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ABSTRACT 

 

Biological cell injection is an effective technique in which a foreign material is directly 

introduced into the target cell. Intracytoplasmic Sperm Injection (ICSI) is a microinjection 

technique which is used for infertility treatment. In this technique, a single sperm cell is 

directly injected into an oocyte using micropipettes. The operations in this application are 

manually controlled by an embryologist and more importantly, this reduces the accuracy, 

repeatability, and consistency of the operation. Therefore, the full automation is a prerequisite 

for microinjection operations, particularly in ICSI application. This thesis focuses on 

enhancing the microinjection procedure by developing vision-guided processes prior to and 

during the operation. Initially, a vision-controlled technique was proposed to align the 

injection and holding pipettes in three orthogonal axes which is essential for successful 

microinjection. To conduct reliable injection, the vibrational displacement of the injection 

pipette’s tip needs to be evaluated and improved before the operations continue further. A 

novel vision-based sensor was developed to measure the displacement changes at the tip in 

three orthogonal axes. By employing the developed vision sensor, the effect of injection 

speed on vibrational displacement creation was analysed to determine the value of various 

injection parameters, such as force fluctuation, and penetration force on cell damages.  An 

ultimate automation task is required in microinjection to position the randomly located 

biological cell within the Petri dish to the system’s field of view. The proposed technique 

fills a gap in the literature by proposing a real-time cell recognising and positioning system 

that can be employed with different types of biological cells at various maturation stages, as 

well as with different microscope types that are being used in microinjection applications.   
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Chapter 1: Introduction 
 

 Background 
 

Infertility is defined as the inability of conceiving for a couple trying regular unprotected 

sexual intercourse. According to World Health Organization (WHO) data collected through 

the Demographic and Health Survey (DHS), 186 million women were infertile in developing 

countries excluding China in 2004, which translates into one in every 4 couples [1]. There 

are various infertility treatments available globally, namely intrauterine insemination (IUI), 

in vitro fertilization (IVF), and intracytoplasmic sperm injection (ICSI).  

ICSI, which is first introduced in 1992 [2],  is an Assisted Reproductive Technology (ART) 

where a single sperm is manually selected, immobilized, and then injected into an oocyte 

using an injection micropipette. ICSI is mainly used where the cause of infertility is due to 

male factor deficiencies. The illustration of the ICSI process is shown in Figure 1-1.  

 

                 

Figure 1-1 Intracytoplasmic Sperm Injection (ICSI) procedure [3] 
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Microinjection is a technique in which a foreign material such as proteins, DNA, sperms, etc. 

is injected using a fine needle. The microinjection technique is effectively used in ICSI 

operation to inject a sperm cell into the oocyte due to its advantages of causing minimal harm 

to the oocyte [4] in comparison to other techniques, such as electroporation [5] and gene guns 

[6]. However, a manually operated ICSI process demonstrates deficiency in the fulfillment 

of robust injection operation.  

The current ICSI technique requires manual handling from a trained embryologist, and the 

results are not satisfactory [7]. Manually handled ICSI operation cause inconsistency, high-

cost, low accuracy, and unreliability across the operators as it relies on the human-controlled 

operation. Automated microinjection systems eliminate the need for training of 

embryologists, reduce the risk of contamination, and increase the success of the 

microinjection operation. Therefore, there are various manual operation aspects involved in 

the microinjection process which require full automation [8].  

There are clinical and non-clinical factors that affect the outcome of the fertilization rate in 

ICSI. The clinical factors are mainly sperm source, female patient’s age, and ovarian reserve, 

etc. [9]. However, this study only investigates the potential deficiencies caused to the ICSI 

system from the engineering point of view. The core of inconsistencies in ICSI operation is 

due to human involvement. For this reason, automation of the microinjection procedure has 

become a significant focus for the researchers due to the low success rate in manual 

microinjection operations [10, 11]. The engineering challenges in the ICSI operation are the 

alignment of the injection and holding pipettes in three orthogonal axes, the vibrational 

displacement sensing at the tip of the injection pipette, and the automated positioning of the 

egg to the system’s field of view. These challenges need to be conducted automatically before 

the microinjection procedure starts in ICSI. In this thesis, vision-based solutions are proposed 
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to deal with the aforementioned challenges mentioned.  

Visual sensing in the microinjection procedure refers to the capability of the system to 

visually perceive the environment without requiring a physical interaction to extract useful 

information and conduct various tasks. These various vision-based tasks could be a 

measurement, object location extraction, object detection, and object positioning to guide the 

microinjection system. The data collected by the developed vision system can improve the 

processing speed, accuracy, and consistency of the task performed by the operator as well as 

reduce the cost. This is particularly a demand in biomedical applications where cameras are 

a significant component within the system, such as ICSI.  

Practical usage of physical sensors is limited to be used towards the automation demand of 

ICSI application. It is hypothesised that vision-based sensing platforms are strong candidate 

among the sensor types to overcome automation challenges in the field of microinjection and 

manipulations applications, particularly for ICSI.  

This thesis is aimed at developing a novel vision-based sensing system to be utilised in a 

fully automated microinjection system and enhance the current deficiencies in the automation 

of the microinjection process within ICSI to help practitioners in eliminating the variability 

of the injection procedure [12].  

 

 Motivation 
 

 

The conventional method of egg injection is not efficient since it involves a human operator 

using a joystick for motion control and a microscope for visual feedback. To advance this 

system, there are several reasons to make auto-alignment of the injection and holding pipette 

a necessity. First of all, if the alignment was not conducted accurately by an operator, this 
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would cause failing in penetration of the oocyte membranes, such as zona pellucida and 

oolemma [13]. The consequence of inaccurate penetration would cause damage to the oocyte 

membrane, which directly affects the fertilization chance. The damage to the injection pipette 

may also require the replacement of the injection tool, adding extra cost to the system. In 

addition to cost, replacement of the injection tool would cause an issue in the system 

operation if the developed vision system relies on the length or the template of the injection 

pipette, such as template matching technique. This computationally expensive method relies 

on the template that is obtained before the injection, and if the injection pipette is replaced, 

the template should be captured again which is time-consuming and not efficient. 

The employment of physical sensors in healthcare technologies is limited, particularly in 

microinjection systems such as in ICSI. This is because the physical sensors are commonly 

prone to be affected by the temperature, provide low sensitivity and precision, and low signal-

to-noise ratio. In addition to these issues, the interface of the physical sensors is highly 

challenging due to the limited space and inappropriate assembly location within ICSI setups. 

Therefore, the usage of vision-based sensing systems provides great advantages in the field 

of microinjection applications as it is a non-contact measurement and non-invasive as well 

as easy to set up and within the system.  

Additionally, if the system does not receive feedback from the sensor regarding the 

displacement changes at the tip of the injection pipette, the resolution of the motorized stage 

cannot be effectively used to control the injection pipette movement. The lack of sensing in 

the displacement of the injection pipette tip would also cause the failure of the position and 

force control strategies that are developed for microinjection operations [14]. While the effect 

of vibrational displacement within the operation of the system is significant, excess 

displacement would also cause damage to the oocyte membrane and spoil the structure of the 
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cell. This directly affects the success rate of the injection operation or causes failure [15]. 

The fully automated microinjection systems in the literature always assumed that the 

biological sample is already placed in the field of view of the system. Cell positioning task 

is commonly conducted through a joystick controlling the stage underneath of the Petri dish, 

or the dish is manually maneuvered by hand. This is not practical and requires full 

automation. This is because this manual task relies on human operator ability through a vision 

system, which affects the repeatability, reliability, and consistency of the operation 

undesirably.   

Visual sensing provides useful and accurate information regarding the dynamic environment 

in the system. This motivates this study to recognise and evaluate the wide practical usage of 

vision-based sensing for automation in ICSI. This is aimed at minimizing human 

involvement and increasing the success of microinjection operation, mainly in ICSI. 

This thesis targets to fulfill the requirement of microinjection automation using visual 

sensing. This includes micropipette auto-alignment and pipette’s tip vibrational detection in 

three orthogonal axes, and finally automated positioning of the biological cell to the 

microscope’s field of view as a part of automation for microinjection.  

 

 Research aim, objectives, and methodology 
 

 

The aim of this thesis is the development of a novel vision-based automation for 

microinjection technology for biological applications, especially for ICSI.  

The objectives of this thesis are as follows: 

➢ To develop a robust technique to align the injection and holding micropipettes in three 

orthogonal axes. The technique should be insensitive to noise for the injection and 
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holding pipettes at random positions in the image plane. The developed technique 

aimed to be within the tolerance of 15 µm when the injection pipette is inserted into the 

holding pipette. 

➢ To develop a visual sensor to measure the vibration displacement of the tip of the 

injection pipette in three orthogonal axes and various magnifications. The role of 

vibration displacement sensing in microinjection operations will be analysed. The 

vibration displacement sensing platform is aimed to have one-pixel resolution. 

➢ To automatically position the biological cells to a predefined position within the 

microscope’s field of view in real-time.  The developed technique will be generalized 

in other microinjection setups to demonstrate its effectiveness. The centre point of the 

biological cell aimed to be located within the center coordinate of the field of view of 

the microscope with a maximum of 10% error when the full operation is conducted.  

In this research, a novel vision detection software was developed for automating the 

microinjection operation within ICSI. Figure 1-2 illustrates the graphical overview of how 

the proposed methodology is achieved and conducted within this study. The full operation 

consists of three main sub-operations, namely, auto-alignment of the injection and holding 

pipette, system stability check through vibrational displacement measurement, and 

development of a zebrafish embryo positioning system.  
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Figure 1-2 A graphical overview of the developed vision-based automated microinjection 

operations 
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MATLAB software was used throughout this research as a strong platform for the developed 

algorithm. Mainly Image Processing and Neural Network Toolbox are utilised to conduct the 

research. Conventional image processing techniques were employed for aligning the 

injection and holding pipettes, as well as extracting the vibrational displacement of the 

injection pipette tip in three orthogonal axes. Convolutional Neural Networks (CNNs) were 

used to automatically recognise and manipulate the zebrafish embryo to the desired position 

within the field of view of the microscope.  

The zebrafish embryo was used as a biological model. This is because the zebrafish embryo 

is a suitable biological model that is commonly used in bioscience due to its similar structure 

to humans [16]. Besides, it is easy to retrieve which makes the zebrafish embryo to be a 

suitable model in experiments. The in-house captured zebrafish embryo and representation 

of its structure is shown in Figure 1-3.  

 

Figure 1-3 The structure of zebrafish embryo (in-house image) 
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 Thesis structure 
 

 

This thesis is divided into 6 chapters. The structure of the thesis is as follows:  

Chapter 2 covers the literature review of the published researches. This chapter provides a 

comprehensive background for the research demonstrated in the following chapters.   

Chapter 3 proposes a method to align the injection and holding pipettes in three orthogonal 

axes prior to injection operation. In this part of the study, various Focus Measurement 

Algorithms (FMAs) were analysed and evaluated based on the ranking methodology. Later, 

the evaluation results were analysed and experimental validations were presented.  

Chapter 4 reports the unique development of the vision sensor to track the vibration 

displacement in three orthogonal axes at the tip of the injection pipette during the egg 

injection using a microscopic camera. The proposed vision sensor operates between 

magnifications of 4x to 40x. Considering the cell injection speed is a dynamical injection 

factor contributing to the creation of cell deformation, this chapter also covers the effect of 

injection speed on lateral vibration displacement occurring at the tip of the injection pipette. 

The experimental results link the values of egg deformation, force fluctuation, and 

penetration force to demonstrate the effect of vibration on reducing the biological cell 

damages. This chapter demonstrates how the sensing of vibrational displacement at the tip 

of the injection pipette is a decisive parameter and limits the cell injection speed during the 

operation.  

Chapter 5 covers the methodology proposing the development of vision-guided automation 

for the recognition and positioning of the randomly placed zebrafish embryo withing the Petri 

dish to the field of view of the microscope. In this chapter, eight different pre-trained neural 

networks have been used as a backbone with you only look once (YOLOv2) method through 
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transfer learning.  Based on the analysis and evaluation of the proposed method, the 

positioning of the zebrafish embryo within the field of view has been successfully illustrated.  

Chapter 6 concludes this thesis by providing a detailed analysis of chapters 3, 4, and 5 and 

correlations between them. This chapter also suggests future works towards the development 

of vision-based automation in the field of microinjection and micromanipulation 

applications.  
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Chapter 2:  Literature Review 
 

 

 Introduction 
 

 

The current microinjection operation as a part of the ICSI application, is conducted manually 

by the operator using joysticks. This operation is conducted using manual micromanipulators 

to control the movement of the injection and holding pipettes as well as Petri-dish, depending 

on the system setup. The injection procedure is a delicate task that needs to be conducted 

precisely by a skilful embryologist. For instance, an injection procedure must be conducted 

through a specific orientation of the oocyte where polar-body at the upper location of the 

oocyte (named as 12 o’clock) or at the lower location of the oocyte (named as 6 o’clock) to 

avoid damages to the polar body of the oocyte and be as far as possible from the polar body. 

Any damage to the polar body directly results to failure of the injection procedure since it 

causes deficiency and complications to the embryo. Hence, the injection operation requires 

visual control including accurate detection of the injection and holding pipettes and their 

alignment in three orthogonal axes to have full control in microinjection. Also, the vibration 

displacement sensing by the vision system needs to be conducted to ensure a safe injection. 

As a part of the full automation of the procedure, the randomly located egg within the Petri 

dish needs to be located to the system’s field of view automatically to eliminate human 

involvement. This requires an accurate vision-based egg recognition and positioning system. 

There has been little effort in the literature in the vision-based microinjection automation 

operation. The following section is divided into three parts which address the relevant 

literature in object detection and autofocusing, vision-based displacement sensing, and 

biological cell detection and positioning.  
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 Object detection and autofocusing 
 

 

Intracytoplasmic sperm injection (ICSI), first introduced in 1992,  is an assisted reproductive 

technology in which a single spermatozoon is injected into the oocyte using a glass injection 

micropipette [2]. There has been considerable demand to automate the ICSI processes to 

enhance their success and survival rate [17–21]. This is because the manual operation is 

conducted by a trained embryologist, relying on the visual information through the 

microscope. However, manual operation is time-consuming and may cause oocyte damage, 

with the consequence of a low success rate. To automate the oocyte injection task, the 

injection pipette must be aligned with the holding pipette at a desired position prior to the 

ICSI procedure to ensure the correct injection. This is key to accurately conducting the fully 

automated ICSI process and increasing system efficiency. This is because the tip of the 

injection and holding pipette can be easily damaged during the ICSI process if the injection 

pipette is not aligned correctly to the holding pipette. The micropipettes could fail to penetrate 

the zona pellucida or oolemma membrane of the oocyte [13]. This would cause a serious 

injury to the oocyte membrane or require a replacement of the micropipettes. Therefore, this 

makes accurate focusing a necessity. 

Autofocusing can be examined using passive and active methods depending on the way of 

measuring the distance between the lens and the object. Active autofocusing measures the 

distance externally using ultrasonic or infrared waves, whilst passive autofocusing measures 

the sharpness of the images captured at different focal positions and finds the peak point of 

the obtained focus curve [22]. Active autofocusing demonstrates an effective sensing 

mechanism under different lighting conditions. However, such a sensing technique may 

struggle to focus well through glass due to high infrared or ultrasound reflectivity [23]. 
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Passive auto-focusing relies on the image information and it is not essential to consider 

reflectivity since there is no external sensor included. It also decreases the cost markedly. 

Consequently, image-based passive auto-focusing will be discussed in this thesis since it does 

not require any additional device such as a range finding sensor as in active autofocusing 

[24]. 

A variety of focusing algorithms have been proposed such as Brenner gradient, Tenengrad 

gradient, and Energy gradient to adjust the experimental sample in an accurate position in 

the focal zone of the microscope [25-27]. Since the injection and holding pipette present a 

unimodal focus curve, focusing algorithm methods can be utilized. However, the selection 

of an appropriate focus algorithm for a fully automated ICSI process remains deficient in 

previous researches since the selection of the optimal autofocusing algorithm greatly depends 

on the specific application [28]. Previous literature has discussed finding the focal distance 

of the micro-objects as it is a challenging task in micro applications where the depth of focus 

is a crucial parameter and plays an essential role.  

Template matching is a technique in the field of computer vision for searching a portion of a 

sourced image which matches a template image obtained in advance. Template matching 

technique has recently been proposed for an automatic oocyte injection process to find the 

depth of micropipettes [29]. Based on the technique, when the error minimized between the 

focal position and template obtained before, the focused image is obtained. The limitation of 

this method is that a new template is needed to feed the proposed technique if the 

micropipette is changed. Additionally, the matching process of the injection pipette contains 

all possible locations in the sourced image, which increases the computational cost of the 

technique. Microfingers are micro-grippers which are made from a hollow glass tube and 

used for gripping and handling biological cells [30, 31]. The depth of field for the tip of the 
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micro-fingers can be searched by using colour information along with template matching 

techniques as the shape of the finger is fixed during the injection task [32]. Colour 

information helps to find the correct direction of the focal plane. However, any method for 

positioning the micro-objects using template matching technique is not an effective way to 

track the micro-objects without a clear morphology [33]. On the other hand, any method 

using the template matching technique is computationally expensive [34]. 

The inner space of the holding pipette can also be utilized for focal plane estimation. When 

the inner space of the holding pipette has the highest width value, then it is claimed that the 

image is the focal plane [35]. Due to the large set of pre-recorded image collection before 

applying the image processing algorithm, utilization of the width of the holding pipette is not 

practical. This is due to changes in image processing algorithm parameters, and the image 

collection task would need to be repeated. 

Contrast measurement greatly affects the accuracy of the focusing procedure but the 

efficiency of the FMA depends on the peak search algorithm used. A variety of search 

strategies have been proposed in the literature to drive the focus motor in the desired position. 

Global search is the most widely used method. In this method, all focal positions are scanned, 

and the peak point is detected. Therefore, there is no possibility of detecting a wrong focal 

position. Conversely, this method is not practical when a high focus range is needed for a 

specific application as it requires high computation time. Fibonacci and particle swarm 

optimization with Gaussian jump are studied in the literature in which suitability of the search 

algorithm depends on the shape of the focus curve [36, 37]. Since the result of the developed 

auto-alignment algorithm produces a unimodal curve after evaluation of the 12 different 

focus measure algorithms, a Fibonacci search algorithm has been found to be an appropriate 

search method and is implemented into the developed algorithm for auto-alignment of the 
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injection pipette task. This method is further improved using curve fitting to eliminate local 

optimum disturbance [38]. Implementation of a Fibonacci search algorithm requires a 

motorized stage to be driven with a high resolution for the precise alignment of the pipettes. 

Suitable focus algorithms and searching methods are two essential parameters for a 

successful auto-alignment of the injection pipette process. 

 

 Vision-based displacement sensing 
 

 

Physical sensors are commonly used to measure the displacement of the objects in the micro-

world in various applications such as micro-manipulation and micro-gripping [39, 40]. 

However, these types of sensors have limited measurement distance and are sensitive to 

object spot size and the object’s material. Existing micromanipulators for biological egg 

injection are not equipped with any displacement sensors as it is not possible to interface due 

to the inappropriate assembly location which causes a high amount of noises interacting with 

the real data. Considering the limitation of the sensor accommodation in intracytoplasmic 

sperm injection (ICSI), interfacing three sensors for each access would not be practical. On 

the other hand, since the ICSI operation is conducted when the egg and sperm are in an 

aqueous medium, this affects the accurate measurement of the displacements for both contact 

and-non-contact physical sensors. Additionally, sensor interfacing greatly increases the cost 

of micromanipulation setup. Vision-based displacement sensing is more suitable to use in an 

aqueous medium [41]. The outstanding advantages of the vision-based displacement sensor 

are its low cost, easy to implement, high reliability and accuracy [42], and measurement of 

displacement in three orthogonal axes at once by a single camera.  

Automated microinjection has demonstrated rapid improvement in various fields such as 
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ICSI which offers a precise motion for the injection pipette during egg injection [29]. 

Injection speed and trajectory of the injection pipette are two main injection parameters that 

contribute toward a successful egg injection [43]. The displacement of the injection pipette 

is affected significantly by cell injection speed and its trajectory [44, 45]. Besides, the 

magnitude of the vibration at the tip of the injection pipette increases since the injection 

procedure requires acceleration and deceleration of the injection pipette [46]. Produced 

vibration at the tip of the injection pipette is out of control and negatively affects the accuracy 

of the egg injection operation. The injection pipette is driven by a motorized stage during egg 

injection and the resolution of the motorized stage is not effectively utilized if the undesired 

displacement changes are not measured correctly. Regardless of the amount of vibration 

induced at the tip of the injection pipette in any direction during egg injection, uncontrolled 

vibration is an undesired dynamic factor which may affect the control strategies developed, 

particularly in the ICSI operation, such as position and force control [14]. On the other hand, 

induced undesirable vibration at the tip may cause damage to the membrane of the oocyte 

and lead to degeneration. If this damage cannot be healed effectively, abnormal growth 

occurs and this causes the failure of the operation [2, 15]. Overall, vibration is an undesired 

dynamic factor preventing the injection operation to be conducted in a stable environment. 

Therefore, minimizing the vibration at the tip of the injection pipette is essential in the ICSI 

operation.  

Analysis of vibration in the ICSI procedure is very challenging due to the complexity of the 

ICSI machine and the impractical use of displacement sensors. Analytical and numerical 

models have been proposed in the literature to analyse the vibration at the drawn section of 

the injection pipette [47]. There are various sources of internal and environmental parameters 

which induce the vibration on the injection pipette. Hence, it is not safe to rely only on 
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numerical and analytical analysis as it does not cover all existing dynamic parameters which 

affect the displacement of the injection pipette tip. In another study, three photonic 

displacement sensors were implemented into the cell manipulation system to measure the 

vibration at the tip of the injection pipette holder for each vibrational direction as reported in 

[48]. However, due to the tiny diameter of the injection pipette tip, the injection pipette could 

not be present in their experiment; instead, it has been detected manually in 2 dimensions by 

using a high-speed camera. 

A vision-based sensor for vibrational detection of the injection pipette tip in three dimensions 

requires an accurate tip recognition of the injection pipette. Image-based detection of the 

injection pipette tip position in the X, Y axes, and focus estimation in the Z-axis is one of the 

steps to automate the ICSI process [33]. As the injection pipette must be located under the 

microscope prior to the cell injection procedure, Wu et al. proposed a vision-aided injection 

pipette tip detection algorithm [49]. In their study, Canny edge detection and Hough 

transform were utilized for the detection of the injection pipette tip. However, the 

disadvantage of using the Hough transform is that it can only be applied if the object has a 

regular shape, such as lines or circular shapes [50, 51]. The template-matching technique has 

also been proposed for micro-object tip tracking purposes in micro-robotics applications [29, 

52].  However, locating micro-objects using the template matching technique is not an 

efficient way since this method requires clear morphology [33]. Then again, using a template 

matching method is also computationally expensive [34]. Li et al. developed a technique to 

detect the micro-motion of the 3 degrees of freedom (DOF) precision positioning stage and 

then a nanometer-level accuracy was achieved by the proposed micro-vision imaging system 

to extract the in-plane displacements data [53, 54]. Zhang et al. developed a robust rotation-

invariant displacement method for the micro-nano positioning system [55, 56]. Theoretically, 
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0.001-pixel accuracy was achieved in their study. However, none of these types of vision-

based precision positioning stage micro-motion detection helps to measure the injection 

pipette displacements in three orthogonal axes in ICSI operation and, in particular, it does 

not provide information in focal axis changes at the tip of the micropipette which makes 

accurate vibration displacement measurement in three-dimensional space a necessity in the 

field of ICSI.  

 

 Biological cell detection and positioning 
 

 

A biological microinjection procedure is required to deploy a single foreign material within 

biological cells using micropipettes. The positioning of the biological cells to the field of 

view (FOV) of the microscope in the microinjection task is conducted through a heuristic 

approach by an embryologist. Therefore, the localisation of the biological cell is unreliable, 

inconsistent, high cost, and time-consuming. For instance, automation of the 

Intracytoplasmic sperm injection (ICSI) is an example of biological microinjection 

application that has been explored by various research groups, such as auto-alignment of 

micropipettes [57], automated sperm immobilization [58], and insertion of sperm into the 

oocyte [13]. Human involvement affects the repeatability and accuracy of the task across 

operators. Automation of this procedure minimises the requirement of any manual handling 

to locate the egg to the desired position. Hence, automation is desirable to conduct reliable 

microinjection [8].  

There is a number of researches that have been conducted towards automation of the 

microinjection procedure in the literature, such as positioning [59, 60] and injection of 

biological cells [43], three-dimensional microinjection pipette tip displacement measurement 



19 | P a g e  

 

[61], and identification of the specific structure of the biological cells [35, 50, 62]. Wang et 

al. proposed the first automated microinjection system in 2007 [63] in which the zebrafish 

embryos were placed and immobilized in 5 x 5 array-like in-house designed and held by 

vacuum-based embryo holding device. The device is placed on an XY controllable stage to 

allow precise movement of the cells into the field of view. However, randomised positioning 

of the zebrafish embryo has not been studied as the holder’s positions had been defined to 

the system. In the same year, a semi-automated microinjection system was proposed in [64]. 

In their study, a charge-coupled device (CCD) camera was employed to acquire the video, 

and then the process was teleoperated by an operator through a joystick. The XY stage was 

incorporated in their study to move the petri dish along with wells to bring them into the FOV 

of the microscope during the process via joystick. However, this process relies on a human-

based-operator who provides positional feedback for visual servoing and controls the XY 

stage by joystick. This manual task influences the repeatability of the injection task 

undesirably. In 2008, a vision-servo system was proposed in [34] for automated cell injection 

purpose, however, automated positioning of the biological cells to the field of view of 

microscope was not included in their study.  

Fast, accurate, and reliable biological cell positioning to the FOV of the microscope requires 

the detection of the cell. The traditional image processing techniques have been used 

commonly to detect biological cells. In the first attempt, the morphological operator and 

Bayesian estimation technique were utilized for cell detection and tracking purposes [65]. 

The main drawback of this method is that it is not suitable for real-time applications as it is 

computationally expensive. Hough cell detection algorithm (HCDA) is also commonly used 

for the detection of biological cells [34]. However, it is computationally expensive and 

required 22 seconds to execute on a single image. This limits its usage for fully automated 
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microinjection systems. Additionally, the Hough transform is a suitable method that can be 

used as long as the detected objects present a regular shape, such as lines and circles [51]. 

Deep learning techniques enhance the detection procedure compared to conventional 

techniques as it reduces the expensive computational time as well as detecting irregular 

shapes which is common among the biological cells [66].  

Recently, deep learning techniques are a hot topic to solve difficult automation problems, 

particularly in medical applications such as CT, MRI [67], blood cell count [68], 

identification of vesicular and electron transport proteins [69, 70],  and detection of diabetic 

retinopathy in retinal fundus photographs [71]. Deep learning is a subset of machine learning 

in which inspired by human brain structure which is called artificial neural networks.  These 

neural networks consist of many nodes that each perform a simple task in a collaborative way 

to each other. It simulates the behaviour of the human brain nervous system and makes a 

meaningful prediction. Each node has a numeric weight that is being tuned during the training 

process.  Deep learning consists of various categories and Convolutional Neural Networks 

(CNN) is the widely used one in image processing applications. CNNs use a number of layers 

to extract the image feature information and then convert the data into a high dimensional 

and non-linear space. The performance of CNNs in object category classification and 

detection on hundreds of object categories and millions of images was successfully shown in 

[72]. Hence, it is remarkable to investigate the implementation of deep learning algorithms 

to automatically locate the zebrafish embryo in the FOV of the microscope prior to the 

microinjection task.  

R-CNN was the first deep-learning-based model for object detection [73]. In this method, a 

selective search algorithm was employed [74] and the region of interest was generated. Later, 

CNN was used to check whether the region of interest is related to the background or the 
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object itself. Subsequently, Fast R-CNN [75] and Faster R-CNN [76] were proposed. 

Although their object detection accuracy is promising, it is still computationally expensive 

and not suitable for real-time applications. To increase the detection accuracy and speed of 

the region based detection methods, Redmon et al. proposed a CNN based object detection 

method, called you only look once (YOLO) [77].  In contrast to region based algorithms such 

as Faster R-CNN, the CNN-based YOLO algorithm looks at the image at once and predicts 

the bounding boxes and class probabilities in a single evaluation. Since the whole detection 

procedure is in a single network, it can be optimized end to end directly and detection 

accuracy can be improved. In 2017, Redmon et al. proposed YOLOv2, the improved version 

of the YOLO method [78]. In this detection model, the detection speed further improved 

while keeping the detection accuracy stable. Hence, the YOLOv2 framework was selected in 

this study due to its outstanding detection accuracy and speed.  

The FOV of the microscope is limited and the maneuver of the biological cells to the FOV 

requires several trials by moving the petri dish while checking the cell visibility under the 

microscope. This time consuming and laborious work is a part of the automation procedure 

of microinjection systems and it requires full automation.  

 

 Conclusion 
 

Microinjection is the most suitable technique to introduce a single sperm cell into the egg 

using a fine needle. To eliminate human involvement, numerous approaches were proposed 

in the literature as a part of automation in microinjection. Visual sensing is the primary sensor 

that is feasible to be used in ICSI and reduces the potential challenges of physical sensors. 

The various technical aspect of microinjection procedure within the context of automation 
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from a visual sensing point of view was discussed in this chapter.  

Initially, injection and holding pipette detection as well as their autofocus procedure were 

reported. The effective approach for measuring the degree of focus for injection and holding 

pipette is the selection of Focus Measurement Algorithms (FMAs).  This is because the 

optimal selection of the FMAs is the system-specific and requires detailed evaluation.  

Physical sensor usage in the microinjection procedure is not feasible. The role of vibration 

displacement sensing in microinjection was reported.  The coordinate extraction at the tip of 

the injection pipette requires an accurate tip position recognition. Here, different methods of 

injection pipette tip coordinate extraction were discussed along with advantages and 

disadvantages.  

Currently, egg positioning to the system’s field of view is conducted manually and requires 

maneuver of the egg with several trials. Automation of this procedure requires an accurate 

egg recognition and manipulation system. Different types of egg recognition approaches 

were discussed in detail along with their advantages and disadvantages. Additionally, the 

conventional image processing and deep learning techniques in recognition of objects in 

medical applications were reported.   
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Chapter 3:  Three-Dimensional Auto-Alignment of 

the ICSI Pipette 
 

 

 Introduction 

 
Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technology used in 

infertility treatment, where a single sperm is selected and immobilised using a glass injection 

pipette and is inserted directly into the cytoplasm of an oocyte under the microscope. The 

auto-alignment of the injection pipette is a prerequisite for any proposed automated oocyte 

injection procedure. In this chapter, an auto-alignment procedure is proposed. This technique 

requires the positioning of the injection and holding pipettes in the three orthogonal axes 

under microscopy which is complex. The existing methods are system-specific and require 

appropriate algorithms. In this chapter, twelve commonly used focusing algorithms are 

evaluated to verify the optimal one for ICSI application. These algorithms were assessed by 

measuring focusing error, range, number of false maxima, and the width of the curve. The 

focus level for each pipette is calculated by the algorithm using focus measure functions 

(FMA). The Fibonacci search algorithm is employed for controlling the z-axis of the 

motorised stage to obtain the focal plane of the injection and holding pipette. 

 

 System Design 

 
3.2.1 System Configuration 
 

Figure 3-1 shows the system setup which consists of a Best-scope 2700 inverted microscope, 

a microscopy camera (BASLER Camera acA1300-200um - Python1300), a holding 

micropipette with a 120 µm outer diameter (Smiths Medical-Wallace WHP-120B-30, USA) 
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and a 5.5-µm spiked tip ICSI injection micropipette (Smiths Medical-Wallace WIC-55H-30, 

USA). Images are captured through a 40x objective lens in maximum lighting conditions.  

Captured images are processed by an Intel® Core™ i5-6500 CPU @3.2 GHz (4 CPUs) host 

computer. The 8MT167 3-DOF motorized stage from Standa is employed to control the 

position of the holding and injection pipettes with a resolution of less than 1 μm. The 

produced vibration during the alignment procedure is damped using an anti-vibrational table.  

 

Figure 3-1 System setup for the auto-alignment procedure 

 

3.2.2 Method Overview 
 

 

During the auto-alignment operation, the pipettes are initially detected using the visual 

detection algorithm and then are manipulated automatically using the information received 
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from the focus curve and focus algorithm. A focus curve demonstrates the focusing position 

of the pipette based on a calculated focus value obtained from focusing algorithms. The 

behaviour of the focus curve plays a crucial role in the alignment of the injection and holding 

pipettes. Ideally, the focus curves obtained from focusing algorithms should be unimodal and 

sharp at the top and long-tailed. However, some focus algorithms may present various local 

maxima or the same focus value at different focal positions. This causes an error in the 

accurate measurement of the focus point. Therefore, evaluation of the focus algorithms is 

essential in finding a suitable algorithm to implement for the auto-alignment of the pipettes. 

In this study, different focusing functions were compared quantitatively, and focus curves 

were normalized to obtain the most accurate algorithm for each injection and holding pipette. 

The Fibonacci search algorithm was then implemented to drive the injection and holding 

pipettes in Z-axis independently to position them in the focal plane.  

In the following section, 12 different focus algorithms are described briefly which are used 

to obtain the optimum focus curve. 

 

3.2.3 Autofocus Functions 
 

 

A variety of focus algorithms have been proposed in the literature to find the optimal 

algorithm for a specific application. The ideal focus curve is defined as having the sharpest 

image at the maximum value of the focus curve. This value decreases once the images 

demonstrate further distance positions from the focal plane. To obtain the initial position of 

the pipettes, an automated stage moved the pipettes in Z-axis until the micropipettes become 

partially visible in the field of view. The focalization procedure of the pipettes starts after the 

immediate detection of the pipette. To measure the focus values by implementing each 
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algorithm, the stage moved in an increment of 2 and 10 µm for the injection and holding 

pipette respectively, and scanned the pipettes. The focus curves are then obtained based on 

the algorithm results. In this study, twelve different focus algorithms were examined, 

evaluated, and compared for each pipette separately to find the optimum algorithm 

demonstrating a good distribution of the values in a curve and to conclude a single focal 

plane. The measured values obtained from the algorithms are correlated to the position of the 

stage. Consequently, the focal level was calculated based on the home position and the 

differences between each incremental movement of the stage which was linked to the focus 

curve. 

This is the first report on the extensive evaluation of the Focus Measure Functions (FMA) in 

the field of oocyte manipulation and sperm injection. The FMA used in this study can be 

classified as derivative-based, statistical-based, and histogram-based algorithms. 

 

Derivative-based Algorithms 

Derivative-based algorithms assume that focused images hold more high-frequency content 

than unfocused images. Hence, the larger intensity changes provide sharper images. The 

advantage of the derivative-based focus algorithms is to provide highly focused accuracies. 

However, derivative based algorithms are prone to be affected by high- frequency noise.  

1. Thresholded gradient 

The sharpness of an image is proportional to the high frequency of an image and high pass 

filters are widely used to detect the high frequency of the portions of an image [79]. The 

Thresholded gradient algorithm computes the first difference of the pixel intensities and then 

accumulates if it reaches above the specified threshold. Therefore, this algorithm reveals a 
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larger gradient in the image. The focalization value is given in equation (3.1)[80]. 

 

 𝐹𝑡ℎ_𝑔𝑟𝑎𝑑 =  ∑ ∑|𝑔(𝑖, 𝑗 + 1) − 𝑔(𝑖, 𝑗)| 

𝑁𝑀

 (3.1) 

 

                          While   |𝑔(𝑖, 𝑗 + 1) − 𝑔(𝑖, 𝑗)| ≥ʋ (3.2) 

where g (i, j) represents the gray level intensity of pixel (i, j), and ʋ the gradient threshold. In 

this algorithm, M x N image is used where M and N present the height and width of an image 

respectively in pixels. 

 

2. Modified Laplacian 

A modified Laplacian as a focus measure function is computed at a point (i, j) in a window 

around (i, j), which is greater than a threshold value [81].  Equation (3.3) demonstrates how 

this method uses the discrete approximation of the Laplacian to compute the second 

derivatives in the horizontal and vertical direction of an image.  

 

 𝐹(𝑖, 𝑗) = ∑ ∑ 𝑀𝐿(𝑥, 𝑦) 𝑓𝑜𝑟 𝑀𝐿(𝑥, 𝑦)

𝑗+𝑁

𝑦=𝑗−𝑁

𝑖+𝑁

𝑥=𝑖−𝑁

≥ 𝑇1  (3.3) 

 

where N represents the window size used to compute the focus measure function. N is taken 

normally 1 or 2 as the modified Laplacian method uses very small window size such as 3-

by-3 or 5-by-5.  
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3. Tenengrad gradient 

In this algorithm, convoluted images are used along with Sobel operators to compute the first 

difference as in equation (3.4)[26].  

 

 𝐹𝑡𝑒𝑛𝑒𝑛𝑔𝑟𝑎𝑑 =  ∑ ∑ (𝑆𝑥

𝑤𝑖𝑑𝑡ℎℎ𝑒𝑖𝑔ℎ𝑡

(𝑥, 𝑦)2 + 𝑆𝑦(𝑥, 𝑦)2)  (3.4) 

where 𝑆𝑥(𝑥, 𝑦) and 𝑆𝑦(𝑥, 𝑦) are the convoluted images with Sobel operators. 

 

4. Brenner gradient 

The Brenner gradient algorithm calculates the square difference of each pixel between its 

two neighbours on the image used and then sums them together using the equation (3.5) [25]. 

 

 𝐹𝑏𝑟𝑒𝑛𝑛𝑒𝑟 =  ∑ 𝑖(𝑥 + 1, 𝑦) − 𝑖(𝑥 − 1, 𝑦))2

𝑥,𝑦

 (3.5) 

with |i(x+1), y) – i(x-1), y)| > ɑ, where i (x, y) is the intensity at pixel (x, y), ɑ is the threshold 

of the intensity difference.  

 

5. Energy of gradient  

Gradient energy of a single pixel demonstrates a certain difference between focus and 

unfocused image. The Energy of gradient focus measure function is computed as below 

equations (3.6) [27, 82]. 
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 𝐹𝑒𝑛𝑒𝑟𝑔𝑦𝑔𝑟𝑎𝑑
=  ∑ ∑(𝑔𝑥

2

𝑦𝑥

+ 𝑔𝑦
2)       (3.6) 

 where   𝑔𝑥(𝑥, 𝑦) =  𝑔𝑖(𝑥 + 1, 𝑦) −  𝑔𝑖(𝑥, 𝑦)   

 And 𝑔𝑦(𝑥, 𝑦) =  𝑔𝑖(𝑥, 𝑦 + 1) −  𝑔𝑖(𝑥, 𝑦)         

6. Spatial frequency 

This is a modified version of the Energy of the gradient algorithm. In this algorithm, M x N 

image is used where M and N present the number of rows and columns respectively, along 

with gray value F (j, k) at position (j, k ) [83].  The row and column frequencies are given in 

equation (3.7) and (3.8). 

 

 𝑅𝐹 =  √
1

𝑀𝑁
∑ ∑[𝐹(𝑗, 𝑘) − 𝐹(𝑗, 𝑘 − 1)]2

𝑁−1

𝑘=1

𝑀−1

𝐽=0

             (3.7) 

And 

 

 𝐶𝐹 =  √
1

𝑀𝑁
∑ ∑ [𝐹(𝑗, 𝑘) − 𝐹(𝑗 − 1, 𝑘)]2

𝑀−1

𝐽=1

𝑁−1

𝑘=0

    (3.8) 

 



30 | P a g e  

 

The total frequency is calculated as in equation (3.9). 

 

 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = √𝑅𝐹
2 + 𝐶𝐹

2 (3.9) 

 

Statistical Algorithms  

Statistical-based algorithms takes the advantage of various image statistics, such as variance 

and correlation as the surface descriptor to measure the focus level. Generally, they are less 

sensitive to noise than derivative-based algorithms.  

7. Gray level variance  

While sharp images show high gray level variance, the images associated with blurring have 

low gray level variance. The simple standard definition of image variance is adopted into the 

equation given below. The equation (3.10) is used as a focus measure function using gray 

level variance [26]. 

 

 𝜎2 =  
1

𝑁2
 ∑ ∑[𝐼(𝑥, 𝑦) − 𝜇]2

𝑁

𝑦=1

𝑁

𝑥=1

 (3.10) 

 

where μ is the mean of the gray level. The aim here is to maximize the 𝜎2 value since 

increases in 𝜎2 value will let us obtain higher gray level variance, therefore sharper image. 

 

8. Tenengrad variance 

Another focus measurement alternative to get the gradient information is to calculate the 
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gradient magnitude. In this direction, Tenengrad focus measure is calculated by the following 

equation (3.11) [84]. 

 

 

𝐹𝑡𝑒𝑛𝑒𝑛𝑔𝑟𝑎𝑑𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
=  ∑ ∑[𝑆(𝑚, 𝑛) − 𝑆′]2

𝑁

𝑛

𝑀

𝑚

 

 

 𝑎𝑛𝑑 𝑓𝑜𝑟 𝑆(𝑚, 𝑛)˃𝑇 

(3.11) 

 

where T is the threshold, M and N are the height and width of an image, respectively. S’ is 

the mean of magnitudes which is given by equation (3.12). 

 

 𝑆′ =  
1

𝑁𝑀
∑ ∑ 𝑆(𝑚, 𝑛)

𝑁

𝑛

𝑀

𝑚

 (3.12) 

9. Variance of Laplacian  

This method calculates the variance of the absolute values which provides a new focus 

measurement [84]. The equation (3.13) is demonstrated as: 

 

 𝐹𝑙𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛_𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  ∑ ∑[|𝐿(𝑚, 𝑛)| − 𝐿′]2

𝑁

𝑛

𝑀

𝑚

 (3.13) 

 

where L (m, n) is the convolution of the input image I (m, n) with the Laplacian operator L 

which can be approximated using the following mask: 
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 𝐿 =
1

6
(

0 −1 0
−1 4 −1
0 −1 0

) (3.14) 

 

and   L’ is the mean of absolute values given by 

 

 𝐿′ =  
1

𝑁𝑀
∑ ∑ |𝐿(𝑚, 𝑛)|

𝑁

𝑛

𝑀

𝑚

 (3.15) 

10. Vollath's correlation 

This focus measure function is based on autocorrelation function and is computed as in 

equation (3.16) [80]. 

 

 𝐹𝑣𝑜𝑙𝑙𝑎𝑡ℎ′𝑠 = ( ∑ ∑ 𝑔(𝑖, 𝑗). 𝑔(𝑖 + 1, 𝑗)) − ( ∑ ∑ 𝑔(𝑖, 𝑗). 𝑔(𝑖 + 2, 𝑗))

𝑁

𝑗=1

𝑀−2

𝑖=1

𝑁

𝑗=1

𝑀−1

𝑖=1

 (3.16) 

The advantage of this method is that it does not depend on a threshold while some of the 

focus function does.  

11. Image Curvature  

Image curvature can be utilized as a focus measure since the curvature is higher in sharp 

images than blurred images [85]. In this method, the gray values are considered as a 3D 

surface (x, y, t(x, y). First of all, the quadratic equation 𝑓(𝑥, 𝑦) = 𝑘𝑥 + 𝑙𝑦 + 𝑚𝑥2 + 𝑛𝑦2 is 

used to approximate the surface. After that the least square approximation technique is used 
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with 𝑡0 𝑎𝑛𝑑 𝑡2 to calculate the coefficients (k, l, m, n).  

 

 𝑡0 = (
−1 0 1
−1 0 1
−1 0 1

)     𝑎𝑛𝑑    𝑡2 = ( 
1 0 1
1 0 1
1 0 1

) (3.17) 

 

Finally, the coefficients are combined and focus measure is obtained as in equation (3.18). 

 𝐹𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 =  |𝑘| + |𝑙| + |𝑚| + |𝑛| (3.18) 

 

Histogram-based Algorithms 

Histogram-based algorithms utilises the advantages of histograms to analyse the distribution 

and frequency of image intensities to obtain the in-focus image. This is an advantageous 

technique as the most in-focus images histogram demonstrates occurrences in many bins. 

However, for some instances in-focus images start with occurrences in a few bins and this 

should be considered to satisfy the application needs.  

12. Histogram entropy  

Let P (I) represents the frequency of the gray level I. The histogram entropy is defined by 

equation (3.19) [26]. 

 

 𝐸 = − ∑ 𝑃(𝐼) ln[𝑃(𝐼)]        𝑃(𝐼) ≠ 0

𝐼

 (3.19) 

 

‘E’ reaches its maximum value when all P (I) are equal, and minimum values when P (I) = 0 

for all but one value of I. In this case, sharper images have smaller entropy than blurred 
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images. Therefore, minimizing the value of E will give the sharper image. This algorithm has 

also been evaluated and compared in previous researches [80, 86]. 

 Auto-alignment of the Injection and Holding 

Pipette 
 

Focalization provides key information in Z-axis for automatic levelling of the pipettes to the 

focus. In the following section, the focalization of the injection and holding pipettes and their 

alignment with each other will be given. 

 

3.3.1 Autofocusing of the Injection and Holding Pipette 
 

 

For the focalization of the injection pipette, a set of 18 images was captured for the injection 

pipette by scanning the movement of the pipette among Z-axis in a range between 0 to 34 

micrometers using 2 micrometers increments. The initial position is obtained as the most 

blurred image captured below the focal plane, and the final destination position represents 

the most blurred image obtained above the focal plane. This means that any distance above 

or below this level brings the pipettes fully out of focus. 

A similar image acquisition process is also conducted for the holding pipette focalization. 

Similarly, at the beginning of the operation, a set of 18 images was captured in a range 

between 0 to 170 micrometers by scanning with a 10 micrometers increment. Under the 

assumption of achieving 100% accurate focalization for the injection pipette, it should be 

possible to insert the injection pipette into the holding pipette without causing any bending 

when it goes through the holding pipette as long as the holding pipette is in alignment as 

well. The inner diameter of the holding and injection pipette is 30µ and 5.5 µ, respectively. 
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In this case, the tolerance of the developed auto-alignment process is 12.25 µ. 

Digital images are generally exposed by noise. The level of noise is propagated during the 

image acquisition and transmission process. Therefore, pre-processing is often required to 

prevent the negative influence of the noise on developed algorithm performance [87]. A 

Gaussian filter as a part of pre-processing is implemented to reduce the noises on the captured 

image for the injection and holding pipette. Subsequently, the adaptive image threshold using 

first order statistics is used to obtain the binary image of the injection pipette. This process is 

called thresholding. Employing binary image procedure is not practical for the holding 

pipette since it has an inner reflection under the microscope particularly when the higher 

magnification is utilised. In this case, the active contour method is implemented on the 

holding pipette along with a defined focus window where all focus algorithms are applied 

[88]. 

The boundaries of the injection pipette are detected by using the obtained binary image. 

However, the level of smoothness of the boundary demonstrates irregular data points at some 

fragment of the boundaries for both injection and holding pipettes. This can be seen in 

Figures 3-2 and 3-3. Hence, Kernel smoother, which is a statistical technique widely used in 

engineering, is utilized on the boundary of the injection and holding pipettes to obtain better 

data visualization. This is because the Kernel smoother represents the set of irregular data 

points on the boundary of pipettes as a smooth line. The extracted boundary is taken as a 

reference to plot two different lines which divide the boundary of the injection pipette at the 

ratio of 1:4 of the extracted boundary from the tip of the injection pipette.  The mask is created 

within the region of interest where all focus algorithms are applied. Figure 3-2 represents the 

procedure of the pipette marginal detection and indicates the region of the interest extraction 

procedure for the injection pipette. 
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              (a)      (b)      (c)   (d) 

 

Figure 3-2 Region of Interest extraction (a) Original injection pipette image (b) Final Binary 

Image (c) Image with a boundary at the ratio of 1:4 divided by lines (d) Extraction of Region 

of Interest 

 

The mask is created in the focus window after implementing the active contour method on 

the holding pipette with a defined focused window. The region of interest for the holding 

pipette is extracted at the ratio of 3:4 from the tip of the holding pipette. The ratio selection 

to extract the region of interest for both injection and holding pipettes was selected to provide 

sufficient information to the FMA methods for their analysis. The implemented image 

processing technique is sufficient for holding pipette focalization due to its size. The obtained 

data variations on the recorded images using lower than 10 µm increments are not 

significantly different. Consequently, 10 µm is selected to be the optimum increment, and 

also this increment is within the tolerance. Figure 3-3 represents the region of interest 

extraction for analysis of the focus algorithms in-focus plane. 
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         (a)                    (b)                           (c) 

 

Figure 3-3 Region of Interest extraction (a) Original holding pipette image (b) Holding 

pipette contour detection and its division by lines at the ratio of 3:4 (c) Extraction of the 

region of interest 

 

3.3.2 Curve Fitting and Fibonacci Search Algorithm 
 

 

Curve fitting is the process of building a curve that has the best fit to the data points. In order 

to minimize the number of images captured to estimate the focal position of the injection and 

holding pipette, autofocusing is carried out by the mathematical function that accurately 

mimics the focus curve. It is essential to have sufficient data points near the focal plane with 

the purpose of having accurate auto-alignment of the pipettes. Global maxima and minima 

are defined as the largest and the smallest value of the mathematical function obtained from 

the curve fitting, respectively. The obtained focal position could be a global maximum or 

minimum depending on the FMA used. However, in this study, the focus curve is inverted to 

global maxima if the FMA produces a global minimum focal point.  Here, the second-order 

Gaussian fit is implemented to the focus curves to obtain the focus function of the focus curve 

[81].  

 In order to search the focal plane of the injection and holding pipette precisely, a Fibonacci 

search algorithm was employed to find the global maximum point of the focus curve function. 
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The search interval was introduced to the Fibonacci search algorithm; it successively narrows 

the search interval until a satisfactory approximation for focus is achieved [36].  A Fibonacci 

search algorithm was an appropriate algorithm as long as the curve shows the unimodal 

property. Under the unimodality assumption of the focus curves for holding and injection 

pipettes, it has been proven that the Fibonacci search algorithm is the optimal algorithm [89]. 

 

3.3.3 Alignment of the Injection Pipette to the Holding Pipette 
 

 

Before the alignment operation started, the pipettes were randomly inserted into the pipette 

holders. This caused no exact identification of the pipette tips initial position. Each position 

after initial detection had a corresponding focus value on the graph. Consequently, the 

proposed algorithm calculated the differences between the focal position and the current 

position values. These differences provide sufficient information to the developed algorithm 

to understand whether the tip of the pipettes is below or above the focal plane. Then the 

system determined the accurate corresponding positions and their differences. Once the 

pipettes were located to the focal plane, the coordinate of the pipette tips in X and Y-axis 

were calculated. The pixel coordinate of the tip of the pipettes was obtained by a set of image 

processing algorithms. This was achieved by obtaining the binary image of the pipettes using 

the adaptive image threshold and their blob detection once they were in focus. Blob detection 

is a computer vision method that detects the regions in the image by distinguishing them in 

terms of pixel mean intensity, perimeter and the area of the blob. Here the pipettes were 

distinguished from each other in terms of their blob pixel area. After detection of the pipettes 

in binary form, on the far right of the pixel of the injection pipette, and the far left pixel of 

the holding pipette, they were both detected and reported. Obtaining the binary form of the 
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holding pipette is only practical when it is in focus. Then, the pipettes are travelling only in 

the XY plane to grasp the oocyte and bring it to the predefined position and then conduct the 

injection when all are in focus.  

 The schematic 3D view of the injection and holding pipettes is given in Figure 3-4. As 

demonstrated, the levelling of the pipettes was conducted in Z-axis. However, the final 

grasping and injection are conducted in XY plane.  

 

Figure 3-4 Schematic 3D view of the injection and holding pipette 

 

 

 Results and Discussion 
 

 

This section presents and discusses the obtained results from auto-focusing algorithms for 

the auto- focalization procedure of the pipettes for the oocyte injection task. In this section, 

the results for the automatic alignment of both the holding and injection pipettes are presented 

separately. Then the operational confirmation will be experimentally demonstrated by 

inserting the injection pipette into the holding pipette. This fully illustrates that both pipettes 

are in absolute focus and within the same XY plane.  
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3.4.1   Focus Measurement Algorithm Results 
 

 

Figure 3-5 shows the results of focus curves obtained from twelve focusing algorithms for 

auto-focusing of the injection pipette. In each graph, the normalized focus measure is 

demonstrated versus pipette position reported by the motorized stage. 

 

Figure 3-5 Auto-focusing of the Injection pipette based on different focus measurement 

algorithms 

 

Based on the results in Figure 3-5, Energy of gradient, Vollath correlation, Gray level 

variance, and Brenner gradient methods produced reasonable focus curves as the rest of the 

methods produced false local maxima. Additionally, producing a unimodal curve is essential 

to enable the Fibonacci search algorithm to find the peak point of the curve accurately.  

The Focalization of the holding pipette is also essential for the auto-alignment task for an 

oocyte injection procedure. Figure 3-6 presents the results of the focus curves obtained from 

focusing algorithms for the auto-focusing of the holding pipette. All focus values are 

normalized and plotted versus stage position. 
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Figure 3-6 Auto-focusing of the Holding pipette based on different focus measurement 

algorithms 

 

From the data in Figure 3-6, it is apparent that very few FMA were able to produce a sensible 

focus curve. This is due to the light reflection of the inner space of the holding pipette where 

there was not any such noise as in the injection pipette. Only the Energy of gradient method 

was able to produce a gradable focus curve. 

The performance of the focus curves is evaluated based on focusing error, range, number of 

false maxima, and the width of the curve [90].  Error is measured from the differences 

between the determined best focus positions manually and the peak position of the curve 

obtained from the focus algorithm. A smaller error value gives a more accurate focus position 

of the injection and holding pipettes.  Range criteria measure the distance between two 

adjacent local minima of the peak points in the focus curve. The larger range of focus curve 

will help the searching algorithm to find the global peak without being trapped between two 

minima points during the search.  A number of false maxima describe any other peak points 
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of the curve apart from the global maximum. The width of the focus curve illustrates the 

sharpness of the peak as the sharper curve at the peak point has given a more accurate focus 

position to drive injection and holding pipette. In this study, 50% of the height of the curve 

is evaluated as the width of the curve. 

Based on the results obtained from Figures 3-5 and 3-6, focus evaluation parameters are 

demonstrated in Table 3-1.  The desired value for error, number of false maxima, and the 

width of the curve at %50 is 0, while the desired value for range criteria is 1. For the 

evaluation of the FMA, the difference between the desired criterion’s value and the value of 

the focus curve for each criterion is taken as a coordinate. Maximum range criteria are 

subtracted from the range value of each FMA for calculation of the overall performance. 

Hence, the desired distance coordinate of the focus curve is [0 0 0 0] since 4 different criteria 

are used in this study. The overall score is calculated as a Euclidean distance for the focus 

curve obtained. If the given criteria are not applicable to the focus curve obtained, maximum 

focus criterion value is taken into account for Euclidean distance calculation. All values for 

each criterion are normalized and given within a range of between 0 and 1 so that each 

evaluation parameter maintains the equal weight for the overall performance comparison. 

The lower overall score presents the better performance of the focusing algorithm which is 

essential to have higher accuracy Z-axis focalization of the micropipettes. 
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Table 3-1 Injection and holding pipette’s focus curves overall evaluations 

FMA 

Error 

 
Range 

Number of false 

maxima 

The width of the 

curve at %50 

Injectio

n 

pipette 

Holding 

pipette 

Injectio

n 

pipette 

Holding 

pipette 

Injectio

n 

pipette 

Holding 

pipette 

Injectio

n 

pipette 

Holding 

pipette 

Thresholded 

gradient 

 

0.55 0.11 1 0.94 0.4 0.2 1 1 

Energy of gradient 

 
0 0 1 1 0 0 0.857 0 

Gray-level 

variance 

 

0.22 1 1 0.058 0 0.6 1 1 

Modified 

Laplacian 

 

0.77 0.55 0.058 0.058 0.8 1 1 1 

Image Curvature 

 
0.22 0.77 1 0.058 0.8 0.6 1 1 

Tenengrad 

 
0.22 0.22 1 0.176 0.6 0.6 0.857 1 

Tenengrad 

variance 

 

0.22 0.77 1 0.058 1 0.6 0.821 1 

Variance of 

Laplacian 

 

0.22 0.77 1 0.0176 0.8 0.8 0.785 1 

Vollath's 

correlation 
0 0.66 1 0.058 0 0.4 0.785 1 

Brenner gradient 0 0.66 1 0.176 0 0.8 0.714 1 

Spatial frequency 1 0.77 0.058 0.058 1 0.4 1 1 

Histogram 

entropy 
0.33 0.66 1 0.058 0.4 0.4 0.928 1 

 

As it is pointed out in Table 3-1 for the evaluation of the injection pipette, Brenner gradient, 

Vollath correlation, and Energy of gradient demonstrated 100% accuracy while Gray-level 

variance illustrated 88% accuracy. The tolerance assumption for holding pipette alignment 

was conditioned with 100% accuracy of the injection pipette. Hence, 88% of accuracy has 

not been considered. Among the methods giving 100% accuracy, the only difference was 

obtained in the width of their curves at 50%. This is a significant parameter that needs to be 
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considered for FMA evaluations. This is because the lower width at 50% of the curve not 

only demonstrates how sharp the peak point of the curve is but also illustrates a higher focus 

measurement range. This is an essential feature to be obtained for the auto-alignment of the 

pipettes. A distinguishable focus measurement value between different focus levels at a small 

distance to each other helps the auto-alignment procedure remarkably, particularly around 

the focal plane. Brenner gradient provided the smallest width of the curve at 50% among all 

focus methods while providing 100% accuracy, full range with no false maxima as shown in 

Table 3-1. Hence, Brenner gradient demonstrated better performance than Vollath correlation 

and Energy of gradient method based on the calculation of the Euclidean method. 

Figure 3-6 makes it evident that most of the FMA were exposed with a high noise for holding 

pipette focalization. This is due to the inner reflection of the holding pipette as stated 

previously. The 11 out of 12 FMA algorithms were failed with the exception of Energy of 

gradient method. The result of the Thresholded gradient method also produced a gradable 

curve. However, the focus measurement value at the last frame was always higher than the 

previous frame. This causes a disturbance in the Fibonacci search algorithm to find the peak 

point of the curve. The correct detection of the peak point of the curve of the Energy gradient 

method was 100%. This is in decent agreement with the tolerance of the holding pipette 

alignment. Overall, the Energy of gradient algorithm was found to be the most suitable for 

holding pipette focalizations for the purpose of the auto-alignment procedure. 

The Energy of gradient and Brenner gradient methods are both derivative-based FMA. This 

type of algorithm tends to be affected by noise while providing better accuracy in comparison 

to statistical algorithms [90]. With the aid of a comprehensive evaluation of the FMA, decent 

accuracy for focalization of the pipettes was achieved whilst selected algorithms were not 

affected by any type of disturbance during their operation. The feature of the insensitivity of 
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the noise for the developed auto-alignment process while providing high accuracy will be 

well proved in the following section. 

Computational time is also an essential parameter to be considered to increase the 

productivity of the developed algorithm. Computational time is highly dependent on the 

quality of the image and the number of pixels processed. For the analysis of the 

computational time, 8 sets of image collection for holding and injection pipette focalization 

were captured separately at random positions in the XYZ plane. Each set consists of 18 

images for both pipettes and was run 15 times and then the averaged computation time was 

recorded.  Recorded computation times include the entire computation to run the algorithm. 

Subsequently, the average computation time of 8 sets was recorded along with its standard 

deviation. Table 3-2 illustrates the average computational time per frame for performing the 

auto-alignment of the pipettes. 

 

Table 3-2 Computational time analysis for auto-alignment of the pipettes in overall 

FMA 

Averaged Computation 

Time per Frame (s) Standard Deviation 

 Brenner Gradient 1.159 0.0106 

Energy of Gradient 1.717 0.0252 

 

The alignment procedure calculation was conducted only once and the operational distance 

was calculated based on that particular frame which does not require additional image 

acquisition for any rest of the images within each trial.  

 

3.4.2 Validation Test Results for ICSI Insertion to the Holding Pipette 
 

 

In this section, the effectiveness of the developed image-based auto-alignment of the 
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Injection pipette is shown experimentally. It is motivated to conduct the insertion of the 

injection pipette within the holding pipette to illustrate the accuracy of levelling of the 

pipettes. This is a reasonable test to visually validate the levelling of micropipettes. This 

proved the operational accuracy of the algorithm in focusing the pipettes. Each pipette is 

randomly positioned at different levels in XYZ and programmed to be inserted. A total of 

100 experiments have been conducted to prove this hypothesis. All of the insertions were 

conducted without any failure. The results proved the high reliability of the algorithm in 

different stages of pipette detection, operation calculation, and manipulation. Figures 3-7 and 

3-8 demonstrate an example of the different positioning of pipettes and insertion 

experiments.  

 

 

Figure 3-7  Visual demonstration of randomly placed injection and holding pipettes at various 

locations to check system performance in auto-alignment. Both pipettes are randomly moved 

in X and Y axes in the image plane, and then their focal position is randomly positioned on Z-

axis within the visual field of the microscope.  
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Figure 3-8 Auto-alignment of the pipettes for oocyte injection 

 

The experimental results illustrate that the developed image-processing algorithm can 

perform the auto-alignment procedure successfully regardless of the pipettes’ positions. The 

developed method can perform an auto-alignment even if the position of injection and 

holding pipette images are not within the recognition ranges.  

In order to assess the trade-off between the sensitivity of the focalization of the pipettes to 

the noises and also their reliability at the same focal levels at different positions on the image 

plane, another set of experiments was carried out.  In this experiment, the pipettes were 

randomly positioned at 8 different locations. The number of focus levels for each set is 

limited where the pipettes are in focus. For each position, 18 images were captured above 

and below the focal point with a 10 and 2-micrometers increment to each other for holding 

and injection pipettes, respectively. Figure 3-9 demonstrates the normalized focus value 

versus the set number.  
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Figure 3-9 Focus value variations of the injection and holding pipette at different positions 

 

In Figure 3-9, each colour represents one set of experiments and each set is evaluated within 

itself. Hence, there is no continuity between sets in terms of their data points. No intersections 

between the indicated dashed lines were observed for the pipettes as illustrated in Figure 3-

9, which clearly demonstrates the reliability of the algorithm for an oocyte injection 

operation. This also demonstrates that the values are only dependent on the image set and are 

not a general measure for each level. 

This study demonstrates the first reporting of auto-alignment of the pipettes used in ICSI 

with a combined computational time for pipette detection and alignment of 3s. This is in 

contrast to a much larger corresponding value of 14s reported in a similar study conducted 

for holding pipette [35], hence offering a considerable reduction in computational cost. 

Additionally, the results indicate 100% accuracy in both detection and alignment, enhanced 

reliability, and insensitivity to noise at different positions in the image plane. 
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  Conclusion 
 

 

This study offers a technique to automatically align the injection and holding pipette under 

microscopy imaging for ICSI operation. A ranking methodology was implemented on twelve 

different focus measure algorithms to determine the most appropriate focus algorithm in ICSI 

operation. The Fibonacci search algorithm has been implemented into the developed 

technique to drive the z-axis of the motorized stage to the focus position. It has been 

demonstrated that the Brenner gradient and Energy of gradient algorithms have superior 

performance for the injection and holding pipette focalization respectively. The results show 

that the auto-alignment tasks were achieved with high accuracy, reliability, and demonstrated 

insensitivity to noises at different positions in the image plane. 

In the following chapter, a new vision-based sensor, operating at various magnifications, will 

be proposed to measure the vibration displacement of the tip of the injection pipette in three 

orthogonal axes. 
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Chapter 4: Vision-Based Sensor for Three-

Dimensional Vibrational Motion Detection in 

Biological Cell Injection 
 

 

 Introduction 

 
Intracytoplasmic sperm injection (ICSI) is an infertility treatment where a single sperm is 

immobilised and injected into the egg using a glass injection pipette. Minimising vibration 

in three orthogonal axes is essential to have precise injector motion and full control during 

the egg injection procedure. Vibration displacement sensing using physical sensors in ICSI 

operation is challenging since the sensor interfacing is not practically feasible. This study 

proposes a non-invasive technique to measure the three-dimensional vibrational motion of 

the injection pipette by a single microscope camera during egg injection. The contrast-limited 

adaptive histogram equalization (CLAHE) method and blob analyses technique were 

employed to measure the vibration displacement in axial and lateral axes, while the actual 

dimension of the focal axis was directly measured using the Brenner gradient algorithm as a 

focus measurement algorithm. The proposed algorithm operates between the magnifications 

range of 4× to 40× with a resolution of half a pixel. Experiments using the proposed vision-

based algorithm were conducted to measure and verify the vibration displacement in axial 

and lateral axes at various magnifications. Additionally, the effect of injection speed on 

lateral vibration displacement was measured experimentally and was used to determine the 

values for egg deformation, force fluctuation, and penetration force. It has been demonstrated 

successfully that visual sensing has played a key role in identifying the limitation of the egg 

injection speed created by lateral vibration displacement of the injection pipette tip.  
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 Materials and Methods 
 

 

This section introduces the developed measurement technique for the three-dimensional 

vibration displacement of the injection pipette during egg injection. The developed 

measurement technique is divided into 2 main sections. The first part of the image-processing 

algorithm measures the tip displacement in lateral and axial directions while the other part of 

the algorithm calculates the displacement in the focal axis. A vibration term was used 

precisely to explain the mechanical oscillation of the tip of the micropipette. In the following 

sections, the system configuration will be explained. 

 

4.2.1 System Configuration and Calibration 
 

 

Figure 4-1 illustrates the schematic diagram of the three-dimensional egg injection setup. 

This setup is composed of an inverted microscope (Best-scope 2090), and a microscopy 

camera (BASLER Camera acA1300-200Um - Python1300), which can take up to 200 frames 

per second. The injection unit is firmly assembled on a 3-DOF motorized stage (Standa 

8MT167) with an accuracy of 1 µm to move the injection pipette towards the desired 

positions using the BASLER camera as a vision sensor. The positional control of the 

motorized stage and image processing algorithms are hosted by a computer. Captured images 

are processed by an Intel® Core™ i5-6500 CPU @3.2 GHz (4 CPUs) host computer. The 

entire trajectory motion of the injection pipette during injection is captured and transferred 

to the host computer as a series of frames. Each frame is then analysed by the in-house 

developed image-processing algorithm in three orthogonal axes.  
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Figure 4-1 Schematic diagram of the cell-injection system setup. 

 

The dimensional detail of the injection pipette used for the cell-penetration operation as 

well as its schematic 3D view is given in Figure 4-2.  

 

Figure 4-2. The dimensions of the injection pipette and its schematic 3D view. 
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The technique developed for the positional detection of the injection pipette in axial and 

lateral axes requires system calibration before the injection procedure starts. In this study, 

the outer diameter of the injection pipette is utilized as a dimensional reference to find the 

pixel size by using ImageJ software. The pixel size obtained will be employed into the 

developed Matlab algorithm as an input to report the positional changes in the X and Y axes 

versus time in real-world dimensions. 

 

4.2.2  Detection of Positional Changes in Image Plane 
 

 

In this section, the algorithm development procedure will be presented for extracting the 2-

dimensional vibrational displacement information of the injection pipette tip. The steps 

involved in the development of the image-processing algorithm are pre-processing, filtering 

and thresholding, edge detection, and tip position measurement of the injection pipette. The 

details of these steps will be presented and discussed in the following part of the study.  

 

Pre-Processing 

The acquired images captured by the microscope camera require pre-processing for its further 

analysis. To increase the efficiency of the developed algorithm, the size of all the images 

acquired during egg injection was reduced to 50%. The captured image is in the eight-bit 

grayscale type where intensity level varies from 0 to 255. RGB, which stands for Red, Green 

and Blue, images are converted to grayscale within the developed algorithm. A grayscale 

image is then used for the positional detection of the ICSI pipette. Contrast-limited adaptive 

histogram equalization (CLAHE) can only be applied to the grayscale image. CLAHE is used 

to improve the contrast in images while avoiding amplifying the existing noise in the image. 
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This is a particularly significant feature to highlight the ICSI pipette for its further analysis 

as the developed measurement technique relies on the detection of the ICSI pipette 

accurately. In this study, the CLAHE method is implemented as pre-processing. In CLAHE, 

the input image is divided into small rectangular areas, which are called tiles, and then the 

local histogram for each tile is adjusted by enhancing their contrast [91]. The histogram is a 

graphical way of showing the frequency of occurrence at different color intensities in the 

image. Each bar in the histogram represents the total number of pixels at a particular intensity 

level changing from 0 to 255; 0 indicates the black in the histogram while 255 indicates 

white. In general, a balanced gray level is desirable in the histogram, which makes peaks in 

the middle and tapers off towards the edges. The comparison of gray-level distribution for 

the image of the ICSI procedure and processed image by the CLAHE method are shown in 

Figure 4-3. 

 

Figure 4-3 Enhancement of gray-scale intracytoplasmic sperm injection (ICSI) image by the 

contrast-limited adaptive histogram equalization (CLAHE) method and its histograms (a) 

Original ICSI image; (b) histogram of the original ICSI image; (c) contrast-limited adaptive 

histogram equalization (CLAHE) image; (d) histogram of CLAHE image. 
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The histogram of the original ICSI pipette image as demonstrated in Figure 4-3b illustrates 

that the image is overexposed. That means the input for image segmentation is not sufficient 

since the input image is not able to detect the edges in comparison to higher contrast input. 

On the other hand, the histogram of the image obtained by the CLAHE method illustrates a 

much-improved exposed image with evenly distributed gray-level bars and higher saturated 

tones. Hence, the CLAHE method is implemented successfully into the developed image 

processing algorithm as pre-processing to not lose any data on the image and lead to any 

failure of the injection pipette tip positional detection in axial and lateral axes. 

 

Filtering and Thresholding 

Filtering is a significant step to enhance the performance of the developed algorithm. The 

level of noise increases during the image acquisition and transmission process. Hence, it is 

essential to reduce the negative effect of the noises [87, 92].  A Gaussian filter is a linear 

filter that performs a weighted average of surrounding pixels chosen based on Gaussian 

function. Consequently, a Gaussian filter is utilized to reduce the noises on the ICSI image. 

The two-dimensional Gaussian filter used on ICSI image can be demonstrated in Equation 

(4.1). 

 

𝐺(𝑥, 𝑦) =  
1

√2𝜋𝜎
exp (−

𝑥2 + 𝑦2

2𝜎2
)         (4.1) 

 

where σ indicates the standard deviation of the distribution for the Gaussian filter and x and 

y illustrate the distance from the origin in the horizontal and vertical axes, respectively.  

The grayscale image needs to be converted into the binary image as a part of the thresholding 
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procedure. The binary image is presented only as 0 and 1 for the background pixel and the 

highest intensity in the image plane. Adaptive thresholding is a common solution when the 

variations in illumination is a consideration. In this method, the threshold value is computed 

for every single pixel. This algorithm calculates the thresholding value for a small region, 

and then it applies different thresholding values for the other region of the image. Therefore 

adaptive thresholding provides better robustness changes in illumination [93]. Hence, the 

adaptive image threshold is employed to obtain the binary image of the ICSI process.  

Binary images can be noisy, and any scattered pixels are required to be removed from the 

image for further processing. The Matlab bwareafilt function is utilized to eliminate the small 

pixels around the injection when holding the pipette and a zebrafish egg.  

 

Edge Detection 

The result of the binary image is then used to obtain the contour of the entire ICSI process 

through Canny edge detection [94]. In this method, the input image is converted into a set of 

curves to extract the remarkable features on the image. These remarkable features are the 

contour of the objects in the plane that it is aimed to detect. This detection relies on sudden 

intensity changes in the image. Hence, initially obtained curves data are transformed into the 

lines at the end of the procedure.  

 

Measurement 

Blob detection is a method to detect the regions in the image by distinguishing properties 

such as mean intensity, area, diameter, perimeter, centroid, etc. in comparison to surrounding 

regions. Each blob is labelled in order to make a measurement on the ICSI process. In our 
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case, in the ICSI process, the developed vision-based vibration-sensing technique detects two 

blobs, one is for injection pipette and one is for the combination of holding the pipette and 

the egg. The properties of these two blobs are extracted, which are mean intensity, area, 

perimeter, centroid, and diameter of each blob. Pixel intensity and the area of the blobs were 

sufficient to distinguish them from each other. The properties of the injection pipette, i.e. its 

area and pixel intensity, are defined within the developed Matlab algorithm to keep only the 

injection pipette on the image plane by isolating the rest of the objects which is the 

combination of holding pipette and the egg. These properties should be calibrated if the 

magnification of the microscope changes as it affects the value of the properties of the 

injection pipette. Afterward, the developed vision-based displacement sensor ignores any 

blobs which do match with the properties of the injection pipette and just keeps the injection 

pipette for further analysis. Subsequently, the far-right pixel of the binary image is detected 

and reported in the X and Y axis in pixels. The pixel size obtained from the calibration 

operation is employed to convert the pixel measurement into actual dimensions.  

Figure 4-4 demonstrates the steps involved in the positional detection of the injection pipette 

tip in the image plane.  
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Figure 4-4 Steps in vision-based positional detection of the injection pipette: (a) original ICSI 

image captured by the camera; (b) image after implementation of the CLAHE method; (c) 

ICSI image after application of Gaussian filter and adaptive thresholding; (d) extraction of 

the contour information of the ICSI image using canny edge detection algorithm; (e) 

recognition of the egg and injection pipette and distinguishing them based on their blobs 

feature; (f) detection of the injection pipette tip indicated by the red cross. 

 

 

4.2.3 The Detection of Focalization Position Changes 
 

 

The technique for the focalization of the injection pipette tip has been conducted previously 

by our research group and the details can be found in [57]. In this study, the focalization 

procedure of the injection pipette tip is utilized to find the positional changes in Z-axis at the 

time of cell injection. In order to obtain the focal position of an object under a microscope, 

focus algorithms are widely used [26, 27]. These algorithms provide information regarding 

the degree of focus for the number of images taken by varying the focus lens position. The 

Brenner gradient algorithm was selected as the focusing algorithm after the evaluation of the 



59 | P a g e  

 

12 different focus algorithms examined for this application. In the Brenner gradient 

algorithm, the square difference of each pixel between its two neighbours are calculated and 

then they are summed using Equation (3.5)[25]. 

To locate the injection pipette tip to the focal plane under a microscope, the movement of the 

injection pipette is scanned in Z-axis in a range between 0 to 34 µm with an increment of 2 

µm. Hence, a set of 18 images was attained. The initial position presents the most blurred 

image under the focal plane, while the final destination position demonstrates the most 

blurred one above the focal plane.  

Since the level of noise increases during the image acquisition process, it requires pre-

processing to enhance the performance of the algorithm. The noise on the images is 

eliminated by using a Gaussian filter as a part of pre-processing. Then, the adaptive image 

threshold using first-order statistics is utilized and the binary image of the injection pipette 

was obtained. Obtaining a binary image of the injection pipette without any scattered points 

is essential since boundary extraction of the injection pipette is fully dependant on the 

obtained binary image. However, as it is visible in the obtained binary image of the injection 

pipette in Figure 3-2, at some fraction of the boundary of the injection pipette, irregular data 

points result. In order to prevent any irregular data points, particularly at the tip of the 

injection pipette, a kernel smoother was employed to set the irregular data points on the 

boundary of the injection pipette as a smooth line. 

The extracted boundary is divided by two lines at the ratio of 1:4 starting from the tip of the 

injection pipette. The created mask in this area is considered as a region of interest for the 

image-processing algorithm. Finally, the Brenner gradient algorithm is implemented in the 

region of interest extracted. Figure 3-2 has already illustrated the marginal detection of the 

injection pipette image and its region of the interest extraction procedure.  
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Figure 4-5 demonstrates the pattern of the normalized focus measurement values versus stage 

position. As it is shown, the injection pipette presents a unimodal curve that enables Brenner 

gradient algorithm to be utilized. Also, the maximum value of the normalized focus value 

corresponds to the sharpest image where the stage position is in the focal plane. 

Subsequently, the second-order Gaussian fit is implemented to the curves obtained from the 

Brenner gradient method for the injection pipette [81]. In order to search the global maximum 

of the curves precisely, a Fibonacci search algorithm is employed to the procedure into the 

defined focus range [36]. In this method, the range of search is defined for the algorithm and 

the focus range was narrowed successively until the focal plane is obtained. It has been 

proved that the Fibonacci search algorithm was found to be an optimal search algorithm 

under the assumption of the unimodal property of the focus curve [81]. Figure 4-5 clearly 

demonstrates that there is a peak where the tip of the injection pipette is entirely in focus. 

  

 

Figure 4-5 Representation of the focus curve obtained from the Brenner gradient method. 
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In Figure 4-5, each stage position has got a corresponding normalized focus value. Initially, 

a set of images saved at the time of egg injection are analysed based on its normalized focus 

value. Each frame is labelled with a normalized focus value obtained from the Brenner 

gradient algorithm. The reliability of the Brenner gradient method at the same focal level at 

different XY plane was previously verified for this particular application in our previous 

publication [57]. Since the equation of the curve was obtained after the implementation of 

the Gaussian fit method, each focus value will have the corresponding stage position between 

0 to 34 µm. As the above and below the focal plane is identical, by being independent to the 

direction selection, the right-hand side of the curve was taken into account for the 

implementation of the normalized focus values to be implemented into the focus function. 

Therefore, these normalized focus values are converted into the real dimension by the 

algorithm developed. Finally, each position of the frame in the Z-axis is subtracted from the 

focal point of the focus curve. The differences are reported as displacement in Z-axis versus 

time. This technique is capable of measuring the vibration displacement while the injection 

pipette is in the field of view under the microscope. Based on the assessment of the Brenner 

gradient algorithm in our previous work, this algorithm is reliable and efficient to report the 

same pipette position in Z-axis by being independent to the X and Y axes in the field of ICSI. 

Figure 4-6 demonstrates the block diagram of the developed algorithms to calculate the 

vibration displacement of the injection pipette tip in axial, lateral, and focal axes.  
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Figure 4-6 Block diagram of the vibration displacement sensing procedure by the developed 

vision algorithms in 3 dimensions. 
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  Results and Discussion 
 

 

In the previous sections, the method of a three-dimensional vision-based vibration 

displacement measurement method was demonstrated. Here, the algorithm is examined and 

the results are presented in the following section. For evaluating the functionality of the 

algorithm, the vibration was introduced randomly to the system to demonstrate the 

effectiveness of the algorithm developed. Subsequently, the motion of the injection pipette 

was analysed by the algorithm developed. The results obtained from the algorithm have then 

been validated by using ImageJ software. This software lets the user select the desired pixel 

value in the XY plane manually. Hence, the tip coordinate of the injection pipette in the XY 

plane was compared with the results obtained manually from ImageJ software. A total 

number of 100 images were captured sequentially during the egg injection. These image 

acquisition procedures were conducted separately at four different magnifications, as shown 

in Figure 4-7.  

 

 

Figure 4-7 Egg-injection procedure at different magnifications. 
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Before the experiment was conducted, the initial position of the injection pipette tip was 

recorded in each magnification. This value is subtracted from each reported coordinates from 

the vision algorithm during egg injection which took 0.5 seconds for all levels of 

magnification. Then, the magnitude of vibration displacement was measured and reported in 

axial and lateral axes by the developed vision algorithm. 

To validate the results obtained from the developed algorithm, the ImageJ software is 

employed. This is a manual image processing program which is developed to analyse and 

process the images. For this reason, the images were focused on the pixel levels, and the final 

pixel which demonstrated the tip of the pipette was manually selected. Figure 4-8 illustrates 

the original and focused zoom used in ImageJ. Figure 4-8 illustrates that different 

magnifications provide different focused zoom. The yellow square shows the area of interest 

for manual selection and the red cross on the images shows the point which was selected for 

the tip of the pipette. By increasing the magnification, the possibility of a manual selection 

of the most appropriate pixel, which represents the tip of the pipette, increases.  

 

 

Figure 4-8 Pixel selection by ImageJ software. 



65 | P a g e  

 

This method of comparison demonstrates the accuracy of the developed algorithm compared 

to manual selection. It is noted that there may be some human errors contributing to these 

results, however, integrating other types of physical sensors would not be practically 

possible. On the other hand, this comparison has higher validity due to matching the results 

based on an image which eliminates other environmental contributing factors. Figure 4-9 

illustrates the differences in results obtained manually and by the developed algorithm both 

laterally and axially.     

 

 

Figure 4-9 Displacement variations between developed vision sensor and Image J software in 

axial and lateral axes. 

 

The detail of the average axial and lateral vibration displacement variations at each 
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magnification is shown in Table 4-1. The level of standard deviation is high as expected due 

to the vibration introduced. 

 

Table 4-1 The average variation between Image J software and vision algorithm. 

Level of Magnification 
Axial Axis (µm) and Its 

Standard Deviation (SD)(µm) 

Lateral Axis (µm) and Its 

Standard Deviation (SD)(µm) 

4× 0.808 0.841 1.05 0.881 

10× 0.970 0.576 1.25 0.890 

20× 0.790 0.302 0.46 0.264 

40× 0.235 0.195 0.22 0.173 

 

As the comparison results demonstrate in Table 4-1, the variations between the developed 

algorithm and the ImageJ software were both decreased when the level of magnification 

increased. This is due to the changes in pixel sizes. Considering the total tip size which is 7 

µm, the area of interest provides only 4 allowed pixels for manual selection in 4×, however, 

the same area of interest provides 42 allowed pixels in 40× which hugely decreases the 

potential errors of manual selection.  This can be confirmed in Figure 4-9 as well which 

shows the variations decrease by 71% and 79% from 4× to 40× for axial and lateral vibration 

displacement, respectively. Overall, the developed vision algorithm demonstrated 

consistency and its reliability with the results obtained by ImageJ software. 

The displacement of the injection pipette tip in the Z-axis was obtained with the utilization 

of the Brenner gradient method. A number of 100 images were captured sequentially during 

injection at different magnifications. Later, their normalized focus value was introduced to 

the focus function obtained from the Brenner algorithm. The corresponding stage position 

for each focus value was obtained. As shown in Figure 4-5, the stage position at the peak of 

the curve is known. Therefore, the stage position at each frame was subtracted from the 
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position where the tip position of the injection pipette has a peak in the curve. The 

displacement variations in Z-axis versus time were plotted at different magnifications in 

Figure 4-10. 

 

Figure 4-10 Injection tip position changes in Z-axis using the Brenner gradient method 

 

As it is shown in Figure 4-10, the vibration-induced injection pipette position has changed in 

the Z-axis by its focus value at different magnifications. As previously stated, the right-hand 

side of the focus curve was used for the implementation of the normalized focus values which 

were implemented into the focus function. Hence, the resultant vibration displacement in the 

focal axis is only positive. The displacement of the injection pipette is directly obtained as 

shown in Figure 4-10 using the Brenner gradient algorithm as a focus measurement.  

This study assists in the need for the vibration-sensing process accurately in three orthogonal 
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axes in injection procedures. Currently, the effect of vibration at the tip of the injection pipette 

in the ICSI procedure is not studied in the literature. This study will try to study the viability 

of the vibration analysis to realise the role of vibration displacement in three dimensions 

induced by any sort of internal and external dynamic parameters and whether that may 

contribute to the success rate of the ICSI operation. For this purpose, another set of 

experiments was conducted to demonstrate the key role of lateral vibration displacement in 

ICSI.  

As the algorithm had been validated, it was then used to evaluate the effect of egg-injection 

parameters such as speed on the vibration. In the previous publication, the authors 

demonstrated the variations in forces and deformation creation during egg injection [45]. In 

this research, the potential contribution of the demonstrated factors is evaluated in vibration 

creation which may be a cause of egg damage during the penetration. Injection speed was 

selected as the main contributing factor in potential damage to the cell. So, the various speeds 

were considered for the vibrational measurements. Then the results obtained were correlated 

to the previous results. The total travel distance was assigned to be 100 µm for each injection 

speed. Figure 4-11 illustrates the lateral vibrational displacement results at various speeds. 

As illustrated in Figure 4-11, the injector starts with some vibrations, but it moves steadily. 

However, at the end of the motion procedure, the lateral vibration displacements dramatically 

increased. This moment is considered as the injection time. This is due to the acceleration 

and deceleration maneuver of the injector. On the other hand, the vibration displacements 

were increased by increasing the speed as expected in the hypothesis. 
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Figure 4-11 The effect of egg-injection speed on vibration creation 

 

Figure 4-12 illustrates the direct comparison of the lateral vibration displacement, force, 

and deformation at each speed.  
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Figure 4-12 Lateral vibration displacement, force fluctuation, and egg deformation at various 

injection speeds. 

 

Figure 4-13 illustrates the comparison between the force amplitude, penetration force, 

induced deformation, and also increases in vibration. The maximum force amplitude ratio 

(MFAR) is defined as the ratio of the maximum force amplitude resultant during injection to 

the maximum penetration force in percentage. This demonstrates the force fluctuations 

during the injection. 0.05 mm/s injection speed is considered as the reference to calculate the 
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increase in vibration displacement. As shown in Figure 4-13, the vibration displacement did 

not increase significantly at a lower speed, however, it increased significantly after 0.4 mm/s. 

The results demonstrate that force fluctuation increases while vibration displacements 

increases, however, it causes less deformation to the cell. The sudden force fluctuation was 

increased by 58% while lateral vibration displacement increased by up to 54% when the 

injection speed increased from 0.05 mm/s to 0.6 mm/s. The rate of increase for lateral 

vibration displacement and force fluctuations is consistent which demonstrates the reliability 

of the developed vision algorithm for vibration sensing. In the meantime, the egg deformation 

was reduced to approximately ~34%. Although the egg deformation was reduced, it has been 

ascertained that high lateral vibration displacement preventing egg injection should be 

conducted under stable conditions. The egg injection operation is challenging after 0.6 mm/s 

due to sudden increased lateral vibration displacement (up to 54%) which causes damage to 

the egg. Lateral vibration displacement is a decisive dynamic parameter in the egg-injection 

operation which limits the injection speed although increases in speed decrease the egg 

deformation in the general trend. This demonstrates that injection operation requires speed 

optimization considering the induced vibration displacement as well as egg deformation. 

Overall, the correlation between the lateral vibration displacement, force fluctuation, egg 

deformation, and injection speed has demonstrated the critical role of visual vibration sensing 

in the ICSI operation. 
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Figure 4-13 The impact of injection speed on lateral vibration displacement, penetration 

force, egg deformation, and force amplitude speeds. 
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In this chapter, the vision-based three-dimensional vibrational motion detection technique 

was proposed for the application of biological cell injection. The advantage of this technique 

is that it uses only one microscope camera to obtain vibrational displacement information in 

three orthogonal axes. The developed vibration displacement measurement algorithm 

demonstrated consistency with the results obtained by ImageJ software. The vibration 

displacement occurred in the focal axis was also measured by the Brenner gradient algorithm. 

To show the significance of the developed vision algorithm, the effect of egg injection speed 

on lateral vibration displacement creation was investigated. It has been shown that the 

increase in injection speed resulted in an increase in the lateral vibration displacement at the 
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limited after the injection speed of 0.6 mm/s. The results show that lateral vibration 

displacement is a decisive parameter that needs to be measured in the egg injection task as it 

limits the injection speed. The proposed three-dimensional vibration sensor enhances the 

vibrational displacement measurement within the microinjections, specifically for ICSI.  

The next chapter will discuss an automated zebrafish embryo positioning system to the 

predefined position within the microscope’s field of view in real-time using deep learning.  
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Chapter 5:  Real-time Deep Learning-based Image 

Recognition for Applications in Automated 

Positioning and Injection of Biological Cells 
 

 

 

 

 Introduction 

 
Biological cell injection is an effective method in which a foreign material is directly 

introduced into a biological cell.  Since human involvement reduces the success rate of the 

biological microinjection procedure, an extensive research effort has been made towards its 

automation. The accurate positioning of a randomly placed biological cell in the 

microscope’s field of view is a prerequisite for any automated injection procedure. Vision is 

the primary source for visual servoing in microinjection applications. For this reason, a visual 

sensing system is required to recognise, calculate, and manipulate the cell to the desired 

position. In this study, eight different pretrained neural networks were analysed and used as 

a backbone for the YOLOv2 object detection method, and the optimal network was evaluated 

based on mean Intersection over Union (IoU) accuracy, Average Precision (AP) at different 

thresholds, and frame rate (fps) in our dataset. Ten different sets of experiments were 

conducted to examine the algorithm by verifying the zebrafish embryo gradual presence 

within the field of view to bring the zebrafish embryo to the predefined position. Later, the 

generalization of the proposed solution was verified in a different dataset from the real 

microinjection setup.  

 

 Materials and Methods 
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5.2.1 System Configuration 
 

 

Figure 5-1 represents the system configuration which consists of the motorized manipulator 

(STANDA 8MT167) to control the position of the injection pipette. The holding pipette is 

attached firmly to the micropipette holder. The vision system in the setup configuration is a 

combination of a microscopy camera (BASLER Camera acA1300-200um - Python1300), an 

inverted microscope (Bestscope 2090), objective, and lighting. The camera is directly 

connected to the host computer and run by a MATLAB software (2019b) interface. Hence, 

the sequence of captured images is directly provided to neural networks as input for detection 

and classification purposes in real-time. The 4x objective at the maximum lighting condition 

was used throughout the study as this was the optimal condition to experiment with zebrafish. 

The motorized XY stage (SUTTER MP-78) with a controller (MP-285) was employed to 

hold and position the petri dish to automatically bring the zebrafish embryos into the FOV of 

the microscope. All process was conducted by 3.2 GHz host computer. 
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Figure 5-1 Schematic view of the system configuration 

 

 

5.2.2 Data Collection, Labelling, and Augmentation Process 
 

 

In this study, the zebrafish embryo was used as an experimental model. Zebrafish embryo 

has a similar genetic structure to humans in terms of mechanical response and is easy to 

retrieve to be used in research as the size of the zebrafish embryo is about 0.7 mm. The 

zebrafish embryos were treated with standard embryo preparation procedures [95]. The in-

house created zebrafish embryo dataset includes 700 images which include 60% of training 

and 40% of test datasets where the number of images used for training and testing purposes 

is 420 and 280 respectively. This ratio is sufficiently practical to show the performance of 

the trained neural network as well as its generalization considering the size of our dataset. 
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The test set is used for the evaluation of the trained neural network model. The data was 

shuffled for training purposes using randperm, a MATLAB built-in function, which 

generates a random permutation of the data provided. The dataset collection was conducted 

during the first 24 hours after the immediate collection of fresh zebrafish. In this case, the 

zebrafish images were captured at different developmental stages to increase the learning 

capability of the neural network at any developmental stage of the zebrafish. During the data 

collection, the illumination intensity was also varied. The zebrafish embryo images were then 

labelled as it is shown in Figure 5-2 and used as an input to train the neural network models 

within this study. MATLAB Ground Truth Labeller application was used for labelling 

procedure. The sample zebrafish embryo dataset and image labelling are shown in Figure 5-

2.  

 
(a) (b) (c) (d) (e) 

 

Figure 5-2 The sample zebrafish embryo datasets labelling and various stages of the zebrafish 

embryo development to enhance the datasets. Developmental stages are illustrated as follows; 

(a) Immediate after collection. (b) after 6 h. (c) after 12 h. (d) after 18 h. (e) after 24 h. 

 

Data augmentation was implemented to enlarge the dataset and increase the learning 

capability of the neural network. This eliminates the overfitting on the dataset during the 

training procedure, as well as increase the performance of the neural network [96]. In our 

study, contrast, saturation, and the brightness of the images were altered slightly using 
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MATLAB built-in function jitterColorHSV to model various attributes of visual perception. 

The scale factors selected for contrast, saturation, and brightness are 0.2, 0.1, and 0.2, 

respectively. Additionally, Gaussian noise was introduced to simulate a realistic environment 

for the zebrafish embryo dataset. Finally, random reflection transformation that flips the input 

image with 50% probability in X and Y axes, scaling transformation that resizes the input 

image randomly with a scale factor range between [1, 3] in X and Y axes, randomized rotation 

transformation in the range of [0, 360], and translation transformation that shifts the image 

in X and Y-axis in the image plane with a selected distance between [-10, 10] in pixels were 

employed to simulate various operational conditions. Implementation of more than one 

factors has been examined in our developed algorithm to validate the reliability of the 

proposed system. Online augmentation, which is also called augmentation on the fly, 

approach was implemented to generate the augmented samples. In this computer storage-

friendly method, the required transformations are applied within the mini-batches which then 

have been fed to the neural network models during the training procedure. 420 images were 

augmented at each epoch. As the number of 30 epochs were used during the training, 12,600 

augmented sample images were generated from the training dataset and all used during the 

training procedure. Sample augmented images from the dataset are shown in Figure 5-3.  
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Figure 5-3 Random data augmentation of the zebrafish embryo from the dataset 

 

5.2.3  Description of YOLOv2 Algorithm 
 

 

You only look once (YOLO) is an end-to-end object detection method that was proposed by 

Redmon et al. for real-time processing in 2016 [77]. YOLOv2 is the improved version of the 

YOLO algorithm [78]. In this version, the accuracy of the YOLO algorithm was improved 

while speeding up the algorithm which makes it an outstanding choice in real-time 

applications. The significant difference in YOLOv2 is that it does not fix the anchor 

parameters, instead, YOLOv2 learns the anchor parameters of the ground truth bounding 

boxes making use of k-means clustering on the input data. During the training of the neural 

network, the weights are changed which changes the shape of the data that is sent to the next 

layer of the neural network. However, the next layer desires to see similar data pattern which 

makes it sensible to learn. Therefore, batch normalization is used to normalize the data before 

sending it to the next layer of the neural network. Hence, YOLOv2 performs batch 
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normalization after each layer and this highly improves the performance of the YOLOv2 

algorithm. Another advantage of the YOLOv2 over the original YOLO is to accept various 

and higher resolution input images for the neural network. For instance, while the original 

YOLO accept 224 x 224 input images, YOLOv2 accepts a range of input images, such as 

448 x 448, 608 x 608 etc. In YOLOv2, the input images are also randomly resized during the 

training so that the neural network can learn with objects in which the size is not fixed in 

various cases.  

In YOLOv2, the input image is divided into S x S grid cells. Each of the grid cells is 

responsible to predict 5 bounding box coordinates, class probability, and a confidence score 

for each anchor. Bounding box coordinates consist of x, y, w, and h parameters. While x and 

y present the abscissa and ordinate of the centre pixel of the bounding box relative to the 

bounds of the grid cell, w and h indicate the width and height of the bounding box with 

respect to the whole image. Class probability decides the class of the object in the current 

grid cell probably belongs to. The confidence score represents the confidence that an object 

exists in the current grid cell. The confidence score is defined as follow; 

 

 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = Pr(𝑜𝑏𝑗) 𝑥 𝐼𝑜𝑈 (5.1) 

 

Where Pr(obj) indicates the probability of the object falling into the current grid cell, 

Intersection over union (IoU) represents the rate of the area of overlap and area of union 

between the ground truth defined manually and ground truth predicted. Finally, the bounding 

boxes which possess less confidence score than the defined threshold are removed 

automatically using Non-Maximum Suppression (NMS). Simply, NMS is a post-processing 

algorithm that detects only once for each object by merging all bounding boxes for the same 
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object.  

Multi-part loss function was used in YOLOv2 as it is shown in Equation 5.2. The loss 

function consists of three parts. These are bounding box, confidence, and class loss [78].  

 

 

𝐿𝑜𝑠𝑠 =  𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝟙𝑖𝑗
𝑜𝑏𝑗

𝐵

𝑗=0

𝑆2

𝑖=0

[(𝑥𝑖 − 𝑥̂𝑖)
2 +  (𝑦𝑖 − 𝑦̂𝑖)2]

+  𝜆𝑐𝑜𝑜𝑟𝑑 ∑ ∑ 𝟙𝑖𝑗
𝑜𝑏𝑗

𝐵

𝑗=0

𝑆2

𝑖=0

[(√𝑤𝑖 − √𝑤̂𝑖)
2

+  (√ℎ𝑖 − √ℎ̂𝑖)

2

]

+ ∑ ∑ 𝟙𝑖𝑗
𝑜𝑏𝑗

𝐵

𝑗=0

𝑆2

𝑖=0

(𝐶𝑖 − 𝐶̂𝑖)
2

+  𝜆𝑛𝑜𝑜𝑏𝑗 ∑ ∑ 𝟙𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

𝐵

𝑗=0

𝑆2

𝑖=0

(𝐶𝑖 − 𝐶̂𝑖)
2

+ ∑ 𝟙𝑖
𝑜𝑏𝑗

𝑆2

𝑖=0

∑ (𝑝𝑖(𝑐) − 𝑝̂𝑖(𝑐))2

𝑐𝜖𝑐𝑙𝑎𝑠𝑒𝑠

   

(5.2) 

 

 

where 𝑥𝑖 and 𝑦𝑖 represents the centre location of the bounding box, while 𝑤𝑖 and ℎ𝑖 denote 

the width and height of the bounding box. 𝐶𝑖 is the confidence score of the bounding box 

which shows whether there is an object. Later, 𝑝𝑖(𝑐) is the classification loss of the bounding 

box. All circumflex values, 𝑥̂𝑖, 𝑦̂𝑖 , 𝑤̂𝑖, ℎ̂𝑖 , 𝐶̂𝑖 , 𝑝̂𝑖(𝑐)  represent the predicted values of 

𝑥𝑖 , 𝑦𝑖, 𝑤𝑖, ℎ𝑖 , 𝐶𝑖, 𝑝𝑖(𝑐), respectively. S x S grid cell is stated as 𝑆2 in the loss function. B 

represents the bounding boxes. 𝟙𝑖𝑗
𝑜𝑏𝑗

 denotes whether there is an object, i.e. it value is 1, 

otherwise, it is 0. 𝟙𝑖𝑗
𝑛𝑜𝑜𝑏𝑗

 indicates that there is no object, i.e. its value is 1, else it is 0. 𝟙𝑖
𝑜𝑏𝑗

 

represents that there is an actual object, i.e. its value is 1 if there is no actual object predicted, 

its value is 0. 𝜆𝑐𝑜𝑜𝑟𝑑 is a constant which shows the weight of the coordinate loss while 𝜆𝑛𝑜𝑜𝑏𝑗 

is the weight of the loss of bounding boxes when there is no object.  

Yolov2 consists of 30 layers, of which 22 layers are convolutional layers and 5 layers are the 
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max-pooling layers. It is noted that each convolutional layer within the network includes 

batch normalization and Leaky Relu activation function, except the 30th layer. YOLOv2 also 

has 2 route layers to merge the layers, while the reorganization layer at the 26th layer is 

responsible for reshaping the output tensor so that the number of row and column of the 

tensor can match with the next output tensor and results in a concatenated layer with the size 

of 13 x 13 x 3072.  

 

5.2.4 Transfer Learning 
 

 

Transfer learning is an effective deep-learning technique that enables developers to use a 

pretrained classification neural networks that have already learned important features on 

huge datasets, such as ImageNet [72], as a starting point to learn a new task. ImageNet 

contains more than a million data samples with the capability of a 1000 class label. In this 

study, widely used convolutional neural networks were employed as a base network for the 

YOLOv2 to be able to detect the zebrafish embryo in the petri-dish in real-time. MATLAB 

Deep Network Designer app was used to visualize the pretrained neural networks. Next, the 

final classification layer of the pretrained neural networks was replaced with YOLOV2 

detection layers to learn features specific to the zebrafish embryo dataset. The order of the 

detection layers of the YOLOv2 is Convolution, Batch Normalization, Relu, Batch 

Normalization, Relu, Convolution, YOLOv2 Transform Layer, and YOLOV2 Output Layer. 

This interface can be used as a guide to be used in other programming languages, such as 

Python and C. In the following section, the evaluated CNNs will be briefly discussed. 
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Resnet-50 and Resnet-18 

 

 

Resnet-50 is a powerful deep neural network that demonstrated excellent performance on 

other recognition tasks and received first place in ImageNet detection, ImageNet localization, 

Coco detection, and Coco segmentation in ILSVRC and COCO 2015 competition [97]. 

Resnet-50 consists of 50 layers deep with an image size 224-by-224. Many researchers 

attempt to build deeper neural networks as the deeper neural network gives higher accuracy. 

However, when the network starts converging, due to the vanishing gradient effect, the 

accuracy degrades and saturates quickly. Resnet-50 is a residual network that skips the 

convolutional layers by using shortcut connections. Hence, the residual network adds the 

value of the previous block to the end of the block, then this never causes a small derivative 

that can approach zero and making the training ineffective. A small derivative is not desired. 

This is because the initial layers of the neural network are very significant input data, and if 

the weights and bias are not updated effectively at each iteration, the accuracy of the network 

will be low. In this way of Resnet-50, the neural network also handles the degrading accuracy 

problem, particularly in deeper networks. Resnet-18 is like Resnet50 with a reduced number 

of layers. Resnet-18 includes only 5 convolutional stages, which is a trade-off between 

computational cost and accuracy of the neural network.  

 

MobileNet-v2 

 

 

MobileNet-v2 consist of 53 deep layers with an image size 224-by-224 [98]. The unique side 

of MobileNet-v2 is that it employs depthwise separable convolution instead of standard 

convolution. By the cost of little accuracy, its computational cost was dropped about 87.5%. 

Hence its implementation as a pretrained network depends on the application requirements 
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in terms of a trade-off between accuracy and speed. Additionally, MobileNet-v2 also 

introduces linear bottlenecks between layers and shortcut connections between the 

bottlenecks. As it is explained in the Resnet-50 model, the shortcut connections help to give 

faster training and better accuracy.  

 

Darknet-19 

 

 

Darknet19 is the base feature extractor neural network that is being used for YOLOv2. 

Darknet-19 consists of 19 convolution layers and 5 max-pooling layers with an image size 

256-by-256 [99]. Therefore, it requires less operation to process while providing high 

accuracy. In darknet-19, the full connection of layers removed, and batch normalization was 

applied to each layer. The details on YOLO v2 neural network architecture is already given 

in section 5.2.3.  

 

SqueezeNet 

 

 

SqueezeNet consists of 18 deep layers with an image size 227-by-227 [100]. SqueezeNet 

aims to create a small network that can easily fit into computer memory. Fire modules which 

include squeeze and expand phases are used in SqueezeNet.  The squeeze phase uses a 1x1 

filter size, while the expand phase utilizes 1x1 and 3x3 with a Rectified linear unit (ReLU). 

The size of parameters is only 0.5 MB in SqueezeNet, while AlexNet produces 240 MB. On 

the other hand, these two neural network models provided the same accuracy in the ImageNet 

image classification validation dataset.  
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Inception-v3 and GoogleNet 

 

 

Inception-v3, which was an enhanced model of GoogleNet [101], has 48 deep layers with an 

image size 299-by-299 [102]. GoogleNet was the winner of the ILSVRC competition in 

2014. Inception-v3 was proposed as a better version of GoogleNet in terms of computational 

efficiency and a reduced number of parameters. The originality of Inception v3 in comparison 

to GoogleNet is that it contains multiple small convolutions instead of having a larger filter 

size, and in the end, it concatenates them. To prevent overfitting, Inception v3 also utilizes 

label smoothing and batch regularization in auxiliary classifiers with RMSProp optimizers.  

 

AlexNet 
 

 

AlexNet is a simple CNN that consist of 8 deep layers with an image size 227-by-227 [103]. 

The simple structure of AlexNet makes it easy to train and optimize. AlexNet was proposed 

in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012. In AlexNet 

CNN architecture, the first four layers are followed by the pooling layer, while the fifth layer 

is followed by three fully connected layers. The usage of the ReLU non-linearity layer and 

the dropout regularization technique make AlexNet successful. Since the ReLU function is a 

half-wave rectifier as it is shown in Equation 5.3, this speeds up the training process as well 

as prevents overfitting. In the dropout technique, the input or hidden neurons are set to be 

zero stochastically to improve the co-adaptions of neurons.  

 𝑓(𝑥) = max (𝑥, 0) (5.3) 

 

 

5.2.5  Implementation of Data Training 
 

 

In this study, the size of the input image was set to be 480 x 480 for all neural network 
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analyses. The configuration of the training hyperparameters was set to be as follows; the 

number of epochs was set to be 30 using stochastic gradient descent with momentum 

optimizer (SGDM), the initial learning rate was set as 0.001, and this learning rate was 

decreased 10 times after 15th epoch. The momentum of 0.9 was used, while the mini-batch 

size was set to be 8. The training was conducted by a computer with an Intel® Core™ i7-

8700 CPU @3.2 GHz (6 CPUs) and 32 GB of memory, GEFORCE RTX 2080 GPU with 

12G memory. This study was entirely conducted with the same computer to make a sensible 

comparison. The transfer-learning-based neural network models using the YOLOv2 was 

written in MATLAB framework [104]. 

 

5.2.6 Performance Evaluation of Trained Models  
 

 

The analysed trained neural networks were then evaluated by numerous parameters. These 

are mean Intersection over Union (IoU), average precision (AP), and average frame rate per 

second (fps). IoU is an evaluation metric that is used to measure the accuracy of the object 

detector based on a specific dataset. IoU is computed between the ground-truth defined 

manually before the data training procedure and the predicted bounding box generated by the 

detector. Hence, IoU is defined as the rate of the area of overlap and area of union. The 

mathematical formula of the IoU calculation of ground-truth bounding box, 𝐵𝑔𝑡 , versus 

predicted bounding box, 𝐵𝑝 ,is given for zebrafish embryo in Figure 5-4. 
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Figure 5-4 Schematic view of ground truth and predicted bounding box for IoU calculation 

 

The calculation of IoU is therefore given in Equation 5.4: 

 

 
 

 𝐼𝑜𝑈 =
𝐵𝑔𝑡  ∩  𝐵𝑝

𝐵𝑔𝑡  ∪  𝐵𝑝
                                              (5.4) 

 

Most of the performance evaluation parameters rely on four basic decision scores. These 

scores are True positive (TP), true negative (TN), false positive (FP), and false-negative (FN). 

These evaluation metrics are widely used in various studies in the literature [105, 106]. TP 

and FP depend on whether IoU is greater or less than the defined threshold. TP is defined as 

the number of positive samples correctly classified, while TN is the number of correctly 

predicted negative class. FP is described as the number of incorrectly predicted positive class, 

and FN is indicated as the number of negative samples incorrectly predicted. 

Precision and Recall are an efficient way of measuring the quality of prediction. Their values 

are between 0 and 1. Precision, also called positive predictive value, is defined as the rate of 

TP to the number of predicted positives: 
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 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5.5) 

 

 

Recall is also known as hit rate or sensitivity. Recall is expressed as how many of the true 

positives were recalled: 

 

 𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5.6) 

 

 

Accuracy is given as the ratio of correctly predicted class to the total class: 

 

 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5.7) 

 

 

AP can be calculated based on Recall – Precision curves. AP is the area under the Recall-

Precision curves and this value is between 0 to 1. The greater the AP value provides better 

detection accuracy.  

Finally, the average frame rate that can be processed in a second (fps) is measured to show 

the suitability of the neural network for positioning the zebrafish embryo to the FOV of the 

microscope in real-time.  

 

 Results and Discussion 
 

 
The Loss Curves of the trained neural networks provide useful information and data which 

shows how the learning rate is well selected as well as whether the model overfits. Figure 5-

5 represents the training loss converging curves during the learning period of eight different 
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neural network models. Since 420 images were used in the training dataset with a mini-batch 

size of 8, each epoch consists of approximately 52 iterations, and approximately 1600 

iterations were conducted during the training procedure of the neural network models. The 

first 100 iterations out of approximately 1,600 iterations have been illustrated to present the 

behaviour of the neural network during the training procedure which was sufficient for its 

examination. The iterations beyond the 100 and to 1,600 behave similarly to what is 

illustrated from 10 to 100 iterations. As it is shown in Figure 5-5, the training loss starts 

around 20 for AlexNet, and approximately 30 for Resnet-50 and Darknet-19, while the 

training loss was started above 80 for the rest of the neural networks. Later, the training loss 

trend made a sudden decrease to lower values and then reached a stable loss until the end of 

the iteration. Among the all neural network models, the loss of Resnet-50 demonstrated the 

fastest decrease and reached to a minimum, followed by AlexNet. Although Darknet-19 was 

decreased to its minimum considerably fast, it has demonstrated slightly undesirable 

fluctuations during training. Resnet50 kept its lowest loss value and stability during training 

in comparison to other neural network models which demonstrates its consistency.  
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Figure 5-5 Training loss vs the number of iterations for pre-trained network models with 

YOLOv2 as well as close-look between the iterations 0 to 10  

 

Average precision (AP) is a significant evaluation metric to show the performance of a neural 

network model. Table 1 indicates neural network models comparison using AP based on their 

precision-recall curves at 50%, 70%, and 85% IoU threshold, the training duration and the 

detection frame rate along with its standard deviation. Generally, True Positive of the 

detection is based on over 50% IoU threshold. However, our comparison technique was 

specially designed to see the performance of the neural network models, particularly at higher 

thresholds. This provides the essential platform to compare the models more transparently 

and help to distinguish between the models to obtain the most optimal one. In table 5-1, it is 

shown that all neural networks achieved over 95% detection accuracy at 50% IoU threshold, 

while the detection accuracy has demonstrated different patterns at 70% IoU threshold. The 
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comparison between the average precision of the ResNet-50 to the other closest network is 

almost the same for 50% and 70% IoU (1% for DarkNet-19 and 1.5% for ResNet-18 

respectively). However, this figure increased to 53% difference (GoogleNet) for 85% IoU. 

Resnet-50 has demonstrated superior performance in comparison to other neural network 

models at 50% and 70% IoU threshold, with 100% and 99% detection accuracy respectively. 

The strength of the Resnet-50 had a clear effect on the detection accuracy at 85% IoU 

threshold. Resnet-50 is the best neural network model that is survived at 85% IoU threshold 

with a 66% detection accuracy as compared to models showing the closest performance, such 

as GoogleNet and Mobilenet-v2 with a 43% and 36% respectively. This is quite an important 

feature to have, as this high detection accuracy even if at higher thresholds, gives a hint about 

how the model will respond in localization of the bounding box.  

 

Table 5-1 Neural network models comparison based on AP at 50%,70%, and 85% IoU 

threshold and average frame rate 

Method AP (%) 

at 50% 

IoU 

threshold 

AP (%) at 

70% IoU 

threshold 

AP (%) at 

85% IoU 

threshold 

Average 

FPS 

The 

standard 

deviation 

for FPS 

Training 

duration 

(hours) 

Resnet-50 0.9964 0.9857 0.6602 25.53 0.06 12.5 

Darknet-19 0.9857 0.9399 0.1498 37.44 0.11 6.25 

Resnet-18 0.9714 0.9714 0.1106 61.56 0.10 3.75 

MobileNet-v2 0.9714 0.9678 0.3583 66.66 0.12 6.5 

GoogleNet 0.9750 0.9640 0.4317 49.10 0.08 4.25 

AlexNet 0.9780 0.8306 0.1141 115.05 0.04 1.5 

Inception-v3 0.9559 0.7112 0.0447 33.96 0.10 5.25 

SqueezeNet 0.9835 0.8476 0.0658 109.56 0.10 2 
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To meet the high-speed performance in the automated positioning of the zebrafish embryo 

task in real-time, average frame rate performance was also analysed for each method and 

presented in Table 5-1. Five sets of 20 images were recorded from the zebrafish embryo. 

Each set was run 10 times and the average fps score for all sets was then recorded. 

Subsequently, the final average fps score was calculated for 5 sets along with their standard 

deviation. Resnet-50 has shown the slowest frame rate performance with an average of 

approximately 26 fps, among all neural networks model. The highest frame rate was achieved 

by AlexNet with an average of nearly 115 fps; however, its detection accuracy is 

unsatisfactorily poor at 85% IoU threshold with approximately 11%. This detection accuracy 

directly affects its performance in localization of the boundary boxes as well as leading the 

misdetection. Detection accuracy is as significant as bounding box accuracy. This is because 

the technique proposed in this thesis aimed for auto-positioning of the zebrafish embryo 

which relies on its detection accuracy as well as its predicted bounding box accuracy. If the 

localization of the bounding box is poor, the embryo could only partially be detected, and the 

vision system would misguide the XY motorized stage. This would also lead mispositioning 

of the zebrafish embryo to the centre of the FOV. To avoid this, the neural network model is 

expected to provide high bounding box overlap accuracy while keeping the detection 

accuracy high. This study has conducted a comprehensive analysis of Intersection over Union 

(IoU) of all neural network models. The distribution of the IoU values was plotted against 

each image in the test set as it is presented in Figure 5-6. The number of images in each test 

set is 280. IoU threshold was set to be 0.5 for all neural network models and it was plotted in 

orange line in Figure 5-6. The mean IoU accuracy was plotted for each neural network model 

in red line. Figure 5-6 makes evidence that except Resnet-50 and Darknet-19 models, the rest 

of the models show a high amount of failed detection rates. The highest mean IoU accuracy 
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was found to be 86% for Resnet-50 and MobileNet-v2, while the lowest mean IoU was 

recorded as 56% and 57% for Inception-v3 and SqueezeNet respectively. However, 

MobileNet-v2 held 10 failed detection in the test, which is high as compared to the Resnet-

50 model. The darknet-19 model has also demonstrated only 3 failed detection out of 280; 

however, it is average localization accuracy is only 76% and it is far behind in comparison 

to Resnet-50 model’s average localization accuracy of 86%. Resnet-50 were failed only at 

the 190th test image, just like all other neural network models failed. This single failed 

detection possibly related to the low quality of the image or have limited pixel data, i.e. the 

zebrafish embryo is partially visible in the test set. Overall, the Resnet-50 pretrained neural 

network model used as a backbone for YOLOv2 has demonstrated the highest detection and 

mean IoU accuracy among all analysed pretrained models. Although its frame rate is the 

slowest in comparison to other models, Resnet-50 with YOLOv2 was selected as an optimal 

neural network structure to conduct the fully automated zebrafish embryo positioning. Before 

conducting an experimental test for automatic zebrafish embryo positioning, an attempt was 

made towards optimization of the Resnet-50 with the YOLOv2 model to speed up the 

detection frame rate while keeping the detection and mean IoU accuracy maintained.  
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                                Figure 5-6 IoU analysis of neural network models in the test set 
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The input image size was reduced to 416 by 416 from 480 by 480 to improve the frame rate 

of the detector. In this case, Resnet-50 with a 416 by 416 input image provided 33 fps as 

compared to 26 fps previously which illustrates the increase of almost 27% in processing 

time. While keeping the detection accuracy the same at 50% and 70% IoU threshold, the 

detection accuracy also increased from 66% to 70% at 85 IoU threshold. Mean IoU accuracy 

was also improved from 86%±6% to 89%±6%. Reduction in resolution as a result of resizing 

the images does not affect the operation of the proposed technique. Overall, YoloV2 with 

Resnet-50 model demonstrated an outstanding detection and localisation accuracy while 

keeping the detection speed highly adequate for real-time application.  

 

5.3.1 The Operational Assessment of the Automated Zebrafish Embryo 

Detection and Positioning 
 

 

In this section, the automated zebrafish embryo positioning technique is proposed and 

evaluated. This section is divided into two parts. In the first part, the experimental zebrafish 

embryo detection procedure by YOLOv2 with Resnet-50 was investigated and verified since 

the positioning to the FOV relies on whether the zebrafish embryo is entirely in the FOV of 

the microscope. In the second part, the experimental automation procedure is given in detail.  

The initial experiment was conducted to verify the zebrafish embryo's full presence in the 

FOV. Ten different embryos were selected and moved to the FOV gradually. 60 images were 

captured for each embryo at an increment of approximately 13.2 µm movement. Confidence 

score changes were continuously recorded with respect to scanning distance as shown in 

Figure 5-7 along with the portions of zebrafish embryo visibility in percentage. The scanning 

was conducted continuously during the operation. However, the aim distance covers from 
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the point that the zebrafish embryo enters the FOV until it is completely visible. To validate 

the results, the entrance of the embryo and full visibility of it is confirmed by manual visual 

confirmation, and the accuracy of the measured distance was evaluated using ImageJ 

software. In Figure 5-7, each colour represents one set of experiments, and the IoU threshold 

was set to be 0.5 for each set.  Once at most 30% of the zebrafish embryo enters the FOV, 

the developed vision system starts detecting procedure. While the scanning distance 

increases, the confidence score recorded by the algorithm rises as well up to the point that 

the zebrafish embryo illustrates full visibility. After this point, the operation was conducted 

using the information received from the coordinates and the size of the bounding box.  

During the validation of the algorithm by using zebrafish as a biological model, the zebrafish 

embryo was detected at approximately 30% of its full size (~200µm). The XY stage continues 

to move while scanning the embryo until the algorithm reports above 89% confidence score. 

A further movement of 100µm is conducted to ensure the full visibility of the embryo within 

the FOV. This operation was conducted automatically by XY motorized stage to confirm the 

embryo is completely in the FOV. This further movement of the zebrafish does not affect the 

positioning task to the centre of FOV since the bounding box coordinate is in real-time 

tracking. Once the zebrafish embryo is in the FOV entirely, its confidence is score is checked 

for final confirmation. If the confidence score is lower than the defined threshold, the 

operation would automatically be brought to halt and a warning message appears for the users 

and mentioning “an inappropriate cell has been recognised”. Additionally, any abnormalities 

would affect the confidence score which can then be isolated from the healthy one when the 

warning message appears. However, the user can instruct the system by only confirming the 

procedure to conduct the rest of the operation. In this case, the CS drops to a lower value than 

the defined threshold.  
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This threshold is set to be above 80%. The lowest confidence score was observed as 89% in 

our experiment and it satisfactorily confirms its full presence in FOV. This threshold can be 

adjusted as required specifically for other types of microinjection applications.  Finally, the 

vision system was effective to recognise zebrafish embryo full presence within the field of 

view of the microscope. The next task was to achieve the appropriate positioning of the 

zebrafish embryo to the centre of the FOV.  

 

Figure 5-7 Zebrafish embryo scanning by XY motorized stage and its detection process based 

on the confidence score 

 

The schematic view of the zebrafish embryo positioning is given in Figure 5-8. The built-in 

petri dish, just like a centre well dish, was employed to reduce the total scanning area by 
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87.4%. This will help to reduce the total operation time. This is because the petri dish was 

moved immediately from the initial home position to the ready position where the positioning 

procedure starts. Later, a serpentine movement was set for the XY motorized stage which 

starts from the ready position and moves to the right side of the scanning area. Once the first 

row of the scanning area is travelled, it moves down and continues scanning to the left side 

until the moment that the zebrafish embryo is completely visible under the microscope. As it 

is mentioned previously, the proposed technique can detect the zebrafish embryo while it 

enters gradually to the FOV of the microscope. Once it is fully in the FOV and confirmed by 

the YOLOv2 with the Resnet-50 algorithm, the vision algorithm commands to stop the 

motorized stage. Although the zebrafish embryo is in the field of view, it is expected to bring 

it to the aimed position which is the centre of FOV. The proposed technique benefited from 

the coordinate of the detected bounding box by YOLOV2 with Resnet-50. As it is shown in 

the description of the YOLOv2 method, each grid cell predicts bounding box coordinates. 

YOLOv2 with Resnet-50 model in MATLAB framework predicts the location of the object 

and returns as ‘bboxes’ as an output argument. The output includes the coordinate and the 

size of the bounding box in the form of [x, y, width, height] where x and y indicate the 

coordinate of the top left corner of the bounding box. The centre position of the FOV is also 

known and fixed at each operation. The motorized stage moves from (x1, y1) coordinate to 

(x2, y2) coordinate as it is shown in Figure 5-8 as a part of the coarse tuning of zebrafish 

embryo positioning.  
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Figure 5-8 Schematic view of the positioning of the zebrafish embryo 

 

Considering the 89% mean IoU accuracy, the width of the bounding box is almost 90% in 

similarity to the diameter of the zebrafish embryo. Since the embryo size can be slightly 

different from each other at each experimental trial, the proposed technique relied on the 

width and height of the detected bounding box with a total error of 10%. The fine-tuning 

operation has conducted the calibration by adjusting the bounding box coordinates to the 

centre of FOV using height and width information and hence positioning the embryo by the 

centre of FOV. The full operational flow diagram is presented in Figure 5-9.  
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Figure 5-9 Operational flow chart of automated positioning of a biological cell  
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Our hypothesis was verified on a total of 100 experiments and it has shown its repeatability 

in automated zebrafish embryo positioning.  All the zebrafish embryo positioning to the 

centre of FOV was conducted without any failure. Experimental results demonstrated that 

the technique proposed can achieve automated zebrafish embryo positioning effectively in 

real-time regardless of the initial position of the zebrafish embryo.  

The proposed solution for this specific application is novel which hasn’t been previously 

reported. In [107], an additional macro camera was used in conjunction with a micro camera 

to position the microgripper and zebrafish embryo to the field of view. This adds complexity 

and cost to the system. The template matching and grid detection algorithm were also utilised 

which is computationally expensive and requires an averagely of 30 seconds to bring the 

microgripper to the field of view. However, it was only suggested that the same method and 

algorithm could be used for zebrafish embryo positioning, though the results are not 

demonstrated. Due to the high computational time, it makes the real-time operation not 

feasible. In contrast, the proposed solution in this study was conducted in real-time using the 

transfer-learning powered Resnet-50 with the YOLOv2 technique using only a microscope 

camera. Our solution enhances the manipulating operation by adding real-time control (33 

fps) and positional confirmation which increases the repeatability and accuracy in lower 

operational time. 

 

5.3.2 Microinjection case study 
 

 

Intracytoplasmic sperm injection (ICSI) is an assisted reproductive application where 

microinjection technology is effectively used. In ICSI, a holding pipette is used to hold a 

female egg in place by negative suction pressure, and then a single sperm cell is selected, 
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immobilised, and is directly introduced to the female egg using an injection micropipette. In 

this case study, a microinjection setup was designed similarly to the current ICSI system to 

evaluate the feasibility of the proposed algorithm on the zebrafish embryo recognition and 

its positioning to the centre of the FOV.  

Despite employing different stages for the maturation of zebrafish embryo, the data set is 

strongly enhanced to detect the various samples with a detection accuracy of 100%. This 

technique can be generalized to any type of biological cell at various maturation stages in 

different microinjection applications. To validate this claim, additional automated 

positioning of the biological cells on different microinjection image sets was considered and, 

a dataset was used from our previous publication as shown in Figure 5-10 [45]. In this 

configuration, holding and injection pipettes are also involved to examine the impact of the 

manipulators' existence within the images. This microinjection setup configuration is 

different from the current setup that is used in the training section. BestScope (BUC2B-500C) 

camera was used with a 640*480 pixel input size at 30 fps. The dataset includes 180 images 

in total from the microinjection setup. Differently, the single image consists of the injection 

pipette on the left side, the holding pipette on the right side with a zebrafish embryo.  The 

input image was also resized to 416 by 416 pixels and then it was converted to grayscale to 

match with the neural network input shape. The Yolov2 with Resnet-50 model was run on 

this dataset to investigate its consistency with the test set that is examined previously. The 

sample images as well as its detection were illustrated in Figure 5-10.  
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                 (a)     (b)          (c)             (d) 

 

Figure 5-10  Sample dataset from a microinjection experimental setup as well as its detection 

procedure. (a) the micropipette is away from the zebrafish embryo (b) the micropipette is 

almost in contact with the zebrafish embryo (c) the micropipette is in contact (d) the 

micropipette just starts puncturing the zebrafish embryo 

 

Yolov2 with Resnet-50 model was demonstrated 89%±3% mean IoU accuracy with a 100% 

detection accuracy on the dataset as shown in Figure 5-11. Although the dataset has 

additional objects such as holding and injection pipette, it was sufficient to classify and detect 

the zebrafish embryo successfully without any failure.  This result has shown consistency 

with our test set as the previous IoU and detection accuracy was reported 89%±6% mean IoU 

accuracy with 100% detection accuracy in the test set. Hence, the proposed solution is 

promising to be used in any type of microinjection setup as it is completely independent of 

the camera used in the system configuration. Additionally, the solution proposed for the 

automated positioning of the biological cells can also be used for the classification and 

detection of the cells during the microinjection process.   
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Figure 5-11 IoU analysis in the different microinjection setup dataset 

 

 

 Conclusion 

 
This chapter proposes a technique to automatically recognise and position the randomly 

placed zebrafish embryo as a model of a biological cell to the centre of the FOV of the 

microscope. After a comprehensive evaluation of eight different pretrained neural network 

models as a backbone for the YoloV2 through transfer learning, YOLOv2 with Resnet-50 

model demonstrated the optimal performance for the application of biological cell injection. 

It has demonstrated 89% mean IoU accuracy and 100% detection accuracy at an average of 

33 frame rate in our test set. Zebrafish embryo detection operation was conducted on 100 

sets of experiments successfully during the scanning process of the XY motorized stage. The 

proposed technique benefited from the coordinate and the size of the detected bounding box 

and locate the zebrafish embryo to the centre of the field of view in real-time. The 

experimental results demonstrated the proposed technique is reliable, repeatable, and 
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provides a 100% success rate regardless of the initial position of the zebrafish embryo at 

various maturation stages in the petri dish. The proposed solution was also tested and verified 

on different data from a real microinjection setup. Real-time detection and positioning of the 

biological cells can help embryologists save time, reduce the impact of subjective parameters 

in microinjection operations. This technique is not limited to microinjection applications and 

it can also be generalized to any type of biological cell at different maturation stages.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



106 | P a g e  

 

Chapter 6: Conclusion 
 

 

 Introduction 
 

 

This thesis proposes a vision-guided methodology for the automation of the three main 

operations prior to the biological cell injection procedure. These operations are the alignment 

of the injection and holding pipette in three-dimensional, development of a vision-based 

sensor to measure the tip of the injection pipette displacement changes in three dimensions, 

and automated positioning of the zebrafish embryo to the centre of the microscope’s field of 

view.  

In the following sections, the developed methodology and main results along with the 

demonstration of the relation between the main chapters, the contribution of this thesis, and 

the future directions of this study are provided. 

 

 Summary of the thesis 
 

Initially, the alignment of the injection and holding pipettes is conducted in three orthogonal 

axes in chapter 3. This is a prerequisite and the first step in microinjection operation. This 

provides a robust technique for auto-alignment of the injection and holding pipette prior to 

microinjection, specifically developed for ICSI application. The appropriate focusing 

algorithms have been selected to find an optimal focusing algorithm, specifically for ICSI. 

Twelve different focusing algorithms were evaluated based on focusing error, range, the 

number of false maxima, and width of the curve that each algorithm produces. Based on the 

evaluation of twelve focusing algorithms examined for injection and holding pipette, the 
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Brenner gradient has shown the highest overall performance for injection pipette focalization, 

while the Energy of gradient has demonstrated the highest overall performance for holding 

pipette focalization. It has been shown that the Fibonacci search algorithm is a suitable 

algorithm to drive the injection and holding pipettes to the global maximum of their focus 

curve. The reliability, accuracy, and insensitivity to the noise were further analysed and 

supported with a total of 100 experiments. The provided technique is almost 5 times faster 

than the available technique in previous studies. 

In the developed auto-alignment technique, the initialization of the system starts before the 

alignment procedure to position the injection and holding pipette somewhere between the 

sensing ranges in the focal direction. Hence the developed technique was capable of focusing 

the injection and holding pipette and align them. This system does not require any additional 

operation, in case the injection pipette is being replaced. On the other hand, the system 

automatically aligns them to ensure the system is ready to start the injection. Hence, this 

would not damage the injection pipette during injection and conduct the operation safely.  

The alignment of the injection and holding pipette procedure is not solely sufficient to start 

the microinjection operation. The vibrational displacement of the tip of the injection pipette 

needs to be checked before the operations continue further. This is because when injection 

starts, the acceleration and deceleration of the injection pipette magnify the vibration at the 

tip.  This additional and undesired vibration causes uncontrollable forces to the cell 

membrane during the injection. This additional force may cause damage to the cell membrane 

or dislocate the biological cell hold by the holding pipette. It has been demonstrated that 

lateral vibration amplitude must be within the threshold that the system allows, which 

depends on the size of the biological sample used in the research. 

After an accurate alignment procedure, the vibrational displacement of the injection pipette 
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in three orthogonal axes was measured to ensure the system is safe to continue to the injection 

procedure. Since the integration of the displacement sensors is not feasible in ICSI setup, 

initially a vision-based vibrational displacement sensor was developed for this purpose as 

demonstrated in chapter 4.  The contribution to the development of vision-sensor to the 

literature is significant as it helps to clarify the role of the vibrational displacement sensing 

in ICSI. Therefore, after sensing the displacement of the injection pipette tip, further analysis 

was conducted to realize the effect of injection speed on the vibrational displacement 

creation. Later this information was used to determine the cell deformation, force fluctuation, 

and penetration force. Here, it was shown that visual sensing of the displacement sensing 

within ICSI operation is a crucial parameter that needs to be clarified. This is because the 

experimental results have demonstrated that injection speed is a contributing dynamical 

factor in ICSI operation due to its effect on the creation of the vibrational displacement. The 

increase in injection speed from 0.05 mm/s to 0.6 mm/s has led to an increase in lateral 

vibrational displacement by 54% while the egg deformation was decreased by 34%. 

Although the cell deformation was decreased, the system did not allow to conduct the 

operation in stable conditions. The cell injection operation was challenging after 0.6 mm/s 

injection speed due to high vibrations. Hence, the vibrational displacement is a decisive 

dynamical factor that directly affects the speed determination of the injection operation.  

The final step towards the automation of the microinjection procedure is a real-time deep 

learning-based cell recognition and positioning framework as illustrated in chapter 5. This 

study provides an embryologist friendly approach for an automated egg positioning system 

to enhance automated microinjection operation experience. The systems proposed in the 

literature always assumed that the egg is already placed in the system’s field of view. 

However, this manual operation needs to be automated as it is controlled by the operator 
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through a joystick.  

In this study, eight different pre-trained neural networks were employed as a backbone for 

YOLOv2 method through transfer learning. The pre-trained models were evaluated based on 

mean Intersection over Union (IoU), Average Precision (AP) at different thresholds, and 

frame rate (fps) within the in-house produced zebrafish embryo dataset. Resnet-50 has shown 

superior performance with 89% mean IoU accuracy with 100% detection accuracy at an 

average of 33 fps.  Its gradual presence was also verified with 100 different sets of 

experiments. The positioning of the zebrafish embryo to the defined position has performed 

successfully with a 100% success rate in all experimental trials. A dataset from a different 

microinjection setup which includes 180 images in total was also used to verify the 

performance of the proposed system. Yolov2 with Resnet-50 model was illustrated 89%±3% 

mean IoU accuracy with 100 % detection accuracy. The capability of the proposed system 

was sufficient to recognize the zebrafish embryo when the holding and injection pipette was 

included in the dataset which shows its robustness to the external disturbance in the image 

plane. 

This technique is reliable, repeatable, and provides a 100% success rate for the randomly 

positioned zebrafish embryo at various maturation stages. This technique will help the 

embryologist to save time and eliminate subjective parameters in the injection operation.  The 

employment of this technique will also contribute to the literature not only in microinjection 

applications but also it will guide the researchers to position any type of biological cells for 

various biomedical applications.  

The entire vision-based automation towards fully automated microinjection operation was 

shown in Figure 1-2. Here, the proposed vision-based automation of the microinjection 

system is divided into three sections, namely auto-alignment of the injection and holding 
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pipette, system stability check through the vibrational displacement of the injection pipette 

tip, and zebrafish embryo positioning system. This graphical overview of the entire system 

was shown to demonstrate the relation between each system developed and how they 

complete each other to conduct a fully automated injection operation.  

 

 

 Contributions of this thesis 
 

 

This thesis concentrated on the development of the vision system to improve automated 

microinjection operation and increase the success of ICSI procedure. The research 

contributions of this thesis are as follow:   

 

• A novel technique was proposed to align the injection and holding pipettes in 

three orthogonal axes. It has been shown that Brenner gradient and Energy of 

gradient have superior performance to extract the depth position of the injection 

and holding pipettes.  

• A new vision-based sensor was developed to measure the vibration displacement 

of the tip of the injection pipette in three orthogonal axes to ensure safe 

microinjection. The proposed sensor is operating at various magnifications.  

• A new deep learning-based technique was built to automatically position the 

zebrafish embryo to the predefined position within the microscope’s field of view 

and in real-time prior to injection operation. The developed vision-based 

positioning system can work with a different type of biological cells at various 

maturation stages using different branded microscopes.   
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 Future Directions 
 

In this thesis zebrafish embryo was used as a biological model; however, zebrafish embryo 

does not contain a polar body where a human oocyte does. The polar body is an intracellular 

structure where it is located in perivitelline space which is between the oolemma and zona 

pellucida membranes. The polar body consists of chromosomes where microinjection should 

be avoided from it as far as possible. Hence, a precise polar body detection is required 

procedure in the automation of microinjection systems since the biological cell needs to be 

manipulated based on the position of the polar body so that the system can avoid touching 

the polar body to prevent permanent damage to the cell. Additionally, the human oocyte is 

around seven times smaller than the zebrafish embryo in size. Although the developed system 

can be adapted to the human or other animal cells, this should be considered in the 

development of vision-based automated systems for ICSI.  

A new vision-based sensor was developed to measure the tip of the micropipette 

displacement in three orthogonal axes. It is essential to minimize the measured displacement 

changes by adjusting the dynamical injection parameters, such as injection speed. Hence, an 

active vibration control scheme that dynamically reacts to vibration created at the tip of the 

micropipette can be isolated. This is essential to reduce the cell damages due to excessive 

vibration while having full control over the injection speed. This is an essential feature that 

an ICSI system can have to reduce the cell deformation by increasing the injection speed 

without introducing vibration on the cell membrane.  

The full integration of the entire system is also required to provide meaningful 

communication between each developed vision systems. The signal delay is one of the 

significant issues in the integration of vision systems that need to be dealt with due to the 
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signal delays at each operation. Hence, the full system integration must be conducted in the 

future direction. In addition to this, clinical validation must be checked by the medical 

community to ensure the reliability of the proposed fully automated microinjection system.   
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