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Abstract
The colonization of six edible plant species: alfalfa, broccoli, coriander, let-
tuce, parsley and rocket, by the human pathogen Shigatoxigenic Escheri-
chia coli was investigated following two modes of artificial inoculation of
seeds, by soaking or watering. The frequency and extent of colonization of
cotyledons depended on the mode of inoculation, with three, rapidly germi-
nating species being successfully colonized after overnight soaking, but
slower germinating species requiring prolonged exposure to bacteria by
watering of the surrounding growth media. Separate analysis of the cotyle-
dons and leaves from individual plants highlighted that successful coloniza-
tion of the true leaves was also species dependent. For three species,
failure of transfer, or lack of nutrients or suitable microhabitat on the leaf sur-
face resulted in infrequent bacterial colonization. Colonization of leaves was
lower and generally in proportion to that in cotyledons, if present. The poten-
tial risks associated with consumption of leafy produce are discussed.

INTRODUCTION

The food-borne human pathogen Shigatoxigenic
Escherichia coli (STEC) has the potential to cause a
range of serious diseases including haemorrhagic coli-
tis, haemolytic uraemic syndrome and central nervous
system damage (Kaper et al., 2004). Recent outbreaks
have been traced to contamination of fresh produce
including Romaine lettuce (CDC, 2018a, 2018b, 2019)
or leafy greens (CDC, 2017, 2020a). It is now recog-
nized that STEC have adaptations in common with
other phyllosphere bacteria that enhance their ability to
colonize and survive on plants including adhesion to
the cuticle, nutrient acquisition and tolerance to biotic
and abiotic stress (Holden et al., 2009; Lemanceau
et al., 2017; Lim et al., 2014; Méric et al., 2013).

During germination, the leakage of solutes and low-
molecular-weight metabolites from the seed allows

recruitment of microorganisms from inside the seed
or from the surrounding environment to form the sper-
mosphere and subsequently the rhizosphere
(Lemanceau et al., 2017; Nelson, 2004; Schiltz
et al., 2015). This nutrient release helps to explain
why numerous STEC outbreaks have been associ-
ated with sprouted seeds including alfalfa
(CDC, 2016), clover (CDC, 2012, 2014, 2020b), fenu-
greek (Buchholz et al., 2011) and white radish
sprouts (Michino et al., 1999; Watanabe et al., 1999),
the source of isolate STEC O157:H7 Sakai employed
in the current study. Similarly, the young seedlings
consumed as microgreens/microherbs present
favourable environments for extensive growth of
STEC (Işık et al., 2020; Wright & Holden, 2018; Xiao
et al., 2014, 2015). For more mature plants, leaf age
is known to be a factor that impacts colonization
(Brandl & Amundson, 2008; Thompson et al., 1993).
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Whilst germinating seeds can be readily colonized
by human pathogenic bacteria including STEC, previ-
ous studies have not followed this colonization to the
stage of leaf development (Cui et al., 2018). Investi-
gation of broccoli microgreens grown on textile-fibre
matting suggested that the colonization of the leaves
by STEC was greatly reduced compared to that on
the cotyledons (Wright & Holden, 2018), raising ques-
tions about the impact of these two distinct develop-
mental stages in bacterial colonization. To address
this, we examined the colonization ability of STEC on
six edible crop species, inoculated during germination
and subsequently grown in compost. Colonization by
STEC-Sakai was examined by either detecting pres-
ence using an indicator medium or estimating infec-
tion level using an most probable number (MPN)
method (Wright et al., 2021). For each plant species,
both developmental stages were examined to inform
on any preferential levels of colonization and/or trans-
mission within the plant host. Two methods of inocu-
lation were employed to compensate for different
rates of seed germination and ensure the presence of
STEC during the development of the spermosphere,
with colonization being investigated at an individual
plant and tissue level. We found that the frequency
of, and the level of colonization of cotyledons and
subsequent transfer to the true leaves is species
dependent.

EXPERIMENTAL PROCEDURES

Bacteria

STEC isolate Sakai (kanamycin resistant) (Dahan
et al., 2004), transformed with the reporter pgyrA-gfp
plasmid (Holden et al., 2006) (chloramphenicol resis-
tant) for detection, was grown in defined medium with
chloramphenicol (25 μg ml�1) at 18�C as described
previously (Wright & Holden, 2018). Cultures were
diluted to a cell density of OD = 0.2600nm (�8.0 log10
CFU ml�1) in plant growth medium 0.5� Murashige
and Skoog (MS. Murashige & Skoog, 1962) adjusted to
pH 5.8 with NaOH (Duchefa product M0222) and fur-
ther diluted as required.

Plant material

Seed stocks, as detailed in Table 1, were purchased
from Dobies, Paignton, UK; Unwins, Huntingdon, UK;
Chiltern Seeds, Wallingford, UK. Seeds (see Figure 1
for seed morphology) were surface sterilized in 5%
domestic bleach solution (Domestos, Unilever: includes
10% sodium hypochlorite, 0.1%–1% sodium hydroxide
and surfactant) for 5 min followed by six rinses in sterile
distilled water (SDW). For inoculation, seeds were
either ‘soaked’ overnight in ½ MS containing STEC-
Sakai at 107 CFU ml�1 and then rinsed 6� in SDW.
Alternatively, seeds were transferred to plastic tubs
lined with purple matting and ‘watered’ with one dose
of 15 ml ½ MS containing GFP-Sakai at 103 CFU ml�1

(see Wright & Holden, 2018), as indicated (Table 2)
and maintained in a growth cabinet (16 h light, 8 h dark,
21�C) until germinated and showing signs of cotyledon
and root emergence (4–11 days). Whether soaked or
watered, germinated seedlings were transferred to
‘Araflat’ trays containing commercial compost, where
necessary fitted with plastic collars to prevent cross
contamination between plants (Arasystem, Ghent,
Belgium) and maintained in a quarantine growth room
(16 h day, 23�C, 8 h night, 21.5�C, humidity 60%–80%,
watering with mains tap water).

For the presence or absence assessment, plants
were harvested following leaf emergence (Figure 1)
using forceps and scalpel treated in 70% ethanol and
separated into the cotyledons including the stem cut
just above soil level, or the leaves including the stem
cut above the cotyledons. Samples were collected in
2 ml or 5 ml tubes and MacConkey purple broth plus
chloramphenicol (final 25 μg ml�1) (MAC-p-cml) added.
For quantification, samples were harvested as above
into pre-weighed tubes, weighed, ground and resus-
pended in 1 ml PBS. These extracts were serially
diluted 1:10 in PBS, with five steps for the cotyledons
and three steps for the leaves, subsampled in triplicate
with 100 μl added to 400 μl MAC-p-cml and incubated
for 40 h (Wright et al., 2021). The addition of chloram-
phenicol selected for the presence of STEC-Sakai,
which was scored as the change in colour from purple
to yellow. MPN of bacteria was estimated using the
method of Jarvis et al. (2010). For all-negative samples,

TAB LE 1 Species used in this study detailing common, species and family names, and seed supplier

Name Species Family Supplier

Alfalfa Medicago sativa Fabaceae Dobies

Broccoli Brassica oleracea Brassicaceae Unwins

Coriander Coriandrum sativum Apiaceae Unwins

Parsley (Italian Plain Leaved) Petroselinum crispum Apiaceae Unwins

Rocket, Victoria Eruca vesicaria subsp. Sativa Brassicaceae Unwins

Lettuce, Curled and Oak leaf, ‘Lollo-Rossa’ Lactuca sativa Asteraceae Chiltern
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the value of 1 was recorded as below the limit of detec-
tion (=3). For samples with all-positive results, which
should represent infinity, the next lowest value for 3-3-2
was recorded and multiplied up as appropriate. For
each species, the extent of STEC colonization was
investigated under inoculation conditions, which
resulted in frequent colonization of the cotyledons.

The time to germination was assessed by sowing
five replicate plates, containing 0.5% distilled water
agar, with 10 seeds of each species per plate. The
plates were maintained at room temperature and the
emergence of radicles scored daily.

Statistical analysis

All statistical analyses were conducted in R version
3.6.3. For those species and inoculation method where
prevalence was >0 and <1, quantitative differences in
the proportion of cotyledons and leaves infected among
species and method of inoculation was estimated using
a logistic model followed by an odds ratios test for pair-
wise comparisons. For lettuce, this method was also
used to compare between the two substrates. These
logistic models were implemented using the ‘mgcv’,
‘car’ and ‘lsmeans’ packages. Non-parametric tests
were required for colonization rate determination (MPN
g�1 FW) as the response variable did not conform to

normality and homogeneity assumptions regardless of
transformation. To test whether cotyledon and leaf colo-
nization were related, a Spearman rank correlation was
used. Differences in colonization rate were compared
among species and inoculation method using a
Kruskal–Wallis test and pairwise comparisons made
using a Dunn’s multiple comparison test with the
Holm–Šid�ak method, implemented using the ‘dunns.
test’ package.

RESULTS

The influence of species type and
inoculation method on STEC seedling
colonization

To determine any species-dependent effect, the fre-
quency of STEC-Sakai colonization was assessed for
six plant species (alfalfa, broccoli, coriander, lettuce,
parsley, rocket) inoculated by ‘seed-soaking’. Alfalfa
showed the highest, and lettuce and parsley the low-
est proportions of seedlings colonized (Table 2).
Although STEC-Sakai were isolated from the cotyle-
dons of most species, there were differences in the
proportion of plants with colonized leaves, with no
bacteria being recovered from the leaves of corian-
der, lettuce or parsley. Similarly, only a low proportion

F I GURE 1 Plants and seeds. (A) Plants of alfalfa, broccoli, coriander, lettuce parsley and rocket within plastic collars recorded immediately
prior to harvest, indicating the approximate point of division (magenta line) between cotyledon (c) and leaf (l) samples. The diameter of each
compost-containing cavity is 5 cm to provide an estimate of scale. (B) Seeds of each species (scale bar = 1 cm)
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of leaf colonization was observed in broccoli and
rocket. In contrast, in alfalfa, the cotyledons of all
plants were colonized along with a high proportion
(0.79) of their leaves.

For the species that showed a low frequency of col-
onization after seed-soaking (broccoli, coriander, let-
tuce, parsley), a prolonged exposure to STEC-Sakai
was applied by germination of seeds on matting
‘watered’ with the bacteria, for which we previously
showed long-term persistence of STEC-Sakai
(Wright & Holden, 2018). The frequency of STEC-Sakai
detection in the cotyledons was significantly higher
using this alternative inoculation regime. For coriander
and parsley, this resulted in a high proportion of plants
with colonized leaves (Table 2). However, the propor-
tion of broccoli and lettuce with colonized leaves
remained low.

Since there was a possibility that the proportion of
colonization was related to germination of the different
species, their time to germination was compared. In
general, the species fell into two classes of relatively
rapid germination, where seeds germinated either
within 3–4 days of sowing for alfalfa, broccoli, lettuce
and rocket or 8–17 days after sowing, for coriander and
parsley.

STEC populations of cotyledons and
leaves

To quantify the extent of colonization, the level of
STEC-Sakai was estimated using the MPN technique.
The colonization rate of STEC-Sakai varied between
species and inoculation methods for both cotyledons
(Figure 2A) and leaves (Figure 2B, Kruskal–Wallis
χ 2

8 = 83.1; p < 0.001). Estimates of the number of
STEC g�1 FW in colonized cotyledons ranged from
log10 1.1 to 6.7 with many plants having in excess of
log10 3.0 g�1 FW (Figure 2A). Watering-inoculated

plants had a significantly higher log MPN than soaked
(p > 0.05). For seed soaked-inoculation, alfalfa
(Z = 4.595; p = 0.0001), broccoli (Z = 3.275;
p = 0.013) and rocket (Z = 3.475; p = 0.007) had a sig-
nificantly higher MPN than lettuce. For watering-inocu-
lation, there was no significant difference among
broccoli, coriander, lettuce and parsley (p > 0.1).

In colonized leaves, estimates of the number of
STEC g�1 FW ranged from log10 0.8 to 4.1 (Figure 2B).

F I GURE 2 Boxplot of median estimates of bacterial numbers
recovered from (A) cotyledon, or (B) leaf expressed as log10 MPN g�1

FW with 25 and 75% quartile ranges and 95% confidence intervals
for soaked and watered plant species. The number of plants analysed
is shown below the x-axis.

TAB LE 2 Comparison of the proportion of plants with positive detections of STEC-Sakai, for cotyledons and leaves

Species Inoculation mode: Exposure time to STEC-Sakai n Cotyledons Leaves

Alfalfa Soak/short 33 1.00 0.79 A

Broccoli Soak/short 79 0.61 A 0.08 B

Coriander Soak/short 30 0.47 A 0.00

Lettuce Soak/short 95 0.07 B 0.00

Parsley Soak/short 25 0.12 B 0.00

Rocket Soak/short 50 0.70 A 0.16 B

Broccoli Watered/long 10 1.00 0.10 B

Coriander Watered/long 37 1.00 0.76 A

Lettuce Watered/long 24 0.92 A 0.13 B

Parsley Watered/long 25 0.92 A 0.48 A

Note: The number of plants per species and inoculation method is indicated. Letters refer to column wise proportions with no significant difference based on odds
ratio test. Coloured boxes indicate level of colonisation, for maximum (purple), high (green) or low (blue) levels.
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Seed-soaked alfalfa had a significantly higher MPN
than broccoli, coriander and rocket (p < 0.001) and no
bacteria were detected in lettuce (Table 2). For corian-
der, inoculation by watering resulted in a significantly
higher estimate of STEC-Sakai than inoculation by
seed soaking (Z = 3.168, p = 0.020). There were no
significant differences between the remaining plant
species for the watering-inoculation treatment, despite
a large range of MPN estimates for watering-inoculated
parsley.

Detection of bacteria in true leaves only occurred
with positive detection in the associated cotyledons
and the level of colonization was always higher in coty-
ledons than leaves of a given plant. For seed-soaked
broccoli and rocket and watered parsley the level of col-
onization in leaves positively correlated with that of the
cotyledons (Rs > 0.49; p < 0.01; Figure 3).

DISCUSSION

This study addressed two main questions: the likeli-
hood of colonization of seedlings by STEC-Sakai fol-
lowing exposure during germination and the frequency
of colonization of the leaves. The likelihood that a seed-
ling was colonized depended on the duration of expo-
sure and species. For alfalfa, broccoli and rocket, a
short, overnight, exposure to STEC (i.e. seed soaking)
was sufficient to result in frequent plant colonization.
This may be explained by rapid uptake of liquid into the
seed and early germination, since the seed coat of
these species was frequently observed to have frac-
tured during overnight seed soaking and seeds germi-
nated within 3–4 days. The mode of inoculation is likely
to directly impact on the bacterial physiological stress
response, with respect to nutrient availability and acqui-
sition, and access to the emerging radical. Although

adhesion of bacteria to the outside of the seed coat
could be expected following overnight treatment with
high concentrations of STEC, for coriander, lettuce and
parsley, either this did not occur or the bacteria did not
survive until seed germination. Parsley and coriander
seeds took longer to germinate and appear to have
more impermeable seed coats. Slower germination has
previously been implicated to enhance the epiphytic
colonization of spring wheat by Pseudomonas syringae
(Fryda & Otta, 1978), but this does not appear to be the
case in the current study. In lettuce, although germina-
tion was rapid, other factors possibly including competi-
tion with soil-borne microbiota, the presence of
inhibitory compounds or a lack of nutrients due to the
slower release of sugars during germination appear to
be involved. A similar absence of colonization by E. coli
0157:H7 of bulked microgreen samples of lettuce
grown in peat has been observed, although coloniza-
tion was observed when grown in perlite (Işık
et al., 2020). The ability of STEC to survive and divide
under low nutrient levels in the absence of competition
has been previously demonstrated (Wright &
Holden, 2018) and this would enable survival of STEC
in watered matting to allow the observed enhanced col-
onization of the slower germinating coriander and
parsley.

The second question addressed the frequency of
colonization of the leaves particularly following inocula-
tion under conditions resulting in frequent colonization
of the cotyledons. For three species: broccoli, lettuce
and rocket, this was infrequent (around 15% of plants),
whereas around half of parsley plants and over 75% of
alfalfa and coriander plants had colonized leaves.
These differences were confirmed when colonization of
the cotyledons or leaves was quantified at an individual
plant level. Previous studies have demonstrated differ-
ences in the frequency of internalization, rather than
total colonization, of STEC by different plant species
following inoculation via contaminated water, but the
use of bulked material did not allow separate analysis
of cotyledons and leaves (Chitarra et al., 2014). Plant
specific, quantitative differences have also been
observed in the colonization of sprouting seeds, with
alfalfa and lettuce having significantly higher numbers
of EHEC cells, followed by fenugreek and tomato seed-
lings, but this was not followed to the stage of leaf
development (Cui et al., 2018).

Due to the large variation between samples, Mac-
Conkey purple broth was used in a quantitative MPN
method to estimate the total level of epiphytic and
potentially endophytic STEC colonization. The errors
inherent in an MPN design of three replicates of three
sequential 10-fold dilution levels, mean that this is an
estimate of the magnitude of the density rather than a
more accurate quantification (ISO 7218, 2007). As
MPN estimates are not a continuous variable we trea-
ted these values as ordinal ranks in non-parametric

F I GURE 3 Relationship between leaf and cotyledon colonization
(log10 MPN g�1 FW) for broccoli (circle), rocket (triangle) and parsley
(square)
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tests. The results confirm that the populations of STEC
are highly variable as observed previously for popula-
tion of epiphytic bacteria ranging from non-detected to
106 CFU/plant part (Hirano & Upper, 1983) and coloni-
zation of the cotyledons is much higher than the leaves.
Whilst the initial colonization of the cotyledons may be
supported by exudates released during the early stages
of germination (Nelson, 2004; Schiltz et al., 2015), fur-
ther bacterial growth may depend on carbon leached
onto the tissue surface (Andrews & Harris, 2000). This
nutrient source will be reduced in leaves, which
develop thicker cuticles (Hunter et al., 2010; Remus-
Emsermann et al., 2011).

The mechanism by which STEC-Sakai migrate from
the germinating seed to the cotyledons or leaves is
unclear. Studies of epiphytic bacteria have suggested
that some bacteria are motile and are dispersed by
swimming whilst others may be established on the
growing point and divide on the growing tissue
(Hirano & Upper, 1983; Leben, 1965). Previous studies
have shown migration of GFP-labelled E. coli O157:H7
from the crown to flowers of Arabidopsis thaliana, but it
is unclear whether this motility involved functional fla-
gella as observed for Salmonella enterica (Cooley
et al., 2003). The low frequency and levels of leaf colo-
nization by STEC-Sakai observed for broccoli, lettuce
and rocket may be the result of failure to migrate to the
expanding leaves or failure to establish and survive on
the leaf surface following transfer during shoot and leaf
expansion. Further, the phyllosphere may be a hostile
environment for bacteria due to stresses including des-
iccation, UV radiation and nutrient availability
(O’Brien & Lindow, 1989; Remus-Emsermann &
Schlechter, 2018) and movement of bacteria has often
been associated with high rather than low humidity
levels (Fryda & Otta, 1978; Hirano & Upper, 1983;
Lindow, 1991). Other factors, including competition with
other endophytic bacteria, or the release of toxic com-
pounds by the plant may also influence the survival of
STEC on leaves (Aruscavage et al., 2006). The higher
biofilm and extracellular matrix production displayed by
E. coli isolates from plants are likely adaptations to miti-
gate against these environmental conditions (Méric
et al., 2013). The frequent and higher levels of coloni-
zation of leaves of alfalfa, coriander and parsley grown
under similar levels of humidity suggest that nutrient
availability or leaf surface topology may be more suited
to support STEC growth in these species (Doan &
Leveau, 2015).

Our results highlight that the cotyledons of seed-
lings germinating in the presence of STEC are likely to
be contaminated and therefore edible foods that
include the cotyledons, for example microgreens and
baby-leaf crops, exposed to contaminated water pre-
sent an increased food safety risk. For alfalfa, coriander
and parsley, this risk may also be extended to con-
sumption of the leaves. However, for broccoli, lettuce

and rocket, the low frequency and extent of leaf coloni-
zation is consistent with previous findings implicating
overhead irrigation as a major source of contamination
of older plants (Solomon et al., 2002). Importantly, we
have shown an interaction between the plant species,
mode of inoculation, which represents transmission
pathway, and developmental age, highlighting the need
to consider each plant crop system independently.
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