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Abstract— Alzheimer’s disease (AD) is the leading form
of dementia worldwide. AD disrupts neuronal pathways
and thus is commonly viewed as a network disorder. Many
studies demonstrate the power of functional connectivity
(FC) graph-based biomarkers for automated diagnosis of
AD using electroencephalography (EEG). However, vari-
ous FC measures are commonly utilised, as each aims to
quantify a unique aspect of brain coupling. Graph neural
networks (GNN) provide a powerful framework for learning
on graphs. While a growing number of studies use GNN
to classify EEG brain graphs, it is unclear which method
should be utilised to estimate the brain graph. We use eight
FC measures to estimate FC brain graphs from sensor-level
EEG signals. GNN models are trained in order to compare
the performance of the selected FC measures. Additionally,
three baseline models based on literature are trained for
comparison. We show that GNN models perform signif-
icantly better than the other baseline models. Moreover,
using FC measures to estimate brain graphs improves the
performance of GNN compared to models trained using a
fixed graph based on the spatial distance between the EEG
sensors. However, no FC measure performs consistently
better than the other measures. The best GNN reaches
0.984 area under sensitivity-specificity curve (AUC) and
92% accuracy, whereas the best baseline model, a convolu-
tional neural network, has 0.924 AUC and 84.7% accuracy.

Index Terms— Alzheimer’s disease, graph neural net-
work, classification, EEG, functional connectivity
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ALZHEIMER’S disease (AD), a neurodegenerative dis-
ease, is the most common form of dementia. AD patients

exhibit progressive deterioration of memory and other cogni-
tive functions. From a neuroscience perspective, AD leads to
synaptic loss and cellular death, which progressively occurs
over multiple brain regions [1]. Disruption of communication
pathways amongst brain regions is observed in AD [2]–[4].
Due to this distributed nature of AD, it can be recognised
as a network disorder. Thus, graph theory is well suited
for analysing and classifying AD, as it provides a general
framework to study the interactions of various pathological
processes across multiple spatiotemporal scales.

Functional connectivity (FC) is one of the methods to
construct and study brain graphs. The edges of FC graphs
represent the statistical dependencies between brain regions
rather than the physical connectome, i.e. structural connectiv-
ity. FC brain graphs can be constructed from any functional
brain imaging modality, such as EEG, magnetoencephalogra-
phy (MEG), functional magnetic resonance imaging (fMRI),
or positron emission tomography (PET). In this paper, we
focus on EEG. EEG has been shown to be an effective tool
for studying the changes in brain activity in AD cases [5]–
[7]. Compared to other modalities, EEG is economical, non-
invasive, easy to administer, and has a superior temporal
resolution. On the other hand, it suffers from a low spatial
resolution as the activity is measured by electrodes placed on
the subject’s scalp.

Emerging evidence shows large-scale alterations in func-
tional connectivity (FC) in AD, such as increased connectivity
in the low-frequency bands [8]–[10]. Graph-based studies
show that AD is characterised by reduced complexity [6] and
loss of small-world organisation, assessed by the clustering
coefficient and characteristic path length [11]–[14].

However, there are multiple FC methods commonly used
within the literature. Furthermore, each FC method may
quantify a different aspect of brain coupling. There are both
linear and nonlinear FC methods that quantify the coupling
of signals’ phases, amplitudes, and even cross-frequency in-
teractions. For simplicity, we do not consider cross-frequency
interactions and focus on FC measures quantifying brain cou-
pling between two signals within the same frequency range,
i.e. frequency band. Moreover, there is an uncertainty on the
reproducibility of some FC methods [15], and the robustness
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to volume conduction effects [16]. In this paper, we select and
evaluate a number of commonly used methods to quantify FC
from EEG data.

The most common and simplest FC measure is Pearson’s
correlation coefficient (corr) [17]. The phase coupling of a
pair of signals is commonly measured by coherence (coh)
[13], [14], imaginary part of coherency (iCOH) [15], [18],
phase lagged index (PLI) and its weighted version (wPLI), and
phase locking value (PLV) [15]. The correlation of amplitude
envelopes of two signals can also be measured (amp-corr) [15].
Finally, information-theoretic measures are commonly used
as measure FC, such as mutual information (MI) [19]. We
exclude the directed (i.e. causal) connectivity measures from
this comparative study since these are generally not considered
FC measures but rather effective connectivity measures.

Graph-based features were also successfully used to train
machine learning classifiers to diagnose brain disorders using
EEG automatically. Manually engineered graph features, such
as node strength [20] and vectorised adjacency matrix [21],
could be promising graph-based biomarkers of AD, as both
approaches achieve high classification accuracy. Additionally,
there were some attempts to utilise deep learning, convo-
lutional neural network (CNN), for automatic graph-based
feature extraction. Specifically, CNN was trained to classify
AD and schizophrenia using adjacency matrices, which are
image-like representations of FC graphs [22]. However, an
image representation of a graph cannot effectively capture all
the properties, as a graph is a non-euclidean object.

Graph neural network (GNN) extends the logic of convo-
lution operation to graphs by aggregating information from
linked nodes, based on the assumption that nodes connected
by an edge are similar. However, there is a limited number
of GNN applications for EEG brain graph classification.
Moreover, it is unclear which method should be used to infer
the graph structure for the GNN application. A fully connected
graph is commonly used in the literature [23]. However, such
an approach does not leverage any information encoded by
FC brain graphs. A second option is using the distances
between spatial positions of EEG electrodes to define the
graph structure [23], [24]. Furthermore, Demir et al. [23]
utilise distance thresholding and k-nearest-neighbours methods
to filter-out unimportant edges. Such edge-filtering can be
important, as some edges might be redundant or even introduce
additional noise, thus hindering the model from learning the
optimal solution. Only a handful of studies use FC measures,
such as coherence [24] and wPLI [25]. Additionally, Liu et al.
[25] use a minimum spanning tree algorithm (MST) to produce
sparse brain graphs. This is in contrast to threshold-based edge
filtering, as MST can select edges with various edge weights
and ensures that the resulting graph is connected. Additionally,
Zhong et al. [26] utilise a learnable mask in order to learn
the optimal graph structure for a specific classification task
without relying on any FC measure.

In this study, we systematically evaluate the effects of using
various FC methods to infer EEG brain graphs in training
GNN for the classification of AD patients. Two types of
edge filtering are used to induce graph-sparsity in order to
improve the performance of GNN. To compare and evaluate

the classification performance of various FC-based GNNs, a
GNN-based baseline is trained using a fixed graph structure
for all brain graphs, represented by the euclidean distance
between spatial positions of EEG sensors. Three additional
baseline models are established: two SVM baselines fitted
on node strength (SVM-NS) and vectorised adjacency matrix
(SVM-vector), respectively, and a CNN trained on images of
adjacency matrices. Fig. 1 illustrates the model architectures
employed for comparative study in this work.

II. DATA AND PRE-PROCESSING

The EEG dataset consists of 20 AD patients and 20 healthy
control participants (HC) below 70 years. A subset of this
dataset has been previously used in Blackburn et al. [5]. All
AD participants were recruited in the Sheffield Teaching Hos-
pital memory clinic. AD participants were diagnosed between
one month and two years before data collection, and all were
in the mild to moderate stage of the disease at the time of
recording. Age and gender-matched HC participants with nor-
mal neuropsychological tests and structural MRI scans were
recruited. The EEG data used in this study was approved by
the Yorkshire and The Humber (Leeds West) Research Ethics
Committee (reference number 14/YH/1070). All participants
gave their informed written consent.

EEG was acquired using an XLTEK 128-channel headbox,
Ag/AgCL electrodes with a sampling frequency of 2 kHz using
a modified 10-10 overlapping a 10-20 international electrode
placement system with a referential montage with a linked
earlobe reference. The recordings lasted 30 minutes, during
which the participants were instructed to rest and not to think
about anything specific. Within each recording, there were
two-minute-long epochs during which the participants had
their eyes closed (alternating with equal duration eyes-open
epochs, not used in this work).

All the recordings were reviewed by an experienced neu-
rophysiologist on the XLTEK review station with time-locked
video recordings (Optima Medical LTD). For each participant,
three 12-second-long artefact-free epochs were isolated. Fi-
nally, the following 23 bipolar channels were created: F8–F4,
F7–F3, F4–C4, F3–C3, F4–FZ, FZ–CZ, F3–FZ, T4–C4,
T3–C3, C4–CZ, C3–CZ, CZ–PZ, C4–P4, C3–P3, T4–T6,
T3–T5, P4–PZ, P3–PZ, T6–O2, T5–O1, P4–O2, P3–O1 and
O1–O2 [5].

A. EEG Pre-processing
First, a zero-phase 5th order Butterworth filter is employed

to remove frequencies below 0.1 Hz and above 100 Hz; a
zero-phase 4th order Butterworth stop-band filter is used to
remove frequencies between 49 and 51 Hz related to power-
noise. The EEG data were then down sampled to 250 Hz using
an 8th order Chebyshev type I filter and scaled to zero mean
and unit standard deviation.

In order to increase the sample size and to demonstrate
that the classification performance is epoch independent, the
12-seconds-long epochs were split into 3-second-long non-
overlapping segments. Thus, for each subject, there are 12
EEG segments. Finally, frequency bands are created from
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Fig. 1: Overview of model architectures developed for classification of AD from EEG-FC-based graphs. (A) A graph neural
network (GNN) takes weighted featured brain graphs with N nodes represented by a weighted adjacency matrix and a node
feature matrix (RN×D, D = 100) where the node features consist of power spectral densities (PSD, 0 − 100Hz). The N-
GCN hyper-parameter controls the number of graph convolutional layers. (B) Support vector machine trained using the node
strengths (i.e. the sum of edge weights of neighbouring nodes) as input features (SVM-NS). (C) Convolutional neural network
(CNN) trained on the brain graphs represented by weighted adjacency matrices. Alternatively, the weighted adjacency matrix
is flattened and used as input to a support vector machine (SVM-AM). (D) Node feature matrix (RN×D) with power spectral
densities across all EEG channels is used to train a multilayer perceptron (MLP).

each EEG segment using a zero-phase 5th order Butterworth
filter. Six frequency bands are considered: δ (0.5 − 4Hz), θ
(4− 7Hz), α (7− 15Hz), β (15− 31Hz), γ (31− 100Hz)
and full (0.5− 100Hz).

III. METHODS

A. Functional-Connectivity-based Brain Graph Inference

In this paper, we selected eight commonly used methods
for constructing brain graphs from EEG signals, namely: the
absolute value of Pearson’s correlation (corr), spectral coher-
ence (coh), the imaginary part of coherency (iCOH), phase
lagged index (PLI), weighted phase lagged index (wPLI),
phase locking value (PLV), mutual information (MI) and
amplitude envelope correlation (AEC).

We estimate FC brain graphs for each EEG segment and
frequency band separately. Thus, for each subject, we obtain
72 brain graphs (12 segments × 6 frequency bands). A brain
graph G can be represented by an N ×N adjacency matrix A
where N = 23. As we consider only FC measures, all edges
are undirected, and thus the number of inferred edges can be
reduced from N2 to [N×(N−1)/2]. However, for simplicity,
we keep the N2 edges in the N×N adjacency matrix A. Thus,
each entry of the adjacency matrix AFC

xy represents the edge

weight between nodes, i.e. the dependency of EEG signals
x ∈ RT and y ∈ RT are measured by the connectivity measure
FC where T is the signal length. All of the selected measures
are normalised to [0, 1] where 0 indicates no coupling and 1
indicates a perfect coupling.

The adjacency matrix using the absolute values of Pearson’s
correlation coefficients between nodes x and y is given by:

Acorr
xy =

∣∣∣∣∣
∑

t(x(t)− x̄)(y(t)− ȳ)√∑
t(x(t)− x̄)2

√∑
t(y(t)− ȳ)2

∣∣∣∣∣ , (1)

where x(t) is the value of signal x at time t, and x̄ is the mean
of x. The absolute value is calculated as we are only interested
in the coupling magnitude. Next, the adjacency matrix of
coherence is given by:

Acoh
xy (f) =

|CSxy(f)|2

CSxx(f)CSyy(f)
, (2)

where CSxy and CSxx are cross-spectral and auto-spectral
densities respectively at frequency f . The coherence within a
frequency band B is then calculated as the mean of Gcoh

xy (f)
where f ∈ B.

The imaginary part of coherency (iCOH) measures phase
consistency similar to coh and accounts for volume conduction
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effects. The adjacency matrix using iCOH is computed as:

AiCOH
xy (f) =

ℑ(CSxy(f))√
CSxx(f)CSyy(f)

, (3)

where ℑ denotes the imaginary component. The iCOH within
a frequency band B is then calculated as the mean of
GiCOH

xy (f) where f ∈ B

The phase and amplitude of an EEG signal at time t can be
calculated from the analytic representation z of signal x

z(t) = x(t) + i x̃(t), (4)

where i is the imaginary component and x̃(t) is the corre-
sponding Hilbert transform. Then the phase and amplitude can
be obtained from z(t) as

ϕ(t) = arctan

(
x̃(t)

x(t)

)
, (5)

and
amp(t) =

√
[x(t)]2 + [x̃(t)]2. (6)

Phase lag index (PLI) quantifies the asymmetry in phase
distributions of two signals and measures only non-zero phase
locking [27]. The adjacency matrix using PLI is defined as:

APLI
xy =

∣∣∣∣∣ 1T
T∑

t=1

sign sin(ϕx(t)− ϕy(t))

∣∣∣∣∣ , (7)

where ϕx is obtained using Eq. 5. Weighted phase lag index
(wPLI) is an extension of PLI, which aims to remove the
effects of amplitude and volume conduction by maximally
weighting the ±90 deg phase differences and thus omitting
uniformly driven differences [28]. The adjacency matrix using
wPLI is computed as

AwPLI
xy =

∣∣∣∣∣ 1T
T∑

t=1

| sin(ϕx(t)− ϕy(t))|
sin(ϕx(t)− ϕy(t))

∣∣∣∣∣ . (8)

Phase locking value (PLV) is another approach to quantify
the consistency of phase differences between signals, and its
associated adjacency matrix is computed as

APLV
xy =

∣∣∣∣∣ 1T
T∑

t=1

e− i(ϕx(t)−ϕy(t)

∣∣∣∣∣ . (9)

Amplitude envelope correlation (AEC) aims to quantify the
coupling based on the amplitudes of the signals. The adjacency
matrix using AEC is computed with Eq. 1 where x and y are
the amplitudes of respective signals computed using Eq. 6.

Mutual information (MI) quantifies the amount of known
information about a second signal after observing the first
signal. The adjacency matrix using MI is calculated as:

AMI
xy =

∑
xi,yj

PXY (xi, yj) log

(
PXY (xi, yj)

PX(xi)PY (yj)

)
, (10)

where PXY and PX are the joint and marginal probability
distributions, respectively.

1) Edge filtering methods: It is worth noting that we did not
use any corrections for false positives. Thus, the true brain
graph structure might be masked by noise due to spurious
coupling. Traditionally, a surrogate threshold might be used
to control such spurious edges. However, such a procedure
is computationally expensive, as it requires re-computing the
connectivity measure on multiple random surrogate versions of
the original signals, to estimate a null surrogate distribution.
Instead, we implement two edge-filtering methods to select
only important edges and thus produce sparse graphs. Com-
pared to the surrogate threshold method, edge-filtering is a
fast and efficient, albeit naive method to deal with potentially
noisy brain graphs. We also utilise the fully-connected graphs,
i.e. without any edge selection, in the classification models in
order to test the effect of edge-filtering.

The first edge-filtering method is an FC-strength-based top-
k% filter (k ∈ {10, 20, 30}), which selects only the top k%
strongest edges of the given graph and removes the rest.
This approach assumes that edge weight, i.e. the connectivity
strength, is directly related to the importance of an edge.
However, this assumption might not be valid.

A minimum-spanning-tree-based filter (MST-k), also an or-
thogonal minimum spanning tree [29], addresses this concern
as it selects a mix of edge weights and always produces a
connected graph, i.e. a path exists among all nodes. Briefly,
the MST algorithm [30] aims to extract a backbone of a graph
with N nodes by selecting N − 1 edges, such that the sum of
weights is minimised. We use Prim’s algorithm for computing
MST [30]. In the case of brain graphs, a stronger edge weight
implies a higher degree of coupling; thus, we use an inverted
MST algorithm which maximises the sum of weights instead.
When k = 1, MST-k is equal to a single iteration of the
MST algorithm. For k > 1, the edges selected by the previous
iterations are removed from the graph, and the MST algorithm
is re-run. Thus, MST-k filter selects k(N − 1) edges.

B. Graph Neural Network Classification

A graph neural network (GNN) is an extension of an
artificial neural network that is capable of learning on graph-
structured data. Specifically, we implement a graph convolu-
tional network (GCN) for a graph classification task (Fig. 1A).

The input to the GCN classifier is in the form of a graph:
G = {N,E, F}, where N , E, and F are sets of nodes, edges
and node features, respectively. The nodes are fixed in our
case, as this is the number of EEG electrodes. The set of
edges E is given by the adjacency matrix A computed by the
FC measures introduced in the previous section. Finally, the
node feature matrix F is an N × D matrix where each row
encodes a D-dimensional feature for the corresponding node.
Specifically, power spectral density (PSD) is computed over 1
Hz increments in an interval between 0 and 100 Hz, forming
a 100-dimensional node feature vector (i.e. D=100).

GCN is based on the message-passing framework, which
assumes that neighbouring nodes should have similar node
features. Briefly, a GCN layer updates the node features
(i.e. messages) using the optionally transformed messages
collected from neighbouring nodes. On a node level, a single
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Hyper-parameter Values GNN SVM-NS SVM-AM CNN MLP
1 Cost [0,1] ✓ ✓
2 Batch size {16, 32, 64, 128, 256} ✓ ✓ ✓
3 Learning rate {0.0001, 0.001, 0.01, 0.1} ✓ ✓ ✓
4 GCN hidden {256, 516, 1024, 2048, 4096} ✓
5 N GCN {1,2} ✓
6 N Linear {1,2,3,4,5} ✓
7 Conv1 hidden {16, 32, 64, 128} ✓
8 Conv2 hidden {16, 32, 64, 128} ✓
9 Linear hidden [32, 64, 96, 160, 256, 516] ✓ ✓
10 Activation {ReLU, Tanh} ✓ ✓
11 DropEdge {True, False} ✓
12 Dropout p {0.1, 0.25, 0.5, 0.75, 0.8, 0.9} ✓ ✓ ✓
13 Frequency band delta, theta, alpha, beta, gamma, full ✓ ✓ ✓ ✓
14 Edge filter full, top-{10,20,30}, MST-{1,2,3} ✓ ✓ ✓ ✓
15 Gamma {0.8, 0.85, 0.9, 0.95} ✓ ✓ ✓

TABLE I: Possible values for hyper-parameters of GNN, SVM-NS, SVM-AM, CNN and MLP.

GCN layer effectively aggregates information from the 1-hop
neighbourhood of each node. Thus, stacking L GCN layers
represents aggregation from L-hop neighbourhood. Formally,
the GCN layer is implemented on a node-level as follows [31]:

xl
i = Θ1x

l−1
i +Θ2 max

j∈Gi

eijx
l−1
j , (11)

where xl
i is the node features of node i at the lth layer, x0

i is the
ith row of the input node feature matrix F, and Θ is a learnable
linear transformation, which maps the node features from
shape [1, D] to [1, GCN-hidden]. Gi and eij are the neighbour-
hood of node i and the edge weight connecting nodes i and j
given by the set of edges E respectively. The GCN-hidden is a
tunable hyper-parameter of the GCN architecture. A rectified-
linear-unit (ReLU) activation is applied to the output of GCN,
and batch normalisation is performed [32]. We refer to the
node-wise outputs of GCN as node embeddings.

After L GCN layers are applied, the output is constructed
by node embeddings in the form of a N×H matrix, where H
is the hidden size given by GCN-hidden. In order to produce a
graph-level embedding, a maximum readout layer is applied,
resulting in an H-dimensional graph embedding r for each
graph g.

rg =
N

max
i=1

xL
i , (12)

where xL
i is the output of the Lth GCN layer for the ith node.

Following the readout layer, two linear layers are applied to
produce the final classification with output dimensions H/2
and 2 (number of classes), respectively. Two linear layers
were used to allow for further refining of the graph embedding
before outputting the predicted class probabilities.

Additionally, in order to improve the generalisability and
reduce the risk of overfitting, dropout layers are utilised
(1A). Briefly, the dropout layer randomly zeroes elements of
the input tensor with p probability drawn from a binomial
distribution, where p is a hyper-parameter. A dropout is applied
to the graph embeddings, i.e. after the readout layer and
after the first linear layer. Furthermore, an edge dropout is
implemented, which randomly removes edges from the input
graph. The inclusion of the edge dropout in the model is
controlled by a hyper-parameter.

In summary, the GNN used in this study has several hyper-
parameters, as shown in Table I, which control (1) the model

architecture, (2) the form of input data, and (3) the training
process to prevent overfitting. In particular, (1) is enabled by
the number of GCN layers (N-GCN) and the inclusion of edge
dropout (DropEdge); (2) is enabled by frequency band and
edge filter; and finally, (3) is enabled by dropout probability
(drop-p), learning rate, gamma and batch size.

C. Baseline Models

In order to enable a fair assessment of the advantages
of using graph-based learning (i.e. the GNN), four baseline
classifiers are trained and compared. These baseline models
utilise the same graph-structured input data extracted using
different FC measures, frequency bands and edge filters, and
the same evaluation process. Thus, we argue this to be a fair
comparison of models.

The three selected baseline models are based on previously
used classifier strategies for learning on FC brain graphs:
SVM trained on node strength (SVM-NS) [20], SVM trained
on vectorised adjacency matrix (SVM-AM) [21], and CNN
trained on image of adjacency matrix (CNN) [22], [33].
Additionally, we train a multilayer perceptron (MLP) on the
flattened node feature matrix that was previously used to train
the GNN models.

1) Support vector machine baseline models: The SVM-NS
and SVM-AM are both trained using an SVM classifier. SVM
has only one hyper-parameter, namely the cost, as shown
in Table I. Additionally, in order to select an appropriate
kernel for SVM, we include two kinds of kernels as hyper-
parameters: radial and polynomial (up to 3rd order). Both of the
SVM-based baseline models are trained on manually extracted
features. All features are first normalised to zero mean and unit
standard deviation.

The SVM-NS is trained on node strengths (Fig. 1B). Node
strength is defined as the sum of edge weights of one node
and can be interpreted as a measure of node importance. Thus,
each brain graph is represented by an 23-dimensional feature
vector NS = (ns1, ns2, ..., nsN ), where N is the number of
nodes (N = 23).

The SVM-AM is trained on vectorised weighted adjacency
matrices (Fig. 1D). As we use only undirected FC measures,
the N × N adjacency matrix of a brain graph is symmetric.
Thus, we can use the upper triangular matrix only and flatten
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it to form a 253-dimensional feature vector (N × (N − 1)/2).
Principal component analysis (PCA) is optionally employed
for dimensionality reduction with the number of components
selected, such that 95% of the variance is captured. The
inclusion of the PCA step is controlled by a hyper-parameter.

2) Convolutional neural network: CNN classifiers are trained
on the weighted adjacency matrices of the brain graphs. As
the adjacency matrix is a square matrix, it is simple to convert
it to an image on which a CNN can be trained.

The CNN architecture consists of two convolutional blocks
and a final classifier, as shown in Fig. 1C. Each convolution
block contains two convolutional layers (stride = 3), followed
by a maximum pooling layer and a dropout layer. The final
classifier consists of two linear layers with a dropout between
them. We created several hyper-parameters to control the
CNN. The number of convolutional filters within each block
is controlled by the Conv1 and Conv2 hyper-parameters. Sim-
ilarly, the hidden size of the linear layers is controlled by the
Linear-hidden hyper-parameter. Additionally, there are hyper-
parameters controlling the dropout probability, the choice of
the activation function (ReLU or Tanh), and the batch size as
shown in Table I.

3) Multilayer Perceptron: MLP classifiers are trained using
the flattened node feature matrix F ∈ RN×D, where D is the
PSD computed over the range 1-100 Hz. Thus the entry Fij

corresponds to PSD of the ith node at frequency j. The MLP
is thus trained on the input used to train the GNN models,
but without leveraging the topological information provided
by the FC graph. The MLP architecture is controlled by
the following hyper-parameters: N-Linear (number of layers),
Linear-hidden (hidden size). Additionally, there are hyper-
parameters controlling the dropout probability, the choice of
the activation function (ReLU or Tanh), and the batch size as
shown in Table I.

D. Model evaluation and implementation

The EEG preprocessing, brain graph construction, and
model evaluation are implemented in R 4.1.2 [34] using in-
house scripts, and caret [35] for SVM training. The training
of CNN and GNN classifiers is implemented using PyTorch
1.10 [36] and PyTorch Geometric 2.0.2 [37].

The models are trained and evaluated based on repeated
20-fold cross-validation (CV). A 5 times repeated CV is used
in order to identify the best combination of hyper-parameters
for all models and FC measures. The folds used for CV
are created, such that samples from the same subject are
kept within a single fold in order to prevent information
leakage. We use a smaller number of repetitions in order to
reduce the computational cost of training CNN and GNN
models. Hyper-parameter values are selected using random
optimisation, where the values of all hyper-parameters are
selected randomly. 200 iterations of random optimisation are
performed for each combination of FC measure and model
type. The hyper-parameters of all three model types and their
possible values are summarised in Table I.

The best-performing models are selected using the area
under the sensitivity-specificity curve (AUC), i.e. one model

per each combination of FC measure and model type. In order
to assess the stability of the selected models, 50 times repeated
CV is performed. The performance errors are computed using
the maximum difference between the mean and 5th and 95th

quantiles. This approach does not assume a normal distribution
and results in conservative error estimates.

The CNN and GNN models are trained using an Adam op-
timiser with an exponential learning rate decay (controlled by
the gamma hyper-parameter) and cross-entropy loss function.
The models are trained for 300 epochs with an early stopping
after 15 epochs if the loss stops decreasing.

IV. RESULTS

Brain graphs were inferred for each 3-second-long EEG
segment by using several commonly used FC measures, which
aim to quantify both the linear and nonlinear coupling between
pairs of brain signals. The brain graphs were then used as an
input to train the GNN brain-graph classifier. Moreover, four
baseline models were trained on these brain graphs in order to
demonstrate which type of classifier performs the best. AUC
is used to select the best model.

Table II reports the AUC values and the 95% confidence
intervals of the SVM-NS, SMV-AM and CNN baseline models
and GNN across the 8 FC measures. Note that the MLP
baseline is not included here, since it does not utilise the FC
brain graphs. Additionally, the performance of the baseline
GNN using Euclidean distance between spatial positions of
EEG (GNN-euclid) is reported in Table II as well. The hyper-
parameter values of the best models from their respective
categories are reported in Table IV. The averaged sensitivity-
specificity curves of these models are shown in Fig. 2.

All baseline models perform worse than all of the GNN
models across all FC measures as shown in Table II. Even the
best baseline model, MLP (AUC=0.95), achieves lower perfor-
mance than the worst GNN model, GNN-euclid (AUC=0.978).

From Table II, we can also see that the GNN models trained
using FC-based brain graphs perform better than GNN-euclid,
which was trained using a static graph structure.

Furthermore, we report the effect of frequency bands and
edge filtering methods on the performance of the trained
models in the supplementary materials. Figure S3 and tables
S1-S3 report these effects of frequency bands. Figure S4 and
Tables S4-S6 report these effects of edge filtering methods.

V. DISCUSSION

We trained GNN models over several commonly used FC
measures. For comparison, we trained four baseline models.
The results suggest that the GNN outperforms all baseline
models across all FC measures (Table II). Moreover, neural-
network-based models (GNN, CNN and MLP), which perform
automatic feature extraction, perform decisively better than the
classical machine learning approaches (SVM-AM and SVM-
NS) that rely on manually engineered features.

We argue that the relatively low performance of the machine
learning approaches is caused by the inability to remove noise-
contaminated information from the input features. This is
likely exacerbated by the lack of false positives control during
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FC GNN SVM-NS SVM-AM CNN
AEC 0.984 ±0.002 0.75 ±0.022 0.734 ±0.01 0.886 ±0.019
coh 0.982 ±0.002 0.773 ±0.007 0.784 ±0.008 0.901 ±0.014
corr 0.982 ±0.003 0.764 ±0.008 0.773 ±0.008 0.887 ±0.014

euclid 0.978 ±0.004 ✗ ✗ ✗
iCOH 0.984 ±0.002 0.656 ±0.017 0.648 ±0.014 0.876 ±0.01

MI 0.981 ±0.002 0.807 ±0.008 0.779 ±0.013 0.924 ±0.015
PLI 0.982 ±0.005 0.761 ±0.057 0.603 ±0.036 0.893 ±0.015
PLV 0.982 ±0.003 0.766 ±0.008 0.793 ±0.007 0.9 ±0.014
wPLI 0.984 ±0.003 0.66 ±0.069 0.637 ±0.024 0.869 ±0.016

TABLE II: AUC of GNN, SVM-NS, SVM-AM and CNN models across different FC measures measured by 50-repeated 20-fold
cross-validation. The ‘euclid‘ entry refers to the baseline GNN model with a fixed graph structure based on the spatial distance
of EEG electrodes.

AUC Accuracy Sensitivity Specificity
GNN (AEC) 0.984 ±0.002 91.996% ±0.41 97.366% ±0.941 86.716% ±1.013
GNN-euclid 0.978 ±0.004 91.147% ±1.278 93.678% ±2.46 88.658% ±3.497
CNN (MI) 0.924 ±0.015 84.689% ±2.233 86.212% ±3.6 83.192% ±4.613

SVM-NS (MI) 0.807 ±0.008 73.924% ±0.852 73.494% ±0.926 74.367% ±0.934
SVM-AM (PLV) 0.793 ±0.007 72.929% ±0.6 72.123% ±0.673 73.799% ±1.064

MLP 0.953 ±0.007 84.97% ±1.93 82.77% ±2.31 87.13% ±2.88

TABLE III: Detailed performance metrics of best performing models (selected based on AUC) of each model type.

the brain graph inference, which would limit the number
of edges caused by spurious coupling. We suggest that the
neural network-based models can solve this issue by using
weight regularisation and dropout layers, designed to learn
generalisable features insensitive to noise.

It could be argued that the GNN models perform better
than CNN and MLP because they are trained using two input
information sources, i.e. the FC weighted brain graph and the
node feature matrix with power spectral density. This is a
unique property of GNN as it can aggregate information from
both inputs. Moreover, to the best of our knowledge, GNN is
the only model architecture that can process these two inputs
simultaneously.

The CNN and MLP baseline models offer an interesting
comparison to the GNN since each is trained using one
of the two input information sources. The CNN and MLP
baselines show the individual predictive power of the FC-based
brain graph and node feature matrix, respectively. The results
suggest that the node feature matrix provides a slightly better
source of information in the classification task (Table III).
However, GNN performs significantly better, and we argue that
the comparison with the CNN and MLP baselines highlights
the power of GNN in brain-graph classification.

The relatively poor performance of CNN also demonstrates
the shortcomings of treating the adjacency matrix of a brain
graph as an image. Each pixel of an image has an equal
number of neighbouring pixels, and the content of the image
depends on the specific spatial ordering of its pixels. There-
fore, convolution can be applied to patches of pixels to extract
features automatically. This assumption is invalid for a graph
where each node can be connected to an arbitrary number of
neighbours, and no meaningful ordering of nodes exists. In
contrast, graph convolution generalises the convolution to ef-
ficiently solve this issue by utilising order invariant operations
to aggregate information from neighbouring nodes.

Moreover, the hyper-parameter optimisation has identified a
GNN model with two graph convolutional layers as the opti-

mal GNN architecture (Table IV). This means that the GNN
aggregates information not only from the nodes connected by
an edge directly (i.e., the 1-hop neighbours) but also from
the 2-hop neighbours. This suggests the importance of global
graph properties in diagnosing AD accurately, in addition to
the local properties, which could likely be learned with a single
layer. This is in line with the reported loss of small-world
properties of AD brain graphs [11]–[14].

Next, the results demonstrate that the FC-based GNNs also
outperform the GNN-euclid model, which utilises a static
graph structure (Table II). This suggests that it is preferable
to utilise FC-based brain graphs rather than the distance-based
static graphs previously used for EEG-GNN tasks [23], [24].
However, it seems that no FC measure offers clearly superior
performance compared to the others. Thus, we suggest that
future studies need to carefully consider which FC measure to
use based on the type of brain coupling they might wish to
focus on. However, we do not claim that the brain graphs
inferred from various FC measures are necessarily similar
from a graph-theoretic perspective. This is supported by the
performance differences of the baseline models where some
of the FC measures, such as MI, perform consistently well.

Surprisingly, the GNN-euclid model achieves relatively high
accuracy despite utilising a fixed graph structure (Table III).
The Euclidean brain-graph structure highlights the spatially
local relationships between the EEG channels. In contrast,
long-range edges have only a low weight. Therefore, we argue
that the Euclidean brain graph biases the GNN model to
learn local graph features predominantly. On the other hand,
the FC-based brain graphs may contain both local and long-
range relationships. Previous research suggests that AD-related
differences are observed in long-range pathways and global
graph properties [10], [11], [13]. In our opinion, the FC-based
GNNs outperform GNN-euclid since they can better capture
both the local and global differences on the graph level.

To further investigate the differences between FC measures
on the graph level, we compute an average adjacency matrix
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for each FC measure across both groups and frequency bands
(Figure S1). In Figure 3, we show these matrices for α and θ
frequency bands as these are utilised by the best performing
models (Table IV). The brain graphs are relatively similar
across the FC measures. In the θ band, increased connectivity
can be observed in AD compared to HC. In contrast, the
connectivity seems to be decreased in AD in the α band. These
differences are well documented in the literature [8]–[10].

Interestingly, all FC measures detect a well-defined cluster
containing mostly parietal and occipital EEG channels. The
strength of this cluster distinguishes AD from HC consistently
across FC measures. We speculate that this cluster contributes
most of the predictive information for the classification mod-
els. However, since the GNN architecture is a block-box
model, it would be difficult to confirm our speculation.

Next, the optimised model architectures suggest that using
edge-filtering and filtering the EEG signal within a frequency
band improve the model performance. A detailed report of
differences between the edge-filtering methods and frequency
bands across the FC measures and model types is included
in the supplements (Figures S3-S4 and Tables S1-S6). Briefly,
the best GNN model utilises the α frequency band, and CNN,
SVM-AM and SVM-NS utilise the θ frequency band (Table
IV), suggesting that frequency-centred brain graphs should
be preferred over the full-frequency-range brain graphs. The
selection of these frequency bands is not surprising, as they are
both well known to be altered in patients with AD [8]–[10].
In contrast, the effect of edge-filtering is not so apparent as
only the GNN and SVM-NS models use edge-filtering with
top-20% and MST-3, respectively. On the other hand, CNN
and SVM-AM use unfiltered brain graphs. We expect that
a sparse graph is preferable for GNN since there are fewer
messages to aggregate while updating the node embeddings.
These messages are also less likely to be a product of false-
positive brain interaction, thus leading to better node and graph
embeddings.

Furthermore, it is worth noting that although GNN accepts
two inputs, the relative contribution of each input information
is largely unclear. The results suggest that the node feature
matrix should contribute slightly more since the MLP baseline
outperforms the CNN (Table III). It could be argued that the
GNN uses only the topological information provided by the
graph structure to enable message-passing, but the FC is not
fully reflected in the node embeddings and graph embeddings,
by extension. Nevertheless, we believe that the FC information
is utilised to some extent by the GNNs since these models
perform better than the GNN-euclid, which arguably utilises
merely the topological information (Table II). However, the
extent to which the information provided by the FC measures
is contained within the learned graph embedding remains
unclear. One can merely speculate without introducing an
additional mechanism into the GNN architecture, which is
beyond the scope of this paper.

Finally, the GNN architecture utilised in this study is
relatively simple as one of the simplest GCNs was used, and
the readout layer merely computes the maximum of the node
embeddings. Previous EEG-GNN applications demonstrated
the advantages of using more complex graph convolutional

layers and edge pooling mechanisms [23]. We hypothesise that
exploiting a learnable edge-filtering mechanism akin to that
utilised by Zhong et al. [26] might improve the classification
compared to the edge-filtering methods used in this study.

Fig. 2: Averaged Sensitivity-Specificity curves of the best
models of their respective categories with 95% confidence
intervals (ribbon).

Hyper-parameter GNN SVM-NS SVM-AM CNN MLP
FC measure AEC MI PLV MI
Cost 0.5 0.5
Batch size 32 64 32
Learning rate 0.001 0.001 0.01
GCN hidden 1024
N GCN 2
N Linear 4
Conv1 hidden 128
Conv2 hidden 64
Linear hidden 96 4096
Activation/Kernel Radial Poly (1st) ReLU ReLU
DropEdge TRUE
Drop rate 0.9 0.1 0.05
Frequency band alpha theta theta theta
Edge filter Top-20% MST-3 full full
Gamma 0.9 0.9 0.95

TABLE IV: Hyper-parameter values of the best performing
GNN, SVM-NS, SVM-AM, CNN and MLP measured by
AUC.

VI. CONCLUSION

GNN is an effective model for learning on graph-structured
data, such as FC-EEG brain graphs. However, in the absence
of consent about the ideal FC measure for estimating EEG
brain graphs, the effect of an FC measure on the performance
of GNN classifiers is unclear. In this paper, we have selected
eight common FC measures to investigate this effect.

First, we demonstrated that GNN models are superior to
classical machine learning and CNN models for brain graph
classification. Unfortunately, the utilised GNN architecture
is a black-box model. Thus, future work should focus on
implementing interpretable GNN architectures that achieve
similar performance but additionally offer interpretability, such
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Fig. 3: Averaged adjacency matrices of AD and HC cases measured with various functional connectivity measures in A) θ
(best in CNN, SVM-NS and SVM-AM models), and B) α (best in GNN model) frequency bands.

as which nodes, i.e. brain regions, drive the prediction. Besides
providing an opportunity for experts to validate such models,
interpretable predictions might also serve in the development
of GNN-informed targeted treatment.

Finally, we showed that utilising FC measures to define
the brain graph results in improved performance of GNN
models compared to a fixed graph structure (i.e. the Euclidean
distance between EEG electrodes). While using an FC measure
improves the performance, no concrete FC measure can be
recommended as the ideal choice. Thus, in future research, the
choice of suitable FC measure should be carefully evaluated
in the context of the given research question. Alternatively,
focusing on fusion methods might lead to developing a novel
composite measure of FC.
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[14] F. Vecchio, F. Miraglia, F. Alú, A. Orticoni, E. Judica, M. Cotelli,
and P. M. Rossini, “Contribution of graph theory applied to EEG data
analysis for Alzheimer’s disease versus vascular dementia diagnosis,”
Journal of Alzheimer’s Disease, vol. 82, no. 2, pp. 871–879, 2021.

[15] C. T. Briels, D. N. Schoonhoven, C. J. Stam, H. de Waal, P. Scheltens,
and A. A. Gouw, “Reproducibility of EEG functional connectivity in
Alzheimer’s disease,” Alzheimer’s research & therapy, vol. 12, no. 1,
pp. 1–14, 2020.
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