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Electrocardiogram

@ An Electrocardiogram (ECG) is used to record the electrical activity
of the heart to identify and locate pathology.

@ The ECG is essential for the diagnosis and management of abnormal
cardiac rhythms.

The 6 Limb Leads The 6 Left Chest Leads

Figure: ECG 12-lead placement
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ECG cont'd.

ars
0.6 Complex
J—

o5
04t
o3

T

0 05 1 15
Time in seconds

(a) ECG Signal for an individual from
lead | (b) Features of a Typical ECG Signal

Voltage in mv

a5 4

Figure: Sample ECG Signal and Features
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Noise in ECG Signal
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It is difficult to detect ECG features in a noisy ECG signal.
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(a) Nice ECG signal (b) Noisy ECG signal with baseline drift

Figure: ECG Signals of two different Healthy Controls showing effect of Noise
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Healthy Controls and Heart Conditions
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@ Mpyocardial Infarction: ST elevation
o Cardiomyopathy: inverted T wave and prolonged QT interval.
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(a) Normal ECG for healthy control (b) ECG with inverted T wave

Figure: ECG changes caused by heart conditions
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Segmentation of the ECG
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We propose using RR intervals for functional representation of an ECG
signal.

@ An RR interval corresponds to a heartbeat.

@ The RR interval contains important features of interest: ST segment
and T wave.
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Figure: An ECG signal showing RR intervals
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(a) ECG with R peaks shown in Red (b) Chopped-up RR functions

Figure: ECG signal and chopped-up functions
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Data Source

UNITED KINGDOM

Data is taken from the PTB ECG database and contains 10 seconds
recordings. We consider the conventional 12-leads.

For our data, we have ECG for
@ Healthy controls
@ Myocardial infarction

o Cardiomyopathy.
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Registration and Fitting

@ Remove noise in ECG signals through amplitude registration.

o Estimate amplitude and phase components of registered ECGs using
parametric models.

Classification

Classification of ECGs using estimated amplitude and phase components.
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Amplitude Registration Model

q
yi(t) = bixi(t) + ) ajiuj(t)
j=1

where t € [0,1]. We define the following:
@ x;(t) are the observed RR functions.

@ yi(t) are the registered RR functions

@ uj(t) form an orthonomal basis function for noise.

Registration implies estimating aj; and b; with template f(t)

minimise Z lyi — 112

aji,bieR
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Example Solution for f(t) =0

@ Use the zero function as template

Solutions:
djj = —bi(x;, uj),
q
yi(t) = bi | xi(t) — Z<Xi, uj)u;(t)
j=1

e Estimate b;: Constraint >.! , log bj = 0.
o b= ([l 6 ™).

1

o ¢ =[xl = X7, (i, up)?.
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Amplitude Registration: Example

Figure: Left: Observed RR functions. Right: Amplitude registration.
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Parametric Models

@ We use sum of Gaussian functions and B-splines to fit the RR
functions

@ The Gaussian models have been used previously to generate synthetic
ECGs in Clifford (2006).

For the Gaussian mixture model with phase t € [0, 1], we have

(t —0;)?
z(t,a, 0;, B) Zau exp[ 252 ] (1)
ij

Wher60i1=0§9i2§~--Sgik:]--
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Model Fitting

To fit this model to actual ECG signal y;(t), we will need to solve the
non-linear optimisation problem

1
min / (vi(t) — z(t, aj, 0;, B;))?dt
0

a;,0;,8
subject to 0in —0i3 < 0,03 —60i4 <0,... 7‘9i(k—2) — 9;(k_1) < 0.

—— Actual ECG.
—— Fitted ECG
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Estimation of Amplitude Components

@ Determine Template fi(t).
@ Using template, fix 8, =03,0;,=6,i=1,...,n

mln/ (a(t) — z(t, o, B, 0))>.

© New Model: z(t, ;) = YK 1 aexp [_ (t_ej)z]

2687

@ For each i/, estimate ;.
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Estimation of Phase Components
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© Determine Template fi(t).
@ Using template, fix 8 =08, ai=a,i=1,...,n

1
min /0 (A(t) — z(t, o, B, 0))?dt.

a7ﬂ7o

. Nk (t—6;)>
© New Model: z(t,0;) = ijl ajexp | — 5
J

© For each i, estimate 0p, ..., 0;(k_1).-
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Amplitude Two Sample T-test
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@ We conduct a two-sample Hotelling's t-test.
@ Healthy vs Cardiomyopathy

© NULL HYPOTHESIS: No difference in amplitude

e F =19.3507, p-value = 1.4433 x 10715,

@ Strong evidence of difference in amplitude.
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Classification Results: Cardiomyopathy

Classification is done using the estimated components, for Lead I.

Accuracy
Method LDA SVM
Gaussian | 0.9714 | 0.9429
BSpline | 0.9714 | 0.8714

Table: Amplitude Classification of Cardiomyopathy

Accuracy
Method LDA SVM
Gaussian | 0.9286 | 0.9000
BSpline | 0.9571 | 0.9571

Table: Phase Classification of Cardiomyopathy
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Classification Results: Myocardial Infarction

Classification results from Lead |I.

Accuracy
Method LDA SVM
Gaussian | 0.8477 | 0.8376
BSpline | 0.8325 | 0.8426

Table: Amplitude Classification of Ml

Combining multiple leads by concatenation, this improves to

Accuracy
Method LDA SVM
Gaussian | 0.8782 | 0.9086
BSpline | 0.8731 | 0.8832

Table: Amplitude Classification of MI (Multiple Leads)
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Summary/Conclusion
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@ We have proposed amplitude registration models for ECG signals.

@ Parametric models are a good alternative to dimension reduction
techniques like FPCA.

@ Variable selection possible using estimated amplitude components.

@ Automation greatly improves ECG diagnosis when compared to
clinicians.

@ Applicable to analysis of gait data for diagnosis of Parkinson's.
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Comparison of Myocardial Infarction
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Reference Method Result

McCabe et al. | Physicians Sensitivity: 65%,
(2013)[2] Specificity: 79%
Sun et al. | ST segments using | Sensitivity: 92.3%,
(2012)[3] 5-order polynomial | Specificity: 88.1%
Kurtek et al. | NN (SRVF) Accuracy: 90%
(2013)[1]

Previous work Functional PCA Accuracy: 92.86%
Proposed Gaussian Model Accuracy: 90.86%

Table: Comparison of methods for detection of myocardial infarction
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Comparison: Phase Classification
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Reference Method Result
Tucker et  al. | Horizontal FPCA | 0.9429
(2013) (SRVF)

Tang and Miiller | Pairwise  Synchronisa- | 0.7857
(2008) tion (PACE)

Proposed B-Spline Model 0.9571

Table: Comparison of methods for detection of Cardiomyopathy
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Thank You
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