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Electrocardiogram

An Electrocardiogram (ECG) is used to record the electrical activity
of the heart to identify and locate pathology.

The ECG is essential for the diagnosis and management of abnormal
cardiac rhythms.

Figure: ECG 12-lead placement
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ECG cont’d.
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(a) ECG Signal for an individual from
lead I (b) Features of a Typical ECG Signal

Figure: Sample ECG Signal and Features
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Noise in ECG Signal

It is difficult to detect ECG features in a noisy ECG signal.

0 1 2 3 4 5 6

Time in seconds

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

V
ol

ta
ge

 in
 m

V

(a) Nice ECG signal
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(b) Noisy ECG signal with baseline drift

Figure: ECG Signals of two different Healthy Controls showing effect of Noise
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Healthy Controls and Heart Conditions

Myocardial Infarction: ST elevation

Cardiomyopathy: inverted T wave and prolonged QT interval.
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(a) Normal ECG for healthy control
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Inverted T-wave

(b) ECG with inverted T wave

Figure: ECG changes caused by heart conditions
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Segmentation of the ECG

We propose using RR intervals for functional representation of an ECG
signal.

An RR interval corresponds to a heartbeat.

The RR interval contains important features of interest: ST segment
and T wave.
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Figure: An ECG signal showing RR intervals
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Chopping-up ECG signal into RR functions
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(a) ECG with R peaks shown in Red
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Figure: ECG signal and chopped-up functions
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Data Source

Data is taken from the PTB ECG database and contains 10 seconds
recordings. We consider the conventional 12-leads.

For our data, we have ECG for

Healthy controls

Myocardial infarction

Cardiomyopathy.
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Target

Registration and Fitting

Remove noise in ECG signals through amplitude registration.

Estimate amplitude and phase components of registered ECGs using
parametric models.

Classification

Classification of ECGs using estimated amplitude and phase components.
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Amplitude Registration Model

Model

yi (t) = bixi (t) +

q∑
j=1

ajiuj(t)

where t ∈ [0, 1]. We define the following:

xi (t) are the observed RR functions.

yi (t) are the registered RR functions

uj(t) form an orthonomal basis function for noise.

Registration implies estimating aji and bi with template f (t)

minimise
aji ,bi∈R

n∑
i=1

‖yi − f ‖2.
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Example Solution for f (t) = 0

Use the zero function as template

Solutions:
âji = −bi 〈xi , uj〉,

yi (t) = bi

xi (t)−
q∑

j=1

〈xi , uj〉uj(t)

 .

Estimate bi : Constraint
∑n

i=1 log bi = 0.

b̂i = c
−1/2
i (

∏n
i=1 c

−1/2n
i ).

ci = ‖xi‖2 −
∑q

j=1〈xi , uj〉2.

Chibueze Ogbonnaya (UoN) ECG Analysis September 2, 2018 12 / 25



Amplitude Registration: Example
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Figure: Left: Observed RR functions. Right: Amplitude registration.
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Parametric Models

We use sum of Gaussian functions and B-splines to fit the RR
functions

The Gaussian models have been used previously to generate synthetic
ECGs in Clifford (2006).

For the Gaussian mixture model with phase t ∈ [0, 1], we have

z(t,αi ,θi ,βi ) =
k∑

j=1

αij exp

[
−

(t − θij)2

2β2ij

]
(1)

where θi1 = 0 ≤ θi2 ≤ . . . ≤ θik = 1.
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Model Fitting

To fit this model to actual ECG signal yi (t), we will need to solve the
non-linear optimisation problem

min
αi ,θi ,βi

∫ 1

0
(yi (t)− z(t,αi ,θi ,βi ))2dt

subject to θi2 − θi3 < 0, θi3 − θi4 < 0, . . . , θi(k−2) − θi(k−1) < 0.
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Figure: Fitting gaussian parametric models to actual ECGs (k = 11). Left:
healthy control ECG. Right: Cardiomyopathy ECG.
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Estimation of Amplitude Components

1 Determine Template µ̂(t).

2 Using template, fix βi = β, θi = θ, i = 1, . . . , n

min
α,β,θ

∫ 1

0
(µ̂(t)− z(t,α,β,θ))2.

3 New Model: z(t,αi ) =
∑k

j=1 αij exp

[
− (t−θj )2

2β2
j

]
.

4 For each i , estimate αi .
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Estimation of Phase Components

1 Determine Template µ̂(t).

2 Using template, fix βi = β, αi = α, i = 1, . . . , n

min
α,β,θ

∫ 1

0
(µ̂(t)− z(t,α,β,θ))2dt.

3 New Model: z(t,θi ) =
∑k

j=1 αj exp

[
− (t−θij )2

2β2
j

]
4 For each i , estimate θi2, . . . , θi(k−1).
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Amplitude Two Sample T-test

1 We conduct a two-sample Hotelling’s t-test.

2 Healthy vs Cardiomyopathy

3 NULL HYPOTHESIS: No difference in amplitude

Result

F = 19.3507, p-value = 1.4433× 10−15.

Strong evidence of difference in amplitude.
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Classification Results: Cardiomyopathy

Classification is done using the estimated components, for Lead I.

Accuracy
Method LDA SVM

Gaussian 0.9714 0.9429

BSpline 0.9714 0.8714

Table: Amplitude Classification of Cardiomyopathy

Accuracy
Method LDA SVM

Gaussian 0.9286 0.9000

BSpline 0.9571 0.9571

Table: Phase Classification of Cardiomyopathy
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Classification Results: Myocardial Infarction

Classification results from Lead I.

Accuracy
Method LDA SVM

Gaussian 0.8477 0.8376

BSpline 0.8325 0.8426

Table: Amplitude Classification of MI

Combining multiple leads by concatenation, this improves to

Accuracy
Method LDA SVM

Gaussian 0.8782 0.9086

BSpline 0.8731 0.8832

Table: Amplitude Classification of MI (Multiple Leads)
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Summary/Conclusion

We have proposed amplitude registration models for ECG signals.

Parametric models are a good alternative to dimension reduction
techniques like FPCA.

Variable selection possible using estimated amplitude components.

Automation greatly improves ECG diagnosis when compared to
clinicians.

Applicable to analysis of gait data for diagnosis of Parkinson’s.
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Comparison of Myocardial Infarction

Reference Method Result
McCabe et al.
(2013)[2]

Physicians Sensitivity: 65%,
Specificity: 79%

Sun et al.
(2012)[3]

ST segments using
5-order polynomial

Sensitivity: 92.3%,
Specificity: 88.1%

Kurtek et al.
(2013)[1]

NN (SRVF) Accuracy: 90%

Previous work Functional PCA Accuracy: 92.86%

Proposed Gaussian Model Accuracy: 90.86%

Table: Comparison of methods for detection of myocardial infarction
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Comparison: Phase Classification

Reference Method Result
Tucker et al.
(2013)

Horizontal FPCA
(SRVF)

0.9429

Tang and Müller
(2008)

Pairwise Synchronisa-
tion (PACE)

0.7857

Proposed B-Spline Model 0.9571

Table: Comparison of methods for detection of Cardiomyopathy
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Thank You
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