EMap: Real-time Terrain Estimation

Jacobus C. Lock, Fanta Camara, and Charles Fox

School of Computer Science, University of Lincoln, UK

Abstract. Terrain mapping has a many use cases in both land sur-
veyance and autonomous vehicles. Popular methods generate occupancy
maps over 3D space, which are sub-optimal in outdoor scenarios with
large, clear spaces where gaps in LiDAR readings are common. A ter-
rain can instead be modelled as a height map over 2D space which can
iteratively be updated with incoming LiDAR data, which simplifies com-
putation and allows missing points to be estimated based on the current
terrain estimate. The latter point is of particular interest, since it can
reduce the data collection effort required (and its associated costs) and
current options are not suitable to real-time operation. In this work,
we introduce a new method that is capable of performing such terrain
mapping and inferencing tasks in real-time. We evaluate it with a set of
mapping scenarios and show it is capable of generating maps with higher
accuracy than an OctoMap-based method.

1 Introduction

3D terrain mapping is a core problem in mobile robotics and efficient solutions
are crucial to enable robots to explore and perform tasks on various terrains.
Terrain data also has offline uses in site surveyance, such as to plan new con-
struction projects, environmental monitoring to improve early interventions for
flooding, and determining agricultural subsidy payments dependant on terrain
quality. Many terrain mapping solutions currently employed use visual methods
that rely on many distinct, clear features and are therefore well-suited for in-
door or urban outdoor environments where these features are plentiful. However,
such features are much rarer in outdoor off-road environments which are largely
flat and bereft of many distinct static features, making the popular vision-based
methods less robust in these settings.

A popular approach to the terrain mapping problem uses point clouds cap-
tured from a LiDAR sensor and merges them together over time using methods
such as OctoMap [1] and UFOMap [2] to form a complete map of the envi-
ronment. However, these methods become less robust the further away data
captured by the LiDAR are from the actual sensor — significant gaps in the
terrain estimate are introduced as the gaps between LiDAR hits become larger.
This is not a particularly serious issue in populated urban or indoor areas, where
large, empty areas at further distances (25m+) are fairly uncommon, but be-
comes acute in off-road outdoor areas, where large, flat expanses with uneven
surfaces are the norm. Currently, this problem is addressed by having the sensor

2 JC Lock et al.

Fig. 1: An example of a surface (left) reconstructed using EMap (right).

pass over the data-sparse areas multiple times to generate additional data with
which to fill in the cloud map and increase the terrain estimate’s fidelity. Such
approaches are appropriate for, and incur little additional cost from, small au-
tonomous robots and vehicles that can make many passes with minimal input
from a human operator. However, where large industrial or agricultural robots
and vehicles are involved, such a multi-pass approach can become very costly,
particularly when human labour is required to monitor the work.

As an example, suppose a LiDAR sensor can detect points up to R meters
away. The number of LiDAR hits decays as a function of the distance to the
sensor (see Fig. 2 for the sampling density over R for the OS1-64 LiDAR used
in this work). If one sets a minimum sampling density requirement for a terrain
map, there will exist some range r,, from the sensor that demarcates the maxi-
mum distance from the sensor where the sampling density becomes too low and
which will require additional passes to sufficiently map. A survey site of width
37rm, for example, will then require at least 2 back and forth passes to map with
a sufficient number of point data. However, if r,, could be extended, the entire
site could be mapped with fewer passes. In many applications, the savings could
become substantial when considering the operational costs involved in land sur-
veyance. For example, helicopter and drone-based LiDAR surveyance operations
are common and the costs include equipment rent, pilot wage, and fuel, so any
reductions in total travel time and distance could lead to a real and substantial
economic and environmental impact.

A simple way to increase the effective scanning range r,, is to use a higher-
cost LiDAR with an increased sampling density. Alternatively, approximating
point positions in and around the gaps in the terrain estimate, based on actual
LiDAR inputs surrounding the area, will effectively increase the sampling density
and extend 7,,,. The widely used OctoMap [1] package can be used to create an
occupancy map and perform interpolation between the occupied nodes to fill in
the unknown nodes, thereby accomplishing the aforementioned approximation
task. However, in this paper we show that this OctoMap-based interpolation
approach is not robust enough to have a meaningful impact on reducing the
surface estimation errors and increase a sensor’s effective scanning range, 7.
We therefore introduce a new alternative method, EMap, based on energy min-
imisation techniques to reduce these errors, thereby increasing r,, and reducing

EMap: Real-time Terrain Estimation 3

LiDAR Sampling Density vs. Radial Distance from Sensor

0.3

0.25

0.2

0.15

0.14

0.05

0.0-

Number of samples per m? [normalised]

4 6 8 10
Distance to LiDAR [m]

Fig. 2: Number of samples captured by the Ouster OS1 LiDAR used in this work
as a function of distance distance to the sensor.

the number of passes needed to generate an accurate terrain map. Fig. 1 shows
a sample surface reconstructed using the EMap method.

Many studies regard only online autonomous navigation as the use-case
for real-time mapping. However, the parameters and requirements of land sur-
veyance tasks differ significantly and are often not considered. In contrast, we
devise a set of utility functions that represent both types of tasks and evaluate
our method according to its performance in these simulated tasks. The contri-
butions of this work are therefore as follows: First, a novel approach to terrain
mapping, specialised for off-road settings that extends the effective LIDAR map-
ping range beyond that of OctoMap without significant additional computational
cost. Second, a set of utility functions that resemble the priorities and constraints
of terrain mapping scenarios.

2 Related work

Computer vision techniques have successfully been used for surface reconstruc-
tion for many years and are quite mature at this point. Indeed, stereo vision
systems are extensively used in the Mars rovers [3]. However, in the last decade
researchers have become increasingly interested in using LiDARs to capture 3D
environmental data [4-6]. These sensors offer several advantages over camera-
based systems, such as being more robust to different lighting conditions and
offering a wider field of view without distortion. Many modern Geographic In-
formation Systems (GIS), which provide a map of a geographic area [7], rely
on data captured by some form of LiDAR. Such maps are very useful for en-
vironmental and urban planners to predict floods, observe floral patterns over
time, or to create relief maps, for example, and form so-called Digital Elevation

4 JC Lock et al.

Models (DEM). DEMs are often created by merging multiple point cloud ob-
servations over a large area together using supplemental localisation data from
a GPS, for example. However, these models often break down when different
terrain features are captured and are not properly classified [8,9]. For example,
floral canopies may distort the terrain map’s height estimate if these are not
properly accounted for in the DEM. A smaller scale DEM, restricted to a single
terrain type, would not be affected by these issues.

OctoMap [1] and a recent variant, UFOMap [2], offer such a LiDAR-based
mapping approach suitable for use by mobile robots and their immediate sur-
roundings. As LiDAR data are received, these systems organise them into an
octree [10] structure, which is a highly scalable and optimised data structure
for 3D geometric modelling and is very well-suited for high resolution mapping.
Octree nodes and leaves are marked as free or occupied according to whether
or not a LiDAR observation falls within a given node’s range, indicating that
the ray reflected off of an obstacle or has reached its maximum distance. The
nodes are iteratively updated with each incoming LiDAR datum and eventually
forms a complete high-resolution map of the robot’s surroundings. Given these
frameworks’ octree-based structure, their fast update speed and low barrier to
entry, they have become a popular choice for many roboticists’ real-time mapping
tasks. However, while beneficial for cluttered indoor and urban environments,
OctoMap can leave significant areas in its terrain estimate unfilled, particularly
at longer distances where hit densities are lower. This makes OctoMap and its
derivative systems unreliable for the task of surface reconstruction in an outdoor,
off-road context.

Machine learning models, such as SVMs, have been used to infer surface
points at unobserved locations with reasonable success [11]. However, the actual
terrain reconstruction and estimation process takes place offline. The GPMap
[12] and GPOctoMap [13] frameworks are both terrain mapping and surface
estimation approaches that use input data from the LiDAR to train a set of
Gaussian Process (GP) regressors which fill in any gaps in the surface estimate.
Both also use octree-based maps to discretise the environment and make the
terrain data more amenable to additional processing. However, GPs are well
known to be computationally expensive and, despite optimisations introduced
by various authors to improve their scalability [14, 15], they remain as such,
making GPMap and GPOctomap unsuitable for real-time mapping and surface
reconstruction tasks for reasonably-sized environments.

Other methods have been proposed for efficiently reconstructing the com-
plete surface of an arbitrary 3D object [16]. One approach is to model the sur-
face using an energy function and optimise it according to some structural pa-
rameters [17,18]. Such functions are relatively straightforward to minimise and
present an efficient surface reconstruction pipeline. However these techniques
have only been applied to 3D objects’ surfaces and have not been used for envi-
ronmental mapping. Indeed, given the flexibility of these methods, their proven
computational efficiency and the problem at hand, we believe that an energy

EMap: Real-time Terrain Estimation 5

model-based approach could prove useful for terrain reconstruction tasks in an
outdoor off-road setting.

3 Method

At their cores, mapping an outdoor off-road terrain and an urban one are func-
tionally similar processes. OctoMap [1] and UFOMap [2] are popular, robust and
freely available tools that can produce occupancy maps of various environments.
However, they do not have the capability of inferring whether a node in an un-
known occupancy state between other occupied nodes is occupied or free. This
is an important factor for producing complete and accurate surveyance maps,
as well as robots that require complete knowledge of the surrounding terrain to
plan their movement and accomplish their tasks more effectively. The fact that
rural outdoor environments are often continuous, albeit uneven, surfaces can be
exploited to fill in these gaps and estimate a node’s state if it is located on the
same contour as its occupied neighbours.

Our approach, called EMap (Energy Minimisation Mapping), uses the afore-
mentioned assumption of a continuous surface contour to find the surface esti-
mate that best fits the input LiDAR reference data. As the name alludes to,
EMap is based on the concept of energy minimisation (EM, sometimes called
‘geometry optimisation’), which is a process to determine the optimal geo-spatial
arrangement of objects according to an energy-based model. This approach is of-
ten used in computational chemistry to find the expected geometric arrangement
of atoms in a molecule based on their inter-atomic energy bonds (a spring-like
force that attracts or repels a pair of atoms based on the distance between them).
The atoms’ final resting positions will be located where their inter-atomic forces
settle at a new equilibrium state and the net energy in the system is zero.

Applying this approach to a LiDAR-based terrain mapper is fairly straight-
forward. Suppose that at time ¢ we have a set of surface nodes to approximate
the terrain surface. Like the atoms discussed earlier, these nodes are connected
to one another according to an energy model that is a function of the relative
distance between neighbouring nodes (i.e. the spring-like forces described ear-
lier). Incoming LiDAR point data at time ¢t + 1 are then modelled as new nodes
with additional spring forces between a new node and its nearest neighbour
from the surface nodes from time ¢. This approximates additional energy being
introduced to an enclosed system, resembling work done on the surface node
system. The surface nodes are forced absorb the incoming energy and reach a
new equilibrium by adjusting their relative positions. Since we are only inter-
ested in the map’s surface topology, we can simplify the problem by fixing the
surface nodes’ x and y coordinates in the LiDAR’s local frame, limiting all the
nodes’ displacements to the z dimension only. Refer to Fig. 3 for an example
spring-node system exposed to an incoming LiDAR point.

Let us now mathematically formalise our EMap approach. The terrain sur-
face estimate consists of a set of nodes with constant (z,y) coordinates and
variable heights, z, measured relative to the LiDAR sensor’s local frame. These

6 JC Lock et al.

t = 0:Equilibrium

L 32 I
S S
! ll 82 l1 3

t = 1:Input from LiDAR

t = 2:Settle at New Equilibrium

dy
p

Fig. 3: Interactions between between nodes, neighbours and LiDAR points.

are attached to one another in a grid pattern with springs with a spring constant
k. A node s will therefore have between 2 and 4 neighbouring nodes influencing
s’s position, depending on its position in the grid (e.g. a corner node will only
have 2 connected neighbours). The total energy at a single node s at equilibrium
at timestep t = 0 is then given by

_ "1
E0 = Z §kAZ§m (1)
1=0

where n is the number of connected neighbours s has and Az; is the vertical-
only difference in height between nodes s and i (since x and y are fixed, their
deltas are eliminated from the spring displacement vector).

Incoming data from the LiDAR are modelled as work done on the surface
estimate nodes, perturbing them from their equilibrium states. The work done
by each incoming LiDAR point is modelled as another spring connecting each
input point with its nearest surface node. In its equilibrium state at ¢ = 0 and
Az = 0, the total net energy in the surface estimate’s spring network is zero.
However, when new LiDAR points are introduced at timestep ¢ = 1, the system’s
net energy is no longer zero and the resultant energy at each node is calculated
as

t=1 - 1 A 2 - 1 2
Es - Z ikl Zsi + Z ik‘?ds]’ (2)
i=0 j=0

EMap: Real-time Terrain Estimation 7

where m are the number of input LiDAR points attached to node s and dg; is
the Euclidean distance between point j and node s. This perturbation results
in a non-zero energy state for the surface estimate and Az must be adjusted to
compensate for the new energy introduced to the system. We ignore the springs’
transient behavior in favour of the steady-state response and solve the system as
a set of linear equations to determine Az. Rewriting Eq. 2 in the form Ax+b = ¢
gives,

1 1
e = iKSAZ + §Kdd, (3)

where e is an a x 1 vector containing the energy FE at each node, a is the
number of nodes in the surface estimate and K, is an a x a diagonal matrix
containing each node’s effective spring constant (e.g. a node with 4 neighbours
and k = 10Nm ™! will have an effective kcsf = 40Nm™1). Az is an a x 1 vector
made up of the sum of the squared spring displacements, Az2,, between the
surface node and its neighbours and d is an a x 1 vector containing the sum
of the squared displacements between node s and its nearest m input points,
dgj (see Eq. 2). Note that the term %Kdd in Eq. 3 represents a fixed quantity
of work that is done on the system by the input LiDAR points, and therefore
remains unchanged. By setting e = 6, we can solve Eq. 3 analytically solved at
the new equilibrium state. The required displacement that must be applied to
each surface node to reach this new equilibrium state is determined by taking an
element-wise square root of Az. This process of performing work on the surface
nodes and finding their new equilibrium positions is iterative and takes place for
each LiDAR scan, refining the overall terrain estimate over time.

To find each node s’s nearest input LIDAR points, we use a kD-tree search
method, which is O(loga) in complexity. However, the overall complexity is
dominated by the matrix inversion process to solve Eq. 3. With our current
constract of fixing the nodes’ (x,y) coordinates, K, is diagonal and can be
inverted in linear time. However, we might relax this constraint in future work
and we therefore cannot rely on the aforementioned diagonality to remain true
indefinitely. Were therefore opt to use a conjugate gradient descent method to
remain flexible and determine K ! (K, will always be semi-positive definite).
This results in a complexity of O(a+/k), where & is K’s condition number which
is expected to be small. We can therefore anticipate a time complexity that grows
linearly with the number of nodes in EMap’s surface estimate.

4 Experiments

4.1 Setup

A Gazebo simulation was created to allow a LiDAR-mounted vehicle to drive
over a surface at 1ms™' and collect point data. The simulation environment
geometry, shown in Fig. 1, is such that the angular pose and position of the
LiDAR remained unchanged, despite variations in the surface shape the vehicle

8 JC Lock et al.

was driving over. This mimics the behaviour of a real large agricultural vehi-
cle or UAV, neither of which are significantly affected by variations of their
work surfaces (UAVs can keep their altitude quite stable in favourable weather
conditions). Furthermore, the robot was limited to driving only forward along
the z-axis and no steering or planning was implemented. The LiDAR sensor
simulated is an Ouster OS1-64 with 512 x 64 beams in a 360° view around
the sensor and 22.5° above and below its horizontal. Sensor noise was added
and is simulated as (+0.05m) Gaussian noise. Only points within a 10m ra-
dius from the sensor are considered. The terrain surface was generated with
25(Ts,ys) = h(xs,ys) = sin Z= sin £, The surface’s sinusoidal pattern of peaks
and troughs introduce periodic occlusions, thereby guaranteeing gaps in the sen-
sor data and providing a challenging mapping task. In order to determine a
realistic surface estimation error, we repeated the experiment 10 times, setting
the robot’s initial position along the y-axis at a new value for each run, 1m apart.
This provides sufficient resolution across the entire surface profile. The collected

LiDAR data were processed by both the EMap and OctoMap systems.

EMap Our EM-based method begins by transforming the incoming LiDAR data
to the vehicle’s local frame and filtering all points that fall outside the 10m range.
A kD-tree nearest neighbour search is then used to find the Euclidian distances
between the incoming LiDAR points and their nearest surface nodes, followed
by the EM process that determines the surface nodes’ required displacements,
which are then added to their z coordinates. To cover the 10m work surface, the
surface estimate was set to contain 40 nodes in the vehicle’s and y directions,
giving 1600 surface nodes in total.

OctoMap As a baseline, we implemented a simple interpolation layer on top of
OctoMap to produce surface estimates. OctoMap was used rather than UFOMap,
as it is mature and widely-used, and the authors of UFOMap did not report any
significant increases in accuracy over OctoMap. OctoMap was used to build up a
volumetric occupancy map with the incoming LiDAR data as it normally does.
However, since the work surface is flat and continuous, we know that the topmost
occupation nodes will form the surface estimate. Another 40 x 40-node surface
estimate is then set to assume the position of these topmost octree nodes and
model the underlying surface. The additional computation takes the form of a
kD-tree search to find the surface’s top layer and transform the surface nodes to
that location.

4.2 Experiment Scenarios

We devised a number of example terrain mapping scenarios to evaluate the
terrain mapping methods with. Each of these scenarios have their own set of
constraints and priorities, reflected by a set of utility functions, which, for ex-
ample, prioritise nearby points over those further away for obstacle detection
purposes. These are two basic scenarios with minimal filtering, as well as two

EMap: Real-time Terrain Estimation 9

drivability ones. The utility functions, F', are applied to the surface estimates
like a filter and range with F(x,y) € [0,1]. The mean square error (MSE) is,

MSE =) % > ((g(w,9) = hlz.y)) F(a,y)*,)

where g and h are the surface estimates given by EMap or OctoMap, and the
ground truth, and a the total number of nodes in the surface estimate.

Baseline - Raw Points This scenario is a naive scan including all input points
equally, with a utility function F,.(x,y) = 1, and acts as the baseline scenario.

Mapping - Nearest Points A nearest point scan simulates cases where only
the points closest to the sensor are considered reliable. This gives the utility
function

0, otherwise.

1, 2?2+ y?<0.25m
Fu(z,y) = { Y (5)

Drive Planning - Gaussian The first drivability scenario emphasises points
at a middle distance, r4, from the vehicle, while progressively ignoring points
further away from r,, mimicking the needs of a planner for autonomous vehicles:

Fy(z,y) :exp(— %(x2+y2+7'g)2). (6)

Obstacle Detection - Cumulative Distribution Function This second
drivability scenario prioritises all data points closest to the sensor, which decays
with the points’ distance to the sensor and allows for effective obstacle detection
nearby a vehicle. This utility function can be modelled by an un-normalised cu-
mulative distribution function (CDF) centred around a threshold scanner range,
TS’

_1;(1+erf(ﬁ/y2\%gg2rs)>. ™

The values for r; and r4, were heuristically set to 4m and 6 m.

Fe(z,y)

5 Results

5.1 Reconstruction Accuracy

The MSE results for all of the scenarios across the 10 experiment runs are given
in Table 1. These show EMap consistently generating more accurate terrain esti-
mates for all of the experiment scenarios, improving upon the OctoMap baseline

10 JC Lock et al.

between approximately 29% and 44%. The standard deviations for the MSE’s
are also significantly reduced for the EMap system, indicating that the estimates
are more precise in addition to being more accurate. Overall reductions in MSE
in each scenario show that the effective scanning range, r,,, is extended when
using EMap for terrain mapping. For example, the scanning range for the CDF
scenario can be increased by 36.7%, to 5.47m, over the baseline’s 4m without
suffering a decrease in accuracy compared with OctoMap. This conclusion is
further supported by the surface estimates’ error spreads from the raw scenario
shown in Fig. 6. These heatmaps show OctoMap’s MSE significantly spiking
around the edges furthest away from the sensor along the z-axis. The opposite
is observed from EMap’s result — the MSE is lowest furthest way from the sensor
on the z-axis. The error scales for these two sets of results are quite different,
so we consider the normalised MSEs. These further reinforce EMap’s error val-
ues being smaller in general and also more consistent compared to OctoMap’s
results.

Table 1: Each scenario’s terrain reconstruction accuracy for OctoMap and EMap.

Scenario ‘OctoMap EMap % Difference
Raw 74.6 +18.2 45.8 +6.3 38.6%
Nearest Points |88.8 +51.4 50.0 £ 25.6 43.7%
Gaussian 1.21+1.19 0.86 = 0.67 28.9%
CDF 0.93 +£0.58 0.59 + 0.32 36.6%

The absolute MSE values in isolation are quite large, e.g. 45 cm for EMap’s
raw scenario. However, this can be explained by the cyclical, sinusoidal terrain
that was used for the experiment, where the error fluctuates periodically with
the vehicle’s forward movement as the terrain transitions from a peak to a trough
(see Fig. 5). This is because a peak occludes a portion of the terrain from the
LiDAR’s view, with its view only fully restored when the vehicle crests the peak
and sees behind it.

5.2 Processing Time per Loop

Fig. 6 shows a plot of EMap’s processing time per loop as a function of a, the
number of nodes in the surface estimate. The time was taken as the mean time
per loop across a 30s period for multiple values of a. Considering its formulation,
EMap’s computational complexity is expected to be linear and dependant on «a
only (see Sec. 4.1). Indeed, this expectation is confirmed by Fig. 6, where the
processing time per loop grows linearly with the number of surface nodes and
indicates that EMap can be scales reasonably well — doubling the surface resolu-
tion increases the computation time by a relatively low 25%. In the experiments,
1600 nodes were used, giving 16 nodes per m? and taking approximately 0.05s

EMap: Real-time Terrain Estimation 11

Abs. Error Per Estimation Node
Mean Error Mean Error (normalised)

5 1.00E+00
1.60E+00 1
2.5 1.40E+00
o B
3 E 8.00E-01
OctoMap 8 o 1.20E+00 .
> LO0E+00 &
2.5
8.00E-01 =
6.00E-01 @
5 6.00E-01 ©
E
=]
o
5 e
4.00E-01 £
7.50E-01 w
2.5
® 7.00E-01 =
EMap 8 o o
c 6.50E-01 S 2.00E-01
> w
25 6.00E-01
5.50E-01
5 0.00E+00
0 2.5 5 0 2.5 5

x-node x-node

Fig. 4: Histogram of the MSEs recorded for both EMap and OctoMap during
the Raw scneario at each node on the estimation surface.

to process, giving a 20 Hz update rate, achieving our goal of real-time terrain
reconstruction.

6 Discussion

EMap showed a consistent reduction in MSE compared to the OctoMap baseline
with a reasonable computational cost, allowing the terrain reconstruction process
to be run in real-time. Beyond the improved accuracy over the baseline, the
extension to r,, facilitated by EMap will lead to a direct reduction in the number
of scans needed to build an accurate map. When this reduction is applied to an
industrial-scale terrain mapping operation, e.g. large autonomous agricultural
machinery, it could be very beneficial in reducing the overall operational cost
and environmental impact.

The simulation experiments carried out in this work are sufficient for prov-
ing the viability of EMap as a concept. However, there are numerous limitations
from using a sinusoidal terrain and simulations and additional work within more
complex simulated and real environments are needed to properly test EMap’s
viability as a terrain mapping solution. Nevertheless, the results from this proof-
of-concept work is promising and indicates that EMap is an avenue worth inves-
tigating more.

12 JC Lock et al.

MSE Over Vehicle Position, x (Gaussian Filter)

x . % OctoMap
005] % % g % :;; EMap
15 & 4
0.04 1
MERE: g 5
P
-u—J-0.03— '% . ;2?
(7] X X
E H
0.02 1
0.01 1
0.00 1

0 20 40 60 80
Vehicle Position [m]

Fig.5: The MSE from for over the distance the vehicle travelled during the
Gaussian scenario as determined by EMap.

7 Conclusion

Based on results generated from simulation experiments, EMap reduces the MSE
by up to 43.7% over Octomap, and extends the effective scanning range by 25%
for one of the mapping scenarios, compared to that of the baseline. This added
benefit comes at little additional computational cost and is accomplished in real
time — though higher-resolution terrain maps can also be generated offline. For
robotic mapping tasks, this could lead to significant cost savings and allow oper-
ators to generate more reliable long-distance traversal plans, further improving
operational efficiency.

Future work should look into applying the EMap approach to a real-world
scenario to determine its effectiveness therein. Furthermore, relaxing the strict
condition of locking the nodes’ (x,y) coordinates can be investigated to deter-
mine whether it can further improve EMap’s surface estimation capabilities.

References

1. A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “Oc-
tomap: An efficient probabilistic 3d mapping framework based on octrees,” Au-
tonomous robots, vol. 34, no. 3, pp. 189-206, 2013.

2. D. Duberg and P. Jensfelt, “Ufomap: An efficient probabilistic 3d mapping frame-
work that embraces the unknown,” arXiv preprint arXiv:2003.04749, 2020.

EMap: Real-time Terrain Estimation 13

0.10 EMap Processing Timer per Loop

0.08 4

0.06 1

0.04 4

Processing Time [s]

0.02 4

0.00

0 2000 4000 6000 8000 10000
Number of Surface Nodes

Fig.6: The mean time taken by EMap to fit a surface to a new input cloud per
LiDAR update loop.

3.

10.

11.

D. Gingras, T. Lamarche, J.-L.. Bedwani, and E. Dupuis, “Rough terrain recon-
struction for rover motion planning,” in 2010 Canadian Conference on Computer
and Robot Vision. ITEEE, 2010, pp. 191-198.

F. Malartre, T. Feraud, C. Debain, and R. Chapuis, “Digital elevation map esti-
mation by vision-lidar fusion,” in 2009 IEEFE International Conference on Robotics
and Biomimetics (ROBIO). 1EEE, 2009, pp. 523-528.

J. Sock, J. Kim, J. Min, and K. Kwak, “Probabilistic traversability map generation
using 3d-lidar and camera,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2016, pp. 5631-5637.

K.-W. Chiang, G.-J. Tsai, Y.-H. Li, and N. El-Sheimy, “Development of lidar-
based uav system for environment reconstruction,” IEEE Geoscience and Remote
Sensing Letters, vol. 14, no. 10, pp. 1790-1794, 2017.

U. G. Survey, “The national map—new data delivery homepage, advanced viewer,
lidar visualization,” US Geological Survey, Tech. Rep., 2019.

C. Hladik and M. Alber, “Accuracy assessment and correction,” Remote Sensing
of Environment, vol. 121, pp. 224-235, 2012.

I. Werbrouck, M. Antrop, V. Van Eetvelde, C. Stal, P. De Maeyer, M. Bats, J. Bour-
geois, M. Court-Picon, P. Crombé, J. De Reu et al., “Digital elevation model gener-
ation for historical landscape analysis based on lidar data, a case study in flanders
(belgium),” Ezpert Systems with Applications, vol. 38, no. 7, pp. 8178-8185, 2011.
D. Meagher, “Geometric modeling using octree encoding,” Computer graphics and
image processing, vol. 19, no. 2, pp. 129-147, 1982.

C.-W. Yeu, M.-H. Lim, G.-B. Huang, A. Agarwal, and Y.-S. Ong, “A new ma-
chine learning paradigm for terrain reconstruction,” IEEE Geoscience and Remote
Sensing Letters, vol. 3, no. 3, pp. 382-386, 2006.

14

12

13.

14.

15.

16.

17.

18.

JC Lock et al.

S. Kim and J. Kim, “Gpmap: A unified framework for robotic mapping,” in Field
and service robotics. Springer, 2015, pp. 319-332.

J. Wang and B. Englot, “Fast, accurate gaussian process occupancy maps via test-
data octrees and nested bayesian fusion,” in 2016 IEEFE International Conference
on Robotics and Automation (ICRA). I1EEE, 2016, pp. 1003-1010.

D. Eriksson, K. Dong, E. Lee, D. Bindel, and A. G. Wilson, “Scaling gaussian
process regression with derivatives,” in Advances in Neural Information Processing
Systems, 2018, pp. 6867—-6877.

V. Tresp, “A bayesian committee machine,” Neural computation, vol. 12, no. 11,
pp- 2719-2741, 2000.

M. Berger, A. Tagliasacchi, L. Seversky, P. Alliez, J. Levine, A. Sharf, and C. Silva,
“State of the art in surface reconstruction from point clouds,” in Eurographics 201}
- State of the Art Reports, 2014.

C. Leung, B. Appleton, B. C. Lovell, and C. Sun, “An energy minimisation ap-
proach to stereo-temporal dense reconstruction,” in Proc. ICPR, 2004.

P. Labatut, J.-P. Pons, and R. Keriven, “Robust and efficient surface reconstruction
from range data,” in Computer graphics forum, vol. 28, no. 8, 2009, pp. 2275-2290.

