
Classifying Dangerous Species Of

Mosquito Using Machine Learning

Michael Flynn

School of Computing Sciences

University of East Anglia

This dissertation is submitted for the degree of

Doctor of Philosophy

May 2022

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with the author and that use of any

information derived there-from must be in accordance with current UK Copyright Law. In
addition, any quotation or extract must include full attribution.



Acknowledgements

I would like to thank: Professor Anthony Bagnall, whose guidance, understanding and

patience throughout the past four years has been greatly appreciated. Without the

opportunities afforded to me by him, I would not be where I am today; Dr Aaron

Bostrom, whose contagious enthusiasm for his work helped cultivate my own passion

for research; Dr Jason Lines, for all the advice, particularly at the beginning of my

PhD; and the BBSRC, for all the training and support, especially in the height of the

pandemic.

I would also like to thank all the friends I have made throughout my time at UEA,

particularly Michael Price, Daniel Ling, William Vickers, James Large, Joshua Thody,

Benjamin Cheshire, Oliver Wagg, Warren Reynolds and those whom I shared the long

PhD lunches with. The laughter and discussions have been a highlight.

A special thanks go to Angela and Nigel Hodder for putting up with me for the

last two years. I am extremely grateful for all that you have done.

Finally, I would like to thank my partner, Abigail Hodder - your unwavering belief

and support over the last four years has been invaluable; and my family, who have

been an endless source of encouragement.



Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university.

This dissertation is my own work and contains nothing which is the outcome of work

done in collaboration with others, except as specified in the text and Acknowledgements.

Michael Flynn

May 2022



Publications

As first author

• Flynn M., Bagnall A. (2019) Classifying Flies Based on Reconstructed Audio

Signals. In Intelligent Data Engineering and Automated Learning – IDEAL 2019.

IDEAL 2019. Lecture Notes in Computer Science, vol 11872. Springer, Cham.

• Flynn M., Large J., Bagnall A. (2019) The Contract Random Interval Spectral

Ensemble (c-RISE): The Effect of Contracting a Classifier on Accuracy. In Hybrid

Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science,

vol 11734. Springer, Cham.

As contributing author

• Middlehurst M., Large J., Flynn M., Lines J., Bostrom A., and Bagnall A.(2021).

Hive-cote 2.0: a new meta ensemble for time series classification. arXiv preprint

arXiv:2104.07551.

• Ruiz A.P., Flynn M., Large J. et al. The great multivariate time series classi-

fication bake off: a review and experimental evaluation of recent algorithmic

advances. Data Min Knowl Disc 35, 401–449 (2021).

• Bagnall A., Flynn M., Large J., Lines J., and Middlehurst M. (2020). On the

usage and performance of the hierarchical vote collective of transformation based



v

ensembles version 1.0 (hive-cote v1. 0). In International Workshop on Advanced

Analytics and Learning on Temporal Data, pages 3–18. Springer, Cham.

• Bagnall A., Dau H. A., Lines J., Flynn M., Large J., Bostrom A., Southam P.,

and Keogh E. (2018a). The uea multivariate timeseries classification archive,

2018. arXiv preprint arXiv:1811.00075.

• Bagnall A., Flynn M., Large J., Lines J., Bostrom A., and Cawley, G. (2018b).

Is rotation forest the best classifier for problems with continuous features? arXiv

preprint arXiv:1809.06705.



Abstract

This thesis begins by presenting the performance of modern Time Series Classification

(TSC) approaches, including HIVE-COTEv2 & InceptionTime, on 4 new insect wing-

beat datasets. The experiments throughout this thesis endeavour to explore whether

it is possible to classify flying insects into their respective species and into group

based on their sex. Furthermore, it is hypothesised that a hierarchical approach to

classifying flying insects is possible via filtering “easy” cases using cheap to obtain

features, reducing the number of times processing intensive approaches are utilised.

Experiments are undertaken on 3 representations of the data: Harmonic Spectral

Product (HSP), the raw data and spectral data. HSP is a method of extracting the

fundamental frequency of a signal. It represents a logical benchmark for comparison

and, is easy and quick to extract. In one dataset, InsectSounds, species are separated

into sex. Evaluation of the results achieved with the HSP representation showed that

despite a relatively poor overall accuracy this feature produces a low type II error

with respect to female mosquitoes. It is shown that classes of mosquitoes species that

are female were more likely to be miss-classified as other female mosquito classes and,

where fly classes are miss-classified as mosquito classes, they are typically classified as

male mosquitoes. Previous work had shown that transformation into the frequency

domain has a positive effect on performance. Audio data is typically recorded at a

high sample rate, which results in high spectral resolution. As a result, approaches

from the literature have used truncation of high and low frequency data to reduce
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runtime. It is hypothesised that inclusion of low frequency data will aid classification.

This is because low frequency data is likely caused by the body of the mosquito and

morphological differences, such as size, are strongly correlated to sex. The results show

that the performance of all approaches was improved by the use of spectral data. The

results also showed that spectral data that included low frequency information resulted

in a higher overall accuracy than transformations that discarded it.

Formative experiments showed that HIVE-COTEv1 was the most accurate approach

at classifying flying insects. HIVE-COTEv1 is a heterogeneous approach that consists

of 4 modules, Random Interval Spectral Ensemble (RISE), Bag Of SFA Symbols

(BOSS), Shapelet Transform Classifier (STC) and Time Series Forest (TSF). The

predictive power of these modules are combined via Cross-validation Accuracy Weighted

Probabilistic Ensemble (CAWPE). The RISE approach was chosen as the spectral

component as it was “best in class” at the inception of HIVE-COTEv1. It is suggested

that a significant improvement to the usability and accuracy of RISE, would translate as

an improvement in the performance of HIVE-COTEv1. The introduction of contracting

provided a method through witch the training time of RISE could be effectively

controlled, improving its usability. A review of the interval selection procedure led to

improvements that had a significant positive effect on accuracy. A review of spectral

transforms and the method of combining them led to a further improvement to accuracy,

and an architecture in which multiple transformations are applied.

In order for smart traps to be effective they are required to work for extended

periods in rural locations. Implementations of hierarchical approaches show that two

expert features, HSP and time of flight (TOF) are effective in reducing test time and

therefore the amount of processing required. This is achieved via first classifying the

test case using simple approaches, such as BayesNet, and only if the confidence in the

prediction does not meet a parameterised threshold using a more powerful approach.
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In an evaluation of several methods of combination, the most efficient of these is shown

to increase classification accuracy by 0.6%, increase the TPR of female mosquitoes

by 48/10,000, decrease the FNR of female mosquitoes by 83/15,000 and reduce test

time by 1.5 hours over 25,000 instances, when compared to the single best approach

InceptionTime. Furthermore, a cumulative approach to combining the expert features

with the InceptionTime approach resulted in a 4.14% increase in accuracy, an increase

in the TPR of female mosquitoes of 139/10,000 and a decrease in the FNR of female

mosquitoes of 45/15,000.
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Chapter 1

Introduction

Over the last century there have been many attempts at solving the problem of

automatically classifying insects, based on audio, or audio like features. Increased

interest in classifying insects has been fuelled by a number of factors. Insects are

responsible for the pollination of the majority of crop species, but are also vectors for

disease and responsible for a substantial number of fatalities. Mosquitoes (members

of the Diptera order) can be found throughout the world. Their ability to thrive in a

location is tightly coupled to factors such as temperature and humidity. Changes in

climate have led to an increase in the number of locations where dangerous mosquitoes

can be found and mechanistic models have shown that the area in which mosquito

species capable of transmitting blood borne diseases can survive, will extend into the

European continent by 2030 [8].

Over the last two decades, the annual number of deaths caused by malaria has

reduced by approximately 300,000. However, the number of cases has not seen the

same level of decline and in 2019 was estimated as 229 million. The majority of these

cases were reported in the WHO defined African region. The absence in the decline of

cases is conflated by large increases in population size, particularly in the sub-Saharan

region, where the population has increased by 435 million in the period between 2000
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and 2019. Efforts to stem the flow of deaths caused by blood borne disease have been

effective. This is in part due to the funding for resources such as: mosquito nets,

which as of 2015 were available to 68% of children in endemic areas; and antimalarial

medication, which at the same point was available to 13% of infected children [69].

Despite this, there remains some cause for concern, as the incidence rate in the West

Pacific, Europe and the Americas has been increasing since 2015.

As the number of countries with pre-eradicated status continues to move toward

being ‘malaria-free’, the WHO has highlighted the requirement for a change in strategy.

This new strategy outlined in the Global Technical Strategy for Malaria 2016-2030 [70],

postulates that emerging technologies, such as smart traps, will play a pivotal role in

preventing the reintroduction of blood born disease, as they represent the potential to

mount effective and cost efficient surveillance. Currently, quantifying the abundance of

an insect species in a natural setting is challenging. Typically, expert entomologists are

required to manually identify species using morphological differences. This can result

in a lengthy delay in the relaying of useful information to authorities and the amount

of data that can be collected is limited. Monitoring the presence and abundance of

mosquitoes is crucial in understanding the population dynamics and effectiveness of

interventions. Advances in the sensor technology that would be required for these

proposed smart traps has recently made the collection of large datasets more feasible

[16] [75] [94] [79]. These approaches, described in more detail in Chapter 2, record data

as an object passes through a target area. The movement of insects can be detected

and recorded using infrared light emitting diodes (LEDs) and optical transistors. The

voltage or current at the base of the optical transistor fluctuates as a function of

occlusion from the LED. As an insect flies between the two components, the majority

of the occlusion is caused by its wings. As the wings are also the mechanical source of
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a mosquitoes characteristic buzz, the resultant data is often interpreted as audio, and

as such, can be framed as a time series classification problem.

Time-series datasets are so called, because of the relationship between attributes.

Where a traditional classification datasets may represent measurements or characteris-

tics collected arbitrarily with respect to either order or time, a fundamental assumption

with time-series data is that the attributes are in some sense ordered. For example,

attributes might correspond to the height of tide at one point along a coast line

over time, but equally might correspond to the height of tide at one point in time

along a coast line. This facilitates the implementation of classification approaches

that use this assumption, to somehow extract informative features from the data. In

Chapter 3, a number of well known time-series approaches are described, including the

state-of-the-art approaches HIVE-COTEv2.0, and InceptionTime (IT). These are later

applied to the “insect classification problem” - is it possible to determine an insects

specie? Is it possible to determine an insects sex? Is it possible to determine an insects

genus?

1.1 Research Hypothesis

This thesis sets out the results of a number of experiments designed to help further

the field of automatic insect classification using features derived from wingbeats. The

primary hypothesis is that it is possible to classify multiple species of mosquitoes into

their respective sex using wingbeat features. Following this, experiments were devised

to asses whether it is possible to determine a mosquitoes genera, which approaches

produced the best results when classifying insects into their respective species and sex,

and finally, is it possible to devise a hierarchical approach to classifying mosquitoes

that reduced processing time whilst maintaining or improving accuracy?
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1.2 Contributions

The contributions presented in this thesis are summarised as follows:

1. Benchmarking algorithms on 4 new insect datasets.

The results of experimentation across 4 recently curated insect-centric datasets:

InsectSound, MosquitoSound, Aphids & FruitFlies. These experiments, for

the first time, provide a performance baseline established by state-of-the-art

time-series approaches. The results from experiments on the InsectSounds and

MosquitoSounds datasets were first published in [34] and the results for the Aphids

and FruitFlies datasets, as well as all results from deep learning approaches, are

first presented in this thesis.

2. A novel approach to controlling train time

An adaptive approach which employs regression as a mechanism to intelligently

control the space from which intervals, a subset of the dataset consisting of

contiguous attributes, can be drawn. The approach was first published in [35].

An experimental review undertaken on 112 datasets from the UCR archive

compares a new approach to an obvious baseline where it demonstrates a superior

ability to adhere to a limit on the duration of training, whilst maintaining a

comparable accuracy.

3. A novel interval selection policy that significantly improves accuracy

The Random Interval Spectral Ensemble (RISE) is the spectral component of

the The Hierarchical Vote Collective of Transformation-Based Ensembles version

1 (HIVE-COTEv1). HIVE-COTEv1 is a heterogeneous ensemble formed of

best-in-class from 4 archetypes of approach, presented in section 3.3, and was

designed with oscillatory data, such as audio, in mind. As such, RISE represents
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a sensible starting point for audio classification problems. Furthermore, any

improvements to the performance of RISE will potentially improve the HIVE-

COTEv1 approach. An investigation into the interval selection process of the

RISE algorithm resulted in a second algorithmic contribution. The proposed

interval selection implementation produces a significantly better performance with

regards to accuracy than 3 alternative methods, including the default method

used in the published version [5]. This is achieved via an novel method of selecting

start point, end point and length, that hinges on a deterministic number of anchor

points.

4. A new spectral approach cRISEAll

The novel cRISEAll algorithm. The configuration of this approach is the outcome

of an extensive review of spectral transformations and methods of combination. It

represents the most performant cRISE variation of those presented in this Thesis.

The motivation of which was to improve the performance of HIVE-COTEv1 with

respect to audio classification: e.g. given the audio signal, is it predict the species

of insect?

5. The presentation of a hierarchical approach to insect classification

Validated by the findings in Chapter 5, 7 methods of combining the classification

test distributions from multiple approaches were implemented. These distribu-

tions represent the predicted probability of a test instances class membership.

In these experiments methods combine the distributions of approaches built on

expert features and the raw data. The objective was to increase test accuracy and

decrease the overall processing time. The methods are split by their hierarchical

or cumulative nature and results showed that expert features are effective as a

filter against unlikely female mosquito cases.
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1.3 Thesis structure

The remainder of this thesis is laid out as follows. In Chapter 2, The Classification

of Flies, the mosquito condition is described. This includes: a brief introduction on

the taxonomy of flying insects and the structure of the Culicidae family; the mosquito

life cycle, providing context to the difficulties in controlling mosquito populations; the

feeding habits of adult female mosquitoes, including an explanation of why they require

a blood meal and information on the cost of mosquito transmitted disease, both in terms

of life and money. A review into the relevant literature is then undertaken, highlighting

the performance of approaches applied to the classification of flying insects prior to

this thesis. Throughout this review, the historic lack of high quality data that has in

effect, curtailed progress in this area s discussed. Following this, detail of two recently

developed pieces of hardware that have been used to create large insect wingbeat

datasets is presented. In Section 2.4 comparisons between the designs of the hardware

are drawn, with commentary on the effects this has on the resultant data. Finally, 4

large insect-centric pseudo-acoustic wingbeat datasets, curated via the aforementioned

hardware are described. This includes a discussion of dataset characteristics, such as

distributions of intra-class wingbeat frequencies and time-of-flight information.

In Chapter 3, Time-series Classification, the idea of time-series data is introduced

and contrasted to the structure of traditional data. This includes introducing the

descriptive notation used throughout the remainder of this thesis. The way in which

classification algorithms are divided based on core characteristics is explained, before

introducing and defining each approach that features throughout the experiments in

Chapters 4, 5 and 6. Finally, the tools and measures used to compare and quantify the

approaches are presented.

Chapter 4, The Random Spectral Interval Ensemble (RISE), presents the efforts

made to improve both the usability and the accuracy of the RISE algorithm. RISE
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represents the spectral module of the HIVE-COTEv1 algorithm, which is shown in

Chapter 5 to perform best on 2 insect wingbeat datasets. The hypothesis was that

improvements to RISE would in turn improve the performance of HIVE-COTEv1.

Previous work showed that the runtime complexity of RISE made the train time

prohibitive for large problems. In response, the development of a novel and effective

method of controlling runtime, detailed in (contribution 2), was undertaken. Further-

more, through a review of the interval selection process a significant improvement to

accuracy via a novel selection policy, detailed in (contribution 3), was made. Finally, an

extensive survey investigating spectral transforms, training set tuning and methods of

feature combination led to a reinvigorated approach cRISEAll, detailed in (contribution

4).

Chapter 5, Insect Classification I, presents a more robust method of extracting the

wingbeat frequency feature from raw data and a new approach to converting raw data

to the frequency domain. In Chapter 5 the benefits of this approach is shown through

experimentation and in the process, a new benchmark is established on 2 large insect

wingbeat datasets, highlighted in contribution 1. This work revolves around two ideas.

Firstly, that wingbeat frequency could be used as an effective method for screening

candidate female mosquito cases and secondly; low frequency data, which is likely to

inform insect body size, contains useful information.

Chapter 6, Insect Classification II, presents experimental results on current state-

of-the-art approaches, such as HIVE-COTEv2 and IT, over 4 large insect wingbeat

datasets, before proposing a hierarchical method that incorporates expert features to

improve accuracy, whilst decreasing overall processing time. The Chapter begins with

comment on the effectiveness and reliability of expert features over these datasets,

highlighting both the strengths and the weaknesses. A review of the current, best

in domain approaches, on both raw and spectral representations is then undertaken.
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Contrary to expectations, it is found that the best performance does not come from the

spectral domain and that approaches that derive features from convolutions perform

best. Methods of combining the IT approach, which is found to perform best, with

expert feature approaches are then presented. The outcome, detailed in contribution 5,

is an improvement in predictive accuracy and a decrease in test time.

Finally, in Chapter 7, A discussion of our contributions and thoughts is presented,

before some potential avenues for future work, based on the findings and observations

of this thesis are detailed.



Chapter 2

The Classification Of Flies

2.1 Introduction

The classification of insects using features derived from the characteristics of wingbeats

has been an active area of research for over 80 years. However, recently there has

been a renewed interest in the topic. This interest is a result of many factors, but

reflects the changing attitude and focus on the relationship between insects and human

health. This relationship is most commonly visible in the contexts of disease, where

fly species are particularly likely to be vectors for transmission; and crop pollination,

where the health of specific flying insect populations are directly related to the yearly

yield. In many settings, the ability to monitor the size, positioning and movement of

insect populations is desirable. In the context of mosquitoes this is particularly evident,

as the decision to request aid and direct resources is uniquely tied to information

on local population emergence, abundance and positioning. Enhanced surveillance

solutions now form an integral part of the World Health Organisation’s (WHO) global

technical strategy for malaria 2016 - 2030 [69]. The report highlights the importance

of accurate and timely data, and describes it as key in helping stakeholders make

informed decisions.
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Traditionally, insects are classified via their morphological differences by expert

examination or, when this is not possible, by gene sequencing. This involves trapping

and recovering insects, a labour intensive task that is further complicated by the need

for highly skilled entomologists to perform the manual classification. The process is

often slow and can result in some delay before the finalised population data reaches

the appropriate authorities. As a result, local hospitals are often caught unaware

during outbreaks of disease and efforts to combat the outbreak can be poorly targeted.

Automated in situ classification is now seen as a vital tool in controlling malaria.

Recently, multiple studies have shown that a novel use of low cost sensors is capable of

producing large quantities of seemingly high quality flying insect data [16] [75] [79] [94].

These approaches, discussed in more detail in Section 2.5, record the movement of

an insect whilst in flight. The nature of this recording technique has allowed the

creation of detailed datasets that offer the opportunity to attempt the classification of

sex, species and genus. An additional benefit in the adoption of hardware based data

collection is the inclusion of spatial and temporal information.

The remainder of this chapter is laid out as follows. In Section 2.2, clarity on the

colloquial phrase mosquito is provided and some background as to the structure of the

Culicidae family is given; this includes a brief overview of the mosquito life cycle and the

challenges associated with predicting the emergence of adult mosquitoes; a discussion

of the feeding habits of mosquitoes, including how female mosquitoes locate their hosts

and why they need to feed on blood; identification of the areas in which these vectors

for disease can be found, illustrating their near global domination; and a discussion

of the costs associated with mosquito transmitted disease, particularly malaria, both

in terms of loss of life and money spent trying to eradicate, treat and prevent its

spread. The entomological information presented in this section is a summary of several

publications. For a further, more in depth discussion and explanation of the mosquito
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condition, A. N. Clements: The Physiology of Mosquitoes [17] is recommended. In

Section 2.3 a summary of the literature on classifying flying insects is presented,

providing an overview of approaches that have been applied to the classification of

flying insects. Throughout the section, the historic problem of data quality and

abundance is highlighted. This is followed by a discussion on how a lack of high quality

data has led to a failure to demonstrate the extent to which approaches are able to

generalise. In Section 2.4, a description of the state-of-the-art data collection processes

used to produce large insect-centric datasets is provided, before an explanation of the

recording process. Finally, in Section 2.5, a detailed description of four flying insect

datasets used in Chapters 5 and 6 is given.

2.2 The Culicidae Family

Mosquitoes are members of the Dipetra order of the Insecta class of animals. The

Dipetra order is estimated to contain 155,477 species [59], making it the third largest

order in this measure, beaten only by the Coleoptera (beetle) and Lepidoptera (butterfly

and moth) orders. The Dipetra order is commonly known as the ‘true flies order’.

All insects that fall into this order have: heads capable of rotation through three

axis; compound eyes; mouth pieces that either pierce and suck or lap and suck; and

feet adapted to hold onto smooth surfaces via claws and pads. Another shared trait

amongst flies is their life cycle stages. Flies are laid as eggs, typically on a suitable food

source for the emerging larvae. The larvae, having hatched and consumed adequate

sustenance forms a pupa, from which it later emerges in its adult form. However, the

key characteristic of the Diptera order is that flight is only achieved via the use of one

set of wings. In the location where a second set would be found in other orders, such

as Hymenopttera, which boast two sets of wings joined via hooks, there are instead
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specialised sensors known as halters, that aid flight and provide information on wind

speed, pitch and roll [28].

The phrase Mosquito is the colloquial name for the Culicidae family of the Diptera

order. This family contains roughly 3,500 species split across 112 genera [53] and

3 sub-families. Often displaying species and genera level morphological differences,

mosquitoes are arthropods. Their bodies are typically slender and house three sets

of long slim legs. They also exhibit the characteristic proboscis mouth piece. They

can be identified via their long slim wings, that present with a scaly effect on the

surface. They typically measure between 3mm and 6mm in length and will be black or

have black markings. Another defining behavioural characteristic is the way in which

they position their hind legs whilst at rest. Mosquito species will hold their hind legs

upwards and laterally outward from the body. Whereas other Diptera familes, such

as the Chironomidae (midges), tend to hold their front legs outwardly ahead of them

whilst at rest.

As previously mentioned, all fly species go through the same stages in their life-

cycle [41]. The first three of these (egg, larvae and pupa) typically occur in water.

Depending on species and ambient temperature, these first stages are expected to last

between 5 - 14 days. However, there are some specific adaptations that species which

live in areas that experience extended periods of drought or freezing have evolved,

that allow their development to be temporarily paused. This process, diapause, is

similar to hibernation and effectively allows the insect to wait for the environment

to become suitable before continuing their life cycle. One example of this is in the

Pitcher Plant mosquito (Wy. smithii) [76]. Found in Northern America, the eggs of this

species are commonly laid in late August. Once the length of day declines adequately,

the mosquito larvae enters a state of diapause until the days begin to lengthen again.

During this period, the larvae can withstand being frozen solid. Another example of
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(a) Ae. aegypti female (b) Ae. aegypti male

Fig. 2.1 Male and female Ae. aegypti mosquitoes [39].

diapause in mosquito species can be seen in the Asian Bush mosquito (Ae. japonicus).

The eggs of this species are resistant to desiccation and continue their life-cycle once

re-sumerged in water [46].

Typically, mosquito eggs are laid in stagnant water by females (although, there

are examples of some species opting to lay eggs either at the waters edge or directly

onto aquatic plants [2]). Species from one genera do not gravitate toward one uniting

water source. Instead, they select a breeding site based on the local environment

and any specie specific adaptations. These sites include lakes, puddles, marshes, salt

water [21] [95] and phytotelmata, such as the reservoirs found in Bromeliads, hollow

tree trunks, and even the liquid found in pitcher plants. Some species, including the

Pitcher Plant mosquito is exceptionally selective about its breeding site and will seldom

lay eggs anywhere but in the pitchers of the Purple Pitcher plant (Sa. purpurea).
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Other species that favour phytotelmata breeding grounds quickly adapt to artificial

sites common in human settlements, such as buckets or tyres [84]. This group of

adaptable mosquitoes includes the Aedes genus, which are an important vector for

disease [93]. This fact has led to extensive education campaigns in countries affected,

aimed at increasing awareness of the risk standing water presents. Cheap and accurate

automatic traps could provide an early warning to authorities and as a result, aid in

the targeting of resources to communities, in turn, improving the effectiveness of these

campaigns and the overall cost effectiveness of national vector mitigation efforts.

Fig. 2.2 Estimated annual global number of deaths from malaria shown with a 95%
confidence interval [71]

Mosquitoes exhibit four main procedures of oviposition [23]. The method of

oviposition are not consistent within each genus and it is common to find multiple

oviposition methods within the species of a genus. A widely adopted method, often

referred to as dapping, sees the female mosquito skipping along the water’s surface,

dropping single eggs at each point of contact. This approach is commonly seen

amongst species of the Anopheles genus, as well as other flying insect species in the

Ephemeroptera (Mayflies) and Ephemeroptera (dragonflies) orders. Many species
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of the Mansonia genus opt for a vastly different approach to dapping and instead

lay eggs in small raft-like structures on the underside of aquatic plants such as lilly

pads, whereas most species of the Culex genus lay eggs in a similar configuration, but

instead opt to position these on the waters surface [24]. The final common oviposition

behaviour found in mosquitoes is similar to the aforementioned dapping technique and

is commonly found in species of the Adeas genera. Females will drop singular eggs in

the manner described above. However, these eggs are deposited in damp areas close to

the waters edge, typically locations such as gutters, buckets or tyres. The eggs then

develop slightly before entering a period of diapause, triggered by desiccation, with

development restarting after submersion at the next rainfall. An additional trait specific

to Adeas eggs is their tendency to hatch in a semi-random manner within a single

clutch. This makes the species from the Adeas genus very difficult to control, compared

to species whose eggs hatch in a more predictable fashion. Applying insecticides in

regular intervals is prohibitive for three main reasons: it is costly; it has a significant

detrimental effect on wider entomology and it increases the chances of insecticide

resistance. The future of vector control through insecticides will undoubtedly be more

expensive as the cost of developing new chemicals is increasing whilst the available

funding has decreased [51]. As a result, improved targeting strategies could be key in

maintaining an effective level of control and emerging technologies are seen as a key in

fulfilling this role.

Both male and female mosquitoes predominantly feed off liquids high in sugars,

salts and amino acids. Commonly, these meals are nectar produced by plants (in some

cases mosquitoes are pollinators) and honeydew [72]. The Culicidae family is organised

into three sub-familes: Anophelinae, Culicinae and Toxorhynchitinae. Species from

the Toxorhynchitinae sub-family are exclusively nectarivores and as a result, have

developed long curved proboscis that are well suited to feeding on plants. Species from
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the remaining 2 sub-families are anautogenous. These species each have a favourable

host, but will feed off a variety of vertebrates if necessary. In some cases, mosquito

species are capable of producing eggs both anautogenously and autogenously. Typically,

these partially anautogenous species will produce and lay their first clutch of eggs

without the need for a blood meal, but require the proteins available in blood to

produce subsequent clutches [40]. Furthermore, many species of autogenous mosquitoes

that do not require a blood meal to produce eggs will produce larger clutches if they

have one. This anautogenous behaviour is commonly seen in species of the Anopheles,

Aedes and Culex genera, all of which are important vectors for disease. For example:

An. gambiae and An arabiensis are both vectors for malaria and lymphatic filariasis;

Cx. pipiens, Cx. quinquefasciatus, Cx. globocoxitus and Cx. australicus are vectors

for a number of diseases including encephalitis and lymphatic filariasis; Ae. aegypti

(shown in Figure 2.1), Ae. formosus and Ae. albopictus are the primary vector of yellow

fever throughout the world and are also known to transmit dengue fever. Additionally,

there are a handful of other species from these genera that are responsible for disease

transmission in more remote areas, such as the South Pacific Islands [36]. Just the

aforementioned 9 species cover almost the entire globe and in many places, 2 or 3 of

them co-exist.

Typically, mosquito species are crepuscular or nocturnal feeders [48]. They spend

the remainder of their time in the shade, although females will still bite if disturbed.

The antennae of a blood sucking mosquito species houses its olfactory system. In species

that prey on humans for their blood meal, females hunt their hosts via the presence of

carbon dioxide (CO2). However, the extent to which a mosquito is compelled to choose

a host is more complicated. In the species Cu. quinquefasciatus, it is the presence of

nonanal in the perspiration that most impacts the likelihood of selection [20]. In the

Ae. aegypti species, it is the presence of sulcatone, a keytone commonly characterised
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as citrus [87]. Furthermore, the hunting behaviour of female mosquitoes is two fold.

Firstly, they employ a non-specific search pattern in order to locate a host that emits

the desired chemical triggers [22]. Once located, they perform a more specialised

search of the host to identify a suitable site for feeding. Most often, the mosquito will

feed shortly after landing. Sometimes, the mosquito will wander, using its labium to

search for a site to feed. Occasionally, after wandering for some time, the mosquito

may move on without feeding. The exact mechanism for host selection is not entirely

understood, but there is mounting evidence that skin micro-flora play a role [11].

Fig. 2.3 Estimated global annual number of cases from malaria shown with a 95%
confidence interval [71]

Mosquitoes are found in almost every landmass on the planet. The exceptions being

Antartica and a handful of islands with polar climates [7]. The criteria for exception

is down to quirks of the weather patterns, rather than the harsh temperatures. For

example, there are no mosquitoes in Iceland, where the temperature can fluctuate

significantly as seasons change [78]. These fluctuations interrupt the diapause of

mosquito eggs, but do not last long enough for a full life cycle to complete. There

are however mosquitoes in the arctic regions of Alaska where they emerge in vast
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numbers as the sun melts the frozen tundra. With an abundance of food in the biolayer

and very few predators, swarms containing millions of mosquitoes emerge to feed on

Caribou [38]. However, the window to reproduce in the arctic is small, as on average,

the summer lasts approximately 8 weeks from mid June to mid August. This is a stark

contrast to the active period of mosquitoes in more temperate regions, where it is not

uncommon in tropical climates for mosquitoes to operate thought the entire year.

There is an established relationship between environmental factors and the abun-

dance of mosquitoes. These factors are also tightly coupled to the effectiveness of viral

reproduction. The ambient temperature, humidity and precipitation, all significantly

affect the prevalence for disease in the local human population [6] [58]. This transmis-

sion seasonality is closely monitored and has been effective in explaining the location

and number of outbreaks throughout the southern hemisphere during El Nino [50].

An obvious application of this information is in modelling the effect climate will have

on mosquito dispersion. Commonly, the spread of disease vectors such as mosquitoes

is modelled via a correlative or mechanistic model. Correlative models are based on

taking existing information on the climates in which the vector is already prevalent

and uses predictions on how climate is expected to change to project the areas likely

to be capable of sustaining the vectors in the future. Mechanistic models are broader

and incorporate information on how viruses and hosts change behaviour as the climate

changes. Mechanistic models have successfully been used to model historical outbreaks

and predict how risk might change with forecasted weather. However, the introduction

of widespread intelligent trap network, provides the opportunity to develop a data

driven approach to modelling. Typically, areas which are most affected by disease

vectors are areas with tropical climates. These include large parts of the African and

Asian continents, as well as South America. However, cases of viral infection via vectors

such as mosquitoes have been recorded in Europe and are becoming more frequent.
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At least one mechanistic model has predicted that by 2030, southern England will be

climatically hospitable for the transmission of malaria to take place [8].

Fig. 2.4 Case incidence rate displayed per WHO region for the period between 2000 -
2019 [71]

Since the year 2000, the annual number of deaths from malaria has been in decline,

see Figure 2.2. Furthermore, there has been a decline in deaths over the same period in

each of the regions defined by the WHO. However, the annual number of cases, shown

by Figure 2.3, has not seen the same level of decline. Estimated to be 238 million in

2000, the number of cases reached a low of 217 million in 2014, after a period of rapid

decline. Cases have steadily risen since then, and in 2019 there were estimated to be

229 million.

According to data from the latest World Malaria Report published by the WHO [71],

the African region saw an increase in cases in real terms from 204 million in 2000 to 215

million in 2019. However, the incidence rate, shown in figure 2.4, reduced in the same

period from 363 to 225 cases per 1,000 people. This contradiction between the number

of cases and the case incident rate, is the result of an increase in population from 665

million to 1.1 billion in the sub-Saharan area. The number of deaths caused by malaria
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in the African region decreased by 44% over this period, falling from 680,000 in 2000 to

384,000 in 2019. Despite these reductions, the African region still accounts for roughly

94% of both cases and deaths globally, see Figure 2.5. The Southeast Asia region has

seen a dramatic reduction in both cases and deaths over the period between 2000 and

2019. The number of cases reduced by 74%, from 23 million to 6.3 million and the

number of deaths also reduced by 74%, from 35,000 to 9,000. Over the same period, the

incidence rate reduced by 78%, from 18 to 4 per 1000 people. The burden in the region

falls mostly on India. It accounted for both the largest reduction in cases, 20 million

in 2000 to 5.6 million in 2019, and the largest contribution, 88% of the region’s cases

and 86% of the region’s deaths in 2019. The Eastern Mediterranean region recorded a

decrease of 2 million cases, from 7 million to 5 million and, a decrease of 1,100 deaths,

from 12,000 to 10,100, in the period between 2000 and 2019. In 2019, Sudan was the

largest contributor of cases in the region, contributing 46%. The Western Pacific region

contributed 1.7 million cases in 2019, a reduction of 43% from the 3 million cases

recorded in 2000. The region also saw a 52% reduction in deaths over the same period,

from 6,600 to 3,200. Papua New Guinea shoulders most of the burden in the region

and accounted for 80% of the cases recorded in 2019. Lastly, the Americas region saw

a 40% reduction in cases, from 1.5 million to 0.9 million. The region also saw a 39%

reduction in deaths, from 909 to 551. However, over the same period the number of

cases in Venezuela increased from 35,500 to 467,000.

Despite all the reductions throughout the period of 2000 to 2019, there remains

cause for concern. Figure 2.4 shows the changes in case incidence rate for each of the

WHO defined regions. The graph shows that both the total and individual incidence

rates have significantly reduced overall. However, since 2015, only the African and

Southeast Asian regions have seen a decrease in the case and death incidence rate
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and the Americas, Eastern Mediterranean and Western Pacific and all experienced

increases in both case and death incidence rates.

Fig. 2.5 Distribution between WHO defined regions of deaths from Malaria in 2019 [71]

In response to the devastating impact of Malaria, the WHO have published The

Global Technical Strategy for Malaria 2016 - 2030 [69], a strategy which has now

been adopted by the World Health Assembly. The strategy goals are to: reduce

Malaria cases by 90%; reduce mortality rates by 90%; eliminate Malaria in 35 countries

and prevent a resurgence of Malaria in all ‘Malaria free’ countries. The strategy

is divided into 3 pillars: ensuring universal access to malaria prevention, diagnosis

and treatment; accelerating efforts towards attainment of malaria-free status, and

transforming malaria surveillance into a core intervention. It is intended that recent

advancements in technology should be utilised to help enact the plan and in some

cases the extent to which the plan can be executed is tightly coupled to technology.

For example, an important part of pillar 1’s Malaria prevention interventions hinge

on vector control. In order to control mosquito populations, effective entomological

surveillance is required, including a periodical review of: abundance; seasonality;

time and place of biting; resting and host preference. Also, the intervention strategy
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highlights the value that recorded data has, when making decisions on the timing and

location of applying chemical vector control techniques. Historically, any information

gathered is done so manually. The process is typically lengthy, as it requires personnel

with highly specialised skills to classify insects. The traditional techniques also provide

relatively course data, as they are unable to provide information on the frequency of

insects with respect to time of day. As a result, there is an obvious opportunity to

improve the quality, quantity and speed at which information can be provided to local

authorities coordinating vector control programs across the world.
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Table 2.1 A table showing the chronology of literature discussed in section 2.3.

Year Author Title Feature Approach

1942 Reed et al. [77] Frequency of wingbeat as a
characteristic for separating species
races and geographic varieties of
drosophila

• Wingbeat frequency • Statistical analysis

1981 Farmery et
al. [32]

Optical studies of insect flight at low
altitude

• Wingbeat frequency • Statistical analysis

1986 Moore et al. [66] Automated identification of flying
insects by analysis of wingbeat
frequencies

• Wingbeat frequency
• Harmonics

• Statistical analysis

1991 Moore et al. [64] Artificial neural network trained to
identify mosquitoes in flight

• Frequency spectrum • Single layer network

2002 Moore et al. [67] Automated identification of optically
sensed aphid (homoptera: Aphidae)
wingbeat waveforms.

• Middle of series
• Frequency spectrum
• Wingbeat frequency
• Harmonics

• Single layer network
• 1-NN ED

2005 Li et al. [54] Automated identification of mosquito
(diptera: Culicidae) wingbeat
waveform by artificial neural network.

• Raw series
• Wingbeat frequency
• 3 harmonics

• ANN

2014 Chen et al. [16] Flying insect classification with
inexpensive sensors.

• Wingbeat frequency
• Frequency spectrum

• Naive Bayes
• 8-NN ED
• Single layer network

2018 Fanioudakis et.
al. [31]

Mosquito wingbeat analysis and
classification using deep learning.

• Spectrogram
• PSD
• Raw series

• DenseNet121 • 5 layer CNN
• InceptionV3 • MobileNet
• XGBoost • LightGBM
• NASNetMobile
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2.3 Classifying Fly Species

One of the earliest investigations regarding the classification of mosquitoes with respect

to their wingbeat frequency was, undertaken in 1942 by Reed et al. [77]. A technique

outlined by Chadwick et al. in 1939 [15] allowed the precise frequency of an insect’s

wingbeat to be recorded via the use of a stroboscope. The research was primarily

investigative and provided evidence that the frequency of an insects’ wingbeat may be

sufficient to differentiate between species of fruit flies from within the same genus. The

experiments were undertaken using a relatively small sample size of 332 insects, split

disproportionately over three classes, representing two variants of the D. pseudoobscura

specie and a single variation of the D. miranda specie. The average difference in

wingbeat frequency between the two variants of D. pseudoobscura was measured to

be 7.34 times the standard error, leading to the conclusion that it might serve as an

adequate feature to differentiate between multiple species of fruit fly more generally.

The study went on to document that the longitude and latitude at which the insects

were collected, had no bearing on wingbeat frequency. However, a positive correlation

between ambient temperature and the average wingbeat frequency of each specie was

well noted, a relationship that is now well documented [80] [85] [89]. Furthermore,

it was shown that the differences in wingbeat frequency corresponded to an insect’s

morphological features. The study theorised and experimentally proved that the

wingbeat frequency of each insect was proportional to the ratio between the thorax

volume and wing area, where the thorax volume represents an approximation of muscle

volume.

In 1986, Moore et al. [66] used several combinations of wingbeat frequency and

the amplitudes of the first four harmonics to devise discriminant features. These

features were then used to classify the Ae. aegypti and Ae. triseriatus species into

four classes, defined by species and sex. The wingbeat data was recorded using an
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approach developed by Unwin et. al. [90]. The approach made use of the way in

which photodiodes react with respect to the intensity of light. The photodiode absorbs

photons and produces current. The relationship between the intensity of photons and

produced current is linear. The experimental set-up consisted of housing each group of

mosquitoes in an opaque vessel, between an array of photodiodes and a light source.

A device then records the fluctuations in current as the mosquitoes move between

the light source and photodiode. The majority of the information recorded whilst

the mosquito occludes the light source is produced by the wings. Therefore, when

interpreting the fluctuations in current with respect to time, the recordings give an

good approximation of the corresponding wingbeat sound. Each group consisted of

15 individual insects and recordings were made on the 1st, 2nd, 4th, 6th, 8th, and 10th

day after emergence. Each recording consisted of 512 samples and was recorded with

a 10,000Hz sample rate. On each occasion, at least 12 recordings were made. An

analysis of the recorded data showed that throughout the experiments the wingbeat

frequencies of the classes were ranked in the same order, with no overlap in variance.

The largest insects, Ae. triseriatus consistently had the lowest wingbeat frequency,

whilst the Ae. aegypti consistently had the highest. Also, the wingbeat frequencies

all appeared to increase in the days immediately following emergence, before either

levelling out or falling prior to climbing again. Interestingly, the evolution of average

wingbeat frequency within the sample was not consistent between species. Furthermore,

upon pooling the data there was found to be significant variation between all groups

(n = 468, df = 3, P < 0.0001) and, although there was an overlap between some

groups, the groups were found to have a significantly different mean wingbeat frequency

(α = 0.05, Duncan’s multiple range test [29]). Discrimination functions were derived

for each of the aforementioned feature combinations via the DISCRIM procedure of the

Statistical Analysis System [86]. Accuracies were produced using a different collection
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of mosquitoes of the same classes. It was found that wingbeat frequency produced the

highest accuracy of 84%, followed by wingbeat frequency plus the absolute amplitude

of the first harmonic and the relative amplitudes of the 2nd, 3rd and 4th harmonics,

which produced an accuracy of 82% and lastly, the wingbeat frequency plus the relative

amplitudes of all four harmonics produced an accuracy of 81%.

Although this work does draw conclusions that are supportive of the notion that

wingbeat frequency is an adequate attribute to classify mosquitoes by race, it also

highlights that there is an overlap of wingbeat frequencies between species; there

is variability introduced by temperature that, although measurable, may make the

general classification problem difficult; the wingbeat frequency of a mosquito does vary

throughout adulthood and in some cases overlaps with the expected frequency of other

species.

Until a study in 1991 by Moore et al. [64], the majority of research has focused

on whether specific attributes such as fundamental frequency and harmonics provide

enough information to accurately classify mosquito genus and specie. Exploiting the

Artificial Neural Network’s (ANN) ability to accept an array of values, Moore et al. [64]

discovered that valuable information is contained within the spectra. A three-layer

network was developed using Brain Maker Professional v1.5, consisting of an input

layer containing 256 nodes a hidden layer containing 127 nodes and the output layer.

The signal was normalised prior to classification. Identification based on the output

with the highest likelihood was correct 92% of the time. A threshold was then applied,

stipulating that if the highest output value was less than 90%, or less than 90% of

the remaining three values combined, the case was classified as unidentified. This

lead to a reduction in accuracy, to 75%, but all six cases were unidentified rather

than misidentified. To quantify what impact the additional information present in the

spectra had, all frequency bins other than the one representing wingbeat frequency were
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set to 0 and the network was retrained. The effect was a drop in accuracy to 88%, when

only considering the output of highest likelihood. Applying the decision rule changed

the classification output such that there was one misclassified and five unclassified

instances. Although these results were promising, the two groups of mosquito used

were morphologically very dissimilar. Furthermore, these experiments utilised a very

small number of insects.

In a more analytical paper [67] Moore et al. performed five experiments in which

a 1-NN classifier in conjunction with the Euclidian Distance function and an ANN,

consisting of a hidden layer of 4,983 nodes and an output node representing each species,

are directly compared. The dataset consists of classes representing the five most common

Aphids found in Guam and was derived using a technique adapted from Unwin and

Ellington (1979) outlined in [65]. For these experiments, the five data representations

used were: the middle portion of the time series; frequency spectrum; signature, a

concatenation of fundamental frequency and harmonic amplitudes; harmonic amplitude

alone and fundamental frequency. The findings in this paper support much of the

previous literature on the classification of winged insects. The mean wingbeat frequency

was found to differ significantly between all classes, but variance within classes negated

its ability to act as a consistent distinguishing attribute, and the wingbeat frequency also

maintained a positive correlation to ambient temperature. The ANN out-performed the

1-NN on all variations of the data, achieving a high of 69% accuracy on the frequency

spectrum series. Farmery et al. [32] showed that the angle of an insect’s flight path

relative to the light sensor, has a profound effect on the frequency spectrum of the

wingbeat, although no effect on the fundamental frequency. However, in the 2002

paper [67], Moore et al. hypothesised that within class variance was also increased by

insects buzzing their wings without taking-off, a behaviour witnessed multiple times

throughout the data recording process. Critically, this paper highlights two things:
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firstly, winged insect classification may be a generic problem. That is, a system in which

mosquito classification is trivial, may also be a system in which aphid classification is

trivial; secondly, that although an automated classification application could be viable

from an algorithmic point of view, the challenge of building a system which is robust

enough to deal with the variability introduced by unrestricted insect flight paths and

behaviours, is non-trivial.

In 2005 Li et al. [55] used a neural network trained via back propagation to classify

9 groups of mosquitoes representing 5 species. In this case, there were 100 input nodes,

5 hidden layers of ten nodes and 9 output nodes. Three data sets were created: the

raw time series x1 ... x300; spectral information f1 f2 f3 f4, where f1 represents the

wing beat frequency and f2 f3 f4 represent the second, third and fourth harmonics

and a concatenation of the previous two x1 ... x300, f1 ... f4, which was then normalised

before classification. The results show that classification using just the frequency

spectrum was most effective at 72.67% accuracy, followed by the third data set at

59.77% accuracy. These results appear to further bolster the idea that automatic insect

classification using spectral information is feasible.

In the culmination of multiple iterations of research into data collection and

classification techniques, Chen et. al. [16], represents the current state of the art

approach with regards to the Insect wingbeat data, described in Section 2.5.3. Some

subtle but effective changes to the raw data collection method presented by Unwin et.

al. [90] allowed Chen et. al. [16] to collect many more recordings of insects in flight

than previous experiments. A 9 step experiment was devised, whereby an additional

insect group, consisting of 5,000 instances, was added at each step. This led to a

classification problem containing four species of mosquito separated by sex and two

species of fly. The insect wingbeat dataset has now been made public and at present

remains the most varied insect wingbeat dataset available.
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The slight adjustment to Unwin’s recording method sees an infra-red beam, aimed

at a photo transistor, rather than a DC halogen lamp. This provides a reduction in the

recorded area, which in turn eliminates anomalies related to non-flight recordings. The

output from the photo transistor is then passed through a PCB, before being recorded

by a Zoom H2 Handy digital recorder at a sample rate of 32,000Hz and saved as an

MP3 file.

The first step in the experimental process consisted of both setting a benchmark

accuracy using the relatively simple one dimensional Naive Bayes approach and illus-

trating what benefit a multidimensional Bayesian approach brings. This was achieved

with a two class experiment, Ae. aegypti male vs Ae. aegypti female. As previously

mentioned, the first configuration used a commonly evaluated feature [85] [80] [81],

wingbeat frequency. It had previously been shown that the distribution of wingbeat

frequencies mirrored a Gaussian distribution. Although the Bayesian classifier does

not have to assume Gaussian Distribution, it is less computationally taxing. The

second approach utilised the Nearest neighbour (kNN) classifier’s ability to process

multi-dimensional data. In this case, the conditional probabilities were calculated based

on the frequency of each class within the k = 8 nearest neighbours. This approach was

tuned using a validation process outlined in [49], in which part of the training set is kept

separate and used to evaluate the error rate at multiple k values. The value of k that

minimises the error on the training set is then selected. The data used was a randomly

selected subset from a pool of over 20,000 examples. The number of each sex present

in the experiment was incremented in steps of 100 instances, between 100 instances –

1,000 instances. Each step was rerun 100 times to produce an average accuracy for both

configurations. Configuration one produced an accuracy of 97.47%, if 1,000 training

examples are present for each sex. Whereas, the second configuration reduces the

error rate by more than two thirds to 0.78%, from 2.53%, achieving 99.22% accuracy.
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This equates to roughly 8 miss-classifications per 1,000, providing conformation that

increasing the amount of data produces an increase in accuracy [42].

Undoubtedly the introduction of more data increases accuracy. However, the classes

used in this experiment are very different morphologically. Females are in general much

larger than males of the same specie and this is reflected in both the wingbeat frequency

and harmonic signature. The second stage of the experimental process endeavoured

to test the assumption that an ANN would perform traditional approaches. This

was tested via simple comparison with the second configuration from the preceding

experiment. A Fourier transform was applied to the raw data and the power coefficients

were retained for the experiments. The species used were: Cx. stigmatosoma female,

Ae. aegypti female and Cx. tarsalis male. The training and test data were both

randomly sampled from disjointed sets. The experiment was run on over 1,000 random

re-samples, with training set sizes incremented in size between 5 and 50 instances.

The neural network consisted of one hidden layer of 10 nodes. It was found that the

neural network accuracy converges with that of the Bayesian classifier, after a relatively

small number of instances are introduced. However, it perform consistently worse

for small datasets and even a with large numbers of instances, still maintains a large

uncertainty value. Chen et. al. [16] note that the number of instances used in this

example, contradicts the claim of being able to produce large data sets stating that:-

‘in some cases it may be necessary to carry out semi-supervised learning,

using only a small number of labelled instances. This model can then

be used to classify examples either from achieved data or in the field if

necessary.’

Other characteristics of a Bayesian classifier that were noted as potentially beneficial

in terms of the application were:
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• Very low CPU and memory requirements. Although in a laboratory environment

this may give little benefit, in the field, this represents a substantial advantage.

• Small number of parameters; this makes them relatively simple to implement and

set-up, when compared to neural networks, which often have many parameters

that need careful tuning [67]; [55].

• They are capable of integrating additional information very efficiently, allowing

new information, perhaps expert, or based on trends in the area to be incorporated

in the classification. This ability allows for the modular improvement of the

algorithm over time.

• Trivial to produce an unknown classification class. Allowing the ability to monitor

the number of these instances for further investigation.

Chen et. al.[16] then propose a further improvement based on the time of intercept

(TOF) information collected, whilst producing their dataset. For each class in the

training set, a histogram of frequency with regards to time of day was produced.

The posterior probability is now calculated via class-conditioned probability of the

insect sound, using the nearest neighbour method outlined previously and the class-

conditioned probability based on when the sound was produced. This incorporation of

Circadian rhythm information is reported to provide the significant increase in accuracy

from 87.57% to 95.23% for the classification of Cx. tarsalis female in classification

between Cx. stigmatosoma male, Ae. aegypti male and Cx. tarsalis female.

This led to the development of a broader experiment, utilising the complete 50,000

instance data set. The experiment began with the classification of just two classes. At

each subsequent step, an additional species consisting of 5,000 instances was added. In

this experiment, the classifier also made use of additional TOF data, as well as the

data present in the frequency spectrum.
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Table 2.2 A Table presenting the results of Chen. et. al’s. approach, outlined in [16].

Step Species added Accuracy
Step 1 Ae. aegypti ♀ -
Step 2 Mu. domestica 98.99%
Step 3 Ae. aegypti ♂ 98.27%
Step 4 Cx. stigmatosoma ♀ 97.31%
Step 5 Cx. tarsalis ♂ 96.10%
Step 6 Cx. quinquefasciatus ♀ 92.69%
Step 7 Cx. stigmatosoma ♂ 89.66%
Step 8 Cx. tarsalis ♀ 83.54%
Step 9 Cx. quinquefasciatus ♂ 81.04%
Step 10 Dr. simulans 79.44%

As shown in Table 2.2, the approach is robust against multiple species of mosquito,

achieving a minimum of 79.44% accuracy. The incorporation of TOF information

undoubtedly improves performance and anecdotal results show that it is likely that

morphologically similar species of mosquito have evolved differing Circadian rhythms.

However, it is unclear exactly how much of a positive effect it has, as Chen et. al. [16]

chose to only report the effect on accuracy for Cx. tarsalis female.

In recent years, advancements in processing power and particularly the power of

Graphical processing Units (GPUs) have facilitated the development of deep learning

frameworks such as Tensorflow and Pytorch. In turn, these frameworks have accelerated

the development and proliferation of deep learning approaches. In many domains, includ-

ing image classification, natural language processing and automated animation, these

are now considered the state-of-the-art approach. In multiple cases these approaches

have been successfully applied to insect-centric image databases [13] [14] [47] [54]. In

one recent study, Fanioudakis et al. [31] reviewed the performance of 7 deep learning

approaches in conjunction with spectrograms, power spectral density and raw audio

representations. The approaches were evaluated on the mosquito wingbeat dataset, de-

scribed in Sub-Section 2.5.4. The experiments were undertaken on an 80/20 train/test

split and the results showed that the DenseNet121 approach in conjunction with spec-
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trogram images provided the highest accuracy of 96%. The 2nd, 3rd, 4th and 5th most

accurate approaches were also those that made use of spectrogram images. Fanioudakis

et al. [31] went onto demonstrate the clustering ability of deep networks. Clusters can

be formed from the latent features used by the final layers of the network to produce

classifications. It was postulated that in an application setting, this would be useful in

detecting outliers which may represent an unknown insect, or mechanical malfunction

with the trap. Furthermore, Fanioudakis et al. [31] highlights the opportunity to

visualise the extent to which regions from the input data are being utilised via saliency

maps, an important tool in ensuring models are not learning from areas which represent

arbitrary information, such as padding.

2.4 Hardware, Data Extraction And Processing

(a) UCR hardware

(b) TEIC hardware

Fig. 2.6 Hardware used to record the wingbeat motion of insects during flight.

All four datasets presented in Section 2.5 were produced using the hardware shown

in Figure 2.6. The systems are similar in design and at their core, the recording

apparatus consists of an infra-red beam aimed at a photo transistor. When the infra-
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red light enters the phototransistor, current is allowed to flow across the base. This

current is proportional to the luminance. Monitoring the current, allows the recording

of fluctuations in the laser beam’s energy at the base of the phototransistor. As an

insect breaks or partially occludes the beam, fluctuations in the energy are recorded.

Typically, these fluctuations are produced by the up and down motion of the wings.

As a result, the information recorded bares a striking resemblance to that of the

incidental sound made by the wings during flight. However, the mechanisms that

trigger recording and the on-chip processing that takes place differ. These differences

are briefly discussed in the Sub-Sections 2.4.2 and 2.4.1.

2.4.1 UCR Hardware

Shown in Figure 2.6a, the UCR hardware was used in the production of the InsectSound

dataset, described in Sub-Section 2.5.3. The output from the photo transistor is passed

through a small PCB, before being recorded by a Zoom H2 Handy digital recorder, at

a sample rate of 16,000 Hz and saved as an MP3 file. Each MP3 was limited to six

hours in length by the recorder’s firmware, rather than disc space, and files began and

ended simultaneously.

The raw MP3 files were fed through a detection algorithm to automatically extract

potential insect sounds. The extraction was framed as a binary classification problem.

A nearest neighbour classifier in conjunction with the Euclidean distance measure was

used to determine whether data intervals contained insect sound or not. The data

was processed via a sliding window that assessed 100 ms of data at a time (stated to

represent the average length of time an insect would take to pass through the infra

red beam). Each interval was transformed to the power domain prior to classification,

as shown in Figure 2.7. The training data consisted of 10 manually labelled cases

of each class. The size of the training set was chosen so as not to affect the speed



2.4 Hardware, Data Extraction And Processing 35

Fig. 2.7 illustration of the sliding window method used during the creation of the
InsectSound dataset.[16]

of the algorithm, whilst retaining enough variability to maintain a high accuracy.

The expected concept drift, due to temperature changes or the decline of battery

power, was not expected to affect the performance of the system, due to a high signal

to noise ratio. The UCR system also addresses the possibility of background noise

contamination. American domestic electricity produces a 60 Hz signal, which can

bleed into the recordings, due to inadequate filtering in power transforms. In order to

negate this and obtain the best possible signal, the raw data was subjected to spectral

subtraction of the background noise [9] [30]. Finally, each audio clip was centre padded

with zeros in a 1 second WAV file and labelled according to its respective class.

2.4.2 TEIC Hardware

The optical components in this solution are infrared SFH4356 LEDs. They were deemed

suitable for capturing data at the scale required, due to their 860 nm wavelength and
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raise time of 12 ns. The LEDs are arranged into four rows of six, as this combination

provides equal current to LEDs, as well as providing a more consistent light distribution

over a target area. The amplifier (OPA380), operational amplifier (AD8606), analogue

to digital converter (ADS8863), demodulator (AD630) and output low pass filter

(OPA1654), were all chosen as they were proven to be more reliable at the required

sensitivity, or were found to produce the least noise in recording, when compared to

other components of similar specifications. The light receiving configuration makes

use of an optical light guide. The LEDs are directed towards a 2D polymer surface,

commonly used in edge lit LCD screens. The surface directs the light down onto a 1D

array of 22 photodiodes arranged in a parallel configuration. This arrangement provides

a larger field of view (FOV) than previous iterations, consisting of either of 1D and 2D

matrices of photodiodes. A large FOV is beneficial, as the insect occludes the LEDs for

a greater period of time. However, it also increases the likelihood of interference from

other insects and other light sources. Data recorded by this approach also produced

spectrograms that were visually smoother than those of previous iterations using 1D or

2D photodiodes without the light guide. The system makes use of 2 buffers. The first

buffer is used to compute the root-mean-square of every 128 sample (16 ms) window. If

the RMS exceeds a predefined level, 5000 samples from the second buffer are committed

to memory. The first 1000 samples precede the first buffers window and the remaining

4000 immediately proceed it. This ensures important information from the onset of the

wingbeat is not lost. Samples are recorded at a 16-bit resolution at a 8,000Hz sample

rate.

2.5 Wingbeat Datasets

In this section, the four publicly available pseudo-acoustic insect-centric datasets

used in this Thesis are presented, these are summarised in Table 2.3. The Aphids
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Table 2.3 A table summarising the insect-centric datasets used in Chapters 4, 5 and 6

Dataset Classes Instances Attributes Majority class

Aphids

A. fabae 2,036

5,000 0.4203

D. platanoidis 3,192
M. persicae 19
P. testudinaceus 115
Pollen beetle 4,034
Ps. chrysocephala 194
R. padi 8

FruitFlies
melanogaster 6,064

5,000 0.5305suzukii 10,142
zaprionus 18,312

InsectSound

Ae. aegypti ♀ 5,000

600 0.1000

Ae. aegypti ♂ 5,000
Dr. simulans 5,000
Mu. domestica 5,000
Cx. quinquefasciatus ♀ 5,000
Cx. quinquefasciatus ♂ 5,000
Cx. stigmatosoma ♀ 5,000
Cx. stigmatosoma ♂ 5,000
Cx. tarsalis ♀ 5,000
Cx. tarsalis ♂ 5,000

MosquitoSound

Ae. aegypti 5,000

3,750 0.166

Ae. albopictus 5,000
An. arabiensis 5,000
An. gambiae 5,000
Cx. pipiens 5,000
Cx. quinquefasciatus 5,000

dataset was produced by Kirtsy Hassal from Rohamstead research1 as part of ongoing

work [44]; both the FruitFlies and MosquitoSound datasets were produced during the

development of a low cost insect sensor at the Technological Educational Institute

of Crete (TEIC) [75] by Professor Ilyas Potamitis. The MosquitoSound dataset was

first published as part of a Kaggle competition2, whereas the FruitFlies was donated

directly. The InsectSound data was produced as part of an ongoing project at the
1https://repository.rothamsted.ac.uk/staff/841v5/kirsty-hassall
2https://www.kaggle.com/potamitis/wingbeats
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University California Riverside (UCR) [16] and is part of the UCR TSC archive3. The

Aphids, FruitFlies and the MosquitoSound dataset were all recorded with hardware

developed at TEIC, shown in Figure 2.6b, whereas, the Insect Sounds dataset was

recorded with hardware developed at UCR, shown in Figure 2.6a.

The problem, then, is to classify the sex, species and/or sub-species based on the

resulting time series. This signal can then be interpreted as audio, and therefore a

logical starting point is to apply approaches typically used in other audio classification

problems. An additional benefit to the adoption of hardware based data collection

is the inclusion of spatial and temporal information. It is well documented that

the intensity of insect activity changes throughout the day and including this time

of flight information has been shown to improve classification performance [16]. In

the following sub-sections each dataset is discussed in detail. In doing so 3 data

characteristics are provided: wingbeat frequency, wingbeat length and time of flight.

The wingbeat frequency information is extracted via the Harmonic Spectral product

approach, detailed in Section 5.3; the wingbeat length is defined as the number of

consecutive samples that exceed a threshold value, where the threshold is set in order

to negate background noise; and the time-of-flight data is a time-stamp captured by

the hardware, in this case the date is discarded. In Chapters 5 and 6 an experimental

evaluation of a range of classifiers on insect classification problems is provided, helping

to indicate the most promising algorithmic approaches in this rapidly expanding field.

2.5.1 The Aphids Dataset

The Aphid dataset, summarised in Tables 2.3 and 2.4, was produced at Rohamstead

Research by Kirsty Hassal. It is comprised of instances recorded in both laboratory

and field conditions. In both cases, information regarding the time of flight was also
3http://www.timeseriesclassification.com
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Table 2.4 Aphids dataset summary

# Class name Number
1 D. platanoidis 3,192
2 M. persicae 19
3 P. testudinaceus 115
4 Pollen beetle 854
5 Ps. chrysocephala 194
6 R. padi 8
7 S. avenae 270

recorded. Table 2.4 shows the label and number of instances in each class. Each

of the 4,652 instances represent 620 ms of audio sampled at 8 Khz. In laboratory

conditions, data collection was achieved in a semi-supervised fashion, where insects

of each class were housed in separate perspex containers along with the recording

equipment. Whereas recordings captured in the field were labelled by hand.

Figure 2.8 shows boxplots of the wingbeat-lengths of each class. The M. persicae

and R. padi classes were omitted, due to their small class size. The wingbeat-length is

expressed as number of samples and is defined as the interval between the first and last

sample, greater than a predefined threshold. The threshold was set at 500, in order to

negate background noise. All classes displayed similar minimum values, only varying by

11 samples. The D. platanoidis, P. testudinaceus, Pollen beetle and S. avenae classes

also displayed similar medians, only varying by 120 samples. Overall, the plots show

that there is considerable overlap between the wingbeat-length distributions of each

class. The relationship between the median and mean values, show there is considerable

skew towards larger values in all classes. Due to the nature of the recording setup,

there are opportunities for erroneous readings. These include insects entering the beam

simultaneously or in quick succession, insects flying along the beam, and insects resting

on the perspex where the infrared beam intersect the housing. Undoubtedly, some of

the outliers will reflect these issues. Interestingly, the Ps. chrysocephala displays a

significantly smaller inter-quartile range than the other classes. Also, the mean and
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median values are 45 sample apart. This is unlikely to be entirely due to the smaller

class size as it contains 79 more examples than the P. testudinaceus class and 76 less

than S. avenae class. Both of which display a similar and larger skew, and significantly

larger inter-quartile ranges.

Fig. 2.8 A boxplot showing the distribution of wingbeat lengths in the Aphids dataset.

Figure 2.9 presents the time of flight information captured during recording. Again,

the M. persicae and R. padi classes were omitted, as the small class size provides little

meaningful information. The graph demonstrates that in all but the Pollen beetle class,

there is activity throughout the 24 hour period, whereas, the Pollen beetle is inactive

between 12pm and 3am. The Ps. chrysocephala appears to be the most consistently

active insect, with one dip in activity at 6pm. In contrast, the P. testudinaceus and S.

avenae insects have obvious periods of high activity. In both cases, this activity begins

at 1pm and lasts until 11pm. Lastly, the D. platanoidis is the only insect to display

two periods of higher activity. These periods are subtle and peak at 9am and 8pm.

The inter-class activity throughout the day is high.
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Fig. 2.9 A plot showing the activity of insects in the Aphids dataset throughout 24
hours.

Figure 2.10 presents the distribution of wingbeat frequencies from each class. The

data is presented as the proportion of class size per frequency, for each class. The

frequencies were extracted via the harmonic spectral product approach, detailed in

Section 5.3. The graph shows there is significant overlap between the frequencies found

in each class. This is most severe between the two beetle classes Pollen beetles and Ps.

chryocephala. However, the difference in frequency between the peaks of two Aphid

classes D. platanoidis and S. avenae, is 20 hz. Furthermore, the distribution of the

third Aphid class P. testudinaceus is completely enveloped by the aforementioned two.

Uniquely, the P. testudinaceus class displays a second region of activity centred around

550hz. This is unlikely to be the harmonic resonance of the primary peaks, which can

be seen at 250 hz and 350 hz.
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Fig. 2.10 A plot showing the distribution of wingbeat frequencies in the Aphids dataset.

Table 2.5 FruitFlies dataset summary

# Class name Number
1 Melanogaster 6,064
2 Suzukii 10,142
3 Zaprionus 18,312

2.5.2 The FruitFlies Dataset

The Fruit Flies dataset, summarised in Tables 2.3 and 2.5 was curated at TEIC as part

of the development of a large aperture infrared sensor for capturing pseudo-acoustic

insect data. The data was captured in the field. As a result, it is unknown which

species of the Zaprionus genus is present. The proportion of male and females present in

the dataset is also unknown. The data was captured through multiple, not necessarily

contiguous, 24 hour periods. Table 2.5 shows the label and number of instances in each

class. Each of the 34,518 instances represent 620 ms of audio, sampled at 8 Khz. The

recording hardware automatically segments the data stream, based on a root mean

square (RMS) threshold value, into 5,000 attribute intervals.
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Figure 2.11 displays a summary of wingbeat lengths for each class. The wingbeat-

length is defined as the size of the interval between the first and last sample that has

an amplitude greater than a predefined threshold. In this case, the threshold value is

set to an amplitude of 0.01 dB. Overall, the distributions of wingbeat lengths overlap

significantly. The melanogaster and zaprionus classes display similar distributions:

they are both slightly skewed toward longer wingbeats; the means and medians are 96

and 161 samples apart; the 3rd quartiles are 75 samples apart and the interquartile

ranges are 2,413 and 2,420 respectively. However, the suzukii class exhibits a more

prevalent skew toward longer wingbeats, a similar 3rd quartile value and a significantly

smaller interquartile range of 1,996.

Fig. 2.11 A boxplot showing the distribution of wingbeat lengths in the FruitFlies
dataset.

Figure 2.12 shows the distribution of insect activity through 24 hours for classes

from the FruitFlies dataset. The data is presented as a proportion of the total class

size and was derived from histogram bin counts at a 1 hour resolution. The graph

shows that the melanogaster class is consistently active throughout the 24 hour period.
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Potentially, there is a slight reduction in activity around 12am. The zaprionus class is

most active between 7am and 12am, presumably dictated by dawn, and the suzukii

class is most active between 12am and 7pm. Despite the distinct high activity periods,

there is extensive overlap between the distributions. This is primarily due to the

existence of baseline activity in all classes that is present throughout the 24 hour

period.

Fig. 2.12 A plot showing the activity of insects in the FruitFlies dataset throughout 24
hours.

Figure 2.13 shows there is a significant overlap between the distribution of wingbeat

frequencies of each class. This particularly affects the suzukii and zaprionus classes.

This overlaps suggests that the classes are morphologically similar. The graph also

shows the variance in each class is low, 180 hz in the cases of melanogaster and suzukii

and 70 hz in the case of zaprionus. The graph is void of the noise characteristic of

erroneous recordings, examples of which can be seen in the frequencies greater than 250

hz in Figure 2.10. This indicates that the recording setup was effective at mitigating
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behaviours such as: multiple insect simultaneously entering the infrared beam; insects

flying along the beam and insects resting on the perspex blocking the beam.

Fig. 2.13 A plot showing the distribution of wingbeat frequencies in the FruitFlies
dataset.

2.5.3 The InsectSound Dataset

The InsectSound dataset was curated at UCR as part of work undertaken by Chen et.

al. [16]. The dataset, described in Tables 2.3 and 2.6, consists of 10 classes of 5,000

instances. An in depth description of the recording hardware and data extraction

process is presented in Sub-Section 2.4.1. This dataset consists of six species: two fly

species, Dr. simulans and Mu. domestica and four mosquito species, Ae. aegypti, Cx.

quinquefasciatus, Cx. stigmatosoma and Cx. tarsalis separated by sex.

All insects used for this data set were derived from wild colonies. The Cx. tarsalis

species was collected at the Eastern Municipal Water District’s treatment wetland in

2001 from San Jacinto, California. The Cx. quinquefasciatus species was collected
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Table 2.6 InsectSound dataset summary

# Class name Number
1 Ae. aegypti ♀ 5,000
2 Ae. aegypti ♂ 5,000
3 Dr. simulans 5,000
4 Mu. domestica 5,000
5 Cx. quinquefasciatus ♀ 5,000
6 Cx. quinquefasciatus ♂ 5,000
7 Cx. stigmatosoma ♀ 5,000
8 Cx. stigmatosoma ♂ 5,000
9 Cx. tarsalis ♀ 5,000
10 Cx. tarsalis ♂ 5,000

in 1990 from southern California [37]. Cx. stigmatosoma was collected in 2012 from

the Aquatic Research Facility at Riverside California. Ae. aegypti originated from

2,000 eggs delivered from Thailand [91]. Mu. domestica was collected in 2009 from

San Jacinto, California and the Dr. simulans were collected in 2001 from Riverside,

California.

The larvae of all the mosquito species used in this data set were raised in enamel

pans under the same conditions. The temperature was kept at 27°C and they were

exposed to a 16:8 hour light/dark cycle, with a one hour dusk/dawn period. All four

species were fed the same 3:1 mixture of ground Rodent Chow and Brewer’s yeast.

Both Mu. domestica and Dr. simulans larvae were subjected to 12:12 hour

light/dark cycles, with no dusk/dawn period, at a consistent 26°C. However, the Mu.

domestica larvae were fed a mixture of water, bran meal, alfalfa, yeast and powdered

milk, whilst Dr. simulans larvae were fed a mixture of rotting fruit.

Figure 2.14 shows the distributions of wingbeat lengths for each of the 10 insect

classes in the InsectSound dataset. The box plots show that there is considerable

overlap between classes. In cases where species are sex separated, the mean and median

is higher in the female sex. This is most clearly illustrated in the Cx. quinquefasciatus

species. Female mosquitoes are typically larger than their male counterparts. This
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results in a lower wingbeat frequency and longer wingbeat length. All classes from the

InsectSound dataset also exhibit a skew toward longer wingbeat lengths. This is likely

to be a result of erroneous readings caused by: near simultaneous recordings, insects

flying along the infrared beam, or insects resting at the point which the beam enters

the enclosure.

Fig. 2.14 A boxplot showing the distribution of wingbeat lengths in the InsectSound
dataset.

Figure 2.15 demonstrates the flight activity throughout 24 hours for each of the

mosquito classes from the InsectSound dataset. The Dr. simulans and Mu. domestica

classes are both dinural, although Dr. simulans do peak in activity around sunset.

The graph shows the classes grouped by sex and grouped by genus. Overall, the graph

shows the crepuscular nature of mosquitoes with two peaks in activity during the

twilight hours. The graph also highlights the difference between the typical activity

of the Culex and Aedes genera. In all cases: the Culex genus maintains significant

levels of activity throughout the night between the two twilight periods; the males

are always more active than their female counterparts in the early twilight period and
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both males and females are almost entirely dormant throughout the day. However, the

Aedes specie remains active throughout the day; is almost entirely dormant throughout

the night and, the male and the females were equally as active in both the twilight

periods.

Fig. 2.15 A plot showing the activity of insects in the InsectSound dataset throughout
24 hours.

Figure 2.16 shows the distributions of wingbeat frequencies for the 10 classes in

the InsectSound dataset. Classes drawn in either an orange or blue hue are mosquito

classes, where the orange hue represents female classes and the blue hue represents

male classes. The two genera are also visually separated, with the Culex genus being

represented with a broken line. The graph shows that the classes fall into three distinct

groups. The Mu. domestica and Dr. simulans are grouped together between 100 hz

- 250 hz, with low frequency noise from the mosquito classes. The female mosquito

classes are then grouped together between 250 hz - 450 hz. Finally, the male mosquito

classes are grouped together between 450 hz - 750 hz. The graph does not show any

significant difference in the distributions of frequency between the two genera present
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in the dataset. However, the split between male, female and other insects is significant.

Isolation and analysis of the noise between 100 hz - 300 hz showed it was consistent

with the expected frequencies of the first harmonic, or the body of the insects.

Fig. 2.16 A plot showing the distribution of wingbeat frequencies in the InsectSound
dataset.

2.5.4 The MosquitoSounds Dataset

Table 2.7 MosquitoSounds dataset summary

# Class name Number
1 Ae. aegypti 5,000
2 Ae. albopictus 5,000
3 An. arabiensis 5,000
4 An. gambiae 5,000
5 Cu. pipiens 5,000
6 Cu. quinquefasciatus 5,000

The MosquitoSound dataset is comprised of six mosquito species from three genera.

These are Ae. aegypti, Ae. albopictus, An. arabiensis, An. gambiae, Cu. pipiens, Cu.



2.5 Wingbeat Datasets 50

quinquefasciatus. There is no differentiation between sexes. The raw data consists

of 279,566 instances, split disproportionately between classes, where each instance

represents 0.625 seconds of audio sampled at 8 kHz. A detailed description of the

recording process is presented in Sub-Section 2.4.2. Tables 2.3 and 2.7 present the

number of instances, attributes and sample rate of the dataset, after making these

changes.

Fig. 2.17 A boxplot showing the distribution of wingbeat lengths in the MosquitoSound
dataset.

Figure 2.17 shows the distribution of wingbeat lengths for each of the 6 classes

from the MosquitoSound dataset. The plot shows: that there is significant overlap

between the classes, for all insects but Ae. arabiensis the distribution of lengths is

skewed toward larger wingbeat lengths, and that there is no obvious pattern between

the distributions of insects from the same genus. However, the spectral information

presented in Figure 2.19 suggests that both sexes are only present in the Ae. albopictus,

An. arabiensis and An. gambiae classes.
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Fig. 2.18 A plot showing the activity of insects in the MosquitoSound dataset throughout
24 hours.

Figure 2.18 shows the proportion of insects from each class that were active

throughout 24 hours. The data is the culmination of multiple, not necessarily contiguous

days and was discretised to 1 hour bins. Similarly to Figure 2.15, the Ae. aegypti class

is almost dormant throughout the night and active throughout the day. The Anopheles

genus classes both exhibit strong crepuscular behaviour and the Ae. albopictus along

with the classes from the Culex genus, appear to remain active throughout the entire

24 hour period, with a reduction in activity around the morning twilight period.

Figure 2.19 shows the distributions of fundamental frequencies from each of the six

mosquito species in the MosquitoSound dataset. The fundamental frequencies were

derived using the harmonic spectral product approach, detailed in Section 5.3. In

the classes, Ae. albopictus, An. gambiae and An. arabiensis the graph shows strong

evidence of both male and female mosquitoes being present. This is due to the presence

of two sets of peaks, one at 550 hz and 800 hz and the other at 475 hz and 775 hz.
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Fig. 2.19 A plot showing the distribution of wingbeat frequencies in the MosquitoSound
dataset.

Interestingly, the distribution of the Ae. aegypti class is not consistent with the data

shown in Figure 2.16. The distribution is wide, with one discernible peak at 575 hz.

2.6 Conclusion

In conclusion, this chapter introduces the “True Flies” order of insects, Culicidae, and

presents some of the key characteristics of Mosquitoes. The Mosquito life cycle is

briefly described the challenges associated with controlling Mosquitoes with pesticides

are explained. In Section 2.3 a literature review is undertaken, where the key concepts

and approaches applied to insect classification using wingbeat data are highlighted. In

Section 2.4 The hardware used to record and curate large collections of insect wingbeat

data are discussed. Throughout this the differences between the 2 pieces of hardware

are highlighted. Lastly, in Section 2.5 the insect datasets that feature in experiments

presented in Chapters 5 and 6 are described and discussed.



Chapter 3

Time Series Classification

3.1 Introduction

Time series datasets are comprised of instances consisting of naturally ordered values,

commonly know as time series. A resulting assumption of this characteristic, is that

the relationship between two neighbouring points may be leveraged to help form a

prediction. This differs from traditional classification problems, where it is assumed

that there is no information in the ordering of attributes. One common example of

a time series data is audio, where the importance of the intrinsic order of attributes

is obvious. However, there are less intuitive examples where continuous data is not

recorded with respect to time. One example of this is in the encoding of outlines as

time series, as shown in Figure 3.1. A second example is information expressed in the

frequency domain, shown in Figure 2.19. Transforming audio data into the frequency

domain often results in a better classification performance. This is typically down

to two reasons: firstly, underlying structures in the data are often revealed and are

less likely to be confounded by both high and low frequency noise and; secondly, the

dimensionality of data can often be reduced. Typically the expected frequencies of the

target data is significantly less than the Nyquist limit and can often be ignored. Often,
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transformation into the frequency domain is embedded into approaches, although it may

be one part of a multi-stage process, in deriving features for training. In cases where

approaches do not leverage features from the frequency spectrum, the transformation

can be performed externally.

Fig. 3.1 An example of time series mapping from an image outline.

In Section 3.2, a description of time series data and the relevant notation is provided,

followed by an introduction to the types of time series approach and explanation of their

common characteristics. In Section 3.4 the tools used to compare the performance of

approaches is presented. In Section 3.3 the approaches used throughout the experiments

presented in Chapters 5, 4 and 6 are introduced and described.
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3.2 Time Series Data

Given a time-series dataset, sometimes referred to as “problem”, T = {t1, . . . , tn} each

instance, t = {x1, . . . , xm, c}, consists of m attributes, typically consisting of real values,

and a class value, c ∈ C. The objective of a classification approach is to map test

instances to their correct class. Typically, classification consists of two phases, training

and testing. During the training phase, an internal representation of the relationship

between the data and class labels is developed using the training data, the exact

mechanism is unique to each approach. Once training is complete, the performance of

the approach is evaluated by assessing the number of correct classification attempts

using the test data. Prior to classification, a dataset, T, is divided into non-intersecting

training and testing subsets.

As mentioned previously, the training phase of each classification approach is unique.

However, similarities in the underlying transformations allow us to group together ap-

proaches. In Section 3.3, approaches are separated into six categories: dictionary based,

distance based, interval based, kernel based, shapelet based and hybrids. Dictionary

based approaches, including the Bag Of SFA Symbols (BOSS) (see Sub-Section 3.3.1),

make use of transformations such as Symbolic Fourier Approximation (SFA) and

Symbolic Aggregate Approximation (SAX). Both of these transforms are forms of

dimension reduction which utilise discretisation, as well as a further step in which

the discretised data is represented as a combination of characters from an alphabet.

Distance based approaches, such as Nearest Neighbour (NN) (see Sub-Section 3.3.2),

assign class probabilities to a test instance, based on the k most similar instances from

the training set. The most common measures of similarity are Euclidean distance (ED)

and Dynamic Time Warping (DTW). Interval based approaches introduce variation

by training each constituent classifier on a subset of the attributes available. An

instance is considered a subsection of the data where, for all instances, a number of
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contiguous attributes are extracted. In some cases, data may be normalised in order to

extenuate the importance of the location of information with respect to the instance

length. In some cases, the selection of intervals is also used with boosting in order to

incrementally improve the quality of the intervals. Interval approaches work best on

data that is sparse and has a large number of attributes, where both the content of

the interval and its location is indicative of class membership. Typically, transforms

are also incorporated into interval approaches, for instance in the Time Series Forest

(TSF) described in section 3.3.3
√

m, intervals are selected and reduced to the mean,

slope and standard deviation for each of the constituent decision trees.

In almost all cases, classification approaches employ transformations in an attempt

to reveal class discriminate information. In some cases, approaches are developed with

prior expertise incorporated to maximise their effectiveness in a specific domain. This

is the case in the RISE classifier, which was developed specifically to be effective on

audio datasets and as such, leverages transformations common in the signal processing

domain.

3.3 Classification Approaches

In the following sub-sections the approaches used throughout the remainder of this thesis

are described. They are organised into groups based on their internal transformation

or structure, these groups include: Dictionary, Distance, Interval, Kernel, Shapelet,

Hybrid and Deep Learning. The approaches included were chosen as they are thought

to represent either the current ‘best in group’, such as InceptionTime and the Temporal

Dictionary Ensemble (TDE) or, are well established benchmark approaches, such as

Time Series Forest (TSF) or Nearest Neighbour (NN) with Dynamic Time Warping

(DTW).
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3.3.1 Dictionary based approaches

Dictionary based approaches extract, distretise and compress segments of data into

words. The words of each instance are then expressed as a histogram of frequency

allowing for comparison, typically via the Nearest Neighbour approach. A sliding

window is used to parse instances and a word is formed at each window. The resolution

of discretisation informs the word length, and the value at each bin is assigned a letter

from a set of symbols of fixed size. These approaches work well on problems where

the discriminant factor between classes is the frequency of patterns, as changes in the

pattern frequency is reflected in the histograms.

The contracted Bag of SFA Symbols (cBOSS) [63]

cBOSS is a dictionary based approach. This approach summarises the frequency of

words in each instance of a dataset, this is done by sliding a window of size w across each

instance. cBOSS compresses each instance into a histogram of word frequency. Data

within each window is transformed into the spectral domain before the first l terms are

discretised at α resolution. A non-symmetric distance function and Nearest Neighbour

classifier are then used to determine class probability. cBOSS is an ensemble, where

the w, l and α parameters are set randomly for each repetition. This approach also

sports the ’c’ prefix denoting that a contracting mechanism is implemented, allowing

for the control of training time.

The Temporal Dictionary Ensemble (TDE) [61]

Similarly to the cBOSS algorithm the TDE approach is also an ensemble of 1-NN

classifiers, that employs a dictionary style approach derived from the SFA transform.

However, the constituent classifiers within TDE are themselves an improved iteration

of the BOSS approach, known as Improved Base BOSS (IBB) classifiers. These
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improvements include: using the histogram intersection measure in the place of the

custom distance measure used by BOSS and including the frequencies of bi-grams,

using the last non-overlapping window of each word additionally to the traditional

words formed via the SFA transform. TDE also makes use of the spatial pyramid

structure to better describe the temporal location of features, and provides a parameter

to control their depth. Features are then weighted according to the depth from which

they are derived, with features derived from the whole series weighted less. Information

Gain binning is also introduced as an alternative method for generating breakpoints

for discretisation in the SFA transform. The ensemble is generated via randomly

selecting the parameters for the first 50 constituents. Thereafter, a Gaussian processes

regresor is employed to the select combinations of parameters that might provide

the best accuracy, based on the leave one out cross validation accuracies of previous

constituents. This process is repeated until 250 constituents are built.

3.3.2 Distance Based Approaches

Distance based approaches aim to quantify the similarity between instances. Unlike

other approaches the whole series is used. Typically they are used in conjunction

with the Nearest Neighbour. The most common distance measures used are Euclidean

Distance and Dynamic Time Warping, although there are other approaches, such as

Manhatten Distance. These approaches perform well on problems where discriminant

features span the whole series or where features exist out of phase.

Nearest Neighbour (NN)

The NN classifier is an example of a whole series approach. Here, a test instance

is compared to each instance in the training set. Each training instance is assigned

a distance that represents its similarity to the test instance. Class probabilities are
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assigned based on the frequency of each class appearing in the set of k most similar

matches. The Euclidean Distance function (ED) and Dynamic Time Warping (DTW)

are two common distance measures used in conjunction within the Nearest Neighbour

construct to asses similarity between training and test instances.

Euclidean Distance (ED): Given a training instance, t1, and test instance, t2, of

length, n. The Euclidean distance between them, d, is then squared sum of per-element

differences and can be summarised as, (3.1)

d =
n∑

i=1
|t1

i − t2
i | (3.1)

Dynamic Time Warping (DTW): Given a training instance, t1, and a test

instance, t2, of length, n. Let M, be an n× n matrix for which each index represents

the point wise distance between t1 and t2, such that Mi,j = (t1
i − t2

j)2. A valid warping

path, P = (e1
i,j, . . . , es

i,j), traverses the matrix such that, e1
i,j = M1,1 and es

i,j = Mn,n,

whilst ensuring that, 0 ≤ ek+1
i − ek

i ≤ 1 and 0 ≤ ek+1
j − ek

j ≤ 1, for all k < s. The

distance of a path, PD, is defined as the sum of all elements in P. Of all possible paths

through the matrix, the one which minimises the total distance between t1 and t2 is

returned.

The permitted deviation from the diagonal through the matrix M that the path

can take, is typically parameterised. This warping window, r, is set to proportion such

that r = 1 equates to there being no constraint on the amount on deviation and r = 0

enforces the path to follow the diagonal, in effect mimicking the Euclidean Distance

measure.
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3.3.3 Interval Based Approaches

Interval approaches use sub-sections of the dataset to build many weak learners. The

size and location of intervals are typically chosen at random. The selected interval is

extracted from all instances from the set, as a result the process can be interpreted

as a form of attribute selection. In some cases, such as Time Series Forest, multiple

intervals are selected and combined. These approaches work well on problems that

have many attributes or feature lots of noise. This is because the selection of intervals

is typically quick and the resultant feature vector is often smaller than the original

series and, the collective effect of using many intervals minimises the chance of noise

dominating classification.

Time Series Forest (TSF) [27]

TSF is another tree based interval ensemble. It is specifically designed to perform well

on time series problems. For each tree in the TSF approach
√

m random intervals are

selected from the data. The mean, standard deviation and slope are then computed

from each interval before being concatenated to form a new training set. These Time

Series Trees (TST) also use a novel splitting criteria, namely Entrance Equation (3.2).

E = ∆Entropy + α ·Margin (3.2)

The Entrance criterion was intended to improve on the standard ∆Entropy splitting

criteria by incorporating a Margin value. The Margin is defined as the distance from

a proposed split value and neighbouring instances. Additionally, TSF sets the number

of threshold values considered for splitting, k. For each attribute at each node, the

range between the minimum and maximum value is divided into k intervals on which
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to test. This removes the need to sort instances at each node, drastically improving

the runtime complexity.

The Contracted Random Interval Spectral Ensemble (RISE) [56]

RISE is a tree based interval ensemble. Each tree in the ensemble is grown on spectral

features derived from random Intervals. For each tree a random interval is selected

from the training set. The interval is then transformed using a number of spectral

approaches, including the Fast Fourier Transform (FFT) and Auto Correlation Function

(ACF) independently. Class probabilities are then assigned as a proportion of base

classifier votes. As the spectral component in the powerful HIVE-COTEv1 approach

RISE was considered a sensible approach to focus on, the results of which are detailed

in Chapter 4.

The Diverse Representation Canonical Interval Forest (DrCIF) [62]

The DrCIF classifier is an improvement on the CIF classifier introduced by Middlehurst

et. al. [60]. The approach grows a forest of Time Series Trees [27] on a representative

set of unique features. First order differences and the frequency spectrum are derived

from the training set. This results in 3 training set representations. From each

representation k random intervals are chosen. Then, a summary statistics from a pool

of 29 are then randomly selected and applied to each of the k intervals. The features

are then concatenated into a 3× k × a series. This new training set is used to grow

each Time Series Tree. Variation is injected into the forest by way of randomness in

the position and length of the intervals selected. In order to ensure test instances are

transformed correctly for each tree, the index and length of the intervals are recorded,

along with which summary statistics were applied. The 29 statistics found in the pool
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are a combination of those found in the Catch22 [57] approach, along with the: mean;

standard-deviation; slope; median; inter-quartile range; min and max.

3.3.4 Kernel based approaches

Kernel based approaches produce features from convolutions between generated kernels

and instances. Typically, kernels are generated randomly from parameterised functions,

but can also be predefined, if prior knowledge is available. The speed of the convolutions

and base classifiers used, typically a regressor, enable the extraction of many features.

In the case of The Random Convolutional Kernel Transform (ROCKET) approach,

convolutions are compressed and expressed as 3 values. Kernel approaches are a

relatively new type of approach, but have been shown to be effective across all types of

problems [62].

The Random Convolutional Kernel Transform (ROCKET) [25]

ROCKET is an example of a pipeline. Where the features from one transformation

process are used to train one classifier. This differs from approaches such as RISE,

which is an ensemble of many classifiers and distinct transforms. ROCKET uses a

novel feature derived from the output of convolving 10,000 randomly generated kernels

on the training data, before then learning class boundaries using a ridge regression

classifier. Each of the 10,000 kernels is applied to the training data. The maximum

value and a novel feature, proportion of positive values (PPV), are then derived from

each of the resulting feature maps. Although the kernels are random, the parameters

used to create them are selected from the following spaces: the length, l, is selected

such that, l ∈ {7, 9, 11}; the value of each weight, wi, in the kernel is selected such that,

wi ∼ N(µ, σ2), where µ = 0 and σ2 = 1; dilation, d, is sampled from an exponential

scale up to input length and the decision to apply padding to the series is made at
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random. If true, the series is zero padded, such that the centre value of the kernel

is applied to every value in the series. The feature spaces for parameters were learnt

on a ‘development’ subset of 40 randomly selected datasets from the UCR univariate

time series classification archive. The PPV summarises the proportion of the series

correlated to the kernel and was found to significantly improve classification accuracy.

In effect, each instance in the dataset is transformed in to a 20,000 attribute series,

consisting of max and PPV values. This transformed dataset is then used to train the

ridge regression classifier.

Arsenal [62]

Arsenal is an ensemble of ROCKET classifiers. During development of HIVE-COTEv2.0,

described in Sub-Section 3.3.6, it was established that the ridge regressor classifier

used in ROCKET produced poor probabilities, despite the high accuracy. This was

problematic as the CAWPE ensemble structure, described in section 3.3.6, leverages

weighted probabilities, to assess the extent to which each classifier is confident in the

prediction made. In order to mitigate this, an ensemble of smaller ROCKETs is used.

The number of kernels used in each constituent is reduced from 10,000 to 2,000 and

the number of ROCKETs in the ensemble is by default 25. A majority vote system is

then employed to derive a probability distribution.

3.3.5 Shapelet Based Approaches

Shapelets are Sub-Sections of the data that best describe class memberships. Unlike

Intervals, they are phase independent. Approaches evaluate many shapelets for each

instance, evaluating their ability to split the data into the correct classes. Shapelet

approaches work best on problems in which classes are defined by the existence of

characteristic features, rather than the frequency of features.
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Shapelet Transform Classifier (STC) [10]

Shapelets are subsequences extracted from single instances within a training set.

Selected randomly, the minimum distance between a shapelet and each training

instance is stored and its ability to split classes effectively is assessed via information

gain. The k best shapelets are retained in an ordered list. In order to find the minimum

distance between a shapelet and an instance, the shapelet is slid along the instance,

and the Euclidean Distance is computed before the shapelet is shifted by one attribute.

The minimum distance is then retained. This approach is effective in determining

phase independent features. The search space is fully enumerated if it is determined

to take less that 1 hour, otherwise shapelets are chosen randomly. After the top

k shapelets are determined, the training set is transformed into the shapelet space.

The transformation expresses instances as the minimum distances from each of the k

shapelets. As a result, the ith attribute of the jth instance in the transformed training

set is the minimum distance between the ith shapelet and the jth instance from the

raw training set. The benefit of this transformation process is that the features are

agnostic of any classification approach.

3.3.6 Hybrid Approaches

Hybrid approaches ensemble over many different representations. The most well known

hybrid approaches are the heterogeneous Hierarchical Vote Collective of Transformation-

Based Ensembles (HIVE-COTE), which incorporate the predictions of approaches

from different domains. However, there are homogeneous approaches, such as The

Time Series Combination of Heterogeneous and Integrated Embedding Forest (TS-

CHIEF) [83]. The mechanism of incorporating the predictive power of constituents

differs for each approach. In HIVE-COTE the predictions of constituents are combined

via the Cross-validation Accuracy Weighted Probabilistic Ensemble (CAWPE), whereas
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TS-CHEIF embeds features in a decision tree. These approaches are designed to perform

well in general. They are particularly useful when there is no prior knowledge of the

target data’s structure.

The Hierarchical Vote Collective of Transformation-Based Ensembles ver-

sion 1 (HIVE-COTEv1) [56]

Shapelet Transform
Classifier

Bag of SFA 
Symbols

Time Series 
Forest

Random Interval
Spectral Ensemble

Performance 
Estimate 82%

Prob Class 1 0.1

Prob Class 2 0.8

Prob Class 3 0.1

Prediction 2

Prob Class 1 0.8

Prob Class 2 0.1

Prob Class 3 0.1

Prediction 1

Prob Class 1 0.7

Prob Class 2 0.1

Prob Class 3 0.2

Prediction 1

Prob Class 1 0.5

Prob Class 2 0.4

Prob Class 3 0.1

Prediction 1

CAWPE
Alpha (α) = 4

Prob Class 1 0.824 x 0.1 + 0.594 x 0.8 + 0.584 x 0.7 + 0.64 x 0.5 = 0.29/(0.29+0.44+0.09) = 0.35

Prob Class 2 0.824 x 0.8 + 0.594 x 0.1 + 0.584 x 0.1 + 0.64 x 0.4 = 0.44/(0.29+0.44+0.09) = 0.54

Prob Class 3 0.824 x 0.1 + 0.594 x 0.1 + 0.584 x 0.2 + 0.64 x 0.1 = 0.09/(0.29+0.44+0.09) = 0.11

Prediction arg max(0.35, 0.54, 0.11)

Prediction: Class 2

Performance 
Estimate 59%

Performance 
Estimate 58%

Performance 
Estimate 60%

Unknown Test Case

Fig. 3.2 HIVE-COTEv1

HIVE-COTEv1, depicted in Figure 3.2 capitalises on the idea that the best approach

for a problem is often found when considering the underlying patterns in the data. It was

concluded that in order to produce an unsupervised approach, a heterogeneous group

of classification algorithms should be selected. Furthermore, the approaches should, as

much as possible, produce fundamentally different internal representations of the data.

The HIVE-COTEv1 algorithm is formed of 4 modules: STC, cBOSS, TSF and RISE
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and utilises the Cross-validation Accuracy Weighted Probabilistic Ensemble (CAWPE)

control structure, to combine the respective probability distributions. During training,

each module derives a training accuracy. If the module is capable of providing this via

some internal mechanism, it does so, otherwise the training accuracy is found through

a 10-fold cross validation process. When passed a test instance HIVE-COTEv1’s class

prediction is a function of the internal modules. For each module, the respective

train accuracy is raised to the power of, α, a parameter of HIVE-COTEv1. Its

probability distribution is then multiplied by this value. The probability distribution of

HIVE-COTE then becomes the summation of these values, represented as a percentage.

The Hierarchical Vote Collective of Transformation-Based Ensembles ver-

sion 2 (HIVE-COTEv2) [62]

STC TDE DrCIF

Performance 
Estimate

82%

Prob Class 1 0.1

Prob Class 2 0.8

Prob Class 3 0.1

Prediction 2

Prob Class 1 0.8

Prob Class 2 0.1

Prob Class 3 0.1

Prediction 1

Prob Class 1 0.7

Prob Class 2 0.1

Prob Class 3 0.2

Prediction 1

CAWPE
Alpha (α) = 4

Prob Class 1 0.824 x 0.1 + 0.594 x 0.8 + 0.74 x 0.3 + 0.584 x 0.7 = 0.29/(0.29+0.53+0.1)  = 0.32

Prob Class 2 0.824 x 0.8 + 0.594 x 0.1 + 0.74 x 0.6 + 0.584 x 0.1 =  0.53/(0.29+0.53+0.1)  = 0.58

Prob Class 3 0.824 x 0.1 + 0.594 x 0.1 + 0.74 x 0.1 + 0.584 x 0.2 =  0.1  /(0.29+0.53+0.1)  = 0.1

Prediction argmax(0.32, 0.58, 0.1)

Prediction: Class 2

Performance 
Estimate

59%
Performance 

Estimate
58%

Unknown Test Case

Arsenal

Prob Class 1 0.3

Prob Class 2 0.6

Prob Class 3 0.1

Prediction 2

Performance 
Estimate

70%

Fig. 3.3 HIVE-COTEv2
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HIVE-COTEv2, depicted in Figure 3.3 is an updated configuration of the HIVE-

COTEv1 ensemble approach consisting of the ‘best in class’ for the: shapelet; dictionary;

kernel and interval type approaches. Of the four approaches included in HIVE-COTEv1,

3 have been replaced, with only the Shapelet transform classifier remaining. The

dictionary approach cBOSS has been superseded by the TDE, described in Sub-

Section 3.3.1. The interval approach TSF has been removed and the kernel approach

Arsenal, described in Sub-Section 3.3.4, has been included. The interval approach RISE,

has been superseded by the interval approach DrCIF, described in Sub-Section 3.3.3.

The CAWPE control structure remains the same.

3.3.7 Deep Learning Approaches

Deep learning approaches consist of interconnected units called neurons. Each neuron

sums its input, applying some bias, and maps the output of the sum to an activation

function. Most network architectures are complex, consisting of multiple layers of

many neurons. Some common archetypes include: Fully Connected Networks (FCNs)

in which all neurons from one layer are connected to all neurons in the proceeding

layer; Convolutional Neural Networks (CNNs) in which the multiple layers are fed

the input at different resolutions. This is typically followed by a pooling layers to

combine the resultant features before a number of fully connected layers; and Recurrent

Neural Networks (RNNs) in which connections between neurons from a directed graph,

this is done in order to extract temporal features. In all cases the weights between

connected neurons are assigned randomly and updated via back propagation during

training. The updates accentuate the importance of connections that positively effect

training accuracy. These approaches perform best on large datasets where the variation

amongst the instances of each class is sufficient to achieve a robust model.
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Convolutional Neural Network (CNN) [96]

Convolutional networks are often used in image recognition, where kernels of different

sizes or shapes are used to extract specific features from images. In the time series

domain the approach is the same but 1-dimensional. For each layer the kernel is slid

over the input Consisting of 4 layers in total, the code used to implement the CNN

in this work can be found at the sktime-dl repository1. With respect to the work in

this Thesis, the kernel size for both convolutional layers was set to 7 and the filter step

size were 6 and 12 respectively. After each layer the convolution layer output is passed

to a pooling layer, before being flattened prior to final output. In all cases a sigmoid

activation function is used. The model was trained using the Adam optimiser and the

mean squared error was used in the loss function.

Multilayer Perceptron (MLP) [92]

The MLP used in this work consists of three fully connected layers (1 input layer, 1

hidden layer and 1 output layer) consisting of 500 neurons. Each of these are coupled

with a rectified linear unit to facilitate the MLPs non linearity and the dropout rates

are 0.1, 0.2, 0.3 respectively. The code used can be found at the sktime-dl2 repo.

Residual Network (RESNET) [45]

Technically defined as a deep neural network, the RESNET architecture is comprised

of three blocks of three layers (1 convolutional layer, 1 batch normalization layer and

1 global pooling layer). The defining characteristic of this architecture is the way in

which the blocks are interconnected. The residual connections between each block

allow the gradients of previous layers directly through to later layers, reducing the
1https://github.com/sktime-dl/classifiers/deeplearning/_cnn.py
2https://github.com/sktime-dl/classifiers/deeplearning/_mlp.py
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vanishing gradient effect. The default parameters were used in this work. The code

used can be found at the sktime-dl3 repo.

InceptionTime [33]

InceptionTime is a homogeneous ensemble of residual networks, each of which incorpo-

rate inception modules [88]. Each network in the ensemble consists of 2 blocks of 3

inception modules, followed by a global average pooling layer and finally a softmax

layer. As shown if Figure 3.4 residual information is passed from the raw signal between

the final layers of each block. Each network is initialised with random weights. In

work undertaken by Fazwa et. al. [33] and Middlehurst et. al. [62], InceptionTimes

performance with respect to accuracy was shown not to differ significantly from that

of HIVE-COTEv1.

Fig. 3.4 Inception module [33]

3.4 Comparing Classifiers

In order to asses and compare the performance of many classifiers over multiple

datasets, it is important to consider a range of descriptive statistics and statistical
3https://github.com/sktime-dl/classifiers/deeplearning/_resnet.py
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tests. Typically, results are presented as simple statistics, such as the accuracy of a

single experiment. In this Thesis the procedure outlined in [3] is adopted, allowing a

deeper analysis of performance. Additionally to single statistics, significance testing,

presented as critical difference diagrams, is also used. Finally, train and test duration

of experiments and memory consumption is presented, As well as the derivations from

contingency tables, such as F1 score, sensitivity and specificity.

3.4.1 Critical Difference Diagrams

Fig. 3.5 An example of a critical difference diagram with 4 classifiers and 1 clique.

The approach adopted for producing critical difference diagrams is an adaptation

of the process outlined by Demsar et. al. in [26]. Classifiers in the diagram are often

displayed with their average ranks. Classifiers which do not differ significantly from

one another are joined via a thick black line, and are said to be of the same clique.

This is depicted in Figure 3.5 where classifier A is significantly worse than all others

classifiers; classifiers B and D are significantly better than classifier A, significantly

worse than classifier C but not significantly different from each other, and classifier C is

significantly better than all other classifiers. Although this process is often undertaken

to asses classifier test accuracy it is agnostic of the metric used.

The process is a two stage rank-sum style test, whereby a modified Friedman test

is undertaken to establish if there are any significant differences between classifiers,

followed by the Wilcoxon signed-rank tests with the Holm correction to establish
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where the differences are. In the first stage, the Friedman test is used to test the null

hypothesis that the mean ranks of the classifiers are not significantly different. In this

case, the alternative hypothesis states that in at least one case the mean rank of a

classifier is significantly different from another classifier’s mean rank.

Given M , a k by n matrix of classification accuracies, where k is the number

of classifiers, n is the number of datasets and the notation mi,j corresponds to the

accuracy of classifier i on problem j. The first step of stage one is to derive the k by n

matrix R where Ri,j corresponds to the rank of classifier i on problem j. Ranks are

assigned according to the order of accuracies and in the case of ties, average ranks are

assigned. In the second step, a vector of mean ranks r̂ of length k is computed, where

r̂i corresponds to the mean rank of classifier i over all n problems.

To test the null hypothesis, that there is no significant difference between the

average rank of classifiers, the Friedman statistic, (3.3) is used.

χ2
F = 12n

k(k + 1)

[
k∑

i=1
r̂2

i −
k(k + 1)2

4

]
(3.3)

The Friedman statistic assumes a chi-squared distribution, with k − 1 degrees of

freedom. However, Demsar notes that the assumed chi-squared distribution results in a

undesirably conservative outcome. As a result, the recommendation is to use a statistic

presented in [18], which assumes an F-distribution with k−1 and (k−1)(n−1) degrees

of freedom, shown in equation (3.4).

FF = (n− 1)χ2
F

n(k − 1)− χ2
F

(3.4)
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Assuming the null hypothesis is rejected, the second stage of the process consists of

multiple Wilcoxon signed-rank tests. This test requires that all classifiers are compared

to each other. For each of the n comparisons the Wilcoxon’s test statistic, w, is derived.

Firstly, the absolute difference between and the associated sign are calculated for each

problem, these differences are then ordered by rank. The test statistic, w, is the sum

of products between the corresponding ranks and signs where the absolute difference is

greater than 0. The z score for the ith comparison can then be calculated as, (3.5),

where Nr denotes the number of non-zero rank values.

zi = wi√
Nr(Nr+1)(2Nr+1)

6

(3.5)

Finally, the Holm correction is used to adjust the α value, taking into account the

number of tests being undertaken. This process controls the probability of family-wise

errors occurring, ensuring that the probability of falsely rejecting the null hypothesis is

less than α. As a result the test for rejection of the null hypothesis becomes (3.6).

zi <
α

m + 1− i
(3.6)

Where m represents the total number of comparisons and i represents the number

of comparisons made so far.

3.4.2 Timing and Memory

In order to comment on the potential viability of approaches in the context of real

world deployment, it is important to understand their behaviour entirely. The analysis

of training time, test time and memory usage will inform how approaches may be used
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in an application setting. For example, it is more difficult to ensure a model reflects the

environment if it takes many days to incorporate new data in the training set. Issues

around memory consumption often impact the viability of deploying battery operated

devices and the relationship between test time and test instance length informs the

question of ‘real time’ classification. Often these characteristics are overlooked in favour

of more traditional measures of performance, such as accuracy. Although they do not

inform the usefulness of an approach in the same way, they do assist in providing

context when discussing suitability.

3.4.3 Performance Statistics

The use of multiple performance statistics allows us to better understand how classifica-

tion approaches perform on the application focused datasets. As previously mentioned,

measures additional to accuracy, such as sensitivity, specificity and the F1 score, allow

us to provide a well rounded analysis of approaches. It becomes apparent why this

information, in addition to accuracy is important, when considering that False positives

(Type I errors), where cases are mistakenly classified as positive when that are in fact

negative, and False Positives (Type II errors), where instances are mistakenly classified

as negative, when they are in fact positive, may not carry an equal real world cost.

An example of common statistics and their derivation is shown in Table 3.1.

Conveniently, it is possible to create contingency tables directly from the respective

classifier/problem confusion matrix. This allows us to make multiple analysis, without

the need to reformat datasets. For example, it is possible to asses a classifiers ability to

accurately predict female mosquitoes in the InsectSounds dataset without re-formatting

the dataset into a binary problem, by leveraging the confusion matrix of the full multi-

class experiment.
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Table 3.1 Common statistics found using a contingency table.[1]

True condition

Positive Negative
Prevalence
= T rue condition positive

T otal population

Accuracy
= T rue positive + T rue negative

T otal population

Positive True positive False positive
Type I error

Positive prediction value
= T rue positive

P redicted condition positive

False discovery rate
= F alse positive

P redicted condition positivePredicted
condition Negative False negative

Type II error True negative
False omission rate
= F alse negative

P redicted condition negative

Negative predictive value
= T rue negative

P redicted condition negative

True positive rate
= T rue positive

Condition positive

False positive rate
= F alse positive

Condition negative

Positive likelihood ratio
= T P R

F P R

False negative rate
= F alse negative

Condition positive

True negative rate
= T rue negative

Condition negative

Negative likelihood ratio
= F NR

T NR

F1 score
= 2 · P P V · T P R

P P V + T P R
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3.5 Conclusion

In this Chapter, Time Series data was described and defined, along with the notation

used throughout the remainder of this thesis. Furthermore, the idea of an interval

was also defined. This is particularly relevant as the work in the Chapter 4, focuses

on improvements to the Interval based approach RISE. In Section 3.3 the approaches

relevant to the experiments presented in Chapters 4 5 & 6 are described. Finally, in

Section 3.4 the method of comparing classifiers based on the results they produce is

outlined.



Chapter 4

The Random Spectral Interval

Ensemble (RISE)

Contributing publications

• Flynn M., Large J., Bagnall T. (2019) The Contract Random Interval Spectral

Ensemble (c-RISE): The Effect of Contracting a Classifier on Accuracy. In Hybrid

Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science,

vol 11734. Springer, Cham.

4.1 Introduction

HIVE-COTEv1, is a heterogeneous ensemble. It consists of four modules: TSF, an

interval approach that leverages summary statistics; RISE, an interval approach, that

makes use of spectral transforms; BOSS, a dictionary approach and STC, a shapelet

approach. These modules were deliberately chosen, as they represented the state of

the art in each respective domain. The intention of this decision was to capitalise on

the extended coverage provided by multiple domain experts, by intelligently combining

the module probability distributions, such that modules that are likely to perform best
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on the test set have a greater impact on the probability distribution of HIVE-COTEv1.

The probability distributions of HIVE-COTEv1 modules are combined via the CAWPE

ensemble structure. The CAWPE ensemble structure is a hierarchical voting structure,

where the vote of each module is modulated by a weight, and the weight of each module

is assigned via the performance on the training data set. The extent to which each

module contributes, is accentuated by raising its weight by the exponent α. In the

test phase, the probability distribution per instance is then the normalised sum of the

module probability distributions.

The motivation for including RISE in the HIVE-COTEv1 ensemble, is to account

for problems for which discriminant features are most likely to be found in the frequency

domain, or uncovered via autocorrelation [3]. These transforms are typically used on

oscillatory data, such as audio, with success. This is because audio often comprises

many complex sine waves that in the time domain, potentially mask discriminant

features.

In Chapter 5 experimental results on two new large pseudo-acoustic insect-centric

datasets are presented. HIVE-COTEv1, in conjunction with spectral features is found

to produce the best accuracy overall and the lowest type II errors for female mosquito

classification. However, the time required to train approaches on datasets, with large

numbers of both instances and attributes was in some cases prohibitive. As a result, a

method of controlling the time spent in the train phase was deemed necessary, we refer

to this as “contracting”. Large training times are problematic as the number and size

of datasets is expected to grow, and effective use of all available data is paramount

in producing the most effective models. As such, being able to control the amount of

time taken during training is useful. In this chapter, the issue is addressed, presenting

two methods of controlling the train time of RISE: The “Naive approach” and the

“Adaptive Approach”. The performance of these approaches is assessed in terms of
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contract adherence, effectively a measure of predictability. Furthermore, additional

small changes are also introduced that increase performance. This is followed by a

review of the core element of the cRISE framework, the “interval selection policy”.

The interval selection policy denotes the method in which intervals are constructed.

The method chosen can inadvertently skew the distribution of selected attributes

over the course of training. In order to clarify the effect this has on the accuracy

of cRISE, a review is undertaken in which 3 additional interval selection policies

are evaluated: Policy 2, Policy 3 & Policy 4. Since the inception of cRISE, only a

small number of prospective spectral transforms have been evaluated and the question

of which spectral transforms perform best in the general audio classification space

is very much open. Furthermore, alternate forms of combination such as: random

selection; tuning mechanisms and ensembling are interesting opportunities to improve

performance. Through the implementation of: the Audio Features (AF) transform, a

collection of 6 common audio descriptors; a Spectrogram transform; and Mel Frequency

Cepstral Coefficients (MFCCs) these issues are addressed. Transform performance is

assessed individually, via 3 tuning methods and finally through the random selection

and CAWPE combination methods.

The remainder of this chapter is laid out as follows: in Section 4.2 the contracting

and the contracted RISE approach, cRISE is introduced. In Section 4.3 a review of

interval selection policies is undertaken and their impact on the accuracy of cRISE

assessed. In Section 4.4 3 proposed spectral transforms to the cRISE approach are

presented, and their individual performances, tuning methods and combination methods

discussed, before presenting an improved cRISE configuration, Finally, some conclusions

are presented in ection 4.5.
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4.2 Improving Usability Via Contracting

Data sets of increasing size are now common within machine learning. Big data

undeniably has its benefits. However, as advancements in processing capabilities begin

to slow and the complexity of algorithms increase, we are often faced with more data

than we are capable of processing. Even with the rise in popularity of cloud computing

platforms and high performance computer facilities, it often becomes infeasible to

construct a full learning model on all of the available data. A particularly common

area in which the problem arises is the spectral/audio domain. This is typically down

to the sample rate used to record data. Consider that the standard audio sample

rate is 44.1kHz. Creating models from audio data requires either extensive bespoke

preprocessing, or adaptations of the learning algorithms to compensate for the volume.

We do not look to challenge or reaffirm the traditional, volume of data/increase in

accuracy paradigm. Instead, we aim to investigate the relationship between reduced

train time and accuracy, assuming a fixed volume of data.

All experimental processes strive to make complete use of the training set and in

ideal conditions, this will always be preferable. However, experience has shown us that

working with large datasets can cause extreme training and test times. When working

through these problems, it has become apparent that very little research has been

undertaken in understanding how reduced training time affects accuracy. Homogeneous

ensembles typically require a large number of trees to be effective. The most basic

way of managing training times is simply to build base models until the time has

expired. However, for very large problems, this may result in very small ensembles.

The Random Interval Spectral Ensemble (RISE) is a Time Series Classification (TSC)

algorithm that uses spectral features. It selects a different random interval of the series

for each base classifier, then calculates spectral coefficients to be used as features. For

large problems, if intervals close to the full series length are selected it is possible to use
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all available computation on very few models. To compensate for this, an investigate

into whether it is possible to predict the run time is undertaken, this prediction can

then be used to guide the interval sampling, ensuring a minimum size ensemble.

RISE draws on ideas from tree-based ensembles such as random forest [12] and

the TSC interval feature classifier TSF, described in Sub-Section 3.3.3. The base

RISE algorithm is described in Algorithm 1. It shows that the first tree in RISE

is a special case that uses the whole series for spectral transformation, this step is

included for continuity with the previous spectral classifiers used in The Collective

of Transformation-Based Ensembles [5] (COTE) classifier which only used the whole

series. We then build r random decision trees on the spectral transform of unique

random intervals selected from the data. This is similar to TSF, however, key difference

is that TSF uses time domain features by calculating the mean, variance, and slope of
√

m intervals, where RISE extracts spectral features.

Algorithm 1 BuildRISE(Training data train, number of classifiers r, minimum interval
length minLen)
1: Let F←< F1 . . . Fr > be the trees in the forest.
2: Let m be the length of series in train
3: wholeSeriesFeatures← getSpectralFeatures(train)
4: buildRandomTreeClassifier(F1,wholeSeriesFeatures)
5: for i← 2 to r do
6: startPos← randBetween(1, m−minLen)
7: endPos← randBetween(startPos + minLen, m)
8: train← removeAttributesOutsideOfRange(train,startPos,endPos)
9: intervalFeatures← getSpectralFeatures(train)

10: buildRandomTreeClassifier(Fi,intervalFeatures)

RISE uses several forms of spectral features: the power spectrum, the autocorrelation

function, the partial autocorrelation and the autoregressive model. New classes are

classified using a simple majority vote. Further details can be found in [56]. The run

time for transforming a series is quadratic in the interval length.
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4.2.1 The Contracted RISE Algorithm (cRISE)

In many areas, it may be advantageous or even necessary to constrict the run time of

a classification algorithm. Generally, it is not well understood how long classification

algorithms take to run for any given problem. Run time is of practical importance

when considering which algorithm to use, or how much preprocessing to perform. This

is of particular relevance when using cloud services, where the computation is charged

per time period, situations in which there is a hard deadline, or where there is a

limit on how long a process is allowed to run. Two solutions to these problems are

check-pointing, periodically saving a partial version of the classification model to disk;

and contracting, limiting the amount of computational time an algorithm is allowed.

When used together, they make a classifier more flexible and useful to the practitioner.

Check-pointing RISE is simple, especially with a Java implementation; where the

constructed trees can simply be serialised at certain points and RISE adapted to allow

the loading from file. Contracting is also simple: trees can be built until we run out of

time, or reach the maximum number. However, this simple contracting approach can

result in very small ensembles, if the series are very long. In this Thesis an adaptive

scheme is proposed that avoids this problem, by dynamically estimating the build time

for each particular tree.

Algorithmic Improvements

cRISE is a tree based interval ensemble. Each tree in the ensemble is grown on spectral

features derived from random Intervals. For each tree a random interval is selected from

the training set. The interval is then transformed using the Fast Fourier Transform

(FFT) and Auto Correlation Function (ACF) independently. Prior to transformation

into the spectral domain the interval is padded to the next power of 2 using the mean

value of the interval. The output of the FFT is then concatenated with the first 100



4.2 Improving Usability Via Contracting 82

ACF coefficients to form a new training set. Class probabilities are then assigned as a

proportion of base classifier votes.

A number of small but influential changes are implemented in cRISE. These were

implemented with the aim of not significantly decreasing accuracy, whilst drastically

improving runtime. These changes are outlined below and a more thorough description

is provided in Algorithm 3.

RISE uses power spectrum (PS), autocorellation function (ACF), partial autocorel-

lation function (PACF) and autoregressive model (AR) features over each interval. It

was found that combining them created a more accurate classifier than just using one

set [56]. However, the disadvantage is that although the PS can be found in O(nlog(n))

time if the series length is a power of 2, there is no easy way to do this for the PACF

and AR terms. Hence cRISE does not derive PACF or AR features, and only selects

intervals that are a power of 2. An interval is still selected randomly, but now it is

rounded to the nearest power of two. To correct for intervals exceeding the series

length, the interval is divided by 2, ensuring a valid interval and favouring shorter

intervals.

Timing Models

The following Sub-Sections introduce two methods of controlling the train time of

RISE. We refer to these approaches as timing models. The Naive Model, describes the

obvious and simplest approach of using a timer to end training after the contract is up

and the Adaptive Model introduces a Linear Regression Model to map the independent,

length of interval, variable to the dependant, time taken to build tree, variable. The

results of these 2 approaches are then presented and discussed in Section 4.2.2.

The Naive Model The simplest way to limit the train time of tree based ensemble,

is to simply set a timer and keep adding trees until the contract is met, or a maximum
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number of trees have been built. This is described in Algorithm 2 where the timer is

initialised and then started before any of the trees are built. Then, at each iteration of

the for-loop the elapsed time is compared to the contract time. If the elapsed time

it greater than the contract time the build process is ended, irrespective of whether i

equals r.

Algorithm 2 Build cRISE_Naive(Training data train, number of classifiers r, minimum
interval length min)
1: Let F ←< F1 . . . F500 > be the trees in the forest.
2: Let m be the length of series in train
3: startForestTimer()
4: for i← 1 to 500 AND queryForestTimer() do
5: validLengths← getValidPowersOf2(min, instanceLength)
6: randomLength← randBetween(maxValue(validLengths)/2)
7: r ← findClosest(validLengths, randomLength)
8: startPos← randBetween(1, m− r)
9: interval← removeAttributesOutsideOfRange(train, startPos, r)

10: intervalFeatures← getSpectralFeatures(interval)
11: buildRandomTreeClassifier(Fi,intervalFeatures)
12: updateTimer()

Adaptive model cRISE performs two transformations: A Discrete Fourier Trans-

form (DFT) to find the power spectrum and construction of the Autocorrelation

Function (ACF). With the simplest implementation, each of these is O(r2), where

r is the interval width. The efficiency of the Fourier Transform can be improved to

O(rlog(r)) by using the FFT. To gain the full benefit, cRISE is restricted to intervals

of length the power of 2. However, the best average case complexity for the ACF is

O(r2). Hence, the transformations will dominate the runtime in relation to the decision

tree. Therefore, the runtime t for a single member of the ensemble of interval length r

can be modelled as:

t = a · r2 + b · r + c.
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Given the contract time t and the constant factors a, b and c, the positive root

of the quadratic can be used as the maximum allowable interval for the tree. The

quadratic terms will of course be both problem and hardware dependent. Hence, an

adaptive algorithm is used to learn these parameters. For each tree built, the selected

interval is recorded along with the observed run time. Using this data, a least squares

linear regression model can be fit and updated. For clarity, let x1 = r2 and x2 = r, our

dependent variable matrix is then:

X =



1, x11, x12

1, x21, x22

...

1, xk1, xk2


the estimates of the parameters are B = (â, b̂, ĉ)T and the response variable is

Y = (y1, y2, . . . , yk)T . The least squares estimates are then:

B = (XT X)−1XT Y.

Since (XT X) is based on sums of squares, there is no need to recalculate it from

scratch each time. It is also possible to update (XT X)−1 online with the Sherman-

Morrison formula [82] for further improvements in efficiency. After the construction of

each tree, the remaining contracted time t is updated, the coefficients t = â ·r2 + b̂ ·r + ĉ

re-estimated, and a new maximum allowable interval r calculated. This is used as the

maximum for the next iteration.

The incorporation of the ability to model the time taken to build each tree is shown

in algorithm 3. The pseudocode shows that a timer is started prior to entering the

main for loop where an interval is randomly chosen, transformed and used to build a

random tree. The time taken to undertaken to build and the length of the interval
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generated is then used to update coefficients in a linear regression model. This model

is then used to find the maximum interval length that could be used to build the next

tree without breaching the contract.

Algorithm 3 Build c-RISE_Adaptive(Training data train, number of classifiers r,
minimum interval length min)
1: Let F←< F1 . . . F500 > be the trees in the forest.
2: Let m be the length of series in train
3: startForestTimer()
4: for i← 1 to 500 AND queryForestTimer() do
5: startTreeTimer()
6: buildAdaptiveModel()
7: max← findMaxIntervalLength()
8: validLengths← getValidPowersOf2(min, max)
9: randomLength← randBetween(maxValue(validLengths)/2)

10: r ← findClosest(validLengths, randomLength)
11: startPos← randBetween(1, m− r)
12: interval← removeAttributesOutsideOfRange(train, startPos, r)
13: intervalFeatures← getSpectralFeatures(interval)
14: buildRandomTreeClassifier(Fi,intervalFeatures)
15: y ← queryTreeTimer()
16: updateAdaptiveModel(r, y)

4.2.2 Results

In the following Sub-Sections the performance of the: RISE and cRISE approaches,

and the Naive and Adaptive timing models are presented discussed. In both cases the

approaches are directly comparable and, in both cases we show that the contributions

laid out in this Thesis results in a superior performance.

RISE vs c-RISE

RISE has been shown to be significantly more accurate than other spectral based

approaches on the TSC archive data and on simulated data [3] and therefore was selected

as the spectral component for HIVE-COTEv1. However, RISE is computationally

expensive, since each transformed series is based on an O(r2) operation (finding the
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Table 4.1 Summary of the RISE and cRISE performance over all 85 UCR datasets.

Acc. Std. Dev.
(problems)

Std. Dev
(folds)

Min.
Acc.

Max.
Acc.

Largest
win

Mean
win Acc. Wins

RISE 0.7983 0.1422 0.0262 0.3569 0.9990 0.2169 0.0327 50
cRISE 0.7996 0.1419 0.0258 0.2928 0.9946 0.4559 0.0500 34

PACF), where r is the series length. This is further impacted by the derivation of auto

regressive and spectral features. In a summary of experiments over 85 datasets from the

UCR archive, it was concluded that these features do not significantly affect accuracy.

This is illustrated by Figure 4.1, which shows that cRISE and RISE share the same

clique in the critical difference diagram and Table 4.1, which further summarises the

performances of the two approaches. Table 4.1 These results show that cRISE produces

a marginally better mean accuracy (denoted by Acc in the table); less variation in

accuracy over problems (denoted by Std. Dev. problems) and across folds (denoted

by Std. Dev. folds); and a higher mean accuracy over all the problems in which

it does best (denoted by Mean win acc). The table also shows that the worst and

best performances of RISE are better than cRISE. Furthermore, computation of these

features represent significant complexity in the algorithm and as such they have a

detrimental effect on runtime. Table 4.2 presents both the mean and median training

time for RISE and cRISE over 85 datasets from the UCR archive and highlights how

significant the difference in computation time is.

Fundamentally, cRISE behaves in the same manner as RISE when not under

contract. This allows us to attribute any changes in runtime or accuracy to the

removed transformations. The impact on runtime when deriving the PACF and AR

features is unsurprising. But the result shown in the critical difference diagram of

Figure 4.1 was unexpected. The outcome of these experiments is the removal of PACF

and AR derivations. Moving forward, all experimental results are achieved with the
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Fig. 4.1 A pairwise critical difference diagram showing the ranks of TSF, cRISE, EE [68],
RISE, BOSS, and STC over the same 10 random resamples of 85 UCR datasets.

Table 4.2 Mean and median train times of RISE and cRISE over all UCR datasets, as
well as average speed up.

cRISE RISE Difference (%)
Mean (seconds) 144 3554 95.95
Median (seconds) 145 3794 96.18

updated architecture of cRISE, in which only spectral and cross correlation features

are leveraged.

Naive vs Adaptive Timing Models

In this section, An evaluation of how the accuracy of cRISE changes as a function of

total training time for both the Naive and Adaptive timing approaches and, how well

each approach adheres to the contract itself is undertaken.

In order to achieve this, nine pairs of experiments were carried out. For both

approaches, a contract is set representing 10% - 90% total training time per dataset in,

10% increments. This allowed us to examine changes in accuracy at 10 evenly spaced

points in time, as well as test the ability of each approach to stay within the contract.

Figure 4.2 (c) shows how the actual train time changes over different contracts.

Each point represents the mean train time over 85 datasets and 10 folds, for each
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(a) (b)

(c) (d)

Fig. 4.2 The graphs on the left show the performance of the Adaptive and Naive
approaches in respect to their ability to adhere to contract time. The graphs on
the right show the predictive accuracy of the Adaptive and Naive approaches over
10 contracts. The top row displays results averaged over all datasets from the UCR
database. The bottom row displays results averaged over all problems in the UCR
datasets with at least 700 attributes.
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contract. The contracts themselves are defined as a percentage of full train time per

dataset. This represents 8,500 experiments per approach, over 10 contract percentages.

Figure 4.2 (a) also shows that the Adaptive approach displays much more predictable

behaviour, in the context of adhering to contract time. Adhering to relatively small

contract times presents more of a challenge to both approaches. This can be explained

by the limit imposed on the minimum interval size. Small contracts are better fulfilled

by small intervals as each iteration represents a smaller proportion of the contract,

allowing for finer control over the total time taken.

Initially, this appears as a major flaw in both approaches. However, this problem is

largely exacerbated by the existence of many small problems in the UCR 85 database

that without intervention take between 1 and 4 hours to complete.

In order to remove the bias introduced by smaller datasets, the same experiments

were repeated with all datasets containing data over 700 attributes.

Figure 4.2 (d) demonstrates how the actual time taken changes over different

contract times for problems from the UCR archive with 700 or more attributes. Figure

4.2 (d) shows that both approaches were confounded by smaller problems. It also

illustrates the Adaptive approaches superior ability to adhere more closely to the

contract than, the Naive approach.

Interestingly, these changes in contract accuracy have very little to no effect on

accuracy. Figures 4.2 (a) and 4.2 (b) show how accuracy changes as a function of

contract time for all UCR datasets and datasets over 700 attributes respectively. This

is important, as it confirms that the superior ability of adhering to contract time comes

at no cost to accuracy for the Adaptive approach.
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4.3 A Review Of Interval Selection Policies

As with many approaches which employ ensembles of weak learners, cRISE makes

use of random intervals to introduce variance in the constituent models. Individual

constituents are typically simple models, such as trees, and produce poor accuracies.

The likelihood of individual trees producing a poor accuracy is increased in an interval

based approach, as there is a chance that discriminant information from the original

series is not present. In order to negate this, a large number of constituents are used.

Interval selection is the process in which both the location and length of interval

is chosen. Typically, they are both picked randomly - within the constraints of the

maximum and minimum interval size. In this section we: present the current policy

alongside 3 alternate selection policies; discuss the effect that each policy has on the

distribution of selected attributes and go on to present the effect that these policies

have on classification accuracy. The experimental results presented are derived from

112 datasets from UCR database and represent 30 stratified resamples.

4.3.1 Interval Selection Policies

Policy 1

Policy 1 represents the original interval selection implementation carried over from

RISE into the cRISE algorithm. At the inception of cRISE, little thought was given to

the selection policy governing the length and position of intervals. As a result, the most

obvious procedure was implemented, shown in Algorithm 4. For the fist constituent

the entire series is used for transformation (line 6). For all other constituents, the start

index is selected first (line 9), followed by length (line 13), and finally the end index is

set (line 14). The selection process does not have any tunable parameters.
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(a) Policy 1 (b) Policy 2

(c) Policy 3 (d) Policy 4

Fig. 4.3 4 plots showing the distribution of attribute selection for the cRISE classifier
using different interval selection policy’s. The y-axis shows how often each attribute is
selected as a proportion of the number of constituents, the x-axis represents the length
of a problem. The plots were produced from fold 0 of the MosquitoSounds problem.
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Algorithm 4 Policy 1 - The default interval selection process for cRISE
1: function selectInterval(min, max, r)
2: Let min be the minimum interval length.
3: Let max be the maximum interval length.
4: Let r be the index of the current weak learner.
5: startIndex← 0
6: if r == 1 then
7: endIndex← max
8: else
9: startIndex← randBetween(0, (max−min))

10: if startIndex == (max−min) then
11: endIndex← max
12: else
13: length← randBetween(min, (max− startIndex))
14: endIndex← startIndex + length

15: return startIndex, endIndex

The resulting distribution of selected attributes over all constituents is shown in

Figure 4.3 (a). The selection of the start index first produces a negative skew as the

start index is only constrained by the maximum interval length. As a result, attributes

in the first 20% of the problems length are significantly less likely to be included in

intervals, when compared to the more symmetrical distributions of Policies 3 and 4.

Policy 2

The second policy, shown in Algorithm 5, is an equally straight forward approach to the

first. As previously, the first constituent receives an interval containing all attributes

(line 6). However, the end index is selected first (line 9), then the length (line 13),

before the start position is set (line 14). There are no tunable parameters.

The resulting distribution, shown in Figure 4.3 (b), is positively skewed. As

expected, the skew displays similar characteristics to the distribution produced by

Policy 1. The attribute at 80% of the problem length is selected 10% less frequently

when compared to the more symmetrical distributions of policies 3 and 4. The most
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Algorithm 5 Policy 2
1: function selectInterval(min, max, r)
2: Let min be the minimum interval length.
3: Let max be the maximum interval length.
4: Let r be the index of the current weak learner.
5: endIndex← max
6: if r == 1 then
7: startIndex← 0
8: else
9: endIndex← randBetween(0, (max−min)) + min

10: if (endIndex−min) == 0 then
11: length← min
12: else
13: length← randBetween(0, (endIndex−min)) + min

14: startIndex← (endIndex− length)
15: Return startIndex, endIndex

commonly selected attributes are included in 40% of constituents and the peak of the

distribution is at the 30% mark, with respect to number of attributes.

Policy 3

Policy 3, defined in algorithm 6, is an implementation of the selection process found in

the cBOSS approach, described in Sub-Section 3.3.1. In contrast to policies 1 and 2,

this implementation does not enforce the use of a problem length interval to be used

in conjunction with the first constituent. Instead, the policy randomly changes the

order in which the start index, and end index is chosen. The order is selected by a

random boolean (line 5). If this is true the start index is chosen (line 6), then the

length is chosen (line 8), before the end index is assigned. If the boolean is false, the

end index is selected (line 11), then the length (line 13 or 15) and finally the start

index is assigned (line 16).

As shown in Figure 4.3 (c) this policy results in a roughly symmetrical distribution

of selected attributes. The most commonly selected attribute is at 45% of the problem

length and was present in 39% of constituents.
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Algorithm 6 Policy 3
1: function selectInterval(min, max)
2: Let min be the minimum interval length.
3: Let max be the maximum interval length.
4: if randBoolean() then
5: startIndex← randBetween(0, (max−min))
6: range← max− startIndex
7: length← randbetween(0, (range−min)) + min
8: endIndex← startIndex + length
9: else

10: endIndex← randBetween(0, (max−min)) + min
11: if (endIndex−min) == 0 then
12: length← 3
13: else
14: length← randBetween(0, (endIndex−min)) + min

15: startIndex← (endIndex− length)
16: Return startIndex, endIndex

Policy 4

In contrast to the 3 previous policies discussed, policy 4, described in Algorithm 7,

does not randomly select the position of each interval. Instead, a number of equally

spaced anchor points are defined. The anchor points are used sequentially, based on

the constituent index. The location in the interval that corresponds to the anchor point

depends on the location of the anchor relative to the problem length. For example,

if 5 anchor points are used in conjunction with a problem of length 100, the anchor

points would correspond to attributes 10, 30, 50, 70, 90. If the interval length chosen

for constituent 1 is 30, the interval would contain attributes 7 - 37, where 10% of

the interval length is taken from the left of the anchor point and 90% from the right.

If the interval length chosen for constituent 3 is also 30, the interval would contain

attributes 35 - 65. Lengths are randomly sampled from a uniform distribution before

being adjusted via an exponential mapping. An example of the function used is shown

in Figure 4.4. The adjustment favours smaller intervals, which in turn produces more

variation between constituents.
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Fig. 4.4 An example of the exponential function used in interval selection policy 4 to
adjust intervals from the InsectSound dataset.

By default, the number of anchor points is set to the square root of the problem

length (line 6), m, although it can be tuned. The values required to produce the correct

mapping in the exponential function are then derived (Lines 7 & 8) before a length is

selected (line 9) and converted (line 10). The percentage of the interval found to the

left of the anchor point is then derived (lines 11 - 13), before the anchor point is set

(lines 15 - 18). If the number of partitions is set to 1, the anchor point is set to half

the problem length. Otherwise, the anchor point and proportion of attributes found to

the left of it is derived using the constituent index. Finally, the start index and end

index are set (lines 19 - 20).

4.3.2 Results

The critical difference diagram in Figure 4.5 summarises the experimental results of 30

stratified resamples from the 112 datasets in the UCR archive. The diagram shows

that the four policies presented in Sub-Section 4.3.1 form 3 cliques. Policies 3 and 4

form the top clique, with means ranks of 1.996 and 2.4516 respectively. Despite the

lower mean rank, policy 4 produces a marginally higher accuracy of 0.8096, an increase
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Algorithm 7 Policy 4
1: function selectInterval(min, max, r, m)
2: Let min be the minimum interval length.
3: Let max be the maximum interval length.
4: Let r be the index of the current weak learner.
5: Let m be the number of attributes in an instance.
6: numPartitions← ceil(

√
m)

7: b← log(max÷min)÷ (max−min)
8: a← max÷ e(b×max)

9: x← randBetween(0, (max−min)) + min
10: y ← a× e(b×x)

11: temp← r ÷ numPartitions
12: temp← temp− floor(temp)
13: temp← temp + ((1÷ numPartitions)÷ 2)
14: anchorPoint← 0
15: if numPartitions == 1 then
16: anchorPoint← (m÷ 2)
17: else
18: anchorPoint← floor((m÷ 1)× temp)
19: startIndex← ceil(anchorPoint− (y × temp))
20: endIndex← (startIndex + length)
21: Return startIndex, endIndex

of 0.0020 over policy 3. However, policy 3 produces a lower variance over dataset folds,

lower variance in rank over all datasets and boasts a lower mean train time. Whereas,

policy 4 is ranked 4th for all datasets with respect to train time.

Fig. 4.5 Critical difference diagram showing cRISE (RISE) policies on 112 datasets
from the UCR archive.

Cross-referencing the results in the critical difference diagram with the distributions

shown in Figure 4.3 reveals a correlation between performance and the distribution

of attribute selection. The normally distributed policy 3 is significantly better than
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both the positively and negatively skewed policies 1 and 2, possibly revealing patterns

common throughout multiple datasets.

Experiments undertaken on 13 audio datasets, including those presented in sec-

tion 2.5, showed that there was no significant difference between the policies. Within

the single clique, the policies were ordered 4, 3, 2, 1. Policy 4 produced the highest

accuracy of 78.11%, an improvement of 0.46% over policy 3. As the cRISE is intended

as an approach which excels at classifying oscillatory data, such as audio, policy 4 is

favoured as the interval selection method in experiments moving forward.

4.4 Improving Accuracy Using Transforms

One obvious area of improvement for the cRISE classifier might be the inclusion of

additional, or altogether alternative transforms. In the following section, alternative

transforms are presented that are new to the cRISE framework. These transforms were

chosen, as they are often used in signal processing. Furthermore, the question of tuning

is also addressed. cRISE is presented in conjunction with each transform separately,

through selection based on the training set and via multiple combination mechanisms.

An ablation study is then undertaken with the best performing approaches in order to

provide a deeper understanding of their performance.

4.4.1 Transforms

The following subsections describe the spectral transformations evaluated in Sec-

tion 4.4.2. Each of the transforms were evaluated in conjunction with the cRISE

approach in an effort to increase accuracy
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Fig. 4.6 Decomposing complicated signal

Spectral Series

The Discrete Fourier Transform (DFT), shown in equation (4.1), is probably the most

important tool in time-series analysis. The transform facilitates the decomposition of a

complicated signal, x, into its constituent sine waves. For oscillatory signals expressed

as a function of time, the transform will output a complex vector, X, that is expressed

as a function of frequency. The resultant vector can be used to extract either the power,

or phase, associated with each constituent frequency of the complicated signal. This is

illustrated in Figure 4.6, where plots on the left show a complicated signal and its three
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constituent sine waves, and plots on the right show the resultant vector from the DFT,

interpreted as amplitude per frequency and phase per frequency. Furthermore, via the

Inverse Discrete Fourier Transform (IDFT) shown in Equation (4.2), it is possible to

reverse the decomposition and return the signal back into the time domain.

X(k) =
N−1∑
n=0

x(n) · e−iωkn (4.1)

k = {0, 1, . . . , N − 1}

x(n) = 1
N

N−1∑
k=0

X(k) · eiωkn (4.2)

n = {0, 1, . . . , N − 1}

The Fourier Transform is a powerful tool that is used in signal processing, as

well as quantum mechanics and many forms of spectroscopy. It also forms the basis

for many additional transforms, such as Morlet wavelet transforms, Spectrograms

and Mel-Frequency Cepstral Coefficients (MFCCs). The transform makes use of the

fact that any complicated signal can be expressed as a combination of sine waves.

A complex signal can be expressed in terms of sine waves from 0 hz to half of the

recording sampling rate. The extent to which each of these constituent sine-waves

contributes to the complicated signal, is expressed as the similarity between the two,

where the similarity is expressed as the sum of per element dot products. Typically, the

two signals are expressed as complex vectors. This allows per sample phase information

to be encoded into the imaginary component of the respective sine-wave, where the

amplitude is represented by the real component. The length of the resulting vector is



4.4 Improving Accuracy Using Transforms 100

equal to the length of the target signal. The power of each constituent frequency bin

in the resulting vector, is the absolute value of the element divided by the number of

elements and the phase is the angle of the element.

In the form shown in Equation (4.1) the best, worst and average time complexity

is O(n2). This is prohibitive for longer signals. As a result, the Fast Fourier Transform

(FFT) is often implemented in practice. Popularised by Cooley and Tukey [19] the

FFT algorithm applies a divide and conquer approach to the transform. As a result,

the time complexity of this approach is O(nlog(n)), providing the interval length is a

power of 2.

Autocorrelation

Frequently refereed to as serial correlation, autocorrelation is a quantified measure of

the relationship between a series and itself over multiple lag values, k.

rk =
∑n−k

i=1 (xi − X̄)(xi+k − X̄)∑n
i=1(xi − X̄)2

(4.3)

X = {x1, x2...xn}

X̄ =
∑n

i=1 xi

n

This function, (4.3), is often used in detecting non-randomness in data and helping

identify appropriate times series models. Consider that an attribute, xi, from a time

series, t, is directly influenced by the neighbouring attribute, xi−1. Whereas, in a series

of variables randomly selected from a distribution matching that of the time series,

t, there is no meaningful relationship between neighbouring attributes. Thus, the

autocorrelation of an oscillating signal such as a simple sinusoid would, at a lag value

representing a phase shift of 2π radians, produce a high autocorrelation. Furthermore,
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the analysis of the relationship between k and rk can inform the periodicity of the

signal.

Fig. 4.7 Auto correlation

This is demonstrated in Figure 4.7. The top right plot shows a complicated signal

formed from the sine waves shown in the left hand plots. The top left plot shows a 2

hz sine wave and the bottom left plot shows a 4 hz sine wave. Both generated with a

sample rate of 16,000 hz. The autocorrelation of the complicated signal is displayed in

the bottom right plot. It shows peaks in correlation at lags of 4,000 and 8,000, aligning

with a 2π radians phase shift of the 2 hz and 4 hz signals at 0.5 and 0.25 seconds. In

this case, it was possible to use prior knowledge of the sine waves sample rate to show
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the corresponding frequencies. Typically, audio is a significantly more complicated

combination of both sine and cosine waves and information regarding the sample rate

of recorded sounds is not available. As a result, determining individual constituents is

not feasible. However, the autocorrelation coefficients still provide valuable insights,

from which effective features can be derived.

Audio Features

Spectral Centroid The spectral centroid is notionally defined as the ‘centre of mass’

of an audio signal. As shown in Equation (4.4) [73], it denotes the weighted mean. The

feature provides a quantitative value, that describes the qualitative idea of brightness.

The feature is often used as both a global and local feature.

µ1 =
∑m

i=0 fixi∑m
i=0 xi

(4.4)

Derived from the power spectrum, fi denotes the central frequency represented by

the ith bin and xn its value.

Spectral spread The spectral spread, shown in Equation (4.5) [73], describes to

what extent to which the energy in the series deviates from the spectral centroid.

As such, a signal consisting of a single tone will exhibit low spectral spread, centred

around the spectral centroid, whereas a noisy signal consisting of many sine and cosine

constituents will exhibit a high spectral spread.

µ2 =

√√√√∑m
1=0(fi − µ1)2xi∑m

i=0 xi

(4.5)
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Spectral Flatness Spectral flatness provides a quantitative value for expressing

how tonal a signal is. A high value, indicates a signal in which the total power is

evenly distributed throughout the spectrum. A signal with high spectral flatness would

sound like white noise. However, a sound with low spectral flatness indicates that the

spectrum contains peaks and likely sounds like a collection of either sine or cosine

waves.

Spectral flatness =
m

√∏m
i=0 xi

1
m

∑m
i=0 xi

(4.6)

Defined in Equation (4.6) [73], the flatness is defined as the geometric mean divided

by the arithmetic mean.

Spectral Skewness The spectral skewness describes the distribution of power around

the centroid. In positive skews, the arithmetic mean is greater than the median and

the majority of the power will be found in frequencies lower than the centroid. For

negative skews, the distribution is flipped.

µ3 =
∑m

i=1(fi − µ1)3xi

(µ2)3 ∑m
i=1 xi

(4.7)

Defined in equation (4.7) [73], the skewness is often defined as the 3rd moment in

context of quantitative features used to define the shape of a signal.

Spectral Kurtosis Kurtosis, shown in Equation (4.8) [73], provides information on

the shape of a distribution. Values greater than 0 denote a leptokurtic distribution.

In comparison to a normal distribution, there is expected to be a higher peak and

more values in the tails. In extreme cases, there can be more values at the tails of
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the distribution, than around the mean. Values less than one denote a platykurtic

distribution. At the mean of this distribution, the peak will be lower then when

compared to a normal distribution. There will also be less pronounced tails.

µ4 =
∑m

i=1(fi − µ1)4xi

(µ2)4 ∑m
i=1 xi

(4.8)

Generally interpreted as a measure of how likely outliers are to occur compared to

a normal distribution of the same variance, Kurtosis is considered the fourth moment

behind mean, variance and skewness.

Zero-crossing Rate The zero-crossing rate, shown in Equation (4.9) [73], is an

important measurement in multiple fields. It is used in pitch detection, voice activity

recognition, image processing and analogue to digital conversion.

IA(x) :=


1, if x > 0,

0, if x < 0.

ZCR = 1
m

m∑
i=2
|IA(i)− IA(x− 1)|

(4.9)

The measurement determines the number of times a signal transitions from negative

to positive over some time frame. As a result, 1 second of audio at a sample rate of

200hz containing a 100hz signal would have a zero crossing rate of 0.5 and a 50hz

signal, a rate of 0.25.

Spectrogram

A spectrogram, shown in Figure 4.8, provides information on the power at each

frequency band at discrete points in time. Given a signal, many short form FFTs are
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Fig. 4.8 A spectrogram of a Ae. agypti recording from the MosquitoSound dataset.

taken and combined to create a spectrogram. Typically, there is an overlap between

each window used for FFTs, in order to provide more temporal resolution. Figure 4.8

shows an example using a raw case form the MosquitoSound dataset. Each short

form FFT was computed on 80 samples and the overlap between each window was

set to 40 samples. These recordings are sampled at 8,000 hz so the spectrogram

shows information up to 4,000 hz. The spectrogram clearly shows the low frequency

noise, probably caused by the body of the insect. The second band is assumed to be

the dominant wingbeat frequency, at roughly 600 hz, and those following it are the

harmonics.
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Mel Frequency Cepstral Coefficients (MFCCs)

MFCCs are typically used in speech recognition and genre classification systems. They

are often computed from short, sometimes overlapping intervals, to improve temporal

resolution, similar to Spectrograms. The Quefrency domain expresses the rate of change

in frequency bands. The Cepstrum exists in the quefrency domain and is computed by

taking the log of the frequency spectrum, before taking the inverse fourier transform.

The Mel-scale represents an alternate interpretation of pitch than the Hertz (Hz)

scale. The relationship between Hz and mels is not 1 to 1. The mel scale attempts to

represent pitch on a scale which is perceived by a listener to be linear. For example, a

sound at 600 mels and 1000 mels would have the same perceived change in pitch as a

sound at 2000 mels and 2400 mels. However, the difference in hertz between 600 mels

and 1000 mels is 500 Hz and the difference between 2000 and 2400 is 1500 hz. In effect,

the scale approximates the way in which the ear interprets sounds of different pitch.

In order to derive Mel-frequency cepstral coefficients, the frequency spectrum should

be convolved with a series of filters, a Mel filter bank. The log of the filter output is

then used to produce a cepstrum.

4.4.2 Results

As detailed in Sub-Section 4.2.1, the current cRISE configuration consists of concate-

nating features from the spectral domain with auto-correlation coefficients. In this

Sub-Section: an evaluation of each of the transformations described in Sub-section 4.4.1

undertaken separately and before a discussion on their usefulness is presented. The

performance of individual transforms, along with the performance of cRISE, provides

a baseline to which results can be compared. The experiments also provide the op-

portunity to show that the combination of the FFT and ACF transforms produces a

performance greater than either individually; Experience tells us that, typically, what
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works for one dataset does not always work best for another. This lead to experiments

designed to assess the viability of using tuning mechanisms to select the best transform

for a dataset based on the training data. However, the implemented approaches were

not able to out perform cRISE; This lead to an investigation assessing additional

mechanisms for combining multiple transforms, namely concatenation - an extension of

the approach used in cRISE to combine FFT and ACF coefficient, and ensembling using

the CAWPE methodology utilised in HIVE-COTEv1. Both of which outperformed

the cRISE approach. Finally, a discussion of the results from an ablation study which

attempts to assess the importance of individual transforms to the performance of both

combination approaches which outperform cRISE is performed.

Individual Transforms

Fig. 4.9 Critical difference diagram showing cRISE (RISE) and combinations of the
cRISE approach with only 1 transform used at a time on 112 datasets from the UCR
archive.

The critical difference diagram summarising the performance of the individual trans-

forms along with the cRISE approach is presented in Figure 4.9. The transformation

included in the approach is donated by the subscript and in all cases, other than cRISE,

only 1 transform was included. The figure shows that the transforms form 4 groups.

The AF transform performs worst, the Spectrogram (SPEC) and MFCC transforms

both share a clique with the ACF transform, but not with each other, and the FFT
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features perform best. However, all individual transforms perform significantly worse

than cRISE.

FFT MFCC ACF SPEC AF Total

FFT 12 15 13 5 45
MFCC 9 7 9 0 25
ACF 8 4 3 3 18
SPEC 7 3 1 1 12
AF 4 1 5 0 10

Total 28 30 28 25 9
Table 4.3 A table presenting the re-
lationship between 1st rank and 2nd

rank for all transformations as num-
ber of datasets.

FFT MFCC ACF SPEC AF

FFT 0.0225 0.0222 0.0205 0.0058
MFCC 0.0143 0.0225 0.0123 -
ACF 0.0291 0.0273 0.0228 0.0263
SPEC 0.0199 0.1215 0.0166 0.0063
AF 0.0067 0.0016 0.0238 -

Table 4.4 A table presenting the relation-
ship between 1st rank and 2nd rank for all
transformations as the mean difference in
accuracy.

The total of each row in Table 4.3 demonstrates the number of times each transform

was ranked 1st and the columns represent the number of times each respective approach

ranked second. For example, FFT was ranked first on 45 datasets and of those MFCC

ranked second 12 times. Table 4.4 presents the same relationship, expressed in terms

of the average difference in accuracy. The tables show that the AF transform performs

very similarly to FFT, MFCC and SPEC transforms and on datasets which it ranks 1st

it is typically by a very small margin. This suggests that as well as having the lowest

average accuracy and the least number of wins, it also brings little diversity to the

collection of transforms.

Tuning Mechanisms

One way of potentially improving accuracy, is to implement a tuning mechanism in

the training phase. The goal of which would be to select the transform which would

produce the best test accuracy, based only on the training data. In order to ascertain

the potential improvement a good tuning mechanism could make, an ‘Oracle’ approach

is also included. The Oracle approach represents the maximum performance, where the
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best transform for each dataset has been chosen based on test accuracy. The difference

in accuracy between the cRISE and Oracle approach is 0.0114. Alongside the cRISE

and Oracle approaches three tuning mechanisms were implemented for evaluation.

These are:

cRISEFisher - For each transformation, the dataset is summarised by the mean,

median, standard deviation, slope, inter-quartile range, minimum and max values.

The Fisher score is then used as measure of ability to split the dataset into its

respective classes. The transformation producing the best Fisher score is selected as

the transformation in the subsequent build phase of cRISE.

cRISEKNN - For each transform the mean accuracy of a 5 fold stratified re-sample

on the training data is computed. The accuracies are produced via a 1-NNED approach.

The transform that produces the highest accuracy is selected for cRISE.

cRISEcRISE - For each transform the mean accuracy of a 5 fold stratified re-sample

on the training data is computed. The accuracies are produced via a newly instantiated

cRISE object with the appropriate transform selected. The transform that produces

the highest accuracy is then selected for the parent cRISE approach.

Fig. 4.10 Critical difference diagram showing tuning strategies on 112 datasets from
the UCR archive.

Figure 4.10 shows the critical difference diagram comparing the results of cRISEFisher,

cRISEKNN, cRISEcRISE, cRISE and cRISEOracle. Despite a small difference of 0.0010

accuracy between the cRISE and cRISEcRISE approaches, they are found to be sig-
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nificantly different. A review of the transforms chosen in the cRISEcRISE approach

shows that the variance in cases included in the training set affects the selection. For

example, on the ArrowHead dataset the optimal transform, MFCC, is selected on 26

of the 30 folds. This accounts for a difference of 0.008 and on no datasets does the

cRISEcRISE approach select the optimal transform on all 30 folds.

Combining Transforms

Further analysis shows that for 40 of the 112 datasets from the UCR archive, the

cRISE approach outperforms the most accurate single transform. This enhances the

idea that mechanisms which combine multiple transforms could outperform even a

perfect tuning approach. In order to further investigate the effect that combining

multiple transforms have on accuracy, three methods of combination were implemented

and evaluated. These were: the CAWPE approach, detailed in Sub-Section 3.3.6; the

cRISE approach of concatenating the transform features, cRISEAll, and the RANDOM

approach, where a transform is picked at random for each tree.

Fig. 4.11 Critical difference diagram showing combination strategies on 112 datasets
from the UCR archive.

The critical difference diagram shown in Figure 4.11 summarises the accuracy

and rank of the three approaches alongside cRISE. All of the approaches are found

to be significantly different to cRISE and produce superior accuracies. Of the three
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combination approaches, cRISEAll and cRISECAWPE are grouped together in the top

clique, with accuracies of 0.8262 and 0.8212 respectively.

(a) (b)

Fig. 4.12 Pairwise scatter diagrams plotting the accuracies and train times of the
cRISECAWPE and cRISEAll combination approaches.

The scatter diagrams presented in Figure 4.12 show the relative performance of

cRISECAWPE and cRISEAll in relation to accuracy (a) and train time (b). The cRISEAll

approach produces a convincing performance in terms of accuracies, and ranks above

the cRISECAWPE approach on 69.44% of the 112 datasets. As well as this, cRISEAll

produces: a lower mean test accuracy standard deviation over dataset folds, showing

it is less susceptible to variations in data; the lowest mean test accuracy rank and a

lower standard deviation of test accuracy rank over all the datasets. Furthermore, as

cRISECAWPE weights the ensemble members via the respective train accuracies, the

train time of cRISEAll is also favourable, despite performing costly transformations.

Transform Ablation

As shown in previous experiments, the performance of each transformation varies

widely over the UCR archive. In order to assess the extent to which each of the
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transformations impact the performance of the cRISEAll and cRISECAWPE approaches,

an ablation experiment was undertaken. Table 4.5 provides a key indicating which

transforms are included for each configuration included in the experiment. Based, on

Tables 4.3 and 4.4 the expectation is that omission of the AF transform is unlikely to

have a significantly negative effect in terms of accuracy and, as the features produced

appear to have a similar predictive power to the FFT transform.

FFT ACF AF MFCC SPEC
All x x x x x
1 x x x x
2 x x x x
3 x x x x
4 x x x x
5 x x x x

Table 4.5 Table showing which cRISE variants are included in each CAWPE configura-
tion.

The critical difference diagram in Figure 4.13 presents the performance of all

transform configurations from Table 4.5 in the CAWPE combination mechanism. It

shows that the removal of the FFT, ACF, MFCC and SPEC transforms all result

in a significantly worse performance. However, the performance of configurations

1, 2, 4 and 5 are not significantly different from each other or the cRISE approach.

Furthermore, the omission of the FFT and SPEC transforms result in an extremely

similar performance despite the FFT transform being found to significantly out perform

the SPEC transform individually. The removal of the AF transform, results in a

significantly better performance. This is primarily reflected as the difference in mean

rank as the CAWPE3 approach reports higher variance in rank and accuracy over all

datasets with a small real difference in accuracy of 0.0010.

Figure 4.14 presents the critical difference diagram of all the configurations from

Table 4.5 in the cRISE concatenation combination mechanism. The diagram shows

that the configurations form 3 cliques. Clique 1 is formed of cRISEAll and cRISE5,
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Fig. 4.13 Critical difference diagram showing CAWPE variations and cRISE (RISE)
on 112 datasets from the UCR archive.

clique 2 is formed of cRISE5 and cRISE3, whilst clique 3 is formed of cRISE1, cRISE2

and cRISE4. All the cRISE configurations are found to be significantly different from

the cRISE approach and in all cases they produce superior accuracy. The results

show that omitting the FFT, AF or MFCC transform results in a significantly worse

performance. Also, the diagram shows that omitting the FFT or MFCC transforms,

produce results that are significantly worse than those in which the AF transform was

omitted.

Fig. 4.14 Critical difference diagram showing cRISE (RISE) variations on 112 datasets
from the UCR archive.

A comparison of the cRISEAll and CAWPE3 approaches, shows that there is no

significant difference between them. The cRISEAll approach was found to be more
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accurate at 0.8262% over 30 folds on 112 datasets, with a difference of 0.004%. It

ranked first on 57 of 112 datasets and was found to produce a marginally lower standard

deviation in test accuracy over folds and across all datasets. The train time of the

cRISEAll approach was found to be lower on 62 of the 112 datasets. An investigation

into datasets for which the train time was higher, revealed that for smaller datasets

the CAWPE3 benefited from the reduction in the number of FFTs performed with the

removal of the AF transform, despite the need to produce train accuracies.

4.5 Conclusion

In conclusion, this chapter presents changes to the RISE algorithm that significantly

improves its accuracy, usability and robustness. The presented changes to RISE result

in a significantly faster train time. This result was achieved using an established

experimental design on the well known UCR database1 [4]. These changes remove

two costly derivations, making cRISE at least twice as fast whilst the cost to test

accuracy is shown to be insignificant. The Adaptive and Naive timing models were also

presented and compared in the context of cRISE. On 85 problems of the UCR database

the experimental design does not show any significant difference in accuracy between

models, although one approach did show a superior ability to adhere to contract.

This superior ability to adhere to a contract time, was made further evident when

considering a problem consisting of significantly longer series. It was shown that the

Adaptive approach is robust to scaling of series length, whereas the Naive approach is

bound by series length, number of cases, or both.

Through a review of the interval selection policy implemented in the cRISE ap-

proach, it was demonstrated that there was a selection bias in the interval generation

implementation that had a significant effect on performance. The evaluation of multiple
1www.timeseriesclassification.com
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alternate selection polices facilitated the adoption of an all together improved approach,

in which the entire instance length is given equal weighting. This leads to a more

normal distribution of attribute selection, rather than the negative skew of the original

policy and an improvement in mean accuracy over the UCR database.

Through the introduction of additional transformations, an investigation into

alternate cRISE configurations against the traditional concatenated FFT and ACF

transforms was undertaken. The evaluation and comparison of the new transforms,

allowed us to comment on their apparent usefulness and performance, with respect to

the benchmark. An investigation of tuning approaches in which proxies were utilised

to predict the optimal transform, proved fruitless. Of the 3 approaches implemented,

it was shown that all were significantly worse than the benchmark of traditional and

theoretical benchmarks cRISE and ORACLE. However, this led to an examination of

combination mechanisms, including: concatenation, random selection and ensembling.

Through an ablation study of the best performing combination strategies, we discuss the

merits of each approach and the extent to which they are affected by transformation

omission. The findings have led to a new recommended cRISE configuration and

collectively, they represent a significant improvement in the usability of cRISE and

consequently HIVE-COTEv1.



Chapter 5

Insect Classification I

Contributing publications

• Flynn M., Bagnall A. (2019) Classifying Flies Based on Reconstructed Audio

Signals. In Intelligent Data Engineering and Automated Learning – IDEAL 2019.

IDEAL 2019. Lecture Notes in Computer Science, vol 11872. Springer, Cham.

5.1 Introduction

The World Health Organisation’s (WHO) global technical strategy for malaria 2016-

2030 [69], discussed in Chapter 2, hinges on the development of automatic monitoring

solutions for Mosquitoes. Furthermore, to be really effective these systems would need

to be suited to deployment in rural settings in large numbers. In order to achieve this

they will need to be power efficient and low cost. At the core of any such system is a

classification problem: given a segment of audio collected as something passes through

a sensor, can we classify it? We examine the case of detecting the presence of fly

species, with a particular focus on mosquitoes. This gives rise to a range of problems

such as: can we discriminate between species of fly? Can we detect different species of

mosquito? Can we detect the sex of the insect?
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The hardware and datasets presented in Chapter 2 mark a distinct step forward in

the realisation of the WHO’s goals. Capable of producing large datasets of seemingly

high quality data, already there is a small but considerable corpus of flying insect

datasets. Until recently, practitioners were only able to make use of small numbers of

insects across a handful of species, and as discussed in Section 2.3, have not been able

to leverage sophisticated approaches which perform best on large datasets. The result

has been a stagnated period in the progress of flying insect classification application

and progress has been somewhat limited.

In Section 3.2 the idea of time-series data and an explaination of its intrinsic

difference to non-ordered numeric data is introduced. A common example used when

discussing Time Series Classification (TSC) is audio, as it is possibly one of the most

obvious examples of naturally ordered data. On this basis, the expectation is that

modern TSC approaches will perform well on the datasets presented in Section 2.5,

which can be interpreted as audio and represent the incidental sound produced by

flying insects. Until now, many of these TSC approaches have not been applied to

the insect classification problem. It is the accepted belief that those which internalise

transforms into the spectral domain will perform best

In this Chapter, a range of TSC approaches are assessed, including the state-of-the-

art HIVE-COTEv1 approach, on the two mosquito datasets available at the time (2019):

InsectSound and MosquitoSound. These are described in Sections 2.5.3 and 2.5.4.

Similarly to the publications discussed in Section 2.3, The first expeirements form an

investigation into the performance of fundamental wingbeat frequency as a discriminant

feature, discussing both the overall accuracy, but also the type II error rate with regards

to female mosquito classes. Further experiments are then performed with a range of

sophisticated TSC approaches on two spectral transformations and the raw dataset.

For each of these a discussion of the impact on accuracy for each transformation is
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undertaken, as well as considering what impact transformation into the spectral domain

has more generally. Finally, information on test time and a judgement on whether

any of the approaches could be considered ‘real time’ is presented. The intention

is to broaden the understanding of whether TSC approaches are an effective tool in

the application of insect classification, whilst providing a robust and reproducible

evaluation for future comparisons.

The rest of this chapter is structured as follows: in Section 5.2 the approaches

used in the evaluation are described and details of the parameters used provided; in

Section 5.3 the transformation techniques used prior to classification are described; in

Section 5.4 our results are presented and in Section 5.5 we summarise and conclude,

attempting to answer the previously posed questions:-

“Is it possible to discriminate between species of fly? Is it possible to detect

different species of mosquito? Is it possible detect the sex of the insect?”

.

5.2 Approaches And Parameters

The following experiments include an array of algorithms in an effort to understand

which types of classification approach perform best on the insect application. As a

result, the performance of many of these approaches on the two wingbeat datasets used

have not previously been published. These include: STC, described in Sub-Section 3.3.5,

in which the small subsections are selected at random and retained based on their

ability to summarise class specific features; TSF, described in Sub-Sction 3.3.3, in

which random intervals are selected and distilled into statistical features that are used

to grow C4.5 decision trees; BOSS, described in Sub-Section 3.3.1, in which instances

are first split and compiled into a dictionary of words represented as histograms and
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classification takes place via a 1-NN, used in conjunction with a bespoke distance

measure and cRISE, described in Sub-Section 4.2.1, in which random intervals are

selected and transformed into spectral and autocorrelation coefficients. These new

representations are then combined, before being used to grow random decision trees.

The HIVE-COTEv1.0 ensemble is also evaluated. This is described in Sub-Section 3.3.6

and uses the CAWPE control structure to combine the predictive power of the TSF,

BOSS, cRISE an STC approaches. The cBOSS algorithm was contracted to complete

training within 24 hours for the InsectSound representations, and 1 hour for the

MosquitoSound representations, after it failed to produce results within the 7 day hard

limit imposed on the UEA HPC.

5.3 Data Pre-processing

The work in this chapter focuses on the two wingbeat datasets which were available,

InsectSound and MosquitoSound. A detailed description of these can be found in

Section 2.5. Pre-processing was undertaken to reduce their sizes in order to improve the

manageability. In the case of the InsectSound dataset, two processes were undertaken.

Each instance contains a relatively small amount of data centre padded with zeroes

in order to produce 1 second of audio at 16,000 hz. This is the result of extraction

via a 100 ms sliding window from a larger recording. The first pre-processing step

reverses this via extracting the central 1,600 attributes from each instance. In the

the second step, the extracted data is resampled to 6,000hz. The new sample rate

represents a 2.6 times reduction in the number of attributes for each instance whilst

maintaining spectral fidelity up to 3,000 hz, which is roughly 3 times the maximum

expected wingbeat frequency of mosquitoes. In the case of the MosquitoSound dataset,

two pre-processing steps are also undertaken. Firstly, the number of instances in each

class was reduced to 5,000, bringing it in line with the InsectSound dataset. Secondly,
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to further reduce the dimensionality of the dataset, the instances were resampled to

6,000 hz. This reduced the number of attributes by 1,400 and reduced the Nyquist

limit to 3,000 hz.

As previously mentioned, the prior belief was that spectral features will be most

effective in maximising accuracy with regards to audio-centric datasets. In an effort

to assess this, results from transformed copies of both datasets are also presented in

Section 5.4. The datasets have been transformed into the spectral domain via the

two methods presented in Algorithms (9) and (8). In each case, the transformation is

undertaken on the raw dataset prior to reduction in problem length detailed above.

Algorithm 8 Transform 1
1: function Transform(M , samplerate)
2: Let M ←M1 . . . Mn be a dataset.
3: Let nfft← 6000/2.
4: for i← 1 to n do
5: Mi ← resample(Mi, 6000, samplerate)
6: Mi ← fft(Mi, 6000)
7: Mi ← getPowerSpectrum(Mi)
8: Mi ← truncate(Mi, 1, nfft)
9: return M

In Algorithm (8), T1, the number of FFT bins (nfft) is set as the nyquist limit (line

3), defined as half the sample rate. Then, each instance is re-sampled to 6,000 hz (line

5) prior to transformation into the spectral domain, via the FFT (line 6). From the

output, the power spectrum is extracted (line 7) and truncated (line 8). This results

in each instance containing 3,000 attributes, representing the power at each frequency

from 1 hz to 3,000 hz.

In algorithm (9), T2, each instance is transformed at the original sample rate. The

original sample rate is also used as the number of FFT bins (line 4). From the FFTs

output, the power spectrum is extracted (line 5) and truncated at 100 hz and 2,000

hz (line 6). This results in each instance containing 1,900 attributes, representing the

power at each frequency between 100 hz and 2,000 hz. This method of transformation
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Algorithm 9 Transform 2
1: function Transform(M , samplerate)
2: Let M ←M1 . . . Mn be a dataset.
3: for i← 1 to n do
4: Mi ← fft(Mi, samplerate)
5: Mi ← getPowerSpectrum(Mi)
6: Mi ← truncate(Mi, 100, 2000)
7: return M

was used in [16] by Chen. et. al. and forms part of the approach used in the evaluation

undertaken during the curation of the InsectSound dataset. Moving forward this

approach is also referred to as the UCR transform.

As discussed in Section 2.3, investigations into the classification of flying insects

typically start with wingbeat frequency. In conjunction with results from the raw signal,

the fundamental frequency feature is a logical point for comparison when discussing

the performance of classification approaches. However, classification accuracy achieved

with this feature is often significantly worse than that gained from the whole spectra,

although it is often significantly faster in real terms. Until recently, psudeo-acoustic

insect-centric datasets were relatively small, often not in excess of ten thousand instances

in total. The results of the studies discussed in Chapter 2 were often inconclusive and

they commonly concluded that wingbeat frequency alone is not an adequate predictor

of class.

The fundamental frequency of an insect’s wingbeat whilst flying follows a normal

distribution across a population and there is often large intra-class variability. Classes

which do not significantly differ morphologically, exhibit similar wingbeat motions.

This often leads to substantial overlap between wingbeat frequencies of different classes,

a problem that is only made worse, as the number of classes increase.

Commonly, an audio interval is transformed into the spectral domain at one

resolution, in order to determine its fundamental frequency component. However, in

some cases, particularly if the target signal is not pure, this approach is susceptible
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Fig. 5.1 A figure showing the power spectrum of a wingbeat recording down sampled at
4 increasing rates in blue and, the harmonic spectral product of these 4 down sampled
in red. f0 then indicates the dominating frequency from the series.

to errors. To combat this, the Harmonic Spectral Product approach is used. This

approach is more robust to errors introduced by noise, as it takes into account the

repeating nature of the harmonic property, illustrated in Figure 5.1.

5.4 Results

In order to produce robust results from which to draw our conclusions, all results are

the product of experiments undertaken on 10 stratified folds of the data. In the interest

of producing reproducible results, all random functions used to produce data folds were

seeded with the fold index.

The rest of this section is organised as follows: In section 5.4.1 we evaluate the accu-

racy achieved by 1NNED and the Naive Bayes approaches, using just the fundamental
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frequency attribute. In section 5.4.2 we investigate the performance of approaches

in conjunction with spectral features and in section 5.4.3 we present and discuss all

approaches with regard to timing.

5.4.1 Fundamental Frequency

The figures presented in Section 2.5 shows the distribution of fundamental frequencies

present in each of the insect-centric datasets. It is clear from these that even when

dealing with a relatively small number of classes, the ability to discriminate between

them using just the wingbeat frequency is likely to be limited. This is further evidenced

by experiments performed using the fundamental frequency attribute.

The fundamental frequencies of the instances in both the MosquitoSound and

InsectSound datasets were extracted using a peak finding algorithm, in conjunction

with the harmonic product spectrum technique, described in Section 5.3. Table 5.1

displays results from experiments undertaken with these datasets. For the InsectSound

dataset the accuracies of both approaches is around 55%. The problem consists of 10

equal sized classes and in the test set the number of instances in each class is 2,500.

The accuracy of each approach on the MosquitoSound dataset is also around 55%. In

this case the dataset consists of 6 equally sized classes, each with 2,500 instances in

the test set.

However, an analysis of the confusion matrices in Figure 5.2 show that both the

Naive Bayes and 1-NNED approaches produce low type II errors in relation to female

mosquito classification. A comparison of the misclassifications pattern shows the

approaches are extremely similar, although the number of mis-classifications does vary

slightly. In the case of the InsectSound dataset, misclassification is strongly correlated

to sex. Cross-referencing the class indices with Table 2.6, shows that the female classes:

1, 5, 7 and 9, are most commonly misclassified as a different female class. This is also
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Table 5.1 Table showing mean accuracy, the Area under the reciever operator curve
(AUROC) and Negative Log Likelihood (NLL) for 1 Nearest Neighbour with Euclidean
Distance and Naive Bayes approaches, evaluated over 10 folds on the fundamental
frequency attribute of the MosquitoSound (6 classes) and InsectSound (10 classes)
datasets.

Dataset Classifier Accuracy AUROC NLL

InsectSound 1-NNED 0.5540 0.9104 1.6184
NB 0.5574 0.9207 1.6006

MosquitoSound 1-NNED 0.5551 0.8205 1.6318
NB 0.5563 0.8240 1.6188

true of the male classes: 2, 6, 8 and 10 and the fly classes, 3 and 4. This pattern

is consistent with the information presented in Figure 2.16, where male and female

classes are shown to form distinct groups. Furthermore, when confusion between the fly

species Dr. simulans and Mu. domestica and mosquitoes does occur, it is more likely

to occur with male classes. In summary, the TPR, as defined in Table 3.1, for female

mosquitoes is 0.8918 for 1-NNED and 0.8944 for NB and the FNR is 0.1082 for 1-NNED

and 0.1056 for NB. The confusion matrix for both approaches on the MosquitoSound

dataset provides little insight. The high levels of confusion between classes, particularly

the tendency not to predict class 3, is unsurprising when considering the frequency

distribution shown in Figure 2.19. For example, the tendency to predict class 4 is

driven by the large variance exhibited, and absence of class 3 predictions is driven by

substantial inter-class overlapping.

5.4.2 Spectral Approaches

Table 5.3 shows the results of cRISE, 8-NNED, BOSS, TSF, STC and HIVE-COTEv1.

For each approach, results are presented for the raw dataset as well as the T1 and T2

transformed datasets. The results shown confirm the prior belief that, “spectral features

are most effective”. This is most obvious when looking at the results of BOSS with
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Fig. 5.2 Figures showing the confusion matrices for 1-NNED and NB on the Harmonic
Spectral Product transformed InsectSounds and MosquitoSounds datasets.

respect to MosquitoSound, where there was an increase of 30% in accuracy between

spectral and non-spectral features, and all but STC on the InsectSound dataset achieved

a higher accuracy in conjunction with the spectral data. The data from table 5.2

summarises the impact of the transforms and presents the: minimum and maximum

difference between the T1 and T2 transforms and the raw data, alongside the mean and

median accuracy over all approaches on the transformed datasets. Transformation into

the spectral domain has a positive effect on the results obtained on both datasets, with

a maximum increase in accuracy of 28.68% on InsectSound, and a 30.09% increase on

MosquitoSound. On the InsectSound dataset there is little difference in these measures
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between transformations. However, there is some notable differences between the two

transformations on the MosquitoWingbeat dataset, where the minimum and maximum

values differ by 2.17% and 3.45% respectively. The difference in transformation

performance is also reflected in Table 5.3. On the InsectSound data the performance

of the two transforms is largely tied. Both transforms result in a worse performance

with STC. The T1 transform then performs best with the HIVE-COTEv1 and TSF.

Whereas, the T2 transform performs best with the BOSS and 8-NNED. Furthermore,

the T1 approach produces the largest increase in accuracy and T2 transform produces

a marginally better mean accuracy. On the MosquitoSound dataset the T1 transform

outperforms the T2 transform. The T1 transform has a positive affect on accuracy

for all approaches and performs best on all but 8-NNED, whereas the T2 transform

results in a negative affect on the HIVE-COTEv1 approach. The T1 transform also

produces a greater mean and median accuracy, as well as a greater minimum and

maximum difference in accuracy. The variations in performance between the two

datasets is most likely the result of the physical differences in the hardware used to

to produce the datasets. The TEIC hardware, used to produce the MosquitoSound

dataset, and discussed in Section 2.6b, has a larger target area. This results in insects

being recorded for a greater duration and ultimately results in signals containing more

low energy information, information which the T-2 approach discards. As a result,

the T-1 transform produces a better performance when low frequency information is

present, whilst producing a similar performance to T-2, when it is not present.

Overall, HIVE-COTEv1 performed best on InsectSound with an accuracy of 0.7895,

an increase of 12.69% on the approach described by Chen et al. [16], 8-NNED+T2. How-

ever, these results omit powerful time-of-flight information, an attribute that is reported

to have increased the accuracy of the 8-NNED+T-2 combination by 10% on the Insect-
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Table 5.2 A table summarising the results in Table 5.3, showing the minimum and
maximum difference between raw and transformed data, as well as the mean and
median accuracy.

Min Max Mean Median

InsectSound T1 -0.0446 0.2868 0.5924 0.7158
T2 -0.0371 0.2811 0.5931 0.7233

MosquitoSound T1 0.0011 0.3009 0.6121 0.6885
T2 -0.0228 0.2664 0.6083 0.6745

Sound dataset. cRISE was the most accurate approach on the MosquitoSound dataset

with an accuracy of 0.7558, an increase of 19.61% on the 8-NNED+T-2 combination.
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Table 5.3 Table showing mean accuracy, AUROC and NLL over 10 folds for STC, TSF,
cRISE, 8-NNED, BOSS and CAWPE ensembles, HIVE-COTEv1 (HC1) for T-1, T-2
and no spectral transformation.

Dataset Classifier Transform Accuracy AUROC NLL

InsectSounds

HC1 T-1 0.7895±0.0150 0.9811 1.0855
HC1 T-2 0.7800±0.0145 0.9800 1.0555
HC1 none 0.7740±0.0021 0.9758 1.2669
STC none 0.7604±0.0026 0.9743 0.9833
cRISE n/a 0.7347±0.0037 0.9656 1.4938
TSF T-1 0.7313±0.0016 0.9701 1.0415
TSF T-2 0.7256±0.0029 0.9690 1.0133
STC T-2 0.7233±0.0041 0.9695 1.0184
STC T-1 0.7158±0.0041 0.9683 1.0608
BOSS T-2 0.6668±0.0106 0.9496 1.2531
8-NNED T-2 0.6626±0.0073 0.9308 1.9543
BOSS T-1 0.6620±0.0157 0.9474 1.2650
8-NNED T-1 0.6556±0.0068 0.9275 2.0613
BOSS none 0.5751±0.0164 0.8962 1.9126
8-NNED none 0.5639±0.0053 0.9009 2.7342
TSF none 0.4445±0.0100 0.8480 2.3956

MosquitoSounds

cRISE n/a 0.7558±0.0043 0.9492 1.8608
HC1 T-1 0.7532±0.0062 0.9512 1.0745
HC1 none 0.7521±0.0068 0.9484 1.3210
TSF T-1 0.7408±0.0046 0.9455 1.0019
HC1 T-2 0.7293±0.0058 0.9422 1.1294
TSF T-2 0.6950±0.0040 0.9272 1.1167
STC T-1 0.6885±0.0069 0.9271 1.1679
STC T-2 0.6745±0.0039 0.9197 1.2021
STC none 0.6020±0.0396 0.8836 1.5147
BOSS T-1 0.5942±0.0849 0.8534 1.8636
BOSS T-2 0.5597±0.0790 0.8390 1.9558
TSF none 0.4778±0.415 0.8067 1.9673
8-NNED T-2 0.3829±0.0119 0.7257 4.3566
BOSS none 0.2933±0.470 0.6208 3.3282
8-NNED T-1 0.2840±0.0069 0.6402 5.3337
8-NNED none 0.2539±0.0051 0.5885 6.1839
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Figure A.1 presents the confusion matrices produced from the predictions of HIVE-

COTEv1 on the InsectSound dataset and cRISE on the MosquitoSound dataset. As

expected by the difference in accuracy between HIVE-COTEv1, cRISE and NB, the

plots generated from the HIVE-COTEv1 and cRISE reults show significantly less

confusion than those of NB, shown in Figure 5.2. A comparison to the FNR’s from

Sub-Section 5.4.1 show the largest difference is in the male mosquito group where,

HIVE-COTEv1 achieves a FNR of 0.0112, an improvement of 0.1478. However, the

FNR of the female grouping is also improved at 0.0390, a difference of 0.0666. Analysis

of the cRISE MosquitoSound confusion matrix highlights the extent to which spectral

information can help differentiate between classes. The confusion matrix shows that

classes are most commonly misclassified as classes of the same genus. This is apparent

when comparing the comparing classes 1 and 2 or 3 and 4.

5.4.3 The Relevance Of Test Time.

The successful application of classification algorithms in real world scenarios also

require them to be timely. It is commonly accepted that an algorithm is ‘real time’ if

it is able to classify an instance in less time than is represented by the data. Instances

from the MosquitoSound represent 620 milliseconds and those from the InsectSound

represent 100 milliseconds.

Figure 5.3 plots mean test time per instance, which is averaged over folds for each

approach. The timing data was generated during experiments run on the spectral

datasets, the results of which were discussed in Sub-Section 5.4.2. Results of non-

spectral experiments have been omitted in the interest of brevity.

In all cases, TSF performs best and in a timely manner with respect to relative

instance length. The results exhibited very little variance across folds. In respect

to timing, the UCR transformation approach performs best overall. This is most
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Fig. 5.3 Figure showing mean test time per instance for all combinations of STC, TSF,
cRISE, 8-NNED, BOSS, CAWPE ensembles, with no spectral transformation, T-1 and
T-2 transformations.

clear when comparing InsectSound+T-1 and InsectSound+T-2 with respect to TSF.

This is likely to be because of the difference in the number of attributes present for

classification, where the T1 transform results in less.

5.5 Conclusion

In conclusion, the work presented in this chapter has shown that the combination of

simple audio features and HIVE-COTEv1 performs best on the InsectSound dataset

and second best on the MosquitoSound dataset, beaten only by cRISE. It is acknowl-
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edge that no deep learning approaches were included in this evaluation and refer the

reader to Chapter 6, where the application of state-of-the-art deep learning classifica-

tion approaches to the insect classification problem is addressed. HIVE-COTEv1 in

conjunction with spectral features is shown to be 12.69% more accurate than than a

previously published benchmark approach on the InsectSound dataset and the cRISE

approach was found to be 19.61% more accurate than the same approach on the new

MosquitoSound dataset, despite both omitting powerful time of flight information. In

both cases the best performing approach does not produce test estimates in a timely

manner. Futhermore, as the cBOSS constituent of HIVE-COTEv1 is very slow, even

threaded HIVE-COTEv1 would not produce results in real time and therefore would

need a considerably faster processor to meet the requirements of an application setting.

The InsectSound and MosquitoSound datasets provide an opportunity to comment

on the feasibility of classifying insects, based on species and genus and the InsectSound

dataset provides further information relating to the mosquito sex. The accuracy

of classifying fly species using the relatively simple 1NNED and NB approaches in

conjunction with fundamental frequency, produced a poor result. In all cases, the

reported accuracy was below 56%. This is unsurprising and mirrored all published

results from the literature. An examination of fundamental frequency distributions from

Figure 2.5.3 provide a suitable explanation for the performance and shows that the level

of intra-class variance and subsequent overlapping between classes is high. However,

further examination of the associated confusion matrices revealed that when framed as

binary ‘fly vs mosquito’ and ‘female vs all’ problems, the performance is surprising,

with an accuracy of 0.8944. The application of sophisticated TSC approaches to the

insect wingbeat datasets, provided a promising indication that automatic classification

could be viable. The approach that performed best on the InsectSound dataset, with

regards to accuracy, was HIVE-COTEv1 whith an accuracy of 0.7951. This translated
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to a FNR of 0.0279 with respect to the classification of female mosquitoes in the

InsectSound dataset. On the MosquitoSound dataset the best performing approach

was cRISE with an accuracy of 0.7532.

It can thus be concluded that intra-class variance in fundamental frequency prevents

its use as a discriminant feature on a species level. However, analysis of confusion

matrices from both the fundamental frequency and spectral series experiments has

shown it to be a powerful feature in determining the sex of a mosquito, or potentially

whether the target is a mosquito species. In a real world setting, this feature is likely

to play a key role. It is argued here that an appropriate algorithm architecture would

consist of layers designed to minimise power consumption, by preventing unnecessary

computations. In this context, fundamental frequency could prove an adequate method

of determining whether to apply more sophisticated methods to incoming intervals. In

cases where the sophisticated methods are utilised they could be done so with high

dimensional audio data. By virtue of the recording process this data bares hallmarks

of the insects morphology, such as body size or wing shape. providing an opportunity

for the extraction of more robust features.



Chapter 6

Insect Classification II

6.1 Introduction

In this chapter, raw and spectral representations of multiple datasets are used to

benchmark approaches. Folling this an evaluation of whether features such as time of

flight and fundamental frequency can contribute to accuracy in the context of insect

classification is undertaken. This is achieved via an investigation into methods of

combining simple classifiers trained on expert features, with state of the art approaches.

The methods are split into 2 categories: hierarchical, designed to filter out cases before

they are classified by the more complicated stat-of-the-art approach and cumulative,

designed to maximise accuracy. The expectation is that powerful approaches, such as

HIVE-COTEv2.0 and InceptionTime will benefit from spectral data representations.

However, the results show that contrary to expectation, the best results are not achieved

in conjunction with spectral data. Furthermore, results show that convolutional features

learned in approaches such as Arsenal [62], RESNET[45] and InceptionTime [33] on

the raw audio datasets are superior, with the best performance being achieved by the

InceptionTime algorithm.



6.2 Experimental Methodology 134

The remainder of this chapter is laid out as follows: In Section 6.2 the methods of

transformation and structure of experiments is described. In Sections 6.3, 6.4 and 6.5,

the results from experiments on expert features, the raw series and spectral series are

discussed. In Section 6.6 an ablation study is undertaken on HIVE-COTEv2.0, where

the cRISEAll approach is also introduced. In Section 6.7 methods of combining test

distributions are defined before their respective performances are discussed. Finally, in

Section 6.8 some conclusions are presented.

6.2 Experimental Methodology

For the evaluation presented in this chapter four publicly available pseudo-acoustic

insect datasets were used. These were described in detail in Section 2.5 and summarised

in Table 2.3. In all four cases, perspex boxes were used to confine insects of differing

classes for recording. The Aphids, FruitFlies and the MosquitoSound dataset were all

recorded with hardware developed at TIEC, whereas, the InsectSound dataset was

recorded with hardware developed at UCR. Both systems are described in Section 2.4.

The information present in each recording is the result of partial or total occlusion of

the infrared signal from the photodiode during flight. It can be interpreted as audio

and the data captured is similar to that of conventional audio recording devices [74]. In

order to maintain consistency and ensure a reasonable chance of obtaining results both

the InsectSound and MosquitoSound datasets have undergone the T-1 preprocessing

steps outlined in Section 5.3.

All results presented are the mean over 30 experiments undertaken on stratified

random re-samples of each dataset. The dataset splits are created with a seed values

0 - 29 to ensure they are reproducible. Furthermore, each dataset exists in 5 forms:

raw series; spectral series; time of flight (TOF); fundamental frequency (HSP) and,

time of flight and fundamental frequency combined. The order of instances between all
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representations were maintained such that instance 1 of the raw dataset was used to

derive instance 1 in all alternative representations.

For all approaches other than TDE both the train and test phases were completed

within 7 days without intervention. In the case of TDE a 24 hour contract on the

training phase was enforced on all datasets but AphidsSpec. This was after at least

one fold exceeded the 7 day execution limit of the UEA HPC for 120, 80, 60, 40 and

30 hour train time contracts.

A link between time of day and insect activity has long been established [43].

However, until recently there has been very little opportunity to asses how this

information might impact classification accuracy. In one study Chen et. al.[16] showed

that the use of TOF information was attributed to an increase in classification accuracy

of 10%. All datasets used in this study were captured over multiple, not necessarily

contiguous, days. The time at which each recording was made is also included with

each dataset alongside, the raw time series. Inclusion of this information allows us to

investigate how TOF may impact classification accuracy across multiple large datasets.

Figure 2.12 summarises the TOF information included with the FruitFlies dataset. It

is clear from Figure 2.12 that the level of activity at any given time of day differs per

class. The TOF information is agnostic of date. It is expressed in minutes, as a result

a value of 1 indicates a recording captured at 00:01 and a value of 1439 indicates a

recording captured at 23:59.

In conjunction with results from the TOF, the fundamental frequency feature is a

logical, relatively accessible and computationally fast starting point for comparison,

when discussing the performance of classification approaches. Typically, accuracy in

relation to this feature is poor. However, this is only true when classes are morphologi-

cally similar, e.g. the same sex. Classes which do not significantly differ morphologically,

exhibit similar wingbeat motions. This often leads to substantial overlap between
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wingbeat frequencies of different classes, a problem that is only made worse as the

number of classes increases. Commonly, an audio interval is transformed into the

spectral domain at one resolution in order to determine its fundamental frequency

component. However, as discussed in Section 5.3 the HSP approach 10 is favoured.

This approach takes advantage of the repetitive nature of harmonics and measures

the extent to which harmonics align at different spectral frames. Technically, the

HSP algorithm is designed to determine the pitch of audio, which may differ from the

fundamental frequency in polyphonic examples. However, in monophonic examples,

where there is a dominating source of data, the pitch and fundamental frequency align.

As a result, the approach provides the ability to measure the fundamental frequency of

wingbeats that is robust to low level noise.

Algorithm 10 The Harmonic Spectral Product algorithm
Require: A time series, x, and it’s corresponding samplerate, fs.
Ensure: The fundamental frequency, f0, of x.

1: procedure HSP(x, fs)
2: Let F be a highpass filter with a stop band frequency of 100hz and an attenuation

of 60db.
3: x ← filter(F , x)
4: x ← | fft(x, fs) |
5: d1 ← x0 . . . x(fs/2)
6: d2 ← downSample(d1, 2)
7: d3 ← downSample(d1, 3)
8: d4 ← downSample(d1, 4)
9: for i← 1 to length(d4) do

10: p ← d1
i × d2

i × d3
i × d4

i

11: yi ← p ÷ 4
12: f0 ← max(y)
13: f0 ← f0 × 2
14: return f0

In Chapter 5, it was shown that the spectral series produces superior performance

with respect to accuracy. The spectral series of an audio excerpt provides information

regarding a signals spectral composition, via a function such as Fourier transformation
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information regarding the power and phase of each frequency up to the Nyquist limit

can be obtained. In this work, each instance was transformed into the spectral domain

via the FFT function. Each datasets corresponding sample rate was used to produce a

full resolution spectral series.

The remainder of this chapter is laid out as follows. In Sections 6.3, 6.4 and 6.5

experimental results are presented and discussed. In Section 6.7 multiple methods of

combining test distributions are presented, before their merits are discussed with respect

to accuracy and test time. Finally, in section 6.8, some conclusions are presented.

6.3 Expert Features

As discussed in Section 6.2, each dataset has been transformed into 3 additional

representations. In this sub-section, the results of experiments undertaken on the HSP

and TOF representations are presented in Table 6.1. These two attributes represent

the most obvious and easily collected features in the context of insect classification and

as such, provide a sensible benchmark. As discussed in Section 2.3, historically the

accuracy obtained via experiments using the fundamental frequency is often used as a

starting point, on which further experiments expand. However, it is well established

that when used alone, it makes a poor discriminant feature [80] [81] [85]. This is

particularly true in cases where the aim is to differentiate between insects of different

species of the same genus and sex, where morphological differences are slight.

Information on TOF is easily collected and requires almost no processing before

its incorporation into a model. As an attribute, its effectiveness as a discriminant

feature is relatively unexplored. However, the relationship between Circadian rhythm

and activity in some insect species is well documented. Figure 2.9 visualises TOF

information for the Aphid dataset. It shows that level of activity differs as a function

of time and that each classes profile is distinct.
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Table 6.1 Table showing mean accuracy over 30 folds for expert features datasets.

Default C4.5 BayesNet ED SVML NB

Aphids HSP+TOF
0.4203

0.7327 ±0.004 0.7260 ±0.006 0.6438 ±0.006 0.4650 ±0.017 0.4691 ±0.002
Aphids HSP 0.7150 ±0.004 0.7034 ±0.006 0.7071 ±0.004 0.4470 ±0.002 0.4669 ±0.002
Aphids TOF 0.5071 ±0.006 0.5058 ±0.005 0.4486 ±0.004 0.4202 ±0.000 0.4082 ±0.003

FruitFlies HSP+TOF
0.5305

0.7233 ±0.002 0.7126 ±0.005 0.6444 ±0.003 0.6745 ±0.001 0.6501 ±0.004
FruitFlies HSP 0.6947 ±0.001 0.6942 ±0.001 0.6922 ±0.001 0.6733 ±0.002 0.6287 ±0.008
FruitFlies TOF 0.5515 ±0.003 0.5430 ±0.003 0.5582 ±0.003 0.5305 ±0.000 0.5264 ±0.001

InsectSound HSP+TOF
0.1000

0.6962 ±0.002 0.7002 ±0.002 0.6221 ±0.002 0.5192 ±0.006 0.5447 ±0.007
InsectSound HSP 0.5353 ±0.009 0.5472 ±0.006 0.5825 ±0.005 0.6899 ±0.005 0.5535 ±0.006
InsectSound TOF 0.2816 ±0.003 0.3070 ±0.002 0.2239 ±0.001 0.1961 ±0.001 0.2254 ±0.001

MosquitoSound HSP+TOF
0.166

0.6289 ±0.001 0.6203 ±0.001 0.5153 ±0.001 0.5382 ±0.004 0.5413 ±0.000
MosquitoSound HSP 0.5568 ±0.000 0.5563 ±0.000 0.5552 ±0.000 0.5415 ±0.002 0.5330 ±0.000
MosquitoSound TOF 0.4242 ±0.000 0.4229 ±0.000 0.4196 ±0.000 0.3060 ±0.000 0.3277 ±0.000
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The results in Table 6.1 are grouped by parent dataset. Each group is then ordered

such that the top row indicates the configuration that produced the highest accuracy, it

also shows the accuracy of an approach that selects only the most prevalent class in the

training set for all test instances, providing an indication of true transform/classifier

combination benefit. Information on class distribution can be found in Table 2.3. The

results shows that the C4.5 tree is most accurate in 8/12 datasets overall and 3/4

datasets when only considering the TOF+HSP combination. In all groups, the best

performance exceeds the default approach of picking the most prevalent class present

in the training set.

The results show that the effectiveness of TOF and HSP features vary with respect

to the dataset characteristics. For instance, relative to HSP the TOF feature fares

poorly on the sex separated InsectSound compared to the MosquitoSound dataset

where classes are not sex separated. This is likely to be due to the fact that circadium

rythm is correlated to specie not sex, as shown in Figure 2.15. However, the HSP+TOF

combination always outperforms its constituents. This indicates that despite the low

performance of the TOF feature, it adds additional insight to class membership. This

is likely to be impacting instances for which the HSP value falls into a region of overlap

between neighbouring classes.

Figures B.1, B.2, B.3 and B.4 show the confusion matrices for the results presented

in Table 6.1. These reveal that the accuracy achieved with respect to the Aphids

dataset fails to accurately reflect the performance of the C4.5 approach. Despite being

a minimum of 8% more accurate than selecting the majority class, the approach fails

to predict the M. persicae, P. testudinaceus, Ps. chrysocephala or R. padi classes on all

three representations of the data. These classes are small and this is certainly a factor

in the performance. However, the performance of expert features on FruitFlies dataset,

where all classes consist of a reasonable number of instances, is also pathological. The
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difference between the achieved accuracy and the hypothetical majority class approach

is 19.28%. In this case, the accuracy is primarily the result of a strong performance

on the zaprionus class. Whereas, predictions for the melanogaster class are at best

random, when using the TOF+HSP representation. Furthermore, analysis of the

MosquitoWingbeat confusion matrices reveals a similar pattern. The TOF feature

results in no predictions for classes 2, 3 and 5 and the HSP feature results in no

predictions for classes 2 and 3. Whereas, the TOF+HSP combination does produce

predictions for all classes. In all 3 datasets results from expert features are better

than the default approach. These performances are the result of a strong performance

on either 1 or 2 classes and reveal that the predictive power of expert features is not

balanced across all target classes. In all 3 datasets the combination of TOF and HSP

does improve predictions. But, the improvement is marginal. However, this trend of

pathological predictions does not extend to the InsectSound dataset. In this case the

TOF and HSP representations produce distinct and patterns of confusion. The TOF

feature produces a clear split between classes of the Culex genus and the remaining

classes. Whereas, the HSP feature forms 3 groups: flies, male mosquitoes and female

mosquitoes. With classes from each group more likely to be misclassified as classes

from that group.

Table 6.2 TPR of 5 subgroups of the TOF, HSP and TOF+HSP InsectSound datasets.

Mosquito Female Male Fly Aedes Culex

TOF+HSP 0.9640 0.9209 0.9237 0.8730 0.8513 0.9269
HSP 0.8909 0.8944 0.8443 0.8224 0.6951 0.7502
TOF 0.8457 0.5699 0.5183 0.5696 0.2032 0.9175

Table 6.2 quantifies the effectiveness of the 3 representations on the InsectSounds

dataset. The table shows the TPR for 6 class subgroups from the data. The values

are derived from the confusion matrices, which in turn are derived from the test



6.4 Raw Series 141

predictions over all folds. The results suggest that the classes from the Culex genus

exhibit a significantly different TOF profile from that of the ‘Fly’ and Aedes classes.

Consultation of the TOF plot in Figure 2.15 shows that despite sharing periods of high

activity during the twilight hours the Culex genus have nocturnal tendencies. The high

accuracy achieved in this case is certainly because the other classes are predominately

active during the day and the poor performance of differentiating between the Fly

and Aedes groups highlights how fragile the TOF feature is. The TPR of the HSP

feature, presented in Figure 2.16, shows the best performance when classifying sex -

where randomly selecting classes would achieve 50% accuracy. This is unsurprising,

as sex separated groups have a lower intra-group variance than genus groups and

the Fly group has very little overlap with the mosquito groups. Unsurprisingly, the

combination of features improves the TPR of all groupings. Furthermore, the TPR of

the Mosquito and Fly groupings lend weight to the idea of using expert features to

filter incoming data that is unlikely to be a mosquito recording.

6.4 Raw Series

Table 6.3 presents the mean accuracy for 8 approaches on the raw time series of each

dataset. Traditionally, benchmark results are not achieved using raw time domain

representations of audio data. This is demonstrated in Chapter 2. Typically, approaches

which perform an explicit spectral transform internally produce significantly higher

accuracies. However, deep learning approaches have been shown to produce competitive

accuracies by extracting meaningful features via convolutional layers.

The results in Table 6.3 show that InceptionTime (IT) is most accurate on 3 out of

4 datasets. Whereas the spectral approach cRISEALL presents an average performance

which outperforms the TDE approach on all datasets and the STC approach on all

but the InsectSound, but looses out to the resident HIVE-COTEv2 spectral approach,
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DrCIF, in all four cases. As expected, a comparison between these results and the expert

feature experiments given in Table 6.1, confirms that InceptionTime in conjunction

with raw data, also produces considerably higher accuracies than reported approaches

used in conjunction with expert features. Furthermore, in a comparison between

these tables, we see that in 29/32 of cases approaches in conjunction with the raw

data outperform the corresponding highest performing expert feature combination,

the exceptions being the TDE with InsectSound and MosquitoSound and STC with

MosquitoSound.

Table 6.3 Table showing accuracy for approaches in combination with raw data.

Datasets cRISEAll TDE Arsenal DrCIF STC HCv2 IT RESNET

Aphids 0.9391 0.9075 0.9556 0.9521 0.9117 0.9570 0.9744 0.9502
FruitFlies 0.8700 0.7975 0.9633 0.9269 0.8074 0.9650 0.8721 0.9794
InsectSound 0.7589 0.5461 0.7923 0.7761 0.7594 0.7992 0.8545 0.8269
MosquitoSound 0.7835 0.4138 0.8152 0.7960 0.6153 0.8240 0.9058 0.7976

Table 6.4 TPR of the presented approaches on 5 subgroups of the InsectSound dataset.

Mosquito Female Male Fly Aedes Culex

InceptionTime 0.9865 0.9714 0.984 0.9656 0.8838 0.9424
HCv2 0.9851 0.9582 0.9867 0.9406 0.8221 0.9190
RESNET 0.9811 0.9597 0.9803 0.9421 0.8552 0.9314
Arsenal 0.9858 0.9585 0.9842 0.9304 0.8212 0.9167
DrCIF 0.9773 0.9516 0.9846 0.9644 0.8026 0.9067
STC 0.9799 0.95 0.9794 0.936 0.787 0.9023
cRISEAll 0.9775 0.9467 0.9821 0.9482 0.8 0.9123
TDE 0.9521 0.8711 0.9023 0.8332 0.5878 0.8459

In all cases, the performance of approaches in conjunction with the raw data repre-

sentations out-performs the approach of selecting the most prevalent class in the training

set. Furthermore, a review of the confusion matrices from each approach/dataset com-

bination showed that there was only pathological behaviour on the Aphids dataset,
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where all but the InceptionTime approach failed to make predictions for one or more

classes.

Tables B.2, B.3, B.4 and B.5 show the results of pairwise paired t-tests for all

approaches on the raw data. The critical t-values are computed from the accuracies

achieved over all resamples. The results show that InceptionTime on the Aphids,

InsectSounds and MosquitoWingbeat datasets is significantly more accurate than the

other approaches, and that RESENT on the FruitFlies dataset is significantly more

accurate than the other approaches.

Table 6.4 shows that for the same 6 subgroups of the InsectSounds dataset all but

the TDE approach outperforms the results obtained from the TOF+HSP representation.

InceptionTime performs best overall but loses out to HIVE-COTEv2 on the male

subgroup. However, the differences between the TPR of the InceptionTime and best

performing expert features approach were in some cases marginal. The Fly and

Mosquito groups were found to differ by 9.26% and 2.25% respectively, where the

difference in the Fly group was the largest and the difference in the Mosquito group

was second smallest, behind a 1.55% difference in the Culex group.

6.5 Spectral Series

As discussed in Sub-Section 5.4.2, classification of audio problems are often aided

by transformation from the time domain into the spectral domain. Typically, the

discriminant features identified in the spectral structure are a more informative than

those found in the time domain. The benefit of applying a spectral transform can

be seen when comparing the performance of the ST approach on the MosquitoSound

dataset across Tables 6.3 and 6.5.

In this case, the datasets were transformed in MATLAB and made use of the FFT

function. The imaginary portion representing information on phase was discarded and
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Table 6.5 Table showing accuracy for approaches in combination with spectral data.

Datasets cRISEAll TDE Arsenal DrCIF STC HCv2 IT RESNET

Aphids 0.9011 0.8840 0.9363 0.9456 0.9427 0.9465 0.9525 0.9090
FruitFlies 0.8364 0.7761 0.8870 0.8655 0.7924 0.8880 0.9009 0.8398
InsectSound 0.7395 0.6419 0.7532 0.7620 0.7259 0.7601 0.6499 0.3319
MosquitoSound 0.7701 0.6554 0.7677 0.7927 0.6887 0.7783 0.7337 0.5974

the attributes in the remaining series represents the power of corresponding frequencies.

Data up to the Nyquist limit was retained and corrected with respect to amplitude.

The sample rate of each dataset was used as the NFFT parameter, ensuring a high

spectral resolution. The process is described in more detail in the Sub-Section 4.4.1.

The resultant datasets are summarised in Table B.1.

Table 6.5 shows the accuracy of 9 benchmark approaches on the spectral represen-

tation of each dataset. The results show that, as expected, the accuracy is reduced in

approaches which perform spectral transforms internally, such as cRISEAll and DrCIF.

Unexpectedly, these results also show that RESNET, InceptionTime and Arsenal are

also negatively effected by the spectral representations.

A comparison between Tables 6.3 and 6.5 show that the highest accuracies achieved

by approaches in combination with spectral representations, do not exceed that of

the corresponding non-spectral combination. This result highlights the effectiveness

of feature creation in deep learning approaches. The RESNET and InceptionTime

architectures differ significantly and yet these approaches are both negatively effected

by the spectral data. Furthermore, these results show that even the simple features

derived in Arsenal, which are also convolutional, are more effective when used with

raw audio.
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Table 6.6 Table showing HIVE-COTEv2 (HC2) variants for ablation study.

cRISEAll TDE Arsenal DrCIF STC

All X X X X X
HC2 X X X X
1 X X X X
2 X X X X
3 X X X X
4 X X X X

6.6 Varying HIVE-COTEv2.0 constituents

As discussed in Section 6.4, HIVE-COTEv2 is significantly less accurate than IT. The

results in Table 6.3, show that the TDE component of HIVE-COTEv2 does not perform

well on any of the four datasets in question. One advantage of the HIVE-COTEv2

structure, is the ease in which additional components can be included, so long as

the training set accuracy is available. In Chapter 4 we discus the motivation for

including multiple transforms aimed at extracting descriptive features from data of

an oscillatory nature and presented the expectation that this approach will excel on

audio problems. In the experiments presented in Section 6.4 cRISEAll does not produce

an exceptional performance. However, the results show that it does outperform two

current constituents of the HIVE-COTEv2 ensemble, TDE and STC. In the majority

of cases the approaches were shown to perform best in conjunction with the raw audio.

Table 6.6 shows the approaches included in Section 6.4 ensembled in six combina-

tions, one of which is the standard HIVE-COTE2. The results of these variants are

shown in Table 6.7. As expected, inclusion of cRISEAll has a positive effect on accuracy,

indicated by the results of the ‘All’ variant. Furthermore, in variants 1, 3, and 4 where

TDE, DrCIF and STC are removed in favour of cRISEAll there is a net positive effect.

However, for all the approaches that produce accuracies greater that HIVE-COTE2,

the distribution of accuracies over 30 folds overlaps with that of HIVE-COTE2. This
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is true when looking at performance on individual datasets as well as overall. On

the other hand, the performance of variant 2, in which Arsenal is removed in favour

of cRISEAll, is negatively affected and does not overlap with HIVE-COTEv2. The

approach shown in the final column in Table 6.6, HCBR, is an ensemble approach which

makes use of 9 constituents. These are: the standard HIVE-COTEv2 approaches built

on raw data and on spectral data, and the RISEAll approach. Paired t-tests undertaken

per dataset showed that the HCBR approach was significantly more accurate than

IT on the FruitFlies and InsectSound datasets and significantly less accurate on the

Aphids and MosquitoSound datasets. Moreover, a t-test over all folds of all problems

showed that there was no significant difference between the two approaches, although

IT does produce a higher mean accuracy overall.
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Table 6.7 Table showing mean accuracy and standard deviation for HIVE-COTEv2 (HC2) variants described in table 6.6.

All HCV2 1 2 3 4 HCBR

Aphids 0.9574±0.0023 0.9570±0.0023 0.9582±0.0023 0.9483±0.0028 0.9564±0.0022 0.9587±0.0022 0.9531±0.0025
FruitFlies 0.9641±0.0015 0.9649±0.0014 0.9652±0.0011 0.9117±0.0039 0.9634±0.0012 0.9663±0.0014 0.9466±0.0038
InsectSound 0.8007±0.0020 0.7992±0.0020 0.8004±0.0019 0.7813±0.0024 0.7983±0.0019 0.7996±0.0018 0.8766±0.0164
MosquitoSound 0.8270±0.0033 0.8237±0.0033 0.8270±0.0033 0.7957±0.0035 0.8216±0.0031 0.8285±0.0033 0.8130±0.0034

Mean 0.8873±0.0022 0.8862±0.0023 0.8877±0.0022 0.8592±0.0032 0.8849±0.0021 0.8883±0.0022 0.8973±0.0065
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In conclusion, variants in which cRISEAll is present do not produce a meaningful

increase in accuracy with respect to the performance of HIVe-COTEv2. However,

this difference was shown to be less than one standard deviation. The most accurate

HIVE-COTEv2 approach HCBR outperformed the IT approach on two datasets and

on one of those, InsectSound, was also shown to differ from HIVE-COTEv2 by more

than one standard deviation. However, over all datasets the difference between HCBR

and IT was not found to be significant, and the IT approach produced a marginally

better accuracy overall. Furthermore, the configuration of HCBR makes the train and

test time prohibitive. As a result, we still consider the best approach to be IT.

6.7 Combining features

In the conclusion of Chapter 5 it was argued that easy to capture expert features

may be adequate in acting as a filter, preventing expensive processes being run on

cases that are extremely unlikely to be mosquitoes. The feasibility of this hierarchical

classification pipeline is bolstered by the results presented in Section 6.3, which showed

that simple approaches, such as the C4.5 decision tree and Bayesian Networks are

effective at discerning Mosquitoes from Flies in the InsectSound dataset.

The TPRs shown in Table 6.2 do not exceed those produced by InceptionTime.

However, the potential of utilising expert features does present an opportunity to

reduce both the processing power and therefore energy required, and as discussed in

Section 5.1 this is desirable in an application setting.

The effect of combining expert features with the best performing series approach,

InceptionTime, in conjunction with the raw series is therefore explored in this section.

These experiments are undertaken on the InsectSound dataset. A feature of this

dataset is sex separated classes. This affords us the opportunity to explore combination

techniques that operate at different resolutions - for example, Flies vs Mosquitoes,
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male vs female and Aedes vs Culex. This is particularly useful as the real terms cost

associated with the misclassification of each class is not equal. The performance of the

combination techniques are assessed by the effect on accuracy, and speed up offered

relative to the base InceptionTime approach, referred to as InceptionTimeRaw.

6.7.1 Combination Methods

Methods of combining the predictive power of the expert features and InceptiontimeRaw

approach fall into two categories, Hierarchical (A) and Cumulative (B). Hierarchical

methods aim to utilise the expert features in order to prevent unnecessary processing,

whilst the Cumulative methods use the predicted distributions of the expert and series

approaches combined in an attempt to increase accuracy. An informal description of

the 7 methods are described below and formal descriptions can be found in appendix B.

Hierarchical Methods (A)

A.1. For each test instance retrieve the prediction of BayesNetHSP+TOF (making use

of both the HSP and TOF expert features). If the class predicted is a member of

the fly group, accept the expert models probability distribution and prediction.

Else, defer the instance to the InceptionTimeRaw approach for classification.

A.2. For each test instance, retrieve the predicted class probabilities of BayesNetHSP+TOF,

(making use of both the HSP and TOF expert features). Then compute the

cumulative probabilities of the instance belonging to both the fly and mosquito

groups. If the cumulative probabilities of the fly group exceed the belief parame-

ter, by default set to 0.8, check that the predicted class is also a fly class. If it is,

return the expert models predicted class distribution. If it isn’t, return a one hot

array that indicates the fly class with the highest predicted probability. If the
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cumulative probabilities of the fly group doesn’t exceed the belief parameter,

defer the instance to the InceptionTimeRaw approach for classification.

A.3. For each test instance, retrieve the predicted class probabilities of SVMLHSP

(making use of just the HSP expert feature). Then compute the cumulative

probabilities of the instance belonging to both the fly and mosquito groups. If the

cumulative probabilities of the fly group exceed the belief parameter, by default

set to 0.8, check that the predicted class is also a fly class. If it is, return the

expert models predicted class distribution. If it isn’t, return a one hot array that

indicates the fly class with the highest predicted probability. If the cumulative

probabilities of the fly group doesn’t exceed the belief parameter, defer the

instance to the InceptionTimeRaw approach for classification.

A.4. For each test instance retrieve the prediction of SVMLHSP (making use of just the

HSP expert feature). If the class predicted is a member of the fly group and the

cumulative probabilities of the fly group exceed the belief parameter, by default

set to 0.8, accept the expert models probability distribution and prediction. Else,

take the per class mean of the BayesNetHSP+TOF,(making use of both the HSP

and TOF expert features) and InceptionTimeRaw predictive distributions and use

the new distribution to find the predicted class.

A.5. For each test instance retrieve the prediction of SVMLHSP (making use of just

the HSP expert feature). If the class predicted is a member of the fly group

and the cumulative probabilities of the fly group exceed the belief parameter,

by default set to 0.8, accept the expert models probability distribution and

prediction. Else, take the per class mean of the SVMLHSP and InceptionTimeRaw

predictive distributions and use the new distribution to find the predicted class.
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Cumulative (B)

B.1. For each test instance, take the per class mean of the BayesNetHSP+TOF (making

use of both the HSP and TOF expert feautres) and InceptionTimeRaw predictive

distributions and use the new distribution to find the predicted class.

B.2. A cumulative approach that incorporates a hierarchical framework, in this ap-

proach the combined expert and series test distributions are tested multiple times

for consensus as fly, male or female. Otherwise the distributions are combined

and the new distribution is used for classification.

For each test instance, retrieve the predicted class probabilities of BayesNetHSP+TOF

(making use of both the HSP and TOF expert feautres) and InceptionTimeRaw

and compute the cumulative probabilities of the instance belonging to both the

fly and mosquito groups, for both distributions. If in both cases the probability

of the fly group is higher than the mosquito group return a one hot encoded

distribution reflecting the fly class with the highest probability across both

distributions. Otherwise, compute the cumulative probabilities of the instance

belonging to both the male and female mosquito groups for both distributions. If

in both cases the probability of the male group is higher than the female group,

return a one hot encoded distribution reflecting the male class with the highest

probability across both distributions. Repeat again for the female group. Finally,

if there is no consensus, take the per class mean of the expert and series predictive

distributions and use the new distribution to find the predicted class.

6.7.2 Results

Table 6.8 presents the overall accuracy for each of the 7 combination methods alongside

InceptionTimeRaw. The table also presents the true positive and false positive rates for
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the same 6 sub groups defined in Section 6.3. Table 6.9 shows that 4 of the combination

methods produce a higher accuracy then InceptionTime over 30 stratified resamples of

the InsectSound dataset, 2 from the hierarchical A category and 2 from the cumulative

B category. The most accurate method is shown to be B.1,. with an increase of 4.15%

over InceptionTimeRaw. The method is simple and sees new test distributions formed

from the per-class mean of the BayesNetHSP+TOF and IncpetionTimeRaw approaches

test distributions. A.4. is shown to be the most accurate hierarchical method, with a

4.11% increase in accuracy over InceptionTimeRaw.



6.7
C

om
bining

features
153

Table 6.8 Table showing the performance of combination approaches and InceptionTime on the InsectSounds dataset.

Accuracy Mosquito Female Male Fly Aedes Culex
TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR FPR

A.1. 0.8025 0.9515 0.0054 0.9415 0.0081 0.9447 0.0048 0.9946 0.0485 0.8498 0.0292 0.9104 0.0566
A.2. 0.8237 0.9750 0.0106 0.9606 0.0088 0.9724 0.0062 0.9894 0.0250 0.8589 0.0301 0.9374 0.0595
A.3. 0.8543 0.9865 0.0379 0.9704 0.0121 0.9853 0.0120 0.9621 0.0135 0.8806 0.0309 0.9443 0.0734
A.4. 0.8966 0.9927 0.0227 0.9849 0.0066 0.9890 0.0087 0.9773 0.0073 0.9430 0.0204 0.9664 0.0349
A.5. 0.8615 0.9825 0.0147 0.9762 0.0056 0.9772 0.0070 0.9853 0.0175 0.9227 0.0201 0.9602 0.0305

B.1. 0.8969 0.9932 0.0228 0.9853 0.0067 0.9895 0.0087 0.9772 0.0068 0.9434 0.0205 0.9667 0.0350
B.2. 0.8777 0.9972 0.0947 0.9902 0.0175 0.9923 0.0220 0.9053 0.0028 0.9423 0.0272 0.9663 0.0667

IT 0.8555 0.9865 0.0344 0.9714 0.0112 0.9840 0.0119 0.9656 0.0136 0.8838 0.0323 0.9424 0.0701
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However, an analysis of the TPR and FPR of the presented subgroups provides

further insight as to when each method excels, or does not. The discussion in section 2.2

highlights the difference in impact that male and female mosquitoes have in society.

As a result, the consideration of performance on the subgroups presented is arguably

more important in a real world setting, than that of overall accuracy. Across all

subgroups, neither B.1 or InceptionTime produces the highest TPR or lowest FPR

in any subgroup. Despite B.1 being the most accurate method, B.2. is undoubtedly

the better method with regards to minimising the misclassification of mosquitoes and

subsequently female mosquitoes. The FPR in the fly group is low, indicating that the

occurrence of mosquitoes, male or female, being classified as flies is rare and as then

expected, the TPR of the mosquito subgroup is high. Furthermore, the TPR of the

female subgroup is also high and shows that 99.02% of female mosquitoes are labelled

correctly. On average, over 30 stratified resamples, this equates to missing 98 out of

10,000 female mosquito cases in real terms, an improvement on the 286 missed by

IncpetionTime.

d.f. 28
Critical value (one-tail) 1.701131
Critical value (two-tail) 2.048407

α 0.05

Table 6.9 Table of pairwise t-values for 7 combination methods and the InceptionTime
approach, computed from a paired t-test on 30 folds on the InsectSounds dataset.

A.1 A.2 A.3 A.4 A.5 B.1 B.2

IT 148.6496 88.5943 10.6914 -49.0257 -7.679 -49.0399 -30.8764
A.1 -54.6986 -150.234 -104.057 -64.5047 -103.424 -91.2666
A.2 -86.5764 -91.6846 -52.289 -91.4992 -73.2062
A.3 -48.9685 -7.9410 -48.9356 -31.0481
A.4 124.9654 -11.0558 51.5151
A.5 -127.336 -32.1587
B.1 51.4304
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The boxplots in Figure 6.1 show the distribution in the mean per-instance test time

over 30 stratified resamples. B.1, B.2 are cumulative so are in fact processing more

information than InceptionTime per instance. The plot suggests that at the default

belief value, there are two pairs of methods that behave similarly with respect to test

time. The plots show the distribution of test time over a large number of cases. For all

methods, both the median and mean test times are greater than the duration each case

represents, 1 second. The plot suggests the benefit of using a hierarchical approach

is minimal with the greatest difference in mean times between the hierarchical and

cumulative methods being 0.29 seconds.

Fig. 6.1 Combination approaches test times.

However, the class distribution of the InsectSounds dataset is equal and the number

of fly cases in the test set, 5,000, is significantly lower than the number of mosquito

cases, 20,000. Table 6.10 shows the number of filtered cases, per-instance test time and

per-instance test time of filtered cases. The table illustrates more clearly the difference

in processing time for those cases that are filtered. The time required is between 50

and 30 microseconds, compared to the overall mean of 1.12 seconds and over a large

period, could equate to a significant reduction in power consumption. The table also
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reveals that at the default belief value, 2 pairs of methods produce the same number

of filtered case and per instance test times. Interestingly, there is no repetition in the

overall accuracies of these 4 methods and all 5 methods differ in the implementation of

the filtering rules.

Table 6.10 Table showing the mean: number of filtered cases, total test time and test
time of filtered cases for each of the hierarchical combination methods over 30 stratified
ramdon resamples.

Filtered cases Per-instance
test time (s)

Filtered cases
per-instance test time (s)

A.1. 5087.2414 1.1220 2.7692E−6

A.2. 3899.5862 1.1888 2.9045E−6

A.3. 25.2069 1.4072 4.7917E−5

A.4. 25.2069 1.4072 4.7645E−5

A.5. 3899.5862 1.1888 2.8578E−6

Figure 6.2 provides more detail on the effect that different belief values have on

each of the methods from Table 6.8. Sub-figures (b) and (c) present the test time per

instance and number of cases filtered for each method. Unsurprisingly, the test time

per-instance and number of filtered cases are shown to have a strong negative correlation.

What is surprising, is the way in which the performance of the methods coalesce into 2

pairs with respect to cases filtered and test time, whilst remaining separate in terms of

accuracy, female TPR and Fly FPR. This can be accounted for by the requirement

for each cases predicted class being from the ‘fly’ group, as well as the cumulative

probability of fly classes being greater that the belief parameter in the conditional

decision statement. This additional clause in the if statement prevents pathological

behaviour, as the belief parameter approaches 0. The separation of the paths into

2 streams is based on the expert approach used for filtering. Methods A.3. and A.4.

use approaches in conjunction with the HSP representation. Whereas, methods A.2.

and A.5. use approaches in conjunction with the TOF+HSP representation. Finally,
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the emergence of 2 maximum accuracies is dependant on the whether the method is

incorporating the prediction distribution of the expert approach in the final prediction,

which is the case for the A.4. and A.5. methods, clearly showing the benefit of expert

feature inclusion.

This additional information tempers the assumption that A.4. is the best hier-

archical approach, because it is the most accurate. Figure 6.2 (a) shows that by a

belief value of 0.8, method A.4. has reached a plateau. Sub-figure (b) shows this is

because the number of filtered cases is extremely low, indicating the more powerful

InceptionTimeRaw approach is being leveraged and as a result, the mean test time

per-instance is high. Looking just at Sub-figures (b) and (c) shows this superior

efficiency performance of A.5. only emerges for reasonable belief values, >0.5. and a

reasonable implementation might switch method, based on the belief value in order to

maximise efficiency and accuracy. However, Sub-figures (d) and (e) reveal that the

A.4. performs significantly worse than A.5. with respect to determining both fly and

female mosquito classes, until the more powerful InceptionTimeRaw approach begins to

dominate classifications.

6.8 Conclusion

In conclusion, this chapter has presented experimental results that support the idea that

expert features can be leveraged to improve classification accuracy in insect wingbeat

classification, thus challenging the established paradigm that, in the context of insect

classification, approaches perform best with spectral features. Instead, in the context

of insect classification, deep learning approaches trained on raw audio produce superior

accuracies.

The results in this chapter suggest that the use of fundamental frequency in

conjunction with relatively simple approaches could be an adequate method of filtering,
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preventing unnecessary processing. An examination of both the overall accuracy, as

well as the TPR and FPR have demonstrated that on the InsectSound dataset, These

features are particularly effective at distinguishing between mosquitoes and flies. The

reported experiments also reveal the limitations of the time-of-flight and fundamental

frequency features. For example, the fundamental frequency is less informative when

distinguishing between many classes of genus or species. This is because these groupings

exhibit significant variance in wingbeat frequency, which is actually a function of size

and therefore best suited for determining sex. The time-of-flight feature is less helpful,

but was shown to make a difference. This is particularly evident in edge cases where:

insect interception is either late or early in the day, or the wingbeat frequency is in an

area overlapping distributions. The feature is an effective indication of prior-probability

and is an intuitively good starting point for classification. However, in 3/4 of the

datasets, the expert features produced models that were fundamentally flawed, and in

multiple cases, classes were not predicted at all. In some cases, such as the Aphids

dataset this is likely impacted by poor class representation, but fundamentally it

appears, that the behaviour is caused by overlapping frequency and TOF distributions.

Experiments on both raw pseudo-acoustic data and the spectral counterpart pro-

vided unexpected results. Firstly, for all 3 convolutional based approaches, the perfor-

mance was best on the raw dataset. This behaviour is contrary to that of so called

‘traditional’ approaches, where typically the spectral decomposition of audio data is

most likely to yield useful features. Secondly, the performance of deep learning ap-

proaches, in combination with the raw audio, exceeded all non-convolutional approaches

in combination with spectral data. Contrary to expectation the performance of the

cRISEAll approach was mediocre. However, spectral representations were unexpectedly

shown to be less useful generally. There is some support for these in the literature

discussed in Chapter 2.3 where the relevance of deep learning approaches in insect
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classification has been recently highlighted. It is thus arged that methods that make

use of convolutional features present a promising avenue of research for flying insect

classification.

Finally, an examination of 7 methods of combining the test distributions of ap-

proaches built using expert features and the InceptionTime approach trained on the

InsectSound raw data, shows that the fundamental frequency feature is more effective

than the combined fundamental frequency and time-of-flight features, despite the latter

producing a superior classification accuracy. Whereas, the inclusion of the combined ex-

pert features increases the classification over the best single approach InceptionTimeraw.

The results in Sub-Sfection 6.7.2 show that simply combining the output distributions

from the TOF+HSP and InceptionTime, B.1., produces the highest accuracy. However,

nuances in the methods presented, show that a hierarchical cumulative method, B.2.,

produces an approach which preforms best in key measures, such as maximising female

mosquito TPR and minimising fly FPR. Additionally, a review of the hierarchical

methods presented, shows that the most accurate A.4. method is ineffective as a

filter. Whereas, the A.5. method exhibits far greater consistency in the examined

performance measures, for varying levels of the belief parameter, including the ability

to filter cases. Where, on average over the 30 stratified resamples, the processing time

of A.5. was 1.5 hours less than B.2. for a decrease in overall accuracy of 1.62%.
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(a) (b)

(c) (d)

(e)

Fig. 6.2 Figure showing the changes in: accuracy (a), mean test time (b), number
of filtered cases (c), the TPR of female mosquitoes and the FPR of flies for different
values of the belief parameter in 4 hierarchical combination methods.



Chapter 7

Conclusions And Future Work

This thesis is primarily concerned with improvements in the automatic classification of

flying insects via insect-centric psuedo-acoustic datasets. The prevailing method of

screening in emerging smart trap technology has led to the creation of large multiclass

problems. This technology is still in its infancy. However, some practitioners are already

generating rich and diverse datasets, which by virtue of implementation are accompanied

by metadata, such as the time of flight (TOF) feature. These datasets provide the

opportunity for insect classification approaches to keep instep with the advancements

in smart trap hardware. This thesis for the first time, presents experimental results of

‘state-of-the-art’ approaches on a collection of these datasets. Described in Chapter 2,

this Thesis presents 4 datasets, generated by 2 distinct pieces of hardware. These

datasets have allowed us to investigation the effectiveness of classification approaches

from multiple domains, including powerful ensemble approaches such as HIVE-COTEv2

and InceptionTime. Whilst a unified methodology has enabled us to directly compare

the performance of these approaches despite implementations in different languages.

Motivated by the experimental results in Chapter 5 we undertook a review of

the HIVE-COTEv1.0 approach’s audio domain expert, RISE. Changes in the RISE

implementation led to: refinements in the internal transformations undertaken; a novel
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mechanism of controlling build time in tree-based approaches; changes to the interval

selection policy and an investigation of multiple spectral transformations, as well as new

methods of internal combination techniques. Presented in Chapter 4, these changes

amounted to a significant improvement to both performance and usability of the RISE

approach, named RISE-All.

Alongside the recently published HIVE-COTEv2.0 and InceptionTime approaches,

results of multiple powerful approaches, including cRISEAll have been presented.

Through a series of experiments on multiple dataset representations, a framework

that both maximises predictive performance, whilst also reducing the amount of un-

necessary processing is outlined. Via an examination of multiple methods of test

distribution combination, the number of female mosquito candidate cases passed to

intensive processing approaches was reduced by leveraging the predictive power of

expert features. The experiments in this Thesis have shown that the deep learning

approaches RESNET and InceptionTime perform well on the pseudo-acoustic insect-

centric datasets. Furthermore, the convolutional approach Arsenal also performed well.

Interestingly, all 3 of these approaches were detrimentally affected by the transformation

of data into the spectral domain. Our belief is that these approaches are confounded

by the large intervals of barren attributes that represent high frequency information.

7.1 Discussion Of Contributions

The work in this thesis brings together, for the first time, multiple large insect-centric

pseudo-acoustic datasets for experimentation and evaluation. Experimental results

of powerful approaches such as HIVE-COTEv1.0, which at the time were considered

state-of-the-art, are first presented in Chapter 5. The contributions of this chapter

include a review of common assumptions in the literature, such as: the effectiveness of

wingbeat frequency as a descriptive feature, the effectiveness of the spectral series as a
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representation from which to learn features and the apparent difficulty of producing

useful features from the raw data representation. Across multiple large datasets,

the claims that the approaches built on spectral representations perform best are

challenged, adding weight to the intuition that data generation via the methods

described in Chapter 2 is comparable to audio. Furthermore, the performance of an

additional feature, Time of flight (TOF) is presented. Using this relatively unexplored

feature with wingbeat frequency is shown to produce an accuracy greater than either

feature individually. In an analysis of these results, it was shown, by the type I and type

II errors of key class sub-groups, that these features can be effective in discriminating

between classes of male mosquitoes, female mosquitoes and flies, adding weight to the

idea of a hierarchical classification framework that would attempt to minimise the use

of resources.

The work in Chapter 5 provided motivation for the attempts to improve RISE, the

spectral component of the HIVE-COTEv1.0 approach. These contributions are detailed

in Chapter 4. The contributions made, fall into 2 broad categories, improvements in

usability and improvements in accuracy. Preliminary experiments on large datasets

had previously highlighted how prohibitive the runtime complexity of RISE was for

large problems. An ablative study on the transforms used revealed that 2 of these

were in fact redundant. Although this did lead to a reduction in runtime, there was

still a requirement to further control the train time specifically. Two training time

control mechanisms were introduced and tested. The naive approach represented an

obvious approach to controlling the train time of a forest archetype - checking and, if

necessary, ending the training phase between each tree, whilst the adaptive approach

used a regression model to change the maximum interval space, ensuring that the

contract time was strictly adhered to. The ability of each mechanism to scale, was

explored via a study of large datasets from the UCR archive, where the consistency
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of the adaptive mechanism was clearly shown. Having improved the usability of the

RISE algorithm with an effective and reliable method of controlling training time, the

focus shifted to attempting to improve the accuracy of the approach. As with most

tree based approaches, the cRISE architecture comprised of 3 main parts: interval

selection, transformation and base learner. The second algorithmic contribution was

the result of a review of the interval selection policy. A total of 4 policies were tested,

including the original policy. An analysis of selected attributes showed that the process

of selecting length before start point, or start point before length, was fundamentally

flawed and resulted in a skewed distribution. A new approach in which intervals were

chosen based on a number of split points, had a profound effect on the distribution

of selected attributes. Through experiments on the UCR archive, this approach was

also found to be significantly more accurate, and as a result became the default

procedure. Finally, a lengthy review of spectral transforms and transform combination

approaches was undertaken in order to maximise the predictive accuracy of cRISE.

In preparation for this review, additional transforms were implemented, including: 6

descriptive audio features quantifying characteristics such as brightness or the spectral

‘centre of mass’; cepstral coefficients and spectrograms. Firstly the performance of each

transform separately was assessed, contrasting performance with the default cRISE

implementation. These experiments led to an investigation into intelligently selecting

transforms. The work was centred around the idea of selecting a transform based

on either a proxy, or performance on resamples of the train set and 3 approaches

were implemented. The findings indicated that none of these approaches were able

to outperform the default cRISE configuration and all attempts to intelligently select

a single transform, were found to be significantly worse. This led to considerations

of alternative ways of combining the expanded pool of transforms, including ablation

studies, in order to identify redundancy in the included transforms. The experiments
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culminated in 2 transformation combination techniques, that both outperformed the

default cRISE configuration. Firstly, there was combination via CAWPE method,

introduced by Large et. al. [52], in which each transform is trained individually before

the train distributions are combined. Secondly, there was the cumulative approach, in

which individual transforms are concatenated. The difference in test accuracy between

the best configurations of the two approaches was found to be insignificant, although

the cumulative approach was marginally more accurate and exhibited a lower variance

in accuracy over 30 stratified resamples of the UCR archive. Furthermore, it was shown

that the runtime of this approach was lower on larger problems. As a result, it was

favoured moving forward and this new cRISE configuration was denoted as cRISEAll.

Armed with a significantly improved spectral approach, the work in Chapter 6 fo-

cuses on two contributions: assessing the current state-of-the-art time series approaches

on the application of insect classification, including the newly presented state-of-the-art

InceptionTime and HIVE-COTEv2.0 ensembles, and using these findings to present

and analyse methods of hierarchically combining both expert and series approaches to

improve accuracy and reduce runtime on the datasets presented in Chapter 2. Starting

with a review of expert feature performance, questions were raised regarding the

reliability of these features. In 3/4 of the insect-wingbeat datasets, the predictions of

approaches trained on both the wingbeat frequency and the TOF feature were shown to

be pathological. Furthermore, questions regarding the fragile nature of the TOF feature

were raised, when considering its performance over multiple datasets. However, the

effectiveness of these features was shown to be considerable on the InsectSound dataset.

In an analysis of the confusion matrices from approaches trained on expert features,

it was clear that these features worked best when distinguishing between classes that

were sex or species separated. In experiments assessing performance in conjunction

with raw and spectral dataset representations, the results contradicted expectation.
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Approaches that produced features from convolutions, such as: Arsenal, RESNET

and InceptionTime, were better able to extract meaningful information from the raw

pseudo-acoustic data representation, whereas spectral approaches such as cRISEAll did

not perform as well as expected. InceptionTime was found to perform best, on 3 out

of 4 of the insect-centric datasets. In the final section, results demonstrate that these

features are also effective in improving classification accuracy, whilst reducing run time.

In experiments focused on the InsectSound dataset, 2 hierarchical and 2 cumulative

methods of distribution combination were found to be more accurate than the single

best approach, InceptionTimeRaw. Of these, the most efficient approach was shown to

be 0.6% more accurate and capable of producing 48/10,000 more true positive female

mosquito predictions, 83/15,000 fewer false positive female mosquito predictions and

used 1.5 hours less processing time than InceptionTimeRaw. In comparison, the most

accurate of these combination methods was shown to be 4.14% more accurate, capable

of producing 139/10,000 more true positive female mosquito predictions and, 45/15,000

fewer false positive female mosquito predictions then InceptionTimeRaw.

When referring back to the questions posed in Sub-section 1.1 we can confidently

conclude that it is possible to classify multiple species of mosquitoes into their respective

sex using wingbeat features. The extent to which this is possible depends on a number

of factors and in the general case where the number of species is very large the

performance will be degraded. Experiments devised to asses whether it is possible

to determine a mosquitoes genera produced a less convincing result. In general the

intra-class variance caused by grouping mosquitoes of both sexes into one class is

much larger than the inter-class variance you expect to see between species. For this

reason, the ability to classify mosquitoes into the respective genus is poor unless there

is significant morphological differences between the species. However, thorough the

experimental results presented in Chapters 5 & 6 it is clear that the IncpetionTime
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approach represents a promising avenue for research in this application moving forward.

This is further evidenced in Section 6.7 where a hierarchical method is shown to perform

very well with respect to both accuracy and processing time, when combined with a

simple approach trained using time-of-flight and wingbeat frequency, showing that it

is possible to devise a hierarchical approach to classifying mosquitoes that reduces

processing time whilst maintaining or improving accuracy.

7.2 Future Work

In both Chapters 5 and 6 it was shown that expert features, particularly in combination

have a potential to positively influence absolute accuracy. However, these features

were also shown to be fragile and on only one of the four application focused datasets

included, were they able to demonstrate practical use. It is clear to us that their

effectiveness is coupled to the configuration of data. The overlap in distribution of

wingbeat frequency across multiple species of mosquito is well documented, and is

demonstrated again in Chapter 2, Sub-Section 2.5.4. However, until this point, little

consideration has been given to the distribution of sex separated groups, the broader

problem of discerning mosquitoes from other flying insects, or how the morphological

differences might be leveraged in an application focused solution. That being said, it

is clear that more work needs to be done, in order to fully explore the limitations of

these features and further validate their role in a hierarchical classification framework.

The decision to frame the final approach entirely as a classification problem meant

that the experimental methodology was consistent and the results throughout are

directly comparable. However, it meant that the use of clustering approaches in the

proposed hierarchical methods were not considered. The work in this thesis presents the

idea that the correct classification of female mosquitoes is an important consideration,

due to their role in the spread of disease. Collaboration with stakeholders directly
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involved with disease mitigation programmes would provide a valuable contribution and

help inform the future direction of research with respect to the focus of performance

and dataset curation. The work considered multiple dataset representations and looked

closely at performance between groups of classes. Providing the maximisation of

female mosquito accuracy is considered desirable the next step might be to reduce

the number of class labels, to better reflect the problem, possibly incorporating 3

levels of hierarchy. Reconfiguration of data in this manner is likely to have a positive

effect on accuracy, providing the opportunity for algorithms to learn features common

to targeted characteristic agnostic of factors, such as specie. The expectation is

that this will be preferential to the method of combining test distributions prior to

classification, but could also be used alongside the methods presented here, to provide

two classifications. In addition, future research would benefit from collaboration with

hardware manufacturers, such as those mentioned in Chapter 2, Sub-Section 2.4.2,

which would provide the opportunity to assess the impact of different algorithm and

dataset configurations on power consumption in a real world setting, an important

factor in proving the viability of the application in real terms.

In summary, this thesis has demonstrated the feasibility of a hierarchical approach

to insect classification, via the use of expert features such as: fundamental wingbeat

frequency and time-of-flight information. Experimental results have shown that useful

and meaningful features can be extracted from the profiles of raw wingbeat data,

produced via optical sensors. Deep learning approaches have been shown to be

particularly effective on the datasets tested, outperforming competing non-deep-learning

approaches in combination with spectral features. In the future, I expect the coalescence

of these two streams of research to act as an accelerant on the road towards producing

a viable ‘real-world’ solution.
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(a) InsectSounds+T1, HIVE-COTEv1.0 (b) MosquitoSounds, cRISE

Fig. A.1 Figures showing the confusion matrices for the HIVE-COTEv1.0 approach on
the T1 transformed InsectSounds and cRISE on the MosquitoSounds datasets.
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Table B.1 Dataset information for the insect wingbeat datasets in the frequency domain.

Dataset Classes Instances Attributes Majority class

AphidsSpec

A. fabae 2,036

4,000 0.4203

D. platanoidis 3,192
M. persicae 19
P. testudinaceus 115
Pollen beetle 4,034
Ps. chrysocephala 194
R. padi 8

FruitFliesSpec
melanogaster 6,064

4,000 0.5305suzukii 10,142
zaprionus 18,312

InsectSoundSpec

Ae. aegypti ♀ 5,000

3,000 0.1000

Ae. aegypti ♂ 5,000
Dr. simulans 5,000
Mu. domestica 5,000
Cx. quinquefasciatus ♀ 5,000
Cx. quinquefasciatus ♂ 5,000
Cx. stigmatosoma ♀ 5,000
Cx. stigmatosoma ♂ 5,000
Cx. tarsalis ♀ 5,000
Cx. tarsalis ♂ 5,000

MosquitoSoundSpec

Ae. aegypti 5,000

3,000 0.166

Ae. albopictus 5,000
An. arabiensis 5,000
An. gambiae 5,000
Cx. pipiens 5,000
Cx. quinquefasciatus 5,000
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(a) HSP+TOF, C4.5 (b) HSP, C4.5

(c) TOF, C4.5

Fig. B.1 Figures showing the confusion matrices for: HSP+TOF, HSP and TOF
transformed Aphids datasets.
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(a) HSP+TOF, C4.5 (b) HSP, C4.5

(c) TOF, ED

Fig. B.2 Figures showing the confusion matrices for: HSP+TOF, HSP and TOF
transformed FruitFlies datasets.
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(a) HSP+TOF, BayesNet (b) HSP, SVML

(c) TOF, BayesNet

Fig. B.3 Figures showing the confusion matrices for: HSP+TOF, HSP and TOF
transformed InsectSound datasets.



174

(a) HSP+TOF, BayesNet (b) HSP, SVML

(c) TOF, BayesNet

Fig. B.4 Figures showing the confusion matrices for: HSP+TOF, HSP and TOF
transformed MosquitoSound datasets.
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Table B.2 Table of pairwise t-values computed from a paired t-test on 30 folds on the Aphids dataset.

HCv2.0 Arsenal DrCIF STC TDE RISEAll IT RESNET
HCv2.0 6.1640 10.229 28.8332 33.1546 36.2304 -38.7348 7.6393
Arsenal 6.6372 27.4703 31.3505 32.2629 -36.6012 5.787
DrCIF 23.7358 28.0127 30.7277 -36.2440 2.0312
STC 1.2087 -17.6255 -40.8037 -20.8579
TDE -19.0813 -39.6116 -25.8521
RISEAll -62.0329 -13.1532
IT 29.3565
RESNET

df 29
Critical value (one-tail) 1.699127
Critical value (two-tail) 2.04523
α 0.05
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Table B.3 Table of pairwise t-values computed from a paired t-test on 30 folds on the FruitFlies dataset.

HCv2.0 Arsenal DrCIF STC TDE RISEAll IT RESNET
HCv2.0 8.3646 98.2049 80.1971 37.4912 201.7816 2.8515 -39.8425
Arsenal 109.9601 80.9508 36.4262 222.1941 2.8092 -49.4568
DrCIF 64.4605 27.5704 124.7528 1.7486 -158.3778
STC -1.0739 -33.051 -1.7491 -88.5826
TDE -13.7961 -1.600 -40.9348
RISEAll 0.0783 -251.64
IT -3.2851
RESNET

df 27
Critical value (one-tail) 1.703288446
Critical value (two-tail) 2.051830516
α 0.05
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Table B.4 Table of pairwise t-values computed from a paired t-test on 30 folds on the InsectSound dataset.

HCv2.0 Arsenal DrCIF STC TDE RISEAll IT RESNET
HCv2.0 43.7745 68.1316 96.1483 26.5258 109.2032 -83.444 -41.6243
Arsenal 48.7923 80.2915 25.3306 90.5023 -100.878 -59.2557
DrCIF 39.7805 22.8441 46.4195 -118.561 -78.663
STC 20.7009 1.0624 -129.973 -93.6003
TDE -20.4886 -34.1422 -29.7568
RISEAll -138.01 -101.254
IT 46.3631
RESNET

df 29
Critical value (one-tail) 1.699127
Critical value (two-tail) 2.04523
α 0.05



178

Table B.5 Table of pairwise t-values computed from a paired t-test on 30 folds on the MosquitoSound dataset.

HCv2.0 Arsenal DrCIF STC TDE RISE-ALL IT RESNET
HCv2.0 39.4179 37.2270 30.3396 22.1024 59.7902 -27.6146 -0.2947
Arsenal 26.2849 29.3109 21.6130 51.6935 -30.3167 -0.8557
DrCIF 26.9705 20.2567 18.7134 -36.9167 -2.0648
STC 7.7864 -24.7041 -35.7968 -13.0761
TDE -19.6674 -27.0155 -17.8446
RISE-ALL -39.8241 -2.9016
IT 5.5140
RESNET

df 22
Critical value (one-tail) 1.717144
Critical value (two-tail) 2.073873
α 0.05
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Algorithm 11 A.1.
1: function combineTestDistributions(t, M1, M2)
2: Let t =< x1 . . . xn, c > be a test case consisting of n attributes and a class value.
3: Let c ∈ C.
4: Let M1 be the trained BayesNetHSP+TOF model.
5: Let M2 be the trained InceptionTimeRaw model.
6: pc ←M1.getPrediction(t)
7: if isF lyClass(pc) then
8: return M1.getTestDistribution(t)
9: else

10: return M2.getTestDistribution(t)

Algorithm 12 A.2.
1: function combineTestDistributions(t, M1, M2, belief)
2: Let t =< x1 . . . xn, c > be a test case consisting of n attributes and a class value.
3: Let c ∈ C.
4: Let M1 be the trained BayesNetHSP+TOF model.
5: Let M2 be the trained InceptionTimeRaw model.
6: d1 ←M1.getTestDistribution(t)
7: if getF lyProb(d1) > belief then
8: pc ←M1.getPrediction(t)
9: if isF lyClass(pc) then

10: return M1.getTestDistribution(t)
11: else
12: dt ←< 01 . . . 0C >
13: dt[highestF lyProbIndex(d1)] = 1
14: return dt

15: else
16: return M2.getTestDistribution(t)
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Algorithm 13 A.3.
1: function combineTestDistributions(t, M1, M2, belief)
2: Let t =< x1 . . . xn, c > be a test case consisting of n attributes and a class value.
3: Let c ∈ C.
4: Let M1 be the trained SVMLHSP model.
5: Let M2 be the trained InceptionTimeRaw model.
6: d1 ←M1.getTestDistribution(t)
7: if getF lyProb(d1) > belief then
8: pc ←M1.getPrediction(t)
9: if isF lyClass(pc) then

10: return M1.getTestDistribution(t)
11: else
12: dt ←< 01 . . . 0C >
13: dt[highestF lyProbIndex(d1)] = 1
14: return dt

15: else
16: return M2.getTestDistribution(t)

Algorithm 14 A.4.
1: function combineTestDistributions(t, M1, M2, M3, belief)
2: Let t =< x1 . . . xn, c > be a test case consisting of n attributes and a class value.
3: Let c ∈ C.
4: Let M1 be the trained SVMLHSP model.
5: Let M2 be the trained BayesNetHSP+TOF model.
6: Let M3 be the trained InceptionTimeRaw model.
7: d1 ←M1.getTestDistribution(t)
8: pc ←M1.getPrediction(t)
9: if (getF lyProb(d1) > belief) isF lyClass(pc) then

10: return M1.getTestDistribution(t)
11: else
12: d2 ←M2.getTestDistribution(t)
13: d3 ←M3.getTestDistribution(t)
14: dt ← meanDist(d2, d3)
15: return dt
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Algorithm 15 A.5.
1: function combineTestDistributions(t, M1, M2, belief)
2: Let t =< x1 . . . xn, c > be a test case consisting of n attributes and a class value.
3: Let c ∈ C.
4: Let M1 be the trained BayesNetHSP+TOF model.
5: Let M2 be the trained InceptionTimeRaw model.
6: d1 ←M1.getTestDistribution(t)
7: pc ←M1.getPrediction(t)
8: if (getF lyProb(d1) > belief) isF lyClass(pc) then
9: return M1.getTestDistribution(t)

10: else
11: d1 ←M1.getTestDistribution(t)
12: d2 ←M2.getTestDistribution(t)
13: dt ← meanDist(d1, d2)
14: return dt

Algorithm 16 B.1.
1: function combineTestDistributions(t, M1, M2, belief)
2: Let t =< x1 . . . xn, c > be a test case consisting of n attributes and a class value.
3: Let c ∈ C.
4: Let M1 be the trained BayesNetHSP+TOF model.
5: Let M2 be the trained InceptionTimeRaw model.
6: d1 ←M1.getTestDistribution(t)
7: d2 ←M2.getTestDistribution(t)
8: dt ← meanDist(d1, d2)
9: return dt
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Algorithm 17 B.2.
1: function combineTestDistributions(t, M1, M2)
2: Let t =< x1 . . . xn, c > be a test case consisting of n attributes and a class value.
3: Let c ∈ C.
4: Let M1 be the trained BayesNetHSP+TOF model.
5: Let M2 be the trained InceptionTimeRaw model.
6: d1 ←M1.getTestDistribution(t)
7: d2 ←M2.getTestDistribution(t)
8: if (getF lyProb(d1) > getMosquitoProb(d1)) & (getF lyProb(d2) >

getMosquitoProb(d2)) then
9: dt ←< 01 . . . 0C >

10: dt[highestF lyProbIndex(d1, d2)] = 1
11: return dt

12: else
13: if (getMaleProb(d1) > getMaleProb(d1)) & (getMaleProb(d2) >

getMaleProb(d2)) then
14: dt ←< 01 . . . 0C >
15: dt[highestMaleProbIndex(d1, d2)] = 1
16: return dt

17: if (getFemaleProb(d1) > getFemaleProb(d1)) & (getFemaleProb(d2) >
getFemaleProb(d2)) then

18: dt ←< 01 . . . 0C >
19: dt[highestFemaleProbIndex(d1, d2)] = 1
20: return dt

21: dt ← meanDist(d1, d2)
22: return dt
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