
Bortolussi, Bujorianu, Pola (Eds.): HAS 2013
EPTCS 124, 2013, pp. 43–57, doi:10.4204/EPTCS.124.6

© A. Casagrande, T. Dreossi & C. Piazza
This work is licensed under the
Creative Commons Attribution License.

Approximated Symbolic Computations
over Hybrid Automata∗

Alberto Casagrande
Dept. of Mathematics and Geosciences

University of Trieste, Italy
acasagrande@units.it

Tommaso Dreossi Carla Piazza
Dept. of Mathematics and Computer Science

University of Udine, Italy
tommaso.dreossi@uniud.it carla.piazza@uniud.it

Hybrid automata are a natural framework for modeling and analyzing systems which exhibit a mixed
discrete continuous behaviour. However, the standard operational semantics defined over such mod-
els implicitly assume perfect knowledge of the real systems and infinite precision measurements.
Such assumptions are not only unrealistic, but often lead to the construction of misleading models.
For these reasons we believe that it is necessary to introduce more flexible semantics able to manage
with noise, partial information, and finite precision instruments. In particular, in this paper we inte-
grate in a single framework based on approximated semantics different over and under-approximation
techniques for hybrid automata. Our framework allows to both compare, mix, and generalize such
techniques obtaining different approximated reachability algorithms.

1 Introduction

Hybrid automata were proposed to model hybrid systems, i.e., systems consisting of interaction between
discrete and continuous components [1]. Automatic deduction of properties for such systems is strictly
related to the concept of state reachability. In particular, given a set of initial states, we ask whether there
are executions of the system that lead to specific final states. In general, it has been proved that such
problem is undecidable, i.e., algorithms which provide the correct answer for any instance of such prob-
lem cannot exist [11]. However, imposing syntactic restrictions, several subclasses of hybrid automata
over which the reachability problem is decidable have been identified [13, 6].

Different approaches, such as the introduction of noise in hybrid automata [9] and the use of approx-
imated semantics (ε-semantics [5]), have been proposed with the aim of both tackling the undecidability
of the reachability problem and introducing hybrid automata semantics able of capturing some indetermi-
nacy which is intrinsic in real world hybrid systems (e.g., experimental approximations, environmental
disturbances, etc.). In [12], the authors observed that undecidability cannot be removed by simply re-
placing trajectories with open flow tubes. More drastic changes at a semantics level are required. Many
works proposed so far go in this direction (see [9, 10, 22, 5]). Comparisons between these approaches
on multistable and Zeno examples can be found in [4].

We proceed investigating in the direction of ε , and more in general approximated, semantics with
the aim of introducing a general framework for the use, comparison, and composition of different ap-
proximation methods. Similarly to [9], our framework relies on polynomial dynamics. As shown by
different authors (see e.g. [17, 18]), this is not a strong restriction since arbitrary flow functions can be
approximated with polynomial flows. Moreover, the standard numeric algorithms used to generate the
solutions of a system of differential equations and to integrate them are based on polynomials. Such con-
siderations are exploited also in [19] where Fränzle’s results are applied “[. . .] after explicitly solving

∗This work has been partially supported by Istituto Nazionale di Alta Matematica (INdAM).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/53345448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4204/EPTCS.124.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

44 Approximated Symbolic Computations over Hybrid Automata

flow constraints [. . .]”. While in [18] the focus is on approximating hybrid systems with polynomial,
here we start from polynomial systems and approximate their semantics with the aim of removing infi-
nite precision and avoid unrealistic behaviors. Differently from [9] and [19], we do not refer to robust
systems. Indeed, multistable systems cannot be naturally modeled through robust automata [4].

In more details, in this work, we propose a framework that, on the one hand, exploits Fränzle’s ap-
proach, reformulated in terms of over-approximating semantics, and on the other, is based on ε-semantics
for under-approximating the reachable set. Neither approach relies on fixed-grid discretizations, but on
local perturbations on reachable points. In particular, in a quantum-physics fashion, ε-semantics per-
tubates the observed states, but not the continuous evolution, which proceeds with infinite precision as
long as it is not observed.

We implemented our framework exploiting translations of approximated semantics into first-order
formulæ over the reals. Such translations allow us to exploit available tools for quantifier eliminations,
such as Redlog and QEPCAD, to implement our reachability algorithms. We tested our implementation
on a railroad crossing scenario.

The paper is organized as follows. In Section 2 we present the notation and our definition of hybrid
automaton. Section 3 introduces the notion of approximating semantics and briefly reviews ε-semantics,
while Section 4 instantiates disturbed automata in our formalism. In Section 5, the standard semantics of
disturbed automata and the related reachability algorithm are expressed in terms of an over-approximated
semantics, while a ε-semantics, under-approximating the standard one, is introduced. In Section 6, we
briefly describe our implementation of the presented framework and test it on the railroad case-study.
Finally, Section 7 ends the paper with some general comments on the difference between the compared
approaches and suggests further developments.

2 Hybrid Automata

2.1 Preliminaries

We now introduce some notations and conventions. Capital letters X ,X ′,Xm, and X ′
m, where m ∈ N,

denote variables ranging over R, while Z denotes the vector of variables ⟨X1, . . . ,Xd⟩ and Z′ denotes the
vector ⟨X ′

1, . . . ,X
′
d⟩. The variable T models time and ranges over R≥0. We use p,q,r,s, . . . to denote

d-dimensional vectors of real numbers.
As far as the standard notions of first-order languages, models, and theories are concerned the reader

may refer, for example, to [16]. In this paper we refer to the first-order theory of (R,0,1,+,∗,=,<),
also known as the theory of semi-algebraic sets or Tarski’s theory [21]. Such theory is decidable, i.e.,
algorithms to check satisfiability of formulæ have been defined (see, e.g., [3]).

We write ϕ[X1, . . . ,Xm] to stress the fact that the set of free variables of the first-order formula ϕ is
included in the set of variables {X1, . . ., Xm}. If {Z1, . . ., Zn} is a set of variable vectors, ϕ[Z1, . . ., Zn]

indicates that the free variables of ϕ are included in the set of components of Z1, . . ., Zn. Given a formula
ϕ[Z1, . . ., Zi, . . ., Zn] and a vector p of the same dimension as the variable vector Zi, the formula obtained
by component-wise substitution of Zi with p is denoted by ϕ[Z1, . . ., Zi−1, p, Zi+1, . . ., Zn]. We use � and
⊺ as shortcuts to denote the two formulæ 0 = 1 and 1 = 1, respectively.

The set of formalæ having n free-variables is denoted by Fn, while {∣ϕ ∣}, where ϕ is any generic
formula in Fn, is the standard semantics of ϕ ∈ Fn i.e. the set of points of Rn satisfying ϕ . More

formally, {∣ ⋅ ∣} ∶⋃n∈NFn→⋃n∈N℘(Rn) with {∣ϕ[X1, . . . ,Xn]∣}
de f
= {⟨p1, . . . , pn⟩ ∈Rn ∣ϕ[p1, . . . , pn] holds}.

On the other hand, given a set S ⊆ Rn we say that a formula S[Z] represents (also defines) S if

A. Casagrande, T. Dreossi & C. Piazza 45

{∣S[Z]∣} = S. Not all the subsets of Rn can be represented through a formula.
We also use some standard notions from topological and metric spaces (see [15]). Although we

implicitly refer to the standard euclidean metric δ over Rn, our results can be generalized to any metric
definable in Tarski’s theory. We write B(p,ε) to indicate the open sphere of radius ε centered in p ∈Rn.
By extension, B(S,ε), where S is a subset of Rn, denotes the Minkowski sum of B(0,ε) and S.

A set S is said to be α-paraconvex, where α ∈ [0,1], if for each B(p,ε) (with p and ε generic) and
for each q ∈ conv(S∩B(p,ε)) it holds that δ(q,S) ≤ α ∗ε , where conv(S∩B(p,ε)) is the convex hull of
S∩B({p},ε) and δ(q,S) = in f{δ(q, p) ∣ p ∈ S}. Let I ⊆ R be an interval and f ∶ I → Rn. We say that
f is continuous if for each t ∈ I and for each neighborhood U f (t) of f (t) there exists a neighborhood
Ut of t in I such that for each t′ ∈Ut it holds f (t′) ∈U f (t). Moreover, a set-valued map F ∶ I → ℘(Rn)

is lower semi-continuous if for each t ∈ I, for each y ∈ F(t), and for each neighborhood Uy of y, there
exists a neighborhood Ut of t in I such that for each t′ ∈Ut it holds F(t′)∩Uy ≠∅. The notion of lower
semi-continuity and α-paraconvexity are at the basis of Michael’s selection theorems (see, e.g., [2])
which guarantee the existence of a continuous flow inside a set-valued map. In particular, given a set-
valued map F ∶ I →℘(Rn) the selection problem over F requires to find (if there exists one) a continuous
function f ∶ I →Rn such that for each t ∈ I it holds that f (t) ∈ F(t).

2.2 Syntax

In this section we give the formal definition of hybrid automata. Many different definitions can be
found in the literature. Most common differences between those formalisms reside in the descriptions of
continuous and discrete transitions, while the semantics attributed to the transitions are almost the same.
Here we follow the approach used in [6] and [5] where automata are defined through first-order formulæ
over the reals and, in particular, semi-algebraic formulæ.

Definition 1 (Hybrid Automata - Syntax). A hybrid automaton H = (Z, Z′,T, V, E , Inv, Dyn, Act, Res)
of dimension d(H) consists of the following components:

• Z = ⟨X1, . . . ,Xd(H)⟩ and Z′ = ⟨X ′
1, . . . ,X

′
d(H)

⟩ are two vectors of variables ranging over the reals R;

• T is a variable ranging over R≥0;

• ⟨V,E⟩ is a finite directed graph. Each element of V will be dubbed location;

• each vertex v ∈ V is labeled by the two formulæ Inv(v)[Z] and Dyn(v)[Z,Z′,T]; it should holds
that, when Inv(v)[p] is true, Dyn(v)[p,q,0] is true if and only if p = q;

• each edge e ∈ E is labeled by the two formulæ Act(e)[Z] and Res(e)[Z,Z′].

Intuitively, Dyn(v) represents the dynamics associated to the location v, Inv(v) denotes the set of
continuous values admitted during the evolution in v, Act(e) identifies the set of continuous values from
which the automaton can jump over the edge e, and Res(e) characterizes a map that should be applied
to the continuous values from which the automaton crosses the edge e. Section 2.3 details the formal
meaning of these formulæ and describes the semantics of hybrid automata.

While hybrid automaton dynamics are classically described by using differential equations (see, e.g.,
[14, 13]), we adopt an approach based on first-order formulæ. However, in many cases, solutions, or
approximated solutions, of the differential equations are computed before the automaton analysis (see,
e.g., [13]). Whenever such (approximated) solutions are polynomials, the same dynamics expressed by
differential equations can be defined in Tarski’s theory.

Comparing our definition with the one in [6], we can notice that we add the condition Dyn(v)[p,q,0]
implies p = q. Intuitively, this means that if we are in p at time 0, we can reach a point different from

46 Approximated Symbolic Computations over Hybrid Automata

−100≤Z1≤100

Dyn(v)[Z,Z′,T]

Z1
2 <Z′1<Z1

Figure 1: The hybrid automaton described in Example 1.

p through a continuous dynamics only if we let time flow. This assumption allows us to both get flow
continuity at time 0 and slightly simplify the reachability formulæ with respect to the ones defined in [6].

Example 1. Figure 1 depicts a graphical representation of the hybrid automaton H = (Z,Z′,T,V,E ,Inv,
Dyn,Act,Res), where Z = ⟨Z1⟩ and Z′ = ⟨Z′1⟩ and both Z1 and Z′1 are variables over R; V = {v} and

E = {(v,v)}; Inv(v)[Z]
de f
= −100 ≤ Z1 ≤ 100; Dyn(v)[Z,Z′,T]

de f
= (T = 0∧Z′1 = Z1)∨(T > 0∧Z1 < 2∗Z′1 ≤

2∗Z1); Res((v,v))[Z,Z′]
de f
= Z1 < 2∗Z′1 < 2∗Z1; Act((v,v))[Z]

de f
= ⊺.

2.3 Standard Semantics

The formula Dyn(v)[Z,Z′,T] holds if there exists a continuous flow going from Z to Z′ in T time-
instants. We admit an infinite number of flows, which can also be self-intersecting. Our semantics
imposes the continuity of such flows.

Definition 2 (Hybrid Automata - Semantics). A state ` of H is a pair ⟨v,r⟩, where v ∈ V is a location and
s = ⟨s1, . . . ,sd(H)⟩ ∈Rd(H) is an assignment of values for the variables of Z. A state ⟨v,s⟩ is admissible if
Inv(v)[s] is true. We have two kind of transitions:

• the continuous transition relation→C:
⟨v,s⟩→C ⟨v,r⟩ ⇐⇒ there exists f ∶ R≥0 → Rd(H) continuous function such that s = f (0), there
exists t ≥ 0 such that r = f (t), and for each t′ ∈ [0,t] Inv(v)[f (t′)] and Dyn(v)[s, f (t′),t′] hold;

• the discrete transition relation→D:
⟨v,s⟩→D ⟨u,r⟩ ⇐⇒ (v,u) ∈ E and both the formulæ Act((v,u))[s] and Res((v,u))[s,r] holds.

Combining continuous and discrete transitions, we introduce the notions of trace and reachability.
A trace is a sequence of continuous and discrete transitions. A point r is reachable from a point s if there
is a trace starting from s and ending in r. We use `→ `′ to denote that either `→C `′ or `→D `′.

Definition 3 (Hybrid Automata - Reachability). A trace of length n of H is a sequence of admissible
states `0,`1, . . . ,`n, with n ∈N>0, such that:

• for each j ∈ [1,n] it holds ` j−1→ ` j;

• for each j ∈ [1,n−1] if ` j−1 /→D ` j, then ` j →D ` j+1.

In H, s ∈ Rd(H) reaches r ∈ Rd(H) if there exists a trace `0, . . . ,`n of H such that `0 = ⟨v,s⟩ and
`n = ⟨u,r⟩, for some v,u ∈ V . A set I ⊆Rd(H) reaches F ⊆Rd(H) if there exists s ∈ I which reaches r ∈ F.

We impose the condition that, in a trace, continuous transitions do not occur consecutively. In hy-
brid automata whose flows are solutions of autonomous differential equations, the continuous transition
relation is transitive, hence if a trace contains a sequences of consecutive continuous transitions, it can
be reduced to a trace without consecutive continuous transitions. However, Definition 1 allows also

A. Casagrande, T. Dreossi & C. Piazza 47

automata whose continuous transition relation is not transitive. This can occur when the dynamics are
solutions of non-autonomous differential equations. For instance, if the formula based dynamics are
⟨X0 +T,Y0 +T 2⟩, the set of points reachable from ⟨0,0⟩ is, of course, R = {⟨t,t2⟩∣t ∈ R≥0}. However,
since, for every r ∈ R, there exists a tuple ⟨t,r ∗ t⟩ in R, by admitting multiple successive continuous
transitions we would have obtained R2 as the reachability set which is visibly wrong.

Let us consider the case of hybrid automata whose dynamics are of the form Dyn(v)[Z,Z′,T]
de f
=

Z′ = fv(Z,T), with fv continuous (e.g., the case of solutions of vector fields). Let us call such automata
functional automata. For functional automata it is easy to write a formula Ri

H[Z,Z′] which models the
reachability with i discrete transitions (see, e.g., [6]). Since, such formulæ are first-order formulæ whose
satisfiability is decidable, we can summarize this result saying that for this class of automata reachability
within a fixed number of discrete transitions is decidable. However, the possibility of characterizing
reachability within a fixed number of discrete transitions through formulæ does not imply the decidability
of the reachability problem. As a matter of fact, even if the satisfiability of Ri

H[Z,Z′] is decidable, in
order to solve the reachability problem we would need to test the satisfiability of an infinite number of
formulæ, i.e., one for each i ∈N.

If we do not impose any further condition on the dynamics, it is not possible to write a first-order
formula representing a continuous transition. As a matter of fact, our definition of →C requires the
existence of a continuous function f which satisfies the constraints Inv and Dyn, i.e., it requires to decide
whether a selection problem has a solution (see Section 2.1). However, selection problems are neither
expressible in our first-order language nor decidable in the general case. This is the main difference
between our approach and the one presented in [9], where the continuity of the continuous transitions
(called act) is not imposed.

In the next section we introduce a class of hybrid automata which generalizes functional automata
still allowing to translate continuous transitions into formulæ.

2.4 Michael’s Form Automata

In order to ensure the existence of a continuous function satisfying both invariant and dynamic constraints
we need to check that such constraints meet the hypothesis of a selection theorem [2]. In particular, as
in [6], we consider a class of automata based on Michael’s selection result. The following definitions
express Michael’s hypothesis in the context of hybrid automata.

First we characterize the set valued map from which the continuous selection will take place.

Definition 4 (Iv
p,Fv

p). Let H be a hybrid automaton. Let v be a location of H and p ∈ Rd(H) such that
Inv(v)[p] holds. Iv

p is the interval of time instants satisfying the following: ∀T ∈ Iv
p ∃Z′(Dyn(v)[p,Z′,T]∧

Inv(v)[Z′]). The time instant 0 belongs to Iv
p, and Iv

p is maximal with respect to the first two requirements.
The function Fv

p ∶ I
v
p→ ℘(Rd(H)) is defined as Fv

p (T) = {q ∣ Dyn(v)[p,q,T]∧ Inv(v)[q]}.

Since Michael’s theorem [2] requires lower semi-continuity, closedness, and α-paraconvexity (see
Section 2.1), we obtain the following class of hybrid automata.

Definition 5 (MF Automata [6]). We say that a hybrid automaton H is in Michael’s Form, or simply a
MF automaton, if for each state v ∈V and for each point p ∈Rd(H) such that Inv(v)[p] holds, the function
Fv

p is lower semi-continuous, and for each t ∈ Iv
p the set Fv

p (t) is closed and α-paraconvex.

As proved in [6] if a hybrid automaton is in Michael’s form continuous transitions can be character-
ized through a formula. As a consequence, reachability within a fixed number of discrete transitions can
be mapped into a satisfiability problem over semi-algebraic formulæ, as follows.

48 Approximated Symbolic Computations over Hybrid Automata

Let H be a MF automaton, and v ∈ V one of its locations. Consider the formula:

T p(v)[Z,T]
de f
= ∀T ′

(0 ≤ T ′
∧T ′

≤ T → ∃Z′(Dyn(v)[Z,Z′,T ′
]∧ Inv(v)[Z′])).

If p satisfies Inv(v), then it follows that t ∈ Iv
p if and only if T p(v)[p,t] is true.

Definition 6 (MF Automata - Reachability Formula [6]). Let H be a MF automaton. The formula
Reachi

H(v,v′)[Z,Z′] is inductively defined as follows:

Reach0
H(v,v′)[Z,Z′]

de f
=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

� if v ≠ v′,
∃T(T ≥ 0∧Dyn(v)[Z,Z′,T]∧T p(v)[Z,T])∧

Inv(v)[Z]∧ Inv(v)[Z′]
otherwise.

Reachi+1
H (v,v′)[Z,Z′]

de f
= ⋁

ṽ∈V
(∃Z1∃Z2(Reachi

H(v, ṽ)[Z,Z1]∧Act((ṽ,v′))[Z1]∧

Res((ṽ,v′))[Z1,Z2]∧Reach0
H(v′,v′)[Z2,Z′])).

Moreover, we define the formulæ:

Reachi
H[Z,Z′]

de f
= ⋁

v,v′∈V
Reachi

H(v,v′)[Z,Z′] and Reach≤i
H [Z,Z′]

de f
=

i
⋁
j=0

Reach j
H[Z,Z′].

As immediate consequence of [6], the above defined formulæ correctly characterize the notion of
reachability within a fixed number of discrete transitions.

Lemma 1. Let H be a MF automaton. Let I,F ⊆Rd(H) be represented by the formulæ I[Z],F[Z], respec-
tively. The set I reaches the set F if and only if there exists i ∈N such that the formula Reachi

H[Z,Z′]∧
I[Z]∧F[Z′] is satisfiable.

In [6] it has also been shown that given a hybrid automaton H it is possible to decide whether it is a
MF automaton or not, again through satisfiability problems over semi-algebraic formulæ.

Example 2. Let us consider the Example 1. It is immediate to see that H is a MF automaton.
In this case T p(v)[Z,T] is the formula −100 ≤ Z1 ≤ 100, and hence Reach0

H[Z,Z′] becomes −100 ≤
Z1 ≤ 100∧ −100 ≤ Z′1 ≤ 100∧ Z1

2 < Z′1 ≤ Z1.
For this automaton, the computation of the reachability set does not converge. More precisely, at each

iteration, while the reach set upper bound remains constant, the lower bound decreases by a quarter with
respect to the lower bound of the previous reach set. Thus, only after an infinite number of iterations the
lower bound would converge to zero.

3 Approximated Semantics

The standard semantics {∣ϕ ∣} of a formula ϕ with n free-variables over the reals is a subset of Rn. Hence,
once we have fixed a standard semantics function {∣ ⋅ ∣} which maps formulæ with n free-variables into
subsets of Rn, every other function of this type can be seen as an approximated semantics.

Definition 7 (Approximated Semantics). An approximated semantics is a function ∣∣ ⋅ ∣∣ ∶ ⋃n∈NFn →

⋃n∈N℘(Rn) such that for each ϕ ∈Fn, it holds that ∣∣ϕ ∣∣ ⊆Rn.

A. Casagrande, T. Dreossi & C. Piazza 49

If ⌊∣ ⋅ ∣⌋ is an approximated semantics such that for each formula ϕ it holds ⌊∣ϕ ∣⌋ ⊆ {∣ϕ ∣}, we can say that
⌊∣ ⋅ ∣⌋ is an under-approximation of the standard semantics, or simply an under-approximation semantics.
Similarly, if ⌈∣ ⋅ ∣⌉ is such that {∣ϕ ∣} ⊆ ⌈∣ϕ ∣⌉ is always true, then ⌈∣ ⋅ ∣⌉ is an over-approximation semantics.
There are approximated semantics which are neither under nor over-approximations.

In [5] the authors observe that dense unbounded domains, which are the cause of undecidability of
the reachability problem, are often abstractions of real world domains. In particular, they notice that,
especially in the context of biological simulation, it is useful to avoid the ability to distinguish between
values whose distance is less than a fixed ε . They introduce a new class of semantics for first-order
formulæ, called ε-semantics, which guarantee the decidability of reachability in the case of automata
with bounded invariants.
Definition 8 (ε-Semantics [5]). Let ε ∈R>0. For each formula ψ ∈Fn let {∣ψ ∣}ε ⊆Rn, be such that:

(ε) {∣ψ ∣}ε =∅ or exists p ∈Rn s.t. B(p,ε) ⊆ {∣ψ ∣}ε

(∩) {∣ψ1∧ψ2∣}ε ⊆ {∣ψ1∣}ε ∩{∣ψ2∣}ε

(∪) {∣ψ1∨ψ2∣}ε = {∣ψ1∣}ε ∪{∣ψ2∣}ε

(∀) {∣∀Xψ[X ,Z]∣}ε = {∣⋀r∈Rψ[r,Z]∣}ε

(∃) {∣∃Xψ[X ,Z]∣}ε =⋃r∈R{∣ψ[r,Z]∣}ε

(¬) {∣ψ ∣}ε ∩{∣¬ψ ∣}ε =∅

Any semantics {∣ ⋅ ∣}ε satisfying the above conditions is said to be an ε-semantics.
In the above definition, as done in [5], with a slight abuse of notation we use⋀r∈Rψ to treat an infinite

conjunction of formulæ as a formula. The Algorithm 1, given in [5], computes the sets of reachable states
of a given automaton and describes sets of points through formulæ.

Algorithm 1 Reachability(H,I[Z],{∣ ⋅ ∣}ε)
1: R[Z]← I[Z]

2: N[Z]← �

3: repeat
4: R[Z]← R[Z]∨N[Z]

5: N[Z]← ∃Z′(Reach≤1
H [Z′,Z]∧R[Z′])

6: until {∣N[Z]∧¬R[Z]∣}ε ≠∅ is true
7: return {∣R[Z]∣}ε

The reachability is computed incrementing at each step the number of discrete transitions: new
reachable sets of points are computed until they become too small to be identified in the ε-semantics. In
the case of hybrid automata with bounded invariants such reachability algorithm always terminates. If
we replace the ε-semantics with the standard one, each step of the above algorithm under-approximates
the set of reachable points. However, it still may not end even in the case of bounded invariants.

The sphere semantics (∣ ⋅ ∣)ε (see e.g., [5]) is an ε-semantics which is neither an over nor an under-
approximation semantics. The set (∣ψ ∣)ε , where ε ∈R>0, is defined as follows:

(ε) (∣t1 ○ t2∣)ε

de f
= B({∣t1 ○ t2∣},ε), for ○ ∈ {=,<}

(∩) (∣ψ1∧ψ2∣)ε

de f
= ⋃B(p,ε)⊆(∣ψ1∣)ε∩(∣ψ2∣)ε

B(p,ε)

(∪) (∣ψ1∨ψ2∣)ε

de f
= (∣ψ1∣)ε ∪(∣ψ2∣)ε

(∀) (∣∀Xψ[X ,Z]∣)ε

de f
= ⋃B(p,ε)⊆⋂r∈R(∣ψ[r,Z]∣)ε

B(p,ε)

(∃) (∣∃Xψ[X ,Z]∣)ε

de f
= ⋃r∈R(∣ψ[r,Z]∣)ε

(¬) (∣¬ψ ∣)ε

de f
= ⋃B(p,ε)∩(∣ψ ∣)ε=∅B(p,ε)

50 Approximated Symbolic Computations over Hybrid Automata

Example 3. Let H be as in Example 1. The sphere semantics with ε = 0.5 gives us (∣Reach0
H[10,Z′]∣)ε =

(4.5,10.5), (∣Reach1
H[10,Z′]∣)ε = (0.75,10.5), (∣Reach2

H [10,Z′]∣)ε = (−0.19,10.5), and (∣Reach3
H[10,

Z′]∣)ε = (−0.42,10.5). Thus, the reachability algorithm described in [5] over H, instantiated with the
sphere semantics with ε = 0.5, halts and returns as result the set (−0.19,10.5), since the difference
between (∣Reach2

H[10,Z′]∣)ε and (∣Reach3
H[10,Z′]∣)ε is smaller than an open sphere of radius ε = 0.5.

This example also points out that whenever a variable is quantified in a formula, the ε-semantics
evaluates it with all the possible constants, and hence there are no approximation effects on it. As a
matter of fact (∣Reach1

H[10,Z′]∣)ε does not include the interval [10.5,11,5) which would be included if
the quantified variables in the formula Reach1

H[10,Z′] were over-approximated.

It is immediate to prove that, due to rule (¬), ε-semantics are never over-approximation semantics.
As a consequence of this fact and of the structure of the reachability algorithm, the approach proposed
in [5] is not taylored for over-approximating reachability. In Section 5.2 we show how to exploit ε-
semantics for under-approximation.

4 Disturbed Automata

In this section we present the approach proposed by Fränzle in [9] for the over-approximation of reacha-
bility. In particular, we briefly recall the framework described in [9] and then we establish some general
relationships with the framework we introduced in Section 2.

Fränzle noticed that real hybrid systems are always subject to noise, suspecting that their continuous
components can provide only finite memory. If so, the state space of such automata would be the product
of the size of the discrete state space and the effective size of the continuous state space modulo noise.
This means that the reach set computation of hybrid automata modeling real systems, should converge
finitely, yielding decidability of state reachability.

The definition of hybrid automata given in [9] slightly differs from Definition 1. Specifically, acti-
vations and resets are characterized by a single formula called transition predicate transv→v′ . Similarly,
invariants and dynamic laws are merged in the activity predicate actv, which does not impose any con-
straint on the continuity of the dynamic laws.

Definition 9 (Fränzle Hybrid Automata - Syntax [9]). A Fränzle hybrid automaton H = (V,Z′,(actv)v∈V ,
(transv→v′)v,v′∈V ,(initialv)v∈V ,(sa f ev)v∈V) of dimension d ∈N consists of the following components:

• V is a finite set, representing the discrete locations;

• Z is a vector of variable names of dimension d, representing the continuous variables of H;

• each v ∈ V is labeled with a formula actv[Z,Z′] representing the continuous activities and corre-
sponding state constraints;

• each pair of locations v,v′ ∈ V is labeled with a formula transv→v′[Z,Z′] representing the discrete
transitions and their guarding conditions;

• each v ∈ V is labeled with the formulæ initialv[Z] and sa f ev[Z] representing the initial and the
safe states of the hybrid automaton.

As far as the semantics is concerned, the reachability formula Φ(H)i
v→v′ is defined as follows [9]:

Φ(H)
0
v→v′[Z,Z

′
]

de f
=

⎧⎪⎪
⎨
⎪⎪⎩

actv[Z,Z′] if v = v′,
� otherwise.

A. Casagrande, T. Dreossi & C. Piazza 51

Φ(H)
i+1
v→v′[Z,Z

′
]

de f
= ⋁

ṽ∈V
∃Z1∃Z2(Φ(H)

i
v→ṽ[Z,Z1]∧ transṽ→v′[Z1,Z2]∧actv′[Z2,Z′]).

An automaton is said to be safe if the initial states can only reach safe states.
We formalize how a MF automaton can be mapped into an automaton w.r.t. Definition 9.

Definition 10 (Corresponding Fränzle Automaton). Given a MF automaton H = (Z,Z′,T,V,E , Inv,Dyn,
Act,Res) and two formulæ I[Z] and F[Z], the corresponding Fränzle automaton is the automaton

Fr(H,I,F)
de f
= (V, Z′,(actv)v∈V , (transv→v′)v,v′∈V , (initialv)v∈V , (sa f ev)v∈V) where:

• for each v ∈V , actv
de f
= Reach0

H(v,v), initialv
de f
= Inv(v)[Z]∧I[Z], and sa f ev

de f
= Inv(v)[Z]∧¬F[Z];

• for each e = (v,v′) ∈ E , transv→v′
de f
= Act(e)∧Res(e), while for each (v,v′) /∈ E , transv→v′

de f
= �.

Such translation establishes the following relationship between the formulæ Φ(Fr(H,I,F))i
v→v′ of

[9] and our reachability formulæ.

Lemma 2. Let H be a MF automaton, I[Z] and F[Z] be two formulæ. Let Fr(H,I,F) be the correspond-
ing Fränzle automaton. For each i ∈N it holds that {∣Φ(Fr(H,I,F))i

v→v′[Z,Z
′]∣}={∣Reachi

H(v,v′)[Z,Z′]∣}.

Hence, our notion of reachability corresponds to a non safety condition.

Theorem 1. Let H be a MF automaton, I[Z] and F[Z] be two formulæ representing I and F, respectively.
Let Fr(H,I,F) be the corresponding Fränzle automaton. I reaches F in H if and only if Fr(H,I,F) is
not safe.

Given a hybrid automaton H, Fränzle defines H̃, called the disturbed variant of noise level ε , as
the automaton obtained from H perturbing all the activity predicates, i.e., expanding the activity pred-
icates by an open sphere of radius ε . Thus, since every activity predicate of an automaton Fr(H,I,F)

corresponds to the reachability formula Reach0
H , we can define a disturbed variant of H as follows.

Definition 11 (Disturbed Automata). Let us consider a MF automaton H. The MF automaton H̃ =

(Z,Z′,T,V,E , Ĩnv,D̃yn,Act,Res) is a disturbed variant of H if and only if for each v ∈ V it holds that
{∣Reach0

H(v,v)[Z,Z′]∣} ⊆ {∣Reach0
H̃

(v,v)[Z,Z′]∣}.
Moreover, let ε ∈R>0. We say that a disturbance H̃ of H is a disturbance of noise level ε or more if and

only if for each v ∈ V it holds that {∣∃Z′′(Reach0
H(v,v)[Z,Z′′]∧δ(Z′′,Z′) < ε)∣} ⊆ {∣Reach0

H̃
(v,v)[Z,Z′]∣}.

In the above definition we refer to the standard euclidian distance δ . Our definition of disturbed
variants is an instance of Fränzle definition in the following sense.

Lemma 3. Let H be a MF automaton. I[Z] and F[Z] be two formulæ. Let Fr(H,I,F) be the cor-
responding Fränzle automaton. If H̃ is a disturbed variant of H, Fr(H̃,I,F) is a disturbed variant of
Fr(H,I,F) w.r.t. Fränzle’s definition. If H̃ is a disturbance of noise level ε or more, so is Fr(H̃,I,F).

As a consequence, exploiting Lemma 2 of [9], we get the following theorem which states how H̃ can
be used to over-approximate reachability over H.

Theorem 2. Let H be a MF automaton, H̃ be a disturbed variant of H of noise level γ > 0, and I[Z] be
a formula. If {∣Ĩnv(v)[Z]∣} is bounded for each v ∈ V , then there exists i ∈N such that:

⋃
n∈N

{∣Reachn
H[Z,Z′]∧ I[Z]∣} ⊆

i
⋃
n=0

{∣Reachn
H̃[Z,Z′]∧ I[Z]∣}.

Moreover, i can be effectively computed.

52 Approximated Symbolic Computations over Hybrid Automata

5 Mixing the Approaches

In this section we first re-describe Fränzle’s reachability algorithm in terms of approximated semantics,
obtaining an over-approximation reachability algorithm which does not explicitly refer to H̃. Then we
focus on under-approximations of reachability based on ε-semantics.

5.1 Over-Approximation

We define a new approximated semantics, named tilde semantics, which captures the introduction of
noise in hybrid automata.

Definition 12 (Tilde Semantics). Let ψ be a formula and let ε ∈R>0. The tilde semantics of ψ is ⟨∣ψ ∣⟩ε

de f
=

B({∣ψ ∣},ε).

Such semantics applied to H under-approximates each ε-disturbance of H in the following sense.
Theorem 3. Let H be a MF automaton and H̃ be a disturbance of noise level ε or more. For each
v,v′ ∈ V , for each p ∈Rd(H) it holds that ⟨∣Reachi

H(v,v′)[p,Z′]∣⟩ε ⊆ {∣Reachi
H̃
(v,v′)[p,Z′]∣}.

Hence, exploiting Theorem 3 we get the following result.
Corollary 1. Let H be a MF automaton, H̃ be a disturbance of noise level ε or more with respect to
δ , and I[Z] be a formula. If for each v ∈ V it holds that {∣Ĩnv(v)[Z]∣} is bounded, then there exists i ∈
N such that ⋃n∈N{∣Reachn

H[Z,Z′]∧ I[Z]∣} ⊆⋃n∈N⟨∣Reachn
H[Z,Z′]∧ I[Z]∣⟩ε ⊆⋃

i
n=0{∣Reachn

H̃
[Z,Z′]∧ I[Z]∣}.

Moreover, i can be effectively computed.

The following definition characterizes an ε-disturbance whose semantics is minimal, i.e., it is in-
cluded in all ε-disturbance semantics.
Definition 13 (Tilde Transformation). Let T be a first-order theory over the reals, ψ[Z] be any first-
order formula T -definable, and ε ∈R>0. The tilde transformation of ψ[Z] is defined as follows:

(̃ψ[Z])
ε

de f
= ∃Z0(ψ[Z0]∧δ(Z0,Z) < ε).

Theorem 4. Let T be any first-order theory and ψ[X] ∈ T . The tilde semantics of ψ[X] is T -definable
and, in particular, ⟨∣ψ[X]∣⟩ε = {∣(̃ψ[X])

ε
∣} for all ε ∈R>0.

Definition 14 (Minimum Disturbed Variant). Let H be a MF automaton, I[Z] and F[Z] be formulæ,
and ε ∈ R>0. The minimum ε disturbed variant of H, ̃Fr(H,I,F) = (V,Z′, (ãctv)v∈V ,(t̃ransv→v′)v,v′∈V ,
(ĩnitialv)v∈V ,(s̃a f ev)v∈V), is the disturbed variant of Fr(H,I,F) of noise level ε obtained considering

for each v ∈V , ãctv
de f
= ∃Z′′(Reach0

H(v,v)[Z,Z′′] ∧δ(Z′′,Z′)< ε), while the other components are defined
as for Fr(H,I,F).

Tilde semantics precisely captures the continuous semantics of ̃Fr(H,I,F).
Lemma 4. Let H be a MF automaton, I[Z] and F[Z] be formulæ, and ε ∈ R>0. ̃Fr(H,I,F) is an ε

disturbed variant of Fr(H,I,F). Moreover, for each v ∈V and p ∈Rd(H) it holds ⟨∣Reach0
H(v,v)[p,Z′]∣⟩ε =

{∣Φ(̃Fr(H,I,F))0
v→v[p,Z′]∣}.

The above result cannot be generalized to Reachn
H and Φ(̃Fr(H,I,F))n. In particular, the tilde

semantics of the first-one in the general case is strictly included in the standard semantics of the second
one. This is due to the fact that the first formula is built closing intermediate steps through quantifiers,
which means that the intermediate steps are not approximated. On the other hand, in the second formula
each step is over-approximated.

Lemma 4 enables us to rephrase the algorithm described by Fränzle as Algorithm 2.

A. Casagrande, T. Dreossi & C. Piazza 53

Algorithm 2 Tilde(H,I[Z],ε)

1: R←⋃p∈{∣I[Z]∣}⟨∣Reach0
H[p,Z′]∣⟩ε

2: repeat
3: V ← R
4: R← ⋃

p∈R
{∣ ⋁
(v,v′)∈E

(Act((v,v′))[p]∧Res((v,v′))[p,Z′]∣}

5: R←⋃p∈R⟨∣Reach0
H[p,Z′]∣⟩ε

6: R← R∪V
7: until ⋃p∈V{∣Reach≤1

H [p,Z′]∣} /⊆V is true
8: return V

Theorem 5. Let H be a MF automaton with bounded invariants, I[Z] be a formula, and ε ∈ R>0.
Tilde(H,I[Z],ε) always terminates returning a set R such that ⋃n∈N{∣Reachn

H[Z,Z′]∧ I[Z]∣} ⊆ R, i.e.,
it over-approximate reachability.

Example 4. Let us consider the hybrid automaton H described by Example 1. The sets R and V calcu-
lated by the first three iterations of Algorithm 2, with {∣I[Z]∣} = {10} and ε = 0.5, are R1 = (4.5,10.5) and
V 1 = (1.13,10.5), R2 = (0.75,10.5) and V 2 = (0.19,10.5), R3 = (−0.19,10.5) and V 3 = (−0.05,10.5).
Since V 3 ⊂ R3, the algorithm halts and returns as result the set (−0.19,10.5), which is an over-approx-
imation of the standard reach set of H, i.e., (0,10].

5.2 Under-Approximation

Fränzle’s approach can be used to under-approximate reachability over H by defining an automaton H′

such that H̃′ = H. However, this would give us an under-approximation algorithm in which at each step
an under-approximation of Reach1 is applied. In this section we show that the approach proposed in
[5] can always be used to under-approximate reachability, no matter which ε-semantics is considered.
Moreover, when the considered ε-semantics is an under-approximation semantics, we get an algorithm
in which the same under-approximations are applied to both termination conditions and output.

We start introducing a new semantics, called bottom semantics.

Definition 15. Let ψ be a formula and ε ∈ R>0. The set ⟧ψ⟦ε is the bottom semantics of ψ and it is
defined by structural induction on ψ itself as follows:

• ⟧t1 ○ t2⟦ε=⋃B(p,ε)⊆{∣t1○t2∣}B(p,ε), for ○ ∈ {=,<};

• ⟧ψ1∧ψ2⟦ε=⋃B(p,ε)⊆⟧ψ1⟦ε∩⟧ψ2⟦ε
B(p,ε);

• ⟧ψ1∨ψ2⟦ε=⟧ψ1⟦ε∪⟧ψ2⟦ε ;

• ⟧∀Xψ[X ,Z]⟦ε=⋃B(p,ε)⊆⋂r∈R⟧ψ[r,Z]⟦ε
B(p,ε);

• ⟧∃Xψ[X ,Z]⟦ε=⋃r∈R⟧ψ[r,Z]⟦ε ;

• ⟧¬ψ⟦ε=⋃B(p,ε)∩{∣ψ ∣}=∅B(p,ε).

The bottom semantics is an ε-semantics. Moreover, any variable assignment, that satisfies a formula
ψ in the bottom semantics, satisfies ψ in the standard Tarski’s semantics too.

Lemma 5. The bottom semantics is an ε-semantics. Moreover, ⟧ψ⟦ε⊆ {∣ψ ∣} for each formula ψ .

The bottom semantics is definable in the Tarski’s theory, i.e., if ψ is a formula of the first-order
language of the reals equipped of sum, product and comparison relations, then there exists a formula ψ̂ε

such that ⟧ψ⟦ε= {∣ψ̂ε ∣}. Moreover, ψ̂ε is computable.

54 Approximated Symbolic Computations over Hybrid Automata

−yu

−xu x

y

Car

Train

S

Zt

Zc

Vt

Vc

Figure 2: A case of study: a railroad crossing.

6 Implementation and Tests

We implemented our framework and algorithms exploiting the translations of approximated semantics
into the standard one, and then relying on quantifier elimination packages. In particular, we developed
a tool to work with Tarski’s formulæ and to compute, given a formula ψ , the formulæ ψ̃ε and ψ̂ε .
The evaluation of the termination conditions of both the algorithms are obtained by first translating the
ε-semantics of the involved formulæ in the corresponding Tarski’s formulæ, and then using Redlog-
QEPCAD to eliminate the quantifiers as described in [20].

We tested our implementation on a railroad crossing scenario without barriers (see Figure 2): a train
and a car are simultaneously approaching to the railroad crossing at coordinates (0,0); the train is moving
along the x axis with speed Vt while the car has speed Vc and runs the y axis. The variables Zt and Zc

denote the distances between the railroad crossing and the train and between the railroad crossing and
the car, respectively. The car sensors can identify the approaching train only above the line S. At that
point it can decide to either accelerate or slow down. The car acceleration Ac should be once and for
all and cannot be changed anymore. Our goal is to select an Ac such that the two vehicles pass safely
through the railroad crossing.

In this case-study, we suppose we do not know with absolute precision the speeds of the two vehicles.
This means that, in a specific instant, the velocities belong to an interval, rather than being a single value.
For this reason, we will use inequalities to describe the dynamic laws.

We model the scenario depicted in Figure 2 by a hybrid automaton H = (Z,Z′,T,V,E ,Inv,Dyn,
Act,Res) where:

• Z = ⟨Zt ,Zc,Vt ,Vc,Ac⟩ and Z′ = ⟨Z′t ,Z
′
c,V

′
t ,V

′
c ,A

′
c⟩ are variables over R5;

• V = {q0,qc,qs,qu} and E = {e0 = (q0,qc),e1 = (qc,qu),e2 = (qc,qs)};

• Inv(q0)
de f
= Zc ≤ S∧Vc ∈ [cm,cM]∧Vt ∈ [tm,tM];

Inv(qc)
de f
= ((Zc ∈ [S,yu]∧Zt ≤ −xu)∨(Zc ∈ [S,−yu]∧Zt ∈ [−xu,xu]))∧Vc ∈ [cm,cM]∧Vt ∈ [tm,tM];

Inv(qu)
de f
= Zc ∈ [−yu,yu]∧Zt ∈ [−xu,xu]∧Vc ∈ [cm, cM]∧Vt ∈ [tm,tM];

Inv(qs)
de f
= (Zc ≥ yu∨Zt ≥ xu)∧Vc ∈ [cm,cM]∧Vt ∈ [tm,tM];

A. Casagrande, T. Dreossi & C. Piazza 55

• Dyn(qc)
de f
= V ′

c −Ac∗T −Vc ∈ [−d,d]∧2∗Z′c−Ac∗T 2−2∗Vc∗T −2∗Zc ∈ [−d,d]∧Z′t −Vt ∗T −Zt ∈

[−d,d];

Dyn(qu)
de f
= Dyn(qs)

de f
= Dyn(q0)[Z,Z′,T]

de f
= Z′t −Zt ∈ [tm,tM]∗T ∧Z′c−Zc ∈ [cm,cM]∗T ;

• Act(e0)
de f
= Zc = S; Act(e1)

de f
= (Zc ≥ −yu−d∧Zt ∈ [−xu,xu])∨(Zt ≥ −xu−d∧Zc ∈ [−yu,yu]);

Act(e2)
de f
= (Zc = yu∧Zt < −xu)∨(Zt = xu∧Zc < −yu).

• Res(e2)
de f
= Res(e1)

de f
= A′c ∈ [Em,EM]∧V ′

c ∈ [cm,cM]∧V ′
t ∈ [tm,tM]; Res(e0)

de f
= A′c ∈ [Em,EM].

where cm = 1 and Cm = 3 are the minimal and the maximal admitted speed for the car, tm = 1 and Tm = 3
are the minimal and the maximal admitted speed for the train, and Em = 0 and EM = 10 are the minimal
and the maximal admitted car acceleration, respectively.

Location q0 corresponds to the phase in which the train and the car are far apart from the crossing.
When the car reaches the S line, the automaton goes to location qc and the car non-deterministically
chooses its acceleration. Whenever the car and the train cross the intersection at the same time, a collision
occurs and the automaton goes to the location qu. The qs represents the safe situation in which at least
one of the two vehicles has passed through the crossing, while the other has not yet reached it.

We would like to decide, once the car has reached the position S, which accelerations avoid the
collision as a function of train speed, train position, and car speed.

Figure 3: A graphical representation of the analysis performed on the test case with yu = 2, xu = 4, and
d = 0.2. This figure depicts the space plane defined by the values Vt = 2 and Zt = −20 in the region
Vc ∈ [2.5,3.0] and Ac ∈ [0,0.1]. The light, medium, and dark gray represent the sets ⟧ψsf⟦ε∖⟨∣ψun∣⟩ε ,
⟧ψsf⟦ε∩⟨∣ψun∣⟩ε , and ⟨∣ψun∣⟩ε∖⟧ψsf⟦ε , respectively. If, given a car speed, we select an opportune accelera-
tion such that the corresponding point is light gray colored, then we will certainly avoid the collision.

We modeled the automaton that represents the railroad crossing and we computed the two formulæ
ψun and ψsf: the former represents all the situations in which the car has both reached the line S and
selected an acceleration Ac that, sooner or later, leads to a collision; the latter characterizes all the states
that avoid the collision itself. The formula ψun depicts a jump over the edge (q0,qc) and a successive

56 Approximated Symbolic Computations over Hybrid Automata

continuous evolution ending up into the activation region of (qc,qu), while ψsf concludes the evolution
into the activation of (qc,qs). We symbolically evaluated the tilde semantics of ψun and the bottom
semantics of ψsf obtaining unquantified formulæ, ψ

′
un and ψ

′
sf, respectively, in 4 free variables which

represent the train speed, the train position, the car speed, and the car acceleration at the beginning of the
computation in the two opposite situation. In order to avoid the collision, whenever the car reaches line
S and selects an acceleration Ac, it has to check that the current state satisfies ψ

′
sf and does not satisfy

ψ
′
un. Figure 3 depicts the evaluation of such formulæ in a portion of the state space.

7 Conclusions

In this paper we considered Michael’s form hybrid automata, a class of automata particularly suitable
for approximations. On the basis of the observation that infinite precision of the models does not re-
flect real systems behaviors, we introduced and discussed different approximation techniques over this
class of automata. On the one hand, our comparison points out that disturbed automata cannot be for-
mulated in terms of an ε-semantics. As a matter of fact, ε-semantics never over-approximate standard
semantics. On the other hand, we demonstrate that Fränzle’s approach can be modeled through a new
semantics (tilde semantics) which provides an over-approximation of the original reach space of the
hybrid automaton. However, it is important to notice that Fränzle’s reachability algorithm cannot be
mapped into a completely symbolic algorithm (similar to the one presented in [5]) since at each itera-
tion it over-approximates the reached set, while a symbolic algorithm would construct a new formula
(nesting quantifiers) at each step and evaluate its approximated semantics only at the end of the com-
putation. Hence, since quantified variables are never approximated, such a symbolic algorithm would
over-approximate only the last step.

Drawing inspiration from both disturbed hybrid automata and symbolic algorithms, we formalized a
new ε-semantics (bottom semantics) which plays a symmetrical role with respect to the introduction of
noise. If the disturbance of the continuous components expands trajectories, the application of bottom
semantics reduces it, under-approximating the reachability set. So, we can say the bottom semantics
describes a process of noise filtering in hybrid automata. In particular, since we exploit on bottom
semantics the symbolic algorithmic approach described in [5], we use the same level of approximation for
both halting conditions and output. Of course, reachability could be under-approximated using standard
semantics and simply halting computation after a finite number of discrete steps. The meaning of our
under-approximation is that we interpret bottom semantics as the “correct” semantics for noise filtering.

As future work we plan to extend our comparisons to other general frameworks for approximation
techniques, such as the ones based on topology (see, e.g., [7, 8]). In those frameworks instead of us-
ing distances among points, as we did, the authors defined distances among trajectories. Some basic
differences between our approach and the one used in [7] can be noticed considering the bouncing ball
example presented both in [5] and in [7]. While in [5] the infinite sequence of bounces cannot be ob-
served since at a certain point these are smaller than the ε-precision, in [7] a compactification of the
space is introduced to ensure convergence.

References

[1] R. Alur, C. Courcoubetis, T. A. Henzinger & P. H. Ho (1993): Hybrid Automata: An Algorithmic Approach to
the Specification and Verification of Hybrid Systems. In: Hybrid Systems, LNCS 736, Springer, pp. 209–229,
doi:10.1007/3-540-57318-6 30.

http://dx.doi.org/10.1007/3-540-57318-6_30

A. Casagrande, T. Dreossi & C. Piazza 57

[2] J. P. Aubin & A. Cellina (1984): Differential Inclusions. A Series of Comprehensive Studies in Mathematics
264, Springer, doi:10.1007/978-3-642-69512-4.

[3] S. Basu (1997): An Improved Algorithm for Quantifier Elimination Over Real Closed Fields. In: IEEE
Symposium on Foundations of Computer Science (FOCS’97), IEEE Computer Society Press, pp. 56–65,
doi:10.1109/SFCS.1997.646093.

[4] A. Casagrande, T. Dreossi & C. Piazza (2012): Hybrid Automata and ε-Analysis on a Neural Oscilla-
tor. In: Proc. of the 1st International Workshop on Hybrid Systems and Biology, EPTCS 92, pp. 58–72,
doi:10.4204/EPTCS.92.5.

[5] A. Casagrande, C. Piazza & A. Policriti (2009): Discrete Semantics for Hybrid Automata. Discrete Event
Dynamic Systems 19(4), pp. 471–493, doi:10.1007/s10626-009-0082-7.

[6] A. Casagrande, C. Piazza, A. Policriti & B. Mishra (2008): Inclusion dynamics hybrid automata. Information
and Computation 206(12), pp. 1394–1424, doi:10.1016/j.ic.2008.09.001.

[7] Pieter Collins (2005): Hybrid Trajectory Spaces. Technical Report, Centrum voor Wiskunde en Informatica
(CWI).

[8] J. Davoren & I. Epstein (2008): Topologies, Convergence, and Uniformities in General Hybrid Path Spaces,.
Preprint.

[9] M. Fränzle (1999): Analysis of Hybrid Systems: An ounce of realism can save an infinity of states. In:
Computer Science Logic (CSL’99), LNCS 1683, Springer, pp. 126–140, doi:10.1007/3-540-48168-0 10.

[10] A. Girard, A. A. Julius & G. J. Pappas (2008): Approximate Simulation Relations for Hybrid Systems. Dis-
crete Event Dynamic Systems 18(2), pp. 163–179, doi:10.1007/s10626-007-0029-9.

[11] T. A. Henzinger, P. W. Kopke, A. Puri & P. Varaiya (1995): What’s decidable about hybrid au-
tomata? In: Proc. of ACM Symposium on Theory of Computing (STOCS’95), ACM, pp. 373–382,
doi:10.1145/225058.225162.

[12] T. A. Henzinger & J.-F. Raskin (2000): Robust Undecidability of Timed and Hybrid Systems. In: Proc. of the
3rd International Workshop Hybrid Systems: Computation and Control (HSCC’00), LNCS 1790, Springer,
pp. 145–159, doi:10.1007/3-540-46430-1 15.

[13] G. Lafferriere, G. J. Pappas & S. Sastry (2000): O-minimal Hybrid Systems. Mathematics of Control, Signals,
and Systems 13, pp. 1–21, doi:10.1007/PL00009858.

[14] G. Lafferriere, G. J. Pappas & S. Yovine (2001): Symbolic Reachability Computation for Families of Linear
Vector Fields. J. Symb. Comput. 32(3), pp. 231–253, doi:10.1006/jsco.2001.0472.

[15] B. Mendelson (1990): Introduction to Topology, III edition. Dover Books on Mathematics.
[16] E. Mendelson (1997): Introduction to Mathematical Logic, IV edition. CRC Press.
[17] C. Piazza, M. Antoniotti, V. Mysore, A. Policriti, F. Winkler & B. Mishra (2005): Algorithmic Algebraic

Model Checking I: The Case of Biochemical Systems and their Reachability Analysis. CIMS-TR 2005-859,
Courant Institute Of Mathematical Sciences.

[18] P. Prabhakar, V. Vladimerou, M. Viswanathan & G. E. Dullerud (2009): Verifying Tolerant Systems Using
Polynomial Approximations. In: Proc. of the 30th IEEE Real-Time Systems Symposium (RTSS’09), IEEE
Computer Society Press, pp. 181–190, doi:10.1109/RTSS.2009.28.

[19] S. Ratschan (2010): Safety Verification of Non-linear Hybrid Systems Is Quasi-Semidecidable. In: Proc.
of the 7th Conference on Theory and Applications of Models of Computation (TAMC’10), LNCS 6108,
Springer, pp. 397–408, doi:10.1007/978-3-642-13562-0 36.

[20] T. Sturm & A. Tiwari (2011): Verification and synthesis using real quantifier elimination. In: Proc. of
the 36th international symposium on Symbolic and algebraic computation (ISSAC’11), ACM, pp. 329–336,
doi:10.1145/1993886.1993935.

[21] A. Tarski (1951): A Decision Method for Elementary Algebra and Geometry. Univ. California Press.
[22] A. Tiwari & G. Khanna (2002): Series of Abstractions for Hybrid Automata. In: Proc. of Hybrid Systems:

Computation and Control (HSCC’02), LNCS 2289, Springer, pp. 465–478, doi:10.1007/3-540-45873-5 36.

http://dx.doi.org/10.1007/978-3-642-69512-4
http://dx.doi.org/10.1109/SFCS.1997.646093
http://dx.doi.org/10.4204/EPTCS.92.5
http://dx.doi.org/10.1007/s10626-009-0082-7
http://dx.doi.org/10.1016/j.ic.2008.09.001
http://dx.doi.org/10.1007/3-540-48168-0_10
http://dx.doi.org/10.1007/s10626-007-0029-9
http://dx.doi.org/10.1145/225058.225162
http://dx.doi.org/10.1007/3-540-46430-1_15
http://dx.doi.org/10.1007/PL00009858
http://dx.doi.org/10.1006/jsco.2001.0472
http://dx.doi.org/10.1109/RTSS.2009.28
http://dx.doi.org/10.1007/978-3-642-13562-0_36
http://dx.doi.org/10.1145/1993886.1993935
http://dx.doi.org/10.1007/3-540-45873-5_36

	1 Introduction
	2 Hybrid Automata
	2.1 Preliminaries
	2.2 Syntax
	2.3 Standard Semantics
	2.4 Michael's Form Automata

	3 Approximated Semantics
	4 Disturbed Automata
	5 Mixing the Approaches
	5.1 Over-Approximation
	5.2 Under-Approximation

	6 Implementation and Tests
	7 Conclusions

