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Abstract—AI-driven detection systems are playing an increas-
ingly important role in the advancement of precision agriculture.
In this paper, we have implemented a transfer learning pipeline
for water droplet detection with the intent to develop quantifiable
and real-time detection of post-spray areas for precision spraying
applications. The object detection pipeline effectively identified
multiple features for water droplet detection from the three
curated datasets. We have used two pre-trained convolutional
backbones as the feature extractor and achieved an overall de-
tection mean average precision across the three curated datasets
of 0.409 and 0.277 for the ResNet50, and MobileNetV3-Large
backbones respectively. Additionally, for visual explanations and
interpretation, we implemented EigenCAM class activation map-
ping techniques to highlight the regions of the input images that
are important for predictions.

I. INTRODUCTION

In the present-day world, precision agriculture is of vital
importance and many precise data-driven AI components
are being used extensively as technological advancements
occur. In this paper, we explore water droplet recognition
for precision spraying that will help quantify the aftereffect
of spraying. The current requirements for precision spraying
systems are changing to fall in line with the new EU green
deal [1]. According to the regulations, precision sprayers need
to be evaluated to ensure each system can achieve suitable
accuracy in spraying applications with an aim to minimise
the usage of chemicals. Therefore, the evaluation must rely
upon what has been sprayed and what has happened following
the usage of the sprayer. There have been some attempts
on spraying aftereffect measurement attempts in recent years
[2]. However, we are formulating a methodology based on
water droplet detection on plant surfaces as a measure of
efficacy in spraying applications. We have used state-of-the-art
deep learning methods to detect each droplet formed on plant
surfaces after spraying. For this paper, we have used pseudo
realistic experimental data generated in a lab setting as there
are no other available datasets as this has not been attempted
before. We will use transfer learning to aid accuracy and to
see if we can find any transferable features.

The remaining sections of this paper are organised as fol-
lows. In section II, we provide a description of the dataset used
and further detail on the droplet detection network. Following
this, we have presented results with Saliency Class Activation
Maps (CAMs) to illustrate what features the network is

looking at. The influence of model backbones on the model
accuracy are also discussed in this section. Finally, conclusions
are drawn in Section IV.

II. METHODOLOGY

A. Dataset Description

We have collected three datasets (discussed in following
subsections) to capture properties of droplets to investigate the
efficacy of the usage of deep learning approaches to identify
useful features for droplets. We have named the datasets as
Drying, High Magnification, and High Resolution in table I.
The columns Max and Min in table I indicate the maximum
and minimum number of instances per image.

TABLE I
STATISTICS ON DATASET INSTANCES

Dataset Instances Dataset Name Max Min
Drying Droplets 311 Dataset-1 26 2
High Magnification 200 Dataset-2 1 1
High Resolution 2891 Dataset-3 475 4

1) Drying Droplets: This dataset was collected using a high
magnification camera pointed at a leaf that was sprayed and
recorded over time to observe the spray pattern as the droplets
wither away. This dataset is labeled as ’Drying’ in table I.
These images would provide ideal exposure to the temporal
features of droplets changing over time.

2) High Magnification: We have a second set of data with a
camera that tracks a single droplet using a high magnification
camera to highlight the shape and the curvature of the droplets.
The second row in table I relates to this set and this dataset
would aid a Deep Neural Network (DNN) to learn droplet
shape related features.

3) High Resolution: This dataset was collected manually
by gathering images including droplets on plant surfaces from
Flickr as a way of augmenting the previous two datasets. Our
hypothesis with this dataset is the addition of instances from
this dataset will increase the detection accuracy of the droplets
in general.

B. Droplet Detection Network

To develop the object detection pipeline for this task,
have used a Faster RCNN [3] architecture. We have exper-
imented with two backbones so far; namely, ResNet50, and



MobileNetV3-Large. These are available for transfer learn-
ing from PyTorch. Each network had comparable parameters
during training. Once model training was done, we generated
CAMs for test images using the recently proposed EigenCAM
[4] for providing further insight to the model.

III. RESULTS

In this section, we have presented results for each dataset.
Shown in table II are the mean average precision (mAP) scores
for both backbones across the datasets.

TABLE II
MEAN AVERAGE PRECISION (MAP) RESULTS

Backbone Dataset mAP
ResNet50 Dataset-1 0.646
MobileNetV3 Dataset-1 0.569
ResNet50 Dataset-2 0.910
MobileNetV3 Dataset-2 0.902
ResNet50 Dataset-1,2,3 0.409
MobileNetV3 Dataset-1,2,3 0.277
ResNet50 Augmented Dataset-1 0.640
MobileNetV3 Augmented Dataset-1 0.587
ResNet50 Augmented Dataset-2 0.898
MobileNetV3 Augmented Dataset-2 0.870

A. Dataset-1,2 Results

As can be seen from the first two rows in table II, for
the Drying dataset, the ResNet50 achieved an mAP of 0.646
whilst the MobileNetV3-Large achieved an mAP of 0.569.
From table II the results for the High Magnification dataset
are optimal. The ResNet50 achieved an mAP of 0.910 whilst
the MobileNetV3-Large achieved an mAP of 0.902.

Fig. 1. Class Activation Maps from the final layers of ResNet50 and
MobileNetV3-Large backbone for an instance from Dataset-1 (first row) and
Dataset-2 (bottom row).

B. Augmentation using the High Resolution Dataset

The hypothesis, as previously mentioned, requires us to
compare the mAP from the Drying and High Magnification
datasets to the augmented dataset results. These are shown
in table II, unfortunately the only results that have improved
are the MobileNetV3-Large with the Drying dataset. This is
reinforced with figure 2 which shows the CAMs for both
backbones. From figure 2 it can be seen that a temporal feature
has been used for the MobileNetV3-Large when considering
the High Resolution image. It could be suggested that this
feature could also be used for other images in the test set for

the Drying dataset and improve the mAP. Interestingly, when
comparing results from figure 1 and 2 it can be shown that
the ResNet50 finds different features for the Drying dataset
using a pattern when mixing with the other datasets instead of
a temporal one. Yet the ResNet50 still uses temporal features
to identify the High Magnification droplet.

Fig. 2. Class Activation Maps from the final layers of ResNet50 (middle row)
and MobileNetV3-Large (bottom row).

IV. CONCLUSION

To conclude, we have presented an explainable AI approach
for droplet detection using CAMs, allowing us to gain further
understanding of features for water droplet detection. When
considering different backbones, this provides a visual clue on
which network is more effective along with the values given by
the accuracy indicators. The usage of multiple datasets allowed
for different features to be found for each dataset. When
considering the Drying dataset and the High Magnification
dataset, temporal features were captured by the ResNet50
backbone, but not by the MobileNetV3 backbone. The future
work for this paper is to use more realistic datasets to identify
droplet features that can be used for monitoring purposes in a
real-world precision spraying setup. We are aiming to develop
and fine-tune an accurate droplet detection network by utilising
the findings from our exploration.
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