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Abstract
Radiotherapy (RT) plays a fundamental role in the treatment of glioblastoma (GBM). GBM are notoriously invasive 
and harbor a subpopulation of cells with stem-like features which exhibit upregulation of the DNA damage response 
(DDR) and are radioresistant. High radiation doses are therefore delivered to large brain volumes and are known to 
extend survival but also cause delayed toxicity with 50%–90% of patients developing neurocognitive dysfunction. 
Emerging evidence identifies neuroinflammation as a critical mediator of the adverse effects of RT on cognitive 
function. In addition to its well-established role in promoting repair of radiation-induced DNA damage, activation 
of poly(ADP-ribose) polymerase (PARP) can exacerbate neuroinflammation by promoting secretion of inflamma-
tory mediators. Therefore, PARP represents an intriguing mechanistic link between radiation-induced activation of 
the DDR and subsequent neuroinflammation. PARP inhibitors (PARPi) have emerged as promising new agents for 
GBM when given in combination with RT, with multiple preclinical studies demonstrating radiosensitizing effects 
and at least 3 compounds being evaluated in clinical trials. We propose that concomitant use of PARPi could reduce 
radiation-induced neuroinflammation and reduce the severity of radiation-induced cognitive dysfunction while at 
the same time improving tumor control by enhancing radiosensitivity.
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Radiotherapy (RT) plays a fundamental role in the treatment 
of patients with brain metastases and primary central nervous 
system (CNS) tumors, extending survival for many of these 
patients. Of the primary malignant brain tumors, glioblastoma 
(GBM) is the most common in adults and carries a very poor 
prognosis (median survival of 12–18 months). GBM are noto-
riously invasive, infiltrating the brain parenchyma extensively, 

so high doses of RT (typically 60 Gy) are often delivered to large 
volumes of brain in order to delay recurrence and extend sur-
vival.1 The irradiated volume inevitably includes normal, func-
tioning brain tissue, and brain RT frequently causes devastating 
effects on brain function. They can be divided into acute, suba-
cute, and late effects, of which the late effects have the greatest 
impact. These arise months or even years after treatment and 
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in many cases culminate in irreversible cognitive decline. 
While adverse neurocognitive effects of RT are common, 
the specific impact of RT on quality of life in long-term sur-
vivors of GBM has not been well characterized. Predicting 
the clinical impact of RT is complicated since both acute and 
late effects of RT on quality of life are context dependent, 
being influenced by numerous radiobiological (RT dose, 
volume, timing, and duration), physiological (preexisting 
brain function), and patient-related factors (age, sex, and 
comorbidities). Although RT remains the most effective 
nonsurgical treatment modality for GBM, its efficacy is con-
founded by the innate and adaptive radioresistance of these 
tumors which is reflected in their inevitable recurrence.

The fundamental rationale for using RT in cancer treat-
ment is based on the rapidly proliferating phenotype 
of cancer cells which, in addition to defects in the DNA 
damage response (DDR), makes them sensitive to frac-
tionated courses of radiation. RT damages cellular DNA 
by causing single strand breaks (SSBs) and double strand 
breaks (DSBs). This initiates the DDR, an intricate signaling 
network of proteins that interrupts cell cycle progression 
and facilitates DNA repair. Failure to repair DNA breaks 
can result in cell death either through apoptosis or via 
mitotic catastrophe, the former being more prevalent in 
nonmalignant cells and the latter predominating in cancer 
cells.2 A  critical subpopulation of GBM cells that retains 
stem cell characteristics exhibits marked upregulation of 
the DDR, which renders them resistant to DNA damaging 
treatments including RT.3

Different cell populations within the normal brain also 
exhibit markedly different levels of radiation sensitivity. 
Neural stem cells and undifferentiated neural progenitor 
cells (NPCs) are highly radiosensitive, undergoing apop-
tosis, proliferative arrest, and premature differentiation into 
other neural cell types in response to relatively low radia-
tion doses.4 As such, it is hypothesized that the neurogenic 
niches in the brain are the most susceptible to radiation-
induced DNA damage and play key roles in the pathogen-
esis of neurotoxicity and associated cognitive deficits.

Beyond this well-documented phenomenon, the pre-
cise mechanisms of RT-induced neurotoxicity are still 
being investigated and appear to be multiple and com-
plex. Recently, emerging evidence cites radiation-induced 
neuroinflammation as a critical predictor of the long-term 
effects of RT on cognitive decline.5 Neuroinflammation 
is the inflammatory response within the CNS and is crit-
ical in the resolution of cellular damage and tissue injury 
upon exposure to a variety of noxious stimuli. The mag-
nitude and duration of the neuroinflammatory response, 
and hence its functional impact, are strongly dependent 
upon the nature of the stimulus with potential for both 
positive (axonal regeneration, tissue repair) and negative 
effects (neuronal damage, cognitive impairment, anxiety/
depression) on brain physiology and behavior. In the con-
text of brain RT, the general consensus is that radiation in-
duces neuroinflammation through activation of microglia, 
astrocytes, and endothelial cells in response to neural cell 
damage.5 The microglia-mediated neuroinflammation that 
ensues is similar in nature to that observed in a variety of 
neurological diseases including Alzheimer’s disease (AD), 
Parkinson’s disease (PD), cerebral ischemia, multiple scle-
rosis (MS), and amyotrophic lateral sclerosis.6

One of the hallmarks of both the DDR and 
neuroinflammation is activation of the poly(ADP-ribose) 
polymerase (PARP) family of proteins. PARP proteins are 
well characterized for their integral role in the DDR, pri-
marily initiating base excision repair (BER) in response to 
SSBs. Binding of PARP-1 to DNA breaks activates its cata-
lytic function, which is to generate long, branching chains 
of poly(ADP-ribose) (PAR) on itself and a variety of target 
proteins. These modifications stimulate recruitment of 
BER-associated proteins and dissociation of PARP-1 from 
the damaged sites, promoting DNA repair and cell sur-
vival.7 To a lesser extent, PARP proteins also interact with 
kinases such as ataxia–telangiectasia mutated (ATM), 
nibrin (NBS1), and DNA-dependent protein kinase catalytic 
subunit (DNA-PKcs) to mediate DSB repair through the ho-
mologous recombination (HR) and nonhomologous end 
joining (NHEJ) repair pathways.7

The mechanisms linking PARP activity to 
neuroinflammation are complex and less well character-
ized than its DDR functions. Accumulating evidence impli-
cates PARP-mediated secretion of inflammatory mediators 
from damaged immune cells as the primary mechanism 
in multiple CNS diseases, including stoke, brain trauma, 
and neurodegenerative processes.8–10 However, this role 
for PARP has not been studied in the context of radiation-
induced neuroinflammation. PARP hyperactivation is 
implicated in several diseases sharing inflammatory/
immune-mediated pathways including those associ-
ated with cancer progression and neurodegeneration.11 
Therefore, PARP activity represents an intriguing mecha-
nistic link between radiation-induced activation of the DDR 
and subsequent neuroinflammation.

Despite the relative lack of mechanistic understanding, 
there is extensive data showing that pharmacological in-
hibition or genetic depletion of PARP exerts beneficial ef-
fects by alleviating neuroinflammation in several animal 
models of inflammatory CNS conditions including stroke, 
traumatic brain injury, meningitis, and experimental auto-
immune encephalomyelitis (EAE).12–15 Likewise, multiple 
studies in various preclinical tumor models have dem-
onstrated that PARP inhibitors (PARPi) have modest but 
consistent radiosensitizing effects; indeed at least 3 PARPi 
are currently undergoing early phase clinical evaluation 
in a variety of cancer types including GBM.16 While PARPi 
have been found to exacerbate acute radiation toxicity in 
rapidly proliferating normal tissues such as the esopha-
geal or oropharyngeal mucosa,17 early data indicate that 
they can be combined with brain RT without adverse ef-
fects.18,19 Utilizing PARPi in combination with brain RT 
offers the exciting prospect of sparing normal tissue from 
radiation-induced neuroinflammation whilst enhancing 
tumor responses to radiation. However, our current under-
standing of the suppressive effects of PARP inhibition on 
neuroinflammation is constrained by the overreliance on 
the use of animal models harboring PARP genetic defects 
(KO) and the relative lack of pharmacological PARPi ca-
pable of penetrating the brain parenchyma. PARPi utilized 
in clinical and preclinical studies block the enzymatic func-
tion of PARP by competing with its nicotinamide adenine 
dinucleotide (NAD+) substrate at the catalytic domain. This 
interferes with the DDR by suppressing BER function but 
also by preventing automodification of PARP thus delaying 

D
ow

nloaded from
 https://academ

ic.oup.com
/noa/article/4/1/vdab190/6498299 by guest on 17 August 2022



3Gutierrez-Quintana et al. PARP and radiation-induced neuroinflammation
N

eu
ro-O

n
colog

y 
A

d
van

ces

One of the hallmarks of both the DDR and 
neuroinflammation is activation of the poly(ADP-ribose) 
polymerase (PARP) family of proteins. PARP proteins are 
well characterized for their integral role in the DDR, pri-
marily initiating base excision repair (BER) in response to 
SSBs. Binding of PARP-1 to DNA breaks activates its cata-
lytic function, which is to generate long, branching chains 
of poly(ADP-ribose) (PAR) on itself and a variety of target 
proteins. These modifications stimulate recruitment of 
BER-associated proteins and dissociation of PARP-1 from 
the damaged sites, promoting DNA repair and cell sur-
vival.7 To a lesser extent, PARP proteins also interact with 
kinases such as ataxia–telangiectasia mutated (ATM), 
nibrin (NBS1), and DNA-dependent protein kinase catalytic 
subunit (DNA-PKcs) to mediate DSB repair through the ho-
mologous recombination (HR) and nonhomologous end 
joining (NHEJ) repair pathways.7

The mechanisms linking PARP activity to 
neuroinflammation are complex and less well character-
ized than its DDR functions. Accumulating evidence impli-
cates PARP-mediated secretion of inflammatory mediators 
from damaged immune cells as the primary mechanism 
in multiple CNS diseases, including stoke, brain trauma, 
and neurodegenerative processes.8–10 However, this role 
for PARP has not been studied in the context of radiation-
induced neuroinflammation. PARP hyperactivation is 
implicated in several diseases sharing inflammatory/
immune-mediated pathways including those associ-
ated with cancer progression and neurodegeneration.11 
Therefore, PARP activity represents an intriguing mecha-
nistic link between radiation-induced activation of the DDR 
and subsequent neuroinflammation.

Despite the relative lack of mechanistic understanding, 
there is extensive data showing that pharmacological in-
hibition or genetic depletion of PARP exerts beneficial ef-
fects by alleviating neuroinflammation in several animal 
models of inflammatory CNS conditions including stroke, 
traumatic brain injury, meningitis, and experimental auto-
immune encephalomyelitis (EAE).12–15 Likewise, multiple 
studies in various preclinical tumor models have dem-
onstrated that PARP inhibitors (PARPi) have modest but 
consistent radiosensitizing effects; indeed at least 3 PARPi 
are currently undergoing early phase clinical evaluation 
in a variety of cancer types including GBM.16 While PARPi 
have been found to exacerbate acute radiation toxicity in 
rapidly proliferating normal tissues such as the esopha-
geal or oropharyngeal mucosa,17 early data indicate that 
they can be combined with brain RT without adverse ef-
fects.18,19 Utilizing PARPi in combination with brain RT 
offers the exciting prospect of sparing normal tissue from 
radiation-induced neuroinflammation whilst enhancing 
tumor responses to radiation. However, our current under-
standing of the suppressive effects of PARP inhibition on 
neuroinflammation is constrained by the overreliance on 
the use of animal models harboring PARP genetic defects 
(KO) and the relative lack of pharmacological PARPi ca-
pable of penetrating the brain parenchyma. PARPi utilized 
in clinical and preclinical studies block the enzymatic func-
tion of PARP by competing with its nicotinamide adenine 
dinucleotide (NAD+) substrate at the catalytic domain. This 
interferes with the DDR by suppressing BER function but 
also by preventing automodification of PARP thus delaying 

its release. This phenomenon of “PARP trapping” is in-
creasingly recognized as playing a key mechanistic role in 
the therapeutic effects of PARPi, and accounts for many of 
the differences observed between pharmacological inhibi-
tion and genetic depletion of PARP.20

The aim of this review is to provide an overview of the 
physiological and clinical impact of radiation-induced 
neuroinflammation and the specific role of PARP enzymes 
in this response. Of the many PARP family proteins, PARP-1 
is by far the most abundant, accounting for up to 90% 
of poly(ADP-ribosylation) in most cells studied to date. 
PARP-2 and PARP-3 are much less abundant but have been 
shown to make measurable contributions to the DDR. Most 
studies in the neuroinflammation field have focused on 
PARP-1. Of note, the vast majority of PARPi currently avail-
able are active against both PARP-1 and PARP-2. This review 
will focus primarily on the role of PARP-1 in the pathophys-
iology of radiation-induced neuroinflammation. We intend 
to emphasize the importance of PARP hyperactivation 
in neuroinflammation and discuss the clinical signifi-
cance of PARPi both as radiosensitizing agents in GBM 
cells and as potential mitigators of radiation-induced and 
inflammatory-mediated neurotoxicity.

Neuroinflammatory Response to 
Ionizing Radiation

The cellular and molecular mechanisms involved in 
radiation-induced brain injury and secondary cognitive 
dysfunction are beginning to be elucidated. Although vas-
cular abnormalities, demyelination, NPC death, decreased 
neurogenesis, and direct glial activation play important 
roles, recent studies have revealed that irradiation (IR) 
can trigger immune responses within the CNS, leading to 
chronic neuroinflammation.5 Neuroinflammation is a com-
plex process, the nature and extent of which depend on 
the context, duration, and anatomical location of the pri-
mary insult. Although the neuroinflammatory response 
has evolved to mitigate triggering factors in order to re-
store and maintain homeostasis, it can also be damaging 
and may result in adverse physiological, biochemical, and 
behavioral consequences. This inappropriate response is 
not well understood but seems to be a consequence of the 
complex mechanisms controlling microglial activation in 
different brain regions.

The pathophysiology of the neuroinflammatory response 
to ionizing radiation involves primary structural damage 
and secondary effects on cell dysfunction that lead to pro-
gressive changes and associated cognitive decline long 
after the initial injury.5 For many years, neuroinflammation 
was considered a self-contained process, predominantly 
regulated by astrocytes and resident immune cells such as 
microglia; this contributed to the dogma that the CNS was 
an “immune-privileged” organ. However, research in the 
last few years has clearly demonstrated that this is not the 
case. Neuroinflammation involves interplay between sev-
eral resident CNS cell types and peripheral immune cells 
that migrate into the brain parenchyma through the blood–
brain barrier (BBB), the permeability of which is often com-
promised upon endothelial cell insult and subsequent 

activation.5 These discoveries have stimulated a compre-
hensive reevaluation of neuroinflammatory responses in 
neurodegenerative diseases, traumatic brain injury and, to 
a lesser extent, the pathophysiology of radiation-induced 
brain injury.

It is well recognized that IR induces activation of mi-
croglia and endothelial cells which together initiate an 
inflammatory response within the CNS.21 Microglia can 
become activated by alarmins secreted by neurons and 
endothelial cells that have suffered radiation damage. 
One well-described example is high mobility group box 1 
(HMGB1), expression of which is upregulated following IR 
exposure and thought to contribute to microglial activation 
by binding to the toll-like receptor 4.22 Another possible 
mechanism for microglial activation is by direct IR-induced 
DNA damage causing modification of transcription factors 
such as nuclear factor κB (NF-κB) and activating protein 1 
(AP-1), which control expression of several genes involved 
in initiating the inflammatory cascade.23 This is followed by 
a surge in inflammatory mediators consisting of cytokines, 
chemokines, and reactive oxygen species (ROS), which are 
produced by microglia and astrocytes.5 These secretions 
promote microglial phagocytosis of damaged neural cells 
and particulate matter, resulting in increased neuronal and 
progenitor cell death. Inflammatory mediators secreted by 
microglia and astrocytes, such as interleukin-6 (IL-6), stim-
ulate the endothelium to increase expression of adhesion 
molecules on the luminal surface, such as intercellular 
adhesion molecule 1 (ICAM-1) and vascular cell adhesion 
molecule (VCAM-1), compromising BBB integrity.24 Brain 
microvascular endothelial cells can also be directly acti-
vated by IR, increasing expression of adhesion molecules. 
Leukocytes then attach to endothelial cells and, together 
with microglia, secrete a panel of matrix metalloproteinases 
(MMPs) that destabilize the parenchymal basement mem-
brane,24 enabling leukocyte migration across the BBB and 
perivascular spaces into the brain parenchyma to fur-
ther aggravate neuroinflammation.25 Alarmins, such as 
HMGB1, also contribute to radiation-induced endothelial 
barrier injury by activation of the mitogen-activated pro-
tein kinase signaling pathway.22 Among chemokines, CCL2 
allows infiltration of peripheral macrophages, altering the 
brain microenvironment and playing a prominent role in 
the development of radiation-induced cognitive alterations 
(Figure 1).26

Microglial activation can persist for months after IR, 
creating a chronic and self-sustaining neuroinflammatory 
process characterized by a vicious cycle of microglial ac-
tivation, secretion of proinflammatory agents, neuronal 
damage, and cell death.27 Recently, it has been found that 
age at the time of IR has an important impact on chronic 
microglial activation. Using single cell RNA-sequencing, 
researchers demonstrated that adult mice developed per-
sistent microglial activation after brain IR, whereas juvenile 
mice (3 weeks old) exhibited an initial dynamic activation 
microglia that was followed by significant recovery after 
1 week.28,29 This observation is in keeping with extensive 
clinical data showing that elderly patients are at increased 
risk of chronic radiation-induced neurotoxicity.30

More specifically, neuroinflammation in the hippo-
campus has been shown to influence the functional in-
tegration of hippocampal neurons. Radiation-induced 
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neuroinflammation disrupts microvascular niches in 
mouse models, depleting neurogenesis and causing long-
term cognitive deficits such as memory loss.31 These and 
other studies have identified that selective inhibition of 
microglia-mediated neuroinflammation was able to ame-
liorate radiation-induced cognitive impairment, making it 
an interesting therapeutic target.27

PARP Activity in Neuroinflammation

PARP-1 is best known for its participation in DNA re-
pair processes, where it is involved chiefly in BER. It also 
plays a role in alternative NHEJ, which is thought to act 
as a backup pathway in cells deficient in canonical NHEJ, 
and interacts with the HR pathway both directly and indi-
rectly via its role in maintenance of DNA replication fork 
stability.7 PARP also contributes to a wide range of cel-
lular and biochemical pathways (reviewed in Weaver and 
Yang32) with increasing evidence indicating a critical role 
in modulating the inflammatory response both within and 
without the CNS.

The most established pathway through which PARP-1 
promotes neuroinflammation is via regulation of 
proinflammatory transcription factors such as NF-κB, AP-1, 

and nuclear factor of activated T cells.33 NF-κB is one of the 
best characterized transcription factors, regulating the ex-
pression of multiple genes involved in immunity and in-
flammation. Under basal conditions, NF-κB is localized in 
the cytoplasm, but once activated it undergoes nuclear 
translocation allowing DNA binding and increased tran-
scription of inflammatory cytokines, chemokines, adhesion 
molecules, and inflammatory mediators including induc-
ible nitric oxide synthase (iNOS), ROS, and tumor necrosis 
factor α (TNFα).34 Several studies have reported that nu-
clear translocation of NF-κB requires PARP-1 function.35,36 
Following radiation-induced DNA damage, PARP binds to 
SSBs and recruits BER proteins to induce PARylation and 
initiate DNA repair. During this process, PARP undergoes 
automodification which promotes its disassociation from 
DNA and enables it to form a stable nucleoplasmic pro-
tein complex comprised of SUMO1, P1ASγ, NEMO (IKKγ), 
and ATM. ATM-mediated phosphorylation of NEMO trig-
gers sumoylation of the inactive NF-κB complex in the 
cytoplasm and subsequent ubiquitination of NEMO from 
the activated complex. In the nucleus, PARP physically 
binds to the p65/p50 subunits through p300-CBP histone 
acetyltransferase, allowing NF-κB-driven transcription of 
proinflammatory molecules (Figure 2).37–39

In vitro and in vivo studies have shown that the re-
sponse of microglia and astrocytes to inflammation is 
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Figure 1. Overview of the impact of ionizing radiation on key CNS cell populations. In response to cellular damage caused by IR, neurons and en-
dothelial cells secrete alarmin molecules (eg, HMGB1) which trigger microglial activation, while radiation-induced DNA damage within microglia 
themselves also promotes their activation. Proinflammatory molecules secreted by activated microglia, such as IL-6 and TNFα, can prevent neural 
stem cell differentiation, impacting on neurogenesis and astrocyte development. Inflammatory mediators also stimulate increased expression of 
endothelial adhesion markers such as ICAM-1 and P-selectin, leading to permeabilization of the blood–brain barrier (BBB) and infiltration of periph-
eral immune cells into the brain parenchyma. This is further enhanced by the secretion of chemoattractant molecules (CCL2) by activated microglia. 
CNS, central nervous system; HMGB1, high mobility group box 1; ICAM-1, intercellular adhesion molecule 1; IL-6, interleukin-6; IR, irradiation; TNFα, 
tumor necrosis factor α.
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mediated by PARP-1 and its activation stimulates protein 
synthesis and proliferation.9,10,14,34,40–42 Microglial activa-
tion in response to several stimuli including cytokines (eg, 
TNFα) and alarmins (eg, S100β and HMGB1) is regulated 
by PARP-1.34,42,43 PARP-1 can be activated by DNA damage, 
usually secondary to reactive oxygen and nitrogen spe-
cies (ROS/RNS), but also in response to ERK1/2-mediated 
phosphorylation as a consequence of raised intracellular 
Ca2+.42,44

BBB dysfunction is also widely observed in 
neuroinflammatory-associated diseases. PARP-1 ac-
tivity is heavily implicated in this phenomenon, with sev-
eral studies citing associations between PARP activation, 
edema formation, and increased infiltration of peripheral 
immune cells into the brain parenchyma.13,45,46 Although 
the exact mechanisms are unclear, it has been pro-
posed that PARP upregulates matrix metalloproteinase-9 
(MMP-9) which digests tight junctions and basement 
membrane proteins, contributing to BBB disruption.13,47 
PARP-mediated inflammation also increases the expres-
sion of adhesion molecules controlling leukocyte migration 
across the BBB.45 Interestingly, PARP activation in mono-
cytes promotes their adhesion to the brain microvascular 

endothelium and subsequent migration across the BBB 
by promoting cytoskeletal rearrangements.25 PARP-1 also 
regulates microglia-mediated control of endothelial tight 
junction integrity influencing BBB permeability.48

Finally, PARP-1 is a key mediator of neuronal cell death 
associated with excitotoxicity, ischemia, and oxidative 
stress. Hyperactivation of PARP-1 can lead to energy failure 
due to consumption of NAD+ followed by adenosine tri-
phosphate (ATP) depletion that results in cell death and 
necrosis, promoting further microglia activation.9 At the 
same time, excessive PARP-1 activation also leads to PAR 
accumulation in the cytoplasm, translocation of apoptosis-
inducing factor from the mitochondria to the nucleus and 
cell death by parthanatos, which is a specific form of cell 
death that occurs as a result of overactivation of PARP-1.49

PARPi as Anti-inflammatory Agents

As previously mentioned, hyperactivation of PARP can be 
detrimental, causing neuronal death as well as chronic 
microglial activation and neuroinflammation. These 

  

IR

p65

p65

p65

Nucleus

Cytosol

p50

p50

p50

p

NF-κB

NF-κB

NF-κB

PARP

PARP
PARP

ATM

ATM

IκKY

DNA damage

DNA repair

INOS IL-1β
ROS IL-6

p300/CBP

PIASY

IκBα

IκBα
ub

Figure 2. PARP-mediated neuroinflammation in microglia. Following radiation-induced DNA damage, PARP binds to SSBs and recruits BER pro-
teins to induce PARylation and initiate DNA repair. During this process, PARP undergoes automodification which promotes its disassociation from 
DNA and enables it to form a stable nucleoplasmic protein complex comprised of SUMO1, P1ASγ, NEMO (IKKγ), and ATM. ATM-mediated phospho-
rylation of NEMO triggers sumoylation of the inactive NF-κB complex in the cytoplasm and subsequent ubiquitination of NEMO from the activated 
complex. In the nucleus, PARP physically binds to the p65/p50 subunits through p300-CBP histone acetyltransferase, allowing NF-κB-driven tran-
scription of proinflammatory molecules. Unsustainable levels of inflammatory gene expression can lead to reciprocal increases in DNA damage, 
causing a positive feedback loop that further activates PARP and NF-κB, exacerbating oxidative stress and neuroinflammation. ATM, ataxia–telan-
giectasia mutated; BER, base excision repair; NF-κB, nuclear factor κB; PARP, poly(ADP-ribose) polymerase; SSBs, single strand breaks.
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observations led to the evaluation of PARPi as potential 
mitigators of neurotoxicity in animal models of CNS path-
ologies in which neuroinflammation plays a key role.

Many studies have empirically demonstrated protective 
effects of various PARPi in rodent and primate models of 
stroke.50–57 Ischemia followed by reperfusion appears to 
be a potent stimulus of PARP overactivation which results 
in neuronal death, as described above.56,57 In addition to 
reducing necrosis and apoptosis in stroke models, inhibi-
tion of PARP has been reported to reduce inflammation, 
astrogliosis, and microglia activation.8,58,59 PARP inhibi-
tion decreases proinflammatory cytokines such as inter-
feron gamma (IFNγ), TNFα, IL-6, and IL-17 and increases 
anti-inflammatory cytokines such as IL-4, IL-10, and trans-
forming growth factor beta 1 (TGFβ1).60,61 It also reduces 
the levels of transcription factors such as NF-κB and in-
flammatory prostaglandins such as cyclooxygenase 
2.47,61 Regulatory T cells (Tregs) play a modulatory role in 
immune responses and can improve outcomes after is-
chemic strokes. One recent study showed that PARP inhi-
bition upregulates circulating Treg cells, which could help 
alleviate neuroinflammation by altering cytokine levels.60 
PARP inhibition has also been shown to protect the vas-
culature and decrease BBB damage by downregulating 
VCAM-1, ICAM-1, E-selectin, and MMP-9 expression and 
reducing extravasation of immunoglobulins.47,50,61–63

The neuroprotective properties of PARPi have also been 
extensively studied in animal models of traumatic brain in-
jury.9,13,15,64–70 ROS/RNS produced after the initial trauma 
cause upregulation of PARP activity leading to secondary 
additional neuronal injury which can be reversed by PARP 
inhibition.69,71 Apart from the attenuation of early neu-
ronal injury, PARP inhibition in brain trauma models also 
reduces microglial activation and reactive astrogliosis 
in rodent and pig (Sus scrofa) models.9,15,72 As in stroke 
models, it has been shown that PARP inhibition decreases 
levels of NF-κB in the cortex, reducing inflammation and 
downregulating MMP-9 thus preserving BBB function.13,64

The role of PARP in neuroinflammatory disease has also 
been studied in MS and its preclinical model experimental 
autoimmune encephalitis (EAE), as well as bacterial men-
ingitis.73–77 PARP inhibition attenuated oligodendrocyte 
depletion and decreased demyelination in a rodent model 
that uses cuprizone.74 Of direct clinical relevance, high 
PARP-1 expression has been identified in blood leuko-
cytes from patients with MS and PARP inhibition was as-
sociated with decreased expression of factors such as 
TGFBR1/TGFBR2/BCL6 in B cells.73 As in stroke models, 
the immunomodulatory effects of PARPi appear to involve 
both increased numbers of Tregs and enhanced function.76 
Consistent with these findings, expression of ICAM-1, 
NF-κB, and the inflammatory mediators interferon-γ, TNFα, 
and iNOS were decreased in CNS tissues from rodent 
models treated with PARPi.75,76

Evidence supporting important pathogenic roles for 
PARP-1 now extends to neurodegenerative diseases, in 
which it has been observed to promote neuronal cell 
death, mitochondrial function, and neuroinflammation. 
Preclinical studies have shown therapeutic benefits 
of a variety of PARPi in rodent models of PD, AD, and 
Huntington’s disease.78–82 Reduced microglial activation in 

response to PARP inhibition has been reported in all these 
diseases.78,80,82

Much less evidence is available in the context of 
radiation-induced neuroinflammation. However, the intra-
cellular mechanisms implicated in this phenomenon share 
many of the same signaling pathways as the CNS diseases 
described above, and there is a prominent inflammatory 
component. As described earlier, radiation has been shown 
to regulate NF-κB transcription factors in the brain, causing 
microglial activation and increasing transcription of inflam-
matory cytokines, chemokines, adhesion molecules, and 
inflammatory mediators including iNOS, ROS, and TNFα. 
All these factors are implicated in the many neurological 
conditions in which PARP inhibition has shown promising 
results. In this context, it seems entirely reasonable to pro-
pose that PARP inhibition could play a neuroprotective role 
in suppressing radiation-induced neuroinflammation and 
thus reducing the associated cognitive decline.

Widening the Therapeutic Ratio by 
Combining PARPi With Radiation

As previously mentioned, PARP-1 plays an important role 
in DNA damage repair, predominantly by stimulating and 
facilitating function of the BER pathway, and with addi-
tional roles in alternative NHEJ, HR, and replication fork 
restart.83,84 In keeping with these roles, PARP inhibition 
causes accumulation of DNA breaks in replicating cells 
and PARPi have potent single agent activity against cells 
harboring defects in HR repair.85 Of greater relevance to 
their potential roles in neuro-oncology, PARPi also exhibit 
potentiating effects when combined with DNA damaging 
agents such as TMZ and RT, which together form “standard 
of care” for GBM patients. Multiple studies in preclinical 
models have demonstrated that PARPi potently augment 
the cytotoxic effects of TMZ and consistently enhance 
radiosensitivity across a broad range of cancer types in-
cluding GBM. Importantly, these radiosensitizing effects 
are only observed in proliferating cells, in which unre-
solved SSBs are converted into DSBs during replication, 
thus enhancing the cytotoxic effects of radiation.86 In the 
context of GBM, therefore, PARP inhibition is predicted to 
enhance the capacity of RT to ablate rapidly proliferating 
tumor cells while having minimal effect on cells in the 
surrounding normal brain, which are almost exclusively 
nonreplicating.

Until recently, one of the main limitations to evaluating 
PARPi in the treatment of brain tumors concerns their 
ability to penetrate the BBB. Some newly developed PARPi 
such as pamiparib (BeiGene) and niraparib (Zejula, Tesaro) 
have shown improved BBB penetration in mice, making 
them attractive options.87,88 However, a recent phase I clin-
ical trial reported that olaparib (Lynparza, AstraZeneca) 
penetrates both tumor core and margin regions in patients 
with recurrent GBM, despite failing to penetrate the BBB 
of mice and rats. These findings support the concept that 
the BBB is sufficiently disrupted in and adjacent to GBM 
that even “nonbrain penetrant” PARPi may have clinical 
activity.89
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Several studies using different PARPi provide strong 
evidence of radiosensitizing activity both in vitro and in 
vivo in a variety of preclinical models of adult and pedi-
atric glioma.86,90–94 The radiosensitizing effects of PARPi 
have also been reported in other CNS tumors such as 
medulloblastoma and ependymoma.90

These preclinical data underpin multiple phase I/II clin-
ical trials that have been completed or are actively re-
cruiting, evaluating 3 different PARPi (olaparib [Lynparza, 
AstraZeneca], veliparib [AbbVie], and pamiparib 
[BeiGene]) in combination with RT and/or TMZ in patients 
with gliomas, predominantly but not exclusively GBM. 
A  comprehensive list of the current clinical trials can be 
found in a recent review.16

Taking all this clinical and preclinical together, we pro-
pose that the strategy of combining RT and PARP inhibi-
tion for the treatment of GBM holds exceptional promise 
for this cancer of extreme unmet need. Tumor cell death 
will be enhanced by inhibition of DNA repair pathways, 
whilst normal brain tissue may be protected both from 
radiation-induced neuroinflammation, via suppression 
of glial activation and inflammatory mediators, and from 

radiation-driven apoptosis of NPCs and neurons, via avoid-
ance of ATP depletion (Figure 3).

Having made this proposal, we would also like to ac-
knowledge the crucial role played by the tumor micro-
environment in influencing treatment responses of GBM 
and other brain tumors, and the additional layers of com-
plexity that this creates. Tumor-associated macrophages 
and microglia have been shown to play an important role 
in creating an immunosuppressive tumor environment 
that protects tumor cells from recognition and destruc-
tion by the immune system.95 While one might speculate 
that PARP inhibition would further suppress microglial 
activity, thus protecting tumor cells, a recent abstract 
described the opposite effect.96 This illustrates the im-
portance of assessing the neuroinflammatory effects of 
PARP inhibition in microenvironments that recapitulate 
the clinical scenario. More specifically, the presence of a 
tumor might alter the immunomodulatory effects of both 
radiation and PARP inhibition. Adding further complexity, 
combining DNA damaging agents such as radiation with 
PARPi has potential to enhance the immunogenicity 
of the tumor cells by promoting neoantigen release, 

  
Tumor

A C

B D

‘Normal Brain’

DNA damage
DNA damage

DNA damage

Excess DSB Unrepaired DNA

Cell death

DNA repair

PARP
PARP activation AIF

PARP
NF-κB

PARPi

PARPi

PARPi

Preserved cognitive function

Cognitive decline

Neuroinflammation

Neural cell death

Apoptosis

PARPi

PARP

NF-κB

AIF
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Figure 3. Differential impact of radiation exposure ± PARP inhibition in tumor and normal brain. (A) In tumor cells, PARP binds to DNA SSB in 
glioma cells and through the recruitment of BER proteins, facilitates DNA repair. (B) PARP inhibitors compete with NAD+ at the PARP catalytic 
domain causing inhibition of PARP catalytic activity and the accumulation of unrepaired SSBs. This leads to the formation of DSBs, increased 
genomic instability, and cell death. (C) In the normal brain, radiation-induced DNA damage and the associated increase in PARP hyperactivity 
through interaction with NF-κB results in neuroinflammation, leading to reciprocal DNA damage and neural cell death. Hyperactivation of PARP and 
neuroinflammation can also exacerbate PARP-dependent cell death through the nuclear transfer of AIF from mitochondria, leading to apoptotic cell 
death of neurogenic cells contributing to cognitive decline. (D) PARP inhibitors prevent PARP activation and PARP’s interaction with NF-κB, causing 
a reduction in the expression of inflammatory mediators and a reduction in neuroinflammation. Additionally, reduced PARP activation mitigates the 
onset of PARP-dependent cell death of neuronal cells. AIF, apoptosis-inducing factor; BER, base excision repair; DSBs, double strand breaks; NAD+, 
nicotinamide adenine dinucleotide; NF-κB, nuclear factor κB; PARP, poly(ADP-ribose) polymerase; SSBs, , single strand breaks.
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increasing tumor mutational burden, and enhancing im-
munogenic signaling via the cGAS-STING pathway.97

Considering these complex interactions, we would like to 
emphasize the urgent need to develop new, orthotopic, im-
munocompetent models of GBM that would allow detailed 
study of the multifaceted effects of PARP inhibition and 
their consequences on cell survival, neuroinflammation, 
and cognition in the context of a tumor bearing brain with 
an intact immune system.

While this review focuses on PARP, it is important to 
mention that other proteins of the DDR pathway, including 
ATM, ataxia–telangiectasia, and Rad3-related protein 
(ATR) and checkpoint kinase 1 (CHK1) have also shown 
radiosensitizing effects in preclinical models of GBM.98,99 
ATM inhibitors are potent tumor radiosensitizers that are 
currently being evaluated in clinical trials in GBM patients; 
they may have neuroprotective effects by modulating oxi-
dative stress and preventing neuronal apoptosis.98,100 ATR 
and CHK1 exert modest radiosensitizing effects similar to 
PARPi.98 Neither ATM, ATR, nor CHK1 inhibitors have been 
shown to regulate neuroinflammation.

Conclusions

Although, our understanding of the pathophysiology 
of radiation-induced cognitive dysfunction is currently 
limited, there is strong evidence supporting a major 
role of neuroinflammation. Recent data have identified 
neuroinflammation as a common feature in many CNS 
diseases including brain trauma, stroke, and multiple neu-
rodegenerative processes, and preclinical studies have 
provided robust evidence to support the use of PARPi to al-
leviate neuroinflammation in these conditions. At the same 
time the use of PARPi as radiosensitizers for the treatment 
of brain tumors has generated promising preclinical data 
and multiple early phase clinical trials are ongoing. This, in 
combination with the availability of brain penetrant PARPi, 
offers the intriguing opportunity to radiosensitize brain 
tumor cells, while simultaneously reducing radiation-
induced neuroinflammation. The translation of these ex-
citing preclinical findings to the clinic offers the promise 
of improving survival and quality of life for brain tumor 
patients receiving RT. It will be important to include 
neuroinflammatory markers, cognitive function scores, 
and quality of life measures when designing future clinical 
trials, to help elucidate the potential neuroprotective role 
of PARPi when combined with radiation.
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