, a5, a8, a9, a13, (a1 = 1) ............ rank(GΓ(R)) ∈ {1, 2}.

3.2 Proving the main theorem

Recall that we can always suppose that α 6= 0, β 6= 0, |α| > 2, |β| > 2,
(α, β)= 1 and aα = bβ in K. Otherwise, the group K has Property W1

and thus GΓ(R) is infinite by Corollary 1.3.1 and Proposition 1.3.2. By
Lemma 3.1.1, the digraphs to consider are those in Figure 3.5 and Figure 3.4,
for otherwise GΓ(R) is infinite.
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(i) a3, a8, a19, a23

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xl = z1, zn = ym

〉
aα = bβ in K = 〈 a, b | R(a, b) 〉 by Proposition 1.3.2, thus we get

xα
l

1 = xα
l−1β

2 = xα
l−2β2

3 = . . . = xαβ
l−1

l = xβ
l

1 .

yα
m

1 = yα
m−1β

2 = yα
m−2β2

3 = . . . = yαβ
m−1

m = yβ
m

1 .

We set γ = αl − βl and η = αm − βm obtain that xγ1 = 1, and yη1 = 1 in
GΓ(R). Adjoining the relator xγ1 and yη1 yield

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣

xγ1 , R(x1, x2), R(x2, x3), . . . , R(xl, x1),
yη1 , R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xl = z1, zn = ym

〉
.

Applying precisely the same transformations as in the proof of Theorem 1.3.5,
we get

GΓ(R) =

〈
x2, . . . , xl,

y2, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣

xβγ2 , R(x2, x3), . . . , R(xl, xpβ2 ),
yβη2 , R(y2, y3), . . . , R(ym, ypβ2 ),
R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xl = z1, zn = ym

〉
.
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Simplifying this presentations in that way, what remains is

GΓ1(R) =

〈
xl, ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣

xγl
yηm

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xl = z1, zn = ym

〉

=

〈
xl,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣
xγl ,

zηn, R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xl = z1

〉
.

Since (β, η) = 1 by Remark 3.1.3 and an iterated application of Lemma 1.3.4(b)
for the relation inside the box yields

GΓ(R) = 〈xl, z1 | xγl , z
αn−1η
1 , xl = z1 〉

= 〈xl | xγl , x
αn−1η
l 〉

= 〈xl | x((αl−βl),αn−1(αm−βm))
l 〉

= 〈xl | x((αl−βl),(αm−βm))
l 〉

= 〈xl | xα
(l,m)−β(l,m)

l 〉.

So GΓ(R) is finite cyclic of order α(l,m) − β(l,m).

(ii) a3, a7, a19, a23

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, x1), R(x1, x2), R(x2, x3), . . . , R(xk−1, xk),
R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+1, xk),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xk = z1, zn = ym

〉
.
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We set as γ = αm−βm and after applying precisely the same transformations
as in the proof of Lemma 1.3.4(b) for the relation inside the box yields

GΓ(R) =

〈
x1, . . . , xl,

ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, x1), R(x1, x2), R(x2, x3), . . . , R(xk−1, xk),
R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+1, xk),
yγm,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xk = z1, zn = ym

〉

=

〈
x1, . . . , xl,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, x1), R(x1, x2), R(x2, x3), . . . , R(xk−1, xk),
R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+1, xk),
zγn, R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xk = z1

〉
.

Since (β, γ) = 1 and (see Remark 3.1.3), an iterated application of Lemma 1.3.4 (b)
yields

GΓ(R) =

〈
x1, . . . , xl,

z1

∣∣∣∣∣∣∣∣∣
R(xl, x1), R(x1, x2), R(x2, x3), . . . , R(xk−1, xk),
R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+1, xk),
zα

n−1γ
1 , xk = z1

〉

=

〈
x1, . . . , xk, . . . , xl

∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, x1), R(x1, x2), R(x2, x3), . . . ,
R(xk−1, xk),
xα

n−1γ
k ,

R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+1, xk)

〉
.

Since (β, αn−1γ) = (β, γ) = 1 (see Remark 3.1.3) there exists integers p, q
such that pβ + qγ = 1 and hence pβ = 1 (modγ), an iterated application of
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Lemma 1.3.4 (b) yields

GΓ(R) =
〈
x1, . . . , xk−1,

xk+1, . . . , xl

∣∣∣∣∣∣ R(xl, x1), R(x1, x2), R(x2, x3), . . . , R(xk−1, x
pα
k+1),

xα
nγ
k+1, R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+2, xk+1)

〉

=
〈
x1, . . . , xk−1,

xk+2, . . . , xl

∣∣∣∣∣∣ R(xl, x1), R(x1, x2), R(x2, x3), . . . , R(xk−1, x
pα2

k+2),
xα

n+1γ
k+2 , R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+3, xk+2)

〉

=
〈
x1, . . . , xk−1,

xl

∣∣∣∣∣∣ x
αn+l−k−1γ
l ,

R(xl, x1), R(x1, x2), R(x2, x3), . . . , R(xk−1, x
(pα)l−k
l )

〉

=

〈
x1, . . . , xk−1,

xl

∣∣∣∣∣∣∣∣∣
xα

n+l−k−1γ
l ,

R(xl, x1), R(x1, x2), R(x2, x3), . . . , R(xk−1, x
(pα)l−k
l ),

xi = x
(pα)i
l (1 6 i 6 k − 1) by Lemma 1.3.4 (b)

〉

=
〈
xl

∣∣∣∣∣∣ x
αn+l−k−1γ
l , R(xl, xpαl ), R(xpαl , x

(pα)2

l ), R(x(pα)2

l , x
(pα)3

l ), . . . ,
R(x(pα)k−1

l , x
(pα)l−k
l )

〉

=
〈
xl

∣∣∣∣∣∣ x
αn+l−k−1γ
l , xα−βpαl , x

pα2−β(pα)2

l , . . . , x
α(pα)k−2−β(pα)k−1

l ,

x
α(pα)k−1−β(pα)l−k
l

〉
.

We can remove redundant relators xα−βpαl , x
pα2−β(pα)2

l , . . . , x
α(pα)k−2−β(pα)k−1

l

since pβ ≡ 1 mod γ. Thus, we get

GΓ(R) = 〈xl | xα
n+l−k−1γ
l , xp

k−1αk−pl−kαl−kβ
l 〉

= 〈xl | x(αn+l−k−1γ,pk−1αk−pl−kαl−kβ
l ) 〉

= 〈xl | xdl 〉, where d = (αn+l−k−1γ, pk−1αk − pl−kαl−kβ).

d = (αn+l−k−1γ, pk−1αk − pl−kαl−kβ)

= (αn+l−k−1γ, (pβ)pk−1αk − pl−kαl−kβ) since pβ ≡ 1 mod γ

= (αn+l−k−1γ, β(pkαk − pl−kαl−k))

= (αn+l−k−1γ, pkαk − pl−kαl−k) since (β, αγ) = 1

= (αn+l−k−1γ, (pα)k − (pα)l−k).
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After that supposing k < l − k and continue to simplify the equation above,
we get

d = (αn+l−k−1γ, (pα)k(1− (pα)l−2k)) since pβ ≡ 1 mod γ

= (αn+l−k−1γ, (pα)k((pβ)l−2k − (pα)l−2k)) since pβ ≡ 1 mod γ

= (αn+l−k−1γ, (pα)k(pl−2k(βl−2k − αl−2k)))

= (αn+l−k−1γ, pl−kαk(βl−2k − αl−2k))

= (αmin{k,n+l−k−1}(α(m,l−2k) − β(m,l−2k)).

Hence, GΓ(R) is finite cyclic of order αmin {k,|n+l−k−1|}(α(m,l−2k)−β(m,l−2k)).
Now supposing k > l − k and simplifying the equation, we get

d = (αn+l−k−1γ, (pα)l−k((pα)2k−l − 1)) since pβ ≡ 1 mod γ

= (αn+l−k−1γ, (pα)l−k((pα)2k−l − (pβ)2k−l)) since pβ ≡ 1 mod γ

= (αn+l−k−1γ, (pα)l−k(p2k−l(β2k−l − α2k−l)))

= (αn+l−k−1γ, pkαl−k(β2k−l − α2k−l))

= (αmin{l−k,n+l−k−1}(α(m,2k−l) − β(m,2k−l)).

Hence, GΓ(R) is finite cyclic of order αmin {l−k,|n+l−k−1|}(α(m,2k−l)−β(m,2k−l)).
Now, supposing k = l − k, we get

xp
k−1αk−pl−kαl−kβ
l = x

(pα)k−(pα)l−k
l = x

(pα)k−(pα)k
l = x0 = 1.

Thus, we can remove redundant relators from the presentation. Hence, we get
GΓ(R) = 〈xl | xα

n+l−k−1γ
l 〉.

Therefore, GΓ(R) is finite cyclic of order αn+l−k−1(αm − βm).
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(iii) a3, a8, a19, a20, a23

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xγ1 , R(x1, x2), R(x2, x3), . . . , R(xl, x1),
yη1 , R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(zt, zt−1), R(zt−1, zt−2), . . . , R(z2, z1),
R(zt, zt+1), R(zt+1, zt+2), . . . , R(zn−1, zn),
xl = z1, ym = zn

〉
.

We set γ = αl − βl and η = αm − βm, and apply precisely the same transfor-
mations as in the proof of Theorem 1.3.5. Then, what remains is

GΓ(R) =

〈
xl, ym,

z1, . . . , zn,

∣∣∣∣∣∣∣∣∣∣∣∣

xγl , y
η
m,

R(zt, zt−1), R(zt−1, zt−2), . . . , R(z2, z1),
R(zt, zt+1), R(zt+1, zt+2), . . . , R(zn−1, zn),
xl = z1, ym = zn

〉
=
〈
z1, . . . , zn

∣∣∣∣∣∣ z
γ
1 , R(zt, zt−1), R(zt−1, zt−2), . . . , R(z2, z1),
zηn, R(zt, zt+1), R(zt+1, zt+2), . . . , R(zn−1, zn)

〉
.

Since (β, γ) = 1 and (β, η) = 1 (see Remark 3.1.3) and an iterated application
of Lemma 1.3.4 (b) yields

GΓ(R) =
〈
z2, . . . , zn−1,

∣∣∣∣∣∣ z
αγ
2 , R(zt, zt−1), R(zt−1, zt−2), . . . , R(z3, z2),
zαηn−1, R(zt, zt+1), R(zt+1, zt+2), . . . , R(zn−2, zn−1)

〉

= 〈 zt | zα
t−1γ

t , zα
n−tη

t 〉

= 〈 zt | zα
min {n−t,t−1}(α(l,m)−β(l,m))

t 〉.

Hence, GΓ(R) is finite cyclic of order αmin {n−t,t−1}(α(l,m) − β(l,m)).
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(iv) a3, a8, a19, a22, a23, (a20 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(z1, z2), R(z2, z3), . . . , R(zt−2, zt−1),
xl = z1,

R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(zt, zt+1), R(zt+1, zt+2), . . . , R(zn−1, zn),
ym = zn,
R(zt, zt−1)

〉
.

We set γ = αl − βl and η = αm − βm, and apply precisely the same transfor-
mations as we have in the form Γ(n; m−→) for the first box and Γ(n; m←−) for
the second box, by Lemma 1.3.6, we get

GΓ(R) = 〈 zt−1, zt | zβ
t−2γ

t−1 , zα
n−tη

t , R(zt, zt−1) 〉.

After we get this presentation, we cannot eliminate zt−1 or zt from the
presentation. It is because we are not able to apply Lemma 1.3.4 further
since (αn−tη, α) 6= 1 and (βt−2γ, β) 6= 1 . Therefore, we cannot go further.
Thus, the group GΓ(R) has a 2-generator presentation.

(v)a4, a7, a19, a23, (a3 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, xl−1),
R(xk, xk+1), . . . , R(xl−2, xl−1),
R(xl, x1), R(x1, x2), . . . , R(xk−1, xk),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xk = z1, zn = ym

〉
.
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We set γ = αm − βm and apply precisely the same transformations as in the
proof of (ii) to obtain that

GΓ(R) =

〈
x1, . . . , xl,

∣∣∣∣∣∣∣∣∣
R(xl, xl−1),
R(xk, xk+1), . . . , R(xl−2, xl−1),

xα
n−1γ
k , R(xl, x1), R(x1, x2), . . . , R(xk−1, xk)

〉
.

Since (β, αn−1γ) = 1 (see Remark 3.1.3) and an iterated application of
Lemma 1.3.4 (b) yields

GΓ(R) =

〈
xk, , xk+1, . . . , xl

∣∣∣∣∣∣∣∣∣
R(xl, xl−1),
R(xk, xk+1), . . . , R(xl−2, xl−1),
xα

n+k−1γ
l

〉
.

Adjoin the relations xi = x
(pβ)l−1−i

l−1 for k + 1 6 i 6 l− 1, where p ∈ Z, to the
presentation so we get

GΓ(R) =

〈
xk, . . . , xl−1, xl

∣∣∣∣∣∣∣∣∣
R(xl, xl−1),
R(xk, xk+1), . . . , R(xl−2, xl−1),
xα

n+k−1γ
l , xi = x

(pβ)l−1−i

l−1 for k + 1 6 i 6 l − 1

〉

=

〈
xl−1, xl

∣∣∣∣∣∣∣∣∣
R(xl, xl−1),

(((
((((

(((
((

R(x(pβ)l−k−1

l−1 , x
(pβ)l−k−2

l−1 ) , . . . ,����
���R(xpβl−1, xl−1) ,

xα
n+k−1γ
l ,

〉
= 〈 xl−1, xl | xα

n+k−1γ
l , R(xl, xl−1) 〉.

After we get this presentation, we cannot eliminate xl−1 or xl from the
presentation. It is because we are not able to apply Lemma 1.3.4 further
since (αn+k−1γ, α) 6= 1. Therefore, we cannot go further. Thus, the group
GΓ(R) has a 2-generator presentation.
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(vi)a8, a19, a23, (a6 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, xl−1),
R(xl, x1), R(x1, x2), . . . , R(xl−2, xl−1),
yγ1 , R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xl = z1, zn = ym

〉
.

We set γ = αm − βm and apply precisely the same transformations as in the
proof (v) for the relation inside the box to obtain that

GΓ(R) =

〈
x1, . . . , xl,

∣∣∣∣∣∣∣∣∣
R(xl, xl−1),
R(xl, x1), R(x1, x2), . . . , R(xl−2, xl−1),
xα

n−1γ
l

〉
.

Now, adjoin these relations xl = xpβ1 , xi = x
(pβ)l−1−i

l−1 for 1 6 i 6 l − 1, where
p ∈ Z, to the presentation and we get

GΓ(R) =

〈
x1, . . . , xl,

∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, xl−1),
R(xl, x1), R(x1, x2), . . . , R(xl−2, xl−1),
xα

n−1γ
l ,

xl = xpβ1 , xi = x
(pβ)l−1−i

l−1 for 1 6 i 6 l − 1

〉

=

〈
x1, xl−1, xl,

∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, xl−1),

((((
((((

((
R(x(pβ)l−1

l , x
(pβ)l−2

l ) ,((((((
((((

R(x(pβ)l−2

l−1 , x
(pβ)l−3

l−1 ) , . . . ,

���
���

��
R(x(pβ)2

l−1 , xpβl−1) , R(xpβl−1, xl−1),
xα

n−1γ
l

〉
.

Since R(x(pβ)i
l , x

(pβ)i−1

l ) = x
α(pβ)i−β(pβ)i−1

l = x
(pβ)i−1(αpβ−β)
l for 1 6 i 6 l − 1,

and αpβ − β = 0 mod γ since pα ≡ 1 mod γ. Thus, these relations are
redundant so can be removed.

GΓ(R) = 〈 xl−1, xl | xα
n−1γ
l , R(xl, xl−1) 〉.
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After we get this presentation, we cannot eliminate xl−1 or xl from the
presentation. It is because we are not able to apply Lemma 1.3.4 further since
(αn−1γ, α) 6= 1. Therefore, we cannot go further. Thus, the group GΓ(R) has
a 2-generator presentation.

(vii)a4, a5, a8, a10, a14

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym

∣∣∣∣∣∣∣∣∣
xγ1 , R(x1, x2), R(x2, x3), . . . , R(xl, x1)
yη1 , R(y1, y2), R(y2, y3), . . . , R(ym, y1),
xt = ym−k+t, xt+1 = ym−k+t+1, . . . , xk = ym

〉
.

We set γ = αl − βl, η = αm − βm.
Since p1α ≡ 1 (mod γ), there is an integer q1 ∈ Z such that p1α+ q1γ = 1.

Moreover, p1α ≡ 1 (mod γ) implies that yi = yp1α
i = yp1β

j in G. This allows
us to adjoin the relation yi = yp1β

j and to eliminate the generator yi, and
since p2α ≡ 1 (mod η), there is an integer q2 ∈ Z such that p2α + q2η = 1.
Moreover, p2α ≡ 1 (mod η) implies that xi = xp2α

i = xp2β
j in G. This allows us

to adjoin the relation xi = xp2β
j and to eliminate the generator xi as follows:

y1 = y
(p1β)
2 = y

(p1β)2

3 = . . . = y
(p1β)t−1

t . . . = y(p1β)m−1

m

x1 = x
(p2β)
2 = x

(p2β)2

3 = . . . = x
(p2β)t−1

t = . . . = x
(p2β)l−1

l

GΓ(R) =

〈
x2, . . . , xl,

y2, . . . , ym

∣∣∣∣∣∣∣∣∣
xβγ2 , R(x2, x3), . . . , R(xl, xp2β

2 )
yβη2 , R(y2, y3), . . . , R(ym, yp1β

2 ),
xt = ym−k+t, xt+1 = ym−k+t+1, . . . , xk = ym

〉

=

〈
x3, . . . , xl,

y3, . . . , ym

∣∣∣∣∣∣∣∣∣
xβ

2γ
3 , R(x3, x4), . . . , R(xl, x(p2β)2)

3 ,

yβ
2η

3 , R(y3, y4), . . . , R(ym, y(p1β)2

3 ),
xt = ym−k+t, xt+1 = ym−k+t+1, . . . , xk = ym

〉
.
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Simplifying in that way, what remains is

GΓ(R) =
〈
xk,

ym

∣∣∣∣∣∣ x
γ
k, y

η
m

x
(p2β)k−t
k = x

(p1β)k−t
k , x

(p2β)k−t−1

k ,= x
(p1β)k−t−1

k . . . , xk = ym

〉

=
〈
xk

∣∣∣∣∣∣ x
γ
k, x

η
k

x
(p2β)k−t−(p1β)k−t
k , x

(p2β)k−t−1−(p1β)k−t−1

k , . . . , xp2β−p1β
k

〉

=
〈
xk

∣∣∣∣∣∣ x
γ
k, x

η
k

x
βk−t(pk−t2 −pk−t1 )
k , x

βk−t−1(pk−t−1
2 −pk−t−1

1 )
k , . . . , x

β(p2−p1)
k

〉

=
〈
xk

∣∣∣∣∣∣ x
γ
k, x

η
k

x
(βk−t,βk−t−1,...,β)(pk−t2 −pk−t1 ,pk−t−1

2 −pk−t−1
1 ,...,p2−p1)

k

〉

= 〈 xk | xγk, x
η
k, x

β(p2−p1)
k 〉

= 〈 xk | x(γ,η,β(p2−p1))
k 〉

= 〈 xk | x(γ,η,p2−p1)
k 〉.

Now, p1α ≡ 1 (mod γ), and we can say p1α ≡ 1 (mod (γ, η)),
p2α ≡ 1 (mod η), and we can say p2α ≡ 1 (mod (γ, η)). So, p1α− p2α ≡

0 (mod (γ, η)).
Since (α, γ) = 1 and (α, η) = 1, ∆ = (γ, η, (p1−p2)) = (γ, η, (p1−p2)α) =

(γ, η). Then the presentation is

GΓ(R) = 〈 xk | x(γ,η)
k 〉

= 〈 xk | xα
(l,m)−β(l,m)

k 〉.

So GΓ(R) is finite cyclic of order α(l,m) − β(l,m).
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(viii)a3, a5, a8, a10, a14

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym

∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+1, xk),
R(xl, x1), R(x1, x2), . . . , R(xk−1, xk),
yη1 , R(y1, y2), R(y2, y3), . . . , R(ym, y1),
xt = ym−k+t, xt+1 = ym−k+t+1, . . . , xk = ym

〉
.

We set η = αm−βm and since p1α ≡ 1 (mod η), there is an integer q1 ∈ Z such
that p1α+ q1η = 1. Moreover, p1α ≡ 1 (mod η) implies that yi = yp1α

i = yp1β
j

in G and after applying precisely the same transformations as in the proof of
Lemma 1.3.4(a), we get

GΓ(R) =

〈
x1, . . . , xl,

ym

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+1, xk),
R(xl, x1), R(x1, x2), . . . , R(xk−1, xk),
yηm,

xt = y(p1β)k−t
m , xt+1 = y(p1β)k−t−1

m , . . . , xk−1 = yp1β
m ,

xk = ym

〉
=

〈
x1, . . . , xl

∣∣∣∣∣∣∣∣∣
R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+1, xk),
xηk, R(xl, x1), R(x1, x2), . . . , R(xk−1, xk),
xt = x

(p1β)k−t
k , xt+1 = x

(p1β)k−t−1

k , . . . , xk−1 = xp1β
k

〉
.

Since (β, η) = 1, there are integers p2, q2 ∈ Z such that p2β + q2η = 1 so
p2β ≡ 1 (mod η). We can thus apply Lemma 1.3.4 (b),

GΓ(R) =

〈
x1, x2, . . . , xk−1,

xk+1, . . . , xl

∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+1, x
p2α
k−1)

xαηk−1, R(xl, x1), R(x1, x2), . . . , R(xk−2, xk−1)
xt = x

(p1β)k−t
k , xt+1 = x

(p1β)k−t−1

k , . . . ,

((((
((((xk−1 = xp2α p1β
k−1

〉

=

〈
x1, x2, . . . , xk−2,

xk+1, . . . , xl

∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+1, x
(p2α)2

k−2 ),
xα

2η
k−2, R(xl, x1), R(x1, x2), . . . , R(xk−3, xk−2),
xt = x

(p1β)k−t
k , xt+1 = x

(p1β)k−t−1

k , . . . ,

((((
(((

(((
xk−2 = x

(p2α)2(p1β)2

k−2

〉
.
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Simplifying in that way, what remains is

GΓ(R) =

〈
x1, x2, . . . , xt,

xk+1, . . . , xl

∣∣∣∣∣∣∣∣∣
R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+1, x

(p2α)k−t
t ),

xα
k−tη
t , R(xl, x1), R(x1, x2), . . . , R(xt−1, xt),

(((
((((

((((

xt = x
(p2α)k−t (p1β)k−t
t

〉
.

Since (β, αk−tη) = 1, we can thus apply Lemma 1.3.4 (b),

GΓ(R) =

〈
x1,

xk+1, xk+2, . . . , xl

∣∣∣∣∣∣∣∣∣
xα

k−1η
1 , R(xl, x1),
R(xl, xl−1), R(xl−1, xl−2), . . . ,
R(xk+1, x

(p2α)k−1

1 )

〉

=

〈
xk+1, xk+2, . . . , xl

∣∣∣∣∣∣∣∣∣
xα

kη
l , R(xl, xl−1), R(xl−1, xl−2), . . . ,
R(xk+1, x

(p2α)k
l ),

xi = x
(p2α)l−i
l for k + 1 6 i 6 l − 1

〉

=
〈
xl

∣∣∣∣∣∣ x
αkη
l , R(xl, xp2α

l ), R(xp2α
l , x

(p2α)2

l ), . . . , R(x(p2α)l−k−2

l ,

x
(p2α)l−k−1

l ), R(x(p2α)l−k−1

l , x
(p2α)k
l )

〉

=
〈
xl

∣∣∣∣∣∣ x
αkη
l , xα−βp2α

l , x
p2α2−β(p2α)2

l , . . . ,

x
α(p2α)l−k−2−β(p2α)l−k−1

l , x
α(p2α)l−k−1−β(p2α)k
l

〉

=
〈
xl

∣∣∣∣∣∣ x
αkη
l , xα−βp2α

l , x
p2α(α−βp2α)
l , . . . ,

x
(p2α)l−k−2(α−βp2α)
l , x

α(p2α)l−k−1−β(p2α)k
l

〉
.

Since xα−βp2α
l = xα−αl = 1 mod η, we get

GΓ(R) = 〈 xl | xα
kη
l , x

α(p2α)l−k−1−β(p2α)k
l 〉.
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Supposing l − k < k, then

α(p2α)l−k−1 − β(p2α)k = pl−k−1
2 αl−k − βpk2αk

= pl−k−1
2 αl−k − pk−1

2 αk

= pl−k−1
2 αl−k(1− p2k−l

2 α2k−l)

= pl−k−1
2 αl−k(p2k−l

2 β2k−l − p2k−l
2 α2k−l)

since p2β ≡ 1 mod η

= pl−k−1
2 αl−kp2k−l

2 (β2k−l − α2k−l)

= pk−1
2 αl−k(β2k−l − α2k−l).

Thus, we get

GΓ(R) = 〈 xl | xα
kη
l , x

pk−1
2 αl−k(β2k−l−α2k−l)
l

〉

= 〈 xl | xα
min{k,l−k}(β(m,2k−l)−α(m,2k−l))
l

〉.

Hence, GΓ(R) is finite cyclic of order αmin{k,l−k}(α(m,2k−l) − β(m,2k−l)).
Supposing l − k > k, then

α(p2α)l−k−1 − β(p2α)k = pl−k−1
2 αl−k − βpk2αk

= pl−k−1
2 αl−k − pk−1

2 αk

= pk−1
2 αk(pl−2k

2 αl−2k − 1)

= pk−1
2 αk(pl−2k

2 αl−2k − pl−2k
2 βl−2k)

since p2β ≡ 1 mod η

= pl−k−1
2 αk(αl−2k − βl−2k).

Therefore, we get

GΓ(R) = 〈 xl | xα
kη
l , x

pl−k−1
2 αk(αl−2k−βl−2k)
l

〉

= 〈 xl | xα
k(α(m,l−2k)−β(m,l−2k))
l

〉.

Hence, GΓ(R) is finite cyclic of order αk(α(m,l−2k) − β(m,l−2k)).
Supposing k = l − k, then
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x
pk−1

2 αl−k(β2k−l−α2k−l)
l = x

pk−1
2 αk(pl−2k

2 αl−2k−1)
l = x0

l = 1.
Therefore, it can be removed from the presentation. Thus, we get GΓ(R) =

〈xl | xα
kη
l 〉.

Hence, GΓ(R) is finite cyclic of order Z|αk(αm−βm)|.

(ix)a4, a5, a8, a10, a14, (a3 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, xl−1),
R(xk, xk+1), R(xk+1, xk+2) . . . , R(xl−2, xl−1),
R(xl, x1), R(x1, x2), . . . , R(xk−1, xk),
yη1 , R(y1, y2), R(y2, y3), . . . , R(ym, y1),
xt = ym−k+t, xt+1 = ym−k+t+1, . . . , xk = ym

〉
.

We set η = αm− βm, p1α ≡ 1 (mod η) and p2β ≡ 1 (mod η) as in (viii) then
we apply precisely the same transformations as in the proof of (viii) for the
relations inside the box to obtain that

GΓ(R) =

〈
xk+1, xk+2, . . . , xl

∣∣∣∣∣∣∣∣∣
R(xl, xl−1),
xα

kη
l , R(x(p2α)k

l , xk+1), R(xk+1, xk+2), . . . ,
R(xl−2, xl−1)

〉

=

〈
xk+1, xk+2, . . . , xl

∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, xl−1),
xα

kη
l , R(x(p2α)k

l , xk+1), R(xk+1, xk+2), . . . ,
R(xl−2, xl−1),
xi = x

(p2β)l−1−i

l−1 for k + 1 6 i 6 l − 1

〉

=

〈
xl−1, xl

∣∣∣∣∣∣∣∣∣
R(xl, xl−1),
xα

kη
l , R(x(p2α)k

l , xk+1), R(xk+1, xk+2), . . . , R(xl−2, xl−1),
xi = x

(p2β)l−1−i

l−1 for k + 1 6 i 6 l − 1

〉

=

〈
xl−1, xl

∣∣∣∣∣∣∣∣∣
R(xl, xl−1),
xα

kη
l , R(x(p2α)k

l , x
(p2β)l−k−2

l−1 ), R(x(p2β)l−k−2

l−1 , x
(p2β)l−k−3

l−1 ),
. . . , R(xp2β

l−1, xl−1)

〉
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= 〈 xl−1, xl | R(xl, xl−1), xα
kη
l , R(x(p2α)k

l , x
(p2β)l−k−2

l−1 ) 〉

= 〈 xl−1, xl | xα
kη
l , xαl = xβl−1, x

α(p2α)k
l = x

β(p2β)l−k−2

l−1 〉

= 〈 xl−1, xl | xα
kη
l , xαl = xβl−1, x

α(p2α)k
l = x

α(p2β)l−k−2

l 〉

= 〈 xl−1, xl | x(αkη,α(p2α)k−α(p2β)l−k−2)
l , xαl = xβl−1 〉.

After we get this presentation, we cannot eliminate xl−1 or xl from the
presentation by our limited knowledge now (it is because we cannot apply
Lemma 1.3.4 further). Thus, the group GΓ(R) has a 2-generator presentation.

(x)a4, a6, a7, a10, a14, (a3 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xk, xk+1), R(xk+1, xk+2), . . . , R(xl−1, xl),
R(xk, xk−1),
R(xt, xt+1), R(xt+1, xt+2), . . . , R(xk−2, xk−1),
R(ym, y1), R(y1, y2), . . . , R(yt−1, yt),
R(ym, ym−1), R(ym−1, ym−2), . . . , R(yt+1, yt),
xl = ym, x1 = y1, x2 = y2, . . . , xt = yt

〉
.

There are no directed cycles in that graph. Therefore, we can not apply
Theorem 1.3.5.

(xi)a4, a5, a8, a10, a14, (a13 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xt, xt+1), R(xt+1, xt+2), . . . , R(xl−1, xl),
R(xl, x1), R(x1, x2), . . . , R(xt−2, xt−1),
R(xt, xt−1),
R(yt, yt+1), R(yt+1, yt+2), . . . ,
R(ym−1, ym),
xl = ym, x1 = y1, x2 = y2, . . . , xt = yt

〉
.
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There are no directed cycles in that graph. Therefore, we can not apply
Theorem 1.3.5.

(xii) a1, a5, a7, a19, a23

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

w1, . . . , wt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, x1), R(x1, x2), R(x2, x3), . . . , R(xk−1, xk),
R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+1, xk),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xk = z1, zn = ym,
R(w1, w2), R(w2, w3), . . . , R(wt−1, wt),
xl = wt,

〉
.

We apply precisely the same transformations as in the proof of (ii) for the
relations inside the box to simplify the presentation

Supposing k < l − k, we get

GΓ(R) =

〈
xl,

w1, . . . , wt

∣∣∣∣∣∣∣∣∣
x
αmin {k,n+l−k−1}(α(m,l−2k)−β(m,l−2k))
l ,

R(w1, w2), R(w2, w3), . . . , R(wt−1, wt),
xl = wt,

〉

=
〈
w1, . . . , wt

∣∣∣∣∣∣ w
αmin {k,n+l−k−1}(α(m,l−2k)−β(m,l−2k))
t ,

R(w1, w2), R(w2, w3), . . . , R(wt−1, wt)

〉
.

Let φ = αmin {k,n+l−k−1}(α(m,l−2k) − β(m,l−2k)). Since (φ, β) = 1 (see Re-
mark 3.1.3), we can apply Lemma 1.3.4 (b),

GΓ(R) = 〈 w1 | wα
t−1αmin {k,n+l−k−1}(α(m,l−2k)−β(m,l−2k))

1 〉.

Hence, GΓ(R) is finite cyclic of order α(t−1)αmin {k,n+l−k−1}(α(m,l−2k)−β(m,l−2k)).
Applying same transformations when k > l − k

GΓ(R) = 〈 w1 | wα
t−1αmin {l−k,n+l−k−1}(α(m,2k−l)−β(m,2k−l))

1 〉.
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Hence, GΓ(R) is finite cyclic of order α(t−1)αmin {l−k,n+l−k−1}(α(m,2k−l)−β(m,2k−l)).
Supposing k = l − k, we have

GΓ(R) =
〈
w1, . . . , wt

∣∣∣∣∣∣ w
αn+l−k−1(αm−βm)
t ,

R(w1, w2), R(w2, w3), . . . , R(wt−1, wt)

〉

= 〈 w1 | wα
t−1αn+l−k−1(αm−βm)

1 〉

= 〈 w1 | wα
n+l+t−k−2(αm−βm)

1 〉.

Hence, GΓ(R) is finite cyclic of order α(t−1)αn+l+t−k−2(αm − βm).

(xiii) a1, a6, a7, a19, a23

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

w1, . . . , wt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xl = z1, zn = ym

R(w1, w2), R(w2, w3), . . . , R(wt−1, wt),
xk = wt,

〉
.

We apply precisely the same transformations as in the proof of (i) for the
relations inside the box to obtain that

GΓ(R) =

〈
xkw1, . . . , wt

∣∣∣∣∣∣∣∣∣
xα

(l,m)−β(l,m)

k ,

R(w1, w2), R(w2, w3), . . . , R(wt−1, wt),
xk = wt

〉
= 〈 w1, . . . , wt | wα

(l,m)−β(l,m)

t , R(w1, w2), R(w2, w3), . . . , R(wt−1, wt) 〉.

Since (α(l,m)−β(l,m), β) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (b),

GΓ(R) = 〈 w1 | wα
t−1(α(l,m)−β(l,m))

1 〉.

Hence, GΓ(R) is finite cyclic of order αt−1(α(l,m) − β(l,m)).
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(xiv) a1, a6, a7, a20, a23

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

w1, . . . , wt

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(zn, zn−1), R(zn−1, zn−2), . . . , R(z2, z1),
xl = z1, zn = ym

R(w1, w2), R(w2, w3), . . . , R(wt−1, wt),
xk = wt,

〉
We apply precisely the same transformations as in the proof of (i) for the
relations inside the box to obtain that

GΓ(R) =

〈
xkw1, . . . , wt

∣∣∣∣∣∣∣∣∣
xα

(l,m)−β(l,m)

k ,

R(w1, w2), R(w2, w3), . . . , R(wt−1, wt),
xk = wt

〉
= 〈 w1, . . . , wt | wα

(l,m)−β(l,m)

t , R(w1, w2), R(w2, w3), . . . , R(wt−1, wt) 〉.

Since (α(l,m)−β(l,m), β) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (b),

GΓ(R) = 〈 w1 | wα
t−1(α(l,m)−β(l,m))

1 〉.

Hence, GΓ(R) is finite cyclic of order αt−1(α(l,m) − β(l,m)).
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(xv) a6, a7, a17, a20, a22, a23

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

w1, . . . , wr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xγ1 , R(x1, x2), R(x2, x3), . . . , R(xl, x1),
yη1 , R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(zt, zt−1), R(zt−1, zt−2), . . . , R(z2, z1),
R(zt, zt+1), R(zt+1, zt+2), . . . , R(zn−1, zn),
xl = z1, ym = zn,

R(w1, w2), R(w2, w3), . . . , R(wr−1, wr),
zt = wr

〉
.

We apply precisely the same transformations as in the proof of (iii) for the
relations inside the box to obtain that

GΓ(R) =

〈
zt,

w1, . . . , wr

∣∣∣∣∣∣∣∣∣
z
αmin {n−t,t−1}(α(l,m)−β(l,m))
t ,

R(w1, w2), R(w2, w3), . . . , R(wr−1, wr),
zt = wr

〉

=
〈
w1, . . . , wr

∣∣∣∣∣∣ w
αmin {n−t,t−1}(α(l,m)−β(l,m))
r ,

R(w1, w2), R(w2, w3), . . . , R(wr−1, wr)

〉
.

Since (αmin {n−t,t−1}(α(l,m) − β(l,m)), β) = 1 (see Remark 3.1.3), we can
apply Lemma 1.3.4 (b),

GΓ(R) = 〈 w1 | wα
r−1αmin {n−t,t−1}(α(l,m)−β(l,m))

1 〉.

Hence, GΓ(R) is finite cyclic of order αr−1αmin {n−t,t−1}(α(l,m) − β(l,m)).
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(xvi) a6, a7, a17, a19, a22, a23

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

w1, . . . , wr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(z1, z2), R(z2, z3), . . . , R(zt−1, zt),
xl = z1,

R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(zt, zt+1), R(zt+1, zt+2), . . . , R(zn−1, zn),
zn = ym,

R(w1, w2), R(w2, w3), . . . , R(wr−1, wr),
zt = wr

〉
.

We apply Lemma 1.3.6 (a) for the relation inside the first box and Lemma 1.3.6 (b)
for the relation inside the second box

GΓ(R) =

〈
zt,

w1, . . . , wr

∣∣∣∣∣∣∣∣∣
z
βt−1(αl−βl)
t , z

αn−t(αm−βm)
t ,

R(w1, w2), R(w2, w3), . . . , R(wr−1, wr),
zt = wr

〉
.

Since (βt−1, αn−t) = 1, we get

GΓ(R) =

〈
zt,

w1, . . . , wr

∣∣∣∣∣∣∣∣∣
zα

(l,m)−β(l,m)

t ,

R(w1, w2), R(w2, w3), . . . , R(wr−1, wr),
zt = wr

〉
= 〈 w1, . . . , wr | wα

(l,m)−β(l,m)
r , R(w1, w2), R(w2, w3), . . . , R(wr−1, wr) 〉.

We apply Lemma 1.3.4 (b), we get

GΓ(R) = 〈 w1 | wα
r−1(αl−βl)

1 〉

Hence, GΓ(R) is finite cyclic of order αr−1(α(l,m) − β(l,m)).



3.2 Proving the main theorem 84

(xvii) a6, a7, a15, a19, a23

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

w1, . . . , wr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xl = z1, zn = ym,

R(w1, w2), R(w2, w3), . . . , R(wr−1, wr),
xl = wr

〉
.

We apply precisely the same transformations as in the proof of (i) for the
relations inside the box to obtain that

GΓ(R) =

〈
xl,

w1, . . . , wr

∣∣∣∣∣∣∣∣∣
x

(α(l,m)−β(l,m))
l ,

R(w1, w2), R(w2, w3), . . . , R(wr−1, wr),
xl = wr

〉

=
〈
w1, . . . , wr

∣∣∣∣∣∣ w
(α(l,m)−β(l,m))
r ,

R(w1, w2), R(w2, w3), . . . , R(wr−1, wr)

〉
.

Since (α(l,m)−β(l,m)), β) = 1 by Remark 3.1.3, we can apply Lemma 1.3.4 (b),

GΓ(R) = 〈 w1 | wα
r−1(α(l,m)−β(l,m))

1 〉

Hence, GΓ(R) is finite cyclic of order αr−1(α(l,m) − β(l,m))|.
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(xviii) a6, a7, a15, a20, a23

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

w1, . . . , wr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(zn, zn−1), R(zn−1, zn−2), . . . , R(z2, z1),
xl = z1, zn = ym,

R(w1, w2), R(w2, w3), . . . , R(wr−1, wr),
xl = wr

〉
.

We apply precisely the same transformations as in the proof of (xvii) for the
relations inside the box to obtain that

GΓ(R) =

〈
xl,

w1, . . . , wr

∣∣∣∣∣∣∣∣∣
x

(α(l,m)−β(l,m))
l ,

R(w1, w2), R(w2, w3), . . . , R(wr−1, wr),
xl = wr

〉

=
〈
w1, . . . , wr

∣∣∣∣∣∣ w
(α(l,m)−β(l,m))
r ,

R(w1, w2), R(w2, w3), . . . , R(wr−1, wr)

〉
.

Since (α(l,m)−β(l,m)), β) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (b),

GΓ(R) = 〈 w1 | wα
r−1(α(l,m)−β(l,m))

1 〉.

Hence, GΓ(R) is finite cyclic of order αr−1(α(l,m) − β(l,m)).
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(xix) a2, a6, a8, a20, a23, (a1 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

w1, . . . , wt,

s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xk, xk+1), R(xk+1, xk+2), . . . , R(xl−1, xl),
R(xk, xk−1), R(xk−1, xk−2), . . . , R(x1, xl),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(zn, zn−1), R(zn−2, zn−3), . . . , R(z2, z1),
R(wt, wt−1), R(wt−1, wt−2), . . . , R(w2, w1),
xk = z1, zn = ym, xl = wt,

R(s1, w1),

〉
.

We apply precisely the same transformations as in the proof of (xii) for the
relations inside the box but we need to interchange α and β by reflection
principle since the direction of each arc are reversed according to (xii). Thus
we get

Supposing k < l − k, we get

GΓ(R) =
〈
w1, s1

∣∣∣ wβt−1βmin {k,n+l−k−1}(β(m,l−2k)−α(m,l−2k))
1 , R(s1, w1)

〉
.

Supposing k > l − k, we get

GΓ(R) =
〈
w1, s1

∣∣∣ wβt−1βmin {l−k,n+l−k−1}(β(m,2k−l)−α(m,2k−l))
1 , R(s1, w1)

〉
.

Supposing k = l − k, we get

GΓ(R) =
〈
w1, s1

∣∣∣ wβn+l+t−k−2η
1 , R(s1, w1)

〉
.

After we get those presentation, we cannot eliminate w1 or s1 from the pre-
sentations. It is because we are not able to apply Lemma 1.3.4 further since
(βt−1βmin {k,n+l−k−1}(β(m,l−2k)−α(m,l−2k)), β) 6= 1, (βt−1βmin {k,n+l−k−1}(β(m,2k−l)−
α(m,2k−l)), β) 6= 1 and (βn+l+t−k−2η, β) 6= 1. Therefore, we cannot go further.
Thus, the group GΓ(R) has a 2-generator presentation.
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(xx) a2, a6, a7, a19, a23, (a1 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

w1, . . . , wt,

s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xl = z1, zn = ym, xk = wt,

R(wt, wt−1), R(wt−1, wt−2), . . . , R(w2, w1),
R(s1, w1)

〉
.

We apply precisely the same transformations as in the proof of (xiii) for the
relations inside the box to obtain that

GΓ(R) =

〈
w1, . . . , wt,

s1

∣∣∣∣∣∣∣∣∣
wα

(l,m)−β(l,m)

t ,

R(wt, wt−1), R(wt−1, wt−2), . . . , R(w2, w1),
R(s1, w1)

〉
.

Since (α(l,m)−β(l,m), α) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (a),

GΓ(R) =
〈
w1, s1

∣∣∣ wβt−1(α(l,m)−β(l,m))
1 , R(s1, w1)

〉
.

After we get this presentation, we cannot eliminate s1 or w1 from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(βt−1(α(l,m) − β(l,m)), β) 6= 1. Therefore, we cannot go further. Thus, the
group GΓ(R) has a 2-generator presentation.

(xxi) a2, a6, a7, a20, a23, (a1 = 1)

This is exactly same result with (xx) since the only difference for the digraph
is the reverse of the direction in the bridge between these two directed cycles
in Figure 3.5 and the direction of this bridge between these two directed
cycles does not affect the result since it is also isomorphic to (i).
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Thus, the group GΓ(R) has the presentation.

GΓ(R) =
〈
w1, s1

∣∣∣ wβt−1(α(l,m)−β(l,m))
1 , R(s1, w1)

〉
.

After we get this presentation, we cannot eliminate s1 or w1 from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(βt−1(α(l,m) − β(l,m)), β) 6= 1. Therefore, we cannot go further. Thus, the
group GΓ(R) has a 2-generator presentation.

(xxii) a6, a7, a18, a19, a21, a23, (a17 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

w1, . . . , wr,

s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(z1, z2), R(z2, z3), . . . , R(zt−1, zt),
R(zn, zn−1), R(zn−1, zn−2), . . . , R(zt+1, zt),
R(wr, wr−1), R(wr−1, wr−2), . . . , R(w2, w1),
xl = z1, ym = zn, zt = wr,

R(s1, w1)

〉
.

We apply precisely the same transformations as in the proof of (xv) for the
relations inside the box but we need to interchange α and β by reflection
principle since the direction of each arc are reversed according to (xv). Thus
we get

GΓ(R) =
〈
w1, s1

∣∣∣ wβr−1βmin{n−t,t−1}(β(l,m)−α(l,m))
1 , R(s1, w1)

〉
.

After we get this presentation, we cannot eliminate s1 or w1 from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(βr−1βmin{n−t,t−1}(β(l,m) − α(l,m)), β) 6= 1. Therefore, we cannot go further.
Thus, the group GΓ(R) has a 2-generator presentation.
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(xxiii) a6, a7, a18, a19, a22, a23, (a17 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

w1, . . . , wr,

s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(z1, z2), R(z2, z3), . . . , R(zt−1, zt),
xl = z1,

R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(zt, zt+1), R(zt+1, zt+2), . . . , R(zn−1, zn),
zn = ym, zt = wr

R(wr, wr−1), R(wr−2, wr−3), . . . , R(w2, w1),
R(s1, w1)

〉
.

We apply precisely the same transformations as in the proof of (xvi) for the
relations inside the box to obtain that

GΓ(R) =

〈
w1, . . . , wr,

s1

∣∣∣∣∣∣∣∣∣
wα

(l,m)−β(l,m)
r ,

R(wr, wr−1), R(wr−2, wr−3), . . . , R(w2, w1),
R(s1, w1)

〉
.

Since (α(l,m)−β(l,m), α) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (a),

GΓ(R) = 〈 w1, s1 | wβ
r−1(α(l,m)−β(l,m))

1 , R(s1, w1) 〉.

After we get this presentation, we cannot eliminate s1 or w1 from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(βr−1(α(l,m) − β(l,m)), β) 6= 1. Therefore, we cannot go further. Thus, the
group GΓ(R) has a 2-generator presentation.
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(xxiv) a6, a7, a16, a19, a23, (a15 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

w1, . . . , wr,

s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(z1, z2), R(z2, z3), . . . , R(zn−1, zn),
xl = z1 = wr, zn = ym,

R(wr, wr−1), R(wr−2, wr−3), . . . , R(w2, w1),
R(s1, w1)

〉
.

We apply precisely the same transformations as in the proof of (xvii) for the
relations inside the box to obtain that

GΓ(R) =

〈
w1, . . . , wr,

s1

∣∣∣∣∣∣∣∣∣
w(α(l,m)−β(l,m))
r ,

R(wr, wr−1), R(wr−2, wr−3), . . . , R(w2, w1),
R(s1, w1)

〉
.

Since (α(l,m)−β(l,m)), α) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (a),

GΓ(R) = 〈 w1, s1 | wβ
r−1(α(l,m)−β(l,m))

1 , R(s1, w1) 〉.

After we get this presentation, we cannot eliminate s1 or w1 from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(βr−1(α(l,m) − β(l,m)), β) 6= 1. Therefore, we cannot go further. Thus, the
group GΓ(R) has a 2-generator presentation.
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(xxv) a6, a7, a16, a20, a23, (a15 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

w1, . . . , wr,

s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
R(zn, zn−1), R(zn−1, zn−2), . . . , R(z2, z1),
xl = z1 = wr, zn = ym,

R(wr, wr−1), R(wr−2, wr−3), . . . , R(w2, w1),
R(s1, w1)

〉
.

We apply precisely the same transformations as in the proof of (xxiv) for the
relations inside the box to obtain that

GΓ(R) =

〈
w1, . . . , wr,

s1

∣∣∣∣∣∣∣∣∣
w(α(l,m)−β(l,m))
r ,

R(wr, wr−1), R(wr−2, wr−3), . . . , R(w2, w1),
R(s1, w1)

〉
.

Since (α(l,m)−β(l,m), α) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (a),

GΓ(R) = 〈 w1, s1 | wβ
r−1(α(l,m)−β(l,m))

1 , R(s1, w1) 〉.

After we get this presentation, we cannot eliminate s1 or w1 from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(βr−1(α(l,m) − β(l,m)), β) 6= 1. Therefore, we cannot go further. Thus, the
group GΓ(R) has a 2-generator presentation.

(xxvi) a4, a6, a7, a10, a11, a13

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
xt = ym−k+t, xt+1 = ym−k+t+1, . . . , xk = ym,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xk = zn

〉
.
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We apply precisely the same transformations as in the proof of (vii) for the
relations inside the box to obtain that

GΓ(R) =
〈
xk,

z1, . . . , zn

∣∣∣∣∣∣ x
α(l,m)−β(l,m)

k ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xk = zn

〉

= 〈 z1, . . . , zn | zα
(l,m)−β(l,m)

n , R(z1, z2), R(z2, z3), . . . , R(zn−1, zn) 〉.

Since (α(l,m)−β(l,m)), β) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (b),

GΓ(R) = 〈 z1 | zα
n−1(α(l,m)−β(l,m))

1 〉.

Hence, GΓ(R) is finite cyclic of order αn−1(α(l,m) − β(l,m)).

(xxvii) a4, a6, a7, a10, a11, a14

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
xt = ym−k+t, xt+1 = ym−k+t+1, . . . , xk = ym,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xk = zn

〉
.

This is exactly same result with (xxvi) since there is no difference in terms of
presentation. Thus

GΓ(R) = 〈 z1 | zα
n−1(α(l,m)−β(l,m))

1 〉.
Hence, GΓ(R) is finite cyclic of order αn−1(α(l,m) − β(l,m)).
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(xxviii) a1, a3, a5, a8, a9, a13

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xk,

xk+1, . . . , xt,

xt+1, . . . , xl,

y1, . . . , yk+m−t,

yk+m−t+1, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, x1), R(x1, x2), . . . , R(xk−1, xk),
R(xk, xk+1), R(xk+1, xk+2), . . . , R(xt−1, xt),
R(xt, xt+1), R(xt+1, xt+2), . . . , R(xl−1, xl),
R(ym, y1), R(y1, y2), . . . , R(yk+m−t−1, yk+m−t),
xk = ym, xk+1 = ym−1, xk+2 = ym−2 . . . ,

xt−1 = yk+m−t+1, xt = yk+m−t,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉
.

Adjoin xα
l−βl
k to the presentation by Theorem 1.3.5.

GΓ(R) =

〈
x1, . . . , xk,

xk+1, . . . , xt,

xt+1, . . . , xl,

y1, . . . , yk+m−t,

yk+m−t+1, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xα
l−βl
k , R(xl, x1), R(x1, x2), . . . , R(xk−1, xk),

R(xk, xk+1), R(xk+1, xk+2), . . . , R(xt−1, xt),
R(xt, xt+1), R(xt+1, xt+2), . . . , R(xl−1, xl),
R(ym, y1), R(y1, y2), . . . , R(yk+m−t−1, yk+m−t),

xα
l−βl
k , xk = ym , xk+1 = ym−1, xk+2 = ym−2,

. . . , xt−1 = yk+m−t+1, xt = yk+m−t,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉
.

Since (αl − βl, β) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (b) for
the first box,

GΓ(R) =

〈
xk+1, . . . , xt,

xt+1, . . . , xl,

y1, . . . , yk+m−t,

yk+m−t+1, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x
αk(αl−βl)
l ,

R(ym, xk+1), R(xk+1, xk+2), . . . , R(xt−1, xt),
R(xt, xt+1), R(xt+1, xt+2), . . . , R(xl−1, xl),
yα

l−βl
m , R(ym, y1), R(y1, y2), . . . ,
R(yk+m−t−1, yk+m−t),
xk+1 = ym−1, xk+2 = ym−2 . . . ,

xt−1 = yk+m−t+1, xt = yk+m−t,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉
.



3.2 Proving the main theorem 94

We set γ = αl − βl, η = βt−k(αl − βl).
Since p1α ≡ 1 (mod γ), there is an integer q1 ∈ Z such that p1α+ q1γ = 1.

Moreover, p1α ≡ 1 (mod γ) implies that yi = yp1α
i = yp1β

j in G. This allows
us to adjoin the relation yi = yp1β

j and to eliminate the generator yi.
Since p2α ≡ 1 (mod η), there is an integer q2 ∈ Z such that p2α+ q2η = 1.

Moreover, p2α ≡ 1 (mod η) implies that xi = xp2α
i = xp2β

j in G. This allows
us to adjoin the relation xi = xp2β

j and to eliminate the generator xi.
Since (γ, α) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (a),

GΓ(R) =

〈
xk+1, . . . , xt,

xt+1, . . . , xl,

yk+m−t,

yk+m−t+1, . . . , ym−1,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x
αk(αl−βl)
l ,

R(y(p1β)t−k−m
k+m−t , xk+1), R(xk+1, xk+2),

. . . , R(xt−1, xt),
R(xt, xt+1), R(xt+1, xt+2), . . . , R(xl−1, xl),
y
βt−k(αl−βl)
k+m−t

xk+1 = ym−1, xk+2 = ym−2, . . . ,

xt−1 = yk+m−t+1, xt = yk+m−t,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉
.

=

〈
xt,

xt+1, . . . , xl,

yk+m−t,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x
αk(αl−βl)
l ,

R(y(p1β)t−k−m
k+m−t , x

(p2β)t−k−1

t ), R(x(p2β)t−k−1

t , x
(p2β)t−k−2

t )
, . . . , R(xp2β

t , xt),
R(xt, xt+1), R(xt+1, xt+2), . . . , R(xl−1, xl),
y
βt−k(αl−βl)
k+m−t ,

x
(p2β)t−k−1

t = y
(p1β)t−k−1

k+m−t , x
(p2β)t−k−2

t = y
(p1β)t−k−2

k+m−t ,

. . . , xp2β
t = yp1β

k+m−t, xt = yk+m−t ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉
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=

〈
xt,

xt+1, . . . , xl,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x
αk(αl−βl)
l ,

R(x(p1β)t−k−m
t , x

(p2β)t−k−1

t ), R(x(p2β)t−k−1

t , x
(p2β)t−k−2

t )
, . . . , R(xp2β

t , xt),
R(xt, xt+1), R(xt+1, xt+2), . . . , R(xl−1, xl),
x
βt−k(αl−βl)
t ,

x
(p2β)t−k−1

t = x
(p1β)t−k−1

t , x
(p2β)t−k−2

t = x
(p1β)t−k−2

t ,

. . . , xp2β
t = xp1β

t ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉
.

Since R(x(p2β)i
t , x

(p2β)i−1

t ) = x
α(p2β)i−β(p2β)i−1

t = x
(p2β)i−1(αp2β−β)
t , and αp2β −

β = 0 mod γ since p2α ≡ 1 mod γ. Thus, these relations are redundant so
can be removed.

GΓ(R) =

〈
xt,

xt+1, . . . , xl,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x
αk(αl−βl)
l ,

R(xt, xt+1), R(xt+1, xt+2), . . . , R(xl−1, xl),
x
βt−k(αl−βl)
t ,

x
(p2β)t−k−1

t = x
(p1β)t−k−1

t , x
(p2β)t−k−2

t = x
(p1β)t−k−2

t ,

. . . , xp2β
t = xp1β

t ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉

=

〈
xt, xt+1, . . . , xl,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x
αk(αl−βl)
l ,

R(xt, xt+1), R(xt+1, xt+2), . . . , R(xl−1, xl),
x
βt−k(αl−βl)
t ,

x
(p2β)t−k−1−(p1β)t−k−1

t , x
(p2β)t−k−2−(p1β)t−k−2

t , . . . , xp2β−p1β
t ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉
.

=

〈
xt, xt+1, . . . , xl,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x
αk(αl−βl)
l ,

R(xt, xt+1), R(xt+1, xt+2), . . . , R(xl−1, xl),
x
βt−k(αl−βl)
t ,

x
(βt−k−1,βt−k−2,...,β2,β)(pt−k−1

2 −pt−k−1
1 ,pt−k−2

2 −pt−k−2
1 ,...,p2

2−p
2
1,p2−p1)

t ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉
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=

〈
xt, xt+1, . . . , xl,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣

x
αk(αl−βl)
l ,

R(xt, xt+1), R(xt+1, xt+2), . . . , R(xl−1, xl),
x

(βt−k(αl−βl),β(p2−p1))
t ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉

=

〈
xt, xt+1, . . . , xl,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣

x
αk(αl−βl)
l ,

R(xt, xt+1), R(xt+1, xt+2), . . . , R(xl−1, xl),
x
β(αl−βl)
t ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉
.

Since (β(αl − βl), α) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (a),

=

〈
xl,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣
x
αk(αl−βl)
l ,

x
βl−t(αl−βl)
l ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉
.

Since (αk(αl − βl), βl−t(αl − βl)) = (αl − βl), we get

=
〈
xl,

z1, . . . , zn

∣∣∣∣∣∣ x
αl−βl
l ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉

= 〈 z1, . . . , zn | zα
l−βl

n , R(z1, z2), R(z2, z3), . . . , R(zn−1, zn) 〉

= 〈 z1 | zα
n−1(αl−βl)

1 〉.

Hence, GΓ(R) is finite cyclic of order αn−1(αl − βl).

(xxix) a1, a3, a5, a8, a10, a14

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, xl−1), R(xl−1, xl−2), . . . , R(xk+1, xk),
R(xl, x1), R(x1, x2), . . . , R(xk−1, xk),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
xt = ym−k+t, xt+1 = ym−k+t+1, . . . , xk = ym,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉
.
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We apply precisely the same transformations as in the proof of (viii) for the
relations inside the box to obtain that

Supposing k < l − k, we get

GΓ(R) =
〈
xl,

z1, . . . , zn

∣∣∣∣∣∣ x
αmin{k,l−k}(β(m,2k−l)−α(m,2k−l))
l ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉

=
〈
z1, . . . , zn

∣∣∣∣∣∣ z
αmin{k,l−k}(β(m,2k−l)−α(m,2k−l))
n ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn)

〉
.

Since (αmin{k,l−k}(β(m,2k−l)−α(m,2k−l)), β) = 1 (see Remark 3.1.3), we can
apply Lemma 1.3.4 (b),

GΓ(R) = 〈 z1 | zα
n−1αmin{k,l−k}(β(m,2k−l)−α(m,2k−l))

1 〉.

Hence, GΓ(R) is finite cyclic of order αn−1αmin{k,l−k}(β(m,2k−l) − α(m,2k−l)).
Supposing k > l − k, we get

GΓ(R) =
〈
xl,

z1, . . . , zn

∣∣∣∣∣∣ x
αk(α(m,l−2k)−β(m,l−2k))
l ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xl = zn

〉

=
〈
z1, . . . , zn

∣∣∣∣∣∣ z
αk(α(m,l−2k)−β(m,l−2k))
n ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn)

〉
.

Since (αk(α(m,l−2k) − β(m,l−2k)), β) = 1 (see Remark 3.1.3), we can apply
Lemma 1.3.4 (b),

GΓ(R) = 〈 z1 | zα
n−1αk(α(m,l−2k)−β(m,l−2k))

1 〉.

Hence, GΓ(R) is finite cyclic of order αn−1αk(α(m,l−2k) − β(m,l−2k)).
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(xxx) a1, a3, a5, a8, a9, a14

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xt, xt−1), R(xt−1, xt−2), . . . , R(xl−1, xl),
R(xl, x1), R(x1, x2), . . . , R(xk−1, xk),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
xt = ym−k+t, xt+1 = ym−k+t+1, . . . , xk = ym,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xt = zn

〉
.

We apply precisely the same transformations as in the proof of (ix) for
the relations inside the box to obtain that

GΓ(R) =

〈
xl, xl−1, . . . , xt

z1, . . . , zn

∣∣∣∣∣∣∣∣∣
R(xt, xt−1), R(xt−1, xt−2), . . . , R(xl−1, xl),
x
αk(αm−βm)
l ,

R(z1, z2), R(z2, z3), . . . , R(zn−1, zn), xt = zn

〉
.

Since (αk(αm−βm), β) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (b),

GΓ(R) = 〈 z1, . . . , zn | zα
k+l−t(αm−βm)

n , R(z1, z2), R(z2, z3), . . . , R(zn−1, zn) 〉.

Since (αk+l−t(αm−βm), β) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (b),

GΓ(R) = 〈 zn | zα
k+l+n−t−1(αm−βm)

n 〉.

Hence, GΓ(R) is finite cyclic of order αk+l+n−t−1(αm − βm).
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(xxxi) a4, a6, a7, a10, a12, a13, (a11 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
xt = ym−k+t, xt+1 = ym−k+t+1, . . . , xk =
ym, xk = zn,

R(zn, zn−1), R(zn−2, zn−3), . . . , R(z2, z1),
R(s1, z1)

〉
.

We apply precisely the same transformations as in the proof of (xxvi) for the
relations inside the box to obtain that

GΓ(R) =

〈
z1, . . . , zn,

s1

∣∣∣∣∣∣∣∣∣
zα

(l,m)−β(l,m)
n ,

R(zn, zn−1), R(zn−2, zn−3), . . . , R(z2, z1),
R(s1, z1)

〉
.

Since (α(l,m)−β(l,m)), α) = 1 (see Remark 3.1.3), we can apply Lemma 1.3.4 (a),

GΓ(R) = 〈 z1, s1 | zβ
n−1(α(l,m)−β(l,m))

1 , R(s1, z1) 〉.

After we get this presentation, we cannot eliminate s1 or z1 from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(βn−1(α(l,m) − β(l,m)), β) 6= 1. Therefore, we cannot go further. Thus, the
group GΓ(R) has a 2-generator presentation.
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(xxxii) a4, a6, a7, a10, a12, a14, (a11 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(x1, x2), R(x2, x3), . . . , R(xl, x1),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
xt = ym−k+t, xt+1 = ym−k+t+1, . . . , xk =
ym, xk = zn,

R(zn, zn−1), R(zn−2, zn−3), . . . , R(z2, z1),
R(s1, z1)

〉
.

This is exactly same result with (xxxi) since there is no difference in terms
of presentation. Hence

GΓ(R) = 〈 z1, s1 | zβ
n−1(α(l,m)−β(l,m))

1 , R(s1, z1) 〉.

After we get this presentation, we cannot eliminate s1 or z1 from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(βn−1(α(l,m) − β(l,m)), β) 6= 1. Therefore, we cannot go further. Thus, the
group GΓ(R) has a 2-generator presentation.

(xxxiii) a2, a4, a5, a8, a9, a14, (a1 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xk, xk+1), R(xk+1, xk+2), . . . , R(xl−1, xl),
R(xk, xk−1), R(xk−1, xk−2), . . . , R(x1, xl),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
xt = ym−k+t, xt+1 = ym−k+t+1, . . . , xk = ym,

R(zn, zn−1), R(zn−1, zn−2), . . . , R(z2, z1), xl = zn,

R(s1, z1)

〉
.

We apply precisely the same transformations as in the proof of (xxix) for
the relations inside the box but we need to interchange α and β by reflection
principle since the direction of each arc are reversed according to (xxix).
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Thus we get
Supposing k < l − k

GΓ(R) = 〈 z1, s1 | zα
n−1αmin{k,l−k}(β(m,2k−l)−α(m,2k−l))

1 , R(s1, z1) 〉.

Supposing k > l − k, we get

GΓ(R) = 〈 z1, s1 | zα
n−1αk(α(m,l−2k)−β(m,l−2k))

1 , R(s1, z1) 〉.

After we get those presentations, we cannot eliminate s1 or z1 from the
presentations. It is because we are not able to apply Lemma 1.3.4 further
since (αn−1αmin{k,l−k}(β(m,2k−l) − α(m,2k−l)), α) 6= 1 and (αn−1αk(α(m,l−2k) −
β(m,l−2k)), α) 6= 1. Therefore, we cannot go further. Thus, the group GΓ(R)
has a 2-generator presentation.

(xxxiv) a2, a3, a5, a8, a9, a14, (a1 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xl,

y1, . . . , ym,

z1, . . . , zn,

s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xt, xt−1), R(xt−1, xt−2), . . . , R(xl−1, xl),
R(xl, x1), R(x1, x2), . . . , R(xk−1, xk),
R(y1, y2), R(y2, y3), . . . , R(ym, y1),
xt = ym−k+t, xt+1 = ym−k+t+1, . . . , xk = ym,

xt = zn

R(zn, zn−1), R(zn−2, zn−3), . . . , R(z2, z1),
R(s1, z1)

〉
.

We apply precisely the same transformations as in the proof of (xxx) for the
relations inside the box to obtain that

GΓ(R) =

〈
s1, z1, . . . , zn

∣∣∣∣∣∣∣∣∣
zα

k+l−t(αm−βm)
n ,

R(zn, zn−1), R(zn−2, zn−3), . . . , R(z2, z1),
R(s1, z1)

〉
.
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After we get this presentation, we cannot eliminate s1, z1, z2, . . . , zn from the
presentation. It is because we are not able to apply Lemma 1.3.4 further
since (αk+l−t(αm − βm), α) 6= 1. Therefore, we cannot go further. Thus, the
group GΓ(R) has a (n+ 1)-generator presentation.

(xxxv) a2, a3, a5, a8, a9, a13 (a1 = 1)

The group GΓ(R) is defined by the presentation

GΓ(R) =

〈
x1, . . . , xk,

xk+1, . . . , xt,

xt+1, . . . , xl,

y1, . . . , yk+m−t,

yk+m−t+1, . . . , ym,

z1, . . . , zn,

s1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

R(xl, x1), R(x1, x2), . . . , R(xk−1, xk),
R(xk, xk+1), R(xk+1, xk+2), . . . , R(xt−1, xt),
R(xt, xt+1), R(xt+1, xt+2), . . . , R(xl−1, xl),
R(ym, y1), R(y1, y2), . . . ,
R(yk+m−t−1, yk+m−t),
xk = ym, xk+1 = ym−1, xk+2 = ym−2 . . . ,

xt−1 = yk+m−t+1, xt = yk+m−t,
R(zn, zn−1), R(zn−2, zn−3), . . . , R(z2, z1),
xl = zn, R(s1, z1),

〉
.

Inside the box is exactly same result with (xxviii) since there is no difference
in terms of presentation. Hence

GΓ(R) =

〈
z1, z2, . . . , zn,

s1

∣∣∣∣∣∣∣∣∣
zα

l−βl
n ,

R(zn, zn−1), R(zn−2, zn−3), . . . , R(z2, z1),
R(s1, z1),

〉
.

GΓ(R) = 〈 z1, s1 | zβ
n−1(αl−βl)

1 , R(s1, z1), 〉.

After we get this presentation, we cannot eliminate s1 or z1 from the pre-
sentation. It is because we are not able to apply Lemma 1.3.4 further since
(βn−1(αl − βl), β) 6= 1. Therefore, we cannot go further. Thus, the group
GΓ(R) has a 2-generator presentation.
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4
Digraph groups when |V | 6 |A|

4.1 Preamble

In this chapter we consider digraphs Γ with |V (Γ)| 6 |A(Γ)|, and girth
g(Γ) > 4 and one of the following holds:

(i) Γ has no source and no sink; or

(ii) Γ has exactly one source and no sink; or

(iii) Γ has exactly one sink and no source; or

(iv) Γ has one source and one sink and they are adjacent.

It is already known that the corresponding group is infinite if none of
(i)-(iv) hold by Lemma 1.3.3. For Case (iv) the finiteness of the corresponding
groups remains unresolved both in [9] for |V | = |A| and in Chapter 3 for
|V | = |A| − 1.

In contrast the Chapter 3 we now focus on determining when the group is
finite and will no longer be concerned with calculating the order and structure
of the group. As corollaries to our main theorem (Theorem 4.1.1) we prove
that GΓ(R) is finite cyclic when Γ is strongly connected (Corollary 4.2.1) or
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semi-connected defined by (i) − (iii) in Preamble 4.1 (Corollary 4.3.2 and
4.3.4).

Theorem 4.1.1. Suppose α 6= 0, β 6= 0, (α, β) = 1, αn − βn 6= 0, aα = bβ in
K = 〈 a, b | R(a, b) 〉. If Γ, where g(Γ) > 4, has a trail including all vertices
and the terminal vertex v is in a directed cycle of length N , then GΓ(R) is
generated by xu, where u is the initial vertex of this trail.

Proof. Consider a trail in Γ that includes every vertex of Γ, in which the initial
vertex is u, say, and the terminal vertex is v, say, and v is the vertex of some
directed cycle. We now claim that, given an arc (ι, τ) in this trail, generator
xτ can be expressed as a power of xι. Using all such expressions, every
generator xτ (where τ is a vertex of this trail) can be expressed as a power of
xu. Therefore, every generator of GΓ(R), except xu, can be eliminated and
so GΓ(R) is cyclic, generated by xu.

We now prove the claim. Let [w, v] be the last arc of the trail. Since
v is in some directed cycle (of length N , say) there is a relator xγv where
γ = αN − βN . Using Lemma 1.3.4(d) we may write xv as a power of xw and
adjoin a relator o the form xαγw . Repeating this procedure for the remaining
vertices of the trail in turn (from the 2nd last, 3rd last, to the second vertex),
for each arc (ι, τ) of the trail we may express xτ as a power of xι and thus as
a power of xu, as claimed.

Corollary 4.1.2. Suppose α 6= 0, β 6= 0, (α, β) = 1, αn − βn 6= 0, aα = bβ in
K = 〈 a, b | R(a, b) 〉. If Γ, where g(Γ) > 4, has a trail including all vertices
and the terminal vertex u is in a directed cycle of length N , then GΓ(R) is
generated by xv, where v is the initial vertex of this trail.

Proof. This is a corollary of Theorem 4.1.1 by reflection principle addressed
in Remark 1.3.7.
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4.2 Finite cyclic groups for strongly-connected
digraphs

If a digraph is strongly connected, then it cannot have a source or sink.
Therefore, it can be thought that we only have Case (i): no source, no sink.

Corollary 4.2.1. Let Γ be a strongly connected digraph with g(Γ) > 4. Then
GΓ(R) is finite if and only if α 6= 0, β 6= 0, (α, β) = 1, αn − βn 6= 0, aα = bβ

in K = 〈 a, b | R(a, b) 〉, in which case GΓ(R) is cyclic.

Proof. If GΓ(R) is finite then (as explained in the Preamble), the stated
conditions on α, β, and K hold.

Γ is strongly connected, then there exists a path i→ j for all i, j. Thus,
there are paths 1→ 2, 2→ 3, . . . , n− 1→ n. Hence, there is a trail 1→ n

includes all vertices of the digraph. There is also a trail n → 1 with same
technique. Therefore, n is in a closed trail and so it is in a directed cycle.
Since Theorem 4.1.1 holds, GΓ(R) is finite cyclic.

4.3 Finite cyclic groups for semi-connected
digraphs

If a digraph is semi-connected, then we have 4 cases (i)−(iv) that we described
in Preamble. Therefore, we need to investigate these cases separately here.

Lemma 4.3.1. For any semi-connected digraph with no source no sink, there
is a directed trail which includes all vertices of the digraph.

Proof. We prove this by induction.
Inductive Hypothesis. Any semi-connected digraph with n vertices and

no source no sink has a directed trail that includes every vertex.
Anchor case: this is true for n = 2, as such a digraph consists of two

vertices joined to each other by an arc in each direction.
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For the inductive step we must show that any semi-connected digraph
with n+ 1 vertices and no source and no sink have a trail that includes every
vertex.

Let Γ be such a digraph and let u be some vertex of Γ and let Λ be the
induced sub-digraph of Γ with vertex set V (Γ)\{u}. Then by the inductive
hypothesis there is a trail that includes every vertex of Λ. Relabel the vertices
of Λ(if necessary) such that the trail is 1→ 2→ 3→ . . .→ n− 1→ n.

Consider vertices n, u. If there is an arc n → u then there is a trail
1→ 2→ 3→ . . .→ n→ u so assume there is an arc u→ n.

Consider vertices n− 1, u. If there is an arc n− 1→ u then there is a trail
1→ 2→ 3→ . . .→ n− 1→ u→ n so assume there is an arc u→ n− 1.

Consider vertices n − 2, u. If there is an arc n − 2 → u then there is a
trail 1→ 2→ 3→ . . .→ n− 2→ u→ n− 1→ n so assume there is an arc
u→ n− 2.

Continue in this way. Consider vertices 2, u. If there is an arc 2→ u then
there is a trail 1→ 2→ u→ 3→ . . .→ n− 1→ n so assume there is an arc
u→ 2.

Continue in this way. Consider vertices 1, u. If there is an arc 1→ u then
there is a trail 1→ u→ 2→ 3→ . . .→ n− 1→ n so assume there is an arc
u→ 1 and then there is a trail u→ 1→ 2→ 3→ . . .→ n− 1→ n which is
a trail through every vertex of Γ.

For Case (i) we have the following:

Corollary 4.3.2. Suppose α 6= 0, β 6= 0, (α, β) = 1, αn − βn 6= 0, aα = bβ in
K = 〈 a, b | R(a, b) 〉 and the g(Γ) > 4. If Γ is any semi-connected digraph
with no source and no sink then GΓ(R) is finite cyclic.

Proof. Let V (Γ) = {1, . . . , n} then by Lemma 4.3.1 there exists a trail
1 → 2 → 3 → . . . → n − 1 → n (relabel some of the vertices if necessary).
Since n is not a sink there is a trail n to j for some 1 < j < n. Thus, n is in
a closed trail and so it is in a directed cycle. Therefore, Theorem 4.1.1 holds
and GΓ(R) is finite cyclic.



4.3 Finite cyclic groups for semi-connected digraphs 107

Lemma 4.3.3. For any semi-connected digraph with exactly one source, there
is a trail which includes all vertices of the digraph.

Proof. We prove this by induction.
Inductive Hypothesis. Any semi-connected digraph with n vertices and

exactly one source has a trail that includes every vertex.
Anchor case: this is true for n = 2, as such a digraph consists of two

vertices joined by an arc.
For the inductive step we must show that any semi-connected digraph

with n + 1 vertices and exactly one source has a trail that includes every
vertex.

Let Γ be such a digraph and let u be some vertex of Γ that is not the source,
and let Λ be the induced sub-digraph of Γ with vertex set V (Γ)\{u}. Then
by the inductive hypothesis there is a trail that includes every vertex of Λ.
Relabel the vertices of Λ such that the trail is 1→ 2→ 3→ . . .→ n− 1→ n

(and therefore the source is 1).
Consider vertices n, u. If there is an arc n → u then there is a trail

1→ 2→ 3→ . . .→ n→ u so assume there is an arc u→ n.
Consider vertices n− 1, u. If there is an arc n− 1→ u then there is a trail

1→ 2→ 3→ . . .→ n− 1→ u→ n so assume there is an arc u→ n− 1.
Consider vertices n − 2, u. If there is an arc n − 2 → u then there is a

trail 1→ 2→ 3→ . . .→ n− 2→ u→ n− 1→ n so assume there is an arc
u→ n− 2.

Continue in this way. Consider vertices 2, u. If there is an arc 2→ u then
there is a trail 1→ 2→ u→ 3→ . . .→ n− 1→ n so assume there is an arc
u→ 2.

Now since 1 is a source there is an arc 1→ u, so there is a trail 1→ u→
2→ 3→ . . .→ n− 1→ n, which is a trail through every vertex of Γ.

For Case (ii), (iii) we have the following:

Corollary 4.3.4. Let Γ be a semi-connected digraph with g(Γ) > 4, and
suppose that if Γ has exactly one source and exactly one sink then they are
not adjacent. Then GΓ(R) is finite if and only if α 6= 0, β 6= 0, (α, β) =
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1, αn − βn 6= 0, aα = bβ in K = 〈 a, b | R(a, b) 〉, and one of the following
holds:

(ii) Γ has exactly one source and no sink; or

(iii) Γ has exactly one sink and no source;

in which case GΓ(R) is cyclic.

Proof. By the reflection principle we may assume that Γ has exactly one source
and no sinks. Let V (Γ) = {1, . . . , n} and 1 is the source. By Lemma 4.3.3
there exists a trail 1 → 2 → 3 → . . . → n − 1 → n (relabel some of the
vertices if necessary).

Since n is not a sink there is a trail n to j for some 1 < j < n. Thus n
is in a closed trail and so it is in a directed cycle. Therefore, Theorem 4.1.1
holds and GΓ(R) is finite cyclic.

It is natural to ask if Theorem 4.1.1 can be applied to Case (iv), i.e.
semi-connected digraphs with exactly one source and exactly one sink that
are adjacent. The answer to this is no, since the digraph in Figure 4.1 is
semi-connected and has a path 1 → 2 → 3 → 4 → 5 → 6 through every
vertex, but the terminal vertex is not in a directed cycle.

Figure 4.1: A digraph with exactly one source and one sink that are adjacent

Corollaries 4.3.2 and 4.3.4 imply that if Γ is semi-connected with (i) no
source and no sink, or (ii) exactly one source and no sink or (iii) exactly one
sink and no source (note that α 6= 0, β 6= 0, (α, β) = 1, αn − βn 6= 0, aα = bβ

in K = 〈 a, b | R(a, b) 〉 and the g(Γ) > 4), then GΓ(R) is finite cyclic.
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4.4 More digraph families

In this section, we consider digraph groups GΓ(R) where Γ is formed as a
combination of other digraphs. Recall that ui is an in-neighbour of vj if there
is an arc (ui, vj) for some i and j by Definition 1.2.8.

Theorem 4.4.1. Suppose α 6= 0, β 6= 0, (α, β) = 1, αn − βn 6= 0, aα = bβ

in K = 〈 a, b | R(a, b) 〉. Let Γ = Γ1 ∪ Γ2 and V (Γ1) ∩ V (Γ2) = ∅, the
g(Γ) > 4 and Γ is connected and the conditions (i)− (iii) in Preamble hold.
If Γ1 has a trail containing every vertex u1 → u2 → . . . → uN−1 → uN of
Γ1 where uN is in a directed cycle, Γ2 has a trail containing every vertex
v1 → v2 → . . . → vM−1 → vM of Γ2 where vM is in a directed cycle, then
GΓ(R) is finite cyclic.

Proof. u1, v1 cannot both be sources by hypothesis, so without loss of gener-
ality assume v1 is not a source. Then there are two cases:
Case 1: there is an arc (ui, v1) for some 1 6 i 6 N .
Case 2: there is an arc (vj, v1) for some 4 6 j 6M

Case 1 is connected but Case 2 is not yet connected. Therefore it splits
into 4 cases:
Case 2(a): there is an arc (ui, vm) for some 1 6 i 6 N , m 6 j

Case 2(b): there is an arc (ui, vm) for some 1 6 i 6 N , m > j

Case 2(c): there is an arc (vm, ui) for some 1 6 i 6 N , m 6 j

Case 2(d): there is an arc (vm, ui) for some 1 6 i 6 N , m > j

Now we will give the proof for each cases. Note that we set up γ = αN−βN

and η = αM − βM .
Case 1: By Theorem 4.1.1, we can eliminate all generators leaving only the
generator xu1 for GΓ1(R) and xv1 for GΓ2(R). Now the aim is to to write the
generator xv1 in terms of the generator xu1 . Then GΓ(R) is finite cyclic.

There is a trail u1 → u2 → . . .→ ui → v1 → v2 → . . .→ vM which means
the generator xv1 can be written in terms of xu1 since vM is in a directed
cycle. That means leaving only the generator xu1 and the relator xru1 , where
r ∈ Z. Hence, GΓ(R) is finite cyclic.
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Case 2(a): By Theorem 4.1.1, we can eliminate all generators leaving only
the generator xu1 for GΓ1(R) and xv1 for GΓ2(R). Now the aim is to to write
the generator xv1 in terms of the generator xu1 . Then GΓ(R) is finite cyclic.

There is a trail u1 → u2 → . . . → ui → vm → vm+1 → . . . → vj → v1 →
v2 → v3 → . . .→ vm which means the generators xv1 can be written in terms
of xu1 since vm is in a directed cycle. That means leaving only the generator
xu1 and the relator xru1 , where r. Hence, GΓ(R) is finite cyclic.
Case 2(b): By Theorem 4.1.1, we can eliminate all generators leaving only
the generator xu1 for GΓ1(R).

We now demonstrate the presentation in terms of xvm for GΓ2(R).
There is a directed cycle v1 → v2 → . . . → vj → v1 so the generators

xv1 , xv2 , . . . , xvj−1 are eliminated leaving the generator xvj and the relator
xγvj by Theorem 1.3.5. Since (β, γ) = 1 and an iterated application of
Lemma 1.3.4 (b) yields that we can eliminate the generators xvj , xvj+1,...,xvm−1

leaving only the generator xvm and the relator xαm−jγvm . There is another path
vm → vm+1 → . . . → vM . Since (α, η) = 1 and an iterated application of
Lemma 1.3.4 (a) yields that the generators xvm+1 , xvm+2 , . . . , xvM are elimi-
nated leaving the generator xvm for some m and the relator xβrηvm . Now we
have one generator and two relators which are xαm−jγvm and xβrηvm . Then we only
have the relators x(γ,η)

vm for some m since (α, β) = 1 for GΓ2(R).
Now, there is a path as u1 → u2 → . . . → ui → vm and x(γ,η)

vm = 1.
Since (β, (γ, η)) = 1, xvm can be eliminated leaving the generator xu1 by
Lemma 1.3.4 (b). Hence, GΓ(R) is finite cyclic.
Case 2(c): For Γ2, there is a path vj → vj+1 → . . . → vM and vM is
in a directed cycle. That means the generators xvj+1 , xvj+2 , . . . , xvM can be
eliminated leaving the generator xvj and the relator xαr(αs−βs)vj

, where r, s ∈ Z,
by Lemma 1.3.6 (b). There is a directed cycle vj → v1 → v2 → . . . →
vj−1 → vj . That means the generators xv1 , xv2 , . . . , xvm , xvm+1 . . . , xvj−1 can be
eliminated leaving the generator xvj and the relator xαj−βjvj

by Theorem 1.3.5.
Thus, GΓ2(R) = 〈xvj | xα

r(αs−βs)
vj

, xα
j−βj
vj

〉 = 〈xvj | xα
(j,s)−β(j,s)
vj

〉.
By Lemma 3.1.2, xvj can be written as xpj−mβj−mvm so GΓ2(R) = 〈xvm |

xp
j−mβj−m(α(j,s)−β(j,s))
vm 〉.
Now, for Γ1, there is a path as ui → ui+1 → . . . → uN and uN is in
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a directed cycle. That means the generators xui+1 , xui+2 , . . . , xuN can be
eliminated leaving the generator xui and the relator xαk(αh−βh)

ui
where k, h ∈ Z,

by Lemma 1.3.6 (b). Since Γ = Γ1 ∪ Γ2, we get

GΓ(R) =

〈
xu1 , xu2 , . . . , xui , xvm

∣∣∣∣∣∣∣∣∣
xα

k(αh−βh)
ui

,

xp
j−mβj−m(α(j,s)−β(j,s))
vm , R(vm, ui),

R(u1, u2), R(u2, u3), . . . , R(ui−1, ui)

〉
by Lemma 1.3.6 (a)

=
〈
xu1 , xu2 , . . . , xui

∣∣∣∣∣∣ x
αk(αh−βh)
ui

, xp
j−mβj−m+1(α(j,s)−β(j,s))
ui

,

R(u1, u2), R(u2, u3), . . . , R(ui−1, ui)

〉

=
〈
xu1 , xu2 , . . . , xui

∣∣∣∣∣∣ x
α(j,s,h)−β(j,s,h)
ui

,

R(u1, u2), R(u2, u3), . . . , R(ui−1, ui)

〉

by Lemma 1.3.6 (b)
...

= 〈 xu1 | xα
i−1(α(j,s,h)−β(j,s,h))
u1

〉.

Hence, GΓ(R) is finite cyclic.
Case 2(d): There is a path vm → vm+1 . . .→ vM and vM is in a directed cycle.
That means the generators xvm+1 , xvm+2 , . . . , xvM can be eliminated leaving the
generator xvm and the relator xαr(αs−βs)vm , where r, s ∈ Z, by Lemma 1.3.6 (a).
There is a trail vj → v1 → v2 → . . . → vj−1 → vj → vj+1 → vm. That
means the generators xv1 , xv2 , . . . , xvj , xvj+1 , vm−1 can be eliminated leaving
the generator xβm−j(αj−βj)vm by Corollary 4.1.2.

Thus, GΓ2(R) = 〈xvm | xα
r(αs−βs)
vm , xβ

m−j(αj−βj)
vm 〉 = 〈xvm | xα

(j,s)−β(j,s)
vm 〉.

Now, there is a trail as ui → ui+1 → . . .→ uN and uN is in a directed cycle.
That means the generators xui+1 , xui+2 , . . . , xuN can be eliminated leaving the
generator xui and the relator xαk(αh−βh)

ui
where k, h ∈ Z, by Theorem 4.1.1.
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Thus, we get

GΓ(R) =
〈
xu1 , xu2 , . . . , xui , xvm

∣∣∣∣∣∣∣
xα

k(αh−βh)
ui

, xα
(j,s)−β(j,s)
vm , R(vm, ui),

R(u1, u2), R(u2, u3), . . . , R(ui−1, ui)

〉

by Lemma 1.3.6 (a)

=
〈
xu1 , xu2 , . . . , xui

∣∣∣∣∣∣ x
αk(αh−βh)
ui

, xβα
(j,s)−β(j,s)

ui
,

R(u1, u2), R(u2, u3), . . . , R(ui−1, ui)

〉

=
〈
xu1 , xu2 , . . . , xui

∣∣∣∣∣∣ x
α(j,s,h)−β(j,s,h)
ui

,

R(u1, u2), R(u2, u3), . . . , R(ui−1, ui)

〉

by Lemma 1.3.6 (b)
...

= 〈 xu1 | xα
i−1(α(j,s,h)−β(j,s,h))
u1

〉.

Hence, GΓ(R) is finite cyclic.

Corollary 4.4.2. Suppose α 6= 0, β 6= 0, (α, β) = 1, αn − βn 6= 0, aα = bβ

in K = 〈 a, b | R(a, b) 〉. Let Γ = Γ1 ∪ Γ2 and V (Γ1) ∩ V (Γ2) = ∅, the
g(Γ) > 4 and Γ is connected and Γ1,Γ2 are either strongly connected or are
semi-connected and satisfy (i)− (iii). Then GΓ(R) is a finite cyclic group.

Proof. The digraphs Γ1 and Γ2 which are described in Theorem 4.4.1 can be
replaced by any strongly connected or semi-connected digraph with (i)− (iii)
in Preamble as we proved in Corollary 4.2.1, 4.3.2 and 4.3.4, respectively.
Thus, GΓ(R) is finite cyclic.

Theorem 4.4.3. Suppose α 6= 0, β 6= 0, (α, β) = 1, αn − βn 6= 0, aα = bβ

in K = 〈 a, b | R(a, b) 〉 and aα = bβ. Let Γ be a digraph with (i) − (iii) in
Preamble and the g(Γ) > 4. If Γ = Γ1 ∪ Γ2 ∪ . . . ∪ Γt and V (Γ1) ∩ V (Γi) 6= ∅
for 2 6 i 6 t, where Γ1 has a path as v1 → v2 → . . .→ vM and the terminal
vertex vM is in a directed cycle and each Γi for 2 6 i 6 t has a path Pi that
contains every vertex of Γi whose terminal vertex (respectively initial vertex)
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is in a directed cycle, and whose initial vertex (respectively terminal vertex)
is vj for some j. Then, GΓ(R) is finite cyclic.

Proof. Γ1 has v1 → v2 → . . . → vM and the terminal vertex vM is in a
directed cycle. By hypothesis, there are two possible cases as vj terminal
vertex or initial vertex for each Γi (2 6 i 6 M). We show that for each
2 6 i 6 M , if u is a vertex of Γi then xu can be written in terms of xv1 , so
can be eliminated, so GΓ(R) is cyclic.
Case 1: If vj is initial vertex of Pi then the terminal vertex of Pi is either
some vertex vk (case 1(a)) or it is not equal to vk for any k (case (1(b)), and
is a vertex of a directed cycle.
Case 1(a): There is a path as v1 → v2 → . . .→ vj → vk → vk+1 → . . .→ vM

(where vj → vk is the path Pi). That means all generator can be eliminated
leaving only the generator xv1 and thus GΓ(R) is finite cyclic.
Case 1(b): There is a path as v1 → v2 → . . .→ vj followed by the path Pi
ending with a different directed cycle. That means all generator xu, where
u ∈ V (Γi), can be eliminated leaving only the generator xv1 and thus GΓ(R)
is finite cyclic.
Case 2: If vj is terminal vertex of Pi then the initial vertex of Pi is either
some vertex vk (case 2(a)) or it is not equal to vk for any k (case (2(b)), and
is a vertex of a directed cycle.
Case 2(a): There is a path as v1 → v2 → . . .→ vk → vj → vj+1 → . . .→ vM

(where vk → vj is the path Pi). That means all generator can be eliminated
leaving only the generator xv1 and thus GΓ(R) is finite cyclic.
Case 2(b): All generators xvj , xvj+1 , . . . , xvM of path P1 can be eliminated
leaving the only generator xαM−j+1γ1

vj
by Lemma 1.3.6 (b).

All generators correspond to Γi (2 6 i 6 M) can be eliminated leaving
only the generator xβsiγivj

by Lemma 1.3.6 (a), where si is the number of
arcs between vj and the directed cycle of the path Pi. Thus, we have the



4.4 More digraph families 114

presentation

GΓ(R) =
〈
xv1 , xv2 , . . . , xvj

∣∣∣∣∣∣ x
βsiγi
vj

(2 6 i 6M), xαM−j+1γ1
vj

,

R(xv1 , xv2), R(xv2 , xv3), . . . , R(xvj−1 , xvj)

〉

=
〈
xv1 , xv2 , . . . , xvj

∣∣∣∣∣∣ x
(γ1,γ2,...,γM )
vj

,

R(xv1 , xv2), R(xv2 , xv3), . . . , R(xvj−1 , xvj)

〉
.

Let Λ = (γ1, γ2, . . . , γM ) and we want to eliminate xv2 , . . . , xvj from GΓ(R).
So using the arc (vj−1, vj) and the relator xΛ

vj
we can eliminate xvj and add

the relation xβΛ
vj−1

= 1 by Lemma 1.3.4 (a). Thus,
〈xv1 , xv2 , . . . , xvj−1 | xβΛ

vj−1
, R(xv1 , xv2), R(xv2 , xv3), . . . , R(xvj−2 , xvj−1) 〉.

Continuing in this way we can use the arcs (vj−i, vj−i+1) to eliminate
xv2 , . . . , xvj−2 leaving only the generator xv1 and relator xβrΛv1 , where r is an
integer.

Hence, GΓ(R) is finite cyclic.

Corollary 4.4.4. For Theorem 4.4.3, if each Γi is replaced with a strongly
connected or semi-connected digraph that satisfies (i)− (iii) in Preamble 4.1
then GΓ(R) is finite cyclic.

Proof. The digraphs Γi which are described in Theorem 4.4.3 can be replaced
by any strongly connected or semi-connected digraph that satisfies (i)− (iii)
in Preamble 4.1 as we proved in Corollary 4.2.1, 4.3.2 and 4.3.4, respectively.
Thus, GΓ(R) is finite cyclic.
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5
Generalization of Johnson’s and Mennicke’s
group

5.1 Preamble

In 1959, Mennicke [27] provided an example of a group defined by the
presentation

M(a, b, c) = 〈x, y, z | y−1xy = xa, z−1yz = yb, x−1zx = zc 〉

which is finite in the case a = b = c > 3. These groups have also been
investigated by I.D.Macdonald and by J.W.Wamsley and they showed that
M(a, b, c), which is not necessarily digraph groups except for a = b = c, is
finite whenever |a|, |b|, |c| > 3 in [33]. The proof of this can be found in [22]
and we also stated the detailed proof in Theorem 5.3.2.

In 1997, Johnson [21] provided another group needing exactly 3 generators
which is presented by

J(a, b, c) = 〈x, y, z | xy = yb−2x−1yb+2, yz = zc−2y−1zc+2, zx = xa−2z−1xa+2 〉

and finite in the case a, b, c are non-zero even integers.
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These are important since they are able to construct examples of finite
groups needing exactly 3 generators. The groups M(a, b, c), J(a, b, c) can be
expressed as groupsMΓ, JΓ that we will define in Definitions 5.2.1,5.3.1, where
Γ is a directed triangle. We will generalize Mennicke [27] and Johnson [21]
theorems from a directed triangle to all strong tournaments in this chapter.

5.2 Generalization of Johnson’s group

5.2.1 Strategy

Before giving the proof of the main Theorem, we sketch the strategy here.
Firstly, we will state Johnson’s Theorem and we reproduce its proof in details
in Theorem 5.2.2 since it forms a crucial ingredient to our methods. The
underlying digraph is a directed triangle. It will be important to know that
all vertices in a strong tournament belong to a directed triangle which is
stated in Lemma 1.2.20. Thus, we will combine this Theorem 5.2.2 and
Lemma 1.2.20 to prove the main Theorem in the Theorem 5.2.4. We begin
with the definition of the Johnson group to generalise from 3 generators to n
generators.

Definition 5.2.1. Let Γ be a digraph with arcs (u, v) labelled by even integers
q(u,v) > 2. We define the generalized Johnson group to be the group

JΓ = 〈xv (v ∈ V (Γ)) | xxvu = x
q(u,v)−2
v x−1

u x
q(u,v)+2
v (u, v) ∈ A(Γ) 〉

where xy denotes y−1xy.

Theorem 5.2.2 (([20, page 70])). Let Γ be the digraph with vertex set V (Γ) =
{1, 2, 3} and arc set A(Γ) = {(1, 2), (2, 3), (3, 1)}. Then JΓ = 〈x1, x2, x3 |
xx2

1 = x
q(1,2)−2
2 x−1

1 x
q(1,2)+2
2 , xx3

2 = x
q(2,3)−2
3 x−1

2 x
q(2,3)+2
3 , xx1

3 = x
q(3,1)−2
1 x−1

3 x
q(3,1)+2
1 〉

is finite.

Proof. ([20, page 71, 72]) The first step is to show that

x1 commutes with x2
2, x2 commutes with x2

3 and x3 commutes with x2
1.

(5.2.1)
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To see this,

x
x2

2
1 = x−2

2 x1x
2
2 = x−1

2 x−1
2 x1x2x2 = x−1

2 xx2
1 x2

= x−1
2 x

q(1,2)−2
2 x−1

1 x
q(1,2)+2
2 x2

by the first relator

= x
q(1,2)−2
2 x−1

2 x−1
1 x2x

q(1,2)+2
2

= x
q(1,2)−2
2 (x−1

2 x1x2)−1x
q(1,2)+2
2

= x
q(1,2)−2
2 (xx2

1 )−1x
q(1,2)+2
2

= x
q(1,2)−2
2 (xq(1,2)−2

2 x−1
1 x

q(1,2)+2
2 )−1x

q(1,2)+2
2

= x
q(1,2)−2
2 x

−q(1,2)−2
2 x1x

−q(1,2)+2
2 x

q(1,2)+2
2

= x−4
2 x1x

4
2

Thus, x−2
2 x1x

2
2 = x−4

2 x1x
4
2 so x1 = x−2

2 x1x
2
2 so x2

2x1 = x1x
2
2. Thus, x1

commutes with x2
2. From the other two relations in the definition by using

same method, we can get that x2 commutes with x2
3 and x3 commutes with

x2
1. Hence, the subgroup H = 〈x2

1, x
2
2, x

2
3〉 of J is abelian.

Furthermore, xx2
1 = x

q(1,2)−2
2 x−1

1 x
q(1,2)+2
2 by the first relator. We already

showed that x1 commutes with x2
2 so x1 commutes with xq(1,2)−2

2 since q(1,2) is
even integer. As a consequence of this xx2

1 = x−1
1 x

2q(1,2)
2 and from the other

original relations, xx3
2 = x−1

2 x
2q(2,3)
3 and xx1

3 = x−1
3 x

2q(3,1)
1 . That is

xx2
1 = x−1

1 x
2q(1,2)
2 , xx3

2 = x−1
2 x

2q(2,3)
3 and xx1

3 = x−1
3 x

2q(3,1)
1 (5.2.2)

Now we show that (x2
1)w ∈ H, (x2

2)w ∈ H, (x2
3)w ∈ H for any w ∈ J . To

see this observe the following
(x2

1)x1 = x−1
1 x2

1x1 = x2
1

(x2
1)x2 = (xx2

1 )2 = (x−1
1 x

2q(1,2)
2 )2 = x−1

1 x
2q(1,2)
2 x−1

1 x
2q(1,2)
2 = x−2

1 x
4q(1,2)
2

(x2
1)x3 = x−1

3 x2
1x3 = x2

1

(x2
2)x1 = x−1

1 x2
2x1 = x2

2

(x2
2)x2 = x−1

2 x2
2x2 = x2

2

(x2
2)x3 = (xx3

2 )2 = (x−1
2 x

2q(2,3)
3 )2 = x−1

2 x
2q(2,3)
3 x−1

2 x
2q(2,3)
3 = x−2

2 x
4q(2,3)
3
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(x2
3)x1 = (xx1

3 )2 = (x−1
3 x

2q(3,1)
1 )2 = x−1

3 x
2q(3,1)
1 x−1

3 x
2q(3,1)
1 = x−2

3 x
4q(3,1)
1

(x2
3)x2 = x−1

2 x2
3x2 = x2

3

(x2
3)x3 = x−1

3 x2
3x3 = x2

3

So for any w ∈ JΓ, we have (x2
1)w ∈ H, (x2

2)w ∈ H, (x2
3)w ∈ H. Therefore,

H is normal in J .
The quotient J/H is given by adjoining the relations x2

1 = x2
2 = x2

3 = 1 to
those defining J [21, Proposition 4.2, page 93]. If x2

2 = 1, then (x2
2)q(1,2)/2 = 1

so x
q(1,2)
2 = 1. Thus xq(1,2)+2

2 = 1 and x
q(1,2)−2
2 = 1. By the first relator,

x−1
2 x1x2 = x

q(1,2)−2
2 x−1

1 x
q(1,2)+2
2 so x−1

2 x1x2 = x−1
1 . Thus, x1x

−1
2 x1x2 = 1 and

x1x2x1x2 = 1 since x2
2 = 1. Hence, (x1x2)2 = 1. By using same technique, we

get x2
3 = 1 with the second relator, and x2

1 = 1 with the third relator. Thus,
we get (x2x3)2 = 1 and (x3x1)2 = 1 respectively.

Now, we can write
J/H = 〈x1, x2, x3 | x2

1 = x2
2 = x2

3 = (x1x2)2 = (x2x3)2 = (x3x1)2 = 1 〉.
Thus, J/H ∼= Z2 × Z2 × Z2 and |J : H| = 8.
We now show that H is a finite abelian group. We have

[[x1, x2], xx1
3 ] = [x−1

1 x−1
2 x1x2, x

−1
3 x

2q(3,1)
1 ] by (5.2.3)

= [x−1
1 xx2

1 , x
−1
3 x

2q(3,1)
1 ]

= [x−1
1 x−1

1 x
2q(1,2)
2 , x−1

3 x
2q(3,1)
1 ] by (5.2.3)

= [x−2
1 x

2q(1,2)
2 , x−1

3 x
2q(3,1)
1 ]

= x
−2q(1,2)
2 x2

1x
−2q(3,1)
1 x3x

−2
1 x

2q(1,2)
2 x−1

3 x
2q(3,1)
1

= x
−2q(1,2)
2 x3x

2
1x
−2q(3,1)
1 x−2

1 x
2q(3,1)
1 x

2q(1,2)
2 x−1

3 by (5.2.1)

= x
−2q(1,2)
2 x3x

2q(1,2)
2 x−1

3

= x
−2q(1,2)
2 x−1

3 x2
3x

2q(1,2)
2 x−2

3 x3

= x
−2q(1,2)
2 x−1

3 x
2q(1,2)
2 x2

3x
−2
3 x3 by (5.2.1)

= x
−2q(1,2)
2 x−1

3 x
2q(1,2)
2 x3

= x
−2q(1,2)
2 (xx3

2 )2q(1,2)

= x
−2q(1,2)
2 (x−1

2 x
2q(2,3)
3 )2q(1,2) by (5.2.3)

= x
−4q(1,2)
2 x

4q(2,3)q(1,2)
3 .
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By using same method, we can get

[[x2, x3], xx2
1 ] = x

−4q(2,3)
3 x

4q(3,1)q(2,3)
1 and [[x3, x1], xx3

2 ] = x
−4q(3,1)
1 x

4q(1,2)q(3,1)
2 .

Substituting this into Witt identity (see [21, Exercise 4.13, page 56]) and
since x2

1, x
2
2, x

2
3 all commute,

e = [[x1, x2], xx1
3 ] . [[x2, x3], xx2

1 ] . [[x3, x1], xx3
2 ]

= x
−4q(1,2)
2 x

4q(2,3)q(1,2)
3 . x

−4q(2,3)
3 x

4q(3,1)q(2,3)
1 . x

−4q(3,1)
1 x

4q(1,2)q(3,1)
2

= x
4q(3,1)(q(2,3)−1)
1 . x

4q(1,2)(q(3,1)−1)
2 . x

4q(2,3)(q(1,2)−1)
3

To see a power x1 can be written in terms of a power x2,
Since x2

2, x
2
3 commute with x2 so does x4q(3,1)(q(2,3)−1)

1 , and thus by (5.2.3)

x
4q(3,1)(q(2,3)−1)
1 = (x4q(3,1)(q(2,3)−1)

1 )x2

= (xx2
1 )4q(3,1)(q(2,3)−1)

= (x−1
1 x

2q(1,2)
2 )4q(3,1)(q(2,3)−1)

= x
−4q(3,1)(q(2,3)−1)
1 x

8q(1,2)q(3,1)(q(2,3)−1)
2

Thus, x8q(3,1)(q(2,3)−1)
1 = x

8q(1,2)q(3,1)(q(2,3)−1)
2 and similarly can be found

x
8q(1,2)(q(3,1)−1)
2 = x

8q(2,3)q(1,2)(q(3,1)−1)
3 and x8q(2,3)(q(1,2)−1)

3 = x
8q(2,3)q(3,1)(q(1,2)−1)
1 .

Using these relations, we get that

x
8q(3,1)(q(1,2)−1)(q(2,3)−1)(q(3,1)−1)
1 = x

8q(3,1)q(1,2)(q(1,2)−1)(q(2,3)−1)(q(3,1)−1)
2

= x
8q(3,1)q(1,2)q(2,3)(q(1,2)−1)(q(2,3)−1)(q(3,1)−1)
3

= x
8q2

(3,1)q(1,2)q(2,3)(q(1,2)−1)(q(2,3)−1)(q(3,1)−1)
1 .

It is therefore x1 has order dividing |8q(3,1)(q(1,2) − 1)(q(2,3) − 1)(q(3,1) −
1)(q(1,2)q(2,3)q(3,1) − 1)| which is non-zero. Thus x2

1 has finite order similarly
so do x2

2 and x2
3 . Following that H = 〈x2

1, x
2
2, x

2
3〉 is a finite abelian group.

Since J/H ∼= Z3
2, the group J is finite.
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5.2.2 Proving the main theorem

Lemma 5.2.3. Let Γ be a simple digraph where each arc (u, v) ∈ A(Γ)
is labelled by an even integer q(u,v). If JΓ is finite then Γ is a non-trivial
tournament.

Proof. Suppose that Γ is not a tournament. Then Γ is non-trivial so it has
at least two vertices and there is a pair of vertices w1, w2 ∈ V (Γ) that are
not joined by an arc. Adjoining relators xu to the defining presentation of JΓ

for all u 6= w1, w2 and adjoining the relators x2
w1 , x

2
w2 shows that JΓ has the

infinite quotient 〈xw1 , xw2 | x2
w1 , x

2
w2 〉 ∼= Z2 ∗ Z2.

Theorem 5.2.4. Let Γ be a non-trivial strong tournament, then JΓ is finite.

Proof. Firstly, we will show the subgroup H = 〈x2
v v ∈ V (Γ) 〉 of J is

finite abelian. Secondly, H is normal subgroup of J (H / J). Lastly, J/H =
〈xv v ∈ V (Γ) | x2

v, x
xv
u = x

q(u,v)−2
v x−1

u x
q(u,v)+2
v v ∈ V (Γ) (u, v) ∈ A(Γ) 〉 is iso-

morphic to Zn2 .
We first show that if we have an arc (u, v), then xu commutes with x2

v.
To see this

xx
2
v
u = x−2

v xux
2
v = x−1

v x−1
v xuxvxv = x−1

v xxvu xv

= x−1
v x

q(u,v)−2
v x−1

u x
q(u,v)+2
v xv

= x
q(u,v)−2
v x−1

v x−1
u xvx

q(u,v)+2
v

= x
q(u,v)−2
v (x−1

v xuxv)−1x
q(u,v)+2
v

= x
q(u,v)−2
v (xxvu )−1x

q(u,v)+2
v

= x
q(u,v)−2
v (xq(u,v)−2

v x−1
u x

q(u,v)+2
v )−1x

q(u,v)+2
v

= x
q(u,v)−2
v x

−q(u,v)−2
v xux

−q(u,v)+2
v x

q(u,v)+2
v

= x−4
v xux

4
v

= xx
4
v
u

Thus, x−2
v xux

2
v = x−4

v xux
4
v so xu = x−2

v xux
2
v so x2

vxu = xux
2
v. Thus,

xu commutes with x2
v whenever (u, v) ∈ A(Γ). (5.2.3)
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If Γ is a tournament, then there is exactly one of (u, v) or (v, u). If
(u, v) ∈ A(Γ) then xu commutes with x2

v or if (v, u) ∈ A(Γ) then xv commutes
with x2

u, in both cases x2
u commutes with x2

v. Therefore, H = 〈x2
v v ∈ V (Γ) 〉 of

J is abelian. Furthermore, if (u, v) ∈ A(Γ), then xxvu = x
q(xu,xv)−2
v x−1

u x
q(xu,xv)+2
v

by definition of JΓ. We already showed that xu commutes with x2
v so xu

commutes with xq(xu,xv)−2
v since q(xu,xv) is even integer. As a consequence of

this,
xxvu = x−1

u x
2q(xu,xv)
v (u, v) ∈ A(Γ). (5.2.4)

We now show that H is a normal subgroup of JΓ.
Let x2

v be a generator of H and let xu be a generator of J (where u, v ∈
V (Γ)). Given an arc (u, v) ∈ A(Γ), then we showed that xu commutes with
x2
v above. Thus, (x2

v)xu = x−1
u x2

vxu = x−1
u xux

2
v = x2

v ∈ H. If we have (v, u),
then (x2

v)xu = (xxuv )2 = (x−1
u x

2q(u,v)
v )2( by (5.2.4)) = x−1

u x
2q(u,v)
v x−1

u x
2q(u,v)
v =

x−2
u x

4q(u,v)
v ∈ H. Thus H / J .

Now, we will show that

J/H = 〈xv(v ∈ V (Γ)) | x2
v, x

xv
u = x

q(u,v)−2
v x−1

u x
q(u,v)+2
v (v ∈ V (Γ)(u, v) ∈ A(Γ)) 〉

is isomorphic to Z|V (Γ)|
2 . To see, this observe

J/H = 〈xv(v ∈ V (Γ)) | x2
v, x

xv
u = x

q(u,v)−2
v x−1

u x
q(u,v)+2
v (u, v) ∈ A(Γ) 〉

= 〈xv(v ∈ V (Γ)) | x2
v, xuxv = xvxu (u, v) ∈ A(Γ) 〉 since q(u,v) is even

= 〈xv(v ∈ V (Γ)) | x2
v 〉ab

= Zn2 = Z|V (Γ)|
2 .

Thus, J/H ∼= Zn2 and |J : H| = 2n.
As shown above H is abelian and every vertex v ∈ V (Γ) is in some directed

triangle with vertices x1, x2, x3 and arcs (x1, x2), (x2, x3), (x3, x1) by Lemma
1.2.20. As in the proof Theorem 5.2.2, we obtain the relations xAv = xBu so xv
has order dividing something which is a non-zero. Thus, x2

v has finite order
for each v ∈ V (Γ) so H is finite abelian group. Since J/H is finite and H is
finite abelian, so the group J is finite.
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5.3 Generalization of Mennicke’s group

5.3.1 Strategy

Before giving the proof of the main Theorem, we sketch the strategy here.
Firstly, we will state Mennicke’s Theorem and we reproduce its proof in detail
in Theorem 5.3.2. As in the proof of Theorem 5.2.2, we will use Lemma 1.2.20.
Thus, we will combine the Theorem 5.3.2 and Lemma 1.2.20 to prove the
main Theorem in the Theorem 5.3.4. We begin with the definition of the
Mennicke group to generalise from 3 generators to n generators.

Definition 5.3.1. Let Γ be a digraph with arcs (u, v) labelled by integers
q(u,v) > 2. We define the generalized Mennicke group to be the group

MΓ = 〈xv(v ∈ V (Γ)) | xxvu = x
q(u,v)
u (u, v) ∈ A(Γ) 〉

where xy denotes y−1xy. If, for each (u, v) ∈ A(Γ) we have q(u,v) = q for some
fixed q > 2 then MΓ is an example of a digraph group.

Theorem 5.3.2 ([22]). Let Γ be the digraph with vertex set V (Γ) = {1, 2, 3}
and arc set A(Γ) = {(1, 2), (2, 3), (3, 1)} Then

MΓ = 〈x1, x2, x3 | xx2
1 = x

q(1,2)
1 , xx3

2 = x
q(2,3)
2 , xx1

3 = x
q(3,1)
3 〉 is finite.

Proof. [22] By the defining relation of the groups x−1
2 x1x2 = x

q(1,2)
1 . So

x−2
2 x1x

2
2 = = x−1

2 (x−1
2 x1x2)x2

= x−1
2 x

q(1,2)
1 x2

= (x−1
2 x1x2)q(1,2)

= (xq(1,2)
1 )q(1,2)

= x
q(1,2)

2

1

An inductive argument then shows that for all u > 0

x−u2 x1x
u
2 = x

qu(1,2)
1 (5.3.1)
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Raising the equation (5.3.1) with power v ∈ Z given

x−u2 xv1x
u
2 = x

vqu(1,2)
1 (5.3.2)

By same techniques, we get

x−u3 xv2x
u
3 = x

vqu(2,3)
2 (5.3.3)

x−u1 xv3x
u
1 = x

vqu(3,1)
3 (5.3.4)

Substituting this to Witt identity and it follows that

1 = [x1, x2, x
x1
3 ] [x3, x1, x

x3
2 ] [x2, x3, x

x2
1 ]

= [[x1, x2], xx1
3 ] [[x3, x1], xx3

2 ] [[x2, x3], xx2
1 ]

= [x1, x2]−1(xx1
3 )−1[x1, x2]xx1

3 [x3, x1]−1(xx3
2 )−1[x3, x1]xx3

2 [x2, x3]−1,

(xx2
1 )−1[x2, x3]xx2

1

= (x−1
1 x−1

2 x1x2)−1(x−1
1 x3x1)−1x−1

1 x−1
2 x1x2x

−1
1 x3x1

(x−1
3 x−1

1 x3x1)−1(x−1
3 x2x3)−1x−1

3 x−1
1 x3x1x

−1
3 x2x3

(x−1
2 x−1

3 x2x3)−1(x−1
2 x1x2)−1x−1

2 x−1
3 x2x3x

−1
2 x1x2

= x−1
2 x−1

1 x2��
��x1x
−1
1 x−1

3 ��
��x1x
−1
1 x−1

2 x1x2x
−1
1 x3x1

x−1
1 x−1

3 x1��
��x3x
−1
3 x−1

2 ��
��x3x
−1
3 x−1

1 x3x1x
−1
3 x2x3

x−1
3 x−1

2 x3��
��x2x
−1
2 x−1

1 ��
��x2x
−1
2 x−1

3 x2x3x
−1
2 x1x2

= x−1
2 x−1

1 x2︸ ︷︷ ︸x−1
3 x−1

2 x1x2︸ ︷︷ ︸x−1
1 x3x1

x−1
1 x−1

3 x1︸ ︷︷ ︸x−1
2 x−1

1 x3x1︸ ︷︷ ︸x−1
3 x2x3

x−1
3 x−1

2 x3︸ ︷︷ ︸x−1
1 x−1

3 x2x3︸ ︷︷ ︸x−1
2 x1x2

= x
−q(1,2)
1 x−1

3 x
q(1,2)
1 x−1

1 x3x1 by (5.3.2)

x
−q(3,1)
3 x−1

2 x
q(3,1)
3 x−1

3 x2x3 by (5.3.4)

x
−q(2,3)
2 x−1

1 x
q(2,3)
2 x−1

2 x1x2 by (5.3.3)
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= x
−q(1,2)
1 x−1

3 x
q(1,2)−1
1 x3x

1−q(1,2)
1︸ ︷︷ ︸xq(1,2)

1

x
−q(3,1)
3 x−1

2 x
q(3,1)−1
3 x2x

1−q(3,1)
3︸ ︷︷ ︸xq(3,1)

3

x
−q(2,3)
2 x−1

1 x
q(2,3)−1
2 x1x

1−q(2,3)
2︸ ︷︷ ︸xq(2,3)

2

= x
−q(1,2)
1 x−1

3 x
(q(3,1))

(1−q(1,2))

3 x
q(1,2)
1 by (5.3.4)

x
−q(3,1)
3 x−1

2 x
(q(2,3))

(1−q(3,1))

2 x
q(3,1)
3 by (5.3.3)

x
−q(2,3)
2 x−1

1 x
(q(1,2))

(1−q(2,3))

1 x
q(2,3)
2 by (5.3.2)

= x
−q(1,2)
1 x

(q(3,1))
(1−q(1,2))−1

3 x
q(1,2)
1︸ ︷︷ ︸ x

−q(3,1)
3 x

(q(2,3))
(1−q(3,1))−1

2 x
q(3,1)
3︸ ︷︷ ︸

x
−q(2,3)
2 x

(q(1,2))
(1−q(2,3))−1

1 x
q(2,3)
2︸ ︷︷ ︸

= x
(q

(1−q(1,2))
(3,1) −1)q

q(1,2)
(3,1)

3 x
(q

(1−q(3,1))
(2,3) −1)q

q(3,1)
(2,3)

2 x
(q

(1−q(2,3))
(1,2) −1)q

q(2,3)
(1,2)

1

= x
q(3,1)−q

q(1,2)
(3,1)

3 x
q(2,3)−q

q(3,1)
(2,3)

2 x
q(1,2)−q

q(2,3)
(1,2)

1

= x
q
q(2,3)
(1,2) −q(1,2)

1 x
q
q(3,1)
(2,3) −q(2,3)

2 x
q
q(1,2)
(3,1) −q(3,1)

3

So that
x
q(3,1)−q

q(1,2)
(3,1)

3 = x
q
q(2,3)
(1,2) −q(1,2)

1 x
q
q(3,1)
(2,3) −q(2,3)

2 (5.3.5)

Premultiplying by x−1
3 and postmultiplying x3, we get

x−1
3 x

q(3,1)−q
q(1,2)
(3,1)

3 x3 = x−1
3 x

q
q(2,3)
(1,2) −q(1,2)

1 x
q
q(3,1)
(2,3) −q(2,3)

2 x3

x
q(3,1)−q

q(1,2)
(3,1)

3 = x−1
3 x

q
q(2,3)
(1,2) −q(1,2)

1 x
q
q(3,1)
(2,3) −q(2,3)

2 x3

After applying the equation (5.3.5) for left hand side, we get

x
q
q(2,3)
(1,2) −q(1,2)

1 x
q
q(3,1)
(2,3) −q(2,3)

2 = x−1
3 x

q
q(2,3)
(1,2) −q(1,2)

1 x
q
q(3,1)
(2,3) −q(2,3)

2 x3
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⇒ x
q
q(2,3)
(1,2) −q(1,2)

1 x
q
q(3,1)
(2,3) −q(2,3)

2 = x
q
q(2,3)
(1,2) −q(1,2)

1 x

q
(1,2)−q

q(2,3)
(1,2)

1︸ ︷︷ ︸
1

x−1
3 x

q
q(2,3)
(1,2) −q(1,2)

1 x3x
−1
3︸ ︷︷ ︸

1

x
q
q(3,1)
(2,3) −q(2,3)

2 x3

⇒ x
q
q(2,3)
(1,2) −q(1,2)

1 x
q
q(3,1)
(2,3) −q(2,3)

2 = x
q
q(2,3)
(1,2) −q(1,2)

1 x
q(1,2)−q

q(2,3)
(1,2)

1 x−1
3 x

q
q(2,3)
(1,2) −q(1,2)

1︸ ︷︷ ︸x3

x−1
3 x

q
q(3,1)
(2,3) −q(2,3)

2 x3︸ ︷︷ ︸

⇒ ����
��

x
q
q(2,3)
(1,2) −q(1,2)

1 x
q
q(3,1)
(2,3) −q(2,3)

2 = ����
��

x
q
q(2,3)
(1,2) −q(1,2)

1 (x
q(1,2)−q

q(2,3)
(1,2)

1 x3x
q
q(2,3)
(1,2) −q(1,2)

1 )−1x3

(x
q
q(3,1)
(2,3) −q(2,3)

2 )x3

⇒ x
q
q(3,1)
(2,3) −q(2,3)

2 = (x
q(1,2)−q

q(2,3)
(1,2)

1 x3x
q
q(2,3)
(1,2) −q(1,2)

1 )−1x3︸ ︷︷ ︸
a power of x3 by (5.3.4)

x
q(2,3)(q

q(3,1)
(2,3) −q(2,3))

2︸ ︷︷ ︸
by (5.3.3)

Hence, it follows that x
(q(2,3)−1)(q

q(3,1)
(2,3) −q(2,3))

2 is a power of x3, and thus, so

is x
(q(2,3)−1)(q

q(3,1)−1
(2,3) −1)

2 (conjugating by x−1
3 ), whence x

(q(2,3)−1)2(q
q(3,1)−1
(2,3) −1)

2 = 1

(conjugating by x3). Similarly, x1 and x3 have finite order as x
(q(1,2)−1)2(q

(q(2,3)−1)
(1,2) −1)

1

= 1, and x
(q(3,1)−1)2(q

(q(1,2)−1)
(3,1) −1)

3 = 1. Thus, we say that if u is a vertex of
a directed triangle (u, v, w) then xΦ(u,v,w)

u = 1 in MΓ, where Φ(u, v, w) =
(q(u,v) − 1)2(qq(v,w)−1

(u,v) − 1).
We now set up xA1

1 = 1, xA2
2 = 1 and xA3

3 = 1, where A1 = (q(1,2) −
1)2(q(q(2,3)−1)

(1,2) −1), A2 = (q(2,3)−1)2(q(q(3,1)−1)
(2,3) −1) andA3 = (q(3,1)−1)2(q(q(1,2)−1)

(3,1) −
1) and we will use the following notation in this section. Given elements
a, b ∈ G, if ab = bat for some t ∈ Z we write a ↪→ b to denote that we can
“pull a through b”; if a ↪→ b and b ↪→ a we write a ∼ b.

Since (q(1,2), q(1,2) − 1) = 1, (q(1,2), A1) = 1 there exists α1 such that
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q(1,2)α1 = 1 mod A1. xx2
1 = x

q(1,2)
1 by the first relator. So x−1

2 x1x2 = x
q(1,2)
1

then (x−1
2 x1x2)α1 = x

α1q(1,2)
1 = x1 since xA1

1 = 1. Thus, x−1
2 xα1

1 x2 = x1 and
so xα1

1 x2 = x2x1 and do x2 ↪→ x1. By the first relator, x−1
2 x1x2 = x

q(1,2)
1 so

x1x2 = x2x
q(1,2)
1 and so x1 ↪→ x2. Thus, x1 ∼ x2.

By using same technique, we get xα2
2 x3 = x3x2 and xα3

3 x1 = x1x3 from
the second and third relators respectively and by these relators, we have
x−1

3 x2x3 = x
q(2,3)
2 so x2x3 = x3x

q(2,3)
2 and x−1

1 x3x1 = x
q(3,1)
3 so x3x1 = x1x

q(3,1)
3 .

Hence we say that x2 ∼ x3.
Therefore, if any g ∈ M then g = xp1

1 x
p2
2 x

p3
3 for some 0 6 p1 6 A1,

0 6 p2 6 A2 and 0 6 p3 6 A3. Thus,
|M(q(1,2), q(2,3), q(3,1))| 6 (q(1,2) − 1)2(q(q(2,3)−1)

(1,2) − 1)(q(2,3) − 1)2(q(q(3,1)−1)
(2,3) −

1)(q(3,1) − 1)2(q(q(1,2)−1)
(3,1) − 1) = A1A2A3.

5.3.2 Proving the main theorem

Lemma 5.3.3. Let Γ be a simple digraph where each arc (u, v) ∈ A(Γ) is
labelled by an integer q(u,v) > 1 and suppose gcd{q(u,v)−1 | (u, v) ∈ A(Γ)} > 1.
If MΓ is finite then Γ is a tournament without sinks.

Proof. Suppose that Γ is not a tournament and let d = gcd{q(u,v)−1 | (u, v) ∈
A(Γ)} > 1. Then Γ is non-trivial so there is a pair of distinct vertices
w1, w2 ∈ V (Γ) that are not joined by an arc. Adjoining the relators xdw1 , x

d
w2

and the relators xu for all u 6= w1, w2 to the defining presentation of MΓ

shows that MΓ has the infinite quotient 〈xw1 , xw2 | xdw1 , x
d
w2 〉 ∼= Zd ∗ Zd, so

MΓ is infinite. Suppose then that Γ is a tournament with a sink, t, say.
Adjoining relators xu for all u ∈ V (Γ) where u 6= t shows that MΓ maps onto
〈xt | 〉 ∼= Z, so MΓ is infinite.

Theorem 5.3.4. Let Γ be a non-trivial strong tournament, then MΓ is finite.

Proof. If (u, v) ∈ A(Γ) then xxvu = x
q(u,v)
u by the defining relation. Thus,

x−1
v xuxv = x

q(u,v)
u . Hence, xuxv = xvx

q(u,v)
u holds in MΓ, and so xu ↪→ xv.

Conversely, we now show that if (u, v) ∈ A(Γ) and xv has finite order in
MΓ then xv ↪→ xu. Our argument is essentially that given in [29, page 1293].
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Suppose xv has order P <∞ inMΓ. Repeated applications of the relation
x−1
v xuxv = x

q(u,v)
u gives x−Pv xux

P
v = x

qP(u,v)
u . Therefore x

qP(u,v)−1
u = e (where

e is the identity of MΓ) and so xu has finite order, Q, say, which divides
qP(u,v) − 1, and so is co-prime to q(u,v). Thus there exists q̄(u,v) ∈ Z such that
q(u,v)q̄(u,v) ≡ 1 mod Q. Raising the defining relation ofMΓ that involves xu, xv
to the power q̄(u,v) gives (x−1

v xuxv)q̄(u,v) = x
q(u,v)q̄(u,v)
u ; that is, x−1

v x
q̄(u,v)
u xv = xu

or xvxu = x
q̄(u,v)
u xv so xv ↪→ xu.

We are now in a position to prove Theorem 5.3.4; our proof is a general-
ization of the argument in [22].

Since Γ is a non-trivial, strongly connected tournament, each vertex
u ∈ V (Γ) is in some directed triangle, so by Theorem 5.3.2 xΦ(u,v,w)

u = 1 in
MΓ for each directed triangle [u, v, w] in Γ. Thus xφ(u)

u = 1 in MΓ for all
u ∈ V , so each generator has finite order. Therefore, if (u, v) ∈ A(Γ) then
xu ∼ xv, and since Γ is a tournament xu ∼ xv for all u, v ∈ V (Γ). Writing
V (Γ) = {1, 2, . . . , n}, each element of MΓ can therefore be written in the form
xα1

1 x
α2
2 . . . xαnn where 0 6 αv < φ(v) (1 6 v < n). Hence |MΓ| 6

∏
v∈V φ(v),

as required.
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6
Digraph groups for some tournaments

6.1 Introduction

In this Chapter, we use the computational algebraic software GAP [14] to look
for finite non-cyclic digraph groups where the graphs are tournaments. All
known examples of finite non-cyclic digraph groups that currently appear to be
in the literature are obtained by Mennicke with the word R(a, b) = a−1bab−q

for q > 3 [27] and Johnson with the word R(a, b) = b−1ab(bq−2a−1bq+2)−1 [21].
We generalized that Mennicke [27] and Johnson [21] groups from a directed
triangle to all strong tournaments without giving the order in Chapter 5.
Thus, in this chapter, we investigate digraph groups GΓ(R), where R is the
Johnson or Mennicke relator and Γ is a tournament, in terms of the order,
derived series and the structure of the group such as abelian, solvable, cyclic
and perfect as far as the software GAP allows computationally. I will also
define some new fixed relators R(a, b) in addition to Mennicke and Johnson
relators.

The number of possible non-isomorphic tournaments with up to 6 vertices
was given in [28]. The table summarizing these results is also given in Table 6.1
on page 133. By this table, there are 4 non-isomorphic 4-vertex tournaments,
12 non-isomorphic 5−vertex tournaments and 56 non-isomorphic 6-vertex
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tournaments. We investigate all possible non-isomorphic tournaments up
to a 6-vertex tournaments. However, it is computationally infeasible to
investigate digraphs groups for all possible 7-vertex tournaments and 8-
vertex tournaments since there are 456 and 6880 non-isomorphic tournaments
respectively. However, we provide some results up to 12-vertex tournament
to see the patterns based on the conjectures that we made. We are unable to
provide an example of a finite digraph group for an n-vertex tournament when
n > 13 since these cases are beyond the reach of the available computational
power.

Firstly, we investigate the group of Mennicke (corresponding to the word
R(a, b) = a−1bab−3) for all tournaments on 3 6 n 6 6 vertices and some
on 7 6 n 6 12 vertices. For other values of q for 4 6 q 6 10, we are able
to provide two theorems for G/G′ in theorem 6.4.1 and 6.4.2 and a table
for G′/G′′ in Table 6.9 on page 148. Note that we are unable to find out
the order when q > 4 because of computational limitations. Secondly, we
investigate the group of Johnson (when q = 2 which is corresponding to the
word R(a, b) = b−1ab−3a) for all tournaments on 3 6 n 6 6 vertices and some
on 7 6 n 6 12 vertices. For other values of q, we can obtain results similar to
those for the Mennicke group. Lastly, we had many experiments using GAP
and these experiments indicate that when R(a, b) = abab3, R(a, b) = abab−2

and R(a, b) = ab2a2b−2, we have some finite non-cyclic digraph groups as new
examples. The possible tournaments with these words are also investigated.
Interestingly, the word R(a, b) = ab2a2b−2 gives us 3-groups and the word
R(a, b) = abab−2 gives us a perfect group for certain tournaments Γ. We also
state some conjectures throughout the chapter based on our experimental
results.

6.2 Preliminary observations

There are some restrictions that are proved theoretically. In this section, I
will give these proofs. We also provide some important tables and restrictions
here.



6.2 Preliminary observations 130

Lemma 6.2.1. Let Γ be a digraph and R(a, b) is of the form aα1bβ1 · · · aαtbβt

with t > 1 and αi, βi ∈ Zr{0} (1 6 i 6 t), where α = ∑t
1 αi and β = −∑t

1 βi.
If α = 0 and Γ contains a source or β = 0 and Γ contains a sink, then

GΓ(R) is infinite.

Proof. Let β = 0 and suppose that Γ contains a sink. If v is a sink, then all
relations involving xv are in the form R(xu, xv) = xα1

u x
β1
v x

α2
u x

β2
v . . . xαtu x

βt
v .

Consider a map φ : GΓ(R) → 〈 y | 〉 ∼= Z given by φ(xv) = y and
φ(xu) = y0 = 1 if u 6= v. Then φ(R(xu, xv)) = eα1yβ1eα2yβ2 . . . eαtyβt =
y
∑t

1 βi = y−β = y0 = 1. Therefore φ is a homomorphism. It is also an
epimorphism since φ(xnv ) = yn for all n ∈ Z. Thus, the corresponding group
is infinite.

The proof is similar when α = 0 and Γ contains a source.

Lemma 6.2.2. Let Γ be a digraph and R(a, b) is of the form aα1bβ1 · · · aαtbβt

with t > 1 and αi, βi ∈ Zr{0} (1 6 i 6 t), where α = ∑t
1 αi and β = −∑t

1 βi.
If α− β = 0, then GΓ(R) is infinite.

Proof. Consider a map GΓ(R) φ−→ 〈 y | 〉 ∼= Z given by φ(xu) = y for all
u ∈ V (Γ). Then φ(R(xu, xv)) = yα1yβ1yα2yβ2 . . . yαtyβt = y

∑t

1 αi+
∑t

1 βi =
yα−β = y0 = 1. Therefore, φ is homomorphism. It is also an epimorphism
since φ(xnu) = yn for all n ∈ Z and any u ∈ V (Γ). Thus, GΓ(R) is infinite.

Lemma 6.2.3. Let Γ be a digraph, and R(a, b) = am1bn1am2bn2, where
m1,m2, n1, n2 ∈ Z be a relator. Then

(i) GΓ(R(a, b)) ∼= GΓ(R(a−1, b)) if n1 = −n2

(ii) GΓ(R(a, b)) ∼= GΓ(R(a, b−1)) if m1 = −m2

(iii) GΓ(R(a, b)) ∼= GΓ(R(a−1, b−1))
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Proof.

(i)

GΓ(R(a, b)) = GΓ(am1bn1am2bn2)
∼= GΓ(am2bn2am1bn1) by cyclically permuting relators
∼= GΓ(b−n1a−m1b−n2a−m2) by inverting permuting relators
∼= GΓ(a−m1b−n2a−m2b−n1) by cyclically permuting relators
∼= GΓ(a−m1bn1a−m2bn2) since n1 = −n2

= GΓ(R(a−1, b))

(ii)

GΓ(R(a, b)) = GΓ(am1bn1am2bn2)
∼= GΓ(bn1am2bn2am1) by cyclically permuting relators
∼= GΓ(a−m1b−n2a−m2b−n1) by inverting permuting relators
∼= GΓ(a−m2b−n1a−m1b−n2) by cyclically permuting relators
∼= GΓ(am1b−n1am2b−n2) since m1 = −m2

= GΓ(R(a, b−1))

(iii)

GΓ(R(a, b)) =< xv(v ∈ V ) | R(xu, xv)((u, v) ∈ A) >

=< yv, xv(v ∈ V ) | R(xu, xv)((u, v) ∈ A), yv = x−1
v (v ∈ V ) >

=< yv, xv(v ∈ V ) | R(xu, xv)((u, v) ∈ A), xv = y−1
v (v ∈ V ) >

=< yv(v ∈ V ) | R(y−1
u , y−1

v )((u, v) ∈ A) >

= GΓ(R(a−1, b−1))

In principle we had many experiments to find out the possible words R(a, b)
in addition to Mennicke’s and Johnson’s word using GAP. Lemma 6.2.3 allows
us to reduce the number of relators considered. For example, if we perform
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the experiments when R(a, b) = a2b−3, then there is no need to perform the
same experiments with R(a, b) = a−2b−3 by (i), R(a, b) = a2b3 by (ii) and
R(a, b) = a−2b3 by (iii).

We will use score vectors to define the tournaments. If there is 0 in score
vector that means the graph has a sink and n− 1 in score vector that means
the graph has a source. We add the number of possible non-isomorphic
tournaments into the Table 6.1 on page 133 with no source no sink case, just
one source and no sink case, just one sink and no source case and a source, a
sink but they are adjacent case. The corresponding groups are infinite if we
have any cases except for these four cases by Lemma 1.3.3.

Note that for a table (i.e Table 6.4 on page 143), a tick (X) in a cell means
that the group G in the column header has a subgroup whose abelianization is
the group in the row header, a cross (7) means it does not. DL in a cell means
Derived Length. Also, we will write [n, j] to denote the j’th group of order n
in the Small Groups Library. When we have Small group ids as column head-
ings, we can actually say what the group is, which would be more useful to
know. For example the group [32, 51] is the group Z5

2 and [64, 260] is Z4
2 ⊕Z4.

It can be found this out using StructureDescription(SmallGroup(32,51));
into the GAP. We use subscript on the score vector if there is more than 1
non-isomorphic tournament with same score vector. For example, there are 12
non-isomorphic tournaments with the score vector (1, 2, 2, 3, 3, 4) and we de-
note then (1, 2, 2, 3, 3, 4), (1, 2, 2, 3, 3, 4)2, (1, 2, 2, 3, 3, 4)3, . . . , (1, 2, 2, 3, 3, 4)12

(Note that we do not add a subscript in the first case).

Conjecture 6.2.4. Let Γ1,Γ2 be two n-vertex tournaments each of which
contains a Hamilton cycle. Then |GΓ1(R)| = |GΓ2(R)|.

If a tournament Γ contains a Hamiltonian cycle, then Γ does not have a
source or a sink. We see that the corresponding digraph groups have same
order by the tables that we created.

Also, if Γ is n-vertex tournament which has 3 vertices of out-degree
n− 2 and assume that these vertices are x, y, z. The only way we can keep
all of them down to in-degree 1 is for them to be a directed 3-cycle, say
x → y → z → x. However then all other arcs out of these vertices have to
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go elsewhere, so the tournament is not irreducible, so is not strong, so does
not have a Hamilton cycle though Γ does not have a source or a sink (An
example is with the score vector 111444).

Conjecture 6.2.4 is confirmed for all tournaments up to 6-vertex tourna-
ments and for some 7 and 8-vertex tournaments (see the possible tournaments
by the tables 6.3, 6.10, 6.12, 6.14, 6.15).

K3 K4 K5 K6 K7 K8
total number 2 4 12 56 456 6880

No source No sink 1 1 6 36 ? ?
One source, no sink 0 1 2 8 ? ?
One sink, no source 0 1 2 8 ? ?

1 source, 1 sink and they are adjacent 1 1 2 4 ? ?

Table 6.1: The number of non-isomorphic tournaments with up to 8 vertices

K3 K4 K5 K6 K7 K8
total number 2 4 9 22 59 167

No source No sink 1 1 3 8 16 ?
Just source 0 1 2 5 ? ?
Just sink 0 1 2 5 ? ?

1 source, 1 sink and they are adjacent 1 1 2 4 ? ?

Table 6.2: The number of score vectors of size n
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6.3 The Mennicke relator with q = 3: 2-groups

In this section, we investigate the Mennicke relator with q = 3, that means
R(a, b) = a−1bab−3 for n-vertex tournaments with n 6 12. If there is a
source in the tournaments and α = 0, then the corresponding digraph groups
are infinite by Lemma 6.2.1 since α = −1 + 1 = 0 in Mennicke relators
(R(a, b) = a−1bab−q). Thus, GΓ(R) is infinite if there is a source, which is
showed as n− 1 in the score vector.

Table 6.3: All possible n-vertex tournaments, where all
for 3 6 n 6 6 and for some 7 6 n 6 12.

R(a, b) = a−1bab−3

Score Vectors |G| G/G′ G′/G′′ DL
(0, 1, 2) ∞ Z⊕ Z2

2
(1, 1, 1) 211 Z3

2 Z4 ⊕ Z2
8 2

(0, 1, 2, 3)
(1, 1, 1, 3) ∞ Z⊕ Z3

2

(0, 2, 2, 2) 214 Z4
2 Z2

4 ⊕ Z2
8 2

(1, 1, 2, 2) 212 Z4
2 Z4

4 2
(0, 1, 2, 3, 4)
(0, 2, 2, 2, 4)
(1, 1, 1, 3, 4)
(1, 1, 2, 2, 4)

∞ Z⊕ Z4
2

(0, 1, 3, 3, 3) 217 Z5
2 Z3

4 ⊕ Z2
8 2

(0, 2, 2, 3, 3)
(1, 1, 2, 3, 3)
(1, 1, 2, 3, 3)2
(1, 2, 2, 2, 3)
(1, 2, 2, 2, 3)2
(1, 2, 2, 2, 3)3
(2, 2, 2, 2, 2)

215 Z5
2 Z5

4 2
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(0, 1, 2, 3, 4, 5)
(0, 1, 3, 3, 3, 5)
(0, 2, 2, 2, 4, 5)
(0, 2, 2, 3, 3, 5)
(1, 1, 1, 3, 4, 5)
(1, 1, 2, 2, 4, 5)
(1, 1, 2, 3, 3, 5)
(1, 1, 2, 3, 3, 5)2
(1, 2, 2, 2, 3, 5)
(1, 2, 2, 2, 3, 5)2
(1, 2, 2, 2, 3, 5)3
(2, 2, 2, 2, 2, 5)

∞ Z⊕ Z5
2

(0, 1, 2, 4, 4, 4)
(1, 1, 1, 4, 4, 4) 220 Z6

2 Z4
4 ⊕ Z2

8 2
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(0, 1, 3, 3, 4, 4)
(0, 2, 2, 3, 4, 4)
(0, 2, 2, 3, 4, 4)2
(0, 2, 3, 3, 3, 4)
(0, 2, 3, 3, 3, 4)2
(0, 2, 3, 3, 3, 4)3
(0, 3, 3, 3, 3, 3)
(1, 1, 3, 3, 3, 4)
(1, 1, 3, 3, 3, 4)2
(1, 1, 3, 3, 3, 4)3
(1, 1, 2, 3, 4, 4)
(1, 1, 2, 3, 4, 4)2
(1, 1, 2, 3, 4, 4)3
(1, 1, 2, 3, 4, 4)4
(1, 2, 2, 3, 3, 4)
(1, 2, 2, 3, 3, 4)2
(1, 2, 2, 3, 3, 4)3
(1, 2, 2, 3, 3, 4)4
(1, 2, 2, 3, 3, 4)5
(1, 2, 2, 3, 3, 4)6
(1, 2, 2, 3, 3, 4)7
(1, 2, 2, 3, 3, 4)8
(1, 2, 2, 3, 3, 4)9
(1, 2, 2, 3, 3, 4)10
(1, 2, 2, 3, 3, 4)11
(1, 2, 2, 3, 3, 4)12
(1, 2, 2, 2, 4, 4)
(1, 2, 2, 2, 4, 4)2
(1, 2, 2, 2, 4, 4)3
(1, 2, 3, 3, 3, 3)
(1, 2, 3, 3, 3, 3)2
(1, 2, 3, 3, 3, 3)3
(1, 2, 3, 3, 3, 3)4
(2, 2, 2, 3, 3, 3)
(2, 2, 2, 3, 3, 3)2
(2, 2, 2, 3, 3, 3)3
(2, 2, 2, 3, 3, 3)4
(2, 2, 2, 3, 3, 3)5
(2, 2, 2, 2, 3, 4)
(2, 2, 2, 2, 3, 4)2
(2, 2, 2, 2, 3, 4)3
(2, 2, 2, 2, 3, 4)4

218 Z6
2 Z6

4 2
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(1, 1, 3, 3, 3, 4, 6) ∞ Z⊕ Z6
2

(1, 2, 3, 3, 3, 4, 5)
(0, 3, 3, 3, 3, 4, 5) 221 Z7

2 Z7
4 2

(0, 1, 2, 3, 5, 5, 5)
(0, 2, 2, 2, 5, 5, 5)
(1, 1, 2, 2, 5, 5, 5)
(1, 1, 1, 3, 5, 5, 5)

223 Z7
2 Z5

4 ⊕ Z2
8 2

(2, 2, 3, 3, 3, 4, 5, 6) 224 Z8
2 Z8

4 2
(0, 1, 2, 3, 4, 6, 6, 6)
(0, 2, 2, 3, 3, 6, 6, 6) 226 Z8

2 Z6
4 ⊕ Z2

8 2

(1, 2, 3, 4, 4, 4, 5, 6, 7) 227 Z9
2 Z9

4 2
(2, 2, 2, 3, 3, 3, 7, 7, 7)
(0, 1, 2, 3, 4, 5, 7, 7, 7) 229 Z9

2 Z7
4 ⊕ Z2

8 2

(0, 1, 2, 3, 4, 5, 6, 8, 8, 8) 232 Z10
2 Z8

4 ⊕ Z2
8 2

(0, 1, 2, 3, 4, 5, 6, 7, 9, 9, 9) 235 Z11
2 Z9

4 ⊕ Z2
8 2

(0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 10, 10) 238 Z12
2 Z10

4 ⊕ Z2
8 2

We now state some lemmas and conjectures that were motivated by the
table.

Lemma 6.3.1. Let R(a, b) = a−1bab−3. If Γ1,Γ2 are non-isomorphic 5-vertex
tournaments which have no sources and do not have 3 vertices of out-degree
3, then |GΓ1(R)| = |GΓ2(R)| and GΓ1(R) 6∼= GΓ2(R).

Proof. There are 7 non-isomorphic tournaments with 5 vertices which have
no sources and do not have 3 vertices of out-degree 3. By Table 6.3 the
orders of the corresponding digraph groups are all equal to 215. We will
give a computational proof here that the corresponding digraph groups are
pairwise non-isomorphic. We compare abelianization of low index subgroups
to understand whether the digraph groups are isomorphic or not. We use the
command IdGroup(G) in GAP.

Let (I), (II), (III), (IV ), (V ), (V I), (V II) denote the tournaments with
score vectors

(1, 2, 2, 2, 3), (1, 2, 2, 2, 3)2, (1, 2, 2, 2, 3)3, (1, 1, 2, 3, 3), (1, 1, 2, 3, 3)2,
(2, 2, 2, 2, 2), (0, 2, 2, 3, 3), respectively.



6.3 The Mennicke relator with q = 3: 2-groups 138

By studying their index 2 subgroups we see that G(V II)(R) has an index 2
subgroup whose abelianization is the group [64, 192] whereas G(I)(R),G(II)(R),
G(III)(R),G(IV )(R),G(V )(R),G(V I)(R) do not. Thus, G(V II)(R) is not isomor-
phic to any of G(I)(R),G(II)(R),G(III)(R), G(IV )(R),G(V )(R), G(V I)(R).

By studying their index 2 subgroups we see that G(I)(R) has an index 2 sub-
group whose abelianization is the group [128, 1601] whereasG(II)(R), G(III)(R),
G(IV )(R), G(V I)(R) do not andG(V )(R) has an index 2 subgroup whose abelian-
ization is the group [64, 246] whereas G(I)(R) does not. Thus, G(I)(R) is not
isomorphic to any of G(II)(R), G(III)(R), G(IV )(R), G(V )(R), G(V I)(R).

By studying their index 2 subgroups we see that G(II)(R) has an index 2
subgroup whose abelianization is the group [64, 260] whereasG(III)(R), G(V )(R),
G(V I)(R) do not and by studying their index 4 subgroups we see that
G(II)(R) has an index 4 subgroup whose abelianization is the group [64, 267]
whereas G(IV )(R) does not. Thus, G(II)(R) is not isomorphic to any of
G(III)(R), G(IV )(R), G(V )(R), G(V I)(R).

By studying their index 2 subgroups we see that G(IV )(R) has an index 2
subgroup whose abelianization is the group [64, 260] whereas G(III)(R) does
not, G(V )(R) has an index 2 subgroup whose abelianization is the group
[128, 1601] whereas G(III)(R) does not and G(III)(R) has an index 2 subgroup
whose abelianization is the group [128, 2301] whereas G(V I)(R) does not. Thus,
G(III)(R) is not isomorphic to any of G(IV )(R), G(V )(R), G(V I)(R).

By studying their index 2 subgroups we see that G(IV )(R) has an index 2
subgroup whose abelianization is the group [64, 260] whereasG(V )(R), G(V I)(R)
do not. Thus, G(IV )(R) is not isomorphic to any of G(V )(R), G(V I)(R).

By studying their index 2 subgroups we see that G(V )(R) has an index
2 subgroup whose abelianization is the group [128, 1601] whereas G(V I)(R)
does not. Thus, G(V )(R) is not isomorphic to any of G(V I)(R).

Thus, corresponding digraph groups of these 7 tournaments are non-
isomorphic though the corresponding digraph groups have same order. The
GAP code is provided in Appendix A.3.

Lemma 6.3.2. Let R(a, b) = a−1bab−3. If Γ1,Γ2 are non-isomorphic 6-vertex
tournaments which have no sources and have 3 vertices of out-degree 4, then
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|GΓ1(R)| = |GΓ2(R)| and GΓ1(R) 6∼= GΓ2(R).

Proof. There are 2 non-isomorphic tournaments with 6 vertices which have
no sources and have 3 vertices of out-degree 4. By Table 6.3 on page 134
the orders of the corresponding digraph groups are all equal to 220. We will
give a computational proof here that the corresponding digraph groups are
pairwise non-isomorphic. We compare abelianization of low index subgroups
to understand whether the digraph groups are isomorphic or not. We use the
command IdGroup(G) in GAP.

Let (I), (II) denote the tournaments with score vectors (1, 1, 1, 4, 4, 4),
(0, 1, 2, 4, 4, 4), respectively. By studying their index 2 subgroups we see
that G(I)(R) has an index 2 subgroup whose abelianization is the group
[64, 260] whereas G(II)(R) does not. Thus, G(I)(R) is not isomorphic to
G(II)(R). Hence, corresponding digraph groups of these 2 tournaments are
non-isomorphic though the corresponding digraph groups have same order.

Lemma 6.3.3. Let R(a, b) = a−1bab−3. If Γ1,Γ2 are non-isomorphic 6-vertex
tournaments which have no sources and do not have 3 vertices of out-degree
4, then |GΓ1(R)| = |GΓ2(R)| and GΓ1(R) 6∼= GΓ2(R) except possibly for these
pair of tournaments:
{Γ1,Γ2} = {(7), (33)}, {(11), (24)}, {(11), (40)}, {(24), (40)}, {(17), (42)},

{(19), (20)}, {(22), (34)}.

Proof. There are 42 non-isomorphic tournaments with 6 vertices which have
no sources and do not have 3 vertices of out-degree 4. By Table 6.3 on page
134, the orders of the corresponding digraph groups are all equal to 218. To
prove that the corresponding groups are not isomorphic to each other, we
need to compare all of them, which means making 41 ·40/2 = 820 comparisons
for just index 2 subgroups. This seems infeasible and we know the technique
since we already proved in Lemma 6.3.1 and Lemma 6.3.2. Therefore, we
create the tables and if they are not identical, then it means the corresponding
digraph groups are not isomorphic to each other.

Let (1), (2), . . . , (42) denote the tournaments with score vectors in the order
of the Table 6.4 on page 143 as (0, 1, 3, 3, 4, 4), (0, 2, 2, 3, 4, 4), . . . , (2, 2, 2, 2, 3, 4)4,
respectively. Note that we use identical if the rows in the Table 6.4 or the
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columns in the Table 6.5, 6.6, 6.7 and 6.8 are exactly same to each other and
if a row or a column in the related table does not same with others, then we
say it is unique. Also note that if the related rows or columns are identical,
then we cannot decide whether it is isomorphic or not but if it is unique then
we say that it is not isomorphic to others (to decide the rows or columns are
identical or unique, check the related tables)

By Table 6.4 on page 143 (abelianization of index 2 subgroups), we have
that

(1) and (37) are unique. That means G(1)(R) and G(37)(R) are not-
isomorphic to other digraph groups.

(2) and (9) are identical to each other.
(3), (4), (6), (8), (13), (14), (15), (21), (26), (27), (31) are identical to each

other.
(5), (10), (12), (16), (23), (28), (41) are identical to each other.
(7), (30), (33), (35), (36), (38) are identical to each other.
(11), (17), (18), (19), (20), (22), (24), (25), (29), (32), (34), (39), (40), (42) are

identical to each other
Therefore it is not possible to distinguish the corresponding groups. How-

ever all other tournaments unique and so groups corresponding to these
tournaments are pairwise not isomorphic.

By repeating abelianization of index 4 subgroups, we see that the index
4 subgroups (2) has [128, 1601] and (9) does not. Thus, G(2)(R) is not
isomorphic to G(9)(R).

By Table 6.5 on page 144 (abelianization of index 4 subgroups), we
have that (8) and (27) are identical to each other. Others are not iso-
morphic to each other since they are unique. By abelianization of index
5 subgroups, (27) has [128, 2150] and (8) does not. Thus, G(8)(R) is not
isomorphic to G(27)(R). That means the corresponding digraph groups for
(3), (4), (6), (8), (13), (14), (15), (21), (26), (27), (31) are not isomorphic to each
other.

By Table 6.6 on page 144 (abelianization of index 4 subgroups), all are
unique. Thus, the corresponding digraph groups for (5), (10), (12), (16), (23),
(28), (41) are not isomorphic to each other.
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By Table 6.7 on page 145 (abelianization of index 4 subgroups), we have
that (7) and (33) are identical to each other. Others are not isomorphic to
each other since they are unique.

By Table 6.8 on page 145 (abelianization of index 4 subgroups), we have
that

(11), (24) and (40) are identical to each other.
(17) and (42) are identical to each other.
(19) and (20) are identical to each other.
(22) and (34) are identical to each other.
Others are not isomorphic to each other since they are unique.
By studying their index subgroups up to index 7, the pair of non-isomorphic

tournaments: {(7), (33)}, {(11), (24)}, {(11), (40)}, {(24), (40)}, {(17), (42)},
{(19), (20)}, {(22), (34)} are identical and GAP computations do not complete
with index 8 or bigger. Therefore, we have been unable to determine if G(7) ∼=
G(33), G(11) ∼= G(24), G(11) ∼= G(40), G(24) ∼= G(40), G(17) ∼= G(42), G(19) ∼= G(20),
G(22) ∼= G(34).

Conjecture 6.3.4. Let R(a, b) = a−1bab−3, suppose that Γ does not have a
source and Γ be an n-vertex tournament (n > 3) and let G = GΓ(R), then
the derived length of G is 2 (and so G is solvable, not abelian and not cyclic).

We can say that the derived length of GΓ(R), when this is finite, is equal
to 2 for all n-vertex tournaments up to n = 6. Thus, GΓ(R) is solvable for all
n-vertex tournaments up to n = 6 if GΓ(R) is finite. GΓ(R) for all n-vertex
tournaments up to n = 6 is also not abelian since derived length is not 1. It
is well known that if the group is not abelian, then it is not cyclic. Thus,
we can say that GΓ(R) for all n-vertex tournaments up to n = 6 is also non
cyclic. It seems that it also holds for 8 6 n 6 12 in our limited examples (see
the Table 6.3 on page 134).

The structure of the digraph groups conjectured in Conjectures 6.3.5, 6.3.6,
6.5.4, 6.5.5, 6.6.4, 6.8.3, 6.8.4 are more complicated that those encountered in
related Sections (which were cyclic). Therefore new techniques are likely to
be needed to tackle these conjectures.
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Conjecture 6.3.5. Let R(a, b) = a−1bab−3 and let Γ be an n-vertex tourna-
ment (n > 3) which has no sources and does not have 3 vertices of out-degree
n− 2. Then |GΓ(R)| = 23n, G/G′ ∼= Zn2 and G′/G′′ ∼= Zn4 .

We confirmed that it is true for 3 6 n 6 6 for all tournaments and for
some n-vertex tournament (7 6 n 6 12) by using GAP .

Conjecture 6.3.6. Let R(a, b) = a−1bab−3 and let Γ be an n-vertex tourna-
ment (n > 3) which has no sources and has 3 vertices of out-degree n − 2.
Then |GΓ(R)| = 23n+2, G/G′ ∼= Zn2 and G′/G′′ ∼= Zn−2

4 ⊕ Z2
8.

We confirmed that it is true for 3 6 n 6 7 for all tournaments and for
some n-vertex tournament (8 6 n 6 12) by using GAP .
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By Index 2 [32,51] [64,260] [64,267] [128,2150] [128,2301] [128,2319] [256,53038] [256,56059]
(1)=(0,1,3,3,4,4) X X X X 7 X X X
(2)=(0,2,2,3,4,4) X X X 7 X X X X
(3)= (0,2,2,3,4,4)_2 X X X 7 X 7 X X
(4)=(0,2,3,3,3,4) X X X 7 X 7 X X
(5)=(0,2,3,3,3,4)_2 X X X 7 X X 7 X
(6)= (0,2,3,3,3,4)_3 X X X 7 X 7 X X
(7)=(0,3,3,3,3,3) X 7 X 7 X 7 7 7

(8)=(1,1,3,3,3,4) X X X 7 X 7 X X
(9)=(1,1,3,3,3,4)_2 X X X 7 X X X X
(10)=(1,1,3,3,3,4)_3 X X X 7 X X 7 X
(11)=(1,1,2,3,4,4) X X X 7 X 7 7 X
(12)=(1,1,2,3,4,4)_2 X X X 7 X X 7 X
(13)=(1,1,2,3,4,4)_3 X X X 7 X 7 X X
(14)=(1,1,2,3,4,4)_4 X X X 7 X 7 X X
(15)=(1,2,2,3,3,4) X X X 7 X 7 X X
(16)=(1,2,2,3,3,4)_2 X X X 7 X X 7 X
(17)=(1,2,2,3,3,4)_3 X X X 7 X 7 7 X
(18)=(1,2,2,3,3,4)_4 X X X 7 X 7 7 X
(19)=(1,2,2,3,3,4)_5 X X X 7 X 7 7 X
(20)=(1,2,2,3,3,4)_6 X X X 7 X 7 7 X
(21)=(1,2,2,3,3,4)_7 X X X 7 X 7 X X
(22)=(1,2,2,3,3,4)_8 X X X 7 X 7 7 X
(23)=(1,2,2,3,3,4)_9 X X X 7 X X 7 X
(24)=(1,2,2,3,3,4)_10 X X X 7 X 7 7 X
(25)=(1,2,2,3,3,4)_11 X X X 7 X 7 7 X
(26)=(1,2,2,3,3,4)_12 X X X 7 X 7 X X
(27)=(1,2,2,2,4,4) X X X 7 X 7 X X
(28)=(1,2,2,2,4,4)_2 X X X 7 X X 7 X
(29)=(1,2,2,2,4,4)_3 X X X 7 X 7 7 X
(30)=(1,2,3,3,3,3) X 7 X 7 X 7 7 7

(31)=(1,2,3,3,3,3)_2 X X X 7 X 7 X X
(32)=(1,2,3,3,3,3)_3 X X X 7 X 7 7 X
(33)=(1,2,3,3,3,3)_4 X 7 X 7 X 7 7 7

(34)=(2,2,2,3,3,3) X X X 7 X 7 7 X
(35)=(2,2,2,3,3,3)_2 X 7 X 7 X 7 7 7

(36)=(2,2,2,3,3,3)_3 X 7 X 7 X 7 7 7

(37)=(2,2,2,3,3,3)_4 X X X 7 7 7 X X
(38)=(2,2,2,3,3,3)_5 X 7 X 7 X 7 7 7

(39)=(2,2,2,2,3,4) X X X 7 X 7 7 X
(40)=(2,2,2,2,3,4)_2 X X X 7 X 7 7 X
(41)=(2,2,2,2,3,4)_3 X X X 7 X X 7 X
(42)=(2,2,2,2,3,4)_4 X X X 7 X 7 7 X

Table 6.4: Abelianization of index 2 subgroups.
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By Index 4 (3) (4) (6) (8) (13) (14) (15) (21) (26) (27) (31)
[16,14] X 7 X X X X X 7 X X X
[32,45] X 7 X X X X X 7 X X X
[32,51] X X X X X X X X X X X
[64,192] 7 7 7 X X X X 7 7 X 7

[64,246] 7 7 X X X X X 7 7 X X
[64,260] X X X X X X X X X X X
[64,267] X X X X X X X X X X X
[128,1601] 7 7 X X X X X X 7 X 7

[128,2150] 7 7 7 X 7 7 7 7 7 X X
[128,2301] X X X X X X X X X X X
[128,2319] X 7 X 7 X X 7 7 7 7 7

[256,13313] 7 7 7 7 X 7 7 7 7 7 7

[256,53038] X X X X X X X X X X X
[256,56059] X X X X X X X X X X X

Table 6.5: Abelianization of index 4 subgroups.

By Index 4 (5) (10) (12) (16) (23) (28) (41)
[16,14] X X X X X X X
[32,45] X X X X X X X
[32,51] X X X X X X X
[64,192] 7 7 X X X X X
[64,246] X X X X X X X
[64,260] X X X X X X X
[64,267] X X X X X X X
[128,1601] X X X X X X X
[128,2150] X 7 7 7 7 7 X
[128,2301] X X X X X X X
[128,2319] X X 7 X X 7 X
[256,10298] X 7 7 7 X 7 7

[256,13313] 7 7 X 7 X 7 7

[256,53038] X X X X X X X
[256,56059] X X X X X X X

Table 6.6: Abelianization of index 4 subgroups .
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By Index 4 (7) (30) (33) (35) (36) (38)
[16,14] X X X X X X
[32,45] X X X X X X
[32,51] X X X X X X
[64,192] 7 X 7 X X X
[64,246] X X X X X X
[64,260] X X X X X X
[64,267] X X X X X X
[128,1601] X X X X X X
[128,2150] X X X 7 7 7

[128,2301] X X X X X X
[128,2319] 7 X 7 X X X
[128,2328] 7 7 7 7 X X
[256,10298] X X X X X X
[256,13313] 7 7 7 X X 7

[256,53038] X X X X X 7

[256,56059] X X X X X X

Table 6.7: Abelianization of index 4 subgroups.

By Index 4 (11) (17) (18) (19) (20) (22) (24) (25) (29) (32) (34) (39) (40) (42)
[16,14] X X X X X X X X X X X X X X
[32,45] X X X X X X X X X X X X X X
[32,51] X X X X X X X X X X X X X X
[64,192] X X 7 X X X X X 7 7 X X X X
[64,246] X X X X X X X X X 7 X X X X
[64,260] X X X X X X X X X X X X X X
[64,267] X X X X X X X X X X X X X X
[128,1601] X X X X X X X 7 X X X X X X
[128,2150] 7 7 7 7 7 X 7 7 7 7 X 7 7 7

[128,2301] X X X X X X X X X X X X X X
[128,2319] 7 X X X X 7 7 X 7 X 7 X 7 X
[256,10298] 7 7 7 7 7 X 7 7 7 7 X X 7 7

[256,13313] 7 7 7 X X X 7 X 7 7 X X 7 7

[256,53038] X X X X X X X X X X X X X X
[256,56059] X X X X X X X X X X X X X X

Table 6.8: Abelianization of index 4 subgroups.
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6.4 The Mennicke relator with 4 6 q 6 10

We will investigate Mennicke relator with other values of q for 4 6 q 6 10 in
this section. We will provide two Theorems for G/G′ in Theorem 6.4.1 and
Theorem 6.4.2 and a table for G′/G′′ in Table 6.9 on page 148. This table
does not include the tournaments with source because it is proved that G/G′

is infinite in Theorem 6.4.1.

Theorem 6.4.1. Let R(a, b) = a−1bab−q and let Γ be an n-vertex tournament
(n > 3) which has a source. Then, G/G′ ∼= Z⊕ Zn−1

q−1 .

Proof. Let G = GΓ(R). Then

G = 〈xv(v ∈ V (Γ)) | x−1
u xvxux

−q
v (u, v) ∈ A(Γ) 〉.

Therefore,

Gab = 〈 xv(v ∈ V (Γ)) | x−1
u xvxux

−q
v , xuxv = xvxu (u, v) ∈ A(Γ) 〉

= 〈xv(v ∈ V (Γ)) | x1−q
v , xuxv = xvxu (u, v) ∈ A(Γ) 〉

=
〈
xv(v ∈ V (Γ))

∣∣∣x1−q
v , xuxv = xvxu

〉

= ⊕v∈V (Γ)〈xv | x1−q
v (whenever v is the terminal vertex of some arc) 〉.

Now since Γ has a source s, then every other vertex is the terminal vertex
of some arc. Thus,

Gab = ⊕v∈V (Γ)〈xv | x1−q
v (whenever v is the terminal vertex of some arc) 〉

= ⊕v∈V (Γ)〈xv | x1−q
v (whenever v 6= s) 〉

= 〈xs | 〉 ⊕ ⊕v∈V (Γ), v 6=s〈xv | x1−q
v 〉

= Z⊕⊕v∈V (Γ), v 6=sZ|q−1|

= Z⊕ Zn−1
|q−1|.

Theorem 6.4.2. Let R(a, b) = a−1bab−q and let Γ be an n-vertex tournament
(n > 3) which does not have a source. Then, G/G′ ∼= Znq−1.
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Proof. Let G = GΓ(R). Then

G = 〈xv(v ∈ V (Γ)) | x−1
u xvxux

−q
v (u, v) ∈ A(Γ) 〉.

Therefore,

Gab = 〈 xv(v ∈ V (Γ)) | x−1
u xvxux

−q
v (u, v) ∈ A(Γ), xuxv = xvxu (u, v) ∈ A(Γ) 〉

= 〈xv(v ∈ V (Γ)) | x1−q
v (u, v) ∈ A(Γ), xuxv = xvxu (u, v) ∈ A(Γ) 〉

= 〈xv(v ∈ V (Γ)) | x1−q
v , xuxv = xvxu 〉

= ⊕v∈V (Γ)〈xv | x1−q
v (whenever v is the terminal vertex of some arc) 〉.

Now since Γ does not have a source then every vertex is the terminal
vertex of some arc. Therefore,

Gab = ⊕v∈V (Γ)〈xv | x1−q
v 〉 = ⊕v∈V (Γ)Z|1−q| = Z|V ||1−q| = Z|V ||q−1| = Zn|q−1|.
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R
(a
,b

)=
a
−

1 b
a
b−

q

q
=

4
q

=
5

q
=

6
q

=
7

q
=

8
q

=
9

q
=

10
Sc

or
e
Ve

ct
or
s

G
′ /
G
′′

G
′ /
G
′′

G
′ /
G
′′

G
′ /
G
′′

G
′ /
G
′′

G
′ /
G
′′

G
′ /
G
′′

(1
,1
,1

)
Z 3
⊕
Z3 7
⊕
Z2 9

Z3 3
⊕
Z 4
⊕
Z3 13
⊕
Z2 16

Z 5
⊕
Z2 25
⊕
Z3 31

1
Z 3
⊕
Z 8
⊕
Z2 9
⊕
Z2 16
⊕
Z3 19
⊕
Z3 43

Z 7
⊕
Z2 49
⊕
Z3 12

7
⊕
Z3 33

7
Z3 5
⊕
Z 8
⊕
Z3 17
⊕
Z3 41
⊕
Z2 64
⊕
Z3 19

3
Z 9
⊕
Z3 37
⊕
Z2 81
⊕
Z3 33

66
7

(0
,2
,2
,2

)
Z2 3
⊕
Z4 7
⊕
Z2 9

Z4 3
⊕
Z2 4
⊕
Z4 13
⊕
Z2 16

Z2 5
⊕
Z2 25
⊕
Z4 31

1
Z2 3
⊕
Z2 8
⊕
Z2 9
⊕
Z2 16
⊕
Z4 19
⊕
Z4 43

Z2 7
⊕
Z2 49
⊕
Z4 12

7
⊕
Z4 33

7
Z4 5
⊕
Z2 8
⊕
Z4 17
⊕
Z4 41
⊕
Z2 64
⊕
Z4 19

3
Z 9
⊕
Z4 37
⊕
Z2 81
⊕
Z4 33

36
67

(1
,1
,2
,2

)
Z4 3
⊕
Z4 4
⊕
Z4 13

Z4 5
⊕
Z4 31

1
Z4 3
⊕
Z4 8
⊕
Z4 19
⊕
Z4 43

Z4 7
⊕
Z4 12

7
⊕
Z4 33

7
Z4 5
⊕
Z4 8
⊕
Z4 17
⊕
Z4 41
⊕
Z4 19

3
Z4 9
⊕
Z4 37
⊕
Z4 33

36
67

(0
,1
,3
,3
,3

)
Z5 3
⊕
Z3 4
⊕
Z5 13
⊕
Z2 16

Z3 5
⊕
Z2 25
⊕
Z5 31

1
Z3 3
⊕
Z3 8
⊕
Z2 9
⊕
Z2 16
⊕
Z5 19
⊕
Z5 43

Z3 7
⊕
Z2 49
⊕
Z5 12

7
⊕
Z5 33

7
Z5 5
⊕
Z3 8
⊕
Z5 17
⊕
Z5 41
⊕
Z2 64
⊕
Z5 19

3
m
em

or
y
lim

it
(0
,2
,2
,3
,3

)

Z5 3
⊕
Z5 4
⊕
Z5 13

Z5 5
⊕
Z5 31

1
Z5 3
⊕
Z5 8
⊕
Z5 19
⊕
Z5 43

Z5 7
⊕
Z5 12

7
⊕
Z5 33

7
Z5 5
⊕
Z5 8
⊕
Z5 17
⊕
Z5 41
⊕
Z5 19

3
m
em

or
y
lim

it

(1
,1
,2
,3
,3

)
(1
,1
,2
,3
,3

) 2
(1
,2
,2
,2
,3

)
(1
,2
,2
,2
,3

) 2
(1
,2
,2
,2
,3

) 3
(2
,2
,2
,2
,2

)
(0
,1
,2
,4
,4
,4

)
(1
,1
,1
,4
,4
,4

)
Z6 3
⊕
Z6 4
⊕
Z6 13
⊕
Z2 16

Z4 5
⊕
Z2 25
⊕
Z6 31

1
Z4 3
⊕
Z4 8
⊕
Z2 9
⊕
Z2 16
⊕
Z6 19
⊕
Z6 43

Z4 7
⊕
Z2 49
⊕
Z6 12

7
⊕
Z6 33

7
m
em

or
y
lim

it
m
em

or
y
lim

it
(0
,1
,3
,3
,4
,4

)

Z6 3
⊕
Z6 4
⊕
Z6 13

Z6 5
⊕
Z6 31

1
Z6 3
⊕
Z6 8
⊕
Z6 19
⊕
Z6 43

m
em

or
y
lim

it
m
em

or
y
lim

it
m
em

or
y
lim

it

(0
,2
,2
,3
,4
,4

)
(0
,2
,2
,3
,4
,4

) 2
(0
,2
,3
,3
,3
,4

)
(0
,2
,3
,3
,3
,4

) 2
(0
,2
,3
,3
,3
,4

) 3
(0
,3
,3
,3
,3
,3

)
(1
,1
,3
,3
,3
,4

)
(1
,1
,3
,3
,3
,4

) 2
(1
,1
,3
,3
,3
,4

) 3
(1
,1
,2
,3
,4
,4

)
(1
,1
,2
,3
,4
,4

) 2
(1
,1
,2
,3
,4
,4

) 3
(1
,1
,2
,3
,4
,4

) 4
(1
,2
,2
,3
,3
,4

)
(1
,2
,2
,3
,3
,4

) 2
(1
,2
,2
,3
,3
,4

) 3
(1
,2
,2
,3
,3
,4

) 4
(1
,2
,2
,3
,3
,4

) 5
(1
,2
,2
,3
,3
,4

) 6
(1
,2
,2
,3
,3
,4

) 7
(1
,2
,2
,3
,3
,4

) 8
(1
,2
,2
,3
,3
,4

) 9
(1
,2
,2
,3
,3
,4

) 1
0

(1
,2
,2
,3
,3
,4

) 1
1

(1
,2
,2
,3
,3
,4

) 1
2

(1
,2
,2
,2
,4
,4

)
(1
,2
,2
,2
,4
,4

) 2
(1
,2
,2
,2
,4
,4

) 3
(1
,2
,3
,3
,3
,3

)
(1
,2
,3
,3
,3
,3

) 2
(1
,2
,3
,3
,3
,3

) 3
(1
,2
,3
,3
,3
,3

) 4
(2
,2
,2
,3
,3
,3

)
(2
,2
,2
,3
,3
,3

) 2
(2
,2
,2
,3
,3
,3

) 3
(2
,2
,2
,3
,3
,3

) 4
(2
,2
,2
,3
,3
,3

) 5
(2
,2
,2
,2
,3
,4

)
(2
,2
,2
,2
,3
,4

) 2
(2
,2
,2
,2
,3
,4

) 3
(2
,2
,2
,2
,3
,4

) 4

Table 6.9: Digraph groups with the Mennicke relator for 4 6 q 6 10
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6.5 The Johnson relator with q = 2: groups
of order 2t and 2t · 7

In this section, we investigate the Johnson relator with q = 2, that means
R(a, b) = ab−1ab−3 for n-vertex tournaments with n 6 12.

Table 6.10: All possible n-vertex tournaments for 3 6
n 6 6 and some when 7 6 n 6 12 .

R(a, b) = ab−1ab−3

Score Vectors |G| G/G′ G′/G′′ DL
(0, 1, 2) ∞ Z2

2 ⊕ Z4 Z2 ⊕ Z2
(1, 1, 1) 211 · 7 Z3

2 ⊕ Z7 Z4 ⊕ Z2
8 2

(0, 1, 2, 3) ∞ Z3
2 ⊕ Z4

Z2 ⊕ Z2 ⊕ Z4
(0, 2, 2, 2) 214 · 7 Z2 ⊕ Z4 ⊕ Z7 ⊕ Z2

8 2
(1, 1, 1, 3) ∞ Z4

2
Z⊕ Z3

4
(1, 1, 2, 2) 212 Z4

4 2
(0, 1, 2, 3, 4) ∞

Z4
2 ⊕ Z4

Z2 ⊕ Z2 ⊕ Z2
4

(0, 2, 2, 2, 4) Z⊕ Z2 ⊕ Z3
4

(0, 1, 3, 3, 3) 217 · 7 Z2 ⊕ Z2
4 ⊕ Z7 ⊕ Z2

8 2(0, 2, 2, 3, 3) 215 Z2 ⊕ Z4
4

(1, 1, 1, 3, 4) ∞ Z5
2

Z2 ⊕ Z3
4

(1, 1, 2, 2, 4) Z⊕ Z4
4

(1, 1, 2, 3, 3)

215 Z5
2 Z5

4 2

(1, 1, 2, 3, 3)2
(1, 2, 2, 2, 3)
(1, 2, 2, 2, 3)2
(1, 2, 2, 2, 3)3
(2, 2, 2, 2, 2)
(0, 1, 2, 3, 4, 5)

∞ Z5
2 ⊕ Z4

Z2 ⊕ Z2 ⊕ Z3
4(0, 2, 2, 2, 4, 5)

(0, 1, 3, 3, 3, 5) Z⊕ Z2 ⊕ Z4
4(0, 2, 2, 3, 3, 5)

(0, 1, 3, 3, 4, 4)

Z⊕ Z5
4

(0, 2, 2, 3, 4, 4)
(0, 2, 2, 3, 4, 4)2
(0, 2, 3, 3, 3, 4)
(0, 2, 3, 3, 3, 4)2
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(0, 2, 3, 3, 3, 4)3 ∞ Z5
2 ⊕ Z4 Z⊕ Z5

4(0, 3, 3, 3, 3, 3)
(1, 1, 1, 4, 4, 4) 220 · 7 Z6

2 Z4
4 ⊕ Z7 ⊕ Z2

8 2(0, 1, 2, 4, 4, 4) Z5
2 ⊕ Z4 Z2 ⊕ Z3

4 ⊕ Z7 ⊕ Z2
8

(1, 1, 2, 3, 3, 5)

∞ Z6
2

Z⊕ Z5
4

(1, 1, 2, 3, 3, 5)2
(1, 2, 2, 2, 3, 5)
(1, 2, 2, 2, 3, 5)2
(1, 2, 2, 2, 3, 5)3
(2, 2, 2, 2, 2, 5)
(1, 1, 1, 3, 4, 5) Z2 ⊕ Z4

4(1, 1, 2, 2, 4, 5)
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(1, 1, 3, 3, 3, 4)
(1, 1, 3, 3, 3, 4)2
(1, 1, 3, 3, 3, 4)3
(1, 1, 2, 3, 4, 4)
(1, 1, 2, 3, 4, 4)2
(1, 1, 2, 3, 4, 4)3
(1, 1, 2, 3, 4, 4)4
(1, 2, 2, 3, 3, 4)
(1, 2, 2, 3, 3, 4)2
(1, 2, 2, 3, 3, 4)3
(1, 2, 2, 3, 3, 4)4
(1, 2, 2, 3, 3, 4)5
(1, 2, 2, 3, 3, 4)6
(1, 2, 2, 3, 3, 4)7
(1, 2, 2, 3, 3, 4)8
(1, 2, 2, 3, 3, 4)9
(1, 2, 2, 3, 3, 4)10
(1, 2, 2, 3, 3, 4)11
(1, 2, 2, 3, 3, 4)12
(1, 2, 2, 2, 4, 4)
(1, 2, 2, 2, 4, 4)2
(1, 2, 2, 2, 4, 4)3
(1, 2, 3, 3, 3, 3)
(1, 2, 3, 3, 3, 3)2
(1, 2, 3, 3, 3, 3)3
(1, 2, 3, 3, 3, 3)4
(2, 2, 2, 3, 3, 3)
(2, 2, 2, 3, 3, 3)2
(2, 2, 2, 3, 3, 3)3
(2, 2, 2, 3, 3, 3)4
(2, 2, 2, 3, 3, 3)5
(2, 2, 2, 2, 3, 4)
(2, 2, 2, 2, 3, 4)2
(2, 2, 2, 2, 3, 4)3
(2, 2, 2, 2, 3, 4)4

218 Z6
2 Z6

4 2

(1, 1, 3, 3, 3, 4, 6) ∞ Z7
2

Z⊕ Z6
4

(1, 1, 1, 3, 4, 5, 6) Z2 ⊕ Z5
4

(1, 2, 3, 3, 3, 4, 5) 221 Z7
2 Z7

4 2(0, 3, 3, 3, 3, 4, 5) Z6
2 ⊕ Z4 Z2 ⊕ Z6

4
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(0, 1, 2, 3, 5, 5, 5) 223 · 7 Z6
2 ⊕ Z4 Z2 ⊕ Z4

4 ⊕ Z7 ⊕ Z2
8 2(0, 2, 2, 2, 5, 5, 5)

(1, 1, 2, 2, 5, 5, 5) 223 · 7 Z7
2 Z5

4 ⊕ Z7 ⊕ Z2
8 2(1, 1, 1, 3, 5, 5, 5)

(2, 2, 3, 3, 3, 4, 5, 6)
(0, 1, 2, 3, 4, 6, 6, 6) 226 · 7 Z7

2 ⊕ Z4 Z2 ⊕ Z5
4 ⊕ Z7 ⊕ Z2

8 2
(1, 2, 3, 4, 4, 4, 5, 6, 7)
(2, 2, 2, 3, 3, 3, 7, 7, 7) 229 · 7 Z9

2 Z7
4 ⊕ Z7 ⊕ Z2

8 2
(0, 1, 2, 3, 4, 5, 7, 7, 7) 229 · 7 Z8

2 ⊕ Z4 Z2 ⊕ Z6
4 ⊕ Z7 ⊕ Z2

8 2
(0, 1, 2, 3, 4, 5, 6, 8, 8, 8) 232 · 7 Z9

2 ⊕ Z4 Z2 ⊕ Z7
4 ⊕ Z7 ⊕ Z2

8 2
(0, 1, 2, 3, 4, 5, 6, 7, 9, 9, 9) 235 · 7 Z10

2 ⊕ Z4 Z2 ⊕ Z7
4 ⊕ Z7 ⊕ Z2

8 2
(0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 10, 10) 238 · 7 Z11

2 ⊕ Z4 Z2 ⊕ Z8
4 ⊕ Z7 ⊕ Z2

8 2

We now state some lemmas and conjectures that were motivated by the
table.

Lemma 6.5.1. Let R(a, b) = ab−1ab−3. If Γ1,Γ2 are non-isomorphic 5-vertex
tournaments which do not have sinks and do not have 3 vertices of out-degree
3, then |GΓ1(R)| = |GΓ2(R)| and GΓ1(R) 6∼= GΓ2(R).

Proof. There are 7 non-isomorphic tournaments with 5 vertices which do
not have sinks and do not have 3 vertices of out-degree 3. By Table 6.3 on
page 134 the orders of the corresponding digraph groups are all equal to
215. We will give a computational proof here that the corresponding digraph
groups are pairwise non-isomorphic. We compare abelianization of low index
subgroups to understand whether the digraph groups are isomorphic or not.
We use the command IdGroup(G) in GAP.

Let (I), (II), (III), (IV ), (V ), (V I), (V II) denote the tournaments with
their score vectors as (1, 2, 2, 2, 3)1, (1, 2, 2, 2, 3)2, (1, 2, 2, 2, 3)3, (1, 1, 2, 3, 3)1,
(1, 1, 2, 3, 3)2, (2, 2, 2, 2, 2), (0, 2, 2, 3, 3), respectively.

By studying their index 2 subgroups we see that G(I)(R) has an index 2 sub-
group whose abelianization is the group [64, 192] whereas G(II)(R), G(III)(R),
G(IV )(R), G(V )(R), G(V I)(R) do not and G(V I)(R) has [64, 246] whereas
G(I)(R) does not. Thus, G(I)(R) is not isomorphic to any of G(II)(R),
G(III)(R), G(IV )(R), G(V )(R), G(V I)(R), G(V II)(R).
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By studying their index 2 subgroups we see that G(II)(R) has an index 2
subgroup whose abelianization is the group [64, 246] whereas G(V I)(R) do not.
G(IV )(R), G(V )(R), G(V II)(R) have an index 2 subgroup whose abelianization
is the group [128, 2301], [128, 1601] and [128, 2150], respectively, whereas
G(II)(R) does not. Thus, G(II)(R) is not isomorphic to any of G(IV )(R),
G(V )(R), G(V I)(R), G(V II)(R). By studying their index 4 subgroups we see
that G(II)(R) has an index 4 subgroup whose abelianization is the group
[64, 55] whereas G(III)(R) does not. Thus, G(II)(R) is not isomorphic to any
of G(III)(R), G(IV )(R), G(V )(R), G(V I)(R), G(V II)(R).

By studying their index 2 subgroups we see that G(III)(R) has an index
2 subgroup whose abelianization is the group [64, 246] whereas G(V I)(R)
does not. G(IV )(R), G(V )(R), G(V II)(R) have an index 2 subgroup whose
abelianization is the group [128, 2301], [128, 1601] and [128, 2150], respectively,
whereas G(III)(R) does not. Thus, G(III)(R) is not isomorphic to any of
G(IV )(R), G(V )(R), G(V I)(R), G(V II)(R).

By studying their index 2 subgroups we see that G(IV )(R) has an index
2 subgroup whose abelianization is the group [128, 2301] whereas G(V )(R),
G(V I)(R), G(V II)(R) do not. Thus, G(IV )(R) is not isomorphic to any of
G(V )(R), G(V I)(R), G(V II)(R).

By studying their index 2 subgroups we see that G(V )(R) has an index
2 subgroup whose abelianization is the group [128, 1601] whereas G(V I)(R),
G(V II)(R) do not. Thus, G(V )(R) is not isomorphic to any of G(V I)(R),
G(V II)(R).

By studying their index 2 subgroups we see that G(V II)(R) has an index
2 subgroup whose abelianization is the group [64, 260] whereas G(V I)(R) does
not. Thus, G(V I)(R) is not isomorphic to G(V II)(R).

Thus, corresponding digraph groups of these 7 tournaments are non-
isomorphic though the corresponding digraph groups have same order.

Lemma 6.5.2. Let R(a, b) = ab−1ab−3. If Γ1,Γ2 are non-isomorphic 6-vertex
tournaments which have 3 vertices of out-degree 4, then |GΓ1(R)| = |GΓ2(R)|
and GΓ1(R) 6∼= GΓ2(R).
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Proof. There are 2 non-isomorphic tournaments with 6 vertices which have
no sinks and have 3 vertices of out-degree 4. By Table 6.3 on page 134 the
orders of the corresponding digraph groups are all equal to 220 · 7. We will
give a computational proof here that the corresponding digraph groups are
pairwise non-isomorphic. We compare abelianization of low index subgroups
to understand whether the digraph groups are isomorphic or not. We use the
command IdGroup(G) in GAP.

Let (I), (II) denote the tournaments with score vectors (1, 1, 1, 4, 4, 4),
(0, 1, 2, 4, 4, 4), respectively.

By studying their index 2 subgroups we see that G(II)(R) has an index 2
subgroup whose abelianization is the group [128, 2150] whereas G(I)(R) does
not. Thus, G(I)(R) is not isomorphic to G(II)(R). It is also seen that G/G′

are different which means the GΓ(R) is not isomorphic to each other.

Lemma 6.5.3. Let R(a, b) = ab−1ab−3. If Γ1,Γ2 are non-isomorphic 6-vertex
tournaments which do not have sinks, do not have sources and do not have 3
vertices of out-degree 4, then |GΓ1(R)| = |GΓ2(R)| and GΓ1(R) 6∼= GΓ2(R).

Proof. There are 35 non-isomorphic tournaments with 6 vertices which do
not have sinks, do not have sources and do not have 3 vertices of out-degree
4. By Table 6.10 on page 149 the orders of the corresponding digraph groups
are all equal to 218.

Let (1), (2), . . . , (35) denote the tournaments with score vectors in the order
of the Table 6.11 on page 156 as (1, 1, 3, 3, 3, 4), (1, 1, 3, 3, 3, 4)2, . . . , (2, 2, 2, 2, 3, 4)4,
respectively.

By Table 6.11 (abelianization of index subgroups 4), we have that
(5), (8), (20) are identical to each other.
(9), (16) are identical to each other.
(10), (12) are identical to each other.
(11), (34) are identical to each other.
(13), (26) are identical to each other.
Therefore it is not possible to distinguish the corresponding groups. How-

ever all other tournaments unique and so groups corresponding to these
tournaments are pairwise not isomorphic. Note that we use identical if the
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rows in the Table 6.11 are exactly same to each other and if a row in the
Table 6.11 does not same with others, then we say it is unique. Also note
that if the rows are identical, then we cannot decide whether it is isomorphic
or not but if it is unique then we say that it is not isomorphic to others (to
decide the rows are identical with some of the other rows such as (13), (26)
or unique such as 1, see the Table 6.11). Now we investigate those identical
above for other index.

By studying their index 2 subgroups we see that G(5)(R) has an index
2 subgroup whose abelianization is the group [256, 56069] whereas G(8)(R),
G(20)(R) do not. Also, G(20)(R)has an index 2 subgroup whose abelianization
is the group [128, 2301] whereas G(8)(R) does not. Thus, G(5)(R), G(8)(R)
and G(20)(R) are not isomorphic to each other.

By studying their index 2 subgroups we see that G(16)(R) has an index 2
subgroup whose abelianization is the group [128, 2301] whereas G(9)(R) does
not. Thus, G(9)(R) is not isomorphic to G(16)(R).

By studying their index 8 subgroups we see that G(12)(R) has an index
8 subgroup whose abelianization is the group [256, 56059] whereas G(10)(R)
does not. Thus, G(10)(R) is not isomorphic to G(12)(R).

By studying their index 2 subgroups we see that G(34)(R) has an index 2
subgroup whose abelianization is the group [128, 2150] whereas G(11)(R) does
not. Thus, G(11)(R) is not isomorphic to G(34)(R).

By studying their index 2 subgroups we see that G(13)(R) has an index 2
subgroup whose abelianization is the group [128, 2301] whereas G(26)(R) does
not. Thus, G(13)(R) is not isomorphic to G(26)(R).

Thus, corresponding digraph groups of these 35 tournaments are non-
isomorphic though the corresponding digraph groups have same order.

We can say that the derived length of GΓ(R), when this is finite, is equal
to 2 for all n-vertex tournaments up to n = 6. Thus, GΓ(R) is solvable for all
n-vertex tournaments up to n = 6 if GΓ(R) is finite. GΓ(R) for all n-vertex
tournaments up to n = 6 is also not abelian since derived length is not 1. It
is well known that if the group is not abelian, then it is not cyclic. Thus,
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By Index 2 [16,14] [32,45] [32,51] [64,192] [64,246] [64,260] [64,267] [128,997] [128,1601] [128,2150] [128,2301] [128,2319] [128,2328] [256,13313] [256,26973] [256,53038] [256,55626] [256,56059] [256,10298]
(1)=(1,1,3,3,3,4) 7 7 X X X X X 7 7 X X X 7 7 7 X X X 7

(2)=(1,1,3,3,3,4)2 7 X X 7 X X X 7 X X 7 X 7 7 7 7 X X 7

(3)=(1,1,3,3,3,4)3 X X X X X X X 7 X X X X 7 7 X X X X 7

(4)=(1,1,2,3,4,4) 7 7 X 7 7 X X 7 7 X 7 X 7 7 7 7 X 7 7

(5)=(1,1,2,3,4,4)2 7 7 X 7 7 X X 7 7 X X X 7 7 7 7 X 7 7

(6)=(1,1,2,3,4,4)3 7 7 X 7 7 X X 7 7 X X X 7 7 7 X X 7 7

(7)=(1,1,2,3,4,4)4 7 7 X 7 7 X X 7 7 X 7 X 7 7 7 X X 7 7

(8)=(1,2,2,3,3,4) 7 7 X 7 7 X X 7 7 X X X 7 7 7 7 X 7 7

(9)=(1,2,2,3,3,4)2 X X X X X X X X X X X X X X 7 X X X X
(10)=(1,2,2,3,3,4)3 X X X X X X X X X X X X 7 X 7 X X 7 7

(11)=(1,2,2,3,3,4)4 X X X X X X X X X X X X X X 7 X 7 X 7

(12)=(1,2,2,3,3,4)5 X X X X X X X X X X X X 7 X 7 X X 7 7

(13)=(1,2,2,3,3,4)6 X X X X X X X X X X X X 7 X 7 X X X 7

(14)=(1,2,2,3,3,4)7 7 7 X X 7 X X 7 X X 7 X 7 7 X X X 7 7

(15)=(1,2,2,3,3,4)8 X X X X X X X X X X X X 7 X 7 X 7 X 7

(16)=(1,2,2,3,3,4)9 X X X X X X X X X X X X X X 7 X X X X
(17)=(1,2,2,3,3,4)10 7 X X X 7 X X 7 X X 7 X 7 7 7 7 7 7 7

(18)=(1,2,2,3,3,4)11 X X X X X X X X X X X X X X 7 X X 7 7

(19)=(1,2,2,3,3,4)12 7 X X X X X X X X X X X 7 X X X X 7 7

(20)=(1,2,2,2,4,4) 7 7 X 7 7 X X 7 7 X X X 7 7 7 7 X 7 7

(21)=(1,2,2,2,4,4)2 7 7 X X 7 X X 7 7 7 X X 7 7 7 7 7 X 7

(22)=(1,2,2,2,4,4)3 7 7 X X 7 X X 7 7 X X X 7 7 7 7 7 7 7

(23)=(1,2,3,3,3,3) X X X X X X X 7 X X X X X X 7 X X 7 7

(24)=(1,2,3,3,3,3)2 X X X X X X X 7 X X X X 7 X 7 X X X 7

(25)=(1,2,3,3,3,3)3 X X X 7 X X X 7 X X X X 7 7 7 7 7 7 7

(26)=(1,2,3,3,3,3)4 X X X X X X X X X X X X 7 X 7 X X X 7

(27)=(2,2,2,3,3,3) X X X X X X X X X X X X 7 X 7 X 7 X X
(28)=(2,2,2,3,3,3)2 X X X X X X X 7 X X X X X X 7 X 7 7 7

(29)=(2,2,2,3,3,3)3 X X X X X X X 7 X X X X 7 X 7 X 7 7 X
(30)=(2,2,2,3,3,3)4 7 7 X X 7 X X 7 7 X X X 7 7 X 7 7 7 7

(31)=(2,2,2,3,3,3)5 X X X X X X X 7 X 7 X X X 7 7 7 7 7 7

(32)=(2,2,2,2,3,4) X X X X X X X 7 X X X X X X 7 X 7 X X
(33)=(2,2,2,2,3,4)2 7 7 X 7 7 X X 7 X X 7 X 7 7 7 7 7 7 7

(34)=(2,2,2,2,3,4)3 X X X X X X X X X X X X X X 7 X 7 X 7

(35)=(2,2,2,2,3,4)4 X X X X X X X 7 X X X X X 7 7 X 7 7 7

Table 6.11: Abelianization of index 4 subgroups

we can say that GΓ(R) for all n-vertex tournaments up to n = 6 is also non
cyclic. It seems that it also holds for 7 6 n 6 12 in our limited examples (see
the Table 6.10 on page 149).

Conjecture 6.5.4. Let R(a, b) = ab−1ab−3 and let Γ be an n-vertex tourna-
ment (n > 3) which has 3 vertices of out-degree n−2. Then |GΓ(R)| = 23n+2 ·7,
and if there is also a sink, then

G/G′ ∼= Zn−1
2 ⊕ Z4 and G′/G′′ ∼= Z2 ⊕ Zn−3

4 ⊕ Z7 ⊕ Z2
8.

We confirmed that it is true for 3 6 n 6 6 for all tournaments and for
some n-vertex tournament (7 6 n 6 12) by using GAP .

Conjecture 6.5.5. Let R(a, b) = ab−1ab−3 and let Γ be an n-vertex tourna-
ment (n > 3) which does not have a source and does not have a sink and does
not have 3 vertices of out-degree n− 2. Then |GΓ(R)| = 23n, G/G′ ∼= Zn2 and
G′/G′′ ∼= Zn4 .

We confirmed that it is true for 3 6 n 6 6 for all tournaments and for
some n-vertex tournament (7 6 n 6 12) by using GAP .
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6.6 The relator R(a, b) = abab3: groups of or-
der 2t · 3s

In this section, we investigate a new fixed word R(a, b) = abab3 for n-vertex
tournaments with n 6 12.

Table 6.12: All possible n-vertex tournaments for 3 6
n 6 6 and some when 7 6 n 6 12

R(a, b) = abab3

Score Vectors |G| G/G′ G′/G′′ DL
(0, 1, 2) ∞ Z2

2⊕Z3⊕Z4 Z2 ⊕ Z2
(1, 1, 1) 211 · 32 Z3

2 ⊕ Z9 Z4 ⊕ Z2
8 2

(0, 1, 2, 3) ∞ Z3
2⊕Z3⊕Z4 Z2 ⊕ Z2 ⊕ Z3 ⊕ Z4

(1, 1, 1, 3) Z4
2 ⊕ Z3 Z⊕ Z3

4
(0, 2, 2, 2) 214 · 33 Z3

2⊕Z3⊕Z4 Z2 ⊕ Z4 ⊕ Z2
8 ⊕ Z9 2(1, 1, 2, 2) 212 · 3 Z4

2 ⊕ Z3 Z4
4

(0, 1, 2, 3, 4)

∞
Z4

2 ⊕ Z3 ⊕ Z4
Z2 ⊕ Z2 ⊕ Z2

3 ⊕ Z2
4

(0, 2, 2, 2, 4) Z⊕ Z2 ⊕ Z3 ⊕ Z3
4

(1, 1, 1, 3, 4) Z5
2 ⊕ Z3

Z2 ⊕ Z3
4

(1, 1, 2, 2, 4) Z⊕ Z4
4

(0, 1, 3, 3, 3) 217 · 34
Z4

2 ⊕ Z3 ⊕ Z4
Z2⊕Z3⊕Z2

4⊕Z2
8⊕Z9 2(0, 2, 2, 3, 3) 215 · 32 Z2 ⊕ Z3 ⊕ Z4

4
(1, 1, 2, 3, 3)
(1, 1, 2, 3, 3)2
(1, 2, 2, 2, 3)
(1, 2, 2, 2, 3)2
(1, 2, 2, 2, 3)3
(2, 2, 2, 2, 2)

215 · 3 Z5
2 ⊕ Z3 Z5

4 2

(0, 1, 2, 3, 4, 5)

∞
Z5

2 ⊕ Z3 ⊕ Z4

Z2 ⊕ Z2 ⊕ Z3
3 ⊕ Z3

4
(0, 1, 3, 3, 3, 5) Z⊕ Z2 ⊕ Z2

3 ⊕ Z4
4

(0, 2, 2, 2, 4, 5) Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3
4

(0, 2, 2, 3, 3, 5) Z⊕ Z2 ⊕ Z3 ⊕ Z4
4

(1, 1, 1, 3, 4, 5) Z6
2 ⊕ Z3

Z2 ⊕ Z3 ⊕ Z4
4

(1, 1, 2, 2, 4, 5) Z2 ⊕ Z4
4
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(1, 1, 2, 3, 3, 5)
(1, 1, 2, 3, 3, 5)2
(1, 2, 2, 2, 3, 5)
(1, 2, 2, 2, 3, 5)2
(1, 2, 2, 2, 3, 5)3
(2, 2, 2, 2, 2, 5)

∞ Z6
2 ⊕ Z3 Z⊕ Z5

4

(0, 1, 2, 4, 4, 4) 220 · 35
Z5

2 ⊕ Z3 ⊕ Z4
Z2⊕Z2

3⊕Z3
4⊕Z2

8⊕Z9 2(0, 1, 3, 3, 4, 4) 218 · 33 Z2 ⊕ Z2
3 ⊕ Z5

4
(0, 2, 2, 3, 4, 4)
(0, 2, 2, 3, 4, 4)2
(0, 2, 3, 3, 3, 4)
(0, 2, 3, 3, 3, 4)2
(0, 2, 3, 3, 3, 4)3
(0, 3, 3, 3, 3, 3)

218 · 32 Z5
2⊕Z3⊕Z4 Z2 ⊕ Z3 ⊕ Z5

4 2

(1, 1, 1, 4, 4, 4) 220 · 33 Z6
2 ⊕ Z3 Z4

4 ⊕ Z2
8 ⊕ Z9 2
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(1, 1, 3, 3, 3, 4)
(1, 1, 3, 3, 3, 4)2
(1, 1, 3, 3, 3, 4)3
(1, 1, 2, 3, 4, 4)
(1, 1, 2, 3, 4, 4)2
(1, 1, 2, 3, 4, 4)3
(1, 1, 2, 3, 4, 4)4
(1, 2, 2, 3, 3, 4)
(1, 2, 2, 3, 3, 4)2
(1, 2, 2, 3, 3, 4)3
(1, 2, 2, 3, 3, 4)4
(1, 2, 2, 3, 3, 4)5
(1, 2, 2, 3, 3, 4)6
(1, 2, 2, 3, 3, 4)7
(1, 2, 2, 3, 3, 4)8
(1, 2, 2, 3, 3, 4)9
(1, 2, 2, 3, 3, 4)10
(1, 2, 2, 3, 3, 4)11
(1, 2, 2, 3, 3, 4)12
(1, 2, 2, 2, 4, 4)
(1, 2, 2, 2, 4, 4)2
(1, 2, 2, 2, 4, 4)3
(1, 2, 3, 3, 3, 3)
(1, 2, 3, 3, 3, 3)2
(1, 2, 3, 3, 3, 3)3
(1, 2, 3, 3, 3, 3)4
(2, 2, 2, 3, 3, 3)
(2, 2, 2, 3, 3, 3)2
(2, 2, 2, 3, 3, 3)3
(2, 2, 2, 3, 3, 3)4
(2, 2, 2, 3, 3, 3)5
(2, 2, 2, 2, 3, 4)
(2, 2, 2, 2, 3, 4)2
(2, 2, 2, 2, 3, 4)3
(2, 2, 2, 2, 3, 4)4

218 · 3 Z6
2 ⊕ Z3 Z6

4 2

(1, 2, 3, 3, 3, 4, 5) 221 · 3 Z7
2 ⊕ Z3 Z7

4 2
(0, 3, 3, 3, 3, 4, 5) 221 · 32 Z6

2⊕Z3⊕Z4 Z2 ⊕ Z3 ⊕ Z6
4 2

(1, 1, 1, 4, 4, 5, 5) 221 · 32 Z7
2 ⊕ Z3 Z3 ⊕ Z7

4 2
(0, 1, 2, 4, 4, 5, 5) 221 · 34 Z6

2⊕Z3⊕Z4 Z2 ⊕ Z3
3 ⊕ Z6

4 2
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(0, 2, 2, 2, 5, 5, 5) 223 · 34 Z6
2⊕Z3⊕Z4 Z2⊕Z3⊕Z4

4⊕Z2
8⊕Z9 2

(0, 1, 2, 3, 5, 5, 5) 223 · 36 Z6
2⊕Z3⊕Z4 Z2⊕Z3

3⊕Z4
4⊕Z2

8⊕Z9 2
(1, 1, 1, 3, 4, 5, 6) ∞ Z7

2 ⊕ Z3 Z2 ⊕ Z2
3 ⊕ Z5

4
(1, 1, 1, 3, 5, 5, 5) 223 · 34 Z7

2 ⊕ Z3 Z3 ⊕ Z5
4 ⊕ Z2

8 ⊕ Z9 2
(2, 2, 3, 3, 3, 4, 5, 6) 224 · 3 Z8

2 ⊕ Z3 Z8
4 2

(0, 1, 2, 3, 4, 6, 6, 6) 226 · 37 Z7
2⊕Z3⊕Z4 Z2⊕Z4

3⊕Z5
4⊕Z2

8⊕Z9 2
(1, 1, 1, 3, 4, 5, 6, 7) ∞ Z8

2 ⊕ Z3 Z2 ⊕ Z3
3 ⊕ Z6

4

(1, 2, 3, 4, 4, 4, 5, 6, 7) 227 · 3 Z9
2 ⊕ Z3 Z9

4 2

We now state some lemmas and conjectures that were motivated by the
table.

Lemma 6.6.1. Let R(a, b) = abab3. If Γ1,Γ2 are non-isomorphic 5-vertex
tournaments which have no sources and no sinks, then |GΓ1(R)| = |GΓ2(R)|
and GΓ1(R) 6∼= GΓ2(R).

Proof. There are 6 non-isomorphic tournaments with 5 vertices which do
not have have sources and sinks. By Table 6.3 on page 134. the orders of
the corresponding digraph groups are all equal to 215 · 3. We will give a
computational proof here that the corresponding digraph groups are pair-
wise non-isomorphic. We compare abelianization of low index subgroups to
understand whether the digraph groups are isomorphic or not. We use the
command IdGroup(G) in GAP.

Let (1), (2), (3), (4), (5), (6) denote the tournaments with score vectors
(1, 2, 2, 2, 3), (1, 2, 2, 2, 3)2, (1, 2, 2, 2, 3)3, (1, 1, 2, 3, 3), (1, 1, 2, 3, 3)2,

(2, 2, 2, 2, 2), respectively. Note that we use identical if the columns in the
Table 6.13 on page 161 are exactly same to each other and if a column in the
Table 6.13 does not same with others, then we say it is unique. Also note
that if the related columns are identical, then we cannot decide whether it is
isomorphic or not but if it is unique then we say that it is not isomorphic to
others (to decide the columns are identical or unique, check the Table 6.13)

By Table 6.13 (abelianization of index subgroups 2), we have that (2), (3)
are identical to each other. Others are not isomorphic to each other since
they are unique.
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Table 6.13: Abelianization of index 2 subgroups
By Index 2 (1) (2) (3) (4) (5) (6)
[48,52] X X X X X X
[96,220] X X X X X X
[96,231] X X X X X X
[192,1400] X 7 7 7 7 7

[192,1454] 7 X X X X 7

[192,1530] X X X X X 7

[384,17309] 7 7 7 7 X 7

[384,20029] 7 7 7 X 7 7

By studying their index 5 subgroups we see that G(2)(R) has an index 5
subgroup whose abelianization is the group [192, 807] whereas G(3)(R) does
not. Thus, G(2)(R) is not isomorphic to G(3)(R).

Thus, corresponding digraph groups of these 6 tournaments are non-
isomorphic though the corresponding digraph groups have same order.

Conjecture 6.6.2. Let R(a, b) = abab3 and let Γ be an n-vertex tournament
(n > 3) which has a source. Then GΓ(R) is infinite.

We confirmed that it is true for 3 6 n 6 6 for all tournaments and for
some n-vertex tournament (7 6 n 6 12) by using GAP .

Conjecture 6.6.3. Let R(a, b) = abab3, suppose that Γ be an n-vertex tour-
nament (n > 3) which does not have a source and let G = GΓ(R), then G is
finite and the derived length of G is 2 (and so G is solvable, not abelian and
not cyclic).

We confirmed that it is true for 3 6 n 6 6 for all tournaments and for
some n-vertex tournament (7 6 n 6 12) by using GAP .

Conjecture 6.6.4. Let R(a, b) = abab3 and let Γ be an n-vertex tournaments
(n > 3).

If Γ has a sink, then G/G′ ∼= Zn−1
2 ⊕ Z3 ⊕ Z4.

If Γ does not have a sink, then G/G′ ∼= Zn2 ⊕ Z3.
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We confirmed that it is true for 4 6 n 6 6 for all tournaments and for
some n-vertex tournament (7 6 n 6 12) by using GAP .

Question 6.6.5. Let R(a, b) = abab3. There are 6-vertex tournaments such
that the corresponding group has order 218 · 32. Are each pair of these groups
isomorphic ?

There are also 35 possible 6-vertex tournaments such that the corresponding
group has order 218 · 3. Are each pair of these groups isomorphic ?

We used low index subgroups to prove that in previous sections but we
are unable to confirm it here since this technique does not work with this
word efficiently.

6.7 The relator R(a, b) = abab−2: perfect groups

In this section, we investigate a new fixed word R(a, b) = abab−2 for n-
vertex tournaments with n 6 12. We find out perfect groups with this new
fixed word. Some of these groups will be a group called the double cover
of the alternating group An which is denoted 2 · An. The definition of this
group (which is unimportant for our purposes) is given in [32], but we note
that 2 · A4 ∼= SL(2, 3), 2 · A5 ∼= SL(2, 5), 2 · A6 ∼= SL(2, 9). The number of
perfect groups of a given order may be found using the NumberPerfectGroups
command in GAP. There is only one perfect group of order 720, namely
SL(2, 9) or Double cover of A6 and there is only one perfect group of order
5040, namely Double cover of A7. We have this perfect group with 4-vertex
tournaments and 5-vertex tournaments respectively. There are 4 perfect
groups with order 40320 and one of these arises as a digraph group where
the digraph is a 6-vertex tournament as the group 2 ·A8. There are 6 perfect
groups with order 362880 and one of these arises as a digraph group where
the digraph is a 7-vertex tournaments as the group 2 · A9. We will also give
a computational proof if Γ is a 6-vertex tournament without a source then
GΓ(R) ∼= 2 · A8, which is a perfect group in Lemma 6.7.1.
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Table 6.14: All possible n-vertex tournaments for 3 6
n 6 6 and some when 7 6 n 6 12

R(a, b) = abab−2

Score Vectors |G| Perfect G/G′ G′/G′′ G

(0, 1, 2) ∞ No Z2 Z3

G′′/G′′′ = Z4
2

G′′′/G′′′′ =
Z9 ⊕ Z2

(1, 1, 1) 840 No Z7 1 Z7 × SL(2, 5)
(0, 1, 2, 3) ? No Z2 1(1, 1, 1, 3)
(0, 2, 2, 2) 6! Yes 1 2 · A6 = SL(2, 9)(1, 1, 2, 2)
(0, 1, 2, 3, 4)
(0, 2, 2, 2, 4)
(1, 1, 1, 3, 4)
(1, 1, 2, 2, 4)

? No Z2 1

(0, 1, 3, 3, 3)
(0, 2, 2, 3, 3)
(1, 1, 2, 3, 3)
(1, 1, 2, 3, 3)2
(1, 2, 2, 2, 3)
(1, 2, 2, 2, 3)2
(1, 2, 2, 2, 3)3
(2, 2, 2, 2, 2)

7! Yes 1 2 · A7

(0, 1, 2, 3, 4, 5)
(0, 1, 3, 3, 3, 5)
(0, 2, 2, 2, 4, 5)
(0, 2, 2, 3, 3, 5)
(1, 1, 1, 3, 4, 5)
(1, 1, 2, 2, 4, 5)
(1, 1, 2, 3, 3, 5)
(1, 1, 2, 3, 3, 5)2
(1, 2, 2, 2, 3, 5)
(1, 2, 2, 2, 3, 5)2
(1, 2, 2, 2, 3, 5)3
(2, 2, 2, 2, 2, 5)

? No Z2 1
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(0, 1, 3, 3, 4, 4)
(0, 1, 2, 4, 4, 4)
(0, 2, 2, 3, 4, 4)
(0, 2, 2, 3, 4, 4)2
(0, 2, 3, 3, 3, 4)
(0, 2, 3, 3, 3, 4)2
(0, 2, 3, 3, 3, 4)3
(0, 3, 3, 3, 3, 3)
(1, 1, 1, 4, 4, 4)
(1, 1, 3, 3, 3, 4)
(1, 1, 3, 3, 3, 4)2
(1, 1, 3, 3, 3, 4)3
(1, 1, 2, 3, 4, 4)
(1, 1, 2, 3, 4, 4)2
(1, 1, 2, 3, 4, 4)3
(1, 1, 2, 3, 4, 4)4
(1, 2, 2, 3, 3, 4)
(1, 2, 2, 3, 3, 4)2
(1, 2, 2, 3, 3, 4)3
(1, 2, 2, 3, 3, 4)4
(1, 2, 2, 3, 3, 4)5
(1, 2, 2, 3, 3, 4)6
(1, 2, 2, 3, 3, 4)7
(1, 2, 2, 3, 3, 4)8
(1, 2, 2, 3, 3, 4)9
(1, 2, 2, 3, 3, 4)10
(1, 2, 2, 3, 3, 4)11
(1, 2, 2, 3, 3, 4)12
(1, 2, 2, 2, 4, 4)
(1, 2, 2, 2, 4, 4)2
(1, 2, 2, 2, 4, 4)3
(1, 2, 3, 3, 3, 3)
(1, 2, 3, 3, 3, 3)2
(1, 2, 3, 3, 3, 3)3
(1, 2, 3, 3, 3, 3)4
(2, 2, 2, 3, 3, 3)
(2, 2, 2, 3, 3, 3)2
(2, 2, 2, 3, 3, 3)3
(2, 2, 2, 3, 3, 3)4
(2, 2, 2, 3, 3, 3)5

8! Yes 1 2 · A8
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(2, 2, 2, 2, 3, 4)
(2, 2, 2, 2, 3, 4)2
(2, 2, 2, 2, 3, 4)3
(2, 2, 2, 2, 3, 4)4

8! Yes 1 2 · A8

(1, 2, 3, 3, 3, 4, 5) 9! Yes 1 2 · A9
(0, 3, 3, 3, 3, 4, 5) 9! Yes 1 2 · A9
(2, 2, 3, 3, 3, 4, 5, 6) 10! Yes 1 2 · A10
(1, 1, 1, 4, 4, 4, 6, 7) 10! Yes 1 2 · A10
(1, 1, 1, 3, 4, 5, 6, 7) 10! Yes 1 2 · A10
(1, 2, 3, 4, 4, 4, 5, 6, 7) 11! Yes 1 2 · A11
(1, 2, 3, 4, 4, 5, 5, 6, 7, 8) 12! Yes 1 2 · A12

We now state some lemmas and conjectures that were motivated by the
table.

Lemma 6.7.1. Let R(a, b) = abab−2. If Γ is a 6−vertex tournament without
a source, then GΓ(R) ∼= 2 · A8, which is a perfect group.

Proof. There are 44 non-isomorphic tournaments with 6 vertices which do
not have sources. By Table 6.14 on page 163 , the orders of the corresponding
digraph groups are all equal to 8!.

The GAP code works by counting the number of subgroups of the possible
groups up to given index. Let G be our group and L be a list of Low index
subgroups which mean an algorithm for finding all subgroups of up to a given
index in a finitely presented group G. Firstly, we see our group has index
8 subgroup by typing L:=LowIndexSubgroupsFpGroup(G,8) into GAP and
then Index(G,L[2]) into GAP. By this code, G has a proper subgroup of
index 8, but G does not have proper subgroups in any smaller index. We
know there are 4 perfect groups with the order of 40320 by typing Number-
PerfectGroups(40320) into GAP. Now, we called PerfectGroup(40320,1) as
G1, PerfectGroup(40320,2) as G2, PerfectGroup(40320,3) as G3 and Perfect-
Group(40320,4) as G4, namely G1 = 272 L3(2), G2 = 24 A7, G3 = 2 A8 and
G4 = 2 L3(4).

Now, we need to check whether the groups have a proper subgroup of index
less than 8 or not. If we have it then G is not the group that we investigate. To
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see for the first perfect groupG1, we type L1:=LowIndexSubgroupsFpGroup(G1,7)
into GAP and we see G1 has a proper subgroup of index less than 8. Thus,
G 6= G1. In that way, it can be seen G 6= G2 and G 6= G4. Hence G is G3
which is 2 · A8. By this techniques, we see all 44 tournaments are giving the
same perfect groups 2 · A8. See the related GAP codes in Appendix A.4.

Conjecture 6.7.2. Let R(a, b) = abab−2, suppose that Γ does not have a
source and if

Γ is an 3-vertex tournament, then |GΓ(R)| = 840 and G = Z7 × SL(2, 5)
Γ is an n-vertex tournament, n > 4, then |GΓ(R)| = (n + 2)! and G =

2. A(n+ 2) and these tournaments give the same perfect group although the
tournaments are non-isomorphic.

We confirmed that it is true for all n-vertex tournaments when 3 6 n 6 6
and some when 7 6 n 6 12 by using GAP.

Question 6.7.3. Let R(a, b) = abab−2 be and suppose that Γ has a source,
then is GΓ(R) infinite ?

It is true for only when n = 3 but for n > 4 the computations in GAP do
not complete. I believe this is because the corresponding groups are infinite.

6.8 The relator R(a, b) = ab2a2b−2: 3-groups

In this section, we investigate a new fixed word R(a, b) = ab2a2b−2 for n-vertex
tournaments with n 6 8.

If there is a sink in the graph and β = 0, then the corresponding digraph
groups are infinite by Lemma 6.2.1. Since β = 2 + (−2) = 0, we have an
infinite group whenever we have a sink, which is showed as 0 in the score
vector.
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Table 6.15: All possible n-vertex tournaments for 3 6
n 6 6 and some when n = 7, 8.

R(a, b) = ab2a2b−2

Score Vectors |G| G/G′ G′/G′′ G′′/G′′′ DL
(0, 1, 2) ∞
(1, 1, 1) 39 Z3

3 Z3 ⊕ Z2
9 Z3 3

(0, 1, 2, 3)
(0, 2, 2, 2) ∞

(1, 1, 1, 3) 311 Z4
3 Z2

3 ⊕ Z2
9 Z3 3

(1, 1, 2, 2) 38 Z4
3 Z4

3 - 2
(0, 1, 2, 3, 4)
(0, 2, 2, 2, 4)
(0, 1, 3, 3, 3)
(0, 2, 2, 3, 3)

∞

(1, 1, 1, 3, 4) 313 Z5
3 Z3

3 ⊕ Z2
9 Z3 3

(1, 1, 2, 2, 4)
(1, 1, 2, 3, 3)
(1, 1, 2, 3, 3)2
(1, 2, 2, 2, 3)
(1, 2, 2, 2, 3)2
(1, 2, 2, 2, 3)3
(2, 2, 2, 2, 2)

310 Z5
3 Z5

3 - 2

(0, 1, 2, 3, 4, 5)
(0, 1, 3, 3, 3, 5)
(0, 2, 2, 2, 4, 5)
(0, 2, 2, 3, 3, 5)
(0, 1, 3, 3, 4, 4)
(0, 1, 2, 4, 4, 4)
(0, 2, 2, 3, 4, 4)
(0, 2, 2, 3, 4, 4)2
(0, 2, 3, 3, 3, 4)
(0, 2, 3, 3, 3, 4)2
(0, 2, 3, 3, 3, 4)3
(0, 3, 3, 3, 3, 3)

∞

(1, 1, 1, 3, 4, 5)
(1, 1, 1, 4, 4, 4) 315 Z6

3 Z4
3 ⊕ Z2

9 Z3 3
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(1, 1, 2, 2, 4, 5)
(1, 1, 2, 3, 3, 5)
(1, 1, 2, 3, 3, 5)2
(1, 2, 2, 2, 3, 5)
(1, 2, 2, 2, 3, 5)2
(1, 2, 2, 2, 3, 5)3
(2, 2, 2, 2, 2, 5)
(1, 1, 3, 3, 3, 4)
(1, 1, 3, 3, 3, 4)2
(1, 1, 3, 3, 3, 4)3
(1, 1, 2, 3, 4, 4)
(1, 1, 2, 3, 4, 4)2
(1, 1, 2, 3, 4, 4)3
(1, 1, 2, 3, 4, 4)4
(1, 2, 2, 3, 3, 4)
(1, 2, 2, 3, 3, 4)2
(1, 2, 2, 3, 3, 4)3
(1, 2, 2, 3, 3, 4)4
(1, 2, 2, 3, 3, 4)5
(1, 2, 2, 3, 3, 4)6
(1, 2, 2, 3, 3, 4)7
(1, 2, 2, 3, 3, 4)8
(1, 2, 2, 3, 3, 4)9
(1, 2, 2, 3, 3, 4)10
(1, 2, 2, 3, 3, 4)11
(1, 2, 2, 3, 3, 4)12
(1, 2, 2, 2, 4, 4)
(1, 2, 2, 2, 4, 4)2
(1, 2, 2, 2, 4, 4)3
(1, 2, 3, 3, 3, 3)
(1, 2, 3, 3, 3, 3)2
(1, 2, 3, 3, 3, 3)3
(1, 2, 3, 3, 3, 3)4
(2, 2, 2, 3, 3, 3)
(2, 2, 2, 3, 3, 3)2
(2, 2, 2, 3, 3, 3)3
(2, 2, 2, 3, 3, 3)4
(2, 2, 2, 3, 3, 3)5
(2, 2, 2, 2, 3, 4)
(2, 2, 2, 2, 3, 4)2
(2, 2, 2, 2, 3, 4)3
(2, 2, 2, 2, 3, 4)4

312 Z6
3 Z6

3 - 2
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(1, 2, 3, 3, 3, 4, 5) 314 Z7
3 Z7

3 - 2
(0, 3, 3, 3, 3, 4, 5) ∞
(1, 1, 1, 3, 4, 5, 6) 317 Z7

3 Z5
3 ⊕ Z2

9 Z3 3
(1, 1, 2, 3, 4, 5, 6, 6) 316 Z8

3 Z8
3 2

(1, 1, 1, 3, 4, 5, 6, 7) 319 Z8
3 Z6

3 ⊕ Z2
9 Z3 3

We now state some lemmas and conjectures that were motivated by the
table. However, we are not able to give lemmas as previous sections in this
section since low index subgroups technique does not work with this word
efficiently.

Lemma 6.8.1. Let R(a, b) = ab2a2b−2 and let Γ be an n-vertex tournament
(n > 3) which has a sink. Then G/G′ ∼= Z⊕ Zn−1

3 ,

This can be seen by similar proof of Theorem 6.4.1.

Conjecture 6.8.2. Let R(a, b) = ab2a2b−2, suppose that Γ be an n-vertex
tournament (n > 3) which does not have a sink and let G = GΓ(R), then
the derived length of G is 2 or 3 (and so G is solvable, not abelian and not
cyclic).

Conjecture 6.8.3. Let R(a, b) = ab2a2b−2, and let Γ be an n-vertex tourna-
ments (n > 3) which has no sinks and does not have 3 vertices of out-degree
1. Then, |GΓ(R)| = 32n, G/G′ ∼= Zn3 and G′/G′′ ∼= Zn3 .

Conjecture 6.8.4. Let R(a, b) = ab2a2b−2 and let Γ be an n-vertex tourna-
ment (n > 3) which has no sinks and has 3 vertices of out-degree 1. Then
|GΓ(R)| = 32n+3,G/G′ ∼= Zn3 , G′/G′′ ∼= Zn−2

3 ⊕ Z2
9 and G′′/G′′′ ∼= Z3.

Each of the three conjectures above has been verified for 3 6 n 6 6 for all
tournaments and for some n-vertex tournament when n = 7, 8 by using GAP .

Question 6.8.5. Let R(a, b) = ab2a2b−2. There are 7 possible 5-vertex
tournaments such that the corresponding group has order 310. There are 2
possible 6-vertex tournaments such that the corresponding group has order
315. There are 35 possible 6-vertex tournaments such that the corresponding
group has order 312.

Are each pair of the groups with the same order isomorphic ?



6.8 The relator R(a, b) = ab2a2b−2: 3-groups 170

We used low index subgroups to prove that in previous sections but we
are unable to confirm it here since this technique does not work with this
word efficiently.
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Appendix: GAP Codes

We will provide the related GAP codes here.

A.1 Functions

We are giving the functions for all the groups that we used throughout
Chapter 6 here. Therefore, readers can easily repeat any experiment from
the thesis if they want to.

A.1.1 Tournaments

We give digraph codes for all tournaments up to 6-vertex tournaments and
for some from 7 to 12-vertex tournaments here.

LoadPackage("digraphs");

T012 :=DigraphByEdges([ [2,1],[3,1],[3,2] ]);
T111 :=DigraphByEdges([ [1,2],[2,3],[3,1] ]);

T0123:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,3], [2,4], [3,4] ]);
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T1113:=DigraphByEdges([ [1,2],[2,3],[3,1], [4,1], [4,2], [4,3] ]);
T0222:=DigraphByEdges([ [1,2],[1,4],[2,3], [2,4], [3,1], [3,4] ]);
T1122:=DigraphByEdges([ [1,2],[1,4],[2,3], [3,1], [4,2], [4,3] ]);

T01234:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
[3,4], [3,5], [4,5] ]);
T02224:=DigraphByEdges([ [1,2],[1,5],[2,3], [2,5], [3,1], [3,5], [4,1],
[4,2], [4,3], [4,5] ]);
T11134:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
[3,4], [4,5], [5,3] ]);
T11224:=DigraphByEdges([ [1,2],[2,3],[2,5], [3,1], [4,1], [4,2], [4,3],
[4,5], [5,1], [5,3] ]);
T01333:=DigraphByEdges([ [1,4],[2,1],[2,4], [2,5], [3,1], [3,2], [3,4],
[5,1], [5,3], [5,4] ]);
T02233:=DigraphByEdges([ [1,2],[1,4],[2,3], [2,4], [2,5], [3,1], [3,4],
[5,1], [5,3], [5,4] ]);
T11233:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,3], [2,4], [2,5], [3,4],
[3,5], [4,5], [5,1] ]);
T11233_2:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,3], [2,4], [2,5], [3,5],
[4,3], [5,1], [5,4] ]);
T12223:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,3], [2,4], [3,4], [3,5],
[4,5], [5,1], [5,2] ]);
T12223_2:=DigraphByEdges([ [1,3],[1,4],[2,1], [2,4], [3,2], [3,4], [3,5],
[4,5], [5,1], [5,2] ]);
T12223_3:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,3], [2,5], [3,4], [3,5],
[4,2], [4,5], [5,1] ]);
T22222:=DigraphByEdges([ [1,2],[1,4],[2,4], [2,5], [3,1], [3,2], [4,3],
[4,5], [5,1], [5,3] ]);

T012345:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
[2,5], [2,6], [3,4], [3,5], [3,6], [4,5], [4,6], [5,6] ]);
T012444:=DigraphByEdges([ [1,3],[1,4],[1,5], [1,6], [2,1], [2,4], [2,5],
[2,6], [3,2], [3,4], [3,5], [3,6],[4,5], [4,6], [5,6] ]);
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T013335:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,5],
[2,6], [3,4], [3,5], [3,6], [4,2], [4,5], [4,6], [5,6] ]);
T013344:=DigraphByEdges([ [1,3],[1,4],[1,5], [1,6], [2,1], [2,3], [2,5],
[2,6], [3,4], [3,5], [3,6],[4,2],[4,5], [4,6], [5,6] ]);
T022245:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
[2,5], [2,6], [3,4], [3,6], [4,5], [4,6], [5,3], [5,6] ]);
T022335:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,4], [2,5],
[2,6], [3,2], [3,4], [3,6], [4,5], [4,6], [5,3], [5,6] ]);
T022344:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,3], [2,4], [2,5],
[2,6], [3,4], [3,5], [3,6], [4,5], [4,6], [5,1], [5,6] ]);
T022344_2:=DigraphByEdges([ [1,3],[1,4],[1,5], [1,6], [2,1], [2,4], [2,5],
[2,6], [3,2], [3,4], [3,6], [4,5], [4,6], [5,3], [5,6] ]);
T023334:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,3], [2,4], [2,6],
[3,4], [3,5], [3,6], [4,5], [4,6],[5,1], [5,2], [5,6] ]);
T023334_2:=DigraphByEdges([ [1,3],[1,4],[1,6], [2,1], [2,4], [2,6], [3,2],
[3,4], [3,5], [3,6], [4,5], [4,6], [5,1], [5,2], [5,6] ]);
T023334_3:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,3], [2,5], [2,6],
[3,4], [3,5], [3,6], [4,2], [4,5], [4,6], [5,1], [5,6] ]);
T033333:=DigraphByEdges([ [1,2],[1,4],[1,6], [2,4], [2,5], [2,6], [3,1],
[3,2], [3,6], [4,3], [4,5], [4,6], [5,1], [5,3], [5,6] ]);
T111345:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
[2,5], [2,6], [3,4], [3,5], [3,6], [4,5], [5,6], [6,4] ]);
T111444:=DigraphByEdges([ [1,2],[1,4],[1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [3,1], [3,4], [3,5], [3,6], [4,5], [5,6], [6,4] ]);
T112245:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
[2,5], [2,6], [3,5], [3,6], [4,3], [4,5], [5,6], [6,4] ]);
T112335:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
[2,5], [3,4], [3,5], [3,6], [4,5], [4,6], [5,6], [6,2] ]);
T112335_2:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
[2,5], [3,4], [3,5], [3,6],[4,6], [5,4], [6,2], [6,5] ]);
T112344:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
[2,6], [3,4], [3,5], [3,6], [4,6], [5,4], [6,1], [6,5] ]);
T112344_2:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
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[2,6], [3,4], [3,5], [3,6], [4,5], [4,6], [5,6], [6,1] ]);
T112344_3:=DigraphByEdges([ [1,2],[1,3],[1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [3,5], [3,6], [4,1], [4,3], [4,5], [5,6], [6,4] ]);
T112344_4:=DigraphByEdges([ [1,2],[1,4],[1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [3,1], [3,5], [3,6], [4,3], [4,5], [5,6], [6,4] ]);
T113334:=DigraphByEdges([ [1,3],[1,4],[1,5], [1,6], [2,1], [2,3], [2,5],
[3,4], [3,5], [3,6], [4,2], [4,5], [4,6], [5,6], [6,2] ]);
T113334_2:=DigraphByEdges([ [1,3],[1,4],[1,5], [2,1], [2,3], [2,5], [2,6],
[3,4], [3,5], [3,6], [4,2], [4,5], [4,6], [5,6], [6,1] ]);
T113334_3:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,5], [2,6],
[3,4], [3,5], [3,6], [4,2], [4,5], [4,6], [5,6], [6,1] ]);
T122235:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
[3,4], [3,5], [3,6], [4,5], [4,6], [5,2], [5,6], [6,2] ]);
T122235_2:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
[3,4], [3,5], [3,6], [4,5], [5,2], [5,6], [6,2], [6,4] ]);
T122235_3:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4],
[2,5], [3,4],[3,6], [4,5], [4,6], [5,3], [5,6], [6,2] ]);
T122244:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
[2,6], [3,5], [3,6], [4,3], [4,5], [5,6], [6,1], [6,4] ]);
T122244_2:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,3], [2,4], [2,5],
[2,6], [3,5],[3,6], [4,3], [4,5], [5,1], [5,6], [6,4] ]);
T122244_3:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
[2,6], [3,4], [3,6], [4,5], [4,6], [5,3], [5,6], [6,1] ]);
T122334:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
[3,4], [3,5], [3,6], [4,5], [4,6], [5,6], [6,1], [6,2] ]);
T122334_2:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,3], [2,4], [2,5],
[3,4], [3,5], [3,6], [4,5], [4,6], [5,1], [5,6], [6,2] ]);
T122334_3:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,6],
[3,4],[3,5], [3,6], [4,5], [5,2], [5,6], [6,1], [6,4] ]);
T122334_4:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,3], [2,4], [2,5],
[3,4], [3,5], [3,6], [4,5], [5,1], [5,6], [6,2], [6,4] ]);
T122334_5:=DigraphByEdges([ [1,2],[1,4],[1,5], [1,6], [2,3], [2,4], [2,5],
[3,1], [3,4], [3,6], [4,5], [4,6], [5,3], [5,6], [6,2] ]);
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T122334_6:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,4], [2,5], [2,6],
[3,2], [3,4],[3,6], [4,5], [4,6], [5,3], [5,6], [6,1] ]);
T122334_7:=DigraphByEdges([ [1,2],[1,4],[1,5], [1,6], [2,4], [2,5], [2,6],
[3,1],[3,2], [3,4], [4,5], [4,6], [5,3], [5,6], [6,3] ]);
T122334_8:=DigraphByEdges([ [1,3],[1,4],[1,5], [1,6], [2,1], [2,4], [2,5],
[3,2], [3,4], [3,6], [4,5], [4,6], [5,3], [5,6], [6,2] ]);
T122334_9:=DigraphByEdges([ [1,2],[1,3],[1,5], [1,6], [2,4], [2,5], [2,6],
[3,2], [3,4], [4,1], [4,5], [4,6], [5,3], [5,6], [6,3] ]);
T122334_10:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,4], [2,5], [3,2],
[3,4], [3,6], [4,5], [4,6], [5,1], [5,3], [5,6], [6,2] ]);
T122334_11:=DigraphByEdges([ [1,2],[1,3],[1,5], [1,6], [2,4], [2,5], [3,2],
[3,4],[3,6], [4,1], [4,5], [4,6], [5,3], [5,6], [6,2] ]);
T122334_12:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,6], [2,4], [2,5], [2,6],
[3,2], [3,4], [4,5], [4,6], [5,1], [5,3], [5,6], [6,3] ]);
T123333:=DigraphByEdges([ [1,2],[1,3],[1,5], [2,4], [2,5], [2,6], [3,2],
[3,4], [3,6], [4,1], [4,5], [4,6], [5,3], [5,6], [6,1] ]);
T123333_2:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,4], [2,5], [2,6], [3,2],
[3,4], [3,6], [4,5], [4,6], [5,1], [5,3], [5,6], [6,1] ]);
T123333_3:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,3], [2,5], [2,6], [3,4],
[3,5], [3,6], [4,2], [4,5], [4,6], [5,1], [5,6], [6,1] ]);
T123333_4:=DigraphByEdges([ [1,2],[1,4],[2,4], [2,5], [2,6], [3,1], [3,2],
[3,6], [4,3], [4,5], [4,6], [5,1], [5,3], [5,6], [6,1] ]);
T222234:=DigraphByEdges([ [1,3],[1,4],[1,5], [1,6], [2,1], [2,3], [2,5],
[3,5], [3,6], [4,2], [4,3], [5,4], [5,6], [6,2], [6,4] ]);
T222234_2:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,3], [2,4], [2,5],
[3,4], [3,6], [4,5], [4,6], [5,3], [5,6], [6,1], [6,2] ]);
T222234_3:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,4], [2,5], [2,6],
[3,2], [3,4], [4,5], [4,6], [5,3], [5,6], [6,1], [6,3] ]);
T222234_4:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [2,4], [2,5], [3,2],
[3,4], [3,6], [4,5], [4,6], [5,3], [5,6], [6,1], [6,2] ]);
T222225:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,5],
[3,5], [3,6], [4,2], [4,3], [5,4], [5,6], [6,2], [6,4] ]);
T222333:=DigraphByEdges([ [1,2], [1,4],[1,6], [2,4], [2,5], [2,6], [3,1],



A.1 Functions 176

[3,2], [3,6], [4,3], [4,5], [5,1], [5,3], [6,4], [6,5] ]);
T222333_2:=DigraphByEdges([ [1,3],[1,5],[1,6], [2,1], [2,3], [2,6], [3,4],
[3,5], [4,1], [4,2], [5,2], [5,4], [5,6], [6,3], [6,4] ]);
T222333_3:=DigraphByEdges([ [1,2], [1,5], [1,6], [2,3], [2,5], [3,1],
[3,5], [3,6], [4,1], [4,2], [4,3], [5,4], [5,6], [6,2], [6,4] ]);
T222333_4:=DigraphByEdges([ [1,3], [1,6], [2,1], [2,3], [2,6], [3,4], [3,5],
[4,1], [4,2], [5,1], [5,2], [5,4], [6,3], [6,4], [6,5] ]);
T222333_5:=DigraphByEdges([ [1,3], [1,6], [2,1], [2,3], [2,5], [3,4], [3,5],
[4,1], [4,2], [5,1], [5,4], [5,6], [6,2], [6,3], [6,4] ]);

T1133346:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [1,7], [2,3], [2,4],
[2,5], [2,6],[3,4], [3,5], [3,6], [4,5], [4,6], [4,7], [5,6], [6,7], [7,2], [7,3], [7,5]]);
T1233345:=DigraphByEdges([ [1,2], [1,3], [1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [3,4], [3,5], [3,6], [4,5], [4,6], [4,7], [7,1], [7,2], [7,3], [5,6], [5,7], [6,7]]);
T0333345:=DigraphByEdges([ [1,2], [1,3], [1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,7], [3,4], [3,5], [3,6], [4,5], [4,6], [4,7], [7,1], [7,3], [7,5], [6,2], [6,5], [6,7]]);
T0123555:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7], [3,4], [3,5], [3,6], [4,5], [4,6], [5,6],[7,1], [7,3], [7,4], [7,5], [7,6]]);
T0222555:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7], [3,4], [3,5], [4,5], [4,6], [6,3], [6,5],[7,1], [7,3], [7,4], [7,5], [7,6]]);
T1122555:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7], [3,4], [3,5], [4,5], [4,6], [5,6], [6,3],[7,1], [7,3], [7,4], [7,5], [7,6]]);
T1113555:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7], [3,4], [3,5], [3,6], [4,5], [5,6], [6,4],[7,1], [7,3], [7,4], [7,5], [7,6]]);
T1114455:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7], [3,4], [3,5], [3,6], [3,7], [4,5], [5,6], [6,4], [7,1], [7,4], [7,5], [7,6]]);
T1113456:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [1,7], [2,3], [2,4],
[2,5], [2,6],[2,7], [3,4], [3,5], [3,6], [3,7], [4,5], [4,6], [4,7], [5,6], [6,7], [7,5]]);
T1133346:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [1,7], [2,3], [2,4],
[2,5], [2,6], [3,4],[3,5], [3,6], [4,5], [4,6], [4,7], [5,6], [6,7], [7,2], [7,3], [7,5]]);
T1233345:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
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[2,6], [3,4], [3,5], [3,6], [4,5], [4,6], [4,7],[7,1], [7,2], [7,3], [5,6], [5,7],[6,7]]);
T0333345:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,7], [3,4], [3,5], [3,6], [4,5], [4,6], [4,7],[7,1], [7,3], [7,5], [6,2], [6,5],[6,7]]);
T0123555:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7],[3,4], [3,5], [3,6], [4,5], [4,6], [5,6],[7,1], [7,3], [7,4], [7,5], [7,6]]);
T0222555:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7],[3,4], [3,5], [4,5], [4,6], [6,3], [6,5],[7,1], [7,3], [7,4], [7,5], [7,6]]);
T1122555:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7], [3,4], [3,5], [4,5], [4,6], [5,6], [6,3],[7,1], [7,3], [7,4], [7,5], [7,6]]);
T1113555:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [2,3], [2,4], [2,5],
[2,6], [2,7],[3,4], [3,5], [3,6], [4,5], [5,6], [6,4],[7,1], [7,3], [7,4], [7,5], [7,6]]);
T1113456:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [1,7], [2,3], [2,4],
[2,5], [2,6], [2,7], [3,4], [3,5], [3,6], [3,7], [4,5], [4,6], [4,7], [5,6], [6,7], [7,5]]);

T01234666:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [1,7], [2,3],
[2,4], [2,5], [2,6], [2,7], [2,8], [3,4], [3,5], [3,6], [3,7], [4,5], [4,6], [4,7], [5,6],
[5,7], [6,7], [8,1], [8,3], [8,4], [8,5], [8,6], [8,7]]);

T012345777:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [1,7], [1,8],
[2,3], [2,4], [2,5], [2,6], [2,7], [2,8],[2,9], [3,4], [3,5], [3,6], [3,7], [3,8], [4,5],
[4,6], [4,7], [4,8], [5,6], [5,7], [5,8], [6,7], [6,8], [7,8], [9,1], [9,3], [9,4],
[9,5], [9,6], [9,7], [9,8]]);
T222333777:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [1,7], [1,8],
[2,3], [2,4], [2,5], [2,6], [2,7], [2,8], [2,9], [3,4], [3,5], [3,6], [4,5], [4,6], [4,7],
[5,6], [5,7], [5,8], [6,7], [6,8], [7,8], [7,3], [8,3], [8,4], [9,1], [9,3], [9,4],
[9,5], [9,6], [9,7], [9,8]]);

T0123456888:=DigraphByEdges([ [1,2], [1,3], [1,4], [1,5], [1,6], [1,7], [1,8],
[1,9], [2,3], [2,4], [2,5], [2,6], [2,7], [2,8], [2,9], [2,10], [3,4], [3,5], [3,6], [3,7],
[3,8], [3,9], [4,5], [4,6], [4,7], [4,8],[4,9], [5,6], [5,7], [5,8], [5,9], [6,7], [6,8],
[6,9], [7,8],[7,9],[8,9], [10,1], [10,3], [10,4], [10,5], [10,6], [10,7], [10,8], [10,9]]);
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T01234567999:=DigraphByEdges([ [1,2], [1,3], [1,4], [1,5], [1,6], [1,7],
[1,8], [1,9], [1,10], [2,3], [2,4], [2,5], [2,6], [2,7], [2,8], [2,9], [2,10], [2,11],
[3,4], [3,5], [3,6], [3,7], [3,8], [3,9], [3,10], [4,5], [4,6], [4,7], [4,8], [4,9],
[4,10], [5,6], [5,7], [5,8], [5,9], [5,10], [6,7], [6,8], [6,9], [6,10], [7,8],
[7,9], [7,10], [8,9],[8,10], [9,10], [11,1], [11,3], [11,4], [11,5], [11,6], [11,7],
[11,8], [11,9], [11,10]]);

T12:=DigraphByEdges([ [1,2],[1,3],[1,4], [1,5], [1,6], [1,7], [1,8], [1,9],
[1,10], [1,11], [2,3], [2,4], [2,5], [2,6], [2,7], [2,8], [2,9], [2,10], [2,11],
[2,12], [3,4], [3,5], [3,6], [3,7], [3,8], [3,9], [3,10], [3,11], [4,5], [4,6], [4,7],
[4,8], [4,9], [4,10], [4,11], [5,6], [5,7], [5,8], [5,9], [5,10], [5,11], [6,7], [6,8],
[6,9], [6,10], [6,11], [7,8],[7,9], [7,10], [7,11], [8,9], [8,10], [8,11], [9,10],
[9,11], [10,11], [12,1], [12,3], [12,4], [12,5], [12,6], [12,7], [12,8], [12,9],
[12,10], [12,11]]);

A.1.2 Johnson Digraph Group when q = 2

We will provide Johnson relation here and reader can change the relators and
hence they can obtain Mennicke group and the other groups that we have in
this thesis.

LoadPackage("digraphs");
JohnsonDigraphGroup:=function(gr,q)
local F,EdgeSet,n,e,i,j,rels;
n:=Size(DigraphVertices(gr));
F:=FreeGroup(n);
EdgeSet:=DigraphEdges(gr);
rels:=[];
for e in EdgeSet do

i:=e[1];j:=e[2];
AddSet(rels,F.(i)*F.(j)^(1-q)*F.(i)*F.(j)^(-q-1));

od;#e
return(F/rels);
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end;

*Put the code related tournaments defined in Section A.1.1.
Then enter the code, below

J012:=JohnsonDigraphGroup(T012,2);
J111:=JohnsonDigraphGroup(T111,2);

J0123:=JohnsonDigraphGroup(T0123,2);
J1113:=JohnsonDigraphGroup(T1113,2);
J0222:=JohnsonDigraphGroup(T0222,2);
J1122:=JohnsonDigraphGroup(T1122,2);
J01234:=JohnsonDigraphGroup(T01234,2);
J02224:=JohnsonDigraphGroup(T02224,2);
J11134:=JohnsonDigraphGroup(T11134,2);
J11224:=JohnsonDigraphGroup(T11224,2);
J01333:=JohnsonDigraphGroup(T01333,2);
J02233:=JohnsonDigraphGroup(T02233,2);
J11233:=JohnsonDigraphGroup(T11233,2);
J11233_2:=JohnsonDigraphGroup(T11233_2,2);
J12223:=JohnsonDigraphGroup(T12223,2);
J12223_2:=JohnsonDigraphGroup(T12223_2,2);
J12223_3:=JohnsonDigraphGroup(T12223_3,2);
J22222:=JohnsonDigraphGroup(T22222,2);

J012345:=JohnsonDigraphGroup(T012345,2);
J012444:=JohnsonDigraphGroup(T012444,2);
J013335:=JohnsonDigraphGroup(T013335,2);
J013344:=JohnsonDigraphGroup(T013344,2);
J022245:=JohnsonDigraphGroup(T022245,2);
J022335:=JohnsonDigraphGroup(T022335,2);
J022344:=JohnsonDigraphGroup(T022344,2);
J022344_2:=JohnsonDigraphGroup(T022344_2,2);
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J023334:=JohnsonDigraphGroup(T023334,2);
J023334_2:=JohnsonDigraphGroup(T023334_2,2);
J023334_3:=JohnsonDigraphGroup(T023334_3,2);
J033333:=JohnsonDigraphGroup(T033333,2);
J111345:=JohnsonDigraphGroup(T111345,2);
J111444:=JohnsonDigraphGroup(T111444,2);
J112245:=JohnsonDigraphGroup(T112245,2);
J112335:=JohnsonDigraphGroup(T112335,2);
J112335_2:=JohnsonDigraphGroup(T112335_2,2);
J112344:=JohnsonDigraphGroup(T112344,2);
J112344_2:=JohnsonDigraphGroup(T112344_2,2);
J112344_3:=JohnsonDigraphGroup(T112344_3,2);
J112344_4:=JohnsonDigraphGroup(T112344_4,2);
J113334:=JohnsonDigraphGroup(T113334,2);
J113334_2:=JohnsonDigraphGroup(T113334_2,2);
J113334_3:=JohnsonDigraphGroup(T113334_3,2);
J122235:=JohnsonDigraphGroup(T122235,2);
J122235_2:=JohnsonDigraphGroup(T122235_2,2);
J122235_3:=JohnsonDigraphGroup(T122235_3,2);
J122244:=JohnsonDigraphGroup(T122244,2);
J122244_2:=JohnsonDigraphGroup(T122244_2,2);
J122244_3:=JohnsonDigraphGroup(T122244_3,2);
J122334:=JohnsonDigraphGroup(T122334,2);
J122334_2:=JohnsonDigraphGroup(T122334_2,2);
J122334_3:=JohnsonDigraphGroup(T122334_3,2);
J122334_4:=JohnsonDigraphGroup(T122334_4,2);
J122334_5:=JohnsonDigraphGroup(T122334_5,2);
J122334_6:=JohnsonDigraphGroup(T122334_6,2);
J122334_7:=JohnsonDigraphGroup(T122334_7,2);
J122334_8:=JohnsonDigraphGroup(T122334_8,2);
J122334_9:=JohnsonDigraphGroup(T122334_9,2);
J122334_10:=JohnsonDigraphGroup(T122334_10,2);
J122334_11:=JohnsonDigraphGroup(T122334_11,2);
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J122334_12:=JohnsonDigraphGroup(T122334_12,2);
J123333:=JohnsonDigraphGroup(T123333,2);
J123333_2:=JohnsonDigraphGroup(T123333_2,2);
J123333_3:=JohnsonDigraphGroup(T123333_3,2);
J123333_4:=JohnsonDigraphGroup(T123333_4,2);
J222234:=JohnsonDigraphGroup(T222234,2);
J222234_2:=JohnsonDigraphGroup(T222234_2,2);
J222234_3:=JohnsonDigraphGroup(T222234_3,2);
J222234_4:=JohnsonDigraphGroup(T222234_4,2);
J222225:=JohnsonDigraphGroup(T222225,2);
J222333:=JohnsonDigraphGroup(T222333,2);
J222333_2:=JohnsonDigraphGroup(T222333_2,2);
J222333_3:=JohnsonDigraphGroup(T222333_3,2);
J222333_4:=JohnsonDigraphGroup(T222333_4,2);
J222333_5:=JohnsonDigraphGroup(T222333_5,2);

A.2 Size and Derived Series

We will give an example how to specify size and derived series such as
G/G′, G′/G′′ and derived length of the corresponding group of a tournament
here, the reader can check the GAP code to see the results.

Let the tournament with score vector (1, 1, 2, 3, 3) and we are looking for
Johnson word when q = 2 which means R(a, b) = ab−1ab−3.

LoadPackage("digraphs");

JohnsonDigraphGroup:=function(gr,q)
local F,EdgeSet,n,e,i,j,rels;
n:=Size(DigraphVertices(gr));
F:=FreeGroup(n);
EdgeSet:=DigraphEdges(gr);
rels:=[];
for e in EdgeSet do
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i:=e[1];j:=e[2];
AddSet(rels,F.(i)*F.(j)^(1-q)*F.(i)*F.(j)^(-q-1));

od;#e
return(F/rels);
end;
T11233:=DigraphByEdges([ [1,2],[1,3],[1,4], [2,3], [2,4], [2,5], [3,4],
[3,5], [4,5], [5,1] ]);
J11233:=JohnsonDigraphGroup(T11233,2);

Size(J11233);
AbelianInvariants(J11233);
DG:=DerivedSubgroup(J11233);
AbelianInvariants(DG);
DerivedLength(J11233);

*Here is the output

<immutable digraph with 5 vertices, 10 edges>
gap> J11233:=JohnsonDigraphGroup(T11233,2);
<fp group on the generators [ f1, f2, f3, f4, f5 ]>
gap>
gap> Size(J11233);
32768
gap> AbelianInvariants(J11233);
[ 2, 2, 2, 2, 2 ]
gap> DG:=DerivedSubgroup(J11233);
Group(<fp, no generators known>)
gap> AbelianInvariants(DG);
[ 4, 4, 4, 4, 4 ]
gap> DerivedLength(J11233);
2
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A.3 Isomorphism

We will provide a computational technique to determine whether two digraph
groups are isomorphic or not. We use low index subgroup and Id group
technique to check if they are not isomorphic. We provide the code here for
an example

Suppose we have two tournaments with score vectors (1, 1, 2, 3, 3) and
(1, 1, 2, 3, 3)2 and R(a, b) = a−1bab−3 which is Mennicke’s word when q = 3. It
is classified that these tournaments are not isomorphic in [28]. We investigate
whether the corresponding digraph groups are isomorphic or not.

The GAP code for (1, 1, 2, 3, 3)

F:=FreeGroup(5);
a:=-1; b:=1; c:=1; d:=-3;

R:=[
F.1^a*F.2^b*F.1^c*F.2^d,
F.1^a*F.4^b*F.1^c*F.4^d,
F.1^a*F.5^b*F.1^c*F.5^d,
F.2^a*F.3^b*F.2^c*F.3^d,
F.2^a*F.4^b*F.2^c*F.4^d,
F.3^a*F.1^b*F.3^c*F.1^d,
F.4^a*F.3^b*F.4^c*F.3^d,
F.5^a*F.2^b*F.5^c*F.2^d,
F.5^a*F.3^b*F.5^c*F.3^d,
F.5^a*F.4^b*F.5^c*F.4^d,
];
G:=F/R;
L:=LowIndexSubgroupsFpGroup(G,3);

for i in [1..Size(L)] do
Q:=L[i]/DerivedSubgroup(L[i]);
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Print(i,",",AbelianInvariants(L[i]),",",IdGroup(Q),"\n");
od;

*Here is the output

1,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
2,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
3,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
4,[ 2, 2, 2, 2 ],[ 16, 14 ]
5,[ 2, 2, 2, 2, 8 ],[ 128, 2301 ]
6,[ 2, 2, 2, 4 ],[ 32, 45 ]
7,[ 2, 2, 2, 4 ],[ 32, 45 ]
8,[ 2, 2, 2, 2 ],[ 16, 14 ]
9,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
10,[ 2, 2, 2, 4 ],[ 32, 45 ]
11,[ 2, 2, 2, 4 ],[ 32, 45 ]
12,[ 2, 2, 2, 8 ],[ 64, 246 ]
13,[ 2, 2, 2, 2 ],[ 16, 14 ]
14,[ 2, 2, 2, 2 ],[ 16, 14 ]
15,[ 2, 2, 2, 2 ],[ 16, 14 ]
16,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
17,[ 2, 2, 2, 2, 8 ],[ 128, 2301 ]
18,[ 2, 2, 2, 2, 8 ],[ 128, 2301 ]
19,[ 2, 2, 2, 2 ],[ 16, 14 ]
20,[ 2, 2, 2, 4 ],[ 32, 45 ]
21,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
22,[ 2, 2, 2, 4 ],[ 32, 45 ]
23,[ 2, 2, 2, 2 ],[ 16, 14 ]
24,[ 2, 2, 2, 2 ],[ 16, 14 ]
25,[ 2, 2, 2, 4 ],[ 32, 45 ]
26,[ 2, 2, 2, 2, 8 ],[ 128, 2301 ]
27,[ 2, 2, 2, 2 ],[ 16, 14 ]
28,[ 2, 2, 2, 2, 4 ],[ 64, 260 ]
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29,[ 2, 2, 2, 2 ],[ 16, 14 ]
30,[ 2, 2, 2, 4 ],[ 32, 45 ]
31,[ 2, 2, 2, 2 ],[ 16, 14 ]
32,[ 2, 2, 2, 4 ],[ 32, 45 ]

The Gap code for (1, 1, 2, 3, 3)2

F:=FreeGroup(5);
a:=-1; b:=1; c:=1; d:=-3;
R:=[
F.1^a*F.3^b*F.1^c*F.3^d,
F.1^a*F.4^b*F.1^c*F.4^d,
F.1^a*F.5^b*F.1^c*F.5^d,
F.2^a*F.1^b*F.2^c*F.1^d,
F.2^a*F.4^b*F.2^c*F.4^d,
F.3^a*F.2^b*F.3^c*F.2^d,
F.4^a*F.3^b*F.4^c*F.3^d,
F.5^a*F.2^b*F.5^c*F.2^d,
F.5^a*F.3^b*F.5^c*F.3^d,
F.5^a*F.4^b*F.5^c*F.4^d,
];
H:=F/R;
L:=LowIndexSubgroupsFpGroup(H,3);

for i in [1..Size(L)] do
Q:=L[i]/DerivedSubgroup(L[i]);
Print(i,",",AbelianInvariants(L[i]),",",IdGroup(Q),"\n");
od;

*Here is the output

1,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
2,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
3,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
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4,[ 2, 2, 2, 2 ],[ 16, 14 ]
5,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
6,[ 2, 2, 2, 8 ],[ 64, 246 ]
7,[ 2, 2, 2, 2 ],[ 16, 14 ]
8,[ 2, 2, 2, 2 ],[ 16, 14 ]
9,[ 2, 2, 2, 2, 8 ],[ 128, 2301 ]
10,[ 2, 2, 2, 4 ],[ 32, 45 ]
11,[ 2, 2, 2, 2 ],[ 16, 14 ]
12,[ 2, 2, 2, 4 ],[ 32, 45 ]
13,[ 2, 2, 2, 2 ],[ 16, 14 ]
14,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
15,[ 2, 2, 2, 2 ],[ 16, 14 ]
16,[ 2, 2, 2, 2 ],[ 16, 14 ]
17,[ 2, 2, 2, 2, 8 ],[ 128, 2301 ]
18,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
19,[ 2, 2, 2, 4 ],[ 32, 45 ]
20,[ 2, 2, 2, 8 ],[ 64, 246 ]
21,[ 2, 2, 2, 2 ],[ 16, 14 ]
22,[ 2, 2, 2, 4 ],[ 32, 45 ]
23,[ 2, 2, 2, 2 ],[ 16, 14 ]
24,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
25,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
26,[ 2, 2, 4, 8 ],[ 128, 1601 ]
27,[ 2, 2, 2, 2 ],[ 16, 14 ]
28,[ 2, 2, 2, 2, 2 ],[ 32, 51 ]
29,[ 2, 2, 2, 2 ],[ 16, 14 ]
30,[ 2, 2, 2, 4 ],[ 32, 45 ]
31,[ 2, 2, 2, 2 ],[ 16, 14 ]
32,[ 2, 2, 2, 2 ],[ 16, 14 ]

As we can see by the outputs, they are not isomorphic. By index 3
subgroups, G has [64,260] but H does not.
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A.3.1 How it works

Let G1, G2 be finite groups. We aim to show that G1 6∼= G2. If Gab
1 6∼= Gab

2

then G1 6∼= G2.
How do we do this?
If IdGroup(G1) 6= IdGroup(G2) then G1 6∼= G2. But maybe GAP can’t

provide IdGroup(G1). If G1 ∼= G2 then the set of index 2 subgroups of G1

is equal to the set of index 2 subgroups of G2. Therefore if G1 has an index
2 subgroup H1 that is not an index 2 subgroup of G2 then G1 6∼= G2. If Hab

1

is not the abelianization of any index 2 subgroup of G2 then H1 is not an
index 2 subgroup of G2. Thus, we produce a list of abelianization of index 2
subgroups of G1, G2 in GAP.

We look for an index 2 subgroup of G1 whose abelianization is not the
abelianization of any index 2 subgroup of G2. If we find one of them then
G1 6∼= G2. If not, then we are looking for bigger index.

A.4 Perfect groups

We provide the GAP code to find out the perfect group of order 40320 here
and we already explain how the code works in Lemma 6.7.1.

F:=FreeGroup(6);
a:=1; b:=1; c:=1; d:=-2;
R:=[
F.1^a*F.2^b*F.1^c*F.2^d,
F.2^a*F.3^b*F.2^c*F.3^d,
F.3^a*F.1^b*F.3^c*F.1^d,
F.6^a*F.1^b*F.6^c*F.1^d,
F.6^a*F.2^b*F.6^c*F.2^d,
F.6^a*F.3^b*F.6^c*F.3^d,
F.6^a*F.4^b*F.6^c*F.4^d,
F.5^a*F.6^b*F.5^c*F.6^d,
F.1^a*F.4^b*F.1^c*F.4^d,
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F.3^a*F.4^b*F.3^c*F.4^d,
F.4^a*F.2^b*F.4^c*F.2^d,
F.1^a*F.5^b*F.1^c*F.5^d,
F.2^a*F.5^b*F.2^c*F.5^d,
F.3^a*F.5^b*F.3^c*F.5^d,
F.4^a*F.5^b*F.4^c*F.5^d,
];
G:=F/R;
L:=LowIndexSubgroupsFpGroup(G,8);
Index(G,L[2]);
G1:=PerfectGroup(40320,1);
G2:=PerfectGroup(40320,2);
G3:=PerfectGroup(40320,3);
G4:=PerfectGroup(40320,4);
L1:=LowIndexSubgroupsFpGroup(G1,7);
L2:=LowIndexSubgroupsFpGroup(G2,7);
L4:=LowIndexSubgroupsFpGroup(G4,8);

*Here is the output

[ Group(<fp, no generators known>), Group(<fp, no generators known>) ]
gap> Index(G,L[2]);
8
gap> G1:=PerfectGroup(40320,1);
A5 2^1 x L3(2) 2^1
gap> G2:=PerfectGroup(40320,2);
A7 2^4
gap> G3:=PerfectGroup(40320,3);
A8 2^1
gap> G4:=PerfectGroup(40320,4);
L3(4) 2^1
gap> L1:=LowIndexSubgroupsFpGroup(G1,7);
[ Group(<fp, no generators known>),
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Group(<fp, no generators known>),
Group(<fp, no generators known>),
Group(<fp, no generators known>),
Group(<fp, no generators known>) ]
gap> L2:=LowIndexSubgroupsFpGroup(G2,7);
[ Group(<fp, no generators known>),
Group(<fp, no generators known>) ]
gap> L4:=LowIndexSubgroupsFpGroup(G4,8);
[ Group(<fp, no generators known>) ]
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