

Characterising and integrating demand response within a long-term energy system analysis

Dr. Pei-Hao Li

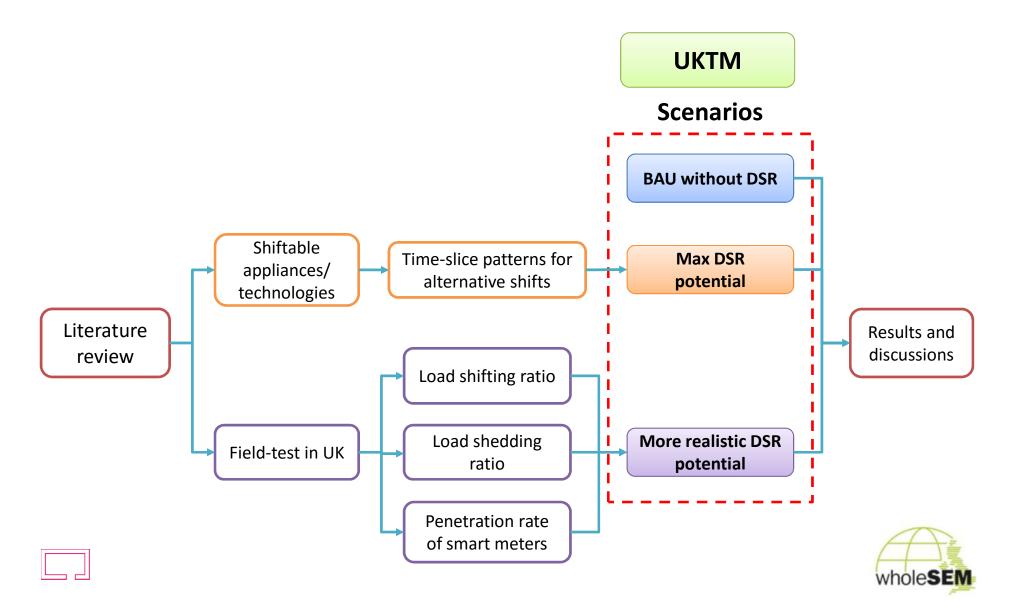
UCL Energy Institute

4th July 2016 wholeSEM Conference, Cambridge, UK

Outline

- Introduction
- Demand Response in the UK
- UK TIMES
- Incorporate Demand Response in the UKTM
- Scenarios
- Preliminary results
- Conclusions and Future works

Introduction


- 2050 GHG target: 80% reduction on 1990 level
- 5th Carbon Budget: 57% by 2030
- Low carbon electricity
 - decommission coal power plants by 2025
 - high penetration rate of intermittent RE
- Potentially higher peak load
 - decarbonize heating sector
 - decarbonize transport sector
- More flexible electricity system is essential
 - Reduce requirements for capacity during peak periods
 - Manage intermittent RE
 - Reduce overall cost

Research Procedure

Demand Response in UK

• **Previous studies:** Fixed projections of technologies Focus more on electricity system

Study	Sector/Tech	Scenario	Benefits
Teng and et al. (2016)	EV (reduce peak load by 80%) HP (reduce peak load by 35%)	fixed demand-side and supply-side capacities based on DECC Carbon Plan (2011) and LCL report	reduce 5~13 gCO2/kWh; 1.5~7 pounds/MWh (for EV/HP)
Kreuder and Spataru (2015)	Heat pump in residential sector	Base: 2.5 millions HPs Ideal: 5.7 millions HPs Reduce peak load by optimization (turn off for 3hrs)	Peak load reduction: 6.3~5.7GW
Element Energy (2014)	Washing appliances (100% shiftable); Water heating; Cold appliances	Aggregate household potential to national scale	Peak shift potential: 2GW
Pudjianto et al. (2013)	Smart plug-in vehicle Smart heat pump Network voltage regulators	Full penetration of EVs and HPs Optimal operations Three demand scenarios from Transition Pathways project (Foxon, 2012)	Reduce peak load increase from 117GW to 78GW Save 10bn pounds over 40 yrs
Barton et al. (2013)	Water heating (7hr in night) Space heating (deferred 1 hr) EV and PHEV charging (deferrable Cev/7) Pumped hydro	Three demand scenarios from Transition Pathways project (Foxon, 2012) Optimal operations	Reduce peak load by 10GW Reduce capacity operating less than 10% Reduce maximum surplus power
REDPOINT(2 012)	Heat pumps with storage, EV, smart appliances, non-smart cold & wet appliances	SToU, Load Control, CPP EV update projection DECC heat pump uptake projections to 2030	Peak demand reduction: 0.5~2.5GW by 2030 Save 500m pounds by 2030 System balancing and DNO saving: 350m pounds Avoid 3.2GW of OCGTs Reduce GHG by 0.4~1.2mt in 2030
Hamidi et al. (2009)	Residential sector: heating, wet and cold appliances	Bath and North East Somerset Area; Aggregated load profile	Potential responsive level: ~35%

Demand Response in UK

Field tests show varied peak load reductions

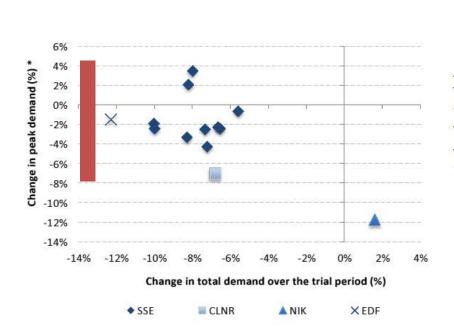
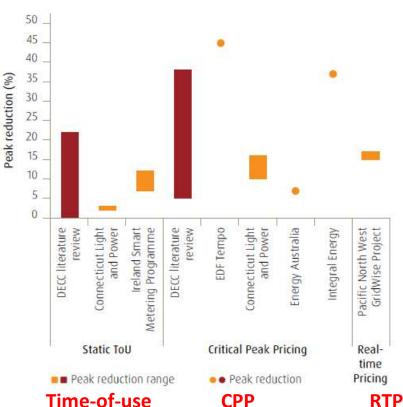



Figure 5: The change in electricity demand during the peak period versulthe change in total electricity demand over the whole trial period.9

Source: element energy, 2014, Electricity price signals and demand response, report for DECC.

Source: J. Schofield, R. Carmichael, S. Tindemans, M. Woolf, M. Bilton, G. Strbac, "Residential consumer responsiveness to time-varying pricing", Report A3 for the "Low Carbon London" LCNF project: Imperial College London, 2014.

UKTM-The UK TIMES Model

Electricity

Processing

- Whole Energy System
- Technology-rich
- Minimum cost
- Potentials & costs for domestic resources and traded products
- Mainly informed by global model TIAM
- Resources and imports
- Generation, storage and trans-mission grid & interconnectors
- Data aligned with DDM
- Covers refining, bioenergy processing, landfills, hydrogen production, CCS infrastructure

- Divided in existing & new houses
- Space heat, hot water, other ser.
- Technology data based on various UK-focused studies
- Divided in low- and high consumption buildings
- Structure similar to residential
- 8 subsectors, 4 modelled in a process-oriented manner
- Demand projections aligned with DECC Energy model
- Differentiated in 9 modes
- · Demands calibrated to NTM
- Technology data sourced from Dodds and McDowall (2014).
- Agriculture and land use

Residential

Service

Industry

Transport

- Differentiated in demand for transport, heat and electricity
- Land use and agricultural emission taken into account

Time slicing in UKTM

 Capture temporal characteristics of technologies

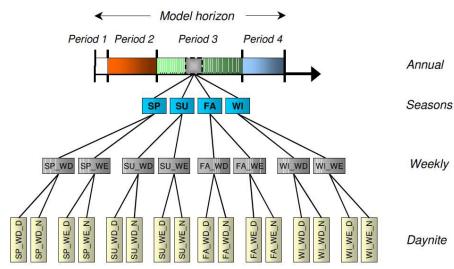
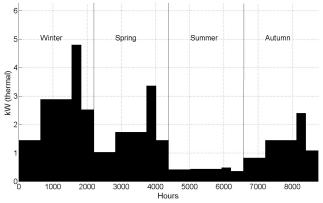


Figure 2.1: Example of a timeslice tree

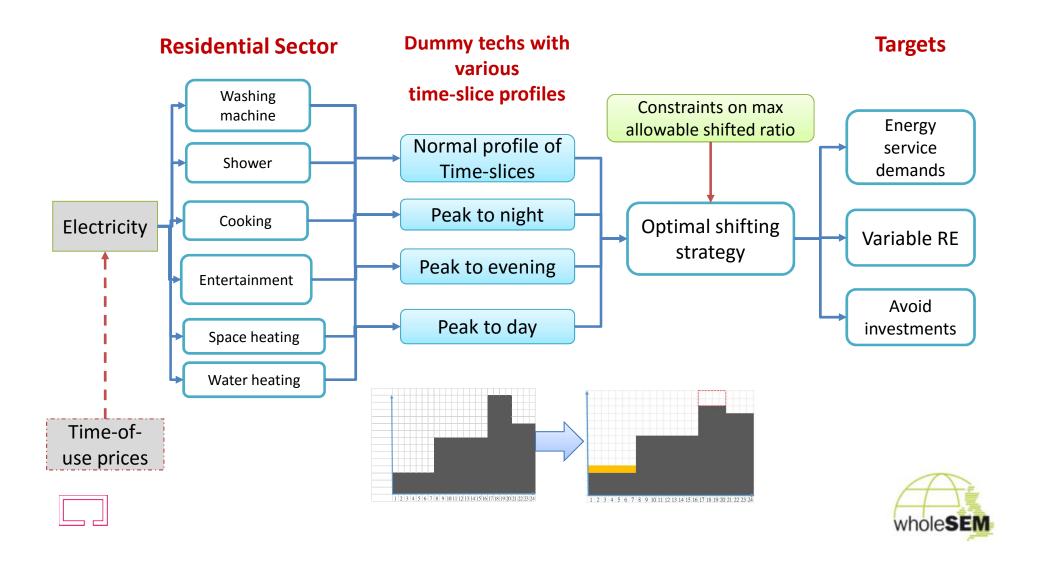

Time-slice tree in UKTM

Definition of time-slices

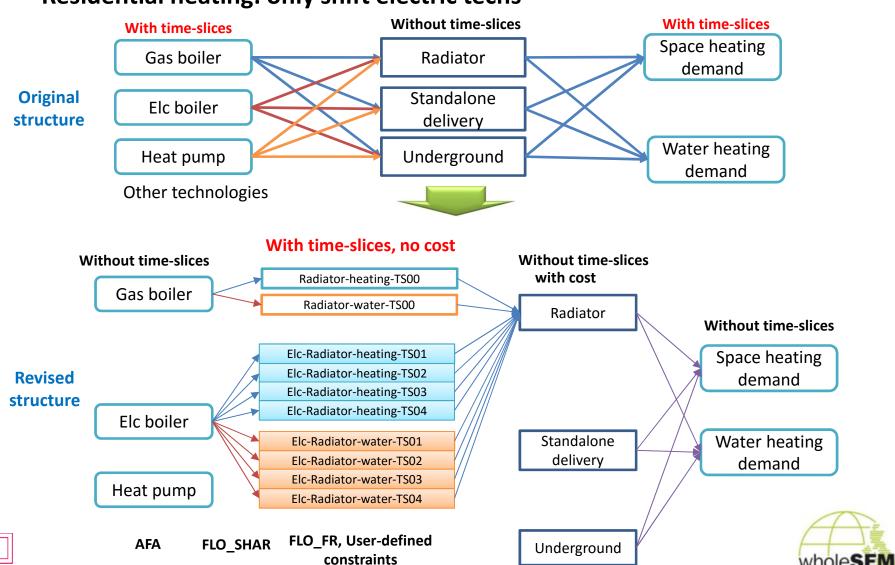
Table 1: Time-slices in UKTM

Season	Intra-day period	Time represented	Notes
Winter (W)	Night (N)	00:00-07:00	Lowest demand
Spring (P)	Day (D)	07:00-17:00	Includes morning peak
Summer (S)	Evening peak (P)	17:00-20:00	Peak demand
Autumn (A)	Late evening (E)	20:00-00:00	Intermediate

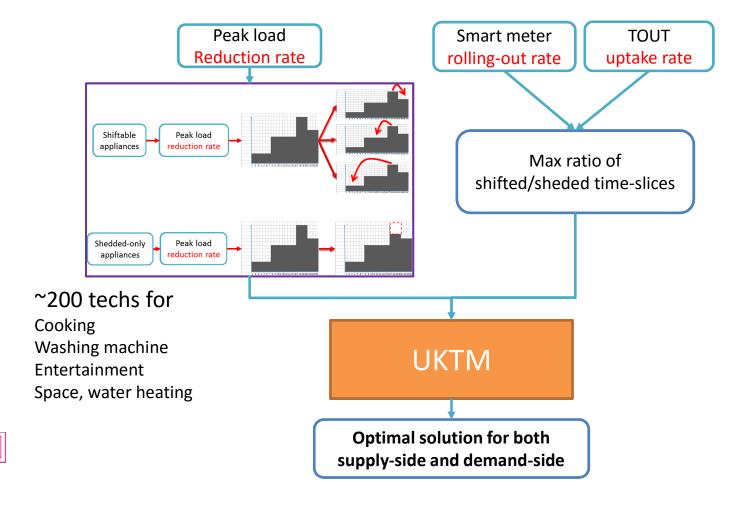
Time-slices for heating technology



Incorporate Demand Response in the UKTM


• Load shifting: for each shiftable appliances in residential sector

Incorporate Demand Response in the UKTM


Residential heating: only shift electric techs

Incorporate Demand Response in the UKTM

- DSR-UKTM framework
 - Time-of-use tariff: consumer behaviour
 - Load control: automated

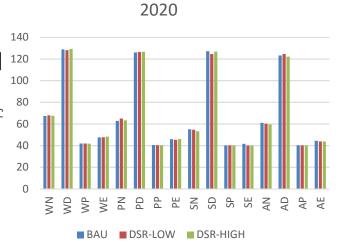
Scenarios

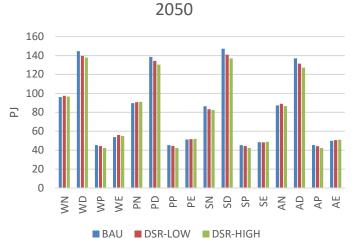
- For each scenarios
 - Smart meter deployed in households
 - Take up smart appliances (by 2020)
 - Take up some form of DSR

Scenario	Description			2020	2030
Business-as-	No DSR	TOU	% take-up	0	0
usual		LC	% peak demand shifted	0	0
Low potential	Without strong			8	30
DSR	policy supports and tech deployment	TOU	% peak demand shifted	5	20
		LC	% take-up	0	4
			% peak demand shifted	100	100
High potential	With strong	TOU	% take-up	8	60
DSR	policy supports and tech deployment	TOU	% peak demand shifted	10	40
		LC	% take-up	0	12
			% peak demand shifted	100	100

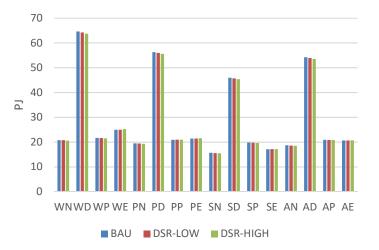
Note: These are percentages of households with shiftable appliances.

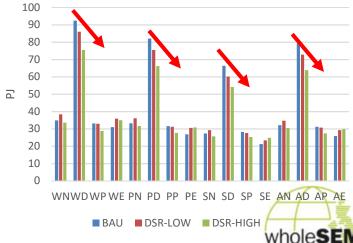
Base on **Element energy (2012)**'s scenarios.



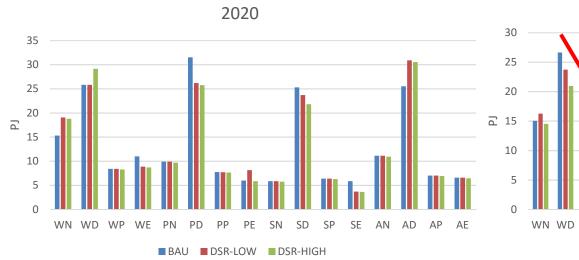

Results (1/4)

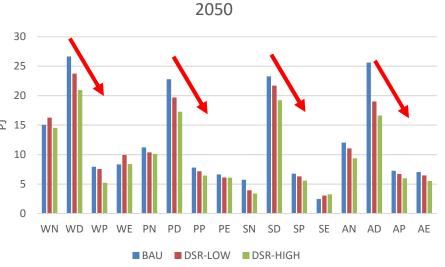
Electricity consumption for each time-slice


Peak load reduced


 Profiles are more smooth

Residential electricity consumption for each time-slice

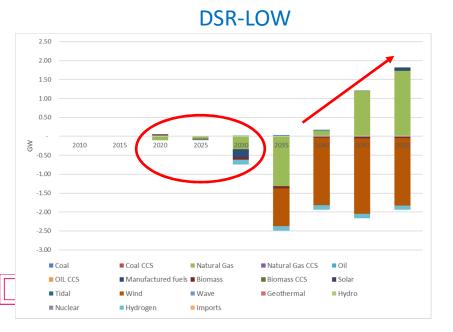


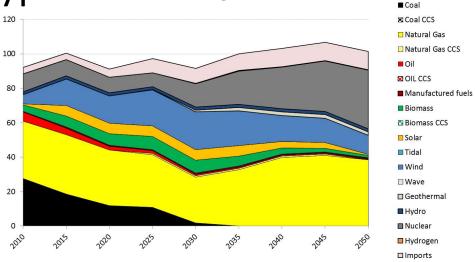


Results (2/4)

Renewable energy supply pattern changes accordingly

Electricity supply by renewable energy





Results (3/4)


- Electricity capacity by type
- Both scenarios avoid a lot of investments in new capacities
- DSR-LOW
 - Peak load is not shifted enough in longer term
- DSR-HIGH
 - Peak load is shifted significantly

BAU

DSR-HIGH

Results (4/4)

Cost saving over time is significant

Annual undiscounted energy system cost (M£) (to be further justified)

Diff btw DSR_LOW, DSR_BAU

(for reference only)

	2010	2015	2020	2025	2030	2035	2040	2045	2050
Activity costs	0	-1	-4	-15	-29	-144	-54	-41	-31
Flow costs	0	-3	-37	-83	-576	-670	-533	-319	-303
Fixed O&M costs	0	-5	-55	-310	-745	-1139	-1286	-1516	-1889
Investment costs	0	51	-71	-438	-1132	-1517	-1697	-1748	-2375
Elasticity costs	0	-53	51	-156	-146	-39	2	-747	-62
Sum	0	-11	-117	-1003	-2628	-3508	-3568	-4370	-4659

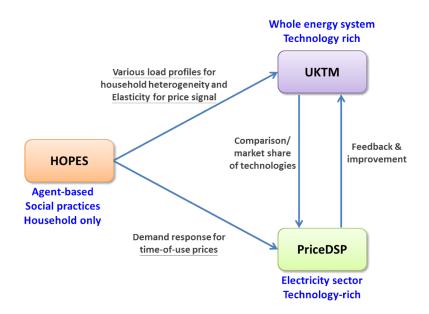
Diff btw DSR_HIGH, DSR_BAU

(for reference only)

	2010	2015	2020	2025	2030	2035	2040	2045	2050
Activity costs	0	-1	-23	-47	-64	-221	-149	-115	-93
Flow costs	0	-15	-107	-202	-999	-821	-728	-603	-551
Fixed O&M costs	0	-25	-162	-771	-1203	-1725	-1974	-1906	-1716
Investment costs	0	71	-204	-1152	-1745	-2648	-3086	-3015	-3500
Elasticity costs	0	-58	276	-235	101	63	9	-651	-1093
Sum	0	-28	-221	-2407	-3909	-5351	-5928	-6290	-6952

Conclusions

- Developed DSR-UKTM can incorporate DSR as a key measure for long-term energy planning
- Incorporation of DSR in whole energy system impact the planning significantly
- With DSR
 - Reduce peak load
 - Profiles of time-slices become more smooth
- Profiles of RE
 - Influence the installed capacity
- Avoid considerable investments in new power generation capacity
- Further uncertainty analysis is essential!



Future works

- Incorporate social practices: <u>discrete choice models (DCMs)</u> based on real survey data (probability of shifting)
 - Laundry: gender, age, original use-of-time, dwelling type, income, ownership of appliances
 - Heating: age, original use-of-time, dwelling type, income, ownership of appliances
 - Shower: age, original use-of-time, dwelling type, education level, resident number
 - Dish-washing: original use-of-time, dwelling type, income, resident number
 - Cooking: age, original use-of-time, dwelling type, education level, income, ownership of appliances
 - Entertainment: original use-of-time, education level, dwelling type, ownership of appliances
- Include other sectors: service, transport (EV) and industry.
- Link with other models (HOPES, PriceDSP)

Thanks for your attention!

