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Abstract— Algorithmic trading has become an increasingly
thriving research area and a lot of focus has been given on
indicators from technical and sentiment analysis. In this paper,
we examine the advantages of combining features from both
technical and sentiment analysis. To do this, we use two different
genetic programming algorithms (GP). The first algorithm allows
trees to contain technical and/or sentiment analysis indicators
without any constraints. The second algorithm introduces tech-
nical and sentiment analysis types through a strongly typed
GP, whereby one branch of a given tree contains only tech-
nical analysis indicators and another branch of the same tree
contains only sentiment analysis features. This allows for better
exploration and exploitation of the search space of the indicators.
We perform experiments on 10 international stocks and compare
the above two GPs’ performances. Our goal is to demonstrate
that the combination of the indicators leads to improved financial
performance. Our results show that the strongly typed GP is able
to rank first in terms of Sharpe ratio and statistically outperform
all other algorithms in terms of rate of return.

Index Terms—Technical Analysis, Sentiment Analysis, Genetic
Programming, Algorithmic Trading

I. INTRODUCTION

With the surge of services and research papers regarding
financial forecasting and algorithmic trading, we reach the
conclusion that the topics are two of the most popular ones
when implementing machine learning to. So far, the published
papers have focused on the indicators that derive from tech-
nical analysis (TA), with sentiment analysis (SA) being used,
mostly, in the last decade as a means to financial forecasting,
with a rapid increase of papers after 2010 onward. Little
research has been done in combining the indicators of TA and
SA. We believe that since both of these individual analyses
have been shown to be effective in financial forecasting and
algorithmic trading, creating models that contain both TA and
SA indicators has the potential to create more powerful trading
strategies.

To achieve the above, in this paper we use a genetic pro-
gramming (GP) algorithm. GP algorithms have been success-
fully used in many financial applications, including financial
forecasting [1]. In this paper, we use a GP that allows terminals
from both TA and SA indicators. The first GP variant includes
in its terminal sets both TA and SA indicators, thus enabling

GP trees to create trading strategies that contain both indicator
types. The second GP variant also includes both TA and
SA indicators in its terminal set, but assigns different types
to these two indicator categories. As a result, only TA-type
terminals are allowed in one side of GP trees, while only SA-
type terminals are allowed in another side of the GP trees.
This type constraint has the advantage of allowing the GP
search to focus on the search space of each individual indicator
type, thus perform better exploration and exploitation. We also
introduce type constraints during crossover and mutation, to
ensure legality of all trees.

Our aim is to demonstrate that combining the TA and
SA indicators under the above strongly typed GP leads to
trading strategies that have improved financial performance.
We compare the performance of the above GPs with GPs that
only contain one type of indicators, either TA or SA. We use
6 years’ worth of data from 10 international companies.

The rest of this paper is organised as follows: firstly, we
introduce related research work in Section II, and we also
provide background information on the topic of financial
forecasting in Section III. Later, we set forth the methodology
as seen in Section IV and the experimental setup in Section V.
Lastly, we present the experimental results and their analysis
in Section VI, followed by the conclusion and further experi-
ments we plan to include in our research in Section VII.

II. LITERATURE REVIEW

In the literature review Section we dive into the works of
previous researchers on the topic of financial forecasting and
algorithmic trading, in papers using TA or SA features, as well
as, the combination of those two analyses; including works that
have implemented GP in their studies.

A. Technical analysis

In this Section we will mention works that use technical
analysis as indicators in machine learning algorithms, present-
ing based on their topic. Since the 1980s, many researchers
have studied Artificial neural networks for financial forecast-
ing. More recent studies are those of [2] using linear models,
[3] utilizing TA indicators into a long short-term memory



(LSTM) model to forecast future trends of stock prices. One of
the first papers to dive into GP for financial forecasting is that
of [4], where the algorithm was able to outperform commonly
used, non-adaptive, individual technical rules. Similar findings
can be seen in other papers, too (e.g., see [5]–[9]). Generally,
we observe from [10] and [1], that GP can evolve trading
strategies, generating solutions that endure extreme market
conditions, as well as, it can generate new solutions and
optimize the solution parameters.

B. Sentiment analysis

As previous publications did, we, also, aim to study the
importance of events in financial forecasting. In this Section,
we discuss notable works on sentiment analysis (SA) in order
of publication date. One of the most significant papers on SA
is that of [11], who using neural networks researched how
to increase the predictive power of multivariate models using
prior knowledge from newspaper headlines. An important
addition is that of [12], who used support vector machines
(SVM) with tree kernels and semantic frame parses in order to
generalize from sentences to scenarios. Continuing, [13] pro-
duced an event-driven stock model, feeding news into a deep
convolutional neural network (CNN). [14], also, considered
the source of the sentiment, trying to understand the quality
of the news, thus their impact to the stock movement.

C. Technical and Sentiment analysis combination

There have, also, been papers that have combined the
technical and sentiment analysis, presented in a chronological
order. Although, less researchers have studied the combination
of the two analyses, we observe that it can be financially prof-
itable. [15] used event knowledge and standard information of
companies to create a specific scenario. The authors proposed
an external knowledge base to provide information on the
events, so these events can be detected based on reasoning.
An important addition to the publications has been this of
[16], who used DNNs to predict stock price movements,
through historical prices and online financial news, showing
that adding financial news into a financial data set can improve
the accuracy of the model. Another important study is that of
[17], who used text mining on news from Reuters regarding
the S&P500 index in a RNN and CNN hybrid model, to
predict the price and intraday directional movement. Using
financial news articles and a set of technical indicators into
their hybrid model, they showed it performed better than the
CNN in the same implementation and how useful TA and SA
are in financial forecasting.

As we can see in Sections II-A - II-C, TA and SA have been
used with various machine learning models so far, although
there is a lack of papers that use SA into GP algorithms.
Furthermore, we notice a lack of papers conducting research
on the combination of TA and SA, as well as, using GP models
to achieve that. Research in that area could generate financially
profitable results and it seems to be worth searching into,
due to the advantages of GP on producing white-box models,
effective global search, good exploration and exploitation.

III. BACKGROUND INFORMATION

In this Section we present the background information
related to technical and sentiment analysis, in order to give
the reader a deeper understanding of the research.

A. Technical analysis

By analyzing technical indicators, recognizing trends and
patterns, we are able to estimate the stock market with
higher accuracy, as well as, generate higher profits. Technical
analysis has been used in various ways and it continues to
be developed, as researchers and technical analysts rely on
past prices and other metrics to generate useful indicators to
understand the status of a company and the overall financial
market.

In this research, we chose indicators that have been widely
used for Technical analysis. More specifically, we use 6
different indicators in 2 different time periods, lasting for 5 and
10 days, respectively. The set consists of the Moving Average,
the Momentum, the Rate of Change (ROC), the Williams’
%R, the Midprice and the Volatility; a total of 12 features.
The mathematical definitions of these 6 indicators can be
found below, from Equation 1-6. For more information, let
n ∈ {5, 10} be the size of the lookup window. Pi defines
the adjusted closing price at the i day of this period, with
the convention that the most recent adjusted closing price in
the look back period is Pn, the first adjusted closing price in
the same period is P1, and the last date of the previous set
of prices is P0, which is important in order to find the price
change for the Volatility indicator. We denote by Close the
most recent closing price, and by Hh and Ll the highest high
and the lowest low price over all days in the lookup window.
Finally, we define by Var the sample variance over a dataset.

MovingAverage =

∑n
i=1 Pi

n
(1)

Momentum = Pn − P1 (2)

ROC =

(
Pn

P1
− 1

)
· 100 (3)

Williams′%R = −100 · Hh − Close

Hh − Ll
(4)

Volatility =

√√√√Var

({
Pi

Pi−1
− 1

}
i∈{1,...,n}

)
(5)

Midprice =
Hh − Ll

2
(6)

MovingAverage is used to smooth the data and helps with
noise elimination and to identify trends. Momentum and
ROC show the difference between the most recent adjusted
closing price and the one n days ago; ROC, also, normalizes
the price. Williams’ %R is an indicator that takes values
between 0 and 100 and measures overbought and oversold



levels. Historical volatility measures past performance and is
a statistical measure of the dispersion of returns over a given
period of time; the higher the historical volatility value, the
riskier the security is. The last indicator, Midprice, returns the
midpoint value from two different input fields.

B. Sentiment analysis

Sentiment analysis is the procedure of extracting the mean-
ing out of sentences, articles, online comments, in order to find
useful information. In the past decade, as the financial markets
get influenced by events and stocks will increase/decrease
along the available information and people’s decisions, SA has
gotten greater recognition for its contribution in increasing the
accuracy in financial forecasting.

The events can be classified as positive, negative or neutral
and can be used with various machine learning algorithms.
CNNs are one of the most used algorithms for text classifica-
tion, but they require great amount of classified data to perform
with a high accuracy. Due to the lack of such data for news
articles in the financial sector, we used popular specialized SA
programs, as used in the relevant literature, i.e., TextBlob [18],
SentiWordNet [19] and AFINN sentiment [20].

TextBlob is a Python library, offering a simple API assisting
in calculating the polarity and subjectivity. WordNet is a lexical
taxonomy of the English language, in which SentiWordNet
is based upon. SentiWordNet 3.0 is an enhanced lexical re-
source explicitly devised to support sentiment classification
and opinion mining, containing a list of words classified as
positive, negative, or neutral. Then, we use the weighted
average of the classified words in the text and assign an
overall percentage of the sentiment. AFINN sentiment is a
popular lexicon for sentiment analysis developed by Finn Årup
Nielsen, containing more than 3300 words with a polarity
score associated with each word and we use the in-built
function for this lexicon, which is available in Python.

We use these three programs on the full texts of the articles,
their titles and their summaries, generating a total of 12 SA
features, which can be found in in Table III in Section IV-B.

IV. METHODOLOGY

For this Section, we first present the financial part, where
we introduce the TA and SA methodology. Then, we showcase
the GP algorithms and their fitness function, the GP operators
and the trading algorithm, common in all four GP models.

A. Financial analysis processes

1) Technical analysis process: We first downloaded the
historical prices of the enterprises we are interested in via
Yahoo! Finance. We utilize the information from the Adjusted
Close, Close, High and Low columns available on the datasets
to create the indicators and to use along when run in the GP
algorithms, normalizing the values of the features to be be-
tween [−1, 1]. More information on the indicators is available
in the Section III-A, regarding the background information of
TA.

2) Sentiment analysis process: For SA, we needed to
download the articles related to the companies via a made
scrapper from the first to the twentieth pages of Google search
engine results, searching for each company’s name and during
the same dates as in Section IV-A1. We used the GoogleNews
library, which is offered in Python.

Due to the plethora of information that can be found online,
some of the downloaded articles were not related to the
companies we wanted to observe, thus we kept the articles
that we could only find the name of the company and its
stock market name in. Furthermore, in order to ensure that
the articles have been downloaded correctly, we shortlisted
them based on their length and only if they have at least 500
characters. Moreover, we saved articles in an ascending order,
from the oldest to the most recent one.

We obtained the sentiment of the articles, their titles and
summaries using the TextBlob polarity and subjectivity tool,
the SentiWordNet and AFINN sentiment. Since more than
one articles appeared in the same date, we used the average
sentiment value of the features of the articles published at the
same day. Continuing with normalizing the sentiment values
to be between [−1, 1].

Finally, we matched the dates of the sentiment features with
their stock market dates, since we wanted to link the sentiment
of the specific date with its stock market value. Furthermore,
since the stock price is not open in the weekends but we still
get articles at that time, we had to include the sentiment of
the weekend days to that of the Fridays, as we expect that the
sentiment of these three days will influence the stock price of
Monday. Finally, for the days that do have a stock price value,
but no articles, we kept them in the datasets, so we do not have
any breaks in between the days, and we set their sentiment to
be equal to 0, indicating neutrality and/or no movement.

B. Genetic programming

In this Section we call GP-TA the GP algorithm run with
the TA features, and GP-SA, the one running on the SA
features. GP-SATA is the name of the GP running with the
combination of TA and SA features, and STGP-SATA (ST
stands for strongly typed), indicating that some of its branches
allow only specific TA or SA type.

1) Model representation: The models are formed with a
tree structure, with the function nodes created based on the
logical functions AND, OR, Greater than (GT) and Less than
(LT). There is also a single If-Then-Else function, which acts
as the root of the trees. The AND, OR, GT and LT functions
are used by the following GPs: GP-TA, GP-SA, and GP-
SATA. All these algorithms do not differentiate between TA
and SA types, and thus allow any combination of functions and
terminals. On the other hand, as GP-SATA-TB is a strongly
typed GP that differentiates between SA and TA types, it has
functions that only allow specific types. Hence, instead of a
generalised GT, and LT function, there are two variants, one
that takes TA indicators, and one that takes SA indicators.
These variants are LT SA, GT SA, and LT TA, GT TA. The
AND and OR functions also enforce types, where their first



branch always takes SA types of functions (e.g. LT SA) and
terminals (e.g. TEXTpol). The function set for all GP variants
is summarised in Table I.

The terminal set also varies depending on the GP variant.
For GP-TA, it includes only technical analysis indicators, sum-
marised in Table II. The TA indicators are MovingAverage,
Momentum, ROC, Williams’ %R, Volatility and Midprice,
for the two different periods of 5 and 10 days. For GP-
SA, it includes only sentiment analysis indicators, which are
summarised in Table III. These terminals consist of the text,
title and summary of the polarity and subjectivity of TextBlob,
the polarity of SentiWordNet, and the AFINN sentiment.

TABLE I
FUNCTION SET

Function set
Function set (GP-TA, GP-
SA, GP-SATA)

AND, OR, LT, GT

Function set (GP-SATA-
TB)

AND, OR, LT SA,
GT SA, LT TA, GT TA

TABLE II
TERMINAL SET -TA

Terminal set
TA (for 5 and 10 days) Moving Average

Momentum
ROC
Williams’ %R
Volatility
Midprice
ERC

TABLE III
TERMINAL SET -SA

Terminal set
SA-textBlob TEXTpol, TEXTsub

TITLEpol,TITLEsub
SUMMpol,SUMMsub

SA-SentiWordNet TEXTsenti, TITLEsenti,
SUMMsenti

SA-AFINN TEXTafinn, TITLEafinn,
SUMMafinn
ERC

As observed from Tables II and III, there is also a variable
named Ephemeral Random Constant (ERC), which takes ran-
dom values from −1 to 1, and acts as a threshold value to the
indicators.

Figure 1 presents a sample tree for GP-SATA-TB. As we can
observe, the root is an If-Then-Else statement. The second and
third branch indicate a decision, 1 (buy) and 0 (hold). These
parts of the GP trees (If-Then-Else, second branch being 1,
and third branch being a 0) are not evolved. The only part of
the trees that gets evolved is the first branch, which allows
us to focus on the search on different ways of combining the
TA and/or SA indicators. As we can observe in Figure 1, the
first branch of this sample tree contains the AND statement.

Given that this is the GP-SATA-TB variant, we have enforced
the first child of the AND function to be SA-related (thus
LT SA, and TEXTpol), and the second child to be TA-related
(thus GT TA, and Moving Average). So this trees checks if the
SA TEXTpol indicator is less than 0.7 and if the TA Moving
Average indicator is greater than 0.4; if this is true, then it
recommends to buy (1), otherwise to hold (0). The generated
signals are then used by the trading strategy, found in Section
IV-C.

Fig. 1. Sample tree for GP-SATA-TB. The first branch of the AND statement
is enforced to take SA-related nodes, and the second branch of the AND
statement is enforced to take TA-related nodes. The 0.7 and 0.4 terminal
values have been calculated through an Ephemeral Random Constant (ERC).

The above GP tree representation applies to all four GP
variants. Thus, all of them use an If-Then-Else function as the
root, and the second and third branch are 1 and 0, respectively.
Only the first branch of the If-Then-Else function can vary,
depending on the GP variant. The relevant functions and
terminals are the ones already presented in Tables I - III.

2) Fitness function: In this research, we train the GP
algorithms by maximising the Sharpe ratio. This holds as our
fitness function. In Equation 7, we define the Sharpe ratio as:

SharpeRatio =
E(R)−Rf√

Var(R)
, (7)

E and Var denote the sample mean value and the sample
variance, respectively. R symbolises the rate of return and Rf

is the risk-free rate.The denominator of Equation 7 reflects
the risk, as the standard deviation of the returns. The trading



algorithm that computed the rate of return and the risk can be
found in Section IV-C.

3) Genetic programming operators: For the evolution of
the trees, we used point mutation and subtree crossover. The
crossover ratio is denoted as p, while the mutation probability
is 1−p. This is a common scheme, as seen in [21]. Lastly, we
use elitism to ensure that the best individual of each generation
is the one being copied to the next generation.

It should be noted that for GP-SA, GP-TA, and GP-SATA,
the above operators can be applied to all GP individuals and
nodes with no type constraints. On the other hand, for GP-
SATA-TB, when a crossover is selected, it acts in two stages:
first it takes place in the SA part of the tree, and then it takes
place in the TA part of the tree. This is to ensure that both the
SA and TA search spaces are being searched. With regards to
mutation, we also ensure types are preserved; thus, a node of
type SA can only be mutated to an SA-type, and similarly, a
node of type TA can only be mutated to a TA-type.

C. Trading algorithm

As introduced in Section IV-B, we get signal 1 if the feature
is greater/lesser than the ERC, or 0 as a signal if otherwise. If
the signal is 1, the model buys a stock and it later performs a
trade by selling that stock depending on the number of days
the evaluation took place (n) and the increase rate of reference
(r). Assuming that n = 10 and r = 0.05, the above would be
stated as “If in the next 10 days the price increases more than
5% of what it was bought, we sell the stock, generating a
trade. If otherwise, then the stock is sold at the final price of
these 10 days.”

R =

{
P − Pb

Pb

}
(8)

Risk =
√
Var(R) (9)

The return from the trade relies on the closing price Pb,
which is the one we bought the stock and the P closing price,
in which we sold the stock to form the trade. The returns from
all the trades in a dataset are being saved in a list, and at the
end we calculate the sample mean to find the overall rate of
return. The risk is the standard deviation of the returns list.
These can be seen in more detail at Equations 8 and 9. The R,
in Equation 8, is used in Equation 7, to find the Sharpe ratio.

V. EXPERIMENTAL SETUP

A. Data

We used 10 companies’ data, news articles and historical
prices, from 1st of January 2015 to 31st of December 2020,
counting to 6 years. The companies we chose to use in
this research are AMAZON, Activision Blizzard, Berkshire
Hathaway, BlackBerry Limited, General Motors, IBM, Kodak,
Tesla, Ubisoft, Xerox. We chose these 10 companies due
to their different market movements and wanting to include
companies with dissimilar services and products; aiming to
search the advantages of combining TA and SA features into
a GP algorithm, when maximising the Sharpe ratio.

For TA, we collected the price data for our technical
indicators on, from Yahoo! Finance. SA data were articles,
their titles and summaries that we downloaded by using a
hand-made scrapper utilizing the Google Search Console API
available in Python.

After gathering the data, we first compute the six TA
features for the two periods each, i.e. 5 and 10 days, creating
12 indicators in total. For the SA features, we used TextBlob,
SentiWordNet and AFINN sentiment, more information can
be found in Section IV-B, to find the sentiment of the articles,
their titles and summaries, generating another 12 features.

We separated all datasets into 60% training, 20% validation
and 20% for testing. In this research, we use the 12 features
from the two analyses individually, along with the closing
prices of the companies’ stock, as inputs to GP-TA and GP-
SA; and the 24 features in total, when combining the datasets
for GP-SATA and GP-SATA-TB.

B. Parameter tuning
The parameter tuning was completed in two steps. The first

step was to perform a grid search on the validation set to
find the possible GP parameters, regarding the population size,
crossover probability (p), number of generations, tournament
size and, lastly, maximum depth of the trees; keeping the
trading parameters n and r constant. We decided upon keeping
n to be 30 and r equal to 0.05 as the time of the tuning would
increase if adding two more variables. Moreover, the n and
r should be different for each company, while the parameters
in Table IV can be the same for the algorithms. The mutation
probability is 1-p, thus we did not include the parameter in the
grid search. In Table IV, we can see the best set of parameters
on the validation set for GP-TA, GP-SA, GP-SATA.

TABLE IV
GP PARAMETERS

GP Parameters
Population size 1000
Crossover probability 0.9
Mutation probability 0.1
Generations 30
Tournament size 4
Maximum tree depth 4

The same two steps apply for the parameter tuning of GP-
SATA-TB. In Table V, we can see the parameters for GP-
SATA-TB, after we performed a different grid search on the
validation set for it, since the GP algorithm behaves in a
different way, due to the type constraints.

When the parameter tuning for the GP algorithms was
over, we continued to the second step, to select the trading
parameters, i.e. number of days n and increase rate r, as
described in Section IV-C. The n and r are different for each
company, and the tuning was set on the validation set, again.

VI. RESULTS AND ANALYSIS

In this Section we present the results and analysis derived
from the execution of the four GP algorithms, along with a
brief discussion at the end.



TABLE V
GP PARAMETERS GP-SATA-TB

GP Parameters
Population size 500
Crossover probability 0.95
Mutation probability 0.1
Generations 30
Tournament size 4
Maximum tree depth 7

A. Results and Analysis

Each GP algorithm was run 50 independent runs on the test
set for each one of the 10 datasets. We united the runs of
the 10 companies’ results and presented the mean values of
these results, for each algorithm. The means are calculated on
results with non-zero values, which means we did not include
the runs that did not have any trades. This is because we have
observed that in certain cases, the GP would decide to not
take any trading action throughout the test set, as this would
otherwise have resulted in a loss. So, when this happens and
the GP does not trade, the Sharpe ratio, rate of return and
risk are still recorded as 0 in our results file, which can distort
our summary statistics. Thus when there is no trading, we
do not include those results into our calculations. Because we
observed outliers in many datasets’ runs, which were affecting
the mean values of the metrics. Additionally, we are presenting
the mean results that are within one, two, and three standard
deviations from the mean. Thus, this allows us to exclude
some extreme values from our results, which could be affecting
the comparisons among the different GP algorithms. Typically
within three standard deviations all four GP algorithms include
around 97-99% of the complete distributions’ observations.

1) Sharpe ratio: Table VI presents the mean Sharpe ratio
values for each algorithm over 50 GP runs. The mean results
for the overall (complete) distribution are presented first, and
then we present the mean results for within one, two, and three
standard deviations. The picture here is very consistent: GP-
SATA-TB has the highest mean Sharpe ratio for the complete
distribution, as well as within one, two, and three standard
deviations from the mean. The second ranking algorithm is
GP-TA, but its difference from GP-SATA-TB is at least 30%
in all sets of data.

To support the above analysis, we perform a two-sample
Kolmogorov-Smirnov (KS) test on all the runs of the four
different sets of data, excluding the values of 0, which means
excluding the runs that did not produce any trading action.
The test was chosen since it is sensitive to differences in the
location and the shape of the empirical cumulative distribution
functions of the two samples. It reports the maximum differ-
ence between the samples’ cumulative distributions and then
computes a p-value. Furthermore, it works well with unequal
sample size data, such as ours. To account for multiple com-
parisons among the four different algorithms, we perform the
Bonferroni Correction where the p-value for a 5% significance
level is equal to α = 0.05

3 = 0.0167. The denominator value

TABLE VI
MEAN SHARPE RATIO VALUES FOR THE COMPLETE DISTRIBUTION, AS
WELL AS FOR WITHIN ONE, TWO, AND THREE STANDARD DEVIATIONS

FROM THE MEAN. BEST VALUE DENOTED IN BOLDFACE.

Distribution Algorithm Mean
Complete GP-SATA 0.761

GP-SA 0.057
GP-TA 1.493
GP-SATA-TB 2.337

One STDEV GP-SATA 0.3189
GP-SA 0.297
GP-TA 0.7321
GP-SATA-TB 1.037

Two STDEV GP-SATA 0.531
GP-SA 0.651
GP-TA 0.919
GP-SATA-TB 1.327

Three STDEV GP-SATA 0.5813
GP-SA 0.7199
GP-TA 1.01
GP-SATA-TB 1.327

represents the number of multiple comparisons among the GP
algorithms, namely GP-SATA-TB vs GP-SATA, GP-SATA-TB
vs GP-SA, and GP-SATA-TB vs GP-TA.

Table VII presents the KS test p-values for the comparisons
against the best ranking algorithm (i.e. GP-SATA-TB). Results
are again presented for the complete distribution, as well as for
the one, two, and three standard deviation distributions. The
null hypothesis is that the respective two distributions being
compared come from the same continuous distribution. As we
can observe, GP-SATA-TB statistically outperforms GP-SATA
and GP-SA, while its difference with GP-TA is not significant
at the 5% level. Nevertheless, the fact that it showed a higher
mean value in Table VI means that GP-SATA-TB would be
the preferred algorithm between them.

TABLE VII
KOLMOGOROV TEST P-VALUES ON SHARPE RATIO. STATISTICAL

SIGNIFICANCE AT 5% LEVEL IS WHEN THE P-VALUE IS LESS THAN
0.0167, AS IT HAS BEEN ADJUSTED BY THE BONFERRONI CORRECTION

TO ACCOUNT FOR MULTIPLE COMPARISONS.

Distribution Algorithm GP-SATA GP-SA GP-TA
Complete GP-SATA-TB 4.17E-04 1.54E-05 0.0951
One STDEV GP-SATA-TB 7.23E-06 1.67E-08 0.0537
Two STDEV GP-SATA-TB 3.59E-04 3.48E-06 0.0903
Three STDEV GP-SATA-TB 0.0011 7.61E-06 0.0681

2) Rate of Return: Table VIII presents the mean rate of
return per trade over 50 runs per algorithm. We, again present
the mean results for the complete distribution, as well as the
mean results for within one, two, and three standard deviations.
As we can observe, in term of the complete distribution, GP-
SA has the highest return value (0.0279), while GP-SATA-TB
comes second with the value of 0.0211. However, our analysis
showed that there were a few outliers in the GP-SA results,
which had a very positive effect on its mean values. When we
exclude these outliers (one, two, and three standard deviations
from the mean), GP-SATA-TB ranks first.



TABLE VIII
MEAN RATE OF RETURN VALUES FOR THE COMPLETE DISTRIBUTION, AS

WELL AS FOR WITHIN ONE, TWO, AND THREE STANDARD DEVIATIONS
FROM THE MEAN. BEST VALUE DENOTED IN BOLDFACE.

Distribution Algorithm Mean
Complete GP-SATA 0.014

GP-SA 0.0279
GP-TA 0.00826
GP-SATA-TB 0.0211

One STDEV GP-SATA 0.0226
GP-SA 0.0254
GP-TA 0.0324
GP-SATA-TB 0.0366

Two STDEV GP-SATA 0.0126
GP-SA 0.0291
GP-TA 0.0335
GP-SATA-TB 0.04123

Three STDEV GP-SATA 0.0124
GP-SA 0.0305
GP-TA 0.023
GP-SATA-TB 0.0328

The Kolmogorov-Smirnov test (p-values presented in Table
IX) confirm the above results. As we can observe, there
are statistically significant differences across the different
comparisons. This means that while the GP-SA statistically
outperforms all other algorithms for the complete distribution,
this can be explained because of some extreme positive values
that this algorithm has returned. However, when we exclude
these extreme values, GP-SATA-TB ranks first and statistically
outperforms all the other algorithms.

TABLE IX
KOLMOGOROV TEST P-VALUES ON RATE OF RETURN. STATISTICAL
SIGNIFICANCE AT 5% LEVEL IS WHEN THE P-VALUE IS LESS THAN

0.0167, AS IT HAS BEEN ADJUSTED BY THE BONFERRONI CORRECTION
TO ACCOUNT FOR MULTIPLE COMPARISONS.

Distribution Algorithm GP-SATA GP-SA GP-TA
Complete GP-SATA-TB 0.0012 0.0092 0.0065
One STDEV GP-SATA-TB 0.0011 2.63E-05 0.0098
Two STDEV GP-SATA-TB 2.53E-05 5.81E-04 0.014
Three STDEV GP-SATA-TB 5.77E-04 0.0036 0.0111

3) Risk: Table X presents the mean results for risk per trade
over 50 runs for each of the four algorithms. We can observe
here that GP-SA is the least risky strategy, as it ranks first even
when we account for outliers. GP-SATA-TB ranks second for
the complete and within one, two, and three standard deviation
distributions, making it the second least risky trading strategy
among the four algorithms discussed in this paper.

Table XI presents the p-values for the K-S tests. As GP-SA
was the best ranking algorithm, we are now using it as the
control algorithm, instead of GP-SATA-TB that we previously
did in Tables VII and IX. What we can observe here is that GP-
SA statistically outperforms GP-SATA and GP-TA, but it only
outperforms GP-SATA-TB under one standard deviation. For
the complete distribution, as well as for within two and three
standard deviations, the differences in the mean risk values are
not statistically significant at the 5% level.

TABLE X
MEAN RISK VALUES FOR THE COMPLETE DISTRIBUTION, AS WELL AS FOR
WITHIN ONE, TWO, AND THREE STANDARD DEVIATIONS FROM THE MEAN.

BEST VALUE DENOTED IN BOLDFACE.

Distribution Algorithm Mean
Complete GP-SATA 0.1036

GP-SA 0.065
GP-TA 0.08607
GP-SATA-TB 0.07961

One STDEV GP-SATA 0.0651
GP-SA 0.0292
GP-TA 0.0565
GP-SATA-TB 0.0415

Two STDEV GP-SATA 0.07678
GP-SA 0.0379
GP-TA 0.067
GP-SATA-TB 0.055

Three STDEV GP-SATA 0.079
GP-SA 0.051
GP-TA 0.0728
GP-SATA-TB 0.0596

TABLE XI
KOLMOGOROV TEST P-VALUES ON RISK. STATISTICAL SIGNIFICANCE AT
5% LEVEL IS WHEN THE P-VALUE IS LESS THAN 0.0167, AS IT HAS BEEN

ADJUSTED BY THE BONFERRONI CORRECTION TO ACCOUNT FOR
MULTIPLE COMPARISONS.

Distribution Algorithm GP-SATA-TB GP-SATA GP-TA
Complete GP-SA 0.3189 4.26E-05 6.50E-04
One STDEV GP-SA 0.0055 1.62E-12 2.06E-09
Two STDEV GP-SA 0.0375 1.10E-08 3.20E-06
Three STDEV GP-SA 0.315 5.24E-06 1.64E-04

B. Discussion

Summing up our findings of the Tables VI - XI and
focusing on the results of GP-SATA-TB, we observe that it
does statistically outperform all the other algorithms in the
rate of return results, while its risk is the second lowest and
higher than that of GP-SA; in addition, the above return and
risk performance has led GP-SATA-TB to have a statistically
higher Sharpe ratio than GP-SATA and GP-SA.

On the other hand, while GP-TA has the second highest
Sharpe ratio and rate of return, its risk is too high. On the
contrary, GP-SA has the lowest risk, but with a trade-off in
terms of Sharpe ratio and rate of return, which resulted in
GP-SA ranking last for these two metrics.

We can thus conclude that GP-SATA-TB is the most robust
algorithm out of the four, having higher rate of return com-
pared to the other algorithms, and the second lowest risk value
among the four different datasets.

It is also worth noting that simply combining SA and TA
indicators (as GP-SATA did) is not enough to yield improved
performance over the individual analysis indicators (GP-TA,
GP-SA). In fact, GP-SATA often ranks last across all three
financial metrics (Sharpe ratio, rate of return, risk). This thus
demonstrates the importance of combining the TA and SA
indicators under a typed GP, which ensures that effective
search takes place in both the TA and SA search space.



C. Computational times

In this section we discuss the computational times of each
GP algorithm for a single run, under the GP parameters
presented earlier in Section V-B. The time for all four models
appears in minutes.

TABLE XII
COMPUTATIONAL TIMES (IN MINUTES) PER GP ALGORITHM

Computational times per analysis
GP-SATA 1.1
GP-SA 1.17
GP-TA 1.12
GP-SATA-TB 0.24

As we can see in Table XII, all models except GP-SATA-
TB have similar computational efficiency. This may be due
to the type constraints we have introduced for GP-SATA-
TB that assists the model into optimising the algorithm more
efficiently and faster. Generally, the computational costs can be
shortened by parallelizing the execution of the models, since
candidate solution is produced individually from the rest in
the GP algorithm’s population. This has been tested in [22],
where the authors managed to speed up the algorithms by up
to 21 times.

VII. CONCLUSION

To sum up, the goal of this paper was to investigate the
performance of trading algorithms that combine technical and
sentiment analysis indicators. We presented a novel GP, which
introduced type constraints to ensure that its trees combine
information from both analysis types. We compared this GP’s
performance to three other GP algorithms across 10 different
sets of data. Our findings showed that our proposed GP is
competitive and statistically outperforms the other algorithms
in terms of Sharpe ratio and rate of return, while it ranks
second in terms of risk.

The above finding is important for two reasons: firstly, be-
cause it demonstrates the significance of combining indicators
information from both technical and sentiment analysis, which
is not something that often happens in the literature. Combin-
ing this information can enhance the models’ knowledge and
lead to better performing trading strategies. However, what
is also important is how this combination takes place. Our
analysis showed that simply combining these indicators is not
enough, as the relevant algorithm (GP-SATA) tended to rank
in the last places for Sharpe ratio, rate of return, and risk. It is
thus crucial to allow the GP to effectively search the spaces of
both technical and sentiment analysis indicators, and identify
the most promising features. Our proposed algorithm, GP-
SATA-TB, did exactly this, resulting in improved performance
when compared to the combination of SA and TA, as well as
when compared to the performance of the individual analyses
(GP-TA and GP-SA).

Future work will focus on investigating for ways to improve
the risk performance of GP-SATA-TB, as well as increase the

amount of datasets we examine to be able to further generalise
our results.
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