Amplitude and Phase Classification of ECG data

Chibueze Emmanuel Ogbonnaya With: S. P. Preston, A. T. A. Wood and K. Bharath

University of Nottingham

pmxceog@nottingham.ac.uk

September 2, 2018

- 2 Data Preprocessing and Registration
- ③ Fitting Parametric Models

4 Classification

Electrocardiogram

- An Electrocardiogram (ECG) is used to record the electrical activity of the heart to identify and locate pathology.
- The ECG is essential for the diagnosis and management of abnormal cardiac rhythms.

Figure: ECG 12-lead placement

(a) ECG Signal for an individual from lead ${\sf I}$

P R Retryal

QRS

(b) Features of a Typical ECG Signal

Figure: Sample ECG Signal and Features

Noise in ECG Signal

It is difficult to detect ECG features in a noisy ECG signal.

Figure: ECG Signals of two different Healthy Controls showing effect of Noise

Healthy Controls and Heart Conditions

- Myocardial Infarction: ST elevation
- Cardiomyopathy: inverted T wave and prolonged QT interval.

Figure: ECG changes caused by heart conditions

The University of

We propose using RR intervals for functional representation of an ECG signal.

- An RR interval corresponds to a heartbeat.
- The RR interval contains important features of interest: ST segment and T wave.

Figure: An ECG signal showing RR intervals

Chopping-up ECG signal into RR functions

Figure: ECG signal and chopped-up functions

Data is taken from the PTB ECG database and contains 10 seconds recordings. We consider the conventional 12-leads.

For our data, we have ECG for

- Healthy controls
- Myocardial infarction
- Cardiomyopathy.

Registration and Fitting

- Remove noise in ECG signals through amplitude registration.
- Estimate amplitude and phase components of registered ECGs using parametric models.

Classification

Classification of ECGs using estimated amplitude and phase components.

Model

$$y_i(t) = b_i x_i(t) + \sum_{j=1}^q a_{ji} u_j(t)$$

where $t \in [0, 1]$. We define the following:

- $x_i(t)$ are the observed RR functions.
- $y_i(t)$ are the registered RR functions
- $u_j(t)$ form an orthonomal basis function for noise.

Registration implies estimating a_{ii} and b_i with template f(t)

$$\underset{a_{ji},b_i\in\mathbb{R}}{\text{minimise}} \quad \sum_{i=1}^n \|y_i - f\|^2.$$

• Use the zero function as template

Solutions:

$$\hat{a}_{ji} = -b_i \langle x_i, u_j \rangle,$$

$$y_i(t) = b_i\left(x_i(t) - \sum_{j=1}^q \langle x_i, u_j \rangle u_j(t)\right).$$

• Estimate b_i : Constraint $\sum_{i=1}^n \log b_i = 0$.

•
$$\hat{b}_i = c_i^{-1/2} (\prod_{i=1}^n c_i^{-1/2n}).$$

• $c_i = \|x_i\|^2 - \sum_{j=1}^q \langle x_i, u_j \rangle^2.$

Amplitude Registration: Example

Figure: Left: Observed RR functions. Right: Amplitude registration.

- We use sum of Gaussian functions and B-splines to fit the RR functions
- The Gaussian models have been used previously to generate synthetic ECGs in Clifford (2006).

For the Gaussian mixture model with phase $t \in [0,1]$, we have

$$z(t, \alpha_i, \theta_i, \beta_i) = \sum_{j=1}^k \alpha_{ij} \exp\left[-\frac{(t-\theta_{ij})^2}{2\beta_{ij}^2}\right]$$
(1)
Here $\theta_{i1} = 0 \le \theta_{i2} \le \ldots \le \theta_{ik} = 1.$

wł

Model Fitting

To fit this model to actual ECG signal $y_i(t)$, we will need to solve the non-linear optimisation problem

- Determine Template $\hat{\mu}(t)$.
- **2** Using template, fix $\beta_i = \beta$, $\theta_i = \theta$, i = 1, ..., n

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\theta}}\int_0^1 (\hat{\mu}(t)-z(t,\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\theta}))^2.$$

3 New Model:
$$z(t, \alpha_i) = \sum_{j=1}^k \alpha_{ij} \exp\left[-\frac{(t-\theta_j)^2}{2\beta_j^2}\right]$$
.

• For each *i*, estimate α_i .

• Determine Template $\hat{\mu}(t)$.

2 Using template, fix $\beta_i = \beta$, $\alpha_i = \alpha$, i = 1, ..., n

$$\min_{\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\theta}}\int_0^1 (\hat{\mu}(t) - z(t,\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\theta}))^2 dt.$$

3 New Model:
$$z(t, \theta_i) = \sum_{j=1}^k \alpha_j \exp\left[-\frac{(t-\theta_{ij})^2}{2\beta_j^2}\right]$$

• For each *i*, estimate $\theta_{i2}, \ldots, \theta_{i(k-1)}$.

- We conduct a two-sample Hotelling's t-test.
- e Healthy vs Cardiomyopathy
- **③** NULL HYPOTHESIS: No difference in amplitude

Result

- F = 19.3507, p-value = 1.4433×10^{-15} .
- Strong evidence of difference in amplitude.

Classification is done using the estimated components, for Lead I.

Accuracy			
Method	LDA	SVM	
Gaussian	0.9714	0.9429	
BSpline	0.9714	0.8714	

Table: Amplitude Classification of Cardiomyopathy

Accuracy			
Method	LDA	SVM	
Gaussian	0.9286	0.9000	
BSpline	0.9571	0.9571	

Table: Phase Classification of Cardiomyopathy

Classification results from Lead I.

Accuracy			
Method	LDA	SVM	
Gaussian	0.8477	0.8376	
BSpline	0.8325	0.8426	

Table: Amplitude Classification of MI

Combining multiple leads by concatenation, this improves to

Accuracy			
Method	LDA	SVM	
Gaussian	0.8782	0.9086	
BSpline	0.8731	0.8832	

Table: Amplitude Classification of MI (Multiple Leads)

UNITED KINGDOM - CHINA - MALAYSIA

- We have proposed amplitude registration models for ECG signals.
- Parametric models are a good alternative to dimension reduction techniques like FPCA.
- Variable selection possible using estimated amplitude components.
- Automation greatly improves ECG diagnosis when compared to clinicians.
- Applicable to analysis of gait data for diagnosis of Parkinson's.

Reference		Method	Result
McCabe et a	al.	Physicians	Sensitivity: 65%,
(2013)[2]			Specificity: 79%
Sun et a	al.	ST segments using	Sensitivity: 92.3%,
(2012)[3]		5-order polynomial	Specificity: 88.1%
Kurtek et a	al.	NN (SRVF)	Accuracy: 90%
(2013)[1]			
Previous work		Functional PCA	Accuracy: 92.86%
Proposed		Gaussian Model	Accuracy: 90.86%

Table: Comparison of methods for detection of myocardial infarction

Reference	Method	Result
Tucker et al.	Horizontal FPCA	0.9429
(2013)	(SRVF)	
Tang and Müller	Pairwise Synchronisa-	0.7857
(2008)	tion (PACE)	
Proposed	B-Spline Model	0.9571

Table: Comparison of methods for detection of Cardiomyopathy

Thank You

Image: A matrix

2

Kurtek, Sebastian and Wu, Wei and Christensen, Gary E and Srivastava, Anuj (2013)

Segmentation, alignment and statistical analysis of biosignals with application to disease classification

Journal of Applied Statistics .

McCabe, James M and Armstrong, Ehrin J and Ku, Ivy and Kulkarni, Ameya and Hoffmayer, Kurt S and Bhave, Prashant D and Waldo, Stephen W and Hsue, Priscilla and Stein, John C and Marcus, Gregory M and others (2013)

Physician accuracy in interpreting potential ST-segment elevation myocardial infarction electrocardiograms

Journal of the American Heart Association .

Li Sun and Yanping Lu and Kaitao Yang and Shaozi Li (2012) ECG Analysis Using Multiple Instance Learning for Myocardial Infarction Detection IEEE Transactions on Biomedical Engineering.