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ABSTRACT 

Measurements of dynamic near-infrared (NIR) light attenuation across the human 

head together with model-based image reconstruction algorithms allow the recovery of 

three-dimensional spatial brain activation maps. Previous studies using high-density 

diffuse optical tomography (HD-DOT) systems have reported improved image quality 

over sparse arrays. Modulated NIR light, known as Frequency Domain (FD) NIR, 

enables measurements of phase shift along with amplitude attenuation. 

It is hypothesised that the utilization of these two sets of complementary data (phase and 

amplitude) for brain activity detection will result in an improvement in reconstructed 

image quality within HD-DOT. However, parameter recovery in DOT is a 

computationally expensive algorithm, especially when FD-HD measurements are 

required over a large and complex volume, as in the case of brain functional imaging. 

Therefore, computational tools for the light propagation modelling, known as the 

forward model, and the parameter recovery, known as the inverse problem, have been 

developed, in order to enable FD-HD-DOT. 

The forward model, within a diffusion approximation-based finite-element modelling 

framework, is accelerated by employing parallelization. A 10-fold speed increase when 

GPU architectures are available is achieved while maintaining high accuracy. For a very 

high-resolution finite-element model of the adult human head with ∼600,000 nodes, 

light propagation can be calculated at ∼0.25s per excitation source. Additionally, a 

framework for the sparse formulation of the inverse model, incorporating parallel 



 

 

computing, is proposed, achieving a 10-fold speed increase and a 100-fold memory 

efficiency, whilst maintaining reconstruction quality. 

Finally, to evaluate image reconstruction with and without the additional phase 

information, point spread functions have been simulated across a whole-scalp field of 

view in 24 subject-specific anatomical models using an experimentally derived noise 

model. The addition of phase information has shown to improve the image quality by 

reducing localization error by up to 59%, effective resolution by up to 21%, and depth 

penetration up to 5mm, as compared to using the intensity attenuation measurements 

alone. In addition, experimental data collected during a retinotopic experiment reveal 

that the phase data contains unique information about brain activity and enables images 

to be resolved for deeper brain regions. 
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1 Introduction  

  The brain is a part of the nervous system, a network of cells specialised in 

transmitting information composed primarily by neurons. While neurons themselves can 

not store or process information, the connectivity pattern of the networks occurring 

within the brain can create specialised neuron hubs, that can perform computations or 

store information. This fascinating ability is not only responsible for coordinating and 

controlling physical functions, but it also enables the existence of intelligence and 

emotions. Evolutionary, the cortex is the most developed part of the human brain; it is a 

thin layer (1-5 mm) covering the brain surface, where most of the high-level functions -

as language processing and vision- occur. While the cortex is only a thin layer, it 

accounts for almost two-thirds of the mass of the human brain, as its surface is dominated 

by bulges and fissures, called gyri and sulci, that greatly extend its area. When a neuron 

transmits information, in practice, it is transmitting electrical current, by physically 

altering the configuration of membranes in its cells; this procedure requires energy, 

which means that the neural tissue needs to metabolise glucose, which requires the 

presence of oxygen. To accommodate for these metabolic needs, a network of blood 

vessels is lacing the neural system, providing additional blood in the areas with neural 

activity, increasing the local blood flow and oxygenation; this phenomenon is called 

“neurovascular coupling”. 

1.1 Neuroimaging  

Functional brain imaging is the visualization of neuron activations in the brain and 

has an enormous impact on the study of the brain, helping researchers understand and 

classify different cerebral areas and the relationships between them. It has been used to 
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detect, localise and classify brain regions, when the subjects are involved in decision 

making or social interaction tasks1,2, understand the interplay of different brain regions 

when experiencing complex emotions3–5, and while performing locomotive tasks6,7. The 

association of brain activity with both physical and psychological events is propelling 

applications in a wide area, such as guiding treatment and monitoring the rehabilitation 

progress in cases of stroke, depression, or schizophrenia8–10. Furthermore, real-time 

brain imaging can provide concurrent information, which is crucial in many clinical 

applications, and can also be used to develop brain-computer interfaces with potential in 

numerous applications: from medical, as a communication and control tool for disabled 

patients; in daily life, providing hands-free control of computers and machinery; to 

entertainment, for controller-free gaming11–14.  

There are a plethora of functional brain imaging modalities, but the ones that can 

provide adequate spatial accuracy, in order to satisfactorily capture brain region 

activation, depend upon very expensive equipment and require the subjects to be 

completely still, therefore greatly limiting the practical applications. Diffuse optical 

tomography (DOT) is an emerging imaging technique with neuroimaging capabilities, 

and considerable advantages over the other existing modalities: it is non-invasive, 

requires relatively inexpensive and portable equipment, which is wearable, and uses 

near-infrared (NIR) light, thus allowing some movement whilst being completely 

harmless to the subjects, therefore can be used in applications where other imaging 

techniques are unsuitable. 
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1.2 Other modalities 

Neuron activation can be detected either directly, by measuring the electrical charges 

transmitted between neurons, or indirectly, by measuring changes in tissue oxygenation 

that take place to provide the required energy, also related to the blood-oxygen level-

dependent (BOLD) effect. Two categories of functional neuroimaging modalities have 

been developed, the ones that measure the electrical charges and the ones that rely on 

the haemodynamic effects. The ones that directly measure electrical charges have a 

superior temporal resolution, in the order of milliseconds, while the ones based on the 

haemodynamic changes are bound to the vascular signals speed that can induce delays 

up to 5 seconds.  

The most established, non-invasive, brain functional imaging techniques are briefly 

described in this section, with a better insight given for the case of functional NIR 

spectroscopy (fNIRS) and functional DOT (fDOT) in the sections 1.3 and 1.4 

respectively. A summary of the characteristics of the examined neuroimaging modalities 

is presented in Table 1.1, which describes the type of measurement, spatial and temporal 

resolution, and portability. Additionally, the temporal and spatial resolution is compared 

graphically in Figure 1.1. 
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Table 1.1. Comparison of Neuroimaging Methods 

Neuroimaging 

Method 

Type of 

measurement 

Temporal 

Resolution 

Spatial 

Resolution 

Portable 

EEG Direct Very High 

(milliseconds) 

Low 

(cm) 

Yes 

MEG Direct Very High 

(milliseconds) 

High 

(mm) 

No 

PET Indirect Very Low 

(seconds-

minutes) 

High 

(mm) 

No 

fMRI Indirect Low 

(seconds) 

High 

(mm) 

No 

fNIRS Indirect  Low 

(seconds) 

Low 

(cm) 

Yes 

fDOT Indirect  Low 

(seconds) 

Medium 

(mm-cm) 

Yes 

 

 

Figure 1.1 Comparison of the spatial and temporal resolution in portable (left) and non-portable 

(right) neuroimaging methods15. 

 

It is worth mentioning that there are invasive neuroimaging modalities, that require 

surgical procedures, such as electrocorticography16 and intracortical neuron recording17, 

but they will not be examined here, as the emphasis of this work is on non-invasive 

technologies. 
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1.2.1 Electroencephalography   

Electroencephalography (EEG) is a non-intrusive and non-ionizing technique that 

directly measures differences in electrical current, using electrodes attached on the 

surface of the head, therefore providing high temporal resolution. However, due to poor 

conductivity of the intervening tissues, such as skull and cerebral fluid, the signal to 

noise ratio is poor, resulting in low spatial resolution, to centimetre accuracy18. 

Additionally, it is impossible to have a confident detection of the actual sources of 

energy, since currents might cross-cancel each other before reaching the surface of the 

head where the measurements take place19. EEG requires relatively low-cost equipment, 

on the scale of £10,000, and is relatively portable. 

1.2.2 Magnetoencephalography  

Magnetoencephalography (MEG) is also non-invasive, non-ionizing and provides 

high temporal resolution as it measures the magnetic fields resulting from the currents 

as they travel through the neurons. The magnetic fields are not affected by intervening 

tissues, therefore those systems provide high spatial resolution, to millimetre accuracy18. 

However, the measured signals are extremely small and rapidly attenuate with distance, 

limiting depth penetration, and very expensive equipment, costing millions of pounds, 

is required to provide robust measurements. Furthermore, there is the fundamental 

limitation on the approach:  magnetic fields radially oriented to the sensors cannot be 

measured, therefore limiting the field of view20. 

1.2.3 Functional Magnetic Resonance Imaging 

Functional Magnetic Resonance Imaging (fMRI) is non-invasive and non-ionizing, 

based on the BOLD effect, therefore provides low temporal resolution. The subjects are 

exposed to a strong static magnetic field and a gradient varying magnetic field. As 
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oxygenated haemoglobin (HbO2) is diamagnetic but deoxygenated haemoglobin (HbR) 

is paramagnetic, the resonance between the two magnetic fields can be correlated to 

concentrations of oxygenated and deoxygenated haemoglobin, without explicitly 

measuring them, therefore there are conflicting theories regarding the meaning of the 

measurements21–24. However, the resulting spatial resolution is high, to millimetre 

accuracy, with very good depth penetration and low noise levels as the measurements 

are not affected by intervening tissues, making fMRI the golden standard in functional 

brain imaging. However, the required equipment is very expensive, costing millions of 

pounds, and not portable, limiting the practical applications, especially when considering 

that due to the strong magnetic fields there must not be any kind of conductive implants 

in the subjects. 

1.2.4 Positron Emission Tomography  

In Positron Emission Tomography (PET) the subject is injected with a radioisotope 

that is decaying relatively fast, emitting positrons that when they collide with electrons 

in the body cause a reaction known as annihilation where photons are released in 

opposite directions and are measured around the subject’s head. The measurements are 

often combined with underlying anatomical information from MRI data, a technique 

called PET/MRI25. PET measures blood flow that can also indicate neuron activation, 

with a low temporal resolution, similar to BOLD, but, while the measurements are 

affected by intervening tissues, provides high spatial resolution, to millimetre accuracy. 

The method is invasive and ionizing, and besides requires relatively expensive non-

portable equipment, costing hundreds of thousands of pounds.  
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1.3 Functional Near-Infrared Spectroscopy 

 NIR light propagation in biological tissue (typically between 650 – 950 nm) benefits 

from low absorption, thereby allows sampling of the brain cortex tissue at depths beyond 

1 cm from the head surface using measurements on the scalp. Differential, spectral NIR, 

measurements can recover relative changes in oxy (HbO2) and deoxy (HbR) 

haemoglobin concentration that convey information about brain function, akin to the 

BOLD effect in fMRI, and is known as fNIRS. 

 

 

Figure 1.2 Frequency domain and time-resolved data. a) Modulated light (blue line) with RMS 

intensity level Iin (red line) is injected in the tissue; the re-emerging measured light (blue dashed 

line) has undergone a phase shift Δθ and has reduced intensity level Iout (red dashed line), b) 

Time-resolved data temporal point spread functions for different measurement neighbourhood 

distances of 1st (NN1) to 4th (NN4). 

 

When continuous wave (CW) NIR light is used, measurements provide access to only 

light intensity attenuation from the tissue. By contrast, amplitude-modulated NIR light, 

typically in the range of 100-200 MHz and known as frequency domain (FD) NIRS, 

enables additional measurements of a phase shift of the NIR light26. Measurements of 

the phase shift are related to the average photon path-length and can be used to directly 

estimate rather than assume scattering parameters within the tissue, which enables more 

accurate optical parameter recovery27. FD-NIRS has been used in breast optical 

tomography for characterization and monitoring of lesions28, joint imaging for arthritis 
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detection and treatment monitoring29, infant brain development monitoring30 and brain 

trauma assessment31. In previous studies utilizing FD NIRS, the phase measurements 

have typically been disregarded when recovering haemoglobin concentrations32–34. This 

is largely due to the fact that the accurate absolute measurement of phase is not trivial 

and requires complicated and often time-consuming instrument calibration procedures, 

as the phase can be affected by several factors such as fibre length, fibre bending, and 

attachment angle, each of which can present long term drifts and requires re-calibration. 

Nevertheless, the frequency-domain multi-distance approach has been shown to provide 

increased sensitivity to cerebral oxygenation using intensity and phase data35,36, 

however, the multi-distance approach has been extremely challenging to adopt with an 

HD-DOT tomographic set-up due to the strong demands on the dynamic range of the 

high bandwidth detector instrumentation. Specifically, given the logarithmic increase of 

signal attenuation in tissue as a function of distance, the detector gain needs to be 

optimised to allow accurate detection from both near and far sources, which is possible 

in simple setups using only 1 source and 4 detectors: i.e. where each detector only detects 

signal from one source. However, for an HD-DOT system this becomes more 

challenging when a single detector will measure photons arriving from multiple sources 

(at different distances) and thereby affecting the overall quality of the Signal-to-Noise 

ratio and hence accurate phase measurements. 

Alternatively, measurements of pico-second modulated light (time-resolved, or TR) 

provide a direct measure of the temporal point spread function of the detected photons 

to account for both tissue absorption and scattering. However, systems with enough 

channels to provide overlapping measurements, thus achieving DOT, have a low 
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temporal resolution (75 seconds for a full imaging cycle26), though various mathematical 

models have been proposed to increase the temporal resolution37,38. Although TR 

systems are considered the golden standard within fNIRS, typically only spectroscopic 

measures are used to provide bulk tissue optical measurements and these systems have 

not been widely adopted for HD-DOT. 

The CW, FD, and TR measurements are all sensitive to haemodynamics and are 

therefore indirect measures of variations in brain function. An alternative method, 

known as the event-related optical signal (EROS) or fast optical signal, uses just the 

phase measurements of FD systems and has been reported to be sensitive to neuronal 

activity39. It has been suggested that this technique does not suffer from the 

haemodynamic delay effect, and may be sensitive to scatter-related changes within firing 

neurons. However, in practice this technique requires extensive stimulus repetitions to 

allow adequate signal averaging to obtain required signal-to-noise, thus cancelling the 

real-time monitoring potential and resulting in experimental sessions of extremely long 

duration (approximately 60 minutes for one stimulus40) that are impractical for many 

applications. 

To investigate haemodynamic changes in a practical setting, measurements of 

differential phase changes are much easier to apply and have shown a high correlation 

with the fMRI BOLD signal, suggesting that phase changes convey information about 

functional haemodynamic phenomena 41. This is an expected result as changes in the 

absorption of a medium will not only affect the total number of detected photons (the 

measured intensity) but also the average photon diffusion path-length (the measured 

phase). How a change in absorption within the volume leads to differential changes in 
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both (logarithmic) intensity and (linear) phase can be understood when considering the 

distribution of the time of flight of the photons, Figure 1.2. Early arriving photons travel 

a shorter distance and stochastically sample more superficial tissues while the later 

arriving photons travel longer distances and therefore tend to both stochastically sample 

deeper tissues and have a higher probability of undergoing absorption events42. 

Therefore, the phase measurement sensitivity profile to changes in absorption is deeper 

than the sensitivity of the intensity attenuation measurement because early and late 

photons contribute equally to the mean time of flight while the total intensity is 

dominated by early arriving photons43.   

1.4 Functional Diffuse Optical Tomography 

The two most established functional imaging techniques, functional MRI (fMRI) and 

positron emission tomography (PET) have a common set of disadvantages: they are not 

portable, very expensive equipment is used and usually require constraints on the subject 

to be completely still, that can be uncomfortable for anyone, more so in cases of 

claustrophobic patients. Furthermore, fMRI cannot take place when metallic or 

electronic implants exist, and PET exposes the subjects to ionising radiation, therefore 

must be avoided in paediatric cases and long-term studies. In contrast, DOT is non-

ionizing, requires relatively low-cost equipment which is wearable and therefore allows 

some movement of the subject, is relatively portable and can be used in clinical 

configurations where the use of fMRI or PET is not possible, for example as a bedside 

monitoring tool. 

Diffuse Optical Tomography (DOT) is a soft tissue imaging technique that is based 

on injecting NIR light into a volume and measuring the resurfacing light, therefore often 
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also referred to as NIR optical tomography. Due to strong scattering, sparse optical NIRS 

measurements obtain low spatial specificity relative to fMRI. Image quality can be 

significantly improved by arranging NIR elements in a high-density (HD) grid to provide 

overlapping measurements that allow tomographic reconstructions, a procedure known 

as functional diffuse optical tomography (fDOT). 

 DOT is non-invasive and non-ionizing, and has been used for brain functional 

imaging44–48, neonatal brain monitoring49,50, as a diagnostic tool for breast cancer51–55, 

measuring tissue metabolism32, diagnosing arthritis in small joints56 and performing 

trans-rectal endoscopy57. Functional DOT (fDOT) is based on the haemodynamic 

effects, exploiting the distinctive absorption coefficients of oxygenated and 

deoxygenated haemoglobin in the NIR spectrum, therefore it has a relatively low 

temporal resolution, of seconds, whilst providing good spatial accuracy from millimetre 

to centimetre range. Additionally, the size of the equipment allows for bedside 

monitoring, use in operating theatres and portability, for example an ambulance could 

be equipped with an HD-DOT system.  

1.5 Proposed approach  

Almost all reported fDOT neuroimaging studies employ continuous wave (CW) 

measurements of light level attenuation. Frequency domain (FD) strategies use radio 

frequency (RF) modulation of the NIR sources to enable additional measurements of 

phase shift in the signal. To date, FD measurements have not been used in the context of 

tomographic optical functional brain imaging and the effects of incorporating phase 

information together with intensity in HD-DOT have yet to be investigated. 
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It is hypothesised that FD-HD-DOT will improve the imaging quality of HD-DOT, 

which has already achieved results comparable to fMRI, in terms of resolution and 

localisation, as well as depth sampling. The potential improvement in reconstructed 

image quality due to the additional incorporation of phase shift measurements was 

investigated, which reflect the time-of-flight of the measured NIR light, within the 

tomographic reconstruction from high-density measurements. 

However, computations become an underlying issue for FD-HD-DOT, making the 

problem computationally intractable for regular desktop computers. Therefore, 

computational tools employing parallel linear solvers on the graphics processing unit 

(GPU) and central processing unit (CPU) were developed to accelerate the light 

propagation modelling in the forward problem; while a memory-efficient algorithm for 

the formulation of the inverse problem has been proposed, also allowing parallelisation. 

These tools were evaluated against the standard computational toolboxes to ensure high 

solution accuracy. 

The current state of the art HD-DOT algorithms were expanded, in order to include 

phase information in the reconstructions, evaluating the effect in image quality, in terms 

of localisation, resolution and maximum imaging depth, in simulations with 

experimentally derived noise models. Furthermore, FD data collected in-vivo during 

standard retinotopic experiments were analysed, to identify if phase conveys 

neuroactivity information; and finally, performed reconstructions using amplitude only 

data and amplitude and phase data to assess potential imaging benefits.  

The key motivation behind these advances are (1) to develop a computational model 

that is able to predict photon-migration in tissue in an efficient and timely manner and 
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(2) to develop an inversion algorithm (inverse-model) that is able to incorporate this 

additional data-type (phase) without detrimental loss in computational time while (3) 

demonstrating the benefits of phase information in sampling depth and resolution. 

1.6 Thesis Outline 

The first chapter of this thesis was an introduction to neuroimaging, including an 

overview of established approaches with a more detailed consideration of optical 

imaging with fNIRS and fDOT, including motivation for the proposed FD-HD-DOT 

approach.  

In chapter 2, the computational aspect of HD-DOT is highlighted, delving into the 

underlying physics and mathematics employed to achieve image reconstruction and 

emphasizing the need for computational optimisations.  

Chapter 3 presents the proposed computational methods leading towards real-time 

FD-HD-fDOT, featuring parallel computing and algorithm optimizations for the 

computationally expensive parts of the procedure.  

Chapter 4 presents a comparison between continuous wave and frequency domain 

HD-DOT, performing simulations on 24 adult head models while employing an 

experimentally derived noise model, concluding on a statistically significant image 

quality improvement when using the frequency domain approach. 

 Chapter 5 provides an analysis of in-vivo data and reconstructions, during retinotopic 

protocols, revealing stimuli-driven information in the amplitude and phase data, and 

confirming the simulation findings regarding the accuracy of the frequency domain 

reconstructions.  

 Finally, chapter 6 concludes on the benefits of FD over CW HD-DOT and the value 
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of the developed computational tools and discusses possible future work on questions 

that have arisen through this work. 
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2 Computational Methods   

This chapter provides an overview of the underlying mathematics that directly affect 

the computational aspects of DOT and emphasises the necessity of parallelization, 

specifically considering the existing implementation within NIRFAST58. DOT can be 

summarised in two steps: the forward model, which estimates light propagation in tissue 

providing predictions of light levels at the volume surface, with given underlying optical 

properties; and the inverse model, which uses the predictions from the forward model in 

addition to measured light levels to estimate changes to the underlying optical properties. 

 The most computationally expensive procedure is the solution of large sparse linear 

systems, involved in estimating light propagation in the forward problem, and the 

formulation of the sensitivity matrix, known as the Jacobian, in the inverse problem. 

2.1 Forward Problem 

The first step of the DOT algorithm, the forward problem, is the basis for the image 

reconstruction, therefore, it must be as accurate as possible, as any errors will heavily 

affect the solution of the inverse problem. Many approaches have been introduced to 

model light propagation through a diffuse medium, and most of them can be classified 

into two categories: analytical59–61 or numerical62,63 methods. 

 The propagation of light through a turbid medium is described accurately by the 

Radiative Transport Equation (RTE)64. In cases where scattering dominates over 

absorption, as in biological tissue, the Diffusion Approximation (DA) (Eq. 2.1) can be 

derived from the RTE, which is significantly easier to solve but sacrifices some accuracy. 

Analytical methods, calculate the light field by solving the RTE or the DA as can be 

applied in a given shape medium, using the Born and Rytov approximations27,65. These 
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approaches are computationally fast, but they are limited in modelling only for simple 

shapes and simple optical properties distributions. In contrast, numerical approaches can 

model complex, arbitrary geometries and media with complex heterogeneous optical 

properties distributions. 

 The accuracy of the numerical solutions is greatly affected by the prior knowledge 

of the underlying tissue geometry, therefore their maximum potential is reached when 

combined with input from standard imaging techniques66,67 or generic atlas models68. 

The numerical approaches for calculating the forward model can be divided into two 

categories: the ones using Galerkin discretisation, like the Finite Elements Method 

(FEM)58,  and those using Monte Carlo (MC)69 approach. The Galerkin method is a 

technique where a heterogeneous nature problem is split into many smaller parts, 

creating a non-uniform mesh. Effectively each of the elements can be considered 

homogeneous and the diffusion equation can be formulated as a linear system, describing 

simultaneously all elements. The MC approaches also divide the medium into volumetric 

elements69,70, and then focus on the path of the photons as they travel through the 

medium. Traditionally uniform discretisation was used to divide the medium but 

recently, non-uniform discretization has been achieved as well. While the MC 

approaches are considered the golden standard in light propagation modelling, as they 

can solve the RTE, the computational time is rather slow, because millions of photons 

must be simulated in order to achieve an accurate solution, making the light propagation 

modelling very time-consuming. 

The modelling of light propagation through a medium relies on two parts: the physics 

to describe photon diffusion and the FEM formulation that discretises the problem and 
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allows it to be computationally tractable. To describe light propagation through a diffuse 

medium the diffusion approximation equation is used:   

−∇ ∙ 𝜅(𝑟)∇𝛷(𝑟, 𝜔) + (𝜇𝑎(𝑟) +
𝑖𝜔

𝑐𝑚(𝑟)
)𝛷(𝑟, 𝜔) = 𝑞0(𝑟. 𝜔) Eq. 2.1 

where μa is absorption coefficient, q0(r,ω) is an isotropic source term and Φ(r,ω) is the 

photon fluence rate at position r and frequency ω.  κ=1/3(μa+μs’), where μs’ is the 

reduced scattering coefficient. Finally, cm(r) defined as c0/n(r) where c0 is the speed of 

light in vacuum and n(r) is the refractive index. Mixed-boundary conditions (also known 

as Robin or index mismatch type III for the FEM model are assumed, to deal with the 

case where light escapes the medium and does not return71,72. 

The FEM discretization consists of a volume Ω, divided into E elements, usually 

tetrahedral, joint in N vertex nodes. The fluence Φ(r) is approximated by a polynomial 

function: 

𝛷ℎ(𝑟) =  ∑ 𝛷𝑖𝑢𝑖𝛺
ℎ

𝑁

𝑖=1
 Eq.  2.2 

where Ωh is finite dimensional subspace spanned by {ui (r); i= 1…N} basis functions. 

The problem then becomes a sparse, well-posed large dimensions linear problem58,73,74 

of the form: 

𝑀𝛷 = 𝑞0 Eq.  2.3 

 

where specifically, M is: 

(𝐾(𝜅) + 𝐶 (𝜇𝑎 +
𝑖𝜔

𝐶𝑚

) +
1

2𝐴
𝐹) Eq.  2.4 
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where the matrices 𝐾(𝜅) , 𝐶 (𝜇𝑎 +
𝑖𝜔

𝐶𝑚
), and 𝐹 have entries defined by 

𝐾𝑖𝑗 = ∫ 𝜅(𝑟)∇𝑢𝑖(𝑟) ∙ ∇𝑢𝑗(𝑟)𝑑
𝑛𝑟

𝛺

 
Eq.  2.5 

𝐶𝑖𝑗 = ∫ (𝜇𝑎 +
𝑖𝜔

𝐶𝑚

) 𝑢𝑖(𝑟)𝑢𝑗(𝑟)𝑑
𝑛𝑟

𝛺

 
Eq.  2.6 

𝐹𝑖𝑗 = ∫ 𝑢𝑖(𝑟)𝑢𝑗(𝑟)𝑑
𝑛𝑟

𝜕𝛺

 
Eq.  2.7 

and the source vector 𝑞0 has terms 

𝑞0𝑖
= ∫ 𝑢𝑖(𝑟)𝑞0(𝑟)𝑑

𝑛𝑟
𝛺

 
Eq.  2.8 

where the dimension of M is N by N, and q0 is representing the sources and has dimension 

N by the number of sources, Q, of the DOT system.  

The resolution of the FEM meshes heavily affects the solution for the forward model, 

with high-resolution meshes (more vertices) representing more accurately the underlying 

model. The resolution of MRI data for tissue segmentation is ~1 mm, so a mesh with 

element volume of ~1 mm3 should be able to sufficiently describe the details captured 

by the MRI. Additionally, dividing the volume in higher resolution meshes represent the 

diffusion equation better, by minimizing the discretization error invoked by the Galerkin 

discretisation, as the volume of elements tend to zero, the discretization error also tends 

to zero. However, increasing the mesh resolution results in the requirement of solving a 

larger linear system (Eq.  2.3) to estimate the light fluence, thus, until now, dramatically 

increasing the computational cost, a problem that is addressed in chapter 3.1. 
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2.2 Inverse Problem 

The purpose of the inverse problem is the recovery of the optical parameters at each 

node of the FEM model by exploiting the information contained in the forward model in 

conjunction with the boundary measurements taken from the surface of the volume. The 

aim is to find such optical property values, μ,  that minimise the difference between 

calculated, Φ, and measured, ΦM, boundary data. To this end, a Tikhonov minimisation 

is employed, with a regularisation parameter, 𝜆, which is defined as the ratio of the 

variance of the measurement data with respect to the variance of optical properties λ =

𝜎ΦM

2 𝜎μ
2⁄ : 

minμ {∑(ΦM
i − Φi )

NM

𝑖=1

+ λ∑(μj − μ0,j)

NN

j=1

} Eq.  2.9 

where NM is the number of measurements and NN the number of nodes, μ0 is an initial 

guess of the optical properties of a node, that in the case of functional brain imaging is 

usually assuming values according to prior knowledge of tissue properties. This is 

achieved by building a sensitivity matrix, the Jacobian, which defines the relationship 

between changes in the boundary data, 𝜕Φ, with respect to optical properties, 𝜕μ, of the 

FEM nodes, J = (
𝜕Φ

𝜕μ
). As functional brain imaging is based on the absorption spectrum 

of the oxy and deoxy haemoglobin, therefore this work only accounts for absorption only 

changes, assuming that the scattering remains constant.  

For high-resolution meshes, the number of nodes is much larger than the number of 

measurements (NN>>NM), therefore approaches based on perturbations of nodal optical 

values to build the Jacobian are not computationally efficient75. 
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The approach employed to form the Jacobian is the Adjoint method76, where the direct 

fluence 𝛷𝑖  for each source i,  and the Adjoint fluence 𝛷𝐴𝑑𝑗
𝑗

 for each detector j must be 

calculated. Then for each node location r, the product of the direct and the adjoint field 

is considered, intergraded for each node N of the k elements that belong to the 

connectivity list τ of this node; also considering basis function 𝑢 for each element k. The 

result is a dense matrix of dimensions NN x NM that describes the change of surface 

measurements with regard to a change of the optical properties of the medium. So, the 

construction of the Jacobian requires to model light propagation, as in the forward 

problem, twice; once for sources and once for detectors, a procedure that is accelerated 

employing parallelization as described in chapter 3.1. 

𝐽(𝑖, 𝑗, 𝑟) = [ ∑ 𝛷𝑘
𝑖 𝑢𝑘(𝑟)

𝑘|𝑁𝑘∈𝜏(𝑟)

] × [ ∑ 𝛷𝐴𝑑𝑗,𝑘
𝑗

𝑢𝑘(𝑟)

𝑘|𝑁𝑘∈𝜏(𝑟)

] 
Eq.  2.10 

 

The dimensions of the Jacobian, for a single wavelength, in continuous wave mode, 

is the number of associated source/detector (SD) pairs by the number of nodes of the 

mesh. This may result in Jacobians of extremely large dimensions as the number of SD 

pair measurements increases with HD DOT and as discussed earlier, the number of nodes 

has to be large for functional imaging, for example in the HD DOT system modelled in 

this work, on the highest resolution mesh the Jacobian would have dimensions about 

3,500×600,000. This is further increased when considering the frequency domain 

spectrally constrained recovery (Eq.  4.6), where the size of the Jacobian is 

[4NM × 2NN], which, for the system described here, equals 14,000×1,200,000, which 

would require 135 Gb of memory to be stored, this problem is addressed in chapter 3.1.4. 
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 fDOT is concerned with small dynamic changes that occur during brain activations, 

therefore, the inverse model can be considered linear. This is possible since the goal in 

functional imaging is to detect changes from a reference baseline, often referred to as 

temporal/difference/dynamic imaging. Assuming that such functional changes are small, 

they will give rise to small changes in the measured data, therefore allowing the use of 

Rytov approximation for mapping them directly to small changes in optical properties 

and hence functional changes77. More precisely, even though the attenuation of optical 

signals with respect to the underlying optical properties is non-linear, a small change in 

signal attenuation can be considered ‘locally’ linear with respect to a small change in 

optical properties. When a good assumption of the underlying optical properties 

distribution is considered (often derived directly from published data for each biological 

tissue type) and used in conjunction with subject specific models (as derived from MRI 

or a registered atlas), a functional temporal/dynamic event is mapped directly by using 

these small linear temporal changes.  

A Moore-Penrose pseudoinverse with Tikhonov regularization can be used to find an 

approximation of the inverse of the Jacobian, 𝐉#,  and perform a single-step recovery of 

absorption. 

𝐉−𝟏 ≈ 𝐉# = 𝐉T(𝐉𝐉T + α𝚰)−𝟏  Eq.  2.11 

∂𝐱 = 𝐉# ∂𝐲 Eq.  2.12 

 The regularisation term is calculated as α = a ∗ max(diag(𝐉𝐉T)). The weight of this 

regularisation parameter provides a tuning between high spatial frequency noise and 

smoothness in the image. Due to this association with image resolution78, when running 

simulations without noise, fine-tuning this parameter can improve image resolution 
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beyond an experimentally and physiologically meaningful range. In practice, this 

parameter is dictated by the noise of the measurements79, therefore all simulations in this 

work use the same regularisation weight of a = 0.01, following previously reported 

methods80. 

 The result is a dense, under-determined linear problem that must be solved to get the 

update of optical properties on the nodes. A variety of approaches have been proposed 

to reduce the computational complexity of the Jacobian inversion. Often, a smaller 

reconstruction basis is defined, e.g. using a second, coarser finite element mesh or a pixel 

basis for the reconstruction81,82, or constraining the reconstruction to only the cortex83 or 

the brain region84, to reduce the number of unknowns in the inversion problem therefore 

also reducing the computational cost. More recently, handling the Jacobian as a sparse 

matrix85 has also been proposed.  

2.3 Discussion and Conclusions 

The emergence of fDOT in clinical settings is strongly related to the advancements in 

computing within the last two decades. The parallel processing power of GPUs offers a 

low-cost, easily available solution for the acceleration of linear operations, such as the 

ones involved to estimate light propagation, which was the computational bottleneck of 

the forward problem. Additionally, as the volume of data is constantly increasing, 

programming libraries that handle sparse linear operations have been developed, which 

further accelerated computations and improved memory efficiency. For the inverse 

problem, the calculation of the sensitivity matrix involves integrating over the number 

of nodes times their connectivity, which usually numbers in the millions, resulting to 

extremely large matrices that are impossible to store in memory.  
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In chapter 3, computational tools and optimization methods are described that allow 

the acceleration and computational tractability of DOT , by parallelizing the solution of 

linear systems in the forward problem while sparsifying and parallelising the creation of 

the Jacobian in the inverse problem, in order to enable the reconstruction algorithm to 

be executed in relatively low-cost desktop or laptop computers. 
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3 Towards real-time optical tomography  

Parameter recovery in diffuse optical tomography is a computationally expensive 

algorithm, especially when used for large and complex volumes, as in the case of human 

brain functional imaging, whereby the lack of real-time solutions is impeding research 

and clinical applications. This chapter proposes computational tools for the acceleration 

and optimization of the forward and the inverse problem, intending to accommodate FD-

HD-DOT modelling using a standard desktop or laptop personal computer. The 

development of these tools is motivated by the desire to have fast and efficient 

algorithms, based on either subject-specific or atlas-registered models. In each case, an 

accurate forward model and data inversion matrix needs to be calculated, in a 

computationally efficient manner, for each subject and experiment. In the subject-

specific case, the model needs to be calculated from subject specific information (e.g. as 

derived from MRI) containing all internal tissue structures. For the atlas-registered case, 

the atlas (which contains all internal structures from an atlas-based population average) 

is first registered to the subject’s geometry and then used. In either case, although the 

problem is assumed to be linear for parameter recovery, the mapping function (mapping 

measured data to optical changes, known as the Jacobian) needs to be calculated for each 

subject, which itself is derived from the forward problem. 

3.1 Forward Problem computational optimisation 

The acceleration of the forward model, within a diffusion approximation based finite 

element modelling framework, is addressed, employing parallelisation to expedite the 

calculation of light propagation in realistic adult head models. The proposed 

methodology is applicable for modelling both continuous-wave and frequency-domain 
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systems with the results demonstrating a tenfold speed increase when GPU architectures 

are available, whilst maintaining high accuracy. It is shown that for a very high-

resolution finite element model of the adult human head with ~600,000 nodes, consisting 

of heterogeneous layers, light propagation can be calculated at ~0.25 seconds per 

excitation source. 

 This work provides tractable solutions to overcome the current computational time 

and memory limitations arising when dealing with high-resolution FEM meshes and HD 

source-detector (SD) pairs, both important features for high quality functional DOT 

(fDOT) brain imaging.  Additionally, an extended evaluation is performed, on high 

resolution meshes with up to ~600,000 nodes, based on a realistic anatomical head 

model, with five tissue layers, focusing on achieving the desired numerical accuracy for 

functional brain imaging. Furthermore, support for complex numbers for the cases of 

frequency-domain simulations is incorporated. 

3.1.1 Background  

In this chapter, the acceleration of the forward light propagation model is examined, 

while maintaining numerical accuracy. Specifically, the focus is on the application of 

DOT for functional imaging of an adult human head, employing the finite element 

method (FEM) to solve the diffusion approximation (DA) (Eq. 2.1) for modelling of 

light propagation as implemented within the NIRFAST58 modelling and image 

reconstruction software package.  

The proposed acceleration approach relies on employing parallel computing to 

expedite the solution of the forward problem, an option that has recently become popular 

due to the relatively low cost of GPUs. Most modern CPUs have 4 to 8 logical cores 
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(processing units) which are very fast (~3GHz), whilst GPUs have hundreds (700-4,000) 

of cores but are slower (~1GHz); therefore GPUs are suited to solve problems that can 

be divided into subproblems, which can be solved in parallel on multiple processors. The 

overall principle is that the CPU and the GPU can cooperate, sharing the load of 

computations, which with appropriate distribution of tasks, massively accelerates the 

computing process. 

 That has attracted the attention of researchers for solving similar problems in medical 

imaging86–88. In DOT the acceleration of the forward model with GPUs has been 

employed for Monte-Carlo algorithms89–91, where simulating the behaviour of each 

photon can be efficiently parallelised, with reported accelerations in the scale of 102 −

103. However, millions of photons must be simulated to achieve an accurate solution, 

so modelling the total fluence for a geometrically large volume and multiple excitation 

sources still requires time in the order of tens of minutes.  

Accelerating the forward model of DOT using GPU parallelization has also been 

reported with FEM formulation. Specifically, the acceleration of the forward model 

solution has been proposed for frequency domain simulations92. Unfortunately, due to a 

lack of sparse arithmetic architecture, computationally tractable mesh sizes have been 

limited to ~9,000 nodes, due to the excessive memory requirements. Solving the forward 

model employing GPU parallelization, in continuous wave, with parallelization over the 

nodes and over the excitation sources simultaneously, using a block-based formulation 

of the forward linear system has also been proposed93. However, due to the size of the 

augmented block matrix, this approach is only applicable in small size meshes, with up 

to ~2,500 nodes. Using multiple GPUs to solve the forward problem in continuous wave, 
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for infant brain studies has been suggested94  but has been only evaluated qualitatively 

in a homogenous phantom head model, again in meshes with ~9,000 nodes. An approach 

combining CPU and GPU parallelization was proposed95 where the imaging domain is 

decomposed into overlapping subdomains, therefore allowing a high level of 

parallelization for the forward problem. However, this approach was only evaluated in 

continuous wave, on a simplified cylindrical geometry with homogenous optical 

properties where the decomposition in regular overlapping subdomains is a 

straightforward procedure; while in the case of a complex volume, as the adult head, 

such decompositions are not a trivial task. Finally, a framework for the solution of the 

forward problem in continuous wave and frequency domain, accelerated in the GPU, 

was proposed and evaluated in homogenous cylindrical models with up to 330,000 

nodes96. This work identified the relation between the error of the iterative solution and 

the optical properties of the volume, and found the single-precision numerical accuracy 

(2−23 = 1.19 × 10−7) insufficient for solving for a wide range of optical properties. 

Section 3.1.2.5 further expands and explains the topic of numerical accuracy.  However, 

none of the previous work has evaluated the accuracy and computational speed of 

iterative solvers on anatomically realistic head models, with high-resolution meshes and 

high density (HD) DOT system. 

The work presented in this chapter will highlight the importance of the balance 

between computational speed and numerical accuracy for computational models in HD-

DOT. Specifically, it will be shown that the computational time of any iterative based 

forward solver can be greatly reduced by increasing the termination threshold. However 

this practice can lead to numerical inaccuracies as it is spatially dependent with regard 
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to illumination source locations (i.e. initial boundary conditions). Finally, it will be 

demonstrated that the computational speed improves when using parallel computing, as 

expected, particularly when appropriate iterative matrix inversion algorithms and 

preconditioners are utilised. 

 

 

Figure 3.1 The modelled high-density DOT system. 158 sources (red), 166 detectors (yellow), on an 

adult head model with 5 tissue layers. 
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3.1.2 Method 

The procedure followed in DOT image reconstruction can be summarised by the 

following consecutive steps: modelling the light propagation through the medium, also 

known as the forward problem and a parameter recovery process based on the forward 

model and NIR measurements, also known as the inverse problem.  

The first step of the DOT algorithm, the forward problem, is the basis for the 

application of model-based image reconstruction, therefore, it must be as accurate as 

possible, numerically and geometrically, as any errors will affect the formulation of the 

inverse problem.  

 The accuracy of the numerical solutions of FEM is greatly affected by the prior 

knowledge of the underlying tissue geometry; therefore the maximum potential is 

reached when FEM is combined with input from other standard imaging techniques66,67 

or generic atlas models68. Mesh generation based on structural images from other 

modalities, usually MRI, is a well-studied problem. There are existing algorithms that 

automatically segment tissue layers and create surface-based meshes97. In this work the 

geometry and optical property distribution are dealt with by using subject specific 

meshes, produced by segmenting MRI scans. Subject specific meshes are used in most 

of the experiments, with the exception of the experiment described in section 3.2.2.2 

where an atlas was used. Optical properties for each tissue layer were assigned according 

to existing literature. 

 When the model volume remains constant, but meshes with more elements are 

created, what effectively changes is the resolution of the mesh. Higher resolution meshes 

have elements with smaller volume and therefore minimise partial volume effects due to 
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mesh elements integrating over multiple, segmented tissue regions. The fine complex 

structures, such as the brain cortex in a head model, can be modelled more accurately 

with a high-resolution mesh, providing optical properties assigned to each node (or 

element) that are more likely to represent the underlying baseline optical properties of 

the tissue at each position. 

When the volume is meshed, FEM is employed to formulate a discretised weak form 

representation of the DA for each node of the mesh. It follows that as the volume of each 

element tends towards zero (increasing the mesh resolution), the calculated 

approximation becomes more accurate, therefore typically in fDOT very high-resolution 

meshes, with up to 600,000 nodes are used. This is a domain size-dependent problem, a 

smaller volume such as an infant’s head will require fewer nodes to achieve elements of 

sufficiently small volume. Additionally, dividing the volume into a higher resolution 

mesh minimises the discretization error introduced by FEM. However, increasing the 

mesh resolution results in the requirement of solving a bigger linear system to estimate 

the light fluence, which, until now, has dramatically increased computational time. The 

focus of this work is optimizing numerical approaches employing FEM-DA to estimate 

light propagation - a well-studied problem that assumes the DA is valid for all tissue 

properties used58,73,74. However, the advancements described herein can be applied to 

any models (e.g. Radiative Transport Equation) based on discretised approximations. 

 FEM is a numerical technique where a heterogeneous problem is divided into many 

smaller parts, creating a non-uniform mesh, consisting of elements defined by connected 

nodes. The diffusion equation can then be discretised and represented as a set of linear 

equations, describing simultaneously all the nodes and hence the entire medium. The 
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problem thus reduces to a sparse, well-posed linear problem of the form: 𝑴𝜱 = 𝒒 

dimensions 𝑁 by 𝑁, with 𝑁 denoting the number where 𝐌 is a sparse matrix with of 

nodes; 𝐪 represents the sources and has dimension 𝑁 by the number of sources 𝑄 of the 

DOT system, and 𝚽 is the photon fluence rate for all nodes for each source, as has 

dimensions 𝑁 by 𝑄. 

3.1.2.1 Computational problem 

The solution of large sparse linear systems involved in the forward model is currently 

the computational bottleneck of the DOT algorithm. To solve the linear systems arising 

in the forward modelling, in the form 𝐀𝐱 =  𝐛, for 𝐱, where A has dimensions 𝑁 × 𝑁, 

where 𝑁 is the number of unknowns, the inverse of 𝐀 must be calculated. However, 

calculating a matrix inverse is computationally inefficient, therefore a variety of 

algorithms have been proposed that can solve linear systems without explicitly 

calculating a matrix’s inverse. These algorithms can be either direct, providing an exact 

solution, or an approximate, usually employing an iterative algorithm. The storage 

convention used in this work to represent sparse matrices within memory is the 

compressed row storage, where the non-zero values are stored in one vector, the 

corresponding column indices in another vector, and only the element indices where row 

changes have occurred are stored in a third vector. This requires 2𝑁𝑁𝑍 + 𝑁 +1 space in 

memory for a 𝑁 × 𝑁 matrix with 𝑁𝑁𝑍 non-zero entries. 

3.1.2.2 Direct solvers 

The most popular direct solver is the Gaussian Elimination, also known as row 

reduction, where the echelon form of 𝐀 is calculated through row operations on the 

augmented matrix (𝐀|𝐛). The echelon form of 𝐀 is an upper triangular matrix, making 
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the solution of the linear system easy through backward substitution. However, Lower 

Upper (LU) factorization is considered the standard efficient computational approach for 

the direct solution of a linear system. The LU factorization decomposes 𝐀 into lower (𝐋) 

and upper (𝐔) triangular matrices. Substituting 𝐋 and 𝐔 in 𝐀𝐱 = 𝐛 gives 𝐋𝐔𝐱 = 𝐛, and 

letting 𝐔𝐱 =  𝐘, then 𝐋𝐘 =  𝐛. Now it is trivial to solve 𝐋𝐘 = 𝐛 for 𝐘 through forward 

substitutions and then solving 𝐔𝐱 = 𝐘 through backwards substitutions. The advantage 

of LU factorization over the traditional Gaussian elimination is that decomposing 𝐀 into 

𝐋 and 𝐔 is independent of 𝐛, also known as the right-hand-side vector. This allows 𝐋 and 

𝐔 to be used for solving for multiple right-hand side vectors. However, this approach 

has very large memory requirements of 𝑁2 + 𝑁 and high computational cost, of  
2

3
𝑁3 

floating-point operations (FLOPS), to solve a full linear system. A more efficient 

alternative, that can be used only if 𝐀 is Hermitian, therefore symmetric when real, is the 

Cholesky factorisation, where 𝐀 is decomposed to 𝐋 𝐋∗, where * denotes the transpose 

conjugate operator, requiring 
1

2
𝑁2 + 𝑁 memory for a full system. The linear system can 

be solved as with the LU method, substituting 𝐔 = 𝐋∗, with computational cost, for the 

solution of full systems, of 
𝑁3

3
 FLOPS. However, in the case of sparse linear systems, 

such as resulting from the FEM formulation, memory and computational costs are 

related to the number of non-zero elements of 𝐀 rather than the size 𝑁 and, additionally, 

there are reordering strategies that when applied on sparse matrices allow more sparse 

factorizations. Specifically, in this work, the approximate minimum degree permutation 

algorithm was found to produce the most sparse factorizations, therefore was used for 

all the direct solvers. Nevertheless, factorization approaches rely on forward and/or 
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backward substitutions to provide a solution, therefore they cannot be efficiently 

parallelised.  In MATLAB when solving linear systems invoking the backslash operator, 

the Cholesky approach is used when the matrix is Hermitian, otherwise the LU approach 

is employed. The “spparams”98 command was used to confirm that all the real linear 

systems were solved with Cholesky solver and all the complex with LU. The MATLAB 

backslash operator is considered as the numerical ground truth for the solution of linear 

systems throughout this work. 

3.1.2.3 Iterative solvers 

To overcome the computational limitations of direct linear algebraic solvers, a variety 

of approximate linear solvers have been proposed that can be classified into three general 

categories: iterative, multigrid, or domain decomposition methods99. Multigrid and 

domain decomposition methods can be very efficiently parallelised, with solving speed 

not greatly affected by the size of the linear system. However, these methods require 

additional input parameters (e.g. the range of eigenvalues of the system, restriction and 

prolongation parameters, smoothing operators) that might be difficult to define and may 

vary for different systems to efficiently converge to adequate approximations. As such, 

these methods work best when they are tailored to solve a very specific problem. In 

contrast, iterative solvers are generic and require little or no additional input from the 

user, and thus are traditionally chosen for the solution of linear systems describing light 

propagation.  

 Iterative approaches approximate a solution vector 𝐱𝑛 and then attempt to minimise 

the residual 𝑟𝑛  = ‖𝐛 −  𝐀𝐱𝑛‖ through n iterations, until 𝑟𝑛 is lower than a user-defined 

residual threshold 𝑟th. However, in practice, the termination criterion is defined 
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relatively as 𝑡c = 
𝑟𝑛

𝑟0
 , where 𝑟0 is the residual after the initial guess, with the initial guess 

𝐱0 set usually as a vector of zeros. Using a relative threshold ensures that the iterations 

will converge with a final 𝑟𝑛 usually within the same order of magnitude as the 𝑡c, even 

when the number of unknowns is very large. Iterative approaches usually work on a 

projection space for increased computational efficiency. The most established projection 

scheme is the Krylov subspace, which is based on the Cayley-Hamilton theorem that 

implies that the inverse of a matrix can be found as a linear combination of its powers. 

The Krylov subspace generated by a 𝑁 × 𝑁 matrix 𝐀, and a vector 𝐛 of dimension 𝑁, is 

the linear subspace spanned by images of 𝐛 under the first 𝛼 powers of 𝐀. 

𝐾𝛼(𝑨, 𝒃) = 𝑠𝑝𝑎𝑛{𝒃,𝑨𝒃, 𝑨2𝒃,… , 𝑨𝛼−1𝒃}  Eq.3.1 

 This formulation avoids matrix to matrix operations and instead utilises matrix to 

vector operations which can be very efficiently implemented in parallel architectures. 

The Krylov subspace is generated while the solver seeks to find the minimum of the 

projection space.  Usually, least squares or gradient-based optimization techniques are 

employed to solve such problems. There are many proposed algorithms to implement a 

Krylov space solver but there is no clear conclusion on which one is fastest when the 

same termination criterion is required100. The most popular approaches for the Krylov 

space gradient optimization is the Conjugate Gradient (CG), but is not guaranteed to 

work in non-Hermitian linear systems101. However, there are appropriate Krylov 

subspace solvers that can handle non-Hermitian systems with relatively low additional 

computational cost, like the Biconjugate Gradient Stabilised (BiCGStab). 
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3.1.2.4 Preconditioners 

 Iterative solvers do not have robust performance and can be very slow when the 

condition number of the system is very large. To overcome this, preconditioned versions 

of the solvers have been developed. Efficient preconditioning can largely reduce the 

condition number of a linear system leading to a dramatically reduced number of 

iterations to convergence. The preconditioner 𝐏, in effect, is changing the geometry of 

the Krylov subspace to a simpler one, making the solution of the system much easier by 

providing an approximation of the matrix inverse that is easy to compute and solve. 

Instead of trying to minimise ‖𝐛 −  𝐀𝐱𝑛‖, the expression to minimise becomes  

‖𝐏−1𝐀𝐱𝑛 − 𝐏−1𝐛‖, to be effective, the preconditioner 𝐏 must be of much lower 

condition than 𝐀. In general, the P-1A product should be as close as possible to identity 

matrix or in other words P-1 ≈ A-1. It is hard to theorise what consists a good 

preconditioner, the main diagonal of 𝐀, also known as Jacobi preconditioner, can be very 

effective in diagonally dominant systems, however, usually an incomplete factorization 

of 𝐀 is used; as incomplete LU or incomplete Cholesky (IC) factorization. Recent 

research on solving linear systems focuses mainly on the choice of efficient 

preconditioners, emphasizing preconditioners that can be implemented in parallel 

architectures102, rather than improving the solvers themselves. This happens because the 

time within each iteration is greatly reduced due to the high level of parallelism offered 

by GPUs103, whilst preconditioning reduces the number of iterations needed to converge. 

Nevertheless, in practice, choosing the best preconditioner is usually a trial-and-error 

procedure. There are block-based preconditioners that are favourable for GPU 

parallelization104,105. In practice, the IC with no prior permutation or pivoting scheme 

was found to be the best preconditioning option for fast convergence of the MATLAB 
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based iterative solvers, whilst the Factorised Sparse Approximate Inverse (FSAI)106 was 

found to be the option that produced the fastest overall result with the CUDA and 

OpenMP implementations. FSAI is constructed by solving local linear systems for each 

column of 𝐀 to approximate an 𝐀−1 with sparsity pattern defined by powers of 𝐀. 

Additionally, a preconditioner inspired by FSAI was implemented, where the local linear 

systems were solved in parallel and only for the three larger values for each column, 

achieving similar preconditioning effectiveness whilst reducing the computational time 

for the construction of the preconditioner. This preconditioner is referred to as “FSAIP” 

for the rest of this work. 

3.1.2.5 Numerical accuracy 

The iteration residual 𝑟𝑛, and to an extent, the realization of the termination criterion 

𝑡c, is bound to the numerical binary representation precision of numbers that the 

machine, the programming language, and the employed libraries allow. In modern 

systems, this is double precision, represented by 64 bits of memory, which in practice 

can represent numbers with relative differences no smaller than 2−52, this is 

~2.22 × 10−16, which is the minimum value defined in MATLAB. Any difference 

smaller than this is lost due to the quantization involved in converting a number that 

belongs to the real set ℝ into the binary set 𝔹2
64, where 𝔹2 = {0,1}. Therefore, 

requesting termination residual lower than a scale of 10−16, will not result in a more 

accurate solution, since any additional variation would be under the double-precision 

quantization bin size of MATLAB and will be rounded to the nearest bin. Apart from 

the binary rounding errors, when solving a linear system with an iterative solver, the 
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maximum solving precision that can be achieved is analogous to the condition number 

of the system.  

3.1.2.6 Complex numbers support 

The existing open-source libraries that provide low-level functions and primitive data 

structures for parallel programming support on CPU and GPU are the Open Multi-

Processing language (OpenMP)107 and Compute Unified Device Architecture 

(CUDA)108. However, up to the current version, OpenMP 4.5, does not provide native 

complex numbers support; and CUDA, whilst it provides support for complex numbers, 

does not come with high-level mathematical functions such as sparse iterative linear 

solvers and preconditioners, therefore implementations that allow complex support are 

not a trivial task. Additionally, open source mathematical libraries that provide iterative 

solving of sparse linear systems on parallel architectures, as PARALUTION109  and 

ViennaCL110, do not provide complex numbers support. However, when formulating the 

forward problem for systems operating in the frequency domain, the resulting linear 

system consists of complex numbers. Nevertheless, there are algebraic schemes that 

allow a linear system of complex numbers to be represented as an equivalent system of 

real numbers, solved in the real number domain, and then the solution can be converted 

back to a complex representation. There are four possible formulations of equivalent real 

systems as described in111, the approach chosen for this work is the K1 approach, that is 

formulated as: 

𝐀c = (𝑥 + 𝑦𝑖)  ↔  (
𝑥 −𝑦
𝑦 𝑥 ) = 𝐀r Eq.3.2 

where  𝐀c is the complex form and 𝐀r the equivalent real representation generalising, 

the 𝑛th dimensional complex linear system 𝐀c𝐱c = 𝐛c with entries: 
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(

𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑛

𝑎2,1 𝑎2,2 … 𝑎2,𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑛,1 𝑎𝑛,2 ⋯ 𝑎𝑛,𝑛

) × (

𝑥1

𝑥2

⋮
𝑥𝑛

) = (

𝑏1

𝑏2

⋮
𝑏𝑛

)  
 Eq.3.3 

is equivalent to the real linear system 𝐀r𝐱r = 𝐛r with entries: 

(

 
 
 
 
 

ℜ𝑎1,1 −ℑ𝑎1,1 ℜ𝑎1,2 −ℑ𝑎1,2 ⋯ ℜ𝑎1,𝑛 −ℑ𝑎1,𝑛

ℑ𝑎1,1 ℜ𝑎1,1 ℑ𝑎1,2 ℜ𝑎1,2 ⋯ ℑ𝑎1,𝑛 ℜ𝑎1,𝑛

ℜ𝑎2,1 −ℑ𝑎2,1 ℜ𝑎2,2 −ℑ𝑎2,2 … ℜ𝑎2,𝑛 −ℑ𝑎2,𝑛

ℑ𝑎2,1 ℜ𝑎2,1 ℑ𝑎2,2 ℜ𝑎2,2 ⋯ ℑ𝑎2,𝑛 ℜ𝑎2,𝑛

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
ℜ𝑎𝑛,1 −ℑ𝑎𝑛,1 ℜ𝑎𝑛,2 −ℑ𝑎𝑛,2 ⋯ ℜ𝑎𝑛,𝑛 −ℑ𝑎𝑛,𝑛

ℑ𝑎𝑛,1 ℜ𝑎𝑛,1 ℑ𝑎𝑛,2 ℜ𝑎𝑛,2 ⋯ ℑ𝑎𝑛,𝑛 ℜ𝑎𝑛,𝑛 )

 
 
 
 
 

×

(

 
 
 
 

ℜ𝑥1

ℑ𝑥1

ℜ𝑥2

ℑ𝑥2

⋮
ℜ𝑥𝑛

ℑ𝑥𝑛)

 
 
 
 

=

(

 
 
 
 

ℜ𝑏1

ℑ𝑏1

ℜ𝑏2

ℑ𝑏2

⋮
ℜ𝑏𝑛

ℑ𝑏𝑛)

 
 
 
 

 

Eq.3.4 

 The equivalent real system has the same sparsity pattern and sparsity factor as the 

original complex system, however the new system has double the number of unknowns, 

therefore requires double the computations, and additionally, FEM-DA linear systems 

in FD are no longer Hermitian, therefore the BiCGStab solver is employed for FD 

simulations. 

 In addition, a BiCGStab solver, based in CUDA, operating directly on the complex 

domain was implemented and used with the developed parallel constrained FSAI version 

(FSAIP) to solve FD simulations. 

3.1.2.7 GPU/CPU parallelization   

 The proposed approach for accelerating fluence estimation relies on employing 

efficient libraries for linear algebra operations and performs remarkably faster when 
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GPU based parallel architectures are available. Over the last decade, the technical 

advancements in GPUs, and their relatively low cost, has made GPU computing a very 

attractive option. Specifically, many linear algebra operations can be parallelised very 

efficiently in GPU architectures112 while using sparse representations, resulting in 

massive reductions of computational time. This can be applied to the solution of the 

forward model, dramatically decreasing the computational time required to estimate the 

Krylov subspace. Solvers based on libraries that can be used both in CPU, using 

OpenMP, and GPU, using CUDA, were implemented to guarantee accessibility by all 

users. 

 The mathematical library employed to provide efficient implementations of high-

level linear algebra operations is PARALUTION109 which offers a wide variety of linear 

solvers and preconditioners, supports sparse matrix and vector formats, and allows a 

high level of abstraction between code and hardware, making the code highly portable 

and efficiently scalable to the available hardware. The produced CUDA based 

implementations will retreat to OpenMP if there is no GPU available in the system. 

 An algorithm to distribute workload between the CPU and GPU was implemented, 

the workload was distributed by balancing the right-hand side input (sources) between 

CPU and GPU. Benchmarking tests were performed on all mesh resolutions to define 

the best workload distribution in each case. However, it was found that in all meshes 

above 70,000 nodes the solely GPU based solution was faster, whilst with meshes with 

smaller number of nodes (~50,000), the computational time reduction was less than a 

second. On the other end, the CPU implementation is faster than the equivalent GPU 

implementation in meshes with less than 15,000 nodes. This is primarily due to time-
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consuming data transfer and device initialisation procedures. Nevertheless, this is 

depended on hardware, number of right-hand side vectors and complexity of the imaging 

domain.  

 MATLAB provides sparse linear solvers on the CPU, that can be easily parallelised 

over the right-hand side vectors using the parallel computing toolbox. Although, there 

are overhead data transfers between memories (RAM, CPU cache memory, GPU 

memory) and between computational threads and memory that do not allow 

computational accelerations to scale linearly with the number of available computational 

cores. 

3.1.2.8 Experimental set-up 

Data from MRI of an adult head was segmented and meshed into thirteen different 

resolution meshes using the algorithm proposed by Jermyn et al97, which produces high 

quality meshes using the Stellar mesh improvement algorithm113, where volume 

distribution and the dihedral angles formed between each pair of faces  are particularly 

important, effectively removing flat elements. The modelled DOT instrument is a high-

density system with 158 NIR light sources and 166 detectors. Each detector is related to 

sources in separation distance configurations from 1.3 to 4.6cm, resulting in 3500 

associated source-detector pairs. More details about the resolution of the meshes can be 

found in Table 3.1 and the optical properties for each layer of the anatomical model are 

described in Table 3.2114. 
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Table 3.1 Different resolution meshes based on linear tetrahedral elements for an adult head model. 

Number of 

nodes 

Number of 

elements 

Element volume average and standard deviation 

(mm3) 

50721 287547 9.26 ± 3.43 

68481 393863 6.76 ± 2.29 

101046 589658 4.51 ± 1.64 

139845 821926 3.24 ± 1.18 

205568 1215434 2.19 ± 0.78 

235564 1395242 1.90 ± 0.68 

271135 1609152 1.65 ± 0.59 

305058 1813036 1.46 ± 0.52 

324756 1931374 1.37 ± 0.49 

360777 2149250 1.23 ± 0.43 

411567 2454350 1.08 ± 0.37 

515837 3084689 0.86 ± 0.29 

610461 3656890 0.72 ± 0.24 

 

Table 3.2 Optical properties of tissue layers at 750nm wavelength114. 
Tissue Layer 𝜇a  

(mm-1) 

 𝜇s
′  

(mm-1) 

Refractive 

Index 

Scalp 0.0170  0.74 1.33 

Skull 0.0116  0.94  1.33 

Cerebrospinal fluid 0.004   0.3  1.33 

Gray Matter 0.0180  0.84  1.33 

White Matter 0.0167  1.19  1.33 

 

The light propagation model was calculated for all 158 sources in all experiments, in 

continuous wave mode and in frequency domain mode at a modulation frequency of 100 

MHz, for one NIR wavelength of 750 nm. All the experiments were performed on a 

desktop computer with 16GB of RAM, an Intel Core I7-4790 CPU with 4 physical cores, 

allowing two threads per core, resulting in 8 logical cores @ 3.6GHz, and an NVIDIA 
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GTX970 graphics card with 1664 logical cores @ 1050MHz with 4GB dedicated 

memory. 

3.1.2.9 Metrics 

It is important to ensure that employing an iterative linear solver will not increase the 

error of the solution. To this end, the accuracy of the proposed solvers was compared 

against the direct solution, calculated with the backslash operator in MATLAB. There is 

no standard way of comparing two matrices, 𝚽ref, for the fluence calculated with a direct 

solver, and 𝚽ite, for the fluence calculated with an iterative solver, however, the first 

step for all approaches is taking the difference 𝚽dif = |𝚽ite − 𝚽ref|. The most common 

metrics to quantify the difference 𝚽dif are the ones induced from vector norms: the 1-

norm ‖𝚽dif‖1 which is the maximum of the column sums of 𝚽dif, the ∞-norm ‖𝚽dif‖∞ 

which is the maximum of the row sums of 𝚽dif, and the l2-norm ‖𝚽dif‖2 which is the 

maximum singular value of 𝚽dif, also known as the spectral norm.  

 However, those metrics do not provide easily comprehensible quantities, therefore the 

relative error per node, 𝑟, was calculated as: 

𝜀𝑟𝑒𝑙(𝑟) =  
|𝜱(𝑟)𝑟𝑒𝑓 − 𝜱(𝑟)𝑖𝑡𝑒|

|𝜱(𝑟)𝑟𝑒𝑓|
 × 100% Eq.3.5 

 This relative error representation is useful for visualisation of the error on the mesh 

nodes and boundary data and provides more comprehensible numbers than the matrix 

norms. 

3.1.3 Results  

The evaluation is performed in one adult head model using a HD-DOT system with 

158 sources and 166 detectors (Fig. 1). The behaviour of the solvers is examined under 
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varying error demands, and in different mesh resolutions, considering the accuracy and 

the computational time. The focus is on the relation between mesh resolution (and hence 

problem size), termination criterion, computational time, and solution error. The direct 

solutions are only possible to calculate up to the 400,000 nodes mesh for continuous 

wave (CW) and up to 200,000 nodes in frequency domain (FD) systems, due to high 

memory requirements, so all quantitative comparisons are performed in the subset of the 

meshes where a direct solution is available. 

3.1.3.1 Qualitative and quantitative comparisons 

 Assuming that the diffusion approximation is valid for the proposed application, and 

that the quality of the mesh is appropriate, then the error from solving the linear systems 

should be kept at a minimum, which purely defines the numerical accuracy of the 

computational model. It is important to note that what is being presented can be applied 

to any other numerical models, including those based on the Radiative Transport 

Equation. However, the amount of error that can be afforded in the modelling procedure 

is dependent on the error tolerance for the application. Figure 3.2 shows the surface 

fluence when utilizing the CUDA based solver at different termination criteria; the 

simulated light source is near the back of the head, indicated by the blue dot and arrow.  
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 When high termination criterion is set, the fluence is not estimated for the distant 

nodes as the solver iterates to a stable solution quickly. The fluence approximately 

follows an exponential decay through tissue, therefore its value dramatically decreases 

with distance from the source, therefore the required termination criterion is reached 

while only calculating the solution for the highest fluence values. 

 

Surface logarithmic fluence scale log10 (mm2 s)⁄  

 

Direct solution CUDA solution , tc= 10-16 

CUDA solution , tc= 10-12 CUDA solution , tc= 10-8 

Figure 3.2 Visual comparison of surface fluence whilst using different termination criteria (tc). 

Simulation in continuous wave, for one source indicated in blue, in a 400,000 nodes mesh, solving 

with CUDA CG. 
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 As FD simulations provide amplitude and phase information, the errors for each were 

examined separately. Fig 3.3 and 3.4 provide a quantification of the relationship between 

distance from the source and the relative nodal amplitude and phase errors arising from 

solving with an iterative solver. The demonstrated simulation is in the frequency domain, 

at 100MHz, for a mesh with 200,000 nodes, solving with a CUDA BiCGStab and FSAI. 

The maximum relative error for all nodes as a function of distance from the source is 

extracted for different termination criteria.  

 As evident, the relative errors are small and located away from the source with low 

termination criterion of 10-16, but they become larger and manifest nearer the source as 

the termination criterion rises. Similar results (not shown) were acquired for amplitude 

errors from continuous-wave simulations. For the lowest termination criterion, the 

 

Figure 3.3 Maximum relative amplitude errors per node (Eq.3.5) as a function of distance from the 

source. Comparison between different termination criteria.  Simulation 100MHz frequency, on a 

200,000 nodes mesh, solving with CUDA BiCGStab. 
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relative error reduces initially at 5 mm, which could be caused by the limit of the 

numerical accuracy for this very low termination criterion. 

 Lower termination criterion will provide smaller numerical errors, but also slower 

solver convergence, as a larger number of iterations is required. In the modelled DOT 

system, the maximum SD separation typically considered to acquire boundary data is at 

46 mm. The performed evaluation in Figs 3.3 and 3.4 reveal that for anatomically 

accurate adult head models, the termination criterion can be selected in the range of 10−8 

or lower, for CW and FD systems, to ensure that minimal error is introduced in the 

parameter recovery, when acquiring measurements from SD separation distances less 

than 46 mm. The sensitivity matrix will have an error approximately square of the error 

of the forward solution. Therefore, termination criterion chosen to be large, a practice 

often employed to accelerate reconstructions, while the boundary data is measured in 

 

Figure 3.4  Maximum relative phase errors per node (Eq.3.5) as a function of distance from the 

source. Comparison between different termination criteria.  Simulation 100MHz frequency, on a 

200,000 nodes mesh, solving with CUDA BiCGStab. 
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large SD separations, can lead to large errors in the sensitivity matrix and, consequently, 

large errors in the parameter recovery and image reconstruction. 

  It is worth noting that since the forward problem is not ill-posed, the approximate 

solution will always converge towards the true solution, with the termination criterion 

dictating the maximum numerical distance between the approximation and the true 

solution. 

3.1.3.2  Computational Time Comparisons 

The parameters that mainly affect the computational speed of iterative linear solvers 

are: the size of the problem, which in our case is the number of nodes, the number of 

right-hand side vectors, which in our case is the number of excitation sources, the 

termination criteria, and finally the preferred algorithm and implementation. These were 

the variables for the experiments, while the computing engine remained the same. All 

the experiments were performed 10 times, the mean time is shown in all figures, while 

the standard deviation in all cases was small, at around 1 second for CPU 

implementations and 0.1 seconds for GPU, therefore it is not shown in the figures. 

 Figure 3.5 shows the computational time for fluence estimation for 158 sources in a 

400,000 node mesh as a function of the termination threshold. The direct solver provides 

an exact solution to the linear system, therefore does not introduce any error. However, 

is displayed as a horizontal line through all the termination criteria in Figure 3.5, to serve 

as a point of reference. The GPU based solver yields the best termination criterion to 

computational time ratio. Employing implementations that do not require much 

additional time to converge to smaller errors can increase the accuracy of the estimated 

light propagation model whilst keeping the computational time low. 
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 Each source is represented by one right-hand side vector in the linear system resulting 

from the FEM , and the fluence must be calculated for all sources. To achieve this, the 

iterative solvers must create the Krylov space under the projections of each right-hand 

side vector, which, as expected increases the computational cost and therefore the 

computational time required. Figure 3.6 demonstrates how the number of sources (right-

hand side vectors) affects the computational time of the solution, showing that the 

computational time increases linearly with the number of sources. It is interesting to note 

that the direct solver, that yields the exact solution relying on Cholesky decomposition 

followed by forward and backward substitutions, is almost as efficient for each 

additional source as the GPU based solver. However, the time spent initially for the 

 

Figure 3.5 Computational time as a function of termination criteria. Comparison between different 

linear solvers. Simulation in continuous wave, for 158 sources in a 400,000 nodes mesh. 
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factorisation is very large, which in combination with the very high memory 

requirements as discussed in section 2.3.1, render the direct solver impractical. 

  

 Nevertheless, the factor that affects the computational time the most is the resolution 

of the mesh. The more nodes a mesh contains, the bigger the linear systems that need to 

be solved is, therefore more mathematical operations have to be applied to create the 

Krylov space. Figure 3.7 presents the computational time needed as the mesh resolution 

increases. The fastest of the solvers is the CUDA based solver, which achieves a 

computational time of ~42 seconds for calculating the fluence for all 158 excitation 

sources in a 600,000 node mesh, this is ~0.25 second to calculate the fluence for one 

source. The CUDA based solver performs almost 11 times faster than the MATLAB 

based iterative solver without any parallelization, which takes ~460 seconds for the 

 

Figure 3.6 Computational time as a function of excitation sources number. Comparison between 

different linear solvers. Simulation in continuous wave, in a 400,000 nodes mesh, with 10-12 

termination criterion. 
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same calculation. The direct solver can only solve up to systems with 500,000 nodes 

before the 16GB hardware memory availability becomes an underlying issue.   

 

 Figure 3.8 displays the computational time for different mesh resolutions for 

frequency-domain simulations at a modulation frequency of 100 MHz. The direct solver 

can only handle up to 200,000 nodes, due to the increased memory requirements for 

storing complex numbers. The displayed computational time includes the computations 

to create the equivalent real system and transform the fluence back to complex after 

solving the system where is necessary. 

 

Figure 3.7 Computational time with respect to mesh resolution. Comparison between different 

linear solvers. Simulation in continuous wave, for 158 sources with 10-12 termination criterion. 
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 The direct solver takes 4,612 seconds to calculate the fluence for the 200,000 nodes 

mesh, however Figure 3.8 was limited to 1,100 seconds to provide a better scale.  The 

direct solver becomes intractable due to the increased memory requirements for complex 

arithmetic storage and because of the non-Hermitian nature of the FEM matrix, which is 

also reflected as increased memory and computational requirements for the required LU 

decomposition (in comparison with the Cholesky for the real cases). A linear system 

resulting from a frequency domain FEM mesh does not have the same condition number 

as the same mesh in continuous wave, due to different attenuation coefficients for 

frequency-modulated light, which makes the FD problem harder to solve, therefore, 

there is not a direct analogy between their computational costs. Though, one can roughly 

assume that for a given mesh if a CW solution requires O operations the FD will require 

2𝑂. This is confirmed in our demonstrated results in Figure 3.7 and Figure 3.8.  

 

Figure 3.8 Computational time with respect to mesh resolution. Comparison between different linear 

solvers. Simulation in 100 MHz frequency, for 158 sources with 10-12 termination criterion. 
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 Furthermore, the “OMP BiCGStab with FSAI on K1” operates on the complex to real 

transformed (K1) matrix, resulting in double computations in comparison to the 

“MATLAB BiCGStab with IC” which operates directly on the complex domain. As an 

approximation, one could assume that if a mesh in CW requires O number of operations, 

it requires 2O in the complex domain but 4O when the complex to real transformation is 

used. Also, the Matlab parallel version requires almost half the computational time of 

the non-parallel Matlab version, and the OpenMP version is slightly faster than the 

Matlab parallel version when operating in the same space (O). Then it is possible to 

observe the following: a solution on CW would take T seconds for Matlab non-parallel, 

T/2 for Matlab parallel, and slightly faster than T/2 for OpenMP (note that all these cases 

do O operations). In contrast, a solution on FD domain would take 2T for Matlab non-

parallel (operates in 2O), T for Matlab parallel (operates in 2O) and slightly faster than 

2T for OpenMP (operates on 4O). Furthermore, the implemented complex CUDA 

version, which operates on 2O, requires approximately half the computational time in 

comparison with the CUDA on the K1 (4O) space. 

3.1.4 Conclusion 

The DOT reconstruction algorithm, especially when employed for high-density 

functional brain imaging, suffers from large computational time, mainly due to solving 

large sparse linear systems as required for the forward model. In this work the accuracy 

and computational speed of iterative solvers is evaluated on anatomically realistic head 

models, with high-resolution meshes for a high density (HD) DOT system. This work 

provides both a computationally efficient GPU and CPU implementations of stable 
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linear matrix solvers, based on CUDA and OpenMP, compiled as MATLAB compatible 

mex files. 

The developed solvers allow users to explore new approaches in DOT, that until now 

have been challenging due to computational inefficiency of the algorithm, namely 

whole-head high-density tomographic imaging. Simulations of light propagation in 

tissue that would otherwise take a long time to perform, are now shown to be achievable 

in a few minutes, forging a path towards real-time DOT. Although the work presented 

here is based on only one GPU node, the same approach can be applied in systems with 

multiple GPUs and extended to cloud computing to achieve real-time solutions. 

3.2 Inverse Problem computational optimisation 

 A sensitivity matrix, also known as the Jacobian, is the basis for solving the inverse 

problem, providing the recovery of spatiotemporal changes of internal optical properties 

throughout the imaging domain, using temporal derivatives of measurements obtained 

on the surface of the volume, known as boundary data. However the calculation of the 

Jacobian is computationally expensive, even using the Adjoint method which is very 

computationally efficient, therefore different strategies have been proposed to expedite 

the inverse problem. Reconstruction on a smaller basis with adaptive meshing or coarse 

voxelization has been used58,80,115, additionally, parallel computing has been employed95. 

 The approach described here, achieves a hundredfold required memory reduction, on 

large mesh node numbers, and tenfold computational time reduction whilst producing 

sparse Jacobians where the non-zero elements have identical values with the 

corresponding elements of the full Jacobian. 
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3.2.1 Method 

The Adjoint method was employed to form the Jacobian (Eq.  2.10). Previous work 

has proposed the reduction of the reconstruction space by imposing a sensitivity 

threshold to calculate the Jacobian only in a part of the volume116. In more recent work85 

an approach for building sparse Jacobians was suggested, where initially the sensitivity 

for each SD pair is approximated, then a threshold relative to the maximum sensitivity 

of each SD pair is selected. Specifically, Eq.  2.10 is simplified by assuming a uniform 

voxel-wise sampling of the imaging volume, considering only the values of the direct, 

𝛷, and adjoint, 𝛷𝐴𝑑𝑗, fields, rather than having to integrate over each element 

individually: 

𝐽(𝑖, 𝑗, 𝑟) = 𝛷𝑖 × 𝛷𝐴𝑑𝑗
𝑗

 Eq.3.6 

 In practice, a high-resolution mesh with 3,650,000 tetrahedral elements, achieves a 

very fine uniform sampling of the volume and with a variation of only ± 0.24 mm3 (Table 

3.1). Assuming this is variation is almost zero, the volume is then uniformly sampled 

and can be simplified to a multiplication of the two fluences, rather than integration over 

each volume. This achieves an approximation of adequate accuracy for the suggested 

thresholding approach, however not accurate enough to achieve image reconstruction. 
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 Essentially, the thresholding defines a region of interest (ROI) with high sensitivity 

in the modelled volume (Figure 3.9a), where the parameter recovery is meaningful; 

therefore, the Jacobian is calculated only for the nodes within this ROI. The calculation 

of the sensitivity of each measurement is performed only for a very small subset of the 

nodes of the mesh, resulting in a sparse Jacobian, which still samples a significant part 

of the volume of the head (Figure 3.9b). 

3.3 Results 

To quantify the improvements in computational speed and memory efficiency the 

proposed approach was tested on 24 subject specific meshes, across a range of mesh 

resolutions and sensitivity thresholds, whilst also exploring the benefits of parallelisation 

for the construction of the Jacobian.  Lower sensitivity thresholds produce larger ROIs 

which, in the case of fDOT, allows deeper nodes to contribute towards the reconstruction 

 

Figure 3.9 Regions defined by different thresholds. a) 0.1% (yellow) and 1% (red) sensitivity 

threshold contours for a single measurement, b) Representation of the area covered for 0.1% 

(yellow) and 1% (red) sensitivity threshold for all the measurements. 

 

1% 

0.1% 0.1% 

1% 

a. b. 
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(Figure 3.10). As the median brain cortex depth is set at 12.5cm from the surface of the 

head, if we assume that all measurements have a chance to measure brain activity, we 

need to consider a threshold that allows nodes at least up to this depth to be considered 

for reconstruction.  

 

Figure 3.10 Maximum tissue sampling depth for all source-detector pairs and two sensitivity 

thresholds, for all 24 subjects. The red line indicates the brain cortex median depth. 

 

3.3.1 Computational Comparison 

Considering the computational efficiency of the DOT algorithm the sparsity 

percentage of the Jacobian affects the number of calculations required for creating the 

Jacobian, but also the number of operations required for image reconstruction which 

involves regularising and solving the linear system described by the Jacobian. Sparse 

matrix computations are extremely efficient because only the non-zero entries are stored 

in memory and later considered for arithmetic operations. Therefore, high sparsity 



57 

accelerates the computations during multiple steps of the reconstruction and, 

furthermore, preserves space in memory, which is often a bottleneck for DOT 

algorithms. 

 

Figure 3.11 Sparsity percentage over different sensitivity thresholds. The 1% and 0.1% thresholds 

achieve sparsity over 98%. 

  

 The sparsity percentage of the Jacobian is directly related to the sensitivity threshold, 

the size of the volume sampled, and the average source-detector separation, as more 

distant measurements sample larger part of the volume. However, it is not affected by 

the number of measurements or the number of nodes of the FEM mesh. Since when 

selecting a safe threshold, as the 0.1%, there is no loss of reconstruction accuracy, this 

approach can be incorporated in the standard pipeline of all DOT applications. However, 

it is more beneficial when employed for imaging of large volumes, where usually 

reflectance measurements are considered. 
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Figure 3.12 Size of the Jacobian in memory (Gb) over different sensitivity thresholds. Estimated for 

a 300,000 nodes mesh with 3478 measurements. 

   

 For a head mesh with 300,000 nodes and 3478 measurements the calculation of the 

full Jacobian results in a dense matrix of approximately 8Gb size in memory; whilst the 

1% threshold results in 0.11 Gb and the 0.1% threshold in a 0.27 Gb (Figure 3.12), a 

memory improvement of 70 and 30 times, respectively.  
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Figure 3.13 Memory size of the full (blue line), 1% (red line) and 0.1% (yellow line) Jacobian over 

different mesh resolutions. 

 

While the sparsity of a thresholded Jacobian is not affected by the number of nodes 

of the mesh, the memory size of the Jacobian is direly connected to the number of nodes. 

Therefore, meshes with a larger number of nodes receive a larger benefit of memory 

efficiency when applying a sensitivity threshold. A mesh with 600,000 nodes results in 

a full Jacobian of approximately 16 Gb, while the 1% threshold produces 0.144 Gb and 

the 1% threshold 0.345 Gb, an improvement of 110-fold and 50-fold respectively (Figure 

3.13). 
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Figure 3.14 Computational time over different sensitivity thresholds. Estimated a for a 300,000 

nodes mesh with 3478 measurements. Serial implementation in blue, parallel with OpenMP in red. 

 

The sparsity of the Jacobian is the leading factor for the computational speed 

improvements. However, a parallel implementation using OpenMP was developed in 

order to further accelerate the construction of the sensitivity matrix. The maximum 

improvement of the parallel implementation is observed when calculating the full 

Jacobian, where the procedure is accelerated by 2.7 times for a 300,000 nodes mesh with 

3478 measurements (Figure 3.14). The computational speed is improved by 34% using 

the parallel implementation over the serial, for a sensitivity threshold of 0.1%, however, 

this improvement is larger for meshes with a larger number of nodes (Figure 3.15). 
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Figure 3.15 Computational time over different mesh resolutions. For 3478 measurements and 0.1% 

sensitivity threshold.  Serial implementation in blue, parallel with OpenMP in red. 

 

3.3.2 Qualitative Comparison 

To qualitatively evaluate the proposed framework, recoveries of local activations with 

difference imaging were performed in 24 subject-specific models, rigidly registered onto 

a head atlas117, to ensure the activations were always at the same anatomical location. 

An activation on the brain cortex, with a radius of 7mm, was simulated by perturbating 

the absorption values around the brain functional centres in Broca, motori and visual 

area (Figure 3.16). Boundary data were generated and noise was added for each 

measurement neighbourhood:  0.12%, 0.15%, 0.41%, and 1.42% for first to fourth 

neighbourhood respectively according to118. Also, the inverse problem was considered 

linear, due to the relatively small changes between the temporal measurements, and the 

employed inversion strategy was the generalised Moore–Penrose pseudoinverse, with 

Tikhonov and spatial variant regularizations as described in118.  Finally, reconstruction 

was performed for 10 different noise instances for each subject, allowing the production 

of Z-maps of statistical significance.  
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 The creation of a sparse Jacobian does not negatively affect the reconstruction quality. 

Using difference imaging (see section 4.1.2 for more details), the z-maps recovered with 

the full Jacobian, the sparse 0.1%, and 1% sensitivity threshold Jacobians have visually 

no difference and the spatial overlap between their recoveries for z>0.01 is on average 

96% with a standard deviation of ±2.3%. 

 
Figure 3.16 Simulated brain activations (left) and Z-maps of recoveries with full Jacobian, 0.1% 

and 1% sensitivity threshold Jacobian. 

 

As discussed later in chapter 5, measurements of phase have larger depth penetration, 

while the algorithm presented here does not consider phase data. Therefore, considering 

the maximum depth reached for each measurement (Figure 3.10) the 0.1% sensitivity 

threshold was chosen for use in the rest of this work as the computational efficiency is 

sufficient to produce fast reconstructions, whilst maintaining image quality. This 

Simulated 

Activations 

Full Jacobian    0.1% Jacobian        1% Jacobian 

                        Reconstruction Z-maps 
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threshold should be re-evaluated in the future, as data from more FD-HD-DOT studies 

become available. 

3.4 Discussion and Conclusions 

 Prior knowledge of the underlying volume geometry and of optical properties 

distribution greatly affects DOT modelling. When this prior knowledge is available, for 

example from a subject’s MRI scan, it is possible to create subject specific FEM meshes 

to solve the diffusion approximation. Higher mesh resolutions minimise tissue 

localisation uncertainty and also reduce numerical inaccuracy induced by the FEM. 

Therefore, if the aim is to improve imaging quality (in terms of resolution, contrast and 

localisation), high density meshes should be used. However, this approach causes 

computational tractability issues, arising from high memory requirements and low 

computational speed. These issues are shown to be minimised by employing iterative 

linear solvers and parallel computing architectures. The developed solvers can be applied 

to any numerical model of light propagation in tissue, such as the Radiative Transport 

Equation, which may provide more accuracy in situations where the Diffusion 

Approximation is not valid, such as short source/detector separations and presence of 

purely non-scattering regions. Although throughout this work it is assumed that 

scattering will always dominate absorption, making the Diffusion Approximation a valid 

model of light propagation, the utilisation of the Radiative Transport Equation should 

also be further investigated to determine further improvement in imaging accuracy. 

In chapter 3.1.3.1, it is shown that numerical errors introduced by iterative solvers are 

spatially located away from the excitation source; however, the distance of the numerical 

errors from the excitation source is related to the termination criterion, indicating that 
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choosing large termination criterion to accelerate the modelling procedure, could 

negatively affect the quality of the reconstruction, depended on the application. 

Nevertheless, if the application allows, the computational time of any iterative solver 

can be greatly reduced by increasing the termination criterion. For example, for the 

models examined in this work, increasing the termination to 10-6 from 10-12 will reduce 

the computational time by half, but will increase the modelling error above 1% for the 

farthest SD separation. Therefore, the underlying physics, and the modelling and 

reconstruction procedure must be considered before attempting to solve with higher 

termination criterion. However, it is now computationally feasible to select lower 

termination criterion for the iterative solvers, practically eliminating any error induced 

by the approximate solving or the complexity of the volume, as the GPU parallelised 

approach has overly significantly lower computational time. Furthermore, the proposed 

approaches can be very efficient for systems with a large number of sources and 

detectors since the computational time is not greatly affected by solving for multiple 

sources; and in addition, can be employed in frequency domain simulations. Based on 

the performed experiments, the fastest approach is to parallelise the matrix to vector 

operations involved in iterative solvers in GPU architectures. 

The inverse problem of DOT, where the creation and the inversion of the Jacobian 

are currently the most computationally expensive parts of the algorithm, was also 

optimised and parallelised. In functional brain imaging, creating sparse Jacobians 

enables to solve the linear inverse problem in real-time speed for each temporal set of 

measurements. Furthermore, creating a sparse Jacobian massively reduces memory 

requirements, allowing reconstructions in high-resolution mesh basis, whilst employing 
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numerous frequency domain measurements in multiple wavelengths. The selected 

sensitivity threshold was 0.1%, as it allows nodes that reach at least the brain cortex 

depth to contribute towards reconstructions for all measurements.  
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4 Frequency-Domain High-Density Diffuse Optical Tomography: A 

Numerical Study 

Measurements of dynamic near-infrared (NIR) light attenuation across the human 

head together with model-based image reconstruction algorithms allow the recovery of 

three-dimensional spatial brain activation maps. Previous studies using high-density 

diffuse optical tomography (HD-DOT) systems have reported improved image quality 

over sparse arrays. These HD-DOT systems incorporated multi-distance overlapping 

continuous wave measurements that only recover differential intensity attenuation. We 

investigate the potential improvement in reconstructed image quality due to the 

additional incorporation of phase shift measurements, which reflect the time-of-flight of 

the measured NIR light, within the tomographic reconstruction from high-density 

measurements. To evaluate image reconstruction with and without the additional phase 

information, we simulated point spread functions across a whole-scalp field of view in 

24 subject-specific anatomical models using an experimentally derived noise model. The 

addition of phase information improves the image quality by reducing localization error 

by up to 59% and effective resolution by up to 21% as compared to using the intensity 

attenuation measurements alone. Furthermore, we demonstrate that the phase data enable 

images to be resolved at deeper brain regions where intensity data fail. The 

computational tools described in chapter 3 have been employed for the calculation of the 

forward model and the formulation of the inverse problem. 

4.1 Methodology  

4.1.1 Forward problem 

To model the light propagation in tissue, commonly known as the forward model, a 

numerical model based on the finite element method (FEM) has been employed to solve 
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the diffusion approximation (Eq. 2.1) through the NIRFAST58 modelling and image 

reconstruction software package. 

 High-resolution meshes (mean mesh element volume < 1 mm3, leading to ~650,000 

nodes) have been used throughout this work, which improves the accuracy of the forward 

model at a significant increase in the computational cost. To overcome the computational 

cost, GPU parallelised linear solvers have been deployed that facilitate the efficient 

calculation of the forward problem in FD simulations; when using high resolution 

meshes with ~450,000 nodes, with 158 sources and 160 detectors the forward model 

calculation time is less than 3 minutes119. 

4.1.2 Inverse Problem 

The sensitivity matrix, 𝐉 , also known as the Jacobian or weight matrix is calculated 

using the Adjoint method76 that relates changes in boundary fluence measurements, 𝜕𝐲, 

with respect to small changes in underlying tissue optical parameters, 𝜕𝐱: 

𝜕y = J𝜕x Eq. 4.1 

From the diffusion approximation equation (Eq. 2.1), in the frequency domain, the 

measured data are complex numbers and can be decomposed in two parts: amplitude 𝐲𝚰, 

and phase 𝐲𝚯. Using the Rytov approximation, differential measurements with respect 

to a baseline 𝐲𝟎 are described as a logarithmic ratio for amplitude and a difference in 

phase: 

ln (
y

y0

) =  ln (
yΙe

iyΘ

yΙ0
eiyΘ0

) =  ln (
yΙ

yΙ0

) + i(yΘ − yΘ0
) 

 

Eq.  4.2 
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Therefore, the frequency domain Jacobian describes changes in logarithmic intensity, 

𝜕ln𝐲𝚰, and linear differences in phase 𝜕𝐲𝜽, with respect to changes in the absorption, 

𝜕𝛍𝒂, and the diffusion, 𝜕𝛋 coefficients: 

[
𝜕𝑙𝑛𝐲Ι

𝜕𝐲Θ
] =

[
 
 
 
 
𝜕𝑙𝑛𝐲Ι

𝜕μa

𝜕𝑙𝑛𝐲Ι

𝜕κ
𝜕𝐲Θ

𝜕μa

𝜕𝐲Θ

𝜕κ ]
 
 
 
 

[
𝜕μa

𝜕κ
] Eq. 4.3 

 

The existing literature on fNIRS and fDOT largely report on vascular response when 

utilised in functional brain imaging, namely detecting changes in haemoglobin 

concentration only. This is depicted as a measured change in absorption only at different 

wavelengths, bilateral of the isotropic point between oxygenated and non-oxygenated 

haemoglobin. A change in tissue absorption will also affect the measured phase, as the 

average photon path changes with absorption changes. The same is in theory true for 

changes in scatter, however, there are no reported scattering characteristics that are 

related to vascular changes. When correlation is shown between phase information and 

detected brain activation in fMRI, comparing the BOLD effect with the synchronous 

phase signal41, it is still studying the same underlying haemodynamic vascular effect, 

that is recovering the absorption related changes uses the change in phase measurement. 

When phase is linked directly to brain activity, as in the Event Related Optical Signal 

(EROS) studies, minuscule differences in the structural organization of the neurons are 

hypothesised to affect the scattering coefficient which are then observed through a very 

small phase changes – which is not synchronous with the hemodynamic but with the 

electrical activity of the brain40. Therefore, assuming that only changes in the absorption 
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coefficient are associated with vascular haemodynamic changes within the brain, this 

work will focus on modelling and reconstructing changes in absorption, 𝜕𝛍𝒂, alone, 

reducing the previous equation to: 

[
𝜕𝑙𝑛𝐲I

𝜕𝐲Θ
] =

[
 
 
 
 
𝜕𝑙𝑛𝐲I

𝜕μa

𝜕𝐲Θ

𝜕μa ]
 
 
 
 

[𝜕μa] Eq.  4.4 

and using measurements at two wavelengths of 690 nm and 830 nm, these wavelengths 

were employed because the available FD system (ISS Imagent™, Champaign, Illinois) 

used for the experiments operated with these wavelengths. The dynamic changes of oxy 

(HbO2) and deoxy (HbR) haemoglobin concentration can be calculated using: 

[
𝜕𝐻𝑏𝑂2

𝜕𝐻𝑏𝑅
] = [

𝜀𝐻𝑏𝑂2,690 𝜀𝐻𝑏𝑅,690

𝜀𝐻𝑏𝑂2,830 𝜀𝐻𝑏𝑅,830
] [

𝜕𝜇𝑎,690

𝜕𝜇𝑎,830
] Eq.  4.5 

where 𝜀𝑐,𝜆 is the extinction coefficient for chromophore c (HbO2/HbR) at wavelength . 

Conversely, it is possible to map the changes in oxy (HbO2) and deoxy (HbR) 

haemoglobin concentration directly to the measured dynamic data, by considering a 

Spectral Jacobian: 

[
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[
∂HbO
∂HbR

] 
Eq.  4.6 

 

  

This formula is used in conjunction with a noise model to produce realistic boundary 

data by perturbating haemoglobin concentration values. 
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To demonstrate the difference in the sensitivity distribution and magnitude of both 

log-amplitude and phase, as a function of source and detector distance, the Jacobian for 

a 3-layered model, at a single wavelength of 830 nm, at a modulation frequency of 140 

MHz is shown in Figure 4.1. Here, the FD Jacobian has been calculated for 4 source and 

detector separations of 10, 20, 30 and 40 mm, for a 3-layered 2D model, with a skin/scalp 

layer of 5 mm, skull layer of 8 mm and brain layer (combining grey and white matter) 

with optical properties shown in Table 3.2.  
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Distance Log Intensity Phase 

 
 
 
10 mm 

  
 
 
 
20 mm 

  
 
 
 
30 mm 

  
 
 
 
40 mm 

  
 -0.18  0 -0.025  0 
Figure 4.1 Frequency domain Jacobian for Log Intensity (Joules/mm2/mM) and Phase (radians/mM) 

for HbO2. Each row corresponds to a different source and detector distances of 10 – 40 mm. The 

dashed line represents the boundary of each layer, skin/scalp (top), bone (middle) and brain (bottom) 

tissue, each having different optical properties, as depicted in Table 4.1. 

 

Several features are evident from Figure 4.1: (1) The Jacobian for Phase is showing 

sensitivity weighting at deeper regions as compared to log Intensity, highlighting the 

potential for deeper tissue sampling, (2) the magnitude of change for log Intensity 

measurements is larger than that as compared to Phase but (3) the distribution of the 

sensitivity for Phase appears more homogeneous across all tissues as compared to log 

Intensity reducing the ‘hyper-sensitivity’ to superficial signal contamination. These 



72 

same features can also be demonstrated for HbR and is also true for a wavelength of 690 

nm. 

Table 4.1 Baseline haemoglobin concentrations and optical properties in the head model114. 

Region Oxy-haemoglobin 
(mM) 

Deoxy-haemoglobin 
(mM) 

Scatter 
Power 

Scatter 
Amplitude 

Skin 0.057 0.031 1.16 0.53 

Skull 0.044 0.019 0.89 0.73 

CSF 0.011 0.008 0 0.3 

Grey 
Matter 

0.056 0.035 1.74 0.51 

White 
Matter 

0.068 0.027 1.31 0.82 

 

Since the vascular dynamic changes during functional activations are small, the 

inverse model as used for parameter recovery can be considered as a linear problem, 

where a Moore-Penrose pseudoinverse with Tikhonov regularization  Eq.  2.11 is used 

to perform a linear recovery (Eq.  2.12). 

 For the FD Jacobian, Eq.  4.4, the regularization is typically applied separately for log 

intensity and phase parts of the Jacobian58. In this work, the absorption coefficient is 

recovered for each wavelength then spectrally unmixed to recover HbO2 and HbR as 

described in equation 4.6. In previous work, spatially constrained reconstructions 83 or 

spatially-variant regularization schemes32,120 have been proposed that facilitate 

reconstructions of perturbations at deeper locations. To allow a direct evaluation of the 

potential increase in imaging performance afforded by the additional phase-based 

measurements, no spatially-variant regularization methods have been considered in this 

work. 
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4.1.3 Subject-specific models 

The subject-specific models are based on 14 female and 10 male individual subjects 

with a mean age of 26 (+/-4), with T1-weighted MPRAGE [echo time (TE)= 3.13 ms, 

repetition time (TR) = 2400 ms, flip angle = 8 deg, 1 × 1 × 1 mm3 isotropic voxels] 

scans acquired for each subject. All subjects passed MR screening to ensure their safe 

participation. Informed consent was obtained, and the research was approved by the 

Human Research Protection Office at Washington University School of Medicine. 

 High-resolution subject-specific Finite Element Models (FEM), consisting of five 

tissue layers were created, with mean element volume of ~1 mm3, resulting in ~450,000 

nodes for each mesh using NIRFAST97. A sparse sensitivity matrix, J, (sensitivity 

threshold set to 0.1%121), was then created for each of the 24 subject-specific models 

with realistic optical properties for a 690 nm and 830 nm wavelengths, shown in Table 

4.1, where the scattering is expressed in scatter power and amplitude, coefficients that 

when considering Mie scattering122, and elastic spherical particles, relate to particle size 

and density. The reduced scattering coefficient was derived from the scatter amplitude 

and power, using μs′ =  saλ
−sp, where sa is the scatter amplitude, sp is the scatter power 

and λ is the wavelength in micrometres. The haemoglobin concentrations and scattering 

properties as noted in Table 4.1 are a convention used that will allow the calculation of 

each tissue’s specific absorption and reduced scattering coefficient at any NIR 

wavelength. Specifically using known spectrally varying extinction coefficient of 

Oxy/Deoxy-haemoglobin it is possible to calculate the absorption coefficient using 

Beer’s law, whereas the spectrally varying scattering parameters are calculated using 

Mie’s theory97. It is worth stating that the effective haemoglobin concentration and 
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scattering properties for CSF are derived by utilizing published values of absorption and 

reduced scattering (at 750 and 850 nm)114 with Beer’s law and Mie’s theory.

 

Figure 4.2 The modelled HD-DOT system: 158 sources (red dots) and 166 detectors (cyan dots), the 

surface of brain is in orange and blue colour. The orange region denotes cortex locations in the field 

of view of the optical sensors. 

 

 In order to generate the boundary data, the nodes on the surface of the brain for each 

subject laying directly under the imaging array were selected to simulate point 

perturbations for HbO2 and HbR, representing  focal activations; this region is the 

orange part of the brain surface in Figure 4.2. This data was then used for the calculation 

of a point spread function (PSF) to allow an analysis of the quality of the image 

reconstruction within a field of view directly under the imaging cap. For each subject, 

the selected region depth from the surface of the brain varies, as the brain surface changes 
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along the sulci and gyri morphology. To better demonstrate the depth variation of the 

surface of the brain, the histograms of brain surface depth across all 24 subjects are 

shown in Figure 4.3(a) whereas 4.3(b) shows the brain surface depth probability 

distribution for each subject-specific model.  

  

Figure 4.3 Brain surface depth probability. a) Histogram of brain surface depth across 24 subjects. b) 

Brain surface depth probability distribution for each subject-specific model. The red stars mark the 

maximum probability for each subject while the red line is the most probable depth across all subjects 

(12.5 mm). 

 

 This further highlights the importance and the need for improving the depth resolution 

of HD-DOT and demonstrates the need for modelling individual surface activation 

points for the presented analysis. The brain surface depth varies across the subjects, 

ranging from 5 to 30mm and brain surface points presented in this study lie on the 

cortical surface with a median depth of 12.5mm, Figure 4.3 (a) and (b). This brain cortex 

depth analysis informed the decisions of the Jacobian threshold, allowing the 

determination of the best parameters for computational optimisation without loss in 

imaging quality. Specifically, the 0.1% threshold was chosen to ensure that nodes that 
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reach at least the surface of the white matter (and hence cortical surface) are considered 

for reconstruction. 

4.1.4 Realistic system noise model  

The modelled system array adopted in this work is an HD-DOT system, with source-

detector (SD) separation distances ranging from 13 to 47 mm as described previously15. 

The SD pairs are extended over the whole of the head, in order to allow coverage of a 

large area of the optically accessible cortical surface of the brain that has previously been 

used as a benchmark for fDOT simulation studies117. The modelled HD-DOT array 

contains a total of 158 light sources at two wavelengths of 690 and 830 nm, and 166 

detectors, resulting in 3,500 associated SD pairs within 50 mm separation at each 

wavelength. The SD pairs are grouped into sets of nearest neighbours (NN) 

measurements (i.e. NN1, NN2, NN3, NN4, for first through fourth nearest neighbour, 

respectively) with mean distances of 13, 29, 39, and 47 mm. In this work, the labelling 

for reconstruction with respect to a set of nearest neighbour measurements used is the 

maximum nearest neighbour; for example, for NN4 includes NN1, NN2, NN3, and NN4 

measurements.  

Simulating PSFs without noise can provide insights into the theoretical aspects of 

image reconstruction capabilities, and it is a useful tool towards optical array spatial 

design and development.  However, in practice the reconstruction quality is affected by 

the noise present in the experimental system. Moving towards realistic simulations, the 

magnitude of simulated haemoglobin perturbations should match the appropriate 

physiological values, while the noise should match this of a real system. Since the main 

source for the presence of noise is the reduction of measured photons due to absorption, 
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source-detection distance is a major factor for noise modelling, thus a noise model can 

be generalised to be expressed as a function of source-detector separation. 

 To generate a realistic noise model to be used with simulations, data were recorded 

using a frequency domain system console (ISS Imagent™, Champaign, Illinois) 

employing six detectors at distances of 18 mm to 58 mm from the source, placed over 

the optical cortex. The source was modulated at 140 MHz and data were sampled at 

39.74 Hz. Data were recorded for 120 seconds while the subject sat still and quietly 

fixated on a blank screen. Data were then processed following methods that have been 

previously described in80. Briefly, the data were band-pass filtered to 0.01-0.1 Hz to 

remove slow drifts, systemic physiology (heartbeat and respiration), down sampled to 1 

Hz, and block averaged in ten blocks of 12 seconds each. The same processing was 

applied to the measured amplitude and phase signals. The noise was then estimated as 

the standard deviation of the log mean intensity signals, therefore it is a ratio-metric 

difference for the intensity and a linear phase difference (in degrees) for phase and is 

shown in Figure 4.4. As the system utilised Photomultiplier tubes for signal detection, 

each detector was at a different voltage bias to increase signal gain and throughout the 

experiment, all data was ensured to be above the expected noise floor. 
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 The noise model 𝑛 was calculated as a function of source-detector distance, 𝑟, via a 

two-term exponential of the form n(𝑟) = aebr + cedr , and was found to provide the 

best fit with coefficients shown in Table 4.2. In previous work, using the same HD array 

configuration and similar signal processing, but acquiring measurements with a CW 

system with LEDs at 830 nm, the amplitude noise was reported to be 0.12% for NN1, 

0.15% for NN2, 0.41% for NN3 and 1.42% for NN4 118. The experimentally derived 

noise model generated in this work corresponds to a noise level estimate for each 

neighbourhood as shown in Table 4.3.  

Table 4.2 The estimated coefficients for the two-term exponential fit of the noise model. 

 Amplitude noise model  Phase noise model  
Coefficients  830 nm 690 nm 830 nm 690 nm 

a 0.6019 0.2502 1.917e-10 3.933e-11 
b 0.01052 0.02913 0.3708 0.4161 
c 9.685e-05 4.625e-06 0.03573 0.0105 
d 0.1382 0.2128 0.02002 0.05585 

 

 To simulate realistic measured data, perturbations of HbO2 and HbR values were 

induced employing Eq.  4.6, using perturbation values scaled to minimise the difference 

between simulated and measured data. The perturbation for HbO2 was scaled to be 3.8 

Intensity Phase 

  
Figure 4.4 In-vivo measured noise and a two-term exponential fit of noise versus distance from the 

source. For intensity (left) and phase (right) measurements, on 690 nm (red diamonds) and 830 nm 

(pink squares) wavelengths. 



79 

μM while HbR was -1.8 μM. Evaluations were carried out using noise-free simulations 

and simulations that included the empirically derived noise model. Stochastic realistic 

noise was linearly added to each measurement based on sampling from a Gaussian 

distribution with zero mean and a standard deviation that was a function of source-

detector distance with parameters given in Table 4.3.  

Table 4.3 The estimated noise levels for each measurement neighbourhood. 

 Amplitude noise (%) Phase noise (degrees) 
NN  830 nm 690 nm 830 nm 690 nm 

NN1 0.69 0.36 0.044 0.021 
NN2 0.81 0.56 0.062 0.05 
NN3 0.91 0.77 0.076 0.088 
NN4 1 0.95 0.088 0.126 

 

4.1.5 Evaluation metrics 

To evaluate the image quality of each PSF, for each modelled focal activation, metrics 

as previously described in similar work have been utilised 79: 

 (1) Full width at half maximum (FWHM) defined as the maximum separation 

between all pairs of points in the activation above half of the maximum recovery. Since 

the activation is simulated on a single node, representing a very small volume in space, 

smaller FWHM represents a better recovery. 

 (2) Localization error defined as the distance between the centroid of the recovery 

and the known location of the perturbed node. A perfectly located recovery would have 

localisation error zero, therefore smaller localization error values are better. 

(3) Effective resolution defined as the diameter of a sphere centred at the known 

perturbed node that can enclose all recovered nodes. This is a combination of FWHM 

and localisation error, therefore once more, the smaller the effective resolution value the 

better the recovery. 
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 It is likely that the recovered volume above half of the maximum will not create a 

single focal recovery, resulting in multiple scattered activations84. This is more evident 

in the cases with added noise, as the reconstruction often has multiple recovered 

activations. Therefore, to automate the quantification process, such activations are 

isolated by a connected component algorithm, using the FEM elements as the 

connectivity index and considering only the nodes that are associated with each other 

through at least one connected element. The recovered activations are then selected 

based on the maximum accumulated recovery value for evaluation without the use of 

any prior regional or locational knowledge. Therefore, a recovery near the perturbation 

will not necessarily be selected for evaluation, unless it is the strongest integrated 

recovery in the volume. Any recovery with localization error greater than 8 mm is 

considered a product of noise and therefore not included in the statistical analysis 

according to previous literature84. The Wilcoxon signed-rank test was used to assess the 

statistical difference between metrics of CW and FD reconstructions.  

4.2 Results 

In this section when referring to “qualitative” evaluation the reconstruction quality is 

assessed based on visual cues, and “quantitative” when assessing based on the values of 

the employed metrics. If the employed metrics are appropriate, these two assessments 

should correlate. In section 4.2.1, the qualitative results are paired with quantitative to 

only visually point out that there is an agreement between visuals and metrics, therefore 

the chosen metrics are appropriate. Then, the image reconstruction quality is measured 

only with metrics in section 4.2.2. 
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4.2.1 Qualitative Evaluation 

In this work, the brain surface under the imaging array was selected in 24 subject-

specific models and point activations modelled as perturbations were induced for each 

node in the selected area, allowing the recovery of PSFs both with and without noise. To 

provide an overview of the spatial distribution characteristics of the recovered PSFs, 

consider three points on the primary motor cortex within Brodmann Area 4, along the 

precentral gyrus, as shown in Figure 4.5. These three focal activations are modelled at 

depths of 13.3 mm, 17.2 mm and 20.5 mm (Figure 4.5). PSF of each individual modelled 

focal activation for both HbO2 and HbR have been reconstructed and as both 

demonstrated similar results, for conciseness, only those of HbO2 are shown here. 

(a) (b) 

 
 

Figure 4.5 Specific brain areas activations. a) Axial view of the brain, the red line denotes the 

coronal slice selected to view the primary motor cortex, Brodmann Area 4, along the precentral 

gyrus. b) The 5 layers of the model: skin, skull, cerebral fluids, white matter, grey matter. Selected 

cortex points at different depths: 13.3 mm (left/red), 17.2 mm (middle/green), and 20.5 mm 

(bottom/blue). 

 

 For the focal point at 13.3 mm depth, Figure 4.6, top row, both CW and FD provide 

qualitatively similar reconstructions for all SD pairs, but the FD demonstrated a visually 

better reconstruction in each case particularly for shorter NN pairs (NN1 and NN2) 
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measurements. Specifically, for the noise-added recoveries, calculated metrics are 

summarised in Table 4.4 and 4.5 demonstrating that for larger NN, the image recovery 

of the focal activation is improving for both CW and FD, and FD is consistently 

outperforming CW. 

 For a perturbation at 17.2 mm depth, Figure 4.6, middle row, the noise added CW 

data fails to reconstruct for NN2 and NN3, with calculated metrics summarised in Table 

4.4 and 4.5. This case demonstrates that for some depth range the CW reconstructions 

may fail if the dynamic range of the detectors cannot provide measurements with a good 

signal to noise ratio (SNR), while the FD recoveries can perform reasonably well even 

when using only NN2. As highlighted in Ch. 1.3, intensity measurements are dominated 

by the early arriving photons, which travel a more superficial route, since intensity 

attenuates exponentially with distance. In contrast phase changes linearly with distance, 

therefore phase measurements can capture perturbations that take place in deeper 

regions. 

Table 4.4 Localisation accuracy for individual activation using noise-added data. 

D
ep

th
 (m

m
) 

CW Localisation error (mm) FD Localisation error (mm) 

NN2 NN3 NN4 NN2 NN3 NN4 

1
3

.3
 

6.5 2.3 1 2.2 1.6 0.85 

1
7

.2
 

- - 5.2 6.2 3.8 2.2 

2
0

.5
 

- - - - - 6.1 
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Table 4.5 Effective resolution for individual activation using noise-added data. 

D
ep

th
 (m

m
) 

CW Effective resolution (mm) FD Effective resolution (mm) 

NN2 NN3 NN4 NN2 NN3 NN4 

1
3

.3
 

22.9 21.4 11 17.7 16.2 9.8 

1
7

.2
 

- - 17.9 21.42 20.58 17.9 

2
0

.5
 

- - - - - 24.8 
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Activation at 13.3 mm 

 
 

Activation at 17.2 mm 

 
 

Activation at 20.5 mm 

 
Figure 4.6 Recovered point spread functions with different nearest-neighbour measurements (NN2, 

NN3, NN4), for activations at different depths. The perturbation location is denoted with the green 

dot. The FWHM contour (when present) is noted in cyan. Recoveries with CW without noise 

(a,b,c), CW with noise (d,e,f), FD without noise (g,h,i) and FD with noise (j,k,l). 

 

 When reconstructing for simulated data without noise, an activation positioned 20.5 

mm deep from the surface of the head may be recovered reasonably well using any 

number of measurement neighbourhoods, using CW only or FD data (Figure 4.6) though 



85 

the FD based data provide reconstructions with better image quality for all NN cases. 

However, in the presence of noise, recovery based on the NN2 and NN3 completely fails 

in both CW and FD. The recovery for CW using NN3 appears to provide a recovery near 

the perturbated point, but this is not the strongest recovery in the volume, therefore it is 

considered as noise artefact and as such is not selected for evaluation. However, when 

using NN4 the FD data recovery demonstrates a better recovery, achieving a 6.1 mm 

localization error with 24.8 mm effective resolution. In the presence of noise recoveries 

for such deep points often fail, which leads to large increases in the localization and 

resolution metrics.  

4.2.2 Quantitative Evaluation 

To provide a comprehensive evaluation of the benefits of FD data over CW, images 

were reconstructed for a set of NN1-NN4 SD pairs, using both noise-free and noise 

added data. In the presence of noise, the recoveries for deep activation points fail, which 

leads to significant increases in the calculated error metrics. The most obvious change is 

seen in the localization error, as beyond certain depths the recovered focal activations 

are not successful. In accordance with existing literature84, any recovery with 

localization error greater than 8 mm is considered a product of noise. To identify the 

percentage of recoveries within the imposed localization limit, a success rate metric is 

introduced (Figure 4.7), where a 50% success rate limit was set to examine the depths at 

which different approaches perform adequately. Recoveries exceeding this limit are not 

included in any further results or statistical analysis.  

 Each recovered focal activation is assessed using metrics of the full-width at half 

maximum (FWHM) (Figure 4.9), localization error (Figure 4.8), and effective resolution 
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(Figure 4.10). These results, quantised according to depth from the surface of the head,  

are summarised in  Table 4.6 and Table 4.7 and compared in Table 4.8. The noise-free 

evaluation is also presented to provide a benchmark of limitations imposed due to the 

ill-posed inverse problem, the employed regularization, and to provide a lower-bound 

on metric quality given further advancements in instrumentation that will lead to 

hardware with lower noise characteristics. 
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Figure 4.7 HbO2 success rate for 8mm localization error limit. The dashed blue and red line denotes 

the depth where the recoveries reach 50% success rate for CW and FD respectively.  

 

 For the noise-free cases, the success rate maintains near 100% until it steadily declines 

at a characteristic distance (Figure 4.7). The FD approach consistently performs better 

than the CW case in deeper regions. For CW recoveries, the 50% success rate is crossed 

at 17.18 mm for NN2, 22.27 mm for NN3, and 24.97 mm for NN4; while the FD 50% 

success rate points are at 23.04 mm, 27.53 mm and 29.38 mm respectively. For the noise 

added cases the success rate drops under 50% at shallower depths. Specifically, for the 

CW case, the 50% success rate is crossed at 14.87 mm for NN2, 16.59 mm for NN3, and 

19.71 mm for NN4, while the FD 50% success rate points are at 18.43 mm, 19.75 mm 
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and 23.04 mm respectively. The increase in depth sensitivity while using depth data 

appear to be 4-5 mm. Examining the brain cortex depth probability (Figure 4.3) we can 

assume that NN2 and higher measurements can perform adequately in the 10-15 mm 

depth range – where most of the brain cortex volume lies. 

 The FD data significantly improves the localization throughout the imaging domain 

for noiseless simulations (Figure 4.8). At each depth, the use of FD data demonstrates a 

statistically significant improvement (p<0.01) in localization accuracy. For the noise 

added case, the localization error is larger for activations deep within the brain, while 

the improvement of the FD reconstructions is again statistically significant (p<0.01) at 

each depth interval. Specifically, when comparing a depth range of 10-15 mm, the 

localization error for FD presents a 58.9% improvement for NN2 recoveries, 47.3% for 

NN3 recoveries and 21.1% for NN4 (Table 4.8). These improvements are statistically 

significant for all modelled focal activations (p<0.01) using the Wilcoxon signed-rank 

test. It is also worth noting that the improvement is mainly in the depth direction with 

the directional error between FD and CW being 10-fold larger in depth than the lateral 

direction. 
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Figure 4.8 HbO2 localization error. Median for CW (blue asterisk line) and FD (red cross line); the 

coloured bands represent the 25th to 75th percentile range. The percentile bands stop at the point 

where the 50% success rate is reached, while the median line continues until the 10% success rate is 

reached. 

 

 The FWHM for the noise-free cases increases with depth, but the FD reconstructions 

do not always significantly improve the FWHM (e.g. in the NN2 case), however 

employing the FD approach results in slightly improved performance and smaller 

variations within each depth interval (Figure 4.9). For the noise added case, the FWHM 

still presents slight improvements when employing FD recoveries, however, the 

improvement is not always statistically significant (Table 4.8), particularly for NN2 at 

activation depths of greater than 15 mm.  
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Figure 4.9 HbO2 full width at half maximum (FWHM). Median for CW (blue asterisk line) and FD 

(red cross line); the coloured bands represent the 25th to 75th percentile range. The percentile 

bands stop at the point where the 50% success rate is reached, while the median line continues until 

the 10% success rate is reached. 

 

 Finally, the effective resolution with respect to depth from the head surface is shown 

in Figure 4.10. As expected, in the noise-free cases the effective resolution increases 

with depth. As the effective resolution is a function of both FWHM and localization, in 

the noise-added cases, the improvements observed are larger than those of the FWHM 

but smaller than the localization improvements. However, the observed improvement 

for FD data is statistically significant for each depth interval. Specifically, when 

comparing for a depth range of 10-15 mm, the effective resolution for FD presents a 

20.6% improvement for NN2 recoveries, 13.7% for NN3 recoveries and 10.5% for NN4 

(Table 4.8). These improvements are all statistically significant for all modelled focal 

activations (p<0.01) using the Wilcoxon signed-rank test.  
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Figure 4.10 HbO2 effective resolution. Median for CW (blue asterisk line) and FD (red cross 

line); the coloured bands represent the 25th to 75th percentile range. The percentile bands stop 

at the point where the 50% success rate is reached, while the median line continues until the 

10% success rate is reached. 

 

The results are summarised in Table 4.6 and Table 4.7 where the reconstruction 

metrics for recoveries with noise-added data have been binned and analysed in 5 mm 

depth intervals and the median, upper and lower quartile for each interval is reported.  

Finally, in Table 4.8 the percentage relative change for reconstruction using FD data as 

compared to CW is shown. 
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Table 4.6 Image quality metrics medians and quartiles for recoveries with CW noise-added model. 

D
ep

th
(m

m
) 

FWHM (mm) Localization error (mm) Effective resolution (mm) 

NN2 NN3 NN4 NN2 NN3 NN4 NN2 NN3 NN4 

5
-1

0
 

11.6−10.3
+13.7 11−9.9

+12.4 10.6−9.5
+12.1 2.2−1.7

+2.9  1.4−1
+1.8 1.1−0.8

+1.5 14.9−13.2
+17.7 13.2−12

+15 12.5−11.2
+14.2 

1
0

-1
5

 

13.3−11.7
+15.7 12.9−11.6

+14.5 12.5−11.2
+14.1 4.2−3.3

+5  2.6−2
+3.2 1.5−1

+2 19.6−17.3
+22.5 16.8−15

+19.1 14.9−13.3
+17  

1
5

-2
0

 

14.6−12.6
+17.2 15.2−13.4

+17.5 14.6−12.8
+16.8 6.4−5.6

+7.2 4.4−3.6
+5.4 2.8−2.2

+3.6 24.5−22.3
+27.1 22−19.8

+25.3 19−16.8
+22  

2
0

-2
5

 

14.5−12.7
+17.1 15.2−12.8

+17.8 15.3−13
+17.8 7.1−6.1

+7.6 5.8−4.7
+6.7 4.7−3.7

+5.8 25.1−23.2
+28  24−21.6

+27.2 23−20.3
+26.1 

 

Table 4.7 Image quality metrics medians and quartiles for recoveries with FD noise-added model.  

D
ep

th
 (m

m
) 

FWHM (mm) Localization error (mm) Effective resolution (mm) 

NN2 NN3 NN4 NN2 NN3 NN4 NN2 NN3 NN4 

5
-1

0
 

10.8−9.8
+12.2 10.2−9.3

+11.5 9.8−8.9
+11.1 1.1−0.78

+1.4  0.94−0.68
+1.2  0.87−0.62

+1.2  12.5−11.3
+14.2 11.7−10.6

+13.3 11.3−10.2
+12.9 

1
0

-1
5

 

13.1−11.8
+14.6 12.3−11.1

+13.7 11.3−10.1
+12.9 1.7−1.2

+2.2 1.4−1
+1.8 1.2−0.83

+1.6  15.6−14
+17.5 14.5−13

+16.3 13.3−11.9
+15.3 

1
5

-2
0

 

15.1−13.7
+16.8 14.9−13.4

+16.6 13.2−11.5
+15.4 3.4−2.6

+4.2 2.4−1.8
+3.1 1.7−1.3

+2.3 20.1−18.2
+22.3 18.7−16.9

+21  16.3−14.3
+19.1 

2
0

-2
5

 

15−12.9
+17  15.3−13.4

+17.4 14.8−12.7
+17.4 5.4−4.3

+6.5 4−3.1
+5  2.7−2

+3.5 23.1−21.2
+25.4 21.9−19.6

+24.5 20−17.1
+23.4 

 

 



92 

Table 4.8 FD reconstruction relative difference. The shaded cells are not statistically significant 

(p>0.01). 

 FWHM (%) Localization error (%) Effective resolution (%) 
Depth 
(mm) 

NN2 NN3 NN4 NN2 NN3 NN4 NN2 NN3 NN4 

5-10 7 7 7.5 51.5 32.2 20.7 16.1 11 9.5 
10-15 1.9 4.8 9.3 58.9 47.3 21.1 20.6 13.7 10.5 
15-20 -4 2.4 9.6 47.2 44.8 37.6 17.9 15.7 14 
20-25 -4 -1.3 3.5 23.5 30.5 43.3 7.9 9.1 13 

 

4.3 Discussion  and conclusions 

To date, most HD-DOT imaging studies have concentrated on the utilization of CW 

data. Although some studies have reported the use of FD NIR systems for spectroscopic 

mapping of brain functions, these have been mainly limited to utilization of phase and 

amplitude data for the separation of optical scattering components from absorption. It 

has been recently demonstrated that the information content of phase data from a 

retinotopic experiment contains rich information, potentially arriving from deeper 

regions within the brain and therefore minimizing the superficial tissue contamination 

123. This chapter presented a detailed study of the potential improvements to image 

quality gained through incorporating measurements of phase along with intensity in the 

reconstruction process. 

 Utilizing a simple layered slab model, the Jacobian (i.e. the sensitivity of both log 

amplitude and absolute phase to absorption changes) has been calculated and shown in 

Figure 4.1. Several features are evident: (1) both log-amplitude and phase data show a 

decrease in signal due to a change to absorption; (2) while the sensitivity for both log-

amplitude and phase data increases in depth of sampling with source-detector separation, 

the phase data demonstrates deeper sensitivity for a given source-detector separation; 

and (3) the hyper-sensitivity in superficial tissues observed with log amplitude data is 

less pronounced for phase data. This supports our earlier findings that phase data is able 



93 

to detect changes deeper within the brain and are less prone to be contaminated to 

changes within the superficial tissue that may mainly be attributed to systemic cardiac 

and respiratory signal.  

 Utilizing a set of 24 subject-specific models, highlights that the surface of the cortex 

can be from 5-30 mm deep with respect to the surface of the head (Figure 4.3), further 

highlighting the need for the utilization of data-types that will allow deeper sampling of 

the brain tissue. Although this can, in theory, be achieved through the use of larger 

source-detector separations, in reality, this is not possible due to system design and low 

SNR at measurement distances above 45 mm 44,80. To demonstrate that FD data-types 

(log intensity and phase) can provide a better sampling of deeper tissue, the subject-

specific models have been utilised to simulate a set of data corresponding to focal 

activations at all cortex surface nodes lying underneath the imaging array, highlighted 

as orange regions in Figure 4.2. In order to ensure that these simulated data are realistic, 

the noise characteristics of a commercially available FD system, ISS Imagent has been 

measured, as a function of source-detector nearest neighbour measurements (Figure 4.4) 

and were added to the simulated data (equation 4.6). To investigate the benefits of using 

differing NN (NN2-NN4) measurements for activations at different depths three sets of 

representative focal activation recovery maps are shown in Figure 4.6. In all cases as the 

number NN measurements increases, the depth recovery improves. In each case, the 

presence of noise is shown to introduce artefacts within the recovered maps. Importantly, 

the utilization of FD data is shown to improve all metrics of image quality relative to 

using CW. In almost all cases, the localization accuracy of utilizing FD data is shown to 
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be much better than those of CW, even including an activation at 20.5 mm where the 

CW data failed to recover a meaningful map. 

 To provide an overview of these benefits, images of focal activations for all noise-

added simulated cortical activations have been reconstructed and analysed to provide 

group average metrics of localization accuracy (Figure 4.8) full-width-half-max (Figure 

4.9) and effective resolution (Figure 4.10) with data summarised in Table 4.6, Table 4.7  

and Table 4.8. For all metrics in the noise-free case, the accuracy decreases as a function 

of activation depth, with FD data out-performing CW in all cases. To achieve meaningful 

statistical comparisons a localization error limit of 8 mm has been imposed as the upper-

bound for statistical analysis, excluding all recoveries that are solely products of noise84. 

For all NN measurements, the FD data provides a significant improvement in almost all 

recovered activations for all reported metrics (summary in Table 4.8). For example, 

assuming a set of NN3 measurements, it is shown that as compared to CW the FD data 

shows up to 59% improvement in localizing accuracy and up to 21% improvement in 

effective resolution. Additionally, the FD data using NN4 is observed to successfully 

recover activations as deep as 20-25mm, beyond the range accessible to CW.  

The presented results suggest that for the same configuration of source-detector, the 

FD will outperform the CW reconstruction. Increasing the density of a CW imaging 

array will considerably increase the imaging quality: increasing from NN2 to NN3 will 

reduce the localisation error from 4.2 mm to 2.6 mm, while increasing to NN4 will 

decrease it further, to 1.5 mm, in the 10-15 mm depth range. Switching from CW to FD 

for a NN2 imaging array will decrease the localisation error from 4.2 mm to 1.7 mm, in 

the same depth range. The benefit of FD measurements seems to be greater than the 
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benefit from more dense measurements using CW alone, nevertheless this improvement 

appears to decrease when adding additional measurement neighbourhoods. However, 

there is a limit in the spatial distribution of optodes that can be laid out in regular-

distanced measurement pairs. The described HD-DOT configuration is already 

challenging to implement in practice due to space constraints on the imaging pad and 

frequency/time multiplexing options. For this reason, denser arrays have not been 

examined in the literature, the most recent development being larger arrays for full head 

coverage. Considering this, if the maximum improvement in terms of localisation error, 

depth sampling and FWHM is required for a HD-DOT system, switching to FD seems 

to be a logical step. 

 It is important to highlight that utilizing a time-resolved system for NIRS, utilization 

of mean-time of photon travel has been previously reported124, which is analogous to 

phase for an FD system, however in this work, the utilization of both log intensity and 

phase for tomographic reconstructions have been highlighted to demonstrate benefits. 

Although the sensitivity of the log intensity is shown to be more weighted towards the 

superficial tissues, it is this variation of sensitivity between log intensity and phase data 

which is providing the additional accuracy as demonstrated. 
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5 Frequency-Domain High-Density Diffuse Optical Tomography: In 

Vivo Retinotopy Experiments 

5.1 Introduction 

Retinotopy is the mapping of neural activations on the visual cortex occurring during 

visual stimuli. The retinotopic maps are in the primary sensory region of the brain, 

therefore is easier to understand the correlation between stimuli and brain activity than 

in the case of higher mental functions. The paradigm of retinotopy has been used with 

PET125 and fMRI126 and has been used for neuroimaging quality validation in a 

simultaneous fMRI and fDOT study, which revealed bilateral visual cortex activation 

pattern for both approaches127. This result was improved using HD-DOT, which allowed 

recoveries at four distinct quadrants44. Finally, a high correlation between fMRI and 

CW-HD-fDOT results was observed in studies employing subject-specific114 and atlas-

based128 models for the DOT reconstruction. In this chapter, the computational tools 

presented in chapter 3 and the FD-HD-fDOT methodology presented in chapter 4 will 

be employed to perform all the reconstructions. 

5.2 Experimental Setup 

5.2.1 System set-up 

A frequency-domain NIRS (FD NIRS) device (IMAGENT™, ISS Inc. Illinois USA) 

was used to obtain the NIRS-based data. The system consists of 32 source and 30 

detector fibres with each source coupled to laser diodes emitting at 690 nm and 830 nm 

with the detectors being compact and fast photomultiplier tubes (PMT). The light 

sources were modulated at different frequencies, each offset a few Kilohertz from the 

central modulation frequency of 140 MHz. The signal was collected by the detectors 

modulated at a fifth frequency (cross-correlation frequency). Using this strategy, two 

parameters were recorded at each detector, for each wavelength, the AC amplitude and 
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phase-shift of the signal, as depicted in Figure 1.2. In contrast to a continuous wave 

system (CW), where the sources are at a constant amplitude (Iin) and only the attenuated 

signal (Iout) is detected (red lines in Figure 1.2), FD allows the measurement of both the 

AC amplitude (analogous to CW intensity) as well as the associated phase-shift (Δθ) for 

each source/detector pair. 15 subjects were recruited from the University of Birmingham 

community, and written informed consent was obtained, none of these subjects were the 

same as the 25 subjects used for mesh generation earlier in this work. Subjects were 

seated facing an adjustable screen while the imaging pad was attached over the occipital 

cortex with hook and loop strapping. Scans were in line with a previously reported CW 

high-density DOT imaging system setup44. Briefly, the imaging cap consisted of 24 

source positions (with two near-infrared wavelengths—690 nm and 830 nm—at each 

position) and 28 detectors interleaved in a high-density array. First- (13 mm, NN1), 

through fourth nearest neighbour (48 mm, NN4) optode pairs were utilised (Figure 5.1), 

giving a total of 348 total possible measurements, at a frame rate of ~40 Hz. 

 

Figure 5.1 The optical cortex pad, with 28 sources(red) and 24 detectors (blue), featuring the 1st to 

4th  measurement areas for detector D2. 
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5.2.2 Retinotopy experiment  

The human visual system is organised such that neighbouring neurons correspond to 

nearby locations of the visual field, in a continuous manner. In order to examine this 

mapping between the visual field and the optical cortex functional areas, retinotopy 

experiments have been designed, relying on carefully designed periodic visual stimuli. 

In this study visual stimuli consisted of rotating logarithmic checkerboards, reversing 

intensity at 10 Hz, on a 50% intensity grey background. Each rotation completed in 36 

seconds, corresponding to an event frequency of ~ 0.0277 Hz, and 10 rotations occurred 

in each run, resulting in 7 minutes total scanning time per run, including 30 second 

baseline periods at the beginning and the end. Typically, the subjects were comfortable 

to go through 3 runs (around 21 minutes) before taking a break.  

5.2.3 Eye blinking experiment 

This experiment was designed in order to confirm that the measured intensity 

fluctuations along the visual pad were indeed brain activations and not a product of 

screen intensity. Therefore, the screen was set on 50% intensity grey background, with 

no fluctuations, but the subjects were asked to open or close their eyes following a 

provided audio stimuli. Each event was completed in 34 seconds, 10 seconds of eyes 

open followed by 24 seconds with eyes closed, corresponding to an event frequency of 

~ 0.0294 Hz, resulting in 6 minutes and 40 seconds total scanning time per run, including 

30 second baseline periods at the beginning and the end. Similarly to the retinotopy 

experiment, the subjects were comfortable to repeat 3 times (around 20 minutes) before 

having a break. 



99 

5.3 In vivo fNIRS Data  

5.3.1 Visualisation 

The raw signals were visualised in vivo using NeuroDot129, an extendable and user-

friendly environment for analysis of optical data from raw light measurements. 

NeuroDot provides excellent quality control visualization options: the raw intensity 

signals, the signal strength, and noise across the imaging pad, the logarithmic intensity 

over the measurement distance and the frequency spectrum of the measured data (Figure 

5.2).  

 

Figure 5.2 Screenshot of the NeuroDot analysis tool. In the top-left-hand, the raw intensity data is 

presented, with average signal intensity across the measurements pad for all source/detector pairs at 

the bottom left. The top right hand is the log-intensity as a function of source-detector separation, 

and the variance of the signal and power spectrum shown in the bottom right. 

 

 NeuroDOT was modified to provide similar visualisations for the measured phase 

data ( 
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Figure 5.3). These visualisation tools were used to provide quality control during the 

data recording sessions, allowing for fast fitting of the optical array and ensuring high-

quality data are collected. 

 
 

Figure 5.3 Data quality display for phase data. Top left: Each row represents the time course of the 

phase of a given source-detector measurement pair within the NN1 and NN2 sets. The actual mean 

phase value is arbitrary. Lower left: Spatial distribution of mean phase noise for NN1 (left) and NN2 

(right) for each source and detector on the imaging array. Top right: Temporal standard deviation of 

the phase measurement as a function of source-detector distance. Middle right: Histogram of the 

temporal standard deviation of phase measurements. Lower right: Average power spectra for the 

NN1, NN2, and NN3 measurement sets with the frequency of the stimulus cycle highlighted. 

 

 In both visualisations, the peak near the stimuli frequency is clearly visible indicating 

the brain activity caused by the stimuli, which for the shown examples was the rotating 

pattern, with an event frequency of 0.278 Hz. A clear peak on the stimuli frequency was 

observed in 12 of the 15 participants. 

5.3.2 Frequency Domain Spectrum 

The frequency spectrum of the measured data can provide useful initial information 

regarding the quality of the data. Haemodynamic phenomena of regularly repeatable 

nature, for example heartbeat and breath, produce a peak in the frequency spectrum. 
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Prior to data analysis, measurements with high noise (amplitude standard deviation > 

7.5%114 or phase standard deviation >5 degrees) were disregarded, resulting in ~300 

measurements passing the quality control for each scan. Each remaining measurement 

was subjected to a Fourier transform to acquire its frequency power spectrum. Power 

spectra for each measurement neighbourhood (e.g. NN1) were averaged separately for 

the amplitude and phase measurements. 

 

Figure 5.4 Fourier transforms of the time traces obtained using the FD system at 830 nm. The y-axis 

showing power (arbitrary units) x-axis depicting frequency (Hz). Each row corresponds to NN1-NN4 

optode pairs. Left column (red plots) correspond to AC amplitude data, whereas the right column (blue 

plots) corresponds to Phase data. Note the strong peak at the rotation frequency of the stimulus wedge 

(~0.028Hz), as well as those from Breathing (~0.1 Hz) and Cardiac pulse (~1Hz). 

 

 Several features are evident from the power spectrum of the signals shown in Figure 

5.4. Using AC amplitude data (intensity) the signal becomes weaker as the 

source/detector separation increases. The peak due to the stimuli is only evident for 

source/detector separations of 30mm or larger, as the lower separations are only 



102 

sampling the superficial tissues. The peaks due to breathing and the cardiac pulse are 

evident in all source-detector separations. 

 Using phase data, it is evident that the data contains more noise at the largest 

source/detector separation of 48 mm, which is primarily due to the strong signal 

attenuations at this longer distance. But more crucially, the peak due to the visual stimuli 

is evident in all source/detector measurements, even those at 1st NN of 13 mm, 

demonstrating the deeper sampling of brain tissue obtained by this phase data. The most 

substantial finding is that in the phase data, the peaks due to breathing and cardiac pulse 

are much smaller in all cases, almost diminishing for 2nd and 3rd NN measurements, 

demonstrating that the phase data is less sensitive to signal contamination from the 

superficial tissues. 

5.3.3 Discussion  

While a CW system measures only the attenuated light intensity, FD and Time-

Resolved (TR) systems can measure the pathlength of the light as it has travelled through 

the tissue which allows for a more accurate quantitative assessment of its optical 

properties. The use of mean-time-of-flight of photons from TR systems has been 

reported and used for recovery of functional activations124, but the information content 

of phase data has not been previously studied to demonstrate depth selective information 

content. It is shown that the intensity data for short optode distances do not contain 

information about brain activations but are corrupted by systematic noise (breathing and 

cardiac) from the superficial layers. However, the measured phase data demonstrate that 

brain activation signals are available at these short source/detector separations, while at 

longer distances, the contamination from superficial regions is minimised. This 
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demonstrates the benefit of FD fNIRS for quantitative and accurate detection of brain 

activations. 

5.4 In vivo reconstructions 

The raw signals were processed according to previously proposed pipeline80, with a 

few modifications to accommodate for the phase data. For each channel the passed the 

noise threshold, the amplitude data was log-meaned, ln (
yΙ

yΙ0

), and the phase data was 

mean abstracted yΘ − yΘ0
, to create differential data according to the Rytov 

approximation (Eq.  4.2), where yΙ0
 and yΘ0

 are the mean values for amplitude and phase 

for this channel respectively. Initially, signal quality was assured using a previously 

reported80 noise threshold of 7.5% standard deviation for amplitude. Since this was the 

first time FD-HD-fDOT tomographic reconstructions were performed, a 5 degrees 

standard deviation threshold for phase was selected through trial and error, aiming to 

reduce noise in reconstructed images. 
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Figure 5.5 Standard deviation of amplitude versus standard deviation for phase for each 

measurement. Part b is a zoomed-in at the red-boxed area of a. In part b the red line denotes the 5 

degrees and the blue line the 7.5% noise thresholds. 

 

a) 

b) 
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 Only the channels that score noise under 5 degrees for phase and, at the same 

time, under 7.5% for amplitude were considered for further processing, these were the 

measurements lying within the area defined by the red and blue lines in Figure 5.5 (b).  

 The frequency spectrum of the differential data, averaged for each measurement 

neighbourhood, is displayed in Figure 5.6. The number of channels below the noise 

thresholds, N, and the total number of channels for each neighbourhood is noted on top 

of each graph. The top row has NN1 on the left and NN2 on the right, while the bottom 

row has NN3 and NN4 respectively. The noise, for both amplitude and phase, is 

increasing as source-detector separation increases, therefore fewer measurements are 

passing the quality thresholds at more distant measurement neighbourhoods (Figure 5.6). 

This is also reflected in the noise model estimated for section 4.1.4. 
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Amplitude Data 

Phase Data 

Figure 5.6 Differential amplitude and phase data frequency spectrum, averaged for each 

measurement neighbourhood. The number of channels passing the noise thresholds, N, and the total 

number of channels for each neighbourhood is noted on top of each graph. The top row has NN1 on 

the left and NN2 on the right, while the bottom row has NN3 and NN4 respectively. 

 

 Then the data was band-pass filtered to 0.01-0.1 Hz to remove slow drifts and 

systemic physiology noise as heartbeat and respiration. To implement this filtering, first 

a zero-phase digital high-pass filter at 0.01 Hz was applied (Figure 5.7), then a zero-

phase digital lowpass filter at 0.1 Hz was applied on the outcome (Figure 5.8).  
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Amplitude data 

Phase data 

Figure 5.7 High-passed differential amplitude and phase data frequency spectrum, averaged for each 

measurement neighbourhood. 
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Amplitude data 

Phase data 

Figure 5.8 Low-passed differential amplitude and phase data frequency spectrum, averaged for each 

measurement neighbourhood. 

 

 Finally, the data was down-sampled to 1 Hz and block averaged in ten blocks, 

according to the ten repetition cycles of the visual stimuli, of 36 seconds each. 

5.4.1 Retinotopy 

A single snapshot of a recovered focal activation for a single subject is shown in 

Figure 5.9. Here the cross-sectional sagittal and transverse planes of a single focal 

activation within the left visual cortex are shown as a change in recovered HbO2. The 

CW reconstruction is shown to recover an activation at a much more superficial depth, 

mainly appearing in the area of the superficial tissue; whereas the FD based 
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reconstruction is able to recover the activation overlapping with the cortex of the brain. 

It is important to highlight that the same regularisation parameter for the inverse model 

has been used, namely ensuring that the improvement in image recovery and accuracy 

is primarily due to the inclusion of phase data within the FD based reconstruction.  

 

 Transverse Saggital 
 
 
 
 
 

CW 

 

 
 
 
 
FD 

  Figure 5.9 In-vivo visual cortex activation (50% threshold, ∆HbO2 [a.u.]) using CW data 

(a,b) and FD data (c,d). 

 
 

5.4.2 Phase encoded retinotopy 
 

Phase encoded retinotopy is a technique whereby tomographic reconstruction is 

performed and processed such that only nodes that have maximum recovered peak at a 

given stimuli frequency are selected. Therefore, the reconstruction is confined spatially 

only for nodes that have been affected by the visual stimuli and produce strong variance 

over time for the given stimuli frequency (Figure 5.10): this simultaneously ignores all 
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information from other frequency bins, dramatically reducing noise and hence imaging 

artifact. 

 
Figure 5.10 HbO2 recovery (normalised) variance over time only for the stimuli frequency. 

 

 Specifically, the recovered HbO2 values for each node are considered through the 

temporal dimension, and the frequency spectrum of this time trace is obtained. If the 

node presents a significant peak at the stimuli frequency, the phase of this frequency bin, 

which is directly related to the time offset the HbO2 variance peak, is examined. For 

visualization, in order to represent the angles in which the stimuli wedge is rotating 

through, each angle is color-coded (Figure 5.11). Ideally, each of the colours in the 

stimuli wheel represent a different angle of the checkerboard wedge as it rotates, 

typically resulting in 36 colours (in steps of 10 degrees), until it completes a full circle. 

The nodes on the surface of the brain should activate with a specific time offset that will 

also classify them into similarly arranged colours. This is because spatially adjacent 

visual stimuli should activate spatially adjacent neurons.  In the example as shown in 

Figure 5.11 the rotational bins have been quantised only into 16 bins to make the effect 

visually clearer.  
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Figure 5.11 Phase encoded retinotopy. Each colour represents a different angle on the rotation of 

the wedge stimuli. 

 

 We were able to achieve good quality phase-encoded retinotopy for CW and FD based 

reconstructions. The FD reconstructions achieved more realistic localization of the 

activations, however, they were noisier. This is primarily due to the fact that phase 

appears to be a more noisy measurement,  with noise levels drastically increasing when 

source-detector distance increases. For the PER analysis, in all of the subjects where a 

peak was detected on the stimuli frequency (12 subjects), there was a clear distinction 

between left and right hemisphere activations, in most subjects (9 subjects) quadrants 

could be resolved. However only 4 subjects had PER that captured a fuller range of 

activations, similar to Figure 5.11. The failure cases are probably due to poor imaging 

array placement, in terms of location over the optical lobe and optode contact to the head 

surface. 

5.4.3 Discussion and conclusions 

The inclusion of phase data improves the reconstruction quality by localising the 

activations more appropriately on the cortical surface rather than within superficial 

layers, as shown in Figure 5.9. As the purpose of the work was the proof of concept that 

FD-HD-DOT outperforms CW-HD-DOT in reconstructed image quality, there was no 
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fine-tuning of parameters as data filtering and regularisation; furthermore, no superficial 

signal regression and no depth normalisation technique was employed, to ensure that all 

the improvements are due to the enhanced nature of measurements. The results indicate 

that there is much room for improvement of HD-DOT, only by switching to FD 

measurements, a possible even further improvements if the reconstruction parameters 

are fine-tuned to accommodate phase data. 
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6 Conclusion and Future Work 

DOT is a promising imaging modality, steadily gaining ground amongst the 

established imaging techniques. The harmless and patient-friendly procedure enables use 

in applications where other techniques are inadequate. This work presents a framework 

for frequency domain high density functional diffuse optical tomography, whilst 

providing computational tools to enable fast and computationally efficient 

reconstructions.  

 The main motivation for the development of new computational tools was to 

allow researchers to perform HD-DOT reconstructions, with CW and FD measurements, 

whilst solving the forward and inverse problem in very high-resolution FEM meshes, 

while using a standard desktop/laptop computer. In this work, the accuracy and 

computational speed of iterative solvers is evaluated on anatomically realistic head 

models, with high-resolution meshes and HD-DOT system, the solver’s termination 

criterion that was found to be optimal for this application is 10-12. The produced tools 

require only 10% of the time in comparison to the tools available up to now; additionally, 

these tools can scale to take advantage of high-end computing facilities, where available. 

Additionally, a fast and memory efficient formulation of the inverse problem is 

demonstrated. Creating a sparse Jacobian massively reduces memory requirements, 

allowing reconstructions in high-resolution mesh basis, whilst employing numerous 

frequency domain measurements in multiple wavelengths. The selected sensitivity 

threshold of 0.1% allows nodes that reach at least the brain cortex depth to contribute 

towards reconstructions for all measurements. 
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 Furthermore, the memory-efficient handling of the forward and inverse models enable 

high-quality reconstructions in scenarios where it was impossible up to now due to lack 

of computational power, for example as a bedside monitoring tool or as a piece of 

ambulance or operating theatre equipment. 

The inclusion of phase data, alongside the amplitude measurements, enhances the 

reconstruction quality as while the sensitivity for both log-amplitude and phase data 

increases in depth of sampling with source-detector separation, the phase data 

demonstrates deeper sensitivity for a given source-detector separation; and the hyper-

sensitivity in superficial tissues observed with log amplitude data is less pronounced for 

phase data.  

 A framework for FD-HD-fDOT was proposed and evaluated in simulations, revealing 

a significant improvement in imaging quality, achieving a reduction of localisation error 

by up to 59% and an improvement of effective resolution by up to 21%, as compared to 

using the intensity attenuation measurements alone. Also, the simulations display 

sampling at larger depth when phase data is employed, allowing DOT to resolve 

functional events in deeper brain regions.  

 The benefit of FD measurements seems to be greater than the benefit from more dense 

measurements using CW alone, however, this improvement appears to decrease when 

adding additional measurement neighbourhoods. There is a limit in the spatial 

distribution of optodes that can be laid out in regular-distanced measurement pairs. HD-

DOT configuration is already challenging to implement in practice due to space 

constraints on the imaging pad and frequency/time multiplexing options, therefore 

denser arrays have not been examined in the literature. The configuration of a FD 
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imaging array if of the same complexity as an CW array. Considering this, if the 

maximum imaging quality is required for a HD-DOT system, the transition to FD 

measurements should be pursued.  

 Finally, in vivo retinotopic experiments were performed that verified that phase can 

provide additional useful information in fNIRS, and subsequently improve fDOT 

imaging quality. Specifically the FD reconstructions appear to located the brain 

activation in a more appropriate position on the brain cortex, while containing 

information about brain activity even in very short distance measurements, due to 

increase depth penetration. However, in practice, phase is a more noisy measurement, 

therefore, whilst improving localisation, often added noise to the reconstruction. This is 

a current drawback of the FD approach, but as is mainly a hardware limitation, it could 

be overcome with finetuning the source/detector gain and multiplexing settings, and the 

optodes placement and contact to the head surface. 

 This work demonstrates that phase data is a valuable measurement for fDOT, however 

it is only an initial study that proves the concept and provide the foundations for further 

research. For example, in this work the same regularisation factor was used for amplitude 

and phase recoveries, no regional sensitivity weighting, and no depth normalization was 

used in any FD reconstruction. Fine-tuning such parameters could further increase the 

imaging quality of HD-DOT. 

 In addition, some unique characteristics of the phase data, can lead to development of 

new approaches. For example, while phase data capture brain-related activity, is not as 

sensitive as the amplitude data to systemic noise, like breathing and heartbeat. This 
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discrepancy could be exploited to suppress those noise sources in the whole of the 

reconstruction and further increase functional imaging quality.  

 Whilst this work focused only on the recovery of relative absorption changes, that 

mainly reflect oxy and deoxy haemoglobin concentrations, the availability of phase 

measurements can provide information on scattering related changes and potentially 

provide absolute values for the recovered optical properties, which could be a useful tool 

in many clinical applications. 

 Although it is accepted that CW systems are simpler and cheaper to develop as 

compared to FD systems, the information content as outlined above may provide the 

motivation for future applications and system development. CW systems rely on cheaper 

components and electronics such as laser diodes and avalanche photodiode and system 

calibration may be considered easier, particularly when concerned with difference 

imaging, when detecting changes in intensity of the signal due to any systematic offset 

will cancel. FD systems however rely on more expensive and bulky components such as 

amplitude modulated laser diodes, signal generators, lock-in amplifiers, and 

photomultiplier tubes (PMT). Although the cost and size of these components have 

reduced over the years, system calibration and characterisation becomes more 

challenging, particularly with regards to the achievable dynamic range of PMTs, trade-

off between signal detectability and saturation, as well as potentially reduced phase SNR 

for large source/detector separation. These factors should be taken into consideration, 

together with the potential gains as outlined in this work. However, what has been 

demonstrated here, is that the availability of this additional phase data is no longer a 

bottleneck when considering model-based parameter recovery whilst it provides 
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detectable functional contrast at better depth within the brain as compared to current CW 

based fNIRS systems.  
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