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Societal Impact Statement

Strawberry breeders are faced with increasing demands by propagators, growers,

retailers and consumers for particular agronomic traits. This and the volume of plants

requiring assessment during selection constrain breeders to rapid and qualitative rat-

ing methods. High-throughput systems for assessing these traits automatically could

indicate which families, or individual genotypes, should be singled out for further,

more thorough evaluation, thus significantly increasing the selection intensity and

accuracy. This review assesses the current status of and future potential for auto-

mated phenotyping in strawberry crops, highlighting key advances and the gaps

which need to be addressed to facilitate the development of such technology.

Summary

Automated image-based phenotyping has become widely accepted in crop

phenotyping, particularly in cereal crops, yet few traits used by breeders in the straw-

berry industry have been automated. Early phenotypic assessment remains largely

qualitative in this area since the manual phenotyping process is laborious and domain

experts are constrained by time. Precision agriculture, facilitated by robotic technolo-

gies, is increasing in the strawberry industry, and the development of quantitative

automated phenotyping methods is essential to ensure that breeding programs

remain economically competitive. In this review, we investigate the external morpho-

logical traits relevant to the breeding of strawberries that have been automated and

assess the potential for automation of traits that are still evaluated manually,

highlighting challenges and limitations of the approaches used, particularly when

applying high-throughput strawberry phenotyping in real-world environmental

conditions.
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1 | INTRODUCTION

1.1 | Phenotyping in the strawberry industry

The cultivated strawberry (Fragaria � ananassa) is grown commercially

throughout the temperate and subtropical zones of the world

(Hancock, 2020), and its global cultivation has increased significantly

over the past 20 years (for example, DEFRA (2021) illustrates this for

the UK), with the development of superior genetics and advances in

agricultural practices allowing for increased yields per hectare.

However, the availability and cost of labour pose a challenge to

strawberry growers, as the price of fresh strawberries at the farm gate

has remained largely static over the last decade (DEFRA, 2021). As a

result, robotic operations in strawberry production have increased,

automating tasks such as weed control, plant movement, sorting,

stress detection and harvesting (Defterli et al., 2016), the lattermost

of which is of critical need but is still in the development phase.

Strawberries are grown in several different commercial environments

including glasshouses, polytunnels and open fields. In glasshouses and

polytunnels, strawberry fruits hang down from tabletop systems,

resulting in less occlusion of the fruit by the foliage which is beneficial

for robotic interaction (Defterli et al., 2016). To keep harvest costs

sustainable, new varieties must therefore have larger and better-

displayed fruit which increases manual picking speeds (Diamanti et al.,

2011) and, in time, will be amenable to robotic harvesting.

To meet grower and consumer demands, many breeding

programmes have been established for cultivated strawberries through-

out the world (Hancock, 2020). Although strawberry is a clonally propa-

gated crop, the initial phases of strawberry selection are usually

performed on large families of full-sibs with only single replicates of

each genotype. To enable efficient selection, these programmes assess

many agronomic traits, although the process is inefficient, as it requires

significant time input from highly experienced domain experts. The

breeder's equation (Kelly, 2011) predicts the mean changes that will be

observed for a given trait (genetic gain) through the breeding and selec-

tion process over a given generation (time) in relation to the available

genetic variation, the intensity and accuracy of the selection. With the

limited evaluation window generally consisting of only a few weeks, the

breeder's equation indicates that the intensity and accuracy of selection

are limited by the seasonal nature of plant production. Due to this limi-

tation, initial selection decisions are almost exclusively based on the

qualitative evaluation of a genotype's characteristics, which may not be

representative of the full potential of a genotype. Desired traits may

thus be missed, and superior genetics may not be selected, despite their

inherent genetic potential. Increasing the observation frequency as well

as observation accuracy and precision in the field during selection

would increase the efficiency of the breeding process, resulting in

greater potential genetic gain. However, it is impractical to operate a

breeding programme with large numbers of expertly trained personnel,

meaning only a finite number of plants can be evaluated thoroughly

and effectively in any given growing season manually. This leads to a

bottleneck in the selection process that is difficult to overcome without

automation.

The development of an automated system that could rapidly and

quantitatively evaluate individual plants would permit high-

throughput observations to be made independently of human person-

nel within a breeding program in any given season. Quantitative data,

captured multiple times per season, could indicate which families, or

individual genotypes, should be singled out for further, more thorough

evaluation, thus significantly increasing the selection intensity and

accuracy of the breeding process.

1.2 | Motivation, scope and contributions

Advances in robotics, machine learning and computer vision have

begun to revolutionise data capture and analysis in real-world situa-

tions such as those found in plant phenotyping. A contemporary, com-

plimentary review (Zheng et al., 2021) spans an array of applications

for strawberry phenotyping broader than breeding, namely, yield fore-

casting, post-harvest monitoring, fruit quality assessment, stress, pest

and disease detection. The review collates the past work done on

combining remotely sensed data and machine learning methods, with

computed traits related to fruit, leaves and canopy, as well as abiotic/

biotic stress detection, but does not address all relevant phenotyping

traits for breeding, their automation status and potential for automa-

tion. High-throughput phenotyping has the potential to revolutionise

the selection process in strawberry breeding by providing higher fre-

quency, higher resolution, quantifiable measurements of traits. Here,

we review the status of automation of those traits.

Phenotypic traits may be broadly grouped as morphological, phys-

iological and temporal (Choudhury et al., 2020). External morphologi-

cal traits have the greatest automation potential as they can be

directly measured through proximal/remotely sensed means. Physio-

logical traits such as the percentage of soluble solids or chlorophyll

content are typically assessed through destructive measurement,

although some studies have attempted non-destructive analysis using

NIR spectroscopy (for example, Mancini et al. (2020)). Temporal traits

require multiple observations of the same trait over time, to measure

traits such as leaf growth rate or flowering duration. Although tempo-

ral traits may measure external features, tracking components over

time in real-world environments is challenging due to occlusion and

movement of organs due to external factors, resulting in the

rearrangement of organs (Magistri et al., 2020).

In this review, the current status of, and future potential for, the

automation of external morphological traits of strawberry plants and

fruit is examined, limiting the scope to external traits that are initially

assessed qualitatively by breeders and are also important for future

breeding targets such as ease of robotic harvest. We highlight rele-

vant trends in methodology for the computation of these traits where

high-throughput methods have been introduced and identify the

remaining traits that are both of high relevance to breeding and are

good candidates for future automation. This will highlight the gaps

that need to be addressed to facilitate fully automated selection for

traits that are critical in commercial cultivars and demonstrate how

the automation of the phenotyping process will ultimately lead to
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richer, quantitative data that will better support breeders in their

selection process.

2 | HIGH-THROUGHPUT IMAGE-BASED
PHENOTYPING

Automated techniques using remotely sensed data are being used to

address the phenotyping bottleneck both in breeding and in crop

management (Jiang & Li, 2020), facilitating high-throughput

phenotyping in crops including wheat, maize and soybean. Various

sensing technologies have been utilised, each with different benefits

and limitations, including resolution, cost and applicability for use in

non-laboratory environments (Jin et al., 2021). Image-based

phenotyping in particular shows great potential across the range of

different spatial scales, ranging from individual organs to whole plants

depending on the traits assessed (Li, Guo et al., 2020), although chal-

lenges relating to natural environmental variation and data acquisition,

availability and analysis remain (Li, Guo et al., 2020; Minervini

et al., 2015).

While tasks such as appearance assessment (which involves the

identification or segmentation of particular parts of the plant or fruit)

can be assessed using 2D images, 3D perception provides greater pre-

cision in localisation and shape analysis than 2D data, due to the geo-

metrical representation of objects (Jiang & Li, 2020; Paulus, 2019). An

example of a three-dimensional reconstruction of a strawberry, where

surface points are arranged in 3D space, is shown in Figure 1. Point

clouds, such as this, have potential for use in high-throughput assess-

ment of morphological fruit quality attributes that would be too labo-

rious for manual assessment (He et al., 2017).

Image analysis methods for automated phenotyping include both

traditional image processing algorithms, which make use of ‘hand-
crafted’ (manually selected or engineered) features, as well as state-

of-the-art data-driven techniques, where features are learnt from the

supplied data, reducing the need for expert knowledge. Convolutional

neural networks (CNNs) are one such family of algorithms that learn

features directly from images and can be used for tasks such as the

classification, detection and segmentation of image components

(Figure 2) and have out-performed traditional methods in many appli-

cations, such as general visual object recognition and detection

(LeCun et al., 2015). They have shown potential in recent years in

image-based phenotyping, although data availability remains a chal-

lenge due to the requirement for a large number of manually anno-

tated examples, which is resource-intensive and therefore costly (see

Jiang and Li (2020) for a description of common CNN architectures

and uses in phenotyping).

The variation in environmental conditions found in real-world

agricultural settings poses a further challenge to image-based

phenotyping and has been highlighted by several authors in the con-

text of strawberry phenotyping. Illumination changes, due to variation

with the time of day, weather and shadow (Heylen et al., 2021; Ilyas

et al., 2021; Kirk et al., 2020; Lin & Chen, 2018; Yu et al., 2019; Zhou

et al., 2020) pose one such impediment. However, CNNs are reason-

ably robust to variance in illumination, and this can be further

addressed through methods such as merging features from different

colour spaces (Kirk et al., 2020). The unstructured, complex environ-

ment also poses challenges in terms of occlusion of the organs under

evaluation by other fruit, flowers, stems or leaves, and cluttered back-

grounds make segmentation difficult (Fan et al., 2022; Kirk et al.,

2020; Lamb & Chuah, 2018; Lin & Chen, 2018; Yu et al., 2019; Zhou

et al., 2020), but imaging from multiple viewpoints (Kerfs et al., 2017)

and 3D sensing have the potential to assist with this (Le Louëdec &

Cielniak, 2021a). Fruit characteristics, such as the small size of the

fruit and variation in appearance, have also been noted as further

obstacles in agricultural settings (Fan et al., 2022; Kirk et al., 2020),

along with sensor-related restrictions, such as available camera view-

points, low contrast, variance in both colour balance and saturation

and the interference of the sun on infra-red based sensors (Heylen

et al., 2021; Kirk et al., 2020; Le Louëdec & Cielniak, 2021a).

3 | AUTOMATION OF MORPHOLOGICAL TRAITS

CURRENTLY USED IN BREEDING

Strawberry cultivars are described and characterised through an

extensive list of traits (Plant Variety Protection Office at Ministry of

Agriculture, Foresty and Fisheries, 2011). However, some of these

traits are only applied to certain circumstances, such as cultivar identi-

fication for protection, and from a breeding perspective, only a subset

of these traits is considered as breeding targets. A standardised

phenotyping protocol for strawberries was described in Mathey et al.

(2013). The protocol outlines the different traits that were assessed

on 890 genotypes of strawberries, with germplasm from multiple

institutions worldwide, at different locations in the USA including the

scoring criteria for these traits and outlines typical values found for

the traits as a crop reference set. However, most of the criteria

defined there can be applied to programs throughout the world.
F IGURE 1 A point cloud representation of a strawberry,
reconstructed using data from He et al. (2017)
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The traits examined in Mathey et al. (2013) fall into the catego-

ries: (1) phenology and flower related, (2) plant characteristics,

(3) external fruit characteristics, (4) internal fruit characteristics and

(5) fruit chemistry and weight. When breeders conduct an initial

assessment of plants, the external traits of the plants are evaluated

first, and as they are limited by time constraints when assessing

breeding populations of thousands of plants, most traits are scored to

fall into ordinal categories. Although these provide some idea of scale

or ranking for comparison, numerical quantification could provide bet-

ter decision support through the delivery of more precise and detailed

information to breeders, and automation has the potential to facilitate

a shift in these assessments from being qualitative to quantitative.

As external traits are the initial focus in selection, and also

because non-destructive, remotely sensed techniques can be used for

their estimation, of the 37 traits described in Mathey et al. (2013),

only those 18 external traits related to the above-ground structure/

morphology are considered in terms of automation status. The defini-

tion of these traits, how they have traditionally been assessed, their

automation status, breeding importance and their potential for auto-

mation are conveyed in Table 1, which is adapted and extended from

Mathey et al. (2013). Very few of these traits have been automated,

namely, only the external colour of the fruit, the estimated total yield

per plant, the presence/absence of flowers, assessment of the fruit

shape and measurement of the calyx size.

Plant productivity, or estimated yield per plant, is a crucial trait in

breeding selection (Diamanti et al., 2011), and this measure of plant

productivity is assessed through rough fruit and flower counts to

place the estimated yield on a productivity scale. As fruit and flower

counts are also vital for yield forecasting applications, the precise

detection and counting of these components have been a research

focus for high-throughput methods, with around half of the literature

pertaining to automation of phenotypic traits centring around this. In

image-based phenotyping, CNNs have been used to address fruit

(Chen et al., 2019; Fan et al., 2022; Ilyas et al., 2021; Kerfs et al.,

2017; Kim et al., 2020; Kirk et al., 2020; Lamb & Chuah, 2018; Yu

et al., 2019; Zhang et al., 2022; Zhou et al., 2020) and flower (Heylen

et al., 2021; Lin & Chen, 2018) detection in real-world agricultural

conditions, as they offer greater robustness to the varying environ-

mental conditions experienced than traditional machine learning

methods that use manually defined features. However, a challenge for

detection in real-world environments is occlusion, which can be

minimised by selecting an appropriate viewpoint from which to collect

data so as to maximise the prominence of the organ of interest in the

image. For example, aerial imagery, or the use of both aerial and lat-

eral perspectives, as in Kerfs et al. (2017), has been utilised in flower

detection studies, as flowers are most visible from above the canopy.

A consideration when using CNNs for high-throughput phenotyping is

how to balance the trade-off between accuracy (for example, using

Faster R-CNN type networks (Chen et al., 2019; Lin & Chen, 2018;

Zhou et al., 2020) and efficiency (such as the YOLO family of architec-

tures (Fan et al., 2022; Kim et al., 2020; Zhang et al., 2022)) if real-

time performance is of relevance in the system. The automation of

fruit and flower counts is beneficial to the selection process as the

productivity of genotypes can be assessed, allowing breeders to

immediately disregard those that do not meet the required level and

thus increasing the selection process efficiency.

Customer perception of fruit quality is associated with traits such

as fruit size, colour, gloss, uniformity and skin toughness (Witaker

et al., 2011). The external colour of a strawberry is additionally linked

to the maturity of the fruit and is one of the key visual cues that

attract consumers and help purchasing decisions; too light and the

fruit does not look ripe, too dark and it is considered over-ripe. In the

traditional approach described in Mathey et al. (2013), colour is scored

according to a qualitative visual estimation of the colour in the range

from white to dark red in nine steps. Expert knowledge is required to

ensure repeatable colour classification and different genotypes may

display different colours at full ripeness, with specific colours and sha-

des appealing to consumers in different geographies. Automated

F IGURE 2 Common tasks in machine vision are classification, detection and segmentation, in which a label is assigned to an image, portion
thereof, or pixel. Each of these is illustrated here: (a) classification requires no localisation (i.e., identification of an object's position with an image),
only an indication as to which of a set of classes the object in the image belongs to; (b) detection is a combination of classification and

localisation, where the identified object is localised by identifying the object's bounding box; (c) segmentation (in this case, instance segmentation)
goes a step further than detection, where individual pixels of each object are assigned classes
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methods approach this differently, removing subjectivity by numerically

quantifying the colour through the calculation of the range of pixel

values or their mean in different colour spaces, such as HSV (He et al.,

2017) and CIELab (Liming & Yanchao, 2010; Zingaretti et al., 2021).

Since colour is also an indicator of potential maturity, regular automated

assessment of seedlings or clonally propagated material can assist in fil-

tering these in selection trials to focus on those which have potentially

ripe fruit or to determine when it would be most beneficial for breeders

to perform selections, such as when most plants have available fruit.

Quantified colour would further allow breeders to filter out any geno-

types that do not meet the colour requirements for the selection target.

Fruit shape is another important trait for varietal success in the

marketplace, with different shaped berries favoured by different cul-

tural groups (Prescott & Bell, 1995), and it is thus important that selec-

tions meet the shape target for a particular market. This in turn results

in breeders favouring particular shapes, such as oblate, globose, cor-

date, wedge, short-conic, long-conic or wedge (Jamieson, 2017). Fur-

thermore, fruit shape is an important consideration for punnet packing

and, along with fruit size variation and resistance to bruising, contrib-

utes greatly to the cost of packing activity (Herrington et al., 2012). Tra-

ditionally, shape has been classified ordinally in nine categories, and

such categorisation has also been applied in automation studies. Shape

categorisation through automated methods has been achieved by first

extracting manually defined shape descriptors from the data (described

hereafter) and supplying these to a machine learning algorithm for clas-

sification. These shape descriptors, extracted from images, can be sim-

ple measures of distance such as fruit length and width (Ishikawa et al.,

2018; Rey-Serra et al., 2021), relate to the outline of the berry

(Ishikawa et al., 2018), points around the perimeter of the fruit

(Zingaretti et al., 2021), pixel-based descriptors, or a combination of

one or more of these descriptor types (Feldmann et al., 2020). Shape

classification is then performed either by a supervised machine learning

algorithm (such as Random Forest) into a defined set of classes

(Ishikawa et al., 2018) or using an unsupervised clustering algorithm

(such as K-means) to find natural groupings within the data (Feldmann

et al., 2020; Liming & Yanchao, 2010; Zingaretti et al., 2021). Automa-

tion of shape estimation can be used to highlight genotypes having a

shape of interest, or disregard those that do not fall within a threshold

of desired shape measurements, defined by the shape descriptors.

However, research around automated shape assessment has thus far

been primarily focussed on fruit quality applications, where individual

picked berries are imaged or scanned at high resolution in laboratory

conditions, with un-occluded viewpoints. Such conditions lend them-

selves to 3D representation, as multiple unoccluded viewpoints are pos-

sible, allowing for a full representation of the fruit (Feldmann &

Tabb, 2022; He et al., 2017; Le Louëdec & Cielniak, 2020; Li, Cockerton

et al., 2020). To be practically useful to breeding and selection, how-

ever, shape needs to be assessed in real agricultural environments, for

which there is potential although further research into this is needed

(Le Louëdec & Cielniak, 2021a).

In addition to fruit size, shape and colour, the perception of fruit

quality is also inferred from traits such as calyx size (He et al., 2017).

Traditionally, this trait has been assessed ordinally in relation to the

fruit width. Automated methods developed to date allow for a quanti-

tative measure of the maximum calyx dimension in laboratory-sourced

3D data (He et al., 2017), and automation of this trait still needs to be

investigated in real-world conditions. While automated assessment of

the calyx size on its own does not contribute significantly to increased

throughput in selection, if combined with other traits, this could be

used to identify genotypes of potential interest.

Considering each of the traits automated to date, automation can

be seen to increase the quantitative nature of the phenotypic data

collected, replacing categories with rankable values that ensure con-

sistency across all selections, and allowing for quantitative descrip-

tions of common traits in families of seedlings or clonally propagated

material to be developed. Furthermore, high-throughput assessment

across the potentially thousands of genotypes could allow for

breeders to perform pre-selections, disregarding those that do not

meet the criteria, so as to focus manual assessment on a smaller selec-

tion of those which are of greater potential importance.

To be of practical value for breeding, methods must be developed

that are applicable in a real-world environment under a range of dif-

ferent environmental conditions; however, data collected for research

into the automated phenotypic analysis of strawberries has been sou-

rced from both laboratory and real-world conditions. The controlled

conditions associated with laboratory-based phenotyping allow for

reproducible results, but often, these cannot be directly translated to

field applications due to the inherent variability in such environments

(Araus & Carins, 2014), which has hampered the application of this

research to real-world scenarios.

4 | POTENTIAL FOR AUTOMATION OF TRAITS AND

IMPORTANCE TO STANDARD BREEDING TARGETS

Strawberry breeding requires the determination of many agronomic

traits affecting the profitability of a final variety, followed by a ranking

and weighting of the relative importance of those traits to the propa-

gator, grower, retailer and consumer, based on the relative contribu-

tion of that trait to the economic success of strawberry sales. The

breeder must then observe as many of these traits as possible within

each plant during the growing season. Traits are observed as the

breeder passes the plants in the field and following this rapid evalua-

tion of traits and the mental calculation of their relative weightings,

selection decisions are made and seedlings are either progressed to

subsequent stages of evaluation or discarded.

All of the traits automated to date relate to the fruit and phenol-

ogy of the plant. This is perhaps unsurprising, given that the fruit is

the desired product from the plant and granular data pertaining to it is

important for maturity estimation, yield forecasting, quality assess-

ment and robotic harvesting applications (Zheng et al., 2021). Further-

more, traits describing the fruit may also be considered ‘easy’ traits
for automated computation, as the fruit is less complex in structure

than, for example, the canopy. However, in breeding programmes,

phenological traits are not the only traits of interest, and there is a

need for the automation of many other economically-important traits
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relating to the plant and non-fruit components (such as the number of

runners or peduncle length). There are many traits for which auto-

mated phenotyping would be of significant value to the breeding and

selection process, and the potential for this, along with the breeding

importance, has been assigned a ranking out of 5 for both the breed-

ing importance and automation potential (with 1 being of low impor-

tance/potential and 5 indicating high) in Table 1, with a justification

for the assigned scores. A subset of this information is visually

depicted in Figure 3 for ease of comparison, showing each trait as a

function of its automation potential and breeding importance, with

cases in the top-right indicating high importance to breeders and

being most suited for automation.

Automation potential depends on a number of factors. Traits per-

taining to the canopy structure, such as vigour, appearance, canopy

density and volume, are important because they impact the ability of

pickers to access the available ripe fruit on the crop, as well as impair

air movement, which can lead to fungal disease infection, and affect

disease control by impacting chemical spray penetration within the

plant canopy (Sharpe et al., 2018). Such traits were traditionally

characterised in a way that permits rapid assessment by humans using

subjective classification, and, as such, traits like this are not ideally

suited to automation as they stand. However, subjective traits like

these could potentially be replaced by one or more automated quanti-

tative traits that could provide a quantitative measure of the same

component—for example, both canopy height and canopy volume

allude to vigour. Subjective traits thus have low direct automation

potential, falling towards the bottom of Figure 3.

Computation of the phenotype requires assessment of the plant at

a holistic (the whole plant), component (whole organs such as fruit,

leaves and runners) or sub-component (e.g., achenes or the calyx) level.

Of the research articles focussing on the automation of these traits

(listed in Table 1), only one (vigour) offers holistic assessment, with the

remainder split between component (10/18) and sub-component

(7/18). In the case of traits at the component or sub-component level,

detection or segmentation of the organ from the rest of the plant is a

necessary prerequisite step. Subsequent steps would then involve clas-

sification, detection of other organs to facilitate the computation of the

relative positioning, counts or measurement of an organ. Furthermore,

small sub-component size increases the complexity of phenotyping, as

the resolution of the image has the potential to pose a challenge. Thus,

automation potential is affected by the number of steps needed to

obtain the phenotype and by the size of the organ or component. The

challenges posed by real-world environments, highlighted in Section 3,

are also particularly pertinent for tasks where an unoccluded view is

necessary, such as measurement of length, or for traits requiring the

detection of multiple components. Considering Figure 3, traits extracted

from small sub-components are grouped as having lower automation

potential than those from whole components.

Considering those unautomated traits that are both important for

breeding but are also amenable to automation, truss complexity (num-

ber of flowers per truss) and peduncle length are identified as prime

targets for further research and development effort. Both traits

impact the display of the berries (fruit) and are of importance to effi-

cient picking (by humans and potentially by robots), with the number

of flowers per truss additionally affecting berry size (Heide et al.,

2013). These are thus essential from an economic perspective, so

these traits are important breeding targets. In terms of automation,

truss complexity requires detection and subsequent counting, while

peduncle length requires quantification—the complexity for both of

which is relatively low, provided there is minimal occlusion.

Characterising genotypes automatically in terms of these important

traits, in addition to those already automated, would reduce the effort

required to identify individual genotypes or families of interest for

closer inspection, thus increasing the efficiency of the selection pro-

cess for strawberries.

5 | CURRENT STATUS, CHALLENGES AND

PROSPECTS OF AUTOMATED STRAWBERRY

PHENOTYPING IN AGRICULTURAL ENVIRONMENTS

Image-based analysis has the potential to facilitate the high-

throughput computation of phenotypic traits. The resulting higher

level of quantification would lead to an increase in detail and precision

of data available to breeders, which would result in more effective

decision-making in the selection process. Automated image-based

phenotyping is already widely used for a variety of crops at different

spatial scales (Li, Cockerton et al., 2020), spanning the analysis of indi-

vidual organs and plants within controlled laboratory conditions using

fixed sensing platforms, through to field conditions where

phenotyping is conducted using mobile ground-based or aerial vehi-

cles carrying sensing payloads (Yang et al., 2020).
F IGURE 3 The relative breeding importance and automation
potential of the morphological traits of strawberries
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Translating methods from controlled to real-world environments

remains a challenge (Araus & Carins, 2014; Li, Guo et al., 2020), but it

is the only way that the potential of such technologies can be fully

realised in breeding and selection. The challenges posed by real agri-

cultural environments to strawberry phenotyping, highlighted in

Section 3, are common to image-based phenotyping of other fruit

crops and involve choices between the data source and representa-

tion type (2D or 3D), localisation of organs through detection or seg-

mentation of the plant into organs and subsequent extraction of

phenotypic parameters. Examples of such pipelines are demonstrated

for apples (Häni et al., 2020), blueberries (Patrick & Li, 2017), grapes

(Rose et al., 2016) and tomatoes (Masuda, 2021), and potential les-

sons for strawberry phenotyping can be learnt from automated

phenotyping of these fruit crops. High-throughput phenotyping

research in viticulture has indicated that using 3D information enables

the collection of more complete data through the reduction of occlu-

sion and suggests that features based on both the colour and geometry

of the scene are necessary for good reconstruction in 3D space (Rose

et al., 2016). The problem of information loss due to the occlusion of

berries by leaves also has the potential to be addressed through the use

of generative adversarial networks to predict the hidden scenario

(Kierdorf et al., 2022). Segmentation of plants into organs is an essential

step prior to the extraction of phenotypic traits. Deep learning methods

such as PointNet++ variants have shown promise for this in the con-

text of tomato plants, performing 3D semantic segmentation of syn-

thetically generated plants without prior knowledge of species and

sensor setup (Heiwolt et al., 2021). In comparison to cereal crops, such

as wheat, both the complex growth habit of the strawberry plants, as

well as their relatively small size, increase the phenotyping complexity

(Zheng et al., 2021). Developments in sensing technology and

processing techniques are thus needed to address the highlighted chal-

lenges, targeting those traits most important to breeding, as only a very

small fraction of these traits have been automated to date.

Some studies have computed new phenotypes using automated

methods. These include traits such as achene number (Le Louëdec &

Cielniak, 2021b), fruit volume (He et al., 2017) and canopy height

(Abd-Elrahman et al., 2020), which are highly quantitative and have

the potential to be useful for breeding applications, but would tradi-

tionally have been too costly and time-consuming to measure by

hand. Features of the canopy, such as how the leaves are presented

and the relationship between flowers and canopy, also have the

potential to be important for novel breeding targets, such as suitability

for robotic harvest. There is also the potential for the development of

latent phenotypes that may more fully capture the underlying varia-

tions between individuals (Feldmann & Tabb, 2022), beyond the

restriction of these traits to a few human-defined characteristics.

Looking forward, those traits that are as yet unautomated and

have high importance for breeders should be the focus of future

research. As high-throughput phenotyping for strawberries develops,

relevance to breeding programs must be considered, to avoid the

development of methods that are not relevant to the end-users

(described in Lobet (2017)). To this end, a standardised phenotyping

protocol or toolbox for automated phenotyping is needed to ensure

that as we move into the new age of phenotyping using data-driven

methods, phenotypic standards remain consistent between breeding

programmes. The need for a unified approach has been alluded to in

previous reviews such as Li, Guo et al. (2020) and Zhao et al. (2019),

which highlight the need for a phenotyping database. Furthermore, to

facilitate the uptake of automated phenotypes, it is essential that

automated methods are well documented and presented in a way that

allow breeders or domain experts without programming backgrounds

to make use of them (Danilevicz et al., 2021).

High-throughput phenotyping, if deployed as part of a robotic

sensor carrying system, has the potential to transform the strawberry

breeding industry, assisting breeders by allowing for the rapid compu-

tation of a wide range of phenotypes at a level of granularity and tem-

poral resolution not possible using manual methods. This will yield

greater insights into individual plants within families and reduce the

possibility of important features of individuals being missed due to

the time constraints associated with manual phenotyping.

6 | CONCLUSIONS

In this review, we have sought to highlight the current status of auto-

mation for external morphological traits of strawberry plants. Across

23 identified sources found on the automation of these traits, only

five of the 18 morphological traits listed in a standard phenotyping

protocol had been automated, with all of those automated traits

related to fruit or phenology. There is a real need for research into the

automated calculation of phenotypic traits to address this gap in the

automation of other economically important phenotypic traits for

breeding.

The potential for automation of the assessed external traits varies

depending on whether a holistic, component or sub-component view

of the plant or its organs is taken and challenges relating to

phenotyping in real agricultural conditions need to be overcome to

achieve this. Both this potential and breeding importance were

assessed for those traits for which research into high-throughput eval-

uation has not yet been conducted. Traits scoring highly in both these

categories are candidates which would most readily contribute to

increased efficiency in the selection process and these were identified

to be truss complexity and peduncle length.

Automation will permit the collection of quantitative phenotypic data

for traits of agronomic importance at an unprecedented level in the

strawberry industry. A system providing automation such as this would

allow breeding programmes to increase their selection intensity and

address the phenotyping bottleneck that currently exists due to time limi-

tations on domain experts, allowing breeders to spend more time focus-

ing on genotypes of maximum interest. As a result, high-throughput

phenotyping has the potential to transform the selection process in

strawberry breeding, providing richer information for decision support.
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