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ABSTRACT Remaining Useful Life (RUL) is used to provide an early indication of failures that required 
performing maintenance and/or replacement of the system in advance. Accurate RUL prediction offers 
cost-effective operation for decision-makers in the industry. The availability of data using intelligence 
sensors leverages the power of data-driven methods for RUL estimation. Deep Learning is one example of a 
data-driven method that has a lot of applications in the industry. One of these applications is the RUL 
prediction where DL algorithms achieved good results. This paper presents an Autoencoder-based Deep 
Belief Network (AE-DBN) model for Aircraft engines' RUL estimation. The AE-DBN DL model is utilized 
the feature extraction characteristic of AE and superiority in learning long-range dependencies of DBN. The 
efficiency of the proposed DL algorithm is evaluated by comparison between the proposed AE-DBRN and 
the state-of-the-art related method for RUL perdition for four datasets. Based on the Root Mean Square 
Error (RMSE) and Score indices, the outcomes reveal that the AE-DBN RUL prediction model is superior 
to other DL approaches. 

INDEX TERMS Artificial Intelligence, Deep Learning, Remaining Useful Life, Autoencoder, Deep Belief 
Network, Aircraft engine. 

I. INTRODUCTION 
Remaining Useful Life (RUL) is used to ensure the safety 
and reliability of the aircraft equipment. It is used to decide 
whether to perform maintenance or not and how many spare 
parts should be ordered such as the overall maintenance cost 
is reduced [1]. If the lifetime of the aircraft equipment cannot 
be known with certainty, it is recommended to keep 
monitoring the life and state of operating equipment. Hence, 
monitoring of the equipment gives the required information 
on the current working age and state by measuring certain 
variables that may affect its operation work [2].  
Existing research on the methods of the RUL estimation of 
the aircraft equipment can be generally grouped into physics-
based methods and data-driven methods. In the physics-
based approach, the RUL estimation model is developed 
using damage propagation to identify potential failure for the 

equipment. However, the complexity of the damage 
propagation as well as the uncertainty of the operating 
environment makes it extremely difficult to identify the 
potential failure mechanism for many components and 
systems. On the other side, data-driven methods employ data 
collected from sensors that are integrated with equipment to 
develop the RUL prediction model [3]. Aircraft are now fully 
integrated with advanced sensors that continually collect 
information regarding the operation condition of the aircraft. 
This data helps for the transition from physics-based methods 
to data-driven methods for RUL estimation of the aircraft 
equipment [4]. The power of data-driven methods for RUL 
estimation is arisen due to the rapid development of Internet-
of-Things (IoT) and cyber physic technique which provides a 
massive amount of data. This data allows possibilities for 
Artificial Neural Network (ANN) methods such as Deep 
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Learning (DL) to be applied [5]. In this aspect, the RUL 
prediction can be considered as time series regression 
problem. 
    DL utilizes multiple layers of neurons to learn complex 
models. Recently, DL has had a lot of applications in the 
industry [6] [7]. One of these applications is the RUL 
prediction where DL algorithms achieved good results. For 
example, authors in [8] developed an extended recurrent 
neural network (ERNN) algorithm for the RUL prediction 
model using vibration data collected from a gearbox 
experimental system. Deutsch and He in [9] proposed 
Restricted Boltzman Machine (RBM) algorithm for the RUL 
prediction model using data collected from bearing run-to-
failure tests. Authors in [10] employed Long Short-Term 
Memory (LSTM) with Recurrent Neural Network (RNN) 
(LSTM-RNN) method for the RUL prediction model of the 
capacity degradation trajectories of lithium-ion batteries. 
As shown above, DL methods have received a huge interest 
in RUL prediction for various applications. However, the 
prediction performance of these methods depends on the 
features, dependencies, and dimensionality of the input time-
series data that is used to impellent the DL models for RUL 
prediction. 
One of the advantages of Autoencoder (AE) DL architecture 
is its ability to capture and extract useful features from the 
input data. On the other hand, Deep Belief Network (DBN) 
architecture has the capabilities of deep hierarchical learning 
which allows it to capture the long-range dependence 
characteristic to learn sophisticated features from the input 
data. These features of DBN compared with the traditional 
shallow learning approaches yield improvement in prediction 
accuracy while keeping the prediction system simple. 
Owing to feature extraction characteristic of AE and 
superiority in learning long-range dependencies of DBN, this 
paper presents a combined Autoencoder and Deep Belief 
Network (AE-DBN) based model for RUL estimation. In the 
proposed architecture the AE model is used to extract the 
abstract features from the input data while a Deep Belief 
Network model is used as a predictor for the time series RUL 
of the aircraft engine. 
The remainder of this paper is organized according to the 
following. Section 2 investigates the related works regarding 
DL methods that are applied to perform an RUL prediction 
for aircraft. The proposed hybrid DL approach for RUL 
estimation is described in Section 3. The experiment study 
and comparisons with other DL methods using the C-
MAPSS dataset are provided in Section 4. Finally, the paper 
concludes in Section 5. 
 
II. RELATED WORKS 
With the help of advanced sensors that are integrated with the 
aircraft equipment, the data that represents the status of the 
aircraft becomes available. This data allows accurate RUL 
data-driven prediction models for an aircraft based on DL 
methods to be applied [4]. This section aims to review the 

related work of DL methods that are applied to aircraft for 
RUL prediction. 
The early promising results to apply DL algorithms into RUL 
prediction of the engine of the aircraft were found by [11]. 
The Authors proposed Convolutional Neural Network 
(CNN) based regression approach for estimating the RUL. In 
this work, the structure of the CNN incorporates an 
automated feature learning from raw sensor signals. Later, 
the authors of [12] developed long short-term memory 
(LSTM) for estimating the RUL of the engine aircraft data. 
By comparing the result obtained from the LSTM with the 
results obtained from CNN, LSTM shows better 
performance. 
The authors in [13] introduced a data-driven approach for 
RUL prediction based on Deep Convolution Neural 
Networks (DCNN). Raw collected data for the aero-engine 
unit is used to show the effectiveness of the proposed 
approach. The work in [14] used a stacked Sparse 
Autoencoder (SAE) for RUL prediction. The 
hyperparameters of the SSAE were determined based on the 
grid search method. The authors in [15] presented a 
combined DL algorithm for RUL prediction to predict 
multiple multivariate time series of the data collected from 
aircraft sensors was performed by LSTM based recurrent 
network. Moreover, Deep Belief Network (DBN) was 
utilized to assess system working conditions and categorize 
faults of aircraft equipment. In the same direction of using 
hybrid methods, the authors in [16] proposed a directed 
acyclic graph (DAG) network. This model combines long 
short term memory (LSTM) with the convolutional neural 
network (CNN) to predict the RUL. Based on the features of 
the training data collected from aircraft sensors, the method 
proposed in [17] utilized a modified Denoising Autoencoder 
(DAE) for robust feature extraction. The authors integrated 
an Updated Selection Strategy (USS) to ensure that the 
valuable data is passed through the training process. In terms 
of trucking the new rising data and forgetting gradually the 
old ones, Online Sequential Extreme Learning Machine (OS-
ELM) was proposed with double dynamic forgetting factors 
(DDFF). Unlike the methods presented in [17], authors in 
[18] used LSTM to learn sequential features collected from 
aircraft sensors. Then, an attention mechanism with a feature 
fusion method is proposed for RUL estimation. A combined 
CNN with Bi-directional Long Short-Term Memory 
(BDLSTM) networks is presented in [19] for RUL prediction 
for aircraft. The CNN was used to extract spatial features 
while BDLSTM was utilized to extract temporal features. To 
improve the capability of the combination of CNN with 
LSTM, the work presents in [20] proposed a double-channel 
hybrid prediction model based on the CNN and a 
bidirectional LSTM network (CNN +BiLSTM). Besides, the 
work in [21] presented a new model combining between the 
parallel branches of CNN in series with LSTM. The model 
named multi-head CNN-LSTM. Recently, the authors in [22] 
proposed a new deep learning model combines between the 
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transformer encoder and temporal convolution neural 
network (Trans.+TCNN). The transformer encoder is used a 
scaled dot-product attention to extract dependencies across 
distances in time series, whereas the temporal convolution 
neural network is built to fix the insensitivity of the self-
attention mechanism to local features. 
Owing to feature extraction characteristic of AE and 
superiority in learning long-range dependencies of DBN, this 
paper presents a combined Autoencoder and Deep Belief 
Network (AE-DBN) based model for RUL estimation. In the 
proposed architecture the AE model is used to extract the 
abstract features from the input data while a Deep Belief 
Network model is used as a predictor for time series RUL of 
aircraft engine. 
To improve the prediction accuracy and the performance of 
aircraft engines RUL prediction a combined deep learning 
architecture based on AE for feature extraction and DBN for 
RUL time series prediction is proposed in this work. 
 
III. PROPOSED DEEP LEARNING ARCHITECTURE 
This section presents the description of the proposed 
Autoencoder-based Deep Belief Network (AE-DBN). 

A. ADEEP BELIEF NETWORKS 
The Deep Belief Networks (DBN) can be viewed as a 
combination of simple unsupervised networks such as the 
Restricted Boltzmann Machine (RBM), which act as the 
hidden layer of each subnet and the visible layer of the next 
layer. The layer in the DBN structure has an efficient layer-
by-layer procedure that determines how variables depend on 
variables in the layer above [23].  
The developed DBN network consists of multiple visible and 
hidden RBM layers and logistic regression for classification 
in the last layer. In the first step of the development process, 
different feature spaces of the vectors are mapped, after that 
each layer of the RBM network is trained in an unsupervised 
way, respectively, to preserve the feature information of all. 
In the second step, fine adjustments are made. In the last step, 
the output feature vector of the RBM is taken as the input 
feature vector for the next RBM. The architecture of DBN is 
shown in Figure 1 [24]. 
 

 
FIGURE 1. DBN architecture. 
 
In the RBM model, the 𝑣! in the visible layer and each 
hidden layer are represented by ℎ!. Weights between 𝑣! and 

ℎ" are guided and displayed with 𝑤!". Visible and hidden 
nodes have biases represented by vectors 𝑐 and 𝑏. The	𝑏!,	𝑐! 
and 𝑤!" values of all RBMs in the model form the 𝜃 
parameter in the DBN. This parameter 𝜃 appears in the 
model with the probability of common states of the hidden 
layers and an energy function [25]. This energy function is 
given as in Eq.1. 
E(θ, v, h) = −∑ v#c# −∑ h$b$ −%

$&'
(
#&' ∑ ∑ v#%

$&'
(
#&' h#w#$	(1) 

Since there is no inter-layer connection in the DBN network, 
the probability distributions of the visible and hidden layers 
are calculated as given in Eq. 2 and Eq. 3 
𝑃(𝑣! = 1|ℎ) = 1 1 + 𝑒)*!∑,!-!"⁄                                        (2) 
𝑃(ℎ! = 1|𝑣) = 1 1 + 𝑒).!∑/!-!"⁄                                        (3) 
After the weight calculations are completed, the 
reconstructed data is returned and can be determined by the 
𝑝(𝑣|ℎ) calculation. Output 𝜎 occurs when data is transmitted 
back to the hidden layer. Here, the logistic function	𝜎 is 
defined as in Eq. 4. 
𝜎(𝑥) = (1 + 𝑒)0)-1 																																																																					(4) 

Likewise, in the case of	𝑣! = 1, the conditional probability of 
𝑣! is calculated as given in Eq.5. 
𝑃(𝑣# = 1|𝑣) = σ(𝑎# + ∑ 𝑊#$ℎ$#&' )																																										(5)	

B. DEEP AUTOENCODERS 
Autoencoder (AE) is a three-layer unsupervised neural 
network. It is considered the most basic form of neural 
networks, which is used for representation learning such as 
feature selection or size reduction and tries to reconstruct the 
input patterns in the output layer [26]. 
The general feature of AE is that the input and output layer 
size is the same as with symmetrical architecture. The hidden 
layer in the network model typically contains fewer neurons 
compared to the visible layer. By using a small number of 
neurons, an attempt is made to encode or represent the input 
in a more compact way, capturing the meaningful properties 
of the input vectors. Figure 2 shows a basic AE and deep AE 
(DAE) network architecture [27]. 
 

FIGURE 2. AE architecture. 
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Training of AE is carried out by applying a backpropagation 
algorithm as in feedforward neural networks based on Mean-
Squared Error (MSE) loss function. The training process 
consists of two stages, coding, and decoding. In the coding 
phase, while trying to encode the inputs in a hidden 
representation by using the weight criteria of the lower half 
layer. In the decoding phase, the same input is tried to be 
reconstructed from the coding representation using the 
criteria of the upper half layer. Therefore, the encoding and 
decoding weights are forced to be transposed of each other. 
Consider X is data with n samples and m features. Y is the 
output of the encoder (i.e. reduced representation of X). The 
mathematical representations of the encoding and decoding 
operations for a basic AE are given in Eq. 6 and Eq.7, 
respectively [28]. 
Y = f(wX + b)																																																																														(6) 
XE = g(ẃY + b)																																																																													(7)	
In Eq. 6 and Eq. 7, w and b represent the adjustable 
parameters, f	and g are the activation function, ẃ is the 
weights (𝑤) transpose, and XE  is the reconstructed input vector 
in the output layer. 
Training an autoencoder involves finding parameters w and b 
that minimizes the error between the input data	X	and the 
reconstruction data	XE . 

C. THE PROPOSED AE-DBN ARCHITECTURE FOR RUL 
PREDICTION  
The proposed AE-DBN architecture is shown in Figure 3. It 
is consisting of two main parts. In the first part, the AE is 
used as a deep learning model for feature extraction from the 
input data. The second part is represented by a deep learning 
model based on DBN for predicting the RUL.  

 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3. AE-DBN architecture 
 
The encoder part of the AE is responsible for extracting the 
features which represent the characteristics of the input data. 
These extracted features are feed to the DBN part of the 
proposed architecture which is used to predict the RUL. 
Initially, the AE is trained separately to obtain the weight 
matrix before training the DBN RUL perdition model. The 
decoder part of AE is used to verify the extracted features' 
validity to reconstruct the original data. Then the obtained 

weight matrix for AE is combined with the DBN model 
which is finally trained using the input data for RUL 
prediction.  
 
IV. EXPERMENTAL STUDY 

A. DATASET  
The widely used dataset for predictive maintenance in 

aircraft health systems in the literature is NASA Turbofan 
Engine Corruption Simulation dataset [29]. The dataset was 
created by NASA engineers using commercial simulation 
software called C-MAPSS. A turbofan engine with a 
capability of producing 90,000 pounds of power is simulated 
at altitudes of 0-40,000 ft., Mach number range of 0-0.9 and 
ambient temperatures range of -60 to 103 degrees F. The 
attributes of aircraft engines used for experimentation were 
the engine core speed, engine fan speed, pressure at fan inlet, 
High-Pressure Turbine (HPT) exit temperature, pressure at 
the High-Pressure Compressor (HPC), and engine-pressure 
ratio. To monitor these engine's attributes, a total of 21 
onboard sensors monitoring temperature, pressure, and speed 
are distributed at various locations as shown in Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
FIGURE 4. AIRCRAFT ENGINE AND SENSORS 
 
The C-MAPSS software also has various regulators and 
limiters that prevent the engine from being taken out of the 
operating range specified by the manufacturer. 
During creating the dataset, the engine was operated together 
with the control system. When the health index of the motor 
dropped to zero, the simulation was stopped and the obtained 
sensor data were recorded as a time series. The engine health 
index is determined to be 1 for each of the parts that make up 
the engine, and 0 when it goes out of the specified operating 
conditions. While the training data was continued until the 
motor health index was 0, the test and verification data were 
terminated before the motor broke down in order to measure 
RUL. The difference between the cycles in which the engine 
health index falls to zero at any given moment gives the RUL 
value of the engine. 
Four different datasets are considered which are prepared for 
different operating conditions and different scenarios in the 
dataset. The FD001 and FD003 contain a single operation 
condition and fault type for 100 engines. The FD002 includes 
six operation conditions and 260 engines. The FD004 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3188681

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

VOLUME XX, 2017 9 

includes six operation conditions and 249 engines. The 
datasets samples contain the records of sensors data at each 
run to fail cycles for each engine which is used to train the 
model for predicting the RUL. The details of each dataset 
used to train and evaluate the proposed method for RUL 
prediction are shown in Table I below. 
 

TABLE I. EVALUATION DATASETS DESCRIPTION 
Dataset FD001 FD002 FD003 FD004 

Operating conditions 1 6 1 6 
Fault modes 1 1 2 2 

Train samples (number of 
engines) 100 260 100 248 

Test samples (number of 
engines) 100 259 100 249 

 

B. MODEL DESIGN 
The proposed AE-DBN architecture contains different key 
structure variables such as the number of input nodes, the 
number of hidden layers for the AE model, the number of 
RBM stages for the DBN model, the number of hidden layers 
for the DNB model, and the model's hyperparameters. The 
key structure features that are considered for designing the 
proposed model are obtained through experimental trials 
where the objective is achieving the best RUL prediction 
performance. The parameters for each model are summarized 
in Table II and Table III. 
 

  TABLE II. AE MODELS PARAMETERS 
Hyperparameter Value 
Hidden layers 5 
Neurons  21,10,10,10,21 
Number of Epochs 500 
Loss function MSE 
Activation function ReLU 

 
 

TABLE III. DBN MODELS PARAMETERS 
Hyperparameter Value 
Number of layers 3 RBMs 
Hidden layers per RBM 10 
Batch size 64 
Window with 50 samples 
Optimizer  SGD 
Epochs 250 
Learning rate 0.001 

C. PERFORMANCE EVALUATION 
In order to verify the effectiveness of the proposed AE-

DBRN method for RUL perdition, the model is trained and 
evaluated using the four datasets (FD001, FD002, FD003 and 
FD004) explained in the previous section. To avoid model 
overfitting the datasets are split into 60% for training and 
40% for testing samples. A comparison is carried out 
between the proposed AE-DBRN and the state-of-the-art 

related method for RUL perdition such as DBN, CNN, 
LSTM, and attention-based LSTM. Commonly used 
evaluation criteria such as Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), 𝑅1 and Score are considered to 
evaluate the model performance in terms of RUL prediction 
accuracy [30]. These metrics are calculated as given in Eq.8, 
Eq.9, Eq. 10 and Eq.11 respectively. 
𝑅𝑀𝑆𝐸 = M∑ (𝑎! − 𝑝!)1/𝑁2

'                                                 (8) 
𝑀𝐴𝐸 = ∑ |𝑝! − 𝑎!|2

' /𝑁                                                       (9) 
𝑅1 = 1 −∑ (𝑎! − 𝑝!)12

' ∑ (𝑎! − 𝑝3456)12
'⁄                      (10) 

𝑆𝑐𝑜𝑟𝑒 = S
∑ T𝑒)

#!$%!
&' − 1U2

!&' 	𝑓𝑜𝑟	𝑎! − 𝑝!

∑ T𝑒
#!$%!
&( − 1U2

!&' 	𝑓𝑜𝑟	𝑎! ≥ 𝑝!
                     (11) 

where N is the number of samples, 𝑎! is the actual value and 
𝑝! is the predicted value and 𝑝3456 is the mean of the 
predicted values. 
The proposed AE-DBN model is trained and evaluated using 
FD001, FD002, FD003 and FD004 datasets separately using 
the parameters explained in the model design section. Based 
on the selected window length the model predicts the RUL of 
a particular engine based on the previous 50 samples of 
sensors readings. To demonstrate the effectiveness of AE for 
extracting the features that provide a better representation of 
the data, the proposed AE-DBN is compared with the regular 
DBN method that feeds directly with the original data. The 
evaluation results are shown in Table IV. 
Based on the achieved results for the proposed AE-DBN 
model and the regular DBN model it was found that adding 
the AE model for features extraction enhanced the overall 
model performance in terms of accuracy since it was used 
to reduce the original data features to extract the best 
respective features. The proposed AE-DBN model achieved 
better performance using the FD001 and FD003 dataset 
compared to the FD002 and FD004 dataset since it contains 
more samples and includes multiple operation conditions 
which can strain the model in terms of learning. 

 
TABLE IV. EXPERIMENTAL RESULTS USING FD001 AND FD004 DATASETS 

 
Dataset Method RMSE MAE Score 𝑅! 
FD001 AE-DBN  11.2700 11.9100 219 0.9545 

DBN  13.4500 14.1900 228 0.9405 
FD002 AE-DBN  14.2400 14.8500 1255 0.9411 
 DBN  17.5500 19.1500 1379 0.9120 
FD003 AE-DBN  11.1300 11.4800 264 0.9513 
 DBN  12.3200 13.2500 285 0.9452 
FD004 AE-DBN  26.8508 27.3347 2135 0.8999 

DBN  28.5444 28.9798 2147 0.8896 

 
The predicted and the actual RUL using the AE-DBN 
model on the four datasets for each engine using the 
previous 50 samples of sensors readings are shown in 
Figures (5-8). 
Based on results shown in Figure (5-8) of the predicted 
RUL for each engine matches very well with the actual 
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RUL, which indicates the viability of the proposed AE-
DBN model for the RUL prediction. 
  
For example based on the FD001 dataset, it can be noticed 
that the RMSE, MAE and Score are decreased from 13.45, 
14.19 and 228 in the case of the standard DBN to 11.27, 
11.91 and 219 for the proposed AE-DBN whereas the R2 is 
increased from 0.9405 in the case of the standard DBN to 
0.9545 for the proposed AE-DBN. For FD002 dataset, it 
can be noticed that the RMSE, MAE and Score are 
decreased from 17.55, 19.15 and 1379 in the case of the 
standard DBN to 14.24, 14.85 and 1255 for the proposed 
AE-DBN whereas the R2 is increased from 0.9120 in the 
case of the standard DBN to 0.9411 for the proposed AE-
DBN. For FD003 dataset, it can be noticed that the RMSE, 
MAE and Score are decreased from 12.32, 13.25 and 285 in 
the case of the standard DBN to 11.13, 11.48 and 264 for 
the proposed AE-DBN whereas the R2 is increased from 
0.9452 in the case of the standard DBN to 0.9513 for the 
proposed AE-DBN.  
 

 
FIGURE 5. Actual RUL and the predicted RUL for FD001 dataset. 

FIGURE6. Actual RUL and the predicted RUL for FD002 dataset. 
 

FIGURE7. Actual RUL and the predicted RUL for FD003 dataset. 

 

 
FIGURE 8. Actual RUL and the predicted RUL for FD004 dataset. 

 
 
In the same way for the FD004 dataset, it can be noticed 
that the RMSE, MAE and Score are decreased from 
28.5444, 28.9798 and 2147 in the case of the standard DBN 
to 26.8508, 27.3347 and 2135 for the proposed AE-DBN 
whereas the R2 is increased from 0.8896 in the case of the 
standard DBN to 0.8999 for the proposed AE-DBN.  
In addition, the proposed AE-DBN performance in terms of 
RMSE for RUL prediction is compared with a similar state-
of-the-art method in the literature that used the FD001, 
FD002, FD003 and FD004 dataset as shown in Table V. 

 
TABLE V. RMSE COMPARISON BETWEEN THE PROPOSED METHOD AND 
RELATED WORKS USING FD001, FD002, FD003 AND FD004 DATASET 

Methods 
RMSE 

FD001 FD002 FD003 FD004 
CNN [11] 18.45 30.29 19.82 29.16 

LSTM [12] 16.14 24.49 16.18 28.17 

DAG network [16] 11.96 20.34 12.466 22.66 

Attention-based 
LSTM [18] 

14.53 - - 27.08 

CNN +BiLSTM [20]  12.5 19.34 12.1 20.03 

MHCNN-LSTM [21] 13.27 19.49 13.21 23.89 

Trans. + TCNN [22] 12.31 15.35  12.32 18.35 

AE-DBN (proposed 
method) 

11.27 14.24 11.13 26.85 

 
Based on the comparison results in Table V for the FD001 
dataset, it can be seen that the proposed model reduces the 
RMSE from 18.45 in the case of regular CNN, 16.14 in the 
case of regular LSTM, 14.53 in the case of Attention-based 
LSTM, 13.27 in the case of MHCNN + LSTM, 12.5 in the 
case of BiLSTM + MSCNN, 12.31 in the case of Trans. + 
TCNN, 11.96 in the case of DAG network to 11.27 for the 
AE-DBN DL model. For FD002, the RMSE reduces form 
30.29 in the case of CNN, 24.49 in the case of LSTM, 20 in 
the case of DAG network, 19.49 in the case of 
MHCNN+LSTM, 19.34 in the case of BiLSTM+MSCNN, 
15.35 in the case of Trans.+TCNN to 14.24 for the 
proposed AE-DBN DL model.  
For FD003, the RMSE reduces form 19.82 in the case of 
CNN, 16.18 in the case of LSTM, 13.21 in the case of 
MHCNN+LSTM, 12.466 in the case of DAG network, 
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12.32 in the case of Trans.+TCNN, 12.1 in the case of 
BiLSTM+MSCNN to 11.13 for the proposed AE-DBN DL 
model. 
For the FD004 dataset, it can be seen that the proposed 
model reduces the RMSE from 29.16 in the case of the 
regular CNN, 27.08 in the case of Attention-based LSTM to 
26.85 for the proposed AE-DBN DL model. However, 
DAG network, BiLSTM+MSCNN, MHCNN+LSTM, 
Trans.+TCNN have shown better result than the proposed 
model.  
To end this, the proposed AE-DBN performance in terms of 
Score for RUL prediction is compared with a similar state-
of-the-art method in the literature that used the FD001, 
FD002, FD003 and FD004 dataset as shown in Table VI. 
 

TABLE VI. SCORE COMPARISON BETWEEN THE PROPOSED METHOD AND 
RELATED WORKS USING FD001, FD002, FD003 AND FD004 DATASET 

Methods 
Score 

FD001 FD002 FD003 FD004 
CNN [11] 1286 13570 15962 7886 

LSTM [12] 338 4450 852 5550 

DAG network [16] 229 2730 535 3370 

Attention-based 
LSTM [18] 

322 - - 5649 

CNN +BiLSTM [20]  231 2650 257 3400 

MHCNN+LSTM [21] 259 4350 343 4340 

Trans. + TCNN [22] 252 1267 296 2120 

AE-DBN (proposed 
method) 

219 1255 264 2135 

 
Based on the comparison results in Table VI for the FD001 
dataset, it can be seen that the proposed model reduces the 
Score from 1286 in the case of regular CNN, 338 in the 
case of regular LSTM, 322 in the case of Attention-based 
LSTM, 259 in the case of MHCNN + LSTM, 231 in the 
case of CNN + BiLSTM, 252 in the case of Trans. + 
TCNN, 229 in the case of DAG network to 219 for the AE-
DBN DL model. For FD002, the Score reduces form 13570 
in the case of CNN, 4450 in the case of LSTM, 2730 in the 
case of DAG network, 4350 in the case of 
MHCNN+LSTM, 2650 in the case of CNN + BiLSTM, 
1267 in the case of Trans.+TCNN to 1255 for the proposed 
AE-DBN DL model.  
For the FD003 dataset, it can be seen that the proposed 
model reduces the Score from 15962 in the case of regular 
CNN, 852 in the case of regular LSTM, 535 in the case of 
DAG network, 343 in the case of MHCNN + LSTM, 296 in 
the case of Trans. + TCNN to 264 for the AE-DBN DL 
model. However, CNN + BiLSTM have shown better result 
than the proposed model with a Score of 257. For the 
FD004 dataset, it can be seen that the proposed model 
reduces the Score from 7886 in the case of regular CNN, 
5550 in the case of regular LSTM, 4340 in the case of 
MHCNN + LSTM, 3400 in the case of CNN + BiLSTM, 
3370 in the case of DAG network, to 2135 for the AE-DBN 

DL model. However, Trans. + TCNN have shown better 
result than the proposed model with a Score of 2120. 
In general, this comparison proved that the proposed AE-
DBN outperforms the similar related works based on the 
three dataset out of four based on the RMSE and two out of 
four based on the Score index. 
 
V. CONCLUSION 
Deep Learning (DL) based methods have been proven to be 
very promising for the Remaining Useful Life (RUL) 
prediction of equipment. This paper proposed an 
Autoencoder-based Deep Belief Network (AE-DBN) based 
model for RUL prediction for aircraft engines. An 
experimental study was conducted using a published dataset 
of aircraft engines data to evaluate the effectiveness of the 
proposed RUL prediction model. To investigate the 
estimation performance, the AE-based DBN is compared 
with the standard DBN model. The results show a 
considerable improvement of the AE-DBN in comparison 
with standard DBN in terms of RMSE, MAE, R1 and Score.  
Moreover, the results are also compared with other DL 
algorithms. The results show that a three out of four dataset 
(FD001, FD002 and FD003), the RMSE of the proposed 
AE-DBN model is less than other state-of-the-art related 
method for RUL perdition. Besides, two out of four (FD001 
and FD002), the Score of the proposed AE-DBN model is 
less than other state-of-the-art related method for RUL 
perdition. The overall results reveal that the AE-DBN RUL 
prediction model outperforms the state-of-the-art works and 
the standard DBN RUL prediction model. As future 
research, this work can be extended into two directions. The 
first one is to explore the ability to utilize the swarm-based 
optimization techniques to determine the optimal 
hyperparameters of the DL model to achieve higher 
accuracy and less implementation complexity. On other 
hand, hybrid with other DL algorithms to boost the 
performance of the RUL prediction can be considered as 
another future work. 
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