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ABSTRACT 

Copy number variation has been linked to the development of several syndromes. In a 

2014 publication, evidence reported the association of the copy number of salivary 

amylase 1 (AMY1) with obesity. Several studies confirmed these findings; however, 

well-powered replication studies in various populations failed to replicate this link. This 

controversy may be explained by the different study designs and participant 

populations. A significant association may still be found under specific conditions, such 

as gender, age, and level of physical activity. Further, if the copy number of AMY1 

does influence obesity risk, its mechanisms are yet to be uncovered. We hypothesised 

that an increased copy number of AMY1 would be associated with body composition 

more strongly than body mass index (BMI) in athletes and healthy male and female 

adults. That led us to hypothesise that an increased copy number of AMY1 may be 

associated with strength athletes and muscle performance due to their lower fat mass 

and increased lean mass. To understand the association between AMY1 copy number 

and obesity from a clinical perspective, we hypothesised that healthy adults with a high 

copy number of AMY1 would have a healthy, controlled glycaemic response after 

complex CHO ingestion and a higher rate of complex CHO oxidation during rest and 

exercise compared to a low copy number AMY1 group. This thesis reports on three 

studies. 

 

The first study (Chapter 3) investigated the association of AMY1 copy number with 

underlying anthropometric aspects of body composition, precisely strength and 

measures of muscle performance. The study included 388 young adult Lithuanian males 

divided into non-exercising controls (CON; n= 187, aged 23.91 ± 4) and athletes (n= 
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201). The latter included the subgroups of strength athletes (STP; n= 50, aged 21.06 ± 

3), team sports athletes (TEA; n= 67, aged 22.31 ± 3), and endurance athletes (END; 

n= 84, aged 21.68 ± 4) were controls recruited between 2006 to 2009. All athletes 

trained a minimum of twice a week, whereas participants in the control group did not 

participate in any organised physical activity more than twice a week and did not 

compete in competitive sports. The copy number of target genes was determined using 

a quantitative polymerase chain reaction (qPCR). Percentage body fat (% BF) was 

calculated by Faulkner’s (1968) equation considering the modified Yuhasz method. We 

observed that the copy number of AMY1 did not differ between the athletes and the 

control group. Nor was it associated with athletes’ fat mass or FFM; however, a strong 

association was found with their height. 

 

The second study (Chapter 4) assessed the association of increasing AMY1 copy 

number and body composition, including fat mass and lean mass and assessed the 

influence of gender differences on fat distribution among males and females. This study 

included 228 healthy volunteers aged 22.2 ± 3, of which 108 were male and 220 were 

female recruited between 2016 to 2019. Dual-energy X-ray absorptiometry (DXA) 

were used for BF % and FFM measurements. Participants completed a 3-day self-

reported food questionnaire to assess macronutrient and energy intake and one week of 

physical activity level questionnaire (SPAQ). The AMY1 copy number distribution did 

not differ between males and females. No association was noticed between increasing 

copy number of AMY1 and fat mass or lean mass across the whole study sample nor in 

males and females. WC (cm) was negatively associated with high AMY1 in female 

only. The reginal body fat distribution and lean mass distribution did not correlate with 
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AMY1 CN in either gender. Increasing Total EI was associated with decreasing AMY1 

CN in males. However, physical activity level (PAL) did not associate with AMY1 CN 

in either gender. 

  

The third study (Chapter 5) examined the effects of high copy number on glycaemic 

response after starch and glucose ingestion. This pilot study was conducted on 15 

healthy young adult participants, divided into two groups, a high copy number group ≥ 

9 copies (n= 10) and a low copy number group ≤ 5 copies (n= 5). We observed that the 

high AMY1 copy number group had higher iAUC plasma glucose concentration post 

starch ingestion than low CN group post glucose ingestion. However, iAUC plasma 

insulin concentration was post glucose ingestion higher post glucose ingestion in low 

CN group than high CN group. plasma lipid concentration did not differ between 

examined groups after glucose or starch ingestion. 60 % (n = 3) of the low CN group 

are insulin resistance compeered to 10% (n= 1) in the high AMY1 CN group. The total 

sample size of 62 adults is recommended to detect 80 % differences between the AMY1 

CNV groups in the tested variables in future research.  
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Chapter 1 Introduction 

1.1 Human Body Composition 

Human body composition (BC) research is a branch of human biology that studies 

various body components and the characteristics of the tissue’s quantitative 

measurement (Wang et al., 1992). The approach of human BC is rooted in antiquity. 

Hippocrates (circa 460 BC), the father of medicine, proposed that the human body 

comprises four elements: blood, phlegm, black bile, and yellow bile. Chinese scholars 

suggested that there were five elements in the human body: metal, wood, water, fire, 

and earth and that an imbalance of these elements resulted in disease (Wang et al., 

1999). Modern evaluation of human BC has developed considerably; some of these 

methods will be covered in the following thesis sections. 

 

1.1.1 Human Body Composition Levels 

The human body comprises more than thirty measurable components (Wang et al. 

1992). The measurement of these components is a valuable and promising approach to 

understanding nutritional assessment, growth, muscle development, and water 

homeostasis. BC is known to be associated with several diseases, such as obesity, 

cardiovascular disease, diabetes, cancer, osteoporosis, and osteoarthritis, which interest 

to nutritionists, health professionals, and sports scientists. The Academy of Nutrition 

and Dietetics/American Society for Parenteral and Enteral Nutrition’s (ASPEN.) 

Consensus Statement underlines the importance of body composition when 

characterising nutrition status (White et al., 2012). Understanding BC components such 

as body fat levels and bone mineral density (BMD) may help in clinical diagnosis with 
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implications for formulating appropriate treatment, interventions, prevention, and 

nutritional guidelines. 

 

Human BC is studied at five levels: the atomic, molecular, cellular, tissue, and whole-

body levels (Wang et al., 1992) (Figure 1-1). 

 

 

Figure 1-1 The Five Levels of Human BCECF. Extracellular Fluid; ECS. Extracellular Solids. Figure 

adapted from (Wang et al., 1992). 

 

At the atomic level of BC, the human body contains ≈ 50 types of atoms distributed in 

tissues and organs. Six chemical elements oxygen, carbon, nitrogen, hydrogen, 

calcium, and phosphorus together account for > 98 % of body weight, and more than 
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60% of the chemical elements in human body weight is oxygen (Heymsfield et al. 

1991). The equation for bodyweight as defined at the atomic level of BC is as follows: 

 

Body weight = O + C + H + N + Ca + P +S + K + Na + Cl + Mg + residual mass 

(Heymsfiled and Wiki, 1991) 

 

At the molecular level, the chemical elements are bound in molecules, mainly water, 

lipids, proteins, minerals, and carbohydrates. Water in the human body increases 

depending on the amount of adipose tissue and can be as high as 60–70 % of total body 

weight. Total body water is divided into intracellular water (ICW) and extracellular 

water (ECW), and the ratio of the two is an essential health parameter in many health 

conditions. For example, the ECW/ICW ratio is higher in obese people as a result of 

obesity-related oedema and hormonal responses related to adipose tissue, which may 

lead to irreversible changes in hemodynamics in morbid obesity (Van Marken, 

Lichtenbelt, and Fogelholm, 1999; Stookey et al., 2006). Furthermore, the body water 

content varies with age and gender. Children have more body water than adults, and 

males have more body water than females (Wake et al., 2002). The second component 

of the molecular level is lipids. These are divided into essential and non-essential lipids. 

Essential lipids are split in two forms of essential structural lipids: the sphingomyelin 

in the nervous system and phospholipids in cell membranes. Non-essential lipids are 

the energy store formed mainly by triacylglycerol. Moreover, the body fat of healthy 

adults’ accounts for between 10 %–25 % in males and 15 %–35 % in women. Protein 

is a functionally important component at the molecular level and accounts for 10.6 kg 

or 15.1 % of body mass in the reference man. The quantity of minerals in the human 
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body varies between 3 % – 5 % of total body weight, depending on body fat. 

Carbohydrates can be stored in the body as glycogen in the liver (~ 100 g) and in muscle 

(~ 400 g) for short-term energy storage. The equation for body weight, as defined by 

the molecular level of BC, is the following: 

 

Body weight = Lipid + Water + Protein +Minerals + Glycogen + Residual Mass 

(Heymsfiled and Wiki, 1991) 

 

BC at the cellular level is described in three compartments: cell mass (CM), 

extracellular fluid (ECF) and extracellular solids (ECS). The body’s cells possess the 

characteristics of life, including metabolism, growth, and reproduction. Cells have 

various shapes, sizes and functions and can be broadly divided into four categories: 

connective (adipocytes, bone cells, and blood cells), epithelial tissue, nervous, and 

muscle. Examples of extracellular solids are the mainly non-metabolism protein such 

as collagen and elastin (Wang et al., 1992). Extracellular fluid is a fluid contains 95 % 

water and surrounds the body cells. Body weight at the cellular level is described in the 

following equation: 

 

Body weight = CM + ECF + ECS 

(Wang et al., 2007) 
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At the tissue level, body weight equals adipose tissue, skeletal muscle, bone and organ. 

Tissue level is represented in the classic body composition model and is the level that 

is most used in clinical and epidemiological studies. 

 

Body weight = Adipose tissue + Skeletal muscle + Bone + Organs + Blood + 

Residual mass 

(Wang et al., 2007) 

 

1.1.2 Body Composition Evaluation Methods 

Three techniques can assess BC: direct, indirect, and doubly indirect, depending on the 

type of method and the particular measurements made. For direct techniques, the body 

component of interest is determined directly with or without minor assumption. The 

classic example of this technique is chemical analysis by vivo neutron activation 

analysis (IVNNA) for the atomic level. In vivo chemical data of body composition 

techniques can be used as references for indirect methods. Indirect techniques are the 

most frequently applied models employed to assess BC in epidemiology and clinical 

practice. These are usually imaging techniques and provide estimates of BC based on 

statistical relationships between body parameter results from direct or criterion methods 

and components of BC. Typically, indirect techniques divide the body into fat mass 

(FM), which indicates the water-free body component and fat-free mass (FFM) that 

includes the remaining components (skeletal muscle, organs, and interstitial fat tissue). 

Several indirect methods have been developed for BC assessment such as DXA, the 

three-dimensional photonic scanning (3D-PS), magnetic resonance imaging (MRI), and 

computed tomography (CT). These methods are powerful tools for visualising and 
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quantifying regional tissues, organs, or constituents, such as muscle mass and 

abdominal adipose tissue deposits, using imaging techniques of the three-compartment 

model (Heymsfield, 2005; Kuriyan, 2018; Marra et al., 2019). 

 

Doubly indirect methods of BC use a variety of different equations to estimate BC 

based on results from direct or indirect methods such as Bio Impedance Analysis (BIA), 

skinfold (SF) thickness measurements, anthropometry measurement and BMI, which is 

the most widely used index today as a predictor for body fat and obesity (Heymsfield 

et al., 2005).  Skinfold thickness measurement for BC is based on the hypothesis that 

there is a strong relationship between the amount of subcutaneous adipose tissue at 

several specific locations on the body and total BF. Body composition for the whole 

body can be estimated using statistical formulae, established in earlier studies, that 

combine parameters such as skinfold thickness and height, weight, age, and gender 

(Heymsfield et al., 2005). Doubly indirect methods are also used to validate estimated 

of BC data from another indirect measure (Toomey et al., 2015). 

 

The available BC measurement methods vary in precision and accuracy and range from 

simple to complex with all methods having limitations and associated measurement 

error (Kuriyan, 2018). The appropriate method is the most accurate tool to assess target 

components (Table 1-1). For instance, 3D-PS system offers a novel approach for large-

scale epidemiologic research into associations between body shape, health risks, and 

outcome (Lee and Gallagher, 2008). The 3D-PS scans the body surface using four eye-

safe lasers, produces a 3D image within 12 seconds, and does not require the 

participants to be in a fasting state or to restrict physical activity (Adler et al., 2017).  
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Further, imaging techniques such as CT scanning and MRI are powerful tools in 

visualising and quantifying regional tissues, organs, or constituents such as muscle 

mass and abdominal adipose tissue deposits (Kuriyan, 2018). However, DXA continues 

to be considered the gold standard technique for screening and the follow-up method 

to evaluate therapy for osteopenia and osteoporosis since its approval for clinical use 

in 1988 by the Food and Drug Administration (FDA). DXA not only provides a 

measurement of bone mineral density, but also accurate estimates of fat and lean soft 

tissue (three-compartment model) (Heymsfield et al., 2005; Marra et al., 2019). 

Though, DXA does require the participants to be in a fasting state or to restrict physical 

activity before the scan to minimize the biological changes in related to exercise and its 

related practices of fluid and food intake, which are associated with changes in the mean 

estimate of the total and regional body composition that range from trivial to small but 

substantial (Nana at al., 2013). 

 

1.1.2.1 Assessment of Body Composition by Dual-Energy X-ray Absorptiometry 

(DXA) Compared with Other Methods 

DXA is used widely on patients of all age groups with chronic diseases in clinical and 

research settings ( Erlanddson et al., 2016; Messina et al., 2020). Among different 

methods for measuring body composition, DXA provides whole body and regional 

estimates of bone-free mass which has three main components: FFM, FM, and BMD 

explained by Blake (1997). Originally, DXA was designed to estimate bone density 

using two X-ray beams with different energy levels, aimed at the patient’s bones. When 

soft-tissue absorption is subtracted out, the BMD, FFM, and FM can be determined 

from the absorption of each beam, giving the total body composition (Messina et al., 

2020). 
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Clinically, DXA is widely used to diagnose osteoporosis which estimates fracture risk 

and monitor therapy. Furthermore, the ability of DXA to measure lean mass has led to 

its use in diagnosing sarcopenia and providing a comprehensive picture of 

musculoskeletal health (Erlandson et al., 2016). DXA continues to be considered the 

gold standard technique for screening and the follow-up method to evaluate therapy for 

osteopenia and osteoporosis since its approval for clinical use in 1988 by the Food and 

Drug Administration (FDA). Further, in a systematic review conducted on behalf of 

ASPEN, evaluating the best available evidence regarding the validity of applicable 

body composition methods, DXA was recommended for the assessment of FM in 

patients with a variety of disease states; however, the validity of DXA for FFM 

assessment in any clinical population remains unknown. Even though DXA can only 

poorly distinguish between bones, lean tissue, and some other parts of the body 

(Norgan, 2005), it is correlated with MRI and CT in lean mass measurement (calculated 

as the difference between total body weight and body fat weight) (Maden- Wilkinson 

et al., 2013). In addition, its excellent precision and reproducibility means it can 

accommodate the evaluation of the composition of regions of the body and the status 

of nutrition in the presence of disease and growth disorders. DXA and BIA have made 

great leaps in terms of time needed for the data acquisition; it can take as little as 5–10 

minutes to estimate data for a whole-body composition (Pateyjohns et al., 2006). In that 

time DXA scans the body by low-emission X-rays to measure the attenuation of 

incident X-ray beams, while BIA measures the electrical properties of body tissue and 

estimates BC parameters as total body water (TBW) and FFM BC parameters (Marra 

et al., 2019). No recommendations can be made to support the use of ultrasound or BIA 

in the clinical setting (Sheean et al., 2019). 

 



Chapter 1: Introduction          9 

Quantitative computed tomography (QCT) has the potential to measure the correct 

volume of bone mass density and has the advantage of differentiating between cortical 

and trabecular components but with more significantly exposure to radiation compared 

with DXA. DXA incorporates a small amount of ionising radiation (2-5.4 µSV) /< 5 

millirem (mrem), which is considered low compared with CT, which ranges from 1–10 

% of a chest radiograph. The scanning bed has an upper weight limit of 150 kg and an 

entire body field of perspective (Norgan, 2005). In addition, DXA and BIA have a high 

correlation in assessing body fat in normal adiposity (Mialich et al., 2014). Although 

highly correlated, in an experimental study conducted by Sun et al. (2006), it was found 

that the correlation coefficient became wider in terms of stratifying the measurement 

by gender (Sun et al., 2006). These results confirmed among Singapore Chinese adults. 

That may make BIA an unsuitable method for measuring BF percentage for clinical 

purposes in adults (Gupta et al., 2011). BIA underestimated BF percentage and 

overestimated FFM compared with DXA in older individuals (Meier, Bai, Wang and 

Lee, 2020). 

 

From a practical point of view, each method of BC assessment has limitations and 

strengths (Table 1-1). Knowing the differences between the various ways of estimating, 

the approach, and the suitability of the method for participants’ characteristics and the 

aim of the assessments, are essential for accurate BC evaluation. For instance, to 

monitor a weight loss programme, it is more important to know the accuracy of   

technique's observation in weight change. If there are differences among BC changes, 

the interpretation of the results should include the selected technique (Benito et al., 

2019). DXA uses in weight and fat percentage intervention studies, due to its ability to 

detect the individual and independent differences in peripheral fat (arm and leg) and 
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central fat (trunk). DXA is an overly sensitive and consistently reliable technique for 

detecting changes in fat distribution over a relatively short period time (e.g., months) 

(Marra et al., 2019). A study that compared body fat changes measured by DXA, BIA, 

and SF during a weight loss program found an underestimation of fat percentage by 

BIA compared with the DXA—2.4 % in females, whilst among males BIA estimated 

FM significantly greater, 13.3 % (Benito et al., 2019). Finally, DXA became the 

standard method used in BC assessment because it is non-invasive, quick, gives high-

quality images, and has minimal radiation exposure. Therefore, it is the method chosen 

for the study reported in Chapter 4.
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Table 1-1 Comparisons of Methods for Body Composition Assessment 

Methods  Level  Approach Primary measurements Advantages 
Disadvantages 

Dual-energy X-ray 

absorptiometry  

Image 

 

Indirect: Measure 

and transform 

 

Total body fat, lean mass, 

bone’s mineral density, and 

its contents 

Little exposure to radiograph 

radiation, easy to use, suitable 

for assessing regions of fat. 

Can be used for all ages 

Expensive equipment that 

requires an expert radiology 

technician to operate. 

Biased against sex, body 

size, and fatness  

Bio Impedance 

Analysis 

Estimate Double indirect Intracellular and 

extracellular fluid space, 

total body water 

Can be inexpensive, simple, 

portable quick, and safe 

Low accuracy in individuals 

and groups. Cannot be 

applied for some population 

(e.g., obese and pregnancy) 

Quantitative 

Computed 

Tomography (QCT) 

Image 

 

Indirect Regional bone density High accuracy and 

reproducibility 

A high radiation exposure 

and expensive 

Dilution techniques Estimate Indirect Total body water and 

extracellular fluid 

Easy to use, can be used for 

all age groups, 

Inaccurate if any sort of 

illness present, expensive, 

requires highly technical 

staff, a large number of 

analyses 

Three-dimensional 

photonic scanning 

Image 

 

Indirect Total body volume, regional It can be used to assess 

extremely obese subjects, 

convenient to use, and 

suitable for both clinical and 

research applications. 

Very few scanners are 

available. 
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Methods  Level  Approach Primary measurements Advantages Disadvantages 

Quantitative 

magnetic resonance 

Image Indirect Total body fat, TBW, and 

body weight in general 

Safe, easy, and fast 
Costly, few systems are 

available. 

MRI/MRS Image 

 

Indirect Total and regional adipose 

tissue (subcutaneous, 

visceral, and intermuscular), 

organs (liver, kidney, heart, 

spleen and pancreas), lipid 

content in muscle and liver, 

skeletal muscle 

Accurate and reproducible for 

the entire body and regional 

adipose tissue and skeletal 

muscle 

Costly equipment 

 

 

 

 

 

  

Skinfold Estimate Double indirect Total body fat muscle mass 
Low-cost equipment. Not 

very painful and easy to 

perform 

 

Practice is required, subject 

to error. Less reliable in 

older adults due to their 

weak skin and muscles. Less 

reliable in patients with 

chronic muscle diseases, 

dehydration, and oedema 
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1.1.3 Variation in Body Composition 

In healthy adults, body composition is maintained over the short-term within narrow 

limits. Changes in BC are an essential in evaluating the risk of disease in both lean 

and obese individuals. For example, high body FM % was linked with several health 

conditions. Accumulation of visceral adipose tissue (VAT), referred to as abdominal 

or central obesity, has been implicated as an independent risk factor for various 

medical conditions, such as insulin resistance, diabetes, hepatic steatosis, 

dyslipidaemia, and hypertension and more recently in the development of subclinical 

atherosclerosis and adverse cardiovascular outcomes (Sharma, 2019). VAT has also 

been associated with colorectal, pancreatic, and gastro-oesophageal cancer (Silveira 

et al., 2020). Some people with abdominal obesity or VAT can be classified as normal 

by BMI i.e., 18.5–24.9 kg∙m−2, if the fat is distributed primarily as central or visceral 

fat (Bosomworth et al., 2019). Studying the variation of body composition is essential 

for preventing and assessing disease. 

 

Body composition components are anatomically distributed in different proportions 

throughout the human body, and the pattern of distribution is dependent upon many 

factors, including age, gender, ethnicity, genotype, meal patterns and eating habits, 

physical activity, hormonal status, and medication (National Academies Press, 

2004). Percentage body FM increases across age groups in both genders. Males have 

less body FM and more FFM than females ( Reid et al., 2009; Kirchengast, 2010). A 

study of 5,225 healthy males and females in different age groups showed that males 

have greater FFM than females in all age groups (Kyle, Genton, Slosman and 

Pichard, 2001). The mean FFM was 8.9 kg (14.8 %) lower in males older than 85 
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years than in males 35 to 44 years old and 6.2 kg (14.3 %) lower in females older 

than 85 years than in females 45 to 54 years old. FM increases based on age group in 

females from 5.6 to 9.4 kg and from 3.7 to 7.4 kg in males (Kyle, Genton, Slosman 

and Pichard, 2001). BC varies among ethnic groups mainly due to differences in body 

build, which influence TBW and BF % (Deurenberg et al., 2002; Deurenberg et al., 

2003). Sarcopenia, or gradually wasting muscles, is age-related, and the rate of 

wasting can be influenced by sex and ethnicity (Gonzalez et al., 2019). However, 

results from the National Health and Nutrition Examination Survey have shown that 

ethnic variances in body composition and shape are less apparent in older (≥ 70 years) 

Mexican - American and non-Hispanic white and black populations (Heymsfield et 

al., 2016). A recent study compared differences in fat and muscle mass among three 

ethnicities and found that Mexicans have higher FM and VAT then Germans with 

the same BMI. Further, normal weight Japanese are similar to Mexicans, whereas 

overweight Japanese are more similar to Germans.  The skeletal muscle index (SMI) 

is highest in Germans, and they have a higher FFM per FM compared with Mexicans 

and Japanese. The Japanese group had the highest extracellular/TBW ratio (Jensen 

et al., 2019). 

 

Health status may have a significant effect on BC. The classic example is 

malnutrition, which refers to deficiencies, excesses, or imbalances in macronutrients 

(protein, carbohydrates, and fat) leading to protein–energy malnutrition, 

micronutrients (electrolytes, minerals and vitamins, leading to specific micronutrient 

deficiencies), or both (Millward and Jackson, 2004). Undernutrition, where the lack 

of weight leads to organ dysfunction, reduced body cell mass, abnormal blood 

chemistry, and worsened clinical outcomes. Increased nutritional intake (positive 
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imbalance energy intake) in the absence of increased physical activity leads to 

increasing FM mass, obesity, and obesity-related diseases (WHO, 2022). Recent 

evidence from longitudinal studies has shown differences in the pattern of body 

composition changes in adults by diabetic status explained by an overall greater gain 

of FM and a more rapid loss of LM in adults with diabetes versus those without (Al-

Sofiani et al., 2019). Park et al. examined the changes in body composition by 

diabetes status in 2,675 adults, who had an average age of 73 years. Participants with 

no diabetes, diagnosed diabetes, and previously undiagnosed diabetes had an annual 

decline rate of total FM of 0.025 kg, 0.066 kg, and 0.094 kg, respectively, and an 

annual decline of total LM of 0.198 kg, 0.22 kg, and 0.34 kg, respectively. Most of 

the decline in total LM in individuals with diabetes was due to loss of appendicular 

LM (Park et al., 2007). Muscle wasting is also prominent among patients with 

chronic kidney disease. The prevalence of sarcopenia or muscle wasting among 

patients with end-stage renal disease (ESRD) ranges from 20 to 44 % (Johansen and 

Lee, 2015). 

 

1.1.3.1  Body Composition in Obese Individuals 

Obesity is a condition involving excessive and abnormal accumulation of adipose 

tissue, and the health consequences represent a universal epidemic (Ulijaszek, 2003). 

BMI is the most accepted and widely used albeit crude index to classify obesity. 

Individuals with a BMI of ≥ 25 (kg/m-2) are categorised as overweight, and those 

with ≥ 30 (kg/m-2) are categorised as obese (Bimali and He, 2015). BMI determines 

the health risks of excess weight such as the proportion of body weight which consists 

of fat and its distribution (as described in body composition methods above). Body 

fat percentage in healthy adults varies between 10–25 % in males and 15–35 % in 
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females. In severe obesity body fat can be increased to 60–79 % of total body weight 

(WHO, 1995). Studies suggested that assessing body composition in obese 

individuals should be taken in two components: FM and FFM. The ratio of TBW in 

overweight decreased with increasing BMI and was lower in obese females than in 

males (Ritz et al., 2008). The distribution of TBW is unhealthy in obese individuals 

they have more ECW compared to ICW (Heyward and Wagner, 2004). 

 

1.1.3.2  Body Composition in Athletes 

Unlike obese individuals, athletes tend to have low FM and high muscle mass that 

are desirable to enhance and optimise physical performance in strength and power 

activities. Further, female athletes have higher body fatness than male athletes, and 

the average FM depends on the type of sport and for team sports, athlete position 

(Wilmore, 1983). For example, the essential FM of male bodybuilders is minimal to 

5 % of total body weight; however, the essential FM of female bodybuilders ranges 

from 12 % to 16 % of total body weight (Heyward and Wagner, 2004). WHO 

recommends that the healthy BF % in adult males is 14 -17 % and healthy BF % in 

adult females is 21-24 %. The body fat percentage for male athletes ranges from 6-

13 % and that of female athletes ranges from 14–20 % (Jonee and Bray, 1997). 

 

1.2 Obesity 

1.2.1 Prevalence of Obesity 

In 2018, the WHO report that obesity has increased dramatically over the last four 

decades. The prevalence of obesity in adults has tripled since 1975. Currently, the 

overall prevalence rate for male is 11 % and for women is 15 % (WHO, 2018). A recent 
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WHO obesity report in 2020 stated that 38 million children under the age of five were 

overweight or obese in 2019 (WHO, 2020). In the United States, the adult obesity rate 

passed 42.4 % nationally for the first time in 2017–2018, compared to 26 % in 2008 

according to the National Health and Nutrition Examination Survey (NHANES, 2020). 

In a recent comparative long-term project on age and sex-specific obesity prevalence 

up to the year 2100 for 18 European countries and the United States, obesity is expected 

to be prevalent between 2026 and 2054, with the United States and the United Kingdom 

predicted to reach the highest maximum levels followed by other European countries 

Vidra, Trias-Llimósand Janssen, 2019). Further, the Organisation for Economic 

Cooperation and Development (OECD) performed obesity projections for selected 

countries up to 2030, assuming that “BMI will continue to rise as a linear function of 

time.” According to OECD data, the adult obesity rate has increased steadily since 

1990, by an average of 19.5 %, led by the US and Mexico at 38.2 % and 32.4 %, 

respectively. The lower rates in Japan and Korea 3.7 % and 5.3 %, respectively. In 2020 

more than two in three adults (73 %) in the United States are overweight, and 42.4 % 

of them are obese. The number of obese is expected to rise to more than 46 % by 2030 

(Figures 1-2 and 1-3) (OECD Health Statistics 2020;2017–2018). In the UK, 63 % of 

adults in England in 2018 are overweight; and 28 % of them are obese (NHS Digital 

report, 2020). According to OECD data, the percentage of obese people in England may 

increase to 35 % by 2030 (Figure 1-3) (adapted from OECD Health Statistics 2017–

2018; Lee, 2019). 
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Figure 1-2 Standardised Rates of Overweight (including obesity) defined as BMI > 25 Kg/m-2 in adults 

aged 15– 74 years.  Height and weight were measured in England, Hungary, Korea, Mexico, and the 

United States but self-reported in other OCEC selected countries (Data adapted from OECD Health 

Statistics 2020) 

 

 

Figure 1-3 OECD Projections if BMI Continues to Rise as a Linear Function of Time. Obesity was 

defined as BMI > 30Kg/m-2 in adults aged 15–74 years. Age and gender-adjusted rates using the 2005 

OECD standard population. Height and weight were measured in England, Hungary, Korea, Mexico, and 

the United States but self-reported in other OCEC selected countries. (Adapted from OECD Health 

Statistics 2017–2018) 
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1.2.2 Obesity Impact on Health 

If trends continue, this will have significant economic and social implications. A study 

in 26 European countries and the United States suggests this will result in a decline in 

life expectancy of, on average, 1.22 years for men and 0.98 years for women (Vidra, 

Trias-Llimós, and Janssen, 2019). Keaver et al. projected disease burden and direct 

healthcare costs for obesity-related conditions in Ireland in 2030. The study found that 

by 2030 the levels of overweight and obesity have the potential to reach 89% and 85% 

in males and females, respectively. This will lead to an increase in the obesity-related 

prevalence of coronary heart disease (CHD) by 97 %, cancers by 61 %, and type 2 

diabetes by 21 %. Thereupon, the direct healthcare costs related with these increases 

will amount to €5.4 billion by 2030. A 5 % reduction in population BMI levels by 2030 

is estimated to have the potential to result in a € 495 million decrease in obesity-related 

expenditure (Keaver et al., 2013). 

 

Obesity is associated with several metabolic abnormalities, such as hyperglycaemia, 

insulin resistance, and dyslipidaemia (Whitlock, Lewington, and Mhurchu, 2002). 

Consequently, obese people are at risk of many adverse outcomes, including non-

communicable diseases (NCDs), like cardiovascular disease (CVD), diabetes, and 

several types of cancer (Bimali and He, 2014). World Cancer Research (2016) reported 

that obesity is associated with 11 types of cancer. For example, the development and 

progression of breast cancer can be the result of chronic inflammation in adipose tissue, 

which is increased in obese people (Khan, Chan, Revelo and Winer, 2020). 
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The increase in obesity has played a part in the increased prevalence of CVD risk 

factors, including dyslipidaemia, glucose intolerance, hypertension (HTN), and 

obstructive sleep apnoea/hyperventilation (Bastien et al., 2014). In addition, an increase 

in BMI of 1 kg/m² or greater has been linked with increases in CHD risk of around 5–

7 %, while a BMI increase of 5 kg/m² or higher is associated with a rise of 

approximately 30 % in the overall mortality rate (40 % from CVD; 60–120 % from 

diabetes and renal and hepatic diseases, and 30 % from respiratory disease and all other 

causes of mortality) (Whitlock et al., 2002). Being obese or overweight has been 

epitomised as a major cause of serious health problems in the category of NCDs (WHO, 

2006). In a study of 1.46 million white adults, being overweight and obese was linked 

to increases in all causes of mortality. All such causes were the lowest among healthy-

weight individuals with a BMI of 20.0 to 24.9 (kg/m-2) (Berrington de Gonzalez et al., 

2010). 

 

Overweight and obesity have been clinically implicated with musculoskeletal disorders 

involving different body parts, including the back, hip, knee, ankle and foot, tissue 

injuries of the upper body and wrist, and strain on soft-tissue structures, such as tendons 

and fascia. Overweight unduly increases stress within connective tissue structures, such 

as bones, joints, and soft tissues of the locomotor system (Wearing et al., 2006). 

 

1.3 Cause of Obesity 

1.3.1 Unbalancing Energy and Obesity 

The world has seen a dramatic change in dietary patterns, physical activity and 

inactivity patterns, body composition, and the prevalence of obesity and diabetes. This, 
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combined with urbanisation, industrialisation, and globalisation of the marketplace in 

the past few decades, has led to easy food supply. This phenomenon, known as 

“nutrition transition, has an essential consequence on the global population’s health 

and nutrition” (Ulijaszek, 2003; Drewnowski and Popkin, 2009). Combined with 

increased food marketing, this has led to people feeling more motivated to eat out and 

purchase more highly processed food (Cohen, 2008). This means that people are 

replacing a plant-based diet with highly energetic choices which contain more animal 

fats and added sweeteners. (Ulijaszek, 2003; Drewnowski and Popkin, 2009). 

 

In recent decades, the rate of obesity has risen with increasing interest in the role of 

specific dietary energy sources in obesity. Obesity results from a positive energy 

balance, i.e., excessive overfeeding (high energy intake) relative to energy needs (low 

energy expenditure). The principal dietary sources for energy intake (EI) are 

carbohydrates (45 %–55 %), proteins (35 %), and fats (20 %). Energy expenditure (EE) 

is an assessment of the oxidation of these nutrients (of whole-host cellular metabolic 

activity in the body) and can be expressed as either kilocalories or kilojoules per day 

(Cordoza, Chan, Bridges and Thompson, 2020). Total daily energy expenditure 

(TDEE) in humans consists of three components: resting metabolic rate (RMR), non-

exercise activity thermogenesis (NEAT), and activity-induced energy expenditure 

(AEE) (FAO, 2001; Melanson, 2017). 

 

1.3.1.1 Resting Metabolic Rate (RMR) 

RMR is the rate of body energy expenditure during rest by prediction equations, 

accounts for 60–70 % of TDEE. This energy is used in metabolic and cellular processes, 
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along with mechanical work, such as breathing and heartbeats. The minimum rate of 

body energy expenditure necessary for life is called Basal Metabolic Rate (BMR). 

RMR/ BMR varies between individuals and is affected by sex, age, body size and 

composition, and thyroid hormones (FAO, 2001). In terms of gender, males a have 

higher RMR than females by approximately 210 kJ/day. In both cases, RMR decreases 

at a rate of 1–2 % per decade after 20 years of age. This reduction in RMR is linked 

with lower FFM (Heymsfield et al., 2002). Further, FFM is the primary determinant of 

energy expended at rest (Bogardus et al., 1986). FFM is made up of many organs and 

tissues with different metabolic rates (Javed et al., 2010). Despite comprising < 6 % of 

total body weight, organs are the major drivers of RMR with brain, heart, kidneys, and 

liver collectively accounting for 60 – 80 %. Even though FFM is mainly made of 

skeletal muscle, it has lower metabolic activity during resting conditions (Muller et al., 

2002; Javed et al., 2010). 

 

Krems and colleagues found that RMR remains significantly lower in the older adults 

than young and middle-aged adults, even after correcting for differences in body 

composition (Krems et al., 2005). Age-lowering in RMR may be explained by changing 

organ masses, homogeneity of specific metabolic rates (Manini, 2010), and lower EI 

and EE (Van Belt et al., 2001). Active individuals have a higher RMR compared to 

non-active individuals. However, RMR might paradoxically decrease in intensive 

training due to decreased energy availability due to the training load and increased risk 

of physiological dysfunction (Woods et al., 2018). Lean mass is the primary 

determinant for declining RMR with advancing age in sedentary populations (Van belt 

et al., 2001) and increased RMR in active populations. Collectively, these factors 
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account for 80 – 90 % of the variance in RMR. Although, specific sources have not yet 

been identified, genetic factors may explain the remainder. 

 

1.3.1.2 Non-Exercise Activity Thermogenesis (NEAT) 

In addition to RMR, there is an increase in EE in response to food intake. Digestion, 

absorption, and assimilation, all falling under NEAT, account for approximately 10 % 

of total EE for an average diet. Thus, increased food intake increases TDEE through an 

increase in NEAT. Similarly, exchanging fat by protein in an isoenergetic diet increases 

EE by an equivalent to the difference in processing rates between fat and protein 

(Manini, 2010). It is worth noting that differences in this expenditure, termed thermic 

effect of food (TEF) between lean and obese subjects, where found, are small, and there 

is little evidence that defects in TEF play a major role in the development of obesity or 

the degree of obesity-related insulin resistance, which may be influenced by a low level 

of sympathetic activity (De Jonee and Bray, 1997). 

 

1.3.1.3 Activity-Induced Energy Expenditure (AEE) 

The third source of energy intake is AEE which is the result of physical activity (PA). 

PA is defined as any bodily movement produced by skeletal muscles that result in EE 

(Paola et al., 2013). AEE captures energy expended on all physical activity, including 

moderate and vigorous physical activity (for example, jogging, walking and biking) 

and low-intensity physical activity such as housework, daily chores, and postural 

allocation. People with higher levels of AEE have reduced rates of mortality and 

incident mobility impairment (Manini et al., 2006; Shahar et al., 2009; Middleton et 

al., 2011). AEE constitutes between 20 % and 70 % of TDEE, depending on the type 
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of activity (Gibney et al., 2005). AEE is influenced by age, body size, EI, and disease. 

Young children have a low AEE (Westerterp, 2013). It increases from 20 % at age one 

to ~35 % at age 18 (Butte et al., 2012). Even though young children may be highly 

active, the EE is lower because less energy is needed to move around with lower body 

weight (Westerterp, 2013). However, that is not the case in adults; overweight and 

obesity are not associated with a lower AEE under free-living conditions. AEE is like 

or even higher in with greater body weight (Prentice and Jebb, 2004). However, several 

studies reported similar findings. The investigators also compared PA between obese 

and non-obese individuals. AEE was lower in the obese group after adjusting for body 

weight (Johannsen et al., 2012; Carneiro et al., 2016; Butte et al., 2012; Elbelt et al., 

2010; DeLany et al., 2012). 

 

1.3.2 Energy Expenditure and Obesity 

Maintaining a healthy body weight is achieved by balancing EI and EE. Unbalanced 

energy metabolism may play a role in long-term body weight dysregulation and the 

pathogenesis of human obesity and obesity-related comorbidities (Ravussin et al., 

1988; Malik, Willett and Hu, 2013). Several studies on the Pima Indian population in 

the United States have sought to determine predictors or risk factors that may 

predispose humans to obesity. Within this population, obesity is common among young 

adults, and at least four metabolic parameters were found to be predictive of weight 

gain. These were low metabolic rate, low spontaneous PA, low sympathetic nervous 

system (SNS), and low-fat oxidation (Galgani and Ravussin, 2008). 
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Low rates of EE and fat oxidation predict body weight gain. It has been found that 

under experimental conditions of overfeeding, the associated increases in EE and fat 

oxidation were greater than expected, given the change in body composition (Weyer et 

al., 2000). Their prospective study in a subgroup of 66 siblings from 28 Pima Indians 

families found that those with a high 24-h respiratory quotient (RQ; ≥ 90th percentile) 

independent of 24-h EE, were at a 2.5 times higher risk of gaining > 5 kg body weight 

compared to those with low 24-h RQ (≤ 10th percentile), a low EE and a low ratio of 

fat to carbohydrate oxidation (Zurlo et al., 1990). Another follow-up study by Weyer 

et al. found that long-term weight changes are accompanied by small metabolic 

adaptations in both EE and fat oxidation. Furthermore, the metabolic responses to 

weight changes are highly variable between individuals (Weyer et al., 2000). 

 

Galgani and Ravussin (2008) offer a different perspective when considering the 

physiological conditions that predispose humans to becoming obese. They suggest that 

using a fat balance equation instead of the commonly used energy balance equation 

might lead to more understanding, given that fat is the only nutrient that can cause a 

chronic imbalance between intake and oxidation because it can be stored long-term as 

adipose tissue. However, the other nutrients contribute indirectly through the overall 

energy balance. Therefore, if the composition of nutrient intake is a significant factor 

in weight gain, the composition of nutrient oxidation is also a factor to be considered 

in the aetiology of obesity. The non-protein RQ is an index of the ratio of carbohydrate 

to fat oxidation ratio, and fasting values of 0.70 after a 12-hour fast indicate a major 

reliance on fat oxidation. However, reliance on carbohydrate as the major energy 

substrate would be indicated by values approaching 1.00 after ingestion of a meal of 

carbohydrates (Galgani and Ravussin, 2008). Exercise – induced changes in RQ at rest 
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affected fat loss along with the energy expended during an exercise training 

programme.  

 

Identifying the factors that influence fat oxidation will allow for appropriate measures 

to be recommended for the exercise intensity that best supports fat oxidation to allow 

individuals to lose weight and athletes concerned with peak performance strategies 

(Barwell et al., 2009). Purdom et al. (2018) investigated the factors that affect maximal 

fat oxidation (MFO), noting that MFO has been reported to occur between 47 % and 

75 % of VO2 max and varies between trained and untrained men and women. However, 

it is known to range from 0.17 – 1.27 g/min (Randell et al., 2017), where ketogenic 

adapted individuals can exceed >1.5 g/min (Volek et al., 2015). Lipid oxidation is 

affected by many factors, including level of fitness, the intensity of energy expended 

and duration, sex, and dietary intake and as such facilitates or restricts physiological 

changes that influence fatty acid oxidation (Purdom et al., 2018). The variability in 

fatty acid oxidation attributed to sex because of the inherent hormonal differences 

between men and women (Varlamov et al., 2015). It has been shown in several studies 

that the ability of premenopausal females to oxidise fat during exercise is far greater 

than that of males because those greater oestrogen levels have on increasing the 

expression of cellular proteins responsible for increased fatty acid transport and 

oxidation (Dasilva et al., 2011). 

 

The macronutrient content of EI also affects the cellular protein expression and 

subsequently the endogenous or systematic substrate oxidation varies. Diets high in fat 

content (> 68 % total daily EI) have been shown to have positive effects on lowering 
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respiratory exchange ratio (RER) values (Webster et al., 2016) during moderate 

intensity exercise (~ 64-70 % VO2 max) and for increased exercise time (~ 3 hours) 

(Vorlek et al., 2016). A study designed to investigate the link between meal-induced 

thermogenesis and obesity by assessing the risk factor of a high-fat meal and fat gain 

in children. The study concluded that the lowered postprandial thermogenesis 

following the high-fat meals in the long-term and conjunction with other significant 

factors, such as the high energy density, palatability of fatty foods, and genetic 

predisposition, may contribute to the progressive development of weight (fat) gain and 

the maintenance of obesity in children (Maffeis et al., 2001). However, the lack of 

sufficient means to measure EI from fat, carbohydrate, and protein in non-controlled 

environments and the insufficiently precise methods able to detect the small chronic 

imbalances in energy metabolism that lead to obesity mean that it is still not clear how 

the metabolic parameters they found to be important alter the balance between intake 

and expenditure of energy (Galgani and Ravussin, 2008). 

 

1.3.3 Carbohydrates and Weight Loss 

Given the prevalence of obesity and its impact on health as outlined and discussed in 

the previous section, there has been a resulting focus on weight loss diets, producing a 

multimillion-dollar industry, with competing advocates promoting conflicting advice 

as to the most effective means of losing weight. A recommended balanced diet for 

energy to maintain health and weight in terms of macronutrient, micronutrient, and 

dietary quality has been established by nutrition specialists with macronutrient rangers 

having been developed in the United States, Canada, Australia, New Zealand, and 

Europe and are similar across these countries (Naude et al., 2014). 
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Carbohydrates (CHO) are a major source of energy in the diet of humans (Jebb, 2014). 

The recommended range for CHO varies between 45 % and 55 % of total energy, for 

protein intake it is between 10 % and 35 %, and between 20 % and 35 % for fat (Jebb, 

2014). Balanced weight loss diets can then be defined as reducing the overall EI across 

each category of macronutrient in accordance with the accepted and established 

guidelines of what constitutes a healthy and balanced diet. Many currently popular 

weight loss diets, for example the ketogenic diet and the Atkins diet, widely promoted 

through the media, are based on reducing carbohydrate intake alone and increasing the 

fat and protein ratios. Advocates of these diets promote them as more effective for 

weight loss; however, the evidence does not support the claims. Nordmann et al. (2006) 

conducted a meta-analysis of randomised controlled trials that investigated the effects 

of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors and 

concluded that low-carbohydrate, energy restricted diets are at least as effective as low-

fat, energy restricted diets in inducing weight loss for up to a year. Naude et al (2014), 

in their systematic review and meta-analysis of low-carbohydrate vs isoenergetic 

balanced diets for reducing weight and cardiovascular risk. The trials showed weight 

loss in the short-term irrespective of whether a low CHO or balanced diet is followed 

(Naude et al., 2014). 

 

The evidence to date suggests that the vital factor in weight loss over time is not the 

restriction of carbohydrates more than protein or fat, but that longer-term weight loss 

is related to the overall reduction of EI. A systematic review that investigated the 

efficacy of low-carbohydrate diets for overweight and obesity reported that from 12 

systematic reviews, 10 with meta-analysis, only 2 had high review quality, 3 were 

moderately high, and 7 critically low. Among the meta-analyses, 4/5 with critically low 
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quality showed low-carbohydrate diet (LCD) advantage for weight loss (0.7–4.0 kg), 

whereas high- quality meta-analysis showed little or no difference between diets 

(Churuangsuk et al., 2018). These findings suggest well conducted systematic reviews 

of improved quality reduced carbohydrate trials are need before LCDs can be 

recommended as a superior approach to energy reduction for weight loss. 

 

This is essential as the long-term effects of LCDs have still to be established. The issues 

of concern relate to ketosis when ketone bodies replace glucose as a primary source of 

energy. Primarily, these are long-term cardiovascular safety, lipid and renal effects. 

However, ketogenic diets were used to treat epilepsy in the 1920s before medications 

were available. Additionally, recent studies have shown how ketogenic diets have 

improved outcomes for acne, non-alcoholic fatty liver disease, polycystic ovary 

syndrome, and Alzheimer disease. Currently, testing is being done on the benefits of a 

keto diet for the provision of sustained and steady fuel in endurance sports and the 

optimisation of body composition in high-intensity training (Paoli et al., 2013; Burch 

and Ciapponi, 2020).  

 

The issue of whether LCDs compared to high carbohydrate diets (HCDs) are better for 

weight control and metabolic health was investigated in a recent study conducted by 

Minderis and his colleagues (2020). They investigated the effects of EI restriction using 

both diets on obese mice and concluded that body composition and metabolic health 

were not affected when EI was restricted with fixed energy and protein intake (Minderis 

et al., 2020). 
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The popularity and intense interest in low-carbohydrate diets may be partly due to the 

perceived influence of CHO on current obesity levels (Minderis et al., 2020). Several 

studies in the 1980s found excessive CHO intake to be an important contributor to 

obesity (Andersen et al., 2005). Most of contemporary weight loss diets advocate 

increased CHO consumption and decreased protein and fat intakes. The possibility of 

promoting, rather than suppressing CHO cravings has been proposed as a novel strategy 

for achieving weight loss (Drewnowski et al., 1992). In addition, assessing the 

association between total CHO and body weight is a complex matter due to the need to 

differentiate between various types of CHO. It is estimated that roughly 60–70% of 

current human EI comes from starch, but substantial variation exists within and 

between populations (Robyt, Yoon and Mukerjea, 2008; Fermandez and Wily, 2017). 

The specific type and amounts consumed are key considerations for weight control 

(Jebb, 2014). 

 

1.3.4 Physical Activity and Obesity  

Weight loss and weight control are also significantly influenced by PA. The World 

Health Organisation Global Action Plan on PA 2018–2030 states that regular PA is 

proven to help prevent and treat NCDs as well as helping to prevent hypertension, 

overweight, and obesity and can contribute to better mental health, quality of life and 

overall general well-being (WHO, 2018). They reported that globally 25 % of adults 

and 75 % of adolescents (aged 11–17) do not currently meet the worldwide 

recommendations for PA set by WHO (150 minutes per week of moderate intensity 

physical activity [MPA] or 75 minutes of vigorous intensity physical activity [VPA]), 

and as countries develop economically, levels of inactivity increase (WHO, 2018). 
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The UK Chief Medical Officers’ Physical Activity Guidelines (2019) report that since 

2011 the evidence to support the benefits of regular PA across all age groups has 

become even more compelling and highlights the risks of inactivity and prolonged 

periods of sitting in adults and children. The report suggested that long periods of 

sedentary behaviour can be harmful, even in people who achieve the recommended 

levels of moderate PA for some aspects of health. The new guidelines promote a whole 

life approach to improved health through continuous PA, sport, exercise, and active 

travel. 

 

Although the benefits of PA are accepted as means of maintaining a healthy weight and 

overall good health, PA on its own has not been shown to be effective in reducing 

weight. A study conducted by Kerksick et al. (2009) on the effects of a popular exercise 

and weight loss programme on weight loss, body composition, EE and health in obese 

women found that exercise alone had minimal impact on the measured outcome, 

whereas positive results were achieved for the study participants when exercise was 

done in conjunction with a hypo energetic diet (Kerksick et al., 2009). 

 

Insufficient PA alone, however, has been shown to be a leading risk factor for NCDs 

and has a negative effect on mental health and quality of life (Guthold et al., 2021). A 

pooled analysis of 358 population-based surveys with 1.9 million participants from 

2001 to 2016, suggests that if their findings on the current global trends on the lack of 

PA continue, it will not meet the 2025 global activity target set by WHO to reduce 

inactivity by 10 %. This has implications for the continued and increased prevalence of 

obesity as a growing global concern across all age ranges (Guthold et al., 2018). 
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A prospective study conducted by Williams and Wood (2005) consisting of 8080 male 

and 4871 female runners to investigate whether physical activity can prevent age-

related weight gain and whether changing levels of activity affect body weight. The 

study found that age-related weight gain occurs even among the most active individuals 

when exercise is constant. And suggested that vigorous exercise may need to increase 

4.4 km/ week annually in men and 6.2 km/week annually in women to compensate for 

the expected gain in weight associated with aging (Williams and Wood, 2005). This 

has led them to theorise that vigorous exercise must increase significantly with age to 

compensate for the expected gain in weight associated with ageing. So, exercise as a 

strategy to prevent age induced body weight and body fat gain may again on its own 

not be sufficient. However, a recent study by Arner et al. (2019) found that lipid 

turnover in the fat tissue decreases during ageing and makes it easier to gain weight, 

even if participants did not eat more or exercise less than before. 

 

1.4 Carbohydrate Functions 

Dietary carbohydrates are a diverse group of substances with a range of chemical, 

physical, and physiological properties. Carbohydrates are principally substrates for 

energy metabolism. Carbohydrate intake also affects satiety, blood glucose and insulin, 

and lipid metabolism and through fermentation, exert major control on colonic 

function, including bowel habit, transit, the metabolism and balance of the commensal 

flora and large bowel epithelial cell health (Born, 2007; Bolla et al., 2019; Mills et al., 

2019, Part I & Part II). In addition, intake of dietary CHO modifies the function of the 

immune system and influence calcium absorption (Stathos, Shulman, Schanler and 

Abrams, 1996; Cummings & Stephen, 2007). These properties impact on our overall 

health and are particularly relevant to the control of body weight, diabetes and ageing, 
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cardiovascular disease, BMD, large bowel cancer, constipation, and resistance to gut 

infection (Cummings and Stephen, 2007). 

 

1.4.1 Carbohydrate Classification 

The primary classification of dietary carbohydrates, as proposed at the Joint Food and 

Agriculture Organization (FAO)/World Health Organization (WHO) Expert 

Consultation on Carbohydrates in human nutrition convened in Rome in 1997 (FAO, 

1998), is by molecular size, as determined by the degree of polymerisation (DP), the 

type of linkage (a or non- a) and character of individual monomers. Using a chemical 

approach, this classification divides carbohydrates into three main groups: sugars 

(DP1-2), oligosaccharides (short-chain carbohydrates) (DP3-9), and polysaccharides 

(DP> 10). Sugars comprise (i) monosaccharides, (ii) disaccharides, and (iii) polyols 

(sugar alcohols). Oligosaccharides are either (a) malto-oligosaccharides (a-glucans), 

principally occurring from the hydrolysis of starch, and (b) non-a-glucan such as 

raffinose and stachyose (galactosides), fructo- and galactooligo saccharides and other 

oligosaccharides. Polysaccharides can be divided into starch (a -1:4 and a -1:6 glucans) 

and non-starch polysaccharides (NSPs). The main components are the polysaccharides 

of the plant cell wall, such as cellulose, hemicellulose, and pectin but also includes 

plant gums, mucilages, and hydrocolloids. Some carbohydrates, like inulin, deviate 

from this pattern because they are found in nature in multiple molecular forms. Inulin, 

polydisperse 1‐kestose‐based (GFn), from plants may have from 2 to 200 fructose units 

and so falls between oligosaccharides and polysaccharides (Roberfroid, 2005; 

Cummings and Stephen, 2007). 
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Although a classification system based on chemical structure is necessary for assessing 

properties and estimation of food intakes, it does not translate well into nutritional 

effects as each class of carbohydrates has overlapping physiological properties and 

effects on health. Depending on their DP, chemical composition, and linkages, dietary 

fibre sources have varying physicochemical characteristics, such as solubility and 

viscosity and physiological properties, including fermentability, bulking effects, blood 

glucose-lowering, and blood lipid-modifying effects which account for their beneficial 

impacts on health (Stephen et al., 2017). There is considerable variation in 

bioavailability among the CHO classes and in different foods. CHOs must be broken 

down into their constituent monosaccharide units by hydrolytic enzymes in the mouth 

and pancreas. 

 

1.4.1.1 Digestible Carbohydrates 

Ninety-five percent of the CHO in human diet is digested into glucose and absorbed 

via the small intestine; these are called glycaemic carbohydrates. Glucose, galactose, 

and fructose are the end products of CHO digestion, which are absorbed in the small 

intestine via the portal vein to the liver. The glucose concentration in the portal vein 

after a meal can rise to almost 10 mM/L when monosaccharides are transferring during 

the first pass through the liver via specific receptors on hepatocytes (Suzuki, 2003, 

Heymsfield et al., 2005; Seo et al., 2020). 

 

1.4.1.2 Digestion of Starch Metabolism 

Starch is catalysed by hydrolysis via amylase enzymes. Starting by salivary α- amylase 

enzymes (sAA) which is secreted in the mouth by food chewing stimulation processes. 
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sAA are primarily involved in the digestion of starch in the mouth to yield a mixture of 

di-saccharides, tri-saccharides, and some glucose Figure 1-4 (Peyrot des Gachons and 

Breslin, 2016; Qi et al., 2018). A function of sAA on starch digestion in the small 

intestine was also proposed, given the significant passage of sAA through the stomach 

due to incomplete inactivation by low pH. In vitro, amylase was inactivated in gastric 

juice as pH range from 3.8 to 3.3 (Fried, Abramson and Meyer, 1987). If trapped within 

a large bolus of food inside the stomach, salivary α-amylase can continue to digest 

starch until the bolus is broken up and exposed to gastric acid. Consequently, up to 30 

– 40 % of the digestion of complex carbohydrates can take place before the food entered 

into the small intestine (Binder and Reuben, 2009; Barrett et al., 2018). 

 

In the small intestine, pancreatic juice enters the lumen through the hepatopancreatic 

sphincter, and its high bicarbonate concentration begins to neutralize gastric acid. Thus, 

pancreatic α-amylase is secreted by the pancreas into lumen and actively continues to 

digest complex carbohydrates. Pancreatic α-amylase acts mostly in the duodenum 

shortly after its entry through the hepatopancreatic sphincter and generates maltose, 

maltotriose, trisaccharide, larger oligosaccharides, and α-limit dextrin (Marks and 

Lieberman, 2009; Goodman, 2010). Since di-, tri-, and oligosaccharides result from the 

hydrolysis of starch by α-amylase (Binder and Reuben, 2009; Goodman, 2010). These 

starch hydrolysis products must be additionally digest by the disaccharidases found as 

membrane-spanning enzymes in the plasma membranes of the brush borders of 

intestinal epithelial cells and enter the bloodstream either by passive diffusion (fructose) 

or through a sodium and energy-dependent active transport mechanism (glucose and 

galactose) Figure 1-4 (Lunn and Buttriss, 2007). 
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Figure 1-4 Starch hydrolysis by salivary amylases in mouth and completing starch hydrolysing by 

pancreatic amylases in the small intestine. 

 

By the end of this process, rapidly hydrolysed starch (with a glycaemic index near 1) is 

completely hydrolysed. However, a substantial proportion of slowly hydrolysed starch 

(with a glycaemic index less than 1) remains in the gut lumen and moves to the colon 

to be fermented. Another type of starch, resistant to hydrolysis (with a glycaemic index 

near zero), remaining in the gut lumen and consequently being fermented (Lunn and 

Buttriss, 2007). 

 

The structure of starch is complex and varies widely. Notwithstanding, the most 

significant structural aspect that has most influences on its ability to be digested is the 

degree and crystallinity within the granule. So, starch with long linear chains is more 

liable to form crystalline structures than starch with short highly branched chains (Birt 

et al., 2013). Therefore, as the amylose component of starch is less branched than 

amylopectin, high-amylose starch is more likely to be resistant to digestion than low-

amylose starch. 
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1.4.1.3 Non-Digestible Carbohydrates 

About 5% dietary carbohydrates are complex CHO, such as resistant starch, 

polysaccharides, and oligosaccharides (except maltodextrins) are not absorbed in the 

small intestine and enter the large intestine and fermented by gut bacteria. They are 

called non-glycaemic carbohydrates as they are not converted into monosaccharide 

such as glucose (Bond and Levitt, 1978; Heymsfield et al., 2005). The major portion 

of dietary fibres are commonly non-glycaemic (Ahsan, 2021). 

 

Stephen et al. assessed current knowledge on the health effects of dietary fibres and 

how different kinds of fibre affect health, summarising the most current findings on the 

relationship between fibres and the major diseases that are associated with it. 

Specifically, individuals who followed diets rich in dietary fibres have a lower risk of 

non-communicable diseases such cardiovascular diseases, and coronary heart diseases, 

and cerebrovascular diseases outcomes. However, large gaps remain in our 

understanding of the relationship between the chemical and physical characteristics of 

dietary fibres and their physiological properties. And, in turn, how this effects disease 

risk. Most countries throughout Europe have developed recommendations for total 

fibre intake based on an amount per MJ converted to grams per day: 3-4 g/MJ per day, 

equating to 25-32 g/d for adult women and 30-35 g/d for adult men and less for children 

and the elderly based on age (Bond and Levitt, 1978; Heymsfield et al., 2005; Stephen 

et al., 2017). 

 

Carbohydrates (dietary fibre, prebiotics) are necessary to ensure metabolic activity 

towards carbohydrate fermentation, which contributes to the physiological levels of the 
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short-chain fatty acids that are vital for health and well-being (Makki et al., 2018). The 

fermentation processes are mainly controlled by the volume and different kinds of 

substrate, in particular the complex carbohydrates that are available to gut microbiota 

(Sawicki et al., 2017). Gut microbiota are positive correlated with AMY1 copy number 

and Prevotella abundance in Mexican population (León-Mimila et al., 2018).  Another 

recent study findings by Atkinson et al., investigating the physiologic and phenotypic 

significance of variation in human AMY1 CN, suggest that microbial fermentation in 

the large bowel and postprandial glycemia are influenced by AMY 1 CN and sAA 

activity. This suggests that individuals with high AMY 1 CN seem to digest starch 

faster, so there is a higher glycaemic response after consuming starchy foods but not 

sugary foods (Atkinson et al., 2018). 

  

1.4.1.4 Absorption of Carbohydrates 

More than 95% of carbohydrates in human diet are absorbed from small intestine into 

the bloodstream as monosaccharides such as glucose, galactose, and fructose (Tan et 

al., 2021).  Nonetheless, absorption of different types of monosaccharides are mediated 

through different mechanisms. Generally, glucose and galactose transports are an 

energy requiring process and therefore a Na+-coupled secondary active transporter 

known as Na+-glucose transporter 1 (SGLT1) assist in absorption of glucose from 

intestinal lumen into enterocytes. From enterocytes, glucose entrance into bloodstream 

is mediate via a specific glucose transporter (GLUT) known as GLUT2 (Martínez-

Delgado et al., 2021; Kurzyna-Szklarek et al., 2022).  
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Contrary to glucose, fructose is taken up on the brush-border side of intestinal lumen 

and is absorbed through a facilitated passive transport mediated by GLUT5 to 

enterocytes and then into the bloodstream (Havel, 2005; Sun and Empie, 2012; Merino, 

Fernández-Díaz, Cózar-Castellano, and Perdomo, 2019; Hernandez-Hernandez et al., 

2019). GLUT5s exhibit the weakest homology to other members of the GLUT family 

of all GLUTs and serve primarily as fructose transporters with a Km of 6 mM, with 

minimal amounts entering the systemic circulation. Following absorption, uptake by 

the liver is mediated by GLUT2 (SLC2A2), a high-capacity, glucose-dependent 

fructose co-transporter primarily localized on the basolateral membrane of enterocytes 

and hepatocytes. Fructose is transported to the liver via the portal vein, with minimal 

amounts entering the systemic circulation(Figure 1-5). Only GLUT2 and GLUT5 can 

transport fructose, and GLUT5 has a very limited capacity for transporting glucose 

(Manolescu et al., 2007). Finally, GLUT2s are found in intestinal and kidney 

basolateral membranes (predominantly), in the liver, and in pancreatic β-cells and 

mediate the uptake and efflux of glucose, galactose, or fructose (Manolescu et al., 2007; 

Goodman, 2010).  
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Figure 1-5 Glucose and Fructose Absorption Mechanisms 

 

 

1.4.1.5 Metabolism of Glucose and Fructose 

Metabolism of monosaccharides, particularly, glucose has been studied for a long time 

to clarify the metabolic alterations that occur in obesity and diabetes mellitus 

(Kolderup, 2015). Glucose enters circulation through the hepatic portal vein; hence, it 

reaches the liver in high concentrations: approximately 10 mmol/L have been measured 

in the portal vein while the systemic concentration is stable at 5–4 mmol/L. 

 

Absorption of glucose is a key stimulus for the secretion of insulin from pancreatic β-

cells. The pancreatic β-cells are highly vascularized cells, clustered in islets of 

Langerhans which can sense the absorption of glucose from intestine into 

bloodstream(Ding et al., 2018). The pancreatic β-cells sense the presence of glucose 
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through GLUT2 (Zhang et al., 2022). GLUT2 assist in the entry of glucose into the 

hepatocytes. 

 

Glucose is phosphorylated in the hepatocytes, and glucose-6-phosphate is produced. 

The phosphorylation of glucose is assisted by glucokinase. The glucose is then either 

stored as glycogen in the liver or released to blood to be transported to the tissues for 

energy production(Chiu et al., 2018). Similar, pathway is followed for fructose 

metabolism, nonetheless, fructose phosphorylation is mediated by fructokinase (Figure 

1-6) (Muriel et al., 2021, Jang et al., 2020).  

 

The liver has a high capacity for soaking up glucose, more still passes into systemic 

circulation, resulting in increased glucose concentration and stimulation of insulin 

secretion. The increasing insulin/glucagon ratio switches off gluconeogenesis and 

glycolysis and stimulates glycogen synthesis in the liver (Lanham-New, Macdonald, 

and Roche, 2011). 

 

So, most of the reactions that occur in the liver during fructose metabolism are similar 

to glycolysis (Embden-Meyerhof-Parnas’s pathway), except that fructose enters the 

glycolytic pathway at a later stage. As shown in Figure 1-6, fructose bypasses one of 

the main regulatory steps of glycolysis, the phosphofructokinase reaction, which is 

tightly regulated by available energy or ATP. The first step in fructose metabolism is 

the phosphorylation of fructose by fructokinase to fructose 1-phosphate (Kolderup, 

2015). Unlike the phosphofructokinase in glycolysis, the fructokinase enzyme is not 

inhibited by ATP and will continue to metabolise fructose to fructose 1-phosphate. A 
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higher amount of fructose 1-phosphate increases the amount of glycerol 3-phosphate, 

which serves as a precursor in triglyceride and phospholipid formation (Goodman, 

2010). Since these differences in metabolism of fructose and glucose by the liver yield 

different end products, the study of their role in the diet may be important to health 

(Lunn and Buttriss, 2007). 

 

 

Figure 1-6 Metabolic Pathway of Dietary Glucose and Fructose in Liver. Modified from Elliott et al., 

2002; Sun and Empie, 2012 

 

1.4.1.6 Insulin Signalling 

Most carbohydrate in the diet enters the bloodstream as final products of carbohydrates 

(glucose and galactose) through a SGLT1 or fructose via the GLUT5 (Lunn and 

Buttriss, 2007). Pancreas has highly vascularised and trained to sense glucose whenever 
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glucose is in its proximity. They do so with the help of the glucose transporter (GLUT) 

isoform - GLUT2, which is also expressed in these β-cells. (Petersen and Shulman, 

2018). Glucose sensing has two roles. 1) the entry of glucose into the cell is mediated 

via GLUTs. 2) glucose metabolism through phosphorylation by glucokinase (Navale 

and Paranjape, 2016). 

 

At the basolateral membrane, glucose can enter or leave the cell via GLUT2, depending 

on the concentration gradient. For luminal glucose concentrations ≥ 5mM and inlet 

blood glucose of 4 mM, flux across the basolateral GLUT2 (bottom row) is always 

negative (glucose leaves the cell). Net glucose absorption (magnitude of the flux) 

increases with SGLT1 density and luminal glucose concentration. It increases with 

apical GLUT2 only at high luminal glucose concentrations. At 5- and 10-mM luminal 

glucose, an increase in apical GLUT2 leads to decreased glucose uptake since the cell-

blood concentration gradient is reduced. Moreover, in the absence of luminal glucose, 

the concentration gradient changes sign, and glucose enters the cell from the blood 

(positive flux) and then is secreted into the lumen via increasing apical GLUT2 (Afshar 

et al., 2021). 

 

It was suggested that rising apical SGLT1 is effective at increasing glucose uptake, 

even at high luminal glucose concentrations (> 15% increase at 50 mM luminal glucose 

as SGLT1 density trebled). It increases apical GLUT2 uptake by about 10 % for the 

same conditions. At low luminal glucose (5 and 10 mM), an increase in apical GLUT2 

leads to a decrease in glucose uptake due to glucose secretion from the cell to the lumen 

(Lunn and Buttriss, 2007; Afshar et al., 2021). 
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When glucose enters the cell via GLUT2, the insulin is secreted by the pancreatic β-

cells, which are highly vascularised and trained to sense glucose whenever it is in 

proximity. They do so with the help of the glucose transporter GLUT2, which is also 

expressed in these β-cells. (Petersen and Shulman, 2018). Further, insulin also 

suppresses metabolic pathways in the liver, which synthesise glucose from amino acids, 

lactic acid, or glycerol. Thus, provided the tissues are sensitive to the actions of insulin, 

blood glucose concentrations will decrease. Concurrently, insulin concentrations 

decrease, preventing glucose uptake into the muscle, liver, and adipose tissue, and 

leaving a readily available source of fuel for the brain (Lunn and Buttriss, 2007). 

 

With an influx of glucose in the body, the tricarboxylic acid cycle (TCA cycle) springs 

into action, leading to an increased ratio of ATP: ADP and, ultimately, membrane 

depolarisation - the closure of potassium channels and an influx of calcium ions, which 

causes insulin to be finally released into the circulation for carrying out its respective 

function.  The insulin signalling cascade is an amplification process that it diligently 

performs in the three major sites: skeletal muscles, adipose tissues and hepatic tissues.  

 

Abnormalities of insulin signalling are responsible for insulin resistance. Insulin evokes 

its action on the target organs through the phosphorylation of a transmembrane-

spanning tyrosine kinase receptor, the insulin receptor (IR). In all cell types, the binding 

of insulin to the α-subunit of its receptor activates the tyrosine kinase of the β-subunit 

of the receptor, leading to the own autophosphorylation, which, in turn, induces the 

tyrosine phosphorylation of insulin receptor substrates (IRS) family of proteins, as IRS-

1 through IRS-6, which act as scaffolds to organise and mediate signalling complexes 
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(Sun et al., 1991). In an insulin sensitive state (Figure 1-7), the 

phosphorylation/activation of these substrates evokes the activation of the enzyme 

phosphoinositide 3-kinase (PI3K), which, in turn, stimulates the activation of the main 

downstream effector Akt or as called protein kinase B, and atypical protein kinases C. 

Akt is serine/threonine kinase, which stimulates the glucose uptake via the translocation 

of the major glucose transporter GLUT-4 to the plasma membrane. Further, Akt 

inactivates, by phosphorylation, the glycogen synthase kinase 3 (GSK-3), and this 

enzyme inhibits glycogen synthase, which is a significant regulator of the glycogenic 

process, therefore, facilitating the glycogenesis (Figure 1-8) (glycogen breakdown) 

(Boucher, Kleinridders and Kahn, 2014; Iaccarino et al., 2020). 

 

Several polymorphisms in human IRS-1 are observed in type 2 diabetes. These 

polymorphisms are associated with insulin resistance, hyperinsulinemia, dyslipidemia, 

adiposity, and risk of coronary disease. Also, it reduced IRS-1 protein levels and 

decreased IRS-1–associated PI3K activity. 

 

Insulin resistance was proposed as early as 1936 and identified as an impaired biologic 

response to insulin stimulation of tissues, mainly the liver, muscle, and adipose tissue. 

Insulin resistance impairs glucose disposal, resulting in a compensatory increase in 

insulin production from β-cells leading to hyperinsulinemia (Sinaiko and Caprio, 2012; 

Freeman and Pennings, 2021).  

 

Insulin resistance may be either due to defects at some point before insulin binding to 

its receptor or at the insulin receptor level or defects in downstream signalling 
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components. Defects of the insulin receptor that may contribute to insulin resistance 

include abnormalities in receptor structure and number, binding affinity, and signalling 

capacity. Many factors, including oxidative stress, neurohormonal stimulation, and 

hyperinsulinemia, have been described as responsible for the inhibition of insulin-

stimulated tyrosine phosphorylation of insulin receptors and their substrates (Iaccarino 

et al., 2020). 

 

1.4.1.7 Skeletal Muscle 

Skeletal muscle performs key role in maintaining glucose homeostasis in blood. 

Skeletal muscles are considered as prime site for glucose regulation, which accounts 

for up to  70% of the whole-body glucose disposal in healthy individuals (Abdul-Ghani 

and DeFronzo, 2010; Sharabi et al., 2015; Hargreaves and Spriet, 2020). Skeletal 

muscle also is an energy-consuming tissue. The glucose transported to the myocytes 

stores in myocytes which is mostly used for energy production, with the exception of 

3-carbon units (lactate, alanine) generated by glycolysis(Shimizu et al., 2018), and  

mostly cycled to the liver via a cascade of biochemical reactions known as Krebs cycle 

or citric acid cycle that are involved in the metabolism of carbohydrates in skeletal 

muscles(Impey et al., 2018).  

 

Insulin plays an important role in the transportation of glucose into muscles (Yaribeygi 

et al., 2019). Binding of insulin to skeletal muscle membrane assist in the 

autophosphorylation of the insulin receptors on the skeletal muscle membrane (Rahman 

et al., 2021). As described previously, the phosphorylation of PKB also works as a 

significant factor in suppressing glycogen synthesis and augmenting glucose uptake 
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from the blood, which leads to decrease in the intracellular glucose concentration and 

increase uptake of the glucose by skeletal muscles(Ferrari et al., 2019). If muscle need 

energy for performing specific functions, glucose is used to produce energy and if 

muscle is at rest and does not have immediate requirement of energy, the glucose in 

stored as glycogen (Sylow et al., 2021). 

 

All these effects lead to decreased intracellular glucose concentrations and increased 

skeletal muscle glycogen synthesis. With impaired muscle uptake, excess glucose 

returns to the liver, increasing de novo lipogenesis (DNL) and circulating free fatty 

acids, further contributing to ectopic fat deposition and insulin resistance (Freeman and 

Pennings, 2021). With excess calorie loads, glucose uptake by muscle exceeds capacity, 

and excess glucose returns to the liver, where it triggers DNL. Increased DNL increases 

triglyceride and FFA production, causing ectopic fat deposition into the liver, muscle, 

and adipose tissue. As a result, insulin resistance increases, as well as the production of 

inflammatory markers. Additional factors influencing insulin resistance in muscle 

tissue include physical inactivity and genetic risk. 
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Figure 1-7 Metabolism of Carbohydrates in Muscle Cell During Insulin Sensitivity Status. Modified 

from Petersen and Shulman, 2018. 

 

 

1.4.1.8 Insulin Resistance 

Insulin resistance is the abnormal condition when muscles cannot respond insulin and 

thus cannot use glucose from blood for energy and storage(Petersen and Shulman, 

2018). Insulin resistance is also called impaired insulin sensitively. In conditions when 

there is insulin resistance, glucose is not stored in the skeletal muscles and therefore 

excess glucose are return to the liver(James et al., 2021). The resultant increase in 

lipogenesis and circulating free fatty acids contribute to fat deposition which further 

worsen the effects of insulin resistance. The vicious cycle remains continue and may 

produce inflammatory markers Figure 1-7 & Figure 1-8 (Shimobayashi et al., 2018). 
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Figure 1-8 Insulin Resistance in Muscle Cell. Modified from Petersen and Shulman, 2018. 

 

 

1.4.1.9 Adipose Tissue 

Although adipose tissues are mainly involved in the metabolism and storage of 

triglycerides (TGs), nevertheless, when insulin is released, its functionality related to 

lipids is reduced. The action of insulin on the adipose tissue is sufficient to promote 

glucose uptake from the bloodstream directly into the adipose tissues(Song et al., 2018). 

Lipolysis is most sensitive to insulin. Failure of insulin to suppress lipolysis in insulin-

resistant adipose tissue, particularly visceral adipose tissue, increases circulating free 

fatty acids. Higher levels of circulating FFAs affect both liver and muscle metabolism, 

further exacerbating insulin resistance (Freeman and Pennings, 2021). Besides, lipid 

metabolism also plays a significant role in insulin resistance. Excess lipid intake by the 

body results in an accumulation of the lipid derivatives that play a major role in 

downregulating the insulin protein signalling activation.  
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The potency of insulin to control plasma nonesterified fatty acid (NEFA) levels is 

critical to the maintenance of euglycemia; suppression of lipolysis is an important 

physiological function of insulin in adipose tissues. Moreover, elevated TG 

(triglyceride) levels are also involved in the pathogenesis of insulin resistance. It is seen 

that there is a linear increase in the synthesis of triglycerides and diacylglycerol, both 

of which occur in cases of insulin resistance only. Intramuscular ceramide levels are 

also seen to be a part of insulin resistance. They act as lipid derivatives and work to 

reduce the uptake of glucose, thus playing their part in giving rise to the development 

of insulin resistance.  

 

Adipose tissue could play a crucial part in buffering the flux of fatty acids in the 

circulation in the postprandial period, analogous to the roles of the liver and skeletal 

muscle in buffering postprandial glucose fluxes. Adipose tissue provides its buffering 

action by suppressing the release of non-esterified fatty acids into the circulation and 

by increasing triacylglycerol clearance. In particular, the pathway of 'fatty acid trapping' 

(adipocyte uptake of fatty acids liberated from plasma triacylglycerol by lipoprotein 

lipase) (Frayn, 2002). 

 

1.4.1.10 Hepatic Tissue 

Several mechanisms promote glucose regulation in the liver cells, with GLUT2 and 

GLUT4 translocations being the most prominent ones. Insulin reduces or suppresses 

the glucose output from the liver and increases the glucose uptake into the skeletal 

muscle, which leads to normalising glucose levels. However, in insulin resistance 
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conditions, the liver, adipose tissues, and skeletal muscles fail to respond to insulin 

action (Metcalfe et al., 2019). 

 

Insulin resistance in muscle leads to increased delivery of glucose substrate to the liver, 

which triggers DNL, associated inflammation, and ectopic lipid deposition. Insulin 

resistance in adipose tissue results in increased lipolysis in adipocytes, increasing 

circulating FFA and further exacerbating steatosis and insulin resistance in muscle 

tissue. In the postprandial state, insulin reduces hepatic glucose production via 

inhibition of glycogenolysis, limiting the postprandial rise in glucose. This feedback 

mechanism is impaired with insulin resistance, and hepatic glucose production 

continues to rise, even as postprandial glucose rises. Glucotoxicity, associated with 

elevated glucose levels, further contributes to insulin resistance. Further, glycogen 

synthesis is mainly responsible for the pathogenesis of insulin resistance. An impaired 

insulin signal transduction ultimately leads to a blunted response to the phosphorylation 

of kinases. 

 

1.5 Genetic Variation of Obesity 

Hereditary influence on obesity has been investigated for more than a century, 

beginning in 1907 with Von Noorden’s delineation of exogenous and endogenous 

obesity. Exogenous obesity refers to obesity resulting from energy intake more than 

energy expenditure, while endogenous obesity is caused by hypometabolism or other 

thyroid disorders (Chin, 2014; Thaker, 2017). 
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In 1986, Stunkard and colleagues offered landmark evidence for genetic influence on 

obesity, using a Danish adoption registry of 540 adults. The study compared the BMIs 

of both biological and adoptive parents with those of the adoptees. It was found that 

the adoptees’ BMIs approximated those of their biological parents rather than the 

parents who had raised them. Genetic factors have a strong influence in determining 

adult body fatness, while the family environment alone has no apparent effect on study 

samples (Stunkard et al., 1986; Chin, 2014). A systematic review of twin studies 

reported that the variable heritability of weight across lifetime with an overall effect 

estimated between 45–90 % (Silventoinen et al., 2010). 

 

Heritability (H2), as defined by Lush (1943), is the proportion of variance within 

individuals in a population due to genetic factors, the extent to which phenotypic traits 

are affected by genetic variations (Bell, 1977). It is estimated simply from the functions 

of the regression of offspring on parental phenotypes, the correlation of full or half 

siblings, and the difference in correlation of monozygotic (MZ) and dizygotic (DZ) twin 

pairs (Frankham, 1996). 

 

Because of the variation in additive and non-additive genetic factors and population-

specific environmental variances, heritability depends on the population (Visscher et 

al., 2008). Variance is a measurement of the degree to which a trait is dispersed away 

from the mean. An estimation of high variance means that there are more individual 

phenotypic differences for the trait than for an estimation of low variance (Oftedal, 

2005). Phenotypic variance (VP), genetic variance (VG) and environmental variance 
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(VE) can be linked in mathematical terms by the following formula (Oftedal, 2005; 

Visscher et al., 2008): 

 

VP = VG + VE 

 

Similarly, phenotypic variance or broad heritability (H2) is assumed by the ratio of total 

genetic variance to phenotypic variance: 

 

H2 = VG / VP 

 

Since variables such as traits, allele frequencies, size of the variants, and mode of gene 

actions can vary across populations, like environmental variances, heritability is 

considered similarly variable (Visscher et al., 2008). 

 

A 1990 study of twins reaffirmed the influence of genetics regardless of environmental 

variation. The study involved 247 pairs of identical twins, 154 pairs raised together, 

and 93 pairs adopted by different parents. The twins in each pair turned out to have 

similar weight, regardless of whether they had grown up together or separately. In the 

same year, Claude Bouchard and colleagues conducted an experimental study 

overfeeding identical twins with the same number of calories over a period of 100 days. 

The study showed a correlation of weight gain within twin pairs, much higher than 

between pairs (Bouchard et al., 1990). Correlations persisted in follow-up studies of 

these twin pairs for five years (Bouchard et al., 1996). 
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Over the past 50 years, meta-analysis studies of twins (involving more than 14 million 

pairs) have provided compelling evidence that all human traits are heritable. Not one 

trait investigated had a weighted heritability estimate of zero. In addition, 

approximately 2/3 of heritable traits exhibit a pattern of monozygotic (MZ) and 

dizygotic (DZ) transfer (Polderman et al., 2015). This pattern, known as twin 

correlation, is consistent with a simple model, as explained by Polderman et al. (2015). 

Family and twin genetic studies have clarified that there is a 67 % BMI variance in 

males and females, of which 50 % is due to dominance and, the remainder of the 

variance is accounted for by unique environmental factors, of which only 7 % is 

correlated across twins (Ronnemaa, 1997). 

 

Heritability can vary by sex and age within the same population. Many studies have 

shown that BMI is highly heritable (Schousboe et al., 2003; Hjelmborg et al., 2008). In 

a systematic review of healthy MZ and DZ twins conducted by Nan et al. (2012), it was 

found that the heritability of BMI is high in young to later adulthood, whereas the 

influence of environmental factors on BMI is stronger from adolescence to young 

adulthood. There is then less impact on BMI from an individual difference in late 

adulthood, whereas unique environmental influences rise steadily from pre-

adolescence to late adulthood. 

 

Genetic variations comprise single nucleotide variants (SNVs), copy number variations 

(CNVs), and large structural variation (SVs) (Zhao et al., 2013). Single-nucleotide 

polymorphism (SNP) is the predominant form of genomic variation associated with 

normal variations (Freeman et al., 2006) and is also the most studied form (Zhao et al., 
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2013). From databases of public and private individuals, about 4 million SNPs had been 

validated by 2005 and more than 5 million collected (Sobrion et al., 2005). According 

to the latest information, there are around 32 million reference SNPs, around one every 

200 bps. This rapid increase in data was thanks to two massive NHGRI-driven efforts: 

the International HapMap Project (2003) and its sequel, the 1,000 Genomes Project 

(2008). 

 

SNPs occur when only a single nucleotide is exchanged for another in the DNA 

sequence, presenting at least 1 % of the population. For example, some chromosomes 

within a population can have a C (C-allele) at a given site, while others have a T (T-

allele) at the same site (The International HapMap Consortium, 2003). SNPs can occur 

more frequently in non-coding intronic regions of genes than in protein-coding exons 

and intragenic regions (Barreiro et al., 2008). Generally, SNPs do not affect the function 

of a gene; however, it may be impacted if intronic SNPs impinge on splicing and gene 

expression. The difference in the effect of SNPs is apparent in two types of SNPs in 

gene-coding regions: synonymous (silent mutations) SNPs, which do not alter the 

amino acid composition of the encoded proteins, and non-synonymous SNPs, which 

change the amino acid of the protein sequence. Recently, there has been a growing 

awareness that other types of genetic variations may impact the risk of disease and 

treatment outcomes (Barreiro et al., 2008). Synonymous SNPs influence fitness, but 

over the past decade, it has been shown that they can result in abnormal mRNA 

splicing, which may lead to human diseases (Sauna and Kimchi-Sarfaty, 2011). 
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Structural variations (SVs) greater than 1 kilobase (kb) in size are defined as insertions, 

inversions, and deletions. These range from single-base pairs to large, chromosomal-

level alterations. Two models have been proposed for the association between 

structural variation and disease. The first model is large variants, which entail gains 

and losses of several hundred kb in a DNA length. Although large variants are rare in 

a population (< 1 %), they cause a significant fraction of disease (Alkan et al., 2011). 

The second model is a type of intermediate-scale SV with a copy number change 

involving a DNA fragment, which is typically greater than one kb and less than five 

megabases (mb) (Alkan et al., 2011). 

 

Copy number variation (CNV) includes a genetic polymorphism with regard to DNA 

segments larger than 1 kb; it is found in variable numbers and is compared with a 

reference gene. This type of structural variation may account for a substantial 

proportion of differences in the assembled human genome (currently estimated at > 12 

%), altering gene dosage and potentially modulating the expression of genes (Santos et 

al., 2012). 

 

1.5.1 Copy Number Variation Determination Methods  

CNVs can be detected and analysed by several methods at the genome-wide and locus-

specific levels. The genome-wide level CNVs can mainly be detected by two DNA 

chip-based methods: Comparative genomic hybridization (CGH)-based CNV detection 

and SNP array-based CNV detection. The difference between these two methods is that 

CGH-based method uses two different fluorescent dyes for labelling test and reference 

DNA samples, and the samples can be hybridised to the same microarray spot. 
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However, the SNP array-based method uses one fluorescent dye for each sample, and 

comparison between the samples can offer the location of the CNV. Both methods use 

log2 ratios for identification of the locations of CNVs. Locus-specific analysis largely 

uses the following tools: pulse field gel electrophoresis (RFGP) followed by Southern 

blot analysis, pyrosequencing, ligation detection reaction (LDR) and the invader assay, 

and quantitative real-time PCR (Leea and Jeonb 2008). RFLP-Southern blot is the most 

conventional tool for separating CNVs in the large DNA (range of 5–500 kb). RFLP – 

Southern blot isolation of high molecular weight DNA, digestion with unique 

restriction enzymes, and resolving digested DNA fragments by pulsed field gel or low 

percentage (< 1 %) agarose gel electrophoresis (Pulimamidi, Ravula and Battu, 2016). 

The pyrosequencing method was developed by Ronaghi et al. (1998) using the principle 

of pyrosequencing. With this technique the DNA fragments are incubated with the 

enzymes DNA polymerase, ATP sulfurylase, luciferase, and apyrase, and the substrates 

adenosine 5' phosphosulfate (APS) and luciferin. The ATP takes part in the luciferase-

mediated conversion of luciferin to oxyluciferin, creating visible light proportionately 

to the amount of ATP. Then, there is the quantification for CNV analysis at the same 

time with sequence analysis for SNP detection. In ligation detection reaction (LDR), 

oligonucleotide ligation assay (OLA) is performed directly to genomic DNA. During 

the hybridized two oligonucleotide probes, DNA ligate can covalently link these two 

oligonucleotides. If a mismatch at either the 3-end of the first probe or the 5-end of the 

second probe is introduced, the biallelic state of the SNP locus is converted into a 

biomarker state of ligated detector oligonucleotides (Leea and Jeonb 2008). The 

quantitative real-time PCR has become one of the most popular and effective methods 

for analysing CNVs. It is basically performed on an apparatus uniting a thermal cycler 

and an optical instrument to capture spectral fluorescence consisting of the hydrolysis 
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probes, hybridizing probes, and DNA-binding agents (Leea and Jeonb, 2008). The 

TaqMan assay is a typical system using the hydrolysis probe for fluorescence resonance 

energy transfer (further information is provided in Chapter 2).  

 

Today, molecular genetics is central to obesity research. For BMI, genome-wide 

association studies (GWAS) have identified up to 941 near-independent genome-wide 

significant SNPs at 536 polygenic loci (Yengo et al., 2018). In 2007, McCarthy and 

colleagues identified a common variant in FTO, a gene associated with FM and obesity, 

and cutting-edge sequencing technology continue to identify gene variants or mutations 

(Chin, 2014). FTO has been clearly identified as an obesity-associated gene via GWAS. 

Each additional copy of the rs9939609 risk allele is associated with increased BMI of 

~ 0.4 kg/m2. FTO appears to have a greater effect on obesity than all other obesity loci, 

and this has been confirmed through replication studies throughout lifetimes and across 

ethnicities. The FTO rs9939609 SNP is the most commonly reported population obesity 

gene in association studies. It has been estimated that the population-attributable risk 

of FTO for obesity is as high as 20 % (Loos and Boucard, 2008). The risk allele (A 

allele) of rs9939609 is associated with greater total energy (food intake) and increased 

protein and fat intake in children and adults. FTO SNPs, mainly located in intron 1, 

have been reported to be associated with individual variation in appetite rating scales, 

loss of control overeating and eating in the absence of hunger. The FTO genotype was 

associated with changes in body composition as a result of regular exercise (Rankinen 

et al., 2010). Furthermore, in a recent study to determine the role of the FTO SNPs 

rs1421085, rs17817449, and rs9939609 in the effects of a 4-week hypocaloric diet on 

body composition in 47 exercise-trained men and women, the results showed that FTO 

genotype had no effect on short-term weight and fat loss (Antonio et al., 2019). 
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CNV is noted for its frequency in healthy individuals. It has been estimated that about 

12 % of the genomes in human populations are subject to CNV. Meanwhile, about 50 

% of reported CNVs overlap with protein-coding regions (Freeman et al., 2006). These 

losses and gains in gene copies may directly influence gene dosage within the CNV 

regions, a differential level of gene expression (Zhao et al., 2013) that is associated 

with (Alkan et al., 2011) or directly involved in diseases such as cancer and 

neuropsychiatric disorders (Zhao et al., 2013). However, the influence of CNVs does 

not necessarily have a negative impact on human health (Zhao et al., 2013). For 

example, high copy numbers of AMY1 have been shown to be associated with a 

reduced risk of obesity (Falchi et al., 2014). The AMY1 locus is located in a CNV 

region on human chromosome 1p21.1 (Falchi et al., 2014). The AMY1 copy number 

is correlated significantly with surrounding SNPs, with an average difference of 0.6 to 

2.0 AMY1 copies per SNP minor allele in individuals with European ancestry (Usher 

et al., 2015). 

 

1.6 Salivary α-amylase  

In 1831, Ethard Leuchs reported that starch is broken down chemically when mixed 

with ptyalin (the agent’s name of saliva) (Butterworth et al., 2011). Amylase has 

several isoforms, which can be secreted by the pancreas (P form) and the salivary 

glands (S form) but can also be found in smaller quantities in some other tissue types. 

Saliva is predominantly (55–65 %) secreted from three major salivary glands: the 

parotid, submandibular and sublingual glands. In healthy humans 40–45 % of the daily 

saliva amount produced from pancreas accounted between 500 to 1500 ml (Santos et 

al., 2012; Pieper-Bigelow, Strocchi and Levitt, 1990). Saliva α-amylase (sAA) is the 

most common protein in human saliva, accounting for between 40–50 % of total saliva 
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protein. sAA has two protein forms: glycosylated sAA and non-glycosylated sAA 

(Yang et al., 2015). Saliva plays several roles. It maintains the health of the oral cavity 

and gastrointestinal tract in general by inhibiting harmful microbes, and it promotes 

healing in oral tissues. It also helps with lubrication of food, and it contains a high 

concentration of the enzyme α-amylase, which is essential in the digestion of complex 

carbohydrates (Pedersen et al., 2002). sAA is an endo-enzyme that catalyses the 

hydrolysis of α-1, 4 glycosidic links in starch, resulting in maltose and larger 

oligosaccharides; The gene for sAA is AMY1(Figure 3) (Yang et al., 2015). 

 

The human AMY1 gene was reported as copying three genes in the original assembly 

of the locus sequence, corresponding to the position of paralogues AMY1A, AMY1B 

and AMY1C. These three copies are 99 % identical in the DNA sequence, and a similar 

sequence identity extends for a region of about 26.5 kb for each copy, which 

corresponds to the underlying copy variable unit of AMY1 (Carpenter et al., 2015). 

Individuals are estimated to have even numbers of AMY1 copies four times more often 

than odd, mostly sharing parity with AMY2A (AMY1 and AMY2A are always either 

both odd or both even) (Usher et al., 2015). Further, AMY1 is very similar to AMY2 

(the gene code for pancreatic amylases) in its coding region; but AMY2 is shorter in 

the 5' untranslated region than the equivalent region in AMY1. The salivary amylase 

gene contains 511 amino acids, which differ by 3% from AMY2 protein (Meiser and 

Ting, 1993). 
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1.7 AMY1 Copy Number and Population Diet 

High salivary amylase activity is associated with a predominantly CHO diet. Squires 

(1952) compared four healthy, young and middle-aged adult groups in relatively close 

geographical propinquity with different amounts of carbohydrates in their diets. 

Squires discovered that 48–50 % of the first group, which was primarily consuming 

carbohydrates, had an average salivary activity rate of between 150 and 300 units/ml. 

As for the second group, which was made up of participants with a mixed-diet, and the 

third group, which consisted of adults with a low-CHO-diet, had activity rates of 101 

and 22 units/ml, respectively. Then, he tested the fourth groups who lived on a 

predominantly carbohydrate diet over a three-month period, in which the salivary 

amylase activity of the group did not vary significantly over the stated timeframe 

(Squires, 1953). Population with high CHO consumption tend to have higher salivary 

activity rate and high copy number of AMY1. 

 

Recently, it was confirmed that the activity, expression, and enzyme concentration of 

amylase are partially correlated with their gene copy numbers (CNs) and vice versa 

(Mandel & Breslin, 2012, Perry et al., 2007). Human salivary amylase genes display 

an extensive copy number variation (Yang et al., 2015). An individual’s genomes can 

have anywhere from 1 to 20 copies of AMY1 (Iafrate et al., 2004; Parry et al., 2007; 

Santos et al., 2012). It has been demonstrated that the average copy number of AMY1 

genes are higher in populations that consume high-starch diets. Therefore, an increased 

number of AMY1 copies seems to represent an advantage in populations that have 

evolved to have starch-eating habits, such as in parts of China (where the daily intake 

is as high as 371g/ day), while it is probably neutral in cultures of low starch intakes 

(Santos et al., 2012). Perry et al. (2007) asserts that the copy number of the salivary 
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amylase gene (AMY1) is positively correlated with salivary amylase protein levels. 

The study also showed that more copies of AMY1 and higher protein levels are likely 

to improve the digestion of starchy food and may reduce intestinal disease. This result 

agrees with Mathew et al. (2008), who determined that populations depending on high-

starch diets have higher diploid copy numbers of AMY1 than those with low-starch 

diets. 

 

1.8 Recent Studies on the Influence of High AMY1 Copy Numbers on Obesity 

Obesity is a complex disorder that is influenced by the interaction of both genetic and 

non-genetic factors. The heritability of BMI is estimated at 40–70 % (El-Sayed 

Moustafa & Froguel, 2013). It has been suggested that genomic copy number variants 

(CNVs) may be a contributor, which in turn explains the heritability of complex 

diseases and common traits.  

 

There appears to be a strong genetic link between carbohydrate metabolism and BMI 

(Falchi et al., 2014). This study examined the susceptibility to obesity in British twins 

and a French adult population by measuring AMY1 copy numbers and the findings 

highlighted that, subjects with a lower estimated AMY1 copy number demonstrated a 

significantly higher risk of obesity when the BMI is increased to 0.15 kg/m² per one 

low copy. The distribution of AMY1 copy numbers ranged from 1 to 18 copies and 

approximately 10 % of subjects were carrying more than 9 AMY1 copy numbers, with 

fewer having less than 4 copies (Falchi et al., 2014). A clinical study identified the 

putative benefits of high AMY1 copy numbers on obesity and energy metabolism 

among children in (Mejia-Benitez et al., 2015; Marcovecchio et al. ,2016), while 
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another clinical study showed that low CNVs of AMY1 were associated with early-

onset female obesity (Viljakainen et al., 2015), and adult males and females (Pinho et 

al. ,2018; Leon-Mimila et al ,2018; Venkatapoorna et al. ,2019; Heianza et al. ,2020; 

Rossi et al. ,2021). In contrast, other well-powered replication studies failed to confirm 

an association between AMY1 copy number and measurements of obesity (Usher et al. 

,2015; Yong et al. ,2016; Rukh et al. ,2017; Shwan etal. ,2019; Valsesia et al. ,2019; 

Shown &Armour ,2019; Al-Akl et al. ,2020; Vázquez-Moreno et al. ,2020). These 

inconsistent results may be due to the heterogeneity in patient samples in terms of 

number, ethnicity and genetic background, age, gender, and the use of a different study 

design and methods such as the type of CNV determined and the data collection on the 

diet and physical activity. 

 

A study conducted on seven healthy participants, by Mandel and Breslin (2012), 

demonstrated that a healthy-weight population with high salivary amylase activity and 

concentration had notably better glycaemic control following an ingestion of liquid 

corn starch compared to a low amylase activity group (Mandel & Breslin, 2012). This 

finding was confirmed by a crossover study of ten healthy participants, which 

substantiated those participants with high amylase activity may have a greater early 

increase in plasma insulin concentration and a low glycaemic response after an 

ingestion of gelatinised starch when compared with a low-amylase activity group. 

However, this result did not achieve statistical significance (Alberti et al., 2015). In 

addition, a cohort study that applied a homeostasis model assessment of insulin 

resistance in 1,257 asymptomatic Korean men, who were not being treated for diabetes, 

established that low CNV of AMY1 had a correlation with insulin resistance in the 

subjects, even after adjusting for BMI (Choi et al., 2015). None of these studies 
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examined the major role of AMY1 after the ingestion of complex carbohydrates or 

evaluated the influence of AMY1 on the glycaemic response after starch ingestion, 

according to the high / low CVN of AMY (as shown in Table 3). 
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Table 1-2 Summary of the Recent Studies Examined the Influence of AMY1 Copy Numbers on BMI and Obesity 

Study Aim Population 
CNV 

determination 
Result 

AMY1 CN 

mean 

(range) 

Conclusion 

Mejia-

Benitez et al. 

(2015) 

Assessing the association 

between a highly polymorphic 

CN of AMY1 and obesity. 

597 Mexican children (293 

of them are obese and 304 

are normal weight 

controls) 

dPCR and a logistic 

regression model 

used to adjust for age 

and sex 

Strong associations between 

AMY1 copy number and 

obesity risk (OR per copy = 

0.84). All children 

with AMY1 copies >10 was 

normal weight. 

~7.0 (1-16) 

Marked effect of high 

number of AMY1 on 

energy metabolism among 

Mexican children  

Falchi et al. 

(2014) 

Examined the influence of 

gene dosage effects on 

adiposity through a CN 

association. 

  

Total 6,200 subjects. 

Family – based 149 

Swedish families (98 M 

and 244 F), 972 Twins 

from UK (1,479 F), 

2,137(942 M and 1,195 

F) from French. 

qPCR 

Both UK and DERIR had a 

similar copy number 

distribution (Wilcoxon test P > 

0.05) and median copy number 

of 6, ranging from 1 to 18. 

 

Rise AMY1 copy number was 

positively associated with Low 

copy number of AMY1 is 

associated with increased BMI 

(change in BMI per estimated 

copy = −0.15 (0.02) kg/m-2 

6.2 (2-17) 

Low copy number of 

AMY1 is related with 

increased BMI 

Usher et al. 

(2015) 

Understand these issues at the 

amylase locus in association 

with BMI 

 

1,000 obese or lean 

Estonians plus two 

other Europeans - cohorts 

totalling ~3,500 

individuals. 

ddPCR and whole 

genome sequence 

analysis, and genome 

mapping 

 

No association between obesity 

and the CN of any amylase gene 

(P= 0.70 for AMY1) 

 

N/A 

 

No association between 

AMY1 CN and obesity or 

BMI 

 

 

Yong et al. 

(2016) 

 

A novel calibration method 

combining qPCR and array-

based dPCR. 

 

This combined method was 

used to validate the previously 

reported association of AMY1 

CN with obesity in two East 

Asian populations. 

 

1,077 males ranging 

from ages 18 to 21 (519 

Chinese controls, 413 

Chinese obese, 30 Malay 

controls, and 115 Malay 

obese) 

 

 

qPCR and dPCR. 

 

AMY1 distribution was from 1 

to 24 copies 

 

CN deduced high correlations 

between qPCR and dPCR. 

 

No significant association in all 

four groups including Logistic 

regression. 

 

~8.2 

No association between 

AMY1 with obesity 

 



Chapter 1: General Introduction              66 

 

 

Marcovecchio 

et al. (2016) 

Assessed the potential 

association between 

AMY1CN and a wide range 

of BMI in a population of 

Italian schoolchildren. 

 

744 children (354 boys, 

390 girls, mean age (±SD): 

8.4±1.4years) 

 

qPCR. 

 

A significant increase of BMI z-

score by decreasing AMY1copy 

number was observed in boys 

(β: -0.117, p = 0.033), but not in 

girls. 

 

8.3 (2-27) 

 

In boys, lower AMY1 CN 

associated with higher BM 

Viljakainen et 

al. (2015) 

Investigated the relationship 

between AMY1 CN, BMI and 

serum amylase in childhood-

onset obesity. 

 

61 males and females with 

a history of childhood-

onset obesity (mean age 

19.1 years) and 71 

matched controls (19.8 

years) 

 

ddPCR 

Mean AMY1 CN did not differ 

between obese and control 

subjects. Obese men showed the 

highest and obese women the 

lowest number of AMY1copies 

(p=0.045). 

 

Only in affected females, 

AMY1 CN correlated 

significantly with whole body 

fat percent (r=-0.512, p=0.013) 

and BMI (r=-0.416, p=0.025). 

6.7 (2-14) 

In obese women, AMY1 

CN inversely correlated 

with whole body fat % 

and BMI 

Rukh et al. 

(2017) 

Investigated the association 

between AMY1 copy number 

and obesity traits 

 

The effect of the interaction 

between AMY1copy number 

and starch intake on obesity 

traits 

4800 obese individuals ddPCR 

AMY1 copy number was not 

associated with BMI (P= 0.80) 

or body fat percentage (P= 

0.38). 

 

A significant effect of the 

interaction betweenAMY1copy 

number and starch intake on 

BMI (P-interaction = 0.007) and 

body fat percentage (P-

interaction = 0.03). 

6.6 (1.2–15) 

No association between 

AMY1 with obesity 

 

Pinho et al. 

(2018) 

Iinvestigating the association 

between AMY1 CNV and 

obesity in young adults of 

Portuguese origin. 

 

262 adults’ individuals 

(155 females and 107 

males) 

ddPCR 

A significant association was 

found between lower AMY1 

copy number and risk of obesity 

(OR = 0.532; p = 0.034), even 

when adjusted for age and sex 

(OR = 0.527; p = 0.039). 

 

However. AMY1 did not show a 

significant association 

between AMY1 CN and risk of 

overweight/obesity in the whole 

population (p = 0.489) 

 

NA 

The high CN of 

AMY1 protects against 

obesity in Portuguese 

young adults 
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León-Mimila 

et al. (2018) 

Evaluated the association of 

AMY1 with obesity and gut 

microbiota in Mexican 

children and adults 

921 children aged 6-12 

920 adults aged 18-75 

 

 

qPCR 

 

AMY1 CN was significantly 

associated with obesity in both 

age groups. Gut microbiota 

analyses revealed a positive 

correlation between AMY1 

copy number and Prevotella 

abundance. 

6.0 (2-19) 

The high CN of AMY1 is 
significantly associated 

with obesity in children 

and adults. AMY1 is 

correlated with gut 

microbiota in humans 

 

Shown 

&Armour 

(2019) 

Tested the BMI‐AMY1 

association at different age 

points in the same individuals 

using longitudinal BMI 

information from participants 

in the UK 1958 Birth Cohort 

study. 

1,400 members of the 1958 

Birth Cohort or in 2,835 

people from two disease 

cohorts from the Case 

Control Consortium 

Paralogue ratio test 

analysis of genomic 

DNA 

No significant association was 

observed (P > 0.05). 

Examined the trajectory of BMI 

with age by testing the 

interaction between AMY1 

copy number, BMI, and age, 

detecting no significant 

interaction term (P = 0.27) an 

association between AMY1 

copy number and obesity 

6.71 (2‐15) 

No evidence, even at 

nominal significance 

between AMY1 copy and 

BMI at any age point 

Valsesia et al. 

(2019) 

Investigating the association 

of AMY1 CN with 

anthropometrics and 

glycaemic outcomes in obese 

individuals. 

 
Investigating the interaction 

between nutrient intakes and 

AMY1 CNs. 

761 obese individuals from 

the Diogenes study 

 

Calorie diet (LCD, at 800 

kcal/d) were randomly 

assigned to a 6-mo weight 

maintenance dietary 

(WMD) intervention with 

arms having different 

glycaemic loads 

Paralog Ratio Test 

(PRT) 

Polymerase Chain 

Reactions (PCR) 

At baseline, a modest 

association between AMY1 CN 

and BMI (P = 0.04) was 

observed. AMY1 CN was not 

associated with baseline 

glycaemic variables. 

 

Additionally, AMY1 CN was 

not associated with 

anthropometric or glycaemic 

outcomes following either LCD 

or WMD. 

6.8 (2 -17.4) 

The associations between 

AMY1 CN and BMI 

changed after LCD. The 

AMY1 CN cannot be 

considered as an important 

biomarker for response to 

a clinical weight loss and 

weight maintenance 

programs in 

overweight/obese subjects. 

Al-Akl et al. 

(2020) 

Assessing this relationship in 

a cohort from Qatar, where 

obesity affects 43% of adults. 

 

Cross-sectionally in 923 

Qatari adults 

Whole-genome 

sequencing data and 

CNVnator, which 

uses read-depth (RD) 

analysis 

The sAA was significantly 

lower in obese individuals. 

 

Significant inverse correlations 

were found between adiposity 

markers and plasma sAA in 

both sexes but were marginally 

stronger in men. 

 

A significant effect of high 

sAA, but not AMY1 CN 

CNV 7 

plasma sAA 

activity 4.73 

and 65.82 U/L 

No evidence, even at 

nominal significance 

between AMY1 copy and 

BMI but this is association 

between. Weight and 

SAAs 
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Heianza et al. 

(2020) 

Investigating associations of 

AMY1 genetic variations with 

general and central adiposity 

changes considering dietary 

carbohydrate intake 

2,054 adults (17,171 

women and 14,883 men) 

 

Changes in general and 

central adiposity over 5.5–

10 years 

 

 

AMY1-GRS using 

nine SNPs associated 

with copy number 

variation 

The carbohydrate food intake 

significantly altered associations 

of AMY1-GRS with changes in 

weight, BMI and WC. 

 

Significant in female cohorts 

rather than in male cohorts. 

Among women, higher AMY1-

GRS was associated with more 

increases in adiposity if dietary 

carbohydrate food intake was 

high, while higher AMY1-GRS 

was associated with less gains in 

adiposity when the dietary 

intake was low 

AMY1-GRS 

ranged 8.5–8.6 

points 

 

In women, higher AMY1-

GRS is associated with 

more increases in 

adiposity if dietary 

carbohydrate food intake 

was high. 

 

While higher AMY1-GRS 

is associated with less 

gains in adiposity when 

the dietary intake was 

low. 

Vázquez-

Moreno et al. 

(2020) 

Investigating the association 

of AMY1A/AMY2A CN and 

AMY1/AMY2 serum 

enzymatic activity with 

childhood obesity 

 

427 and 337 obese 

Mexican cases and 

controls. 

 

Anthropometric and 

dietary starch intake data 

were collected. 

ddPCR 

 

The serum enzyme activity of 

AMY1 and AMY2 was 

negatively associated with 

childhood obesity risk, and the 

association was restricted to 

kids eating medium/high 

amount of starch. 

 

No association between 

AMY1A and AMY2A CN and 

childhood obesity was observed 

in the study sample. 

 

The study confirmed a 

significant association between 

AMY1A CN and obesity in a 

meta-analysis of 3100 Mexican 

children. 

NA 

No evidence, even at 

nominal significance 

between AMY1 and 

AMY2 CN. 

 

A significant association 

between AMY1A CN and 

obesity in a meta-analysis 

of 3100 Mexican children. 

Rossi et al. 

(2021) 

Assessing the impact of 

AMY1 CNs on adiposity 

report conflicting findings in 

different global populations, 

likely reflecting the impact of 

ancestral and ethnic-specific 

environment 

2935 Qatari individuals 

who underwent whole-

genome sequencing 

(WGS) as part of the Qatar 

Genome Programme. 

 

NA 

A negative association 

between AMY1 CNs and trunk 

fat percentage in the Qatari 

population (P = 7.50 × 10−3) and 

show that Qataris of Arab 

descent have significantly lower 

CN at AMY1 

NA 

Lower AMY1 CN was 

associated with increased 

total and trunk fat 
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Table 1-3 The Table Summary of the Studies Examined the Role on AMY1 Copy Number in Glycaemic Response After Starch Intake. 

Study  Aim Population  Method Result 

SAA (mean 

(/ AMY1 

CN 

Conclusion 

Mandel and Breslin (2012)  A cohort 

study assessing 

influence of high CN of 

AMY1 and salivary 

amylase enzymatic 

activity with starch 

digestion  

N=7 in high amylase (HA) level   

 

N=7 low amylase (LA) level  

 

Adult, healthy, BMI <25 

Plasma glucose, plasma 

insulin,  

Measuring salivary amylase 

enzymatic activity,  

AMY1 CN. 

 

OGTT in 50g (10 % 

solution) of a glucose and 

OGTT of 50 g of a corn 

Starch.  

 

 

Blood sampling at -5.0, 

each 3 min first 15 min 

then each 15 min up to 2 

h 5 ml blood used for 

AMY1 assessing FFQ 

HA group was greater in   

1- Salivary flow rate was 1.58±0.25   

mL/min(P<0.05).  
 
2- Amylase concentration 

120±24kU/L(P<0.05)  

   

3-Amylase activity level was 202± 

50 U/min (P<0.01)  

  

4- AH had more AMY1 (P<0.05)  

  

  

Plasma glucose and insulin response 

after starch digestion differed over 

time by (P<0.01).  

  

HA group had lower postprandial 

glycemic responses at 45 (P<0.01), 

60 (P<0.001), and 75(P<0.01) min.  

 

HA had higher insulin concentration 

at first 9 min (0.01), with no change 

in LA insulin after the baseline.  

120 6 24 k U/L  No significant 

difference in 

plasma insulin 

concentration 

between HA and 

sAA at any time.  

   

Alberti et al (2015) 

 

 

 

 

 
 

  Aims to assess the 

relationship between 

salivary amylase 

(AMY1) activity and 

glycaemia response 

   

N- 10 adult male  

 

Age:20.6± 0.97 with normal 

weight  

 

BMI:22.74± 1.36   

Assessed CN of 

AMY1, saliva flow and α-

amylase activity.  

  

Measured blood serum 

insulin levels and 

serum glucose levels.   

  

A significant direct correlation 

between copy number of AMY1 and 

amylase concentration and activity.  

 

The change in amylase activity is 

not statistically associated 

with increase postprandial plasma 

insulin level.  

 

NA  A strong 

association 

between CN 

AMY1 with 

salivary amylase 

activity and 

concentration.  
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Saliva amylase activity is strongly 

correlated with saliva concentration 

which then influence AMY1 CN. 

Choi et al.  (2015) A cohort 

study assessing 

influence of high CN of 

AMY1 and lowering 

the risk of insulin 

resistance.  

N: 1257 Korean men   

 

Age: 20–65 years  

smokers and regular alcohol 

drinkers  

  

CN of AMY1 show 

negative correlate with 

HOMA-IR even after 

adjusting for covariates. 

 
Excluded people with 

fasting plasma glucose  

levels > 10.0 mmol/l, HbA  

1c ≥ 64 mmol/l or with 

insulin or 

oral hypoglycaemic agents   

Low AMY1 CN correlated with high 

insulin resistance in men.  

This relationship is differ depending 

on the status of smoking and alcohol 

consumption.  

6.6 (2-19)  Lower AMY1 

CN associated 

with higher 

HOMA-IR. 

Aldossari et al. (2019) Aims to assess the 

relationship between 

salivary amylase 

(AMY1) activity and 

body mass index (BMI) 

in Saudi male and 

female adults in Riyadh   

200 (100 individuals who were 

overweight and obese and 100 

who had normal body weight 

Food intake assessed using 

a 24-hour dietary recall. 

 

The activity of the AMY 

was measured using a 

microplate fluorescence 

reader. 

AMY1 activity significantly lower 

than the reference values in 

overweight and obese group. = 

 

AMY1 activity was significantly 

(P ≤ .05) reversed with weight, WC, 

HC, and BMI in both males and 

females in overweight and obese 

group 

 Lower amylase 

associated with 

increased risk of 

obesity. 

Higuchi et al. (2020) Aimed to clarify the 

conflicting results of 

previous studies by 

examining AMY1 

expression and 

metabolic indices in a 

homogenous group of 

healthy participants.  

60 healthy non-obese (< 25.0 

kg/m2) young Japanese women 

aged 20 - 39 years 

Participants examined for 

AMY1 CN, salivary 

amylase, BMI and serum 

parameters including 

HbA1c, ketones, and total, 

salivary and pancreatic 

amylase. Respiratory 

quotient at rest and changes 

in blood glucose after 

starch loading also 

examined. 

Total serum amylase was positively 

correlated with blood glucose at 30 

and 45 min after starch loading P = 

0.04 and were correlated inversely 

with HbA1c (r = -0.36, P = 0.003 

and r = -0.30, P = 0.02, 

respectively). 

 

The level of serum total amylase, but 

not AMY1 CN, was correlated 

inversely with BMI (r = -0.29, P = 

0.02) 

AMY1 CN 

(range, 4 - 14) 

66.0±10 

No significant 

direct association 

between AMY1 

CN and BMI. 

 

The total serum 

amylase 

concentration is 

inversely 

associated with 

BMI 
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1.9 Aims and Objectives 

The existing research has substantial gaps, with no clear evidence of a major role for 

AMY1 after the ingestion of complex carbohydrates in relation to the number of AMY1 

copies. Furthermore, CHO oxidation has not been addressed to understand whether 

individuals with high CN of AMY1 are better-able to use CHO as fuel, and although 

inconsistent across populations, no previous studies have examined AMY1 in athletes 

with controlling body weight. Moreover, most of these studies have assessed the link 

between AMY1 and obesity by using BMI and total fat percentage, whereas body fat 

distribution may better explain part of the inconsistency in the research outcomes. 

 

Understanding environmental and genetic factors may help reduce the risk of obesity, 

promote well-being as well as influence athletic performance. Such studies can result 

in a better understanding of the mechanisms involved in the complex CHO metabolism 

responses of weight loss. An example of this is enhancing the exogenous complex CHO 

metabolism, which may increase athletes’ endurance capacity and performance. This 

may also increase the exercise metabolic rate, resulting in a reduced fat mass gain. To 

achieve an understanding of this, four key objectives have been set in four studies for 

this thesis: 

• To determine the association between AMY1 CNV and BMI, 

anthropometric aspects of body composition and strength in male endurance 

athletes. 

• To determine the influence of the AMY1 copy number on body fat 

distribution in adult males and females. 
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• To examine a new protocol designed to determine the association of a high 

copy number variation on the glycaemic response and insulin resistance 

after CHO ingestion.  
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Chapter 2 Overview of Methodology  

2.1 Studies Participants  

The athlete cohort (Genetics of Lithuanian Athletes; GELA) described in Chapter 3 

were recruited from the Lithuanian Sports University (Kaunas, Lithuania). The data 

collected from this cohort included anthropometrics measurements, strength 

measurements and biological samples of Lithuanians (n= 388), male athletes or 

controls (17–37 years old). All molecular and statistical analyses were conducted at the 

University of Stirling. The GELA study was ethically approved by the Lithuanian State 

Bioethics Committee and the University of Stirling, School of Sport Research Ethics 

Committee. Participants for study 2, 3, and 4 described in Chapters 4 and 5 were 

recruited through adverts posted around the University of Stirling’s Campus and on the 

University of Stirling internal website. All testing, molecular and statistical analyses 

were conducted at the laboratories at the University of Stirling. 

 

The Body Composition DEXA (BCD) cohort reported in Chapter 4 recruited 228 

volunteers from the University of Stirling's student population, comprising males and 

females aged 18–40 years. The data was collected in the period between February 2016 

and April 2019. The study protocol was approved by the NHS research committee at 

West of Scotland Research Ethics Service, Glasgow; REC reference: 12/WS/0240 and 

IRAS project ID: 114700. 

 

The studies reported in Chapter 5 were a subset of participants from those recruited at 

the University of Stirling, aged 18–40 years. The participants of the study only included 

those subjects who held copy numbers ≥ 9 of AMY1 or copy number ≤ 5. Participants 
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with ≥ 9 copy of AMY1 were considered as a high copy number group, whereas those 

holding ≤ 5 copy of AMY1 were a low copy number group. The study in Chapter 5 

recruited fifteen participants. The study protocols were approved by the Health Science 

and Sport School Ethics Committee at the University of Stirling. 

 

In all the three studies in this thesis, the participants were asked to attend the laboratory 

in the morning, having fasted for 8–12 hours and rested overnight. Additionally, they 

were asked to refrain from any PA and alcohol ingestion for the 24-hours prior to each 

experimental trial, except the althlet’s cohort participants who attended at least 12-

hours post-exercise. 

 

2.2 AMY1 Copy Number Determination 

2.3 DNA Extraction 

A blood sample is the main source of DNA isolation beside saliva sample and buccal 

epithelial cells (Ooi et al., 2017; Philibert et al., 2008). In a study comparing all three 

ways of DNA isolation for AMY1 CN determination, the saliva derived DNA was 

found to produce the highest quality compared with other methods. This variance may 

be accredited to the amount of the biological samples used for DNA extraction in the 

study. The Biological sample of 500 μL of saliva used to DNA extraction compared to 

only 200 μl of blood and a single buccal swab. Moreover, Ooi et al found that blood, 

saliva samples, and buccal cell yielded good quality DNA for downstream qPCR (Ooi 

et al., 2017). In contrast, another study showed that DNA prepared from whole blood 

performed significantly better than that prepared from saliva in genotyping studies 

(Philibert et al., 2008). As the saliva-derived genomic DNA is easy to collect and 
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handle, it has been the choice of large genetic studies (Sun and Reichenberger, 2014). 

Similar to the first two studies in this thesis, we used this method in the second study 

presented in Chapter 4. However, the DNA of athlete’s study was extracted from blood 

provided from GELA cohort. 

 

All analysis was performed at the University of Stirling. In the Athletes Cohort 

reported in Chapter 3, genomic DNA was extracted from 200 µl of whole blood using 

the QIAamp Spin DNA extraction protocol using silica columns (Macherey-Nagel 

GmbH and Co. KG, Germany) and extraction buffers (Qiagen Ltd, UK). In the Body 

Composition Cohort reported in Chapter 4, genomic DNA was extracted from a 500 

μl saliva sample using the prepIT•L2P purification protocol (Figure 2-1). All DNA 

samples were stored at -20 °C prior to analysis. 

 

Figure 2-1 DNA Extraction Using the prepIT•L2P Purification Protocol From Saliva Sample 

 



Chapter 2: Overview of Methodology        76 

 

RNA can co-purify with DNA also absorbs at 260nm absorbance. as this was used in 

the study there is the potential for an overestimation of the amount of DNA, therefore 

RNA was removed from the original DNA using double-RNase digestion and following 

DNA Genotek instruction. This protocol uses two ribonucleases to treat RNA. The first 

one is ribonuclease A (Sigma-Aldrich, Cat. No. R4875) used to cleave only at U- and 

C- nucleotides, resulting in large fragment apply to precipitate with alcohol. By 

subsequently adding ribonuclease T1 (Sigma-Aldrich, Cat. No. R1003) which cleaves 

at G-nucleotides, the RNA can be digested into very small fragments and therefore is 

no longer precipitated by alcohol (Figure 2-2). 

 

 

Figure 2-2 RNA Removal by double-RNase Digestion Using DNA Genotek Inc Protocol 

 

The DNA yield and purity of samples was measured using the absorbance method on a 

DS-11 Spectrophotometer (DeNovix, Wilmington, DE, USA). The absorbance of 

ultraviolet light (optical density; OD) at wavelengths of 260 nm and 280 nm was 

measured. These values were used to compare the ratio of acid concentration in the 
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sample (OD 260 nm) to that of protein and organic contaminants (OD 280 nm). An OD 

260/280 ratio of ~1.8 and 2.0 was considered ideal for pure DNA. RNA and protein 

contamination are indicated by A260/A280 ratios above and below 1.8 and 2.0 

(Wilfinger, Mackey, and Chomczynski, 2006). A ratio lower than this indicates 

contamination with phenol, and organic matter that absorbs strongly at or near 280 nm 

(Shabihkhani et al., 2014). Each sample had been measured twice, and the average of 

these two measurements used for calculations. Samples with a yield of less than 10 

ng/μL were re-extracted. All DNA samples were diluted to a working concentration of 

5 ng/mL with nuclease-free water. 

 

2.4 Copy Number Assays and Quantitative Real-Time Polymerase Chain 

Reaction (qPCR) 

qPCR was used to analyses the copy number of AMY1 gene. Pre-validated TaqMan 

copy number assays combined with a copy number reference assay were run together 

in a duplex reaction system. The copy number assay detects the target gene of interest, 

and the reference assay detects a sequence that is known to be present in two copies in 

the diploid genome. The primer and probe of TaqMan qPCR assay, Hs07226361_cn 

(Thermo Fisher Scientific, UK) was used in order to target the AMY1 gene. This targets 

a region within exon 1 of the human AMY1 gene that is absent in the AMYP1 

pseudogene, therefore ensuring specificity of the qPCR assay for AMY1gene. For 

adjustment of DNA dilution quantity variation, we used the copy number reference 

assay, which targets the telomerase reverse transcriptase (TERT) (Thermo Fisher 

Scientific, UK) location in chr.5:1253373 on NCBI build 37. This assay has an 88 bp 

amplicon that maps within exon 16 of the TERT gene. This is located on chromosome 

5, cytoband 5p15.33. 
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The TaqMan copy number assay Hs07226361_cn and copy number reference assay 

TERT were chosen after being cross validated with another TaqMan essay for AMY1 

copy number determination (Hs07226362_cn) and TaqMan Copy Number Reference 

Assay (RNaseP) (Thermo Fisher Scientific, UK). Briefly, all the samples of the GELA 

cohort, the BCD cohort, and the ‘serial dilution’ data series were amplified in 4titude 

Frame Star® 384-well plates (Brooks Life Sciences; USA) in a Roche LightCycler480. 

Reactions were 10 µl total volume comprised of 5 µl TaqMan Genotyping Master Mix 

(Applied Biosystems; Foster City, CA, USA), 0.5 µl of TaqMan copy number assay 

Hs07226361_cn, 0.5 µl of TERT reference assay, 2 µl of DNA (5 ng/µl) and 2 µl of 

nuclease-free water. All DNA samples were analysed in triplicate. 

 

2.5 Copy Number of AMY1 Calculation  

The median absolute deviation method was used to identify any outlier crossing point 

(Cp) within each triplicate for each assay including the serial dilutions. The mean of 

the remaining Cps in each triplicate was calculated to give the average Cp for each 

sample. The median absolute deviation was also used to identify any samples from the 

cohort that needed to be repeated because of outlying corrected values. The difference 

between the Cp (ΔCp) of AMY1 gene of and the TERT reference assay was calculated 

to determine the copy number for each participant. 

 

qPCR shows large variability in individuals in copy number of genes like AMY1 with 

extensive CN. Slight changes in reaction efficiency can alter copy number estimates 

(Lin et al., 2008). There are a variety of statistical methods which can be used to 

determine qPCR efficiency. These can produce different result because of the different 

algorithms used. To account for this, both standard curves from serial dilutions (Ruijter 
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et al., 2013) and LinRegPCR (Ramakers et al., 2003) were used to calculate the 

efficiencies of the AMY1 qPCR reactions. No differences were found between the 

methods in AMY1 copy number calculation. So serial dilutions were carried out to 

decrease a level of uncertainty in CNV. Artificial target sequences were manufactured 

for the AMY1 assay target sequence and TERT reference assay target sequence using 

gBlocks (Integrated DNA Technologies, USA). Serial dilutions of gBlocks were used 

to ensure all samples fell within the linear range of the reaction (Figure 2-3) and to 

produce standard curves for AMY1 and TERT (Figure 2-4). Copy number was 

determined by converting the AMY1 and TERT Cps for each sample into arbitrary 

amounts and then dividing one by the other. The standard curve in Figure 2-4 shows a 

1.8 cycle difference between AMY1and TERT. Furthermore, the serial dilution was 

repeated in each batch of samples. 

 

 
 

Figure 2-3 Standard curve of qPCR used for copy number analyses of both AMY1 and TERT. The 

standard curves were constructed by plotting a known amount of the artificial AMY1 and TERT in serial 

2-fold dilutions against the corresponding threshold cycles (Ct values) of the amplification plots. 

 

 



Chapter 2: Overview of Methodology        80 

 

 
Figure 2-4 Standard curve of qPCR used for copy number analyses of both AMY1 and TERT.The 

standard curves were constructed by plotting a known amount of the artificial AMY1 and (1:64) TERT 

in serial 2-fold dilutions against the corresponding threshold cycles (Ct values) of the amplification plots. 

2.6 Body Composition Assessment 

In the study described in Chapter 3 body composition data was calculated from 

skinfold (SF), following standard anthropometric measurements (ISAK), (Hume and 

Marfell-Jones, 2008; Norton and Eston, 2018) by the author of this thesis. SF 

measurements allow the assessment of body composition due to the strong relationship 

between the amount of subcutaneous fat and total BF (González-Ruíz et al.,2018). 

Faulkner’s equation (1968) was used to assess BF % of athletes and controls in Chapter 

3 study. Faulkner’s equation using four skinfolds, today considered a modified Yuhasz 

method %BF = 5,783 + (0,153 (Tr + Sb + Si + Ab)) (Faulkner, 1968). According to 

very recent study Faulkner’s equation may be the best candidate that can be used as 

replacement of BIA method for general male athlete population (Dimitrijevic, Lalovic 

and Milovanov, 2021). A very recent study comparing the accuracy of different 

skinfold-based equations in estimating FM % in a cohort of soccer referees, the 

Faulkner’s equation showed the highest correlation with FM % estimated by DXA 
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(Petri et al., 2020). Muscle mass (MM) was estimated using standardised height and 

skinfold corrected girth measurements of the forearm, calf, and thigh as per the equation 

of Martin et al. (1990). Data from six un-embalmed cadavers were used to derive a 

regression equation to predict total MM (Martin et al., 1990). 

 

The study reported in Chapter 4 that compared the body composition between males 

and females according to quantity of AMY1, BF %, and MM % calculated body 

composition by DXA. All scans were performed and analysed by the standard 

technique. DXA was calibrated with phantom as per manufacturer guidelines before 

measurement. All scans were performed using the standard thickness mode as 

automatically selected by the software. Participants were instructed to wear minimal 

clothing and remove any metallic objects and jewellery. The presence of metal rods 

inflated body composition variables measured by DXA. Metal had the largest impact 

on whole-body bone mineral content (p < 0.034), causing errors of 1.5 % - 3 %. Soft-

tissue mass was increased when the scan included the 100-g rod (p < 0.003) 

(Giangregorio and Webber, 2003). DXA measures body composition in three 

fundamental components of bone-free mass, which are LM, FM, and BMD; this 

principle was explained by Blake (1997). At the end of the scan a total body and 

regional analysis is automatically made by the software and presented in percentage of 

FM and lean mass, in total and body regions, including arms, legs, trunk, and android. 

Body fat % was calculated as the sum of six site skinfolds using the six-site formula for 

men [(sum of SKF) × 0.1051 + 2.588] and women [(sum of SKF) × 0.1548 + 3.58], as 

published by International Standards for Anthropometric Assessment (2012) (Stewart 

et al., 2011; Marfell-Jones et al., 2012; Bi et al., 2018). The sum of six site skinfolds 

was used to calculate BF % in order to obtain accurate estimation. This study was 
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conducted on a general adult population whose body fat could be distributed in their 

upper and lower body. 

 

2.7 Oral Glucose Tolerance Test (OGTT) and Oral Polymers Tolerance Test 

(OPTT) 

A 1.1 x 32mm Cannula (BD Nexiva, USA) was inserted into the participant’s 

antecubital vein for blood sampling. The participants then drank either a 100 % dextrose 

solution as a control for OGTT (My Protein, UK) or a waxy maize starch solution for 

OPTT (My Protein, UK). 40 g of starch was mixed with 500 ml water to get a final 

concentration of 8 %. However, to get 8 % concentration of dextrose and equal energy 

35.4 g of dextrose was mixed with 442.5 ml water (Table 2-1). Then, the participant 

was instructed to finish the drink within two minutes. Both solutions were prepared 30 

minutes before the trial. A sample (5 ml) of blood was drawn at -5, 0, 15, 30, 45, 60, 

90 and 120 minutes. Blood samples were collected in lithium heparin tubes and kept in 

ice until the end of the session (Becton, Dickinson & Company, NJ, USA). 

 

Table 2-1 Nutritional Information of Carbohydrate Solutions 

DRINK 
CONTROL (SINGLE 

CARBOHYDRATE) 

TRIAL (COMPLEX 

CARBOHYDRATE) 

  Glucose Drink (single unit)  Polymer (long-chain)  

SOURCE   100% Dextrose Glucose  100% Waxy Maize Starch  

SERVING  35.4  40  

CONCENTRATION (%)  8.0  8.0  

ENERGY (kcal)  141.6  141.6  

CARBOHYDRATE(g)  35.4  35.2  

OF WHICH SATURATES(g)  35.4  0  

FAT(g)  0  0.08  

PROTEIN (g)  0  0.08  

WATER (ml)  442.5  500  
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2.8 Plasma Analysis 

Blood samples were used to assess plasma glucose (mmol/L), plasma insulin (μIU/mL) 

and fasting plasma total cholesterol (mmol/L), fasting plasma HDL‐C (mmol/L), 

fasting plasma LDL‐C (mmol/L) and triacylglycerol (mmol/L), and non-esterified fatty 

acids (NEFA) (mmol/L). 

 

Each participant drank one glucose solution (OGTT) and one starch solution (OPTT) 

in two different morning sessions a minimum two-day part. At the end of each session, 

the plasma fraction was immediately separated by centrifuging at 3,500 rpm for 15 

minutes at 4ºC. The supernatant plasma was removed and aliquoted into fresh tubes to 

be stored at -80°C for analysis. 

 

An automated Aries ILab benchtop analyser (Instrumentation Laboratories, MA, US) 

was used to assess the plasma glucose, a lipid panel comprising total cholesterol, HDL‐

C, LDL‐C and triacylglycerol, and NEFA at each time points throughout OGTT and 

OPTT. TG and NEFA were measured to assess the impact of the source of metabolic 

fuel, for example, plasma NEFA and TG concentrations increasing in the fasting state, 

while decreasing in the post-prandial state due to an insulin-induced inhibition of 

adipose tissue lipolysis. 

 

To ensure the reliability of the obtained study data, Ilab Aries were calibrated by a 

multicomponent calibrator ReferrIL G (00018257000) for use in the calibration of 

substrate assays (listed in Table 2-2). Reaction volume of 200 μL of each plasma 

sample run in duplicated. This resulted in the concentration being automatically 
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calculated by the instrument against the calibrator and ensuring quality control was 

obtained. Controls SeraChem® Control Level 1(Cat. No.0018162412) and SeraChem® 

Control Level 2 (Cat. No. 0018162512) were used with samples run to establish its own 

mean and standard deviation and adopt a quality control programme. The quality 

control ranges references according to participant’s age, gender, and geographical area. 

Data out of the reference range were excluded and re-analysed. 

 

Table 2-2 Assays and Reagents Used in an Automated Aries ILab Benchtop Analyser 

Catalogue Name Catalogue No. Description 

Total Cholesterol 000018250540 Total Cholesterol reagent 

LDL- Cholesterol 00018256040 LDL- Cholesterol reagent 

HDL- Cholesterol 00018258940 HDL- Cholesterol reagent 

Triglyceride 00018258740 Triglyceride reagent 

NEFA HR II R1 434-91795 NEFA reagent 1 

NEFA HR II R2 436-91995 NEFA reagent 2 

Control Serum I 410-00104 NEFA Control 1 

Control Serum II 416-00204 NEFA Control II 

NEFA HR Standard 270-77000 NEFA Standard 

Glucox 00018259140 Glucose reagent 

SeraChem® 00018162412 Control Level 1 

SeraChem® 00018162512 Control Level 2 

ReferrIL G 00018257000 Calibrator 

 

Plasma insulin concentrations were measured at the same time points as the plasma 

glucose and lipid analysis using a solid phase enzyme-linked immunosorbent assay kit 

(ELISA) based on the sandwich principle according to the manufacturer’s instructions 

(Demeditic, DE2935, Germany). The insulin results are reported in SI units: pmol/L as 

recommended by (Knopp et al., 2018). Gen5 software (BioTek, Winooski, VT, USA) 

was used for ELISA data collection. The average absorbance values were calculated 

for each set standards for controls and participants’ samples. The mean absorbance 
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value for each sample determined the corresponding concentration from the standard 

curve of controls run with each calibration curve. The values and ranges stated on the 

quality control manufacturer’s manual refer to each test kit lot and were used for direct 

comparison of the results. 

 

2.9 Insulin Sensitivity 

Insulin sensitivity was estimated using plasma glucose and insulin concentrations in 

the basal and / or during the OGTT / OPTT, using homeostasis model assessments of 

insulin resistance (HOMA-IR) and whole-body Matsuda insulin sensitivity index (ISI) 

(Matsuda and DeFronzo, 1999; DeFronzo and Matsuda, 2010; Hayashi et al., 2012). 

Elevated HOMA-IR levels indicate low insulin sensitivity. In healthy adults mean 

HOMA-IR levels are below 2.7. The HOMA-IR cut off our study consider by 75 

presential of HOMA-IR, and 25 presential for Matsuda ISI. Following formulas were 

used to calculate HOMA-IR and-Matsuda insulin sensitivity index: 

 

HOMA-IR (Matthews et al., 1985) 

[fasting glucose (mg/dL)] × [fasting insulin (μU/mL)]/405 

 

Matsuda insulin sensitivity index. (Matsuda and DeFronzo, 1999) 

(10,000/square root of [fasting glucose (mg/dL) × fasting insulin (μU/mL)] × [mean 

glucose (mg/dL) × mean insulin (μU/mL)] using the data derived from both OGTT.  
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2.10 Statistical analysis  

All statistical analyses were carried out using SPSS Statistical analyses were performed 

using SPSS (version 25, version 27, version 28, IBM, Armonk, NY, USA). In Athlete’s 

study (Chapter 3) Before merging the data, preliminary analyses were conducted to 

ensure it met all requirements (assumptions). All variables were converted into 

standardized z-scores to identify the univariate outliers. It was found that three cases 

had z-standard scores greater than 3.29 and were subsequently removed from the data. 

In all other cases, standardized z-scores were less than 3.29. Hence the sample size was 

reduced from 407 to 404. Moreover, out of 404, those 16 cases which exceeded the cut-

off scores (using Chi-Square = 54.05) were considered as outliers and were removed 

from the data set. Hence, the sample size reduced from 404 to 388. All phenotype data 

were tested for normality using skewness and kurtosis values within the range (± 2) 

(West et al. ,1995). 

 

One-way ANOVA was used for exploring the differences between group means for 

AMY1 CN, age, body mass, BMI, 𝑉̇O2 max, height, body fat, and FFM.  Associations 

were assessed between AMY1 CNV, BMI, height, weight, body fat, and FMM among 

Lithuanian athletes. The Games-Howell post hoc test was conducted to discover the 

significant differences between group means. Further, Pearson correlation was used to 

assess the association of AMY1 CNV with major study variables among different 

groups.  

 

A hierarchical linear regression analysis was used to predict the AMY1 CNV with 

height and from different anthropometric measurements including Pubic bone (cm), 
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Sitting height (cm), Chin height (cm), Upper sternum (cm), Right femur (cm), Left 

femur (cm), and Arm span (cm) among Lithuanian athletes and non-exercising controls. 

Similarly, A hierarchical linear regression analysis was also useful to predict the AMY1 

CNV from different performance measures, including extension and flexion of 

Isokinetic right and left leg, peak knee.  

 

Because of the significant differences between tested groups, the statistical analysis was 

run in three models (as shows in Table 3-3 and all following presented results. Model 

1 analysis was without adjustment. Model 2 analysis was adjusted for the four 

subgroups: SSP, TEA, END and CON.  Model 3 was adjusted for height and subgroups 

due to the association between height and anthropometrics and body composition 

measurements.  

 

Body composition study (Chapter 4) statistical analyses were performed on data from 

the 288 participants who completed the study. Data was assessed for normality of 

distribution using the Shapiro-Wilk test (Shapiro and Wilk, 1965). Any data which were 

not normal were transformed using the Box-Cox transformation to give better 

approximations of the normal distribution (using version 20.2, Minitab, State College, 

PA.), and normality was confirmed. Data are expressed as mean ± standard deviation 

(SD). An independent sample t-test was used to assess the difference between the mean 

characteristics of both groups. A Non-parametric median test, the Mann Whitney U 

test, was used to analyse the difference between the median values of the two groups. 

Correlation and Linear regression analysis was performed using phenotype data with 

and without group corrections to identify associations between AMY1 CN and the 
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examined variables. As before performing the regression analysis, a correlation 

structure is essential to observe the association (relationship) between the underlying 

variables. When considering an interaction, a p-value of < 0.05 was considered 

significant. Standardized β-coefficient was used to quantify the association and R- 

squared to describe the explanatory rate given for subgroups.  

 

Pilot study (Chapter 5) statistical analyses were performed on data from the 15 

participants who completed the study. Data was assessed for normality of distribution 

using the Shapiro-Wilk test (Shapiro and Wilk, 1965). All values are presented as 

mean ± standard deviation (SD). Independent sample t-tests were run at baseline to 

compare possible mean differences in measured variables between the high CN and 

low CN groups. A two-way repeated measures ANOVA was used to determine whether 

there were significant differences between the two groups (high CN and low CN) 

during OGTT/OPTT periods (trials × time).  

 

The error variance for each study variable was estimated from the corresponding 

intrasubject coefficient of variations (CVs) based on two replicates total 15 non obese 

subjects. The CV is ratio of the slandered deviation of the mean. It is calculated based 

on the average values of the respective level (0-120 min). The incremental glucose 

response vs time was evaluated by area under the curve (iAUC). To measure the 

glucose response vs time during an OGTT / OPTT the trapezoidal method was applied 

(Purves, 1992). The tAUC depends on basal glucose values while the iAUC and pAUC 

are not related to basal glucose value. Since the tAUC is independent of the ever-
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changing baseline glucose or insulin levels, it might be the preferred method for 

evaluation of the response during OGTT (Liu et al., 2018; Khan and Thorsten, 2017). 

 

In clinics, for the diagnostic purpose of impaired glucose tolerance, the area under the 

curve (AUC) defines the glycaemic index   following OGTT. It is helpful in estimating 

blood glucose total rise during OGTT. Later on, incremental area under curve (iAUC) 

was established due to presence of different levels of fasting glucose among different 

subjects. But it created a problematic challenge when it yielded negative values while 

subtracting baseline value of fasting plasma glucose. Hence, after that positive 

incremental AUC (pAUC) established utilizing the values above the base line. Above 

all it is recommended recently that the total is under curve (tAUC) best expresses the 

correlation with two hours OGTT and tAUC is better to be used in preference to IAUC 

and pAUC. (Cheng et al., 2018). Because of the big variance in baseline plasma glucose 

between individuals in the same group. iAUC of plasma glucose and insulin curves 

during OGTT/ OPTT were calculated using GraphPad Prism version 8 (Graphpad 

Software Inc., AC, USA).  

 

G* Power software used to generate the power calculations for future studies based on 

current study data from sample size offered 80 % power (α = 0.05) need to change of 

plasma concentration of glucose, insulin, TG, and NEFA in healthy adults with high / 

low copy number of AMY1. 
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Chapter 3 Copy Number Variation in Salivary α-amylase 1 gene 

associated with stature but not body fatness in Lithuanian male 

athletes and non-exercising controls 

3.1 Abstract 

BACKGROUND: The high copy number variation (CNV) in the salivary amylase 

gene (AMY1) has been associated with obesity in different populations. However, 

several studies have reported inconsistent results. No study has so far assessed the 

association of AMY1 CNV with body composition measures in athletes.  

 

AIM: To investigate association of AMY1 CNV with BMI, underlying anthropometric, 

other body composition measures, and strength in Lithuanian athletes and non-

exercising controls. 

 

METHODS: This study evaluated AMY1 gene copy number in 388 young Lithuanian  

adult males (17-37 years old). The study sample comprised non-exercising Controls 

(CON; n=187), Endurance athletes (END; n=84), Strength-Sprint Athletes (SSP; n=67) 

and Team Sport Athletes (TEA; n=50).  Height, body mass, body fat, and fat-free mass 

(FFM) were measured. Faulkner’s equation (1968) using 4 skinfolds was used to 

calculate fat mass percentage (FM), and Martin et al. (1990) equation thickness 

assessed to calculate FFM. Muscle strength was measured using isokinetic 

dynamometry for extension and flexion of the right and left legs and arms (Biodex Pro3, 

USA) at 30, 90 and 180 °/s, handgrip strength using a Hydraulic Hand Dynamometer 

(Model J00105, Lafayette Instrument Company, Lafayette, IN) and performance of 

whole-body movements, i.e., 30 m sprint.  
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Copy number of AMY1 was estimated by TaqMan quantitative polymerase chain 

reaction (qPCR). All statistical analyses were carried out using SPSS (version 28). One-

way ANOVA and The Games-Howell post hoc were used for exploring the differences 

between group means in variable and AMY. Partial correlation was used to determine 

the association of AMY1 CNV with major study variables. Multiple regression analysis 

was used to predict the anthropometric and body composition from AMY1 CNV 

 

RESULTS: The copy number distributions did not differ between study groups. In two 

– way ANOVA height and anthropometric measurements, and sprint were associated 

with increasing AMY1 CN, after adjustment for athletes’ subgroups AMY1 p-value 

decreased. However, after adding height to the interaction of subgroups and AMY1 CN 

no association was detected. The findings indicated a significant difference among 

groups in age, height, body mass, BMI, 𝑉̇O2 max, body fatness, and FFM and (p < 0.05) 

and all anthropometric measurements (p < 0.001). Body fat (β = 0.34, p < 0.05), and 

FFM (β = 0.32, p < 0.05) significantly predicted from the AMY1. However, 

anthropometric measurements, including pubic bone, sitting height, chin height, upper 

sternum, right femur, left femur, and arm span were not predicted from the AMY1 CNV 

F (7, 380) = 1.45, p > 0.05. 

 

CONCLUSION: Individuals with high copy number of AMY1 are more likely to be 

taller. High AMY1 copy number was not associated with % body fatness, FFM and 

BMI in our cohort, which included athletes and non-exercising controls. Furthermore, 

no relationships were found between AMY1 CN and athletes’ strength. The genetic 
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testing of AMY1 for an association with height as a means of aiding at sport talent 

selection may be premature. 

 

3.2 Introduction 

Obesity is defined as excess body fat measured with a Body Mass Index (BMI) ≥ 30 

kg/m2. It is a complex metabolic disorder influenced by the interaction of genetic and 

non-genetic factors (Herrera, Keildson, and Lindgren, 2011). BMI has a high 

heritability factor, estimated at 40-80 % in twin and family‐based studies (Stryjecki et 

al.,2017; Maes; El-Sayed Moustafa & Froguel, 2013; Zaitlen et al., 2012; Hjelmborg et 

al., 2008; Neale and Eaves, 1997). Apart from genetic predisposition, lifestyle factors 

also play a significant role in obesity, especially dietary factors and physical activity. 

These may suppress the genetic risk of adiposity through a healthy lifestyle. However, 

variation in physical activity also has a high heritability, estimated to be 27 %–84 % in 

twin and family-based studies. Additionally, genetics is still reported to contribute to 

obesity in these individuals (Schnurr et al., 2020).  

 

As with most phenotypes, the identification of individual variants remains largely 

elusive. The cumulative impact of the known variants does not account for the estimates 

of heritability. This is known as missing heritability. It has been suggested that genomic 

copy number variation (CNV) may contribute and explain part of the missing 

heritability of various phenotypes (Nagao, 2015). The influence of CNV on obesity and 

obesity-related phenotypes requires further investigation. 
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Apart from the genetic predisposition, it is widely accepted that BMI and 

anthropometric traits are heavily influenced by physical activity levels (Corder et al., 

2020). Further, physical performance strongly correlates with anthropometric 

characteristics in athletes, and it is considered a success factor in sports (Rienzi et al., 

2000). In distance running events, winners are usually low in body mass and height 

(Berg,2013). Other studies have found an association between poor muscle power and 

high BMI and body fat levels in basketball (Nikolaidis et al., 2015), handball 

(Nikolaidis and Ingebrigtsen, 2013) and soccer players (Nikolaïdis, 2012). This 

association has also been assessed in futsal players, finding a correlation between 

countermovement jump performance and body height (Nikolaidis et al., 2019; Galy et 

al., 2015) and bilateral asymmetries in fat-mass percentage in dominant versus non-

dominant limbs of sub-elite players in the 3rd league as compared to elite players in the 

1st league (López-Fernández et al., 2020; Sekulic et al., 2021). Moreover, body mass 

affects physical dominance, speed, and stamina, while body composition modulates 

agility and strength measures in handball and football. As noted, athletes benefit from 

different anthropometric characteristics depending on their sports (Popovic et al., 2013; 

Arifi et al., 2019).  

 

The balance between fat mass and fat-free mass is helpful to assess energy expenditure 

levels and nutritional requirements (Burke et al., 2006). Similarly, body composition 

can guide dietary interventions in sports nutrition, and it is used by athletic trainers and 

strength coaches to create, evaluate, and optimize their training programs (Moon, 

2013). In athletes, body composition varies and is modulated according to the type of 

physical activity (Wilmore et al., 1972), with decreased performance levels as body fat 

increases (Welch et al., 1958). Not surprisingly, body composition in football players 
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ranges between 4 and 29 % body fat depending on their position, suggesting that body 

composition is also variable within the same sport (Costa et al., 2002; Moon et al., 

2009; Bouchard et al., 1999). 

 

A previous study in twins estimated the role of genetics and environmental factors to 

determine anthropometric measurements, including standing height, knee height, 

sitting height, chest circumference, body weight, biiliac diameter, and arm span, finding 

high heritability of all the measurements, estimated in 40 % - 91 % (Chatterjee et al., 

1999). In sports genomics studies involving athletes of many disciplines, the heritability 

of athlete status was estimated at 66 %. A closer look at individual traits would show 

that muscle strength heritability ranges from 30 to 80 % in various phenotypes such as 

isometric knee strength, handgrip strength, and elbow flexion (Maciejewska-Skrendo 

et al., 2019). 

 

Further, worldwide studies confirm the influence of genetic factors over athletic 

performance, and more specifically, over strength, flexibility, endurance, psychological 

traits, neuromuscular coordination, among other essential features in sports 

(Maciejewska-Skrendo et al., 2019). Muscle strength is a variable trait determined by 

behavioural factors such as pain tolerance or motivation to train (Sallis et al., 1992; 

Boutelle et al., 2004). Individuals with an advantageous genetic predisposition have a 

higher chance of becoming an athlete when environmental factors and genetics interact 

in favour of strength and other physical traits (Kostek et al., 2010). The influence of 

genetic factors is estimated at 44 % - 68 % for endurance-related phenotypes 

(Miyamoto‐Mikami et al., 2018). Also, as a consequence of the thrifty genotype 
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hypothesis (Chakravarthy et al., 2004), genetic variants that predispose modern 

sedentary individuals to obesity may also predispose physically active individuals to 

have high endurance capacity. 

 

One of the genes linked to BMI is the human salivary amylase gene, which displays 

extensive CNV variations between individuals. The set of alpha-amylase 1 (AMY1) 

genes has been shown to range from 1 to 20 copies (Parry et al., 2007; Santos et al., 

2012). A higher AMY1 copy number has been linked with lower BMI and obesity risk 

in a group of 6,200 adults of European and Asian origin (Falchi et al., 2014). Still, 

subsequent studies yielded conflicting results when replicating these findings. For 

instance, association with AMY1 CNVs was not replicated in a study that included 

4,000 individuals of European ancestry, including individuals at the extremes of the 

BMI distribution and despite its 99 % power to detect such an association (Usher et al., 

2015). Similar results were reported in a case-control study of 932 Chinese and 145 

Malay samples (Yong et al., 2016) and 1,400 participants from the UK 1958 Birth 

Cohort (Shwan et al., 2018). Conversely, studies specifically analysing obesity in 

children and young adults supported the association of BMI with amylase gene copy 

number in Mexican children (Mejia-Benitezet et al., 2015), Italian school’s boys 

(Marcovecchio et al., 2016), and French adults (Bonnefond et al., 2017). These studies 

highlight the complexity of assessing an endpoint that comprises genetic and 

environmental components, suggesting that differences in ethnicity, environment, and 

food preferences may further influence the manifestation of this complex phenotype as 

genetic susceptibility. However, to this date, AMY1 CNVs have not been tested in 

physically active populations, nor has their influence been tested on physical 

performance. Rossi et al. observe a negative association between AMY1 CNVs and 
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anthropometric characteristics in the Qatari people, particularly in the trunk fat 

percentage (p = 7.50 × 10−3) (Rossi et al., 2021). Investigating the association between 

AMY1 CNV, BMI, and strength in different populations may provide additional insight 

into the role of this variation in modulating physical performance. 

 

BMI is a useful measure in extensive epidemiological obesity studies, but it is not an 

accurate measure of adiposity. BMI predicts body fat percentage differently in males 

and females: for the same BMI, the percentage of body fat of females was ~ 10 % higher 

than that of males (Jackson et al., 2002). BMI has also been shown to systematically 

under-or over-estimate body fat percentage in females from different ethnic groups 

(Jackson et al., 2002; Heo et al., 2012). Alternatively, AMY1 CNVs may relate to 

aspects of BMI such as height or weight to discriminate between fat mass or muscle 

mass. Furthermore, research in adults suggests that BMI is negatively correlated with 

height, especially in women and older adults (Sperrin et al., 2015). Muscle mass and 

height are known to have significant heritable components and be affected by diet (You 

et al., 2018). Consequently, it is essential to assess the association of AMY1 copy 

number with more detailed anthropometric and body composition measurements and 

BMI. 

 

This study aims to investigate AMY1 CNVs in association with BMI and body 

composition, including body fat percentage, FFM (kg), and anthropometric measures 

of body composition. It is also the aim of this study to determine the association 

between AMY1 CNVs and strength in physically active Lithuanian athletes and non-
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exercising controls. To achieve the objective of this study, we seek to answer these 

questions: 

1. Is the athletes’ group displaying a higher number of AMY1 copies than 

controls? 

2. Is a high copy number of AMY1 associated with low BMI, weight, FM, 

and FFM, as well as increasing height among athletes or control? 

3. Is an increasing copy number of AMY1 associated with athletes’ 

performance and strength compared to controls? 

 

3.3 Methodology 

Ethical approval was obtained for the Genetics of Lithuanian Athletes (GELA) study 

from the Lithuanian State Bioethics Committee and the University of Stirling School 

of Sports Research Ethics Committee. Written informed consent was obtained from all 

participants, and the study was conducted in accordance with the Declaration of 

Helsinki (World Medical Association, 2008). All physiological data were collected in 

2009 at the Lithuanian University of Sport. All CNV assessments and statistical 

analyses were conducted by the author of this thesis at the University of Stirling. 

 

3.3.1 Study Participants 

The participants’ demographics are summarised in Table 3-1. For this study, native 

Lithuanian (n= 388 following outlier removal) males (17-37 years old) were recruited 

at the Lithuanian Sports University (Kaunas, Lithuania). The study excluded any 

participants unable to perform the physiological tests due to injury or disease to confirm 

their capacity to perform close to their peak at the time of phenotype determination. 
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The study also excluded any athletes who failed to be included in the category of Team 

Sports Athletes (TEA), Strength-Sprint (SSP) or Endurance (END) users, as well as 

those who no longer performed at their top level. A total of 338 participants met the 

inclusion criteria for further analysis and remained in the study. 

 

The study sample was divided into non-exercising controls (CON; n= 187) and athletes 

(n= 201). The latter included the subgroups of Strength – Sprint athletes (SSP; n= 67), 

Team Sports Athletes (TEA; n=5 0), and endurance athletes (END; n= 84). The SSP 

group included weightlifters, bodybuilders, strongmen, combat athletes, field athletes, 

gymnasts, short-distance swimmers, and runners. The TEA group included handball, 

volleyball, basketball, and football players. The END group included long-distance 

runners, cyclists, triathletes, kayakers, modern pentathletes, orienteers, skiers, and 

walkers. According to the athletes’ highest levels of competition, they were also divided 

into recreational athletes (n= 30), regional athletes (n= 38), national athletes (n= 120), 

and international athletes (n= 20). Regional athletes were members of their local area 

squad. National athletes ranked in the top 3 for their sport or had been included in a 

Lithuanian national sport squad. International athletes included in the study represented 

Lithuania at the Olympic Games or World Championships. All athletes trained a 

minimum of twice a week, whereas control individuals did not participate in organised 

exercise more than twice a week and did not participate in competitive sports.  

 

3.3.2 Experimental Procedures 

All participants visited the testing laboratory on three separate occasions, having rested 

for at least 12-hours and fasted for at least 2-hours. In their first visit, 10 ml venous 
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blood was drawn into an EDTA container and frozen at -80 oC prior to DNA extraction. 

DNA was extracted using NucleoSpin® Blood kits (Machery-Nagel, Germany). 

During the laboratory visits, the participants were required to fill out questionnaires and 

complete a range of standardised physiological tests carried out by trained examiners. 

The laboratory visits allowed detailed phenotypes to be collected, including 

anthropometric measures, body composition, endurance performance, strength 

performance, and cardiac size and function. For the current study analysis, a subset of 

the tests which require strength and power phenotypes were selected, including 

isokinetic dynamometry for extension and flexion of the right and left legs and right 

and left arms (Biodex Pro3, USA). During the muscle strength test, participants 

performed five repetitions of maximal isokinetic knee extensions and flexions with a 

range of motion at velocities of 30° and 180 °/s. A knee joint angle of 30° corresponding 

to full extension at 90 and 180 °/s, and whole-body movement performance, i.e., the 

completion of a total sprint.  

 

Percentage body fat (BF %) was calculated by Faulkner’s (1968) equation considering 

the modified Yuhasz method using the sum of 4 skinfolds site measurements: Triceps 

(Tr) Subscapularis (Sb), Suprailiac (Si), and Abdominal (Ab). Faulkner’s equation 

(1968) using 4 skinfolds, today known as a modified Yuhasz method was calculated 

using the following formula:  

%BF = 5,783 + (0,153 (Tr + Sb + Si + Ab)) 

(Pires-Neto et al., 2017 ; Faulkner, 1968). 
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3.3.3 AMY1 Copy Number Determination by Quantitative Polymerase Chain 

Reaction (qPCR) Reactions 

Genomic DNA was extracted from 200 µl of whole blood using the QIAamp Spin DNA 

extraction protocol. AMY1 copy numbers were determined using a pre-validated 

TaqMan qPCR assay, Hs07226361_cn (Thermo Fisher Scientific, UK). This targets a 

region within Exon 1 of the human AMY1 gene absent in the AMYP1 pseudogene, 

therefore ensuring the specificity of the qPCR assay for AMY1. Briefly, all samples 

were amplified in 384-well plates in a Roche LightCycler480. Reactions were 10 µl in 

volume comprised of 5 µl TaqMan Genotyping Master Mix (Applied Biosystems; 

Foster City, CA, USA), 0.5 µl of TaqMan Copy Number Assay Hs07226361_cn, 0.5 

µl of TERT reference assay, 2 µl of DNA (5 ng/µl) and 2 µl of nuclease-free water.  

 

All DNA samples were analysed in triplicate. Artificial target sequences were 

manufactured for the AMY1 assay target sequence and TERT reference assay target 

sequence using gBlocks (Integrated DNA Technologies, USA). Serial dilutions of 

gBlocks were used to ensure all samples fell within the linear range of the reaction and 

to produce standard curves for AMY1 and TERT. Copy number was determined by 

converting the AMY1 and TERT Cps for each sample into arbitrary amounts and then 

dividing one by the other. Samples were assessed in six batches, with batch included as 

a covariate in general linear model analysis. 

 

3.3.4 Statistical Analysis 

All statistical analyses were carried out using SPSS (version 28, IBM, Armonk, NY, 

USA). Before merging the data, preliminary analyses were conducted to ensure it met 
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all requirements (assumptions). All variables were converted into standardized z-scores 

to identify the univariate outliers. It was found that three cases had z-standard scores 

greater than 3.29 and were subsequently removed from the data. In all other cases, 

standardized z-scores were less than 3.29. Hence the sample size was reduced from 407 

to 404. Moreover, out of 404, those 16 cases which exceeded the cut-off scores (using 

Chi-Square = 54.05) were considered as outliers and were removed from the data set. 

Hence, the sample size reduced from 404 to 388. All phenotype data were tested for 

normality using skewness and kurtosis values within the range (± 2) (West et al. ,1995). 

 

One-way ANOVA was used for exploring the differences between group means for 

AMY1 CN, age, body mass, BMI, 𝑉̇O2 max, height, body fat, and FFM.  Associations 

were assessed between AMY1 CNV, BMI, height, weight, body fat, and FMM among 

Lithuanian athletes. The Games-Howell post hoc test was conducted to discover the 

significant differences between group means. Further, Pearson correlation was used to 

assess the association of AMY1 CNV with major study variables among different 

groups.  

 

A hierarchical linear regression analysis was used to predict the AMY1 CNV with 

height and from different anthropometric measurements including Pubic bone (cm), 

Sitting height (cm), Chin height (cm), Upper sternum (cm), Right femur (cm), Left 

femur (cm), and Arm span (cm) among Lithuanian athletes and non-exercising controls. 

Similarly, A hierarchical linear regression analysis was also useful to predict the AMY1 

CNV from different performance measures, including extension and flexion of 

Isokinetic right and left leg, peak knee.  
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Because of the significant differences between tested groups, the statistical analysis was 

run in three models (as shows in Table 3-3 and all following presented results. Model 

1 analysis was without adjustment. Model 2 analysis was adjusted for the four 

subgroups: SSP, TEA, END and CON.  Model 3 was adjusted for height and subgroups 

due to the association between height and anthropometrics and body composition 

measurements.  

 

3.4 Result  

3.4.1 Study Participants 

An ANOVA test was carried out to explore the difference between groups in terms of 

AMY1, age, height, body mass, BMI, 𝑉̇O2 max, body fatness, and FFM (kg). The 

findings indicated a significant difference between groups in age, height, body mass, 

BMI, 𝑉̇O2 max, body fatness, and FFM (kg) (p < 0.05). However, no difference in 

AMY1 CN was observed between the groups. Further, findings of the post-hoc analysis 

based on Games-Howell indicated that the mean age in the control group was 

significantly higher than all three athlete groups. The mean height in the control group 

was significantly lower than that of the athlete groups. 

 

The results also indicated that the mean body mass in the control group was 

significantly lower than the TEA and SSP subgroups. However, it was higher than the 

END subgroup of athletes. On the other hand, the mean BMI of the control group was 

found to be significantly higher than the END group while significantly lower than of 

the SSP group.  And no differences have been found in the mean BMI between the 

control group and TEA group. The 𝑉̇O2 max of control group was significantly lower 
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than other athlete’s groups. However, the mean body fatness in the control group was 

significantly higher than the mean of all three athlete’ groups. Lastly, the results showed 

that the mean FFM of the control group was significantly lower than the TEA and SSP 

groups. However, it was significantly higher than the END subgroup of athletes (Table 

3-1) 

 

Table 3-1 Descriptive Characteristics of the Groups of Participants.  

Variables 

Groups  

Control 

(N = 187) 

END 

(N = 84) 

TEA 

(N = 50) 

SSP 

(N = 67) 
 

 Means ± SD Means ± SD Means ± SD Means ± SD F 

AMY1 6.58 ± 2.12 6.88 ± 2.54 6.46 ± 2.28 6.82 ± 2.15 0.60 

Age (year) 23.91 ± 4.28* 21.68 ± 3.61* 21.06 ± 3.02* 22.31 ± 3.35* 11.41* 

Height (cm) 180.17 ± 5.81* 179.27 ± 5.42 186.98 ± 7.49* 180.56 ± 5.42 20.55* 

Body mass (kg) 76.37 ± 10.06* 70.56 ± 6.67* 80.56 ± 7.86* 80.30 ± 10.99* 18.14* 

BMI (kg.m-2) 23.50 ± 2.66* 21.95 ± 1.70* 23.03 ± 1.48 24.57 ± 2.69* 16.24* 

𝑽̇O2 max (l/min) 3.84 ± 0.50* 4.52 ± 0.47* 4.40 ± 0.47* 4.12 ± 0.45* 46.03* 

Body Fat (%) 13.73 ± 3.67* 10.50 ± 1.39* 11.93 ± 2.04* 12.40 ± 2.52* 24.61* 

FFM (kg)  64.04 ± 6.62* 62.57 ± 5.52 69.45 ± 6.78* 68.51 ± 8.31* 18.07* 

Display mean differences among groups including: SSP; strength - sprint athletes, END; endurance athlete, TAE; 

team sports Player Athletes, and Control Values are the total number with the number of the group in brackets. Data 

are expressed as means ± SD, and p < 0.05 was considered statistically significant (*).  

 

3.4.2 Anthropometric Measurements Difference between Athlete Groups and 

Controls 

An ANOVA test revealed differences between groups in terms of anthropometric 

measurements, including pubic bone, sitting height, chin height, upper sternum, right 

femur, left femur, and arm span (all p < 0.001). Further, results of the post hoc analysis 

based on Games-Howell showed that the mean pubic bone, sitting height, chin height, 

upper sternum height and arm span of the control group were all significantly lower 
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than those of the TEA group. However, the mean right and left femur lengths were 

significantly lower in the control group rather than the TEA and SPSS groups (Table 

3-2). 

 

Table 3-2 Mean Difference Anthropometric Measurements Difference Between Athletes’ Groups and 

Controls.  

 

Variables 

Groups  

Control 

(N = 187) 

END 

(N = 84) 

TEA 

(N = 50) 

SSP 

(N = 67) 

 

 Means ± SD Means ± SD Means ± SD Means ± SD F 

Pubic bone  93.65 ± 4.26* 93.06 ± 3.57 97.27 ± 5.85* 93.80 ± 4.13 11.22* 

Sitting height 95.22 ± 2.89* 94.38 ± 3.25 98.42 ± 3.19* 95.14 ± 3.01 19.94* 

Chin height 156.98 ± 5.74* 156.30 ± 5.09 164.03 ± 7.14* 157.60 ± 5.23 22.95* 

Upper sternum 147.10 ± 5.16* 146.59 ± 4.61 153.09 ± 6.93* 147.44 ± 5.03 19.34* 

Right femur 45.56 ± 2.80* 46.03 ± 2.44 48.64 ± 3.36* 46.98 ± 2.34 14.56* 

Left femur 45.91 ± 2.76* 46.39 ± 2.38 48.64 ± 3.42* 47.27 ± 2.32* 15.07* 

Arm span  186.79 ± 7.09* 184.95 ± 6.41 192.31± 8.65* 187.51± 7.19 11.40* 

Athletes’ groups including: SSP; strength - sprint athletes, END; endurance athlete, TAE; team sports player 

athletes, and Control. N is the total number in each group. Data are expressed as means ± SD. P < 0.05 was 

considered statistically t and labelled by * 

 

3.4.3 AMY1 Copy Number Distribution 

The copy number distributions were similar by group. Overall, the copy number of 

AMY1 in this study ranged between 1 and 14 copies (Figure 3-1 A.). The number of 

copies did not differ between athletes and the control group, with a mean of 6.80 copies 

for both (Figure 3-1 B.). Nor were there significant differences between athlete 

subgroups CON, END, TEA, and SSP p = 0.957). 
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Controls END SSP TSP p-value 

6.58 ± 2.12 6.88 ± 2.54 6.46 ± 2.28 6.82 ± 2.15 0.957 

 

Figure 3-1 Distribution of AMY1 Copy Number in the Study Population. Figure A represents total 

participants and figure B shows participants by subgroups. Athletes’ groups including: SSP(n = 50); 

strength - sprint athletes, END(n = 84); endurance athlete, TAE (TSP) (n = 67); team sports player 

athletes, and Control(n = 187). Estimates of copy numbers have been rounded to the nearest integer and 

presented in percentage. Data are expressed as means ± SD. p< 0.05 was considered statistically. 
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3.4.4 The Association Between AMY1 CNV and Anthropometrics and Body 

Composition Measurements 

The association between AMY1 and both BMI and FFM strengthened after adjustment 

for subgroups (Model 2) compared to the unadjusted model (Model 1). However, the 

association weakened after additionally adding height to the model (Model 3) 

confirming the lack of association between AMY1 CN and BMI and FFM. Further, the 

AMY1 p-value weight increased after adjustment for subgroups than before adjustment 

for subgroups. However, the AMY1 CN p-value decreased after adding height to the 

interaction of subgroups and AMY1 CN conforming the luck of association between 

AMY1 CN and weight. Moreover, the results indicated that the AMY1 p-value for body 

fat decreased in a linear pattern after adjustment for subgroups than before adjustment 

for subgroups and after adding height conforming the luck of association between 

AMY1 CN and body fat %. In contrast the AMY1 p-value for height was decreased 

after adjustment for subgroups conforming significant association between AMY1 CN 

and height (Table 3-3).  

 

The findings revealed that the AMY1 p-value for Anthropometrics Measurements 

including Pubic bone (cm), Sitting height (cm), Chin height (cm), Right femur (cm), 

and Left femur (cm) variation pattern was constant as the AMY1 CN p-value were 

decreased after adjustment for subgroups than before adjustment for subgroups that 

conforming the significant association between high AMY1 CN and the BC 

measurements (Model 1 and Model 2). However, the AMY1 p-value for all the 

measurements increased after adding height to the interaction of subgroups and AMY1 

CN. So, the detected substantial associations in Model 1 and Model 2 were disappeared 

after adjusted for height (Table 3-3). 
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3.4.4.1 The Associations Between AMY1 CNV and Measures of Strength-

Isokinetic Right leg, peak knee Extension & Flexion  

The AMY1 CN was not associated with the Measures of Strength-Isokinetic Right leg, 

peak knee Extension including 90d / sec. The AMY1 CN p-value increased after adding 

height to the interaction of subgroups and AMY1 CN in Model3 compared to the first 

two models.  Further, the findings indicated that the AMY1 p-value for Isokinetic Right 

leg, peak knee Extension including 180d / sec and 30d / sec, increased after adjustment 

for subgroups than before adjustment for subgroups and after adding height to the 

interaction of subgroups and AMY1 CN. But all of thesis associations were not 

significant.  

 

Further, the AMY1 CN p-value for Measures of Strength-Isokinetic Right leg, peak 

knee Flexion including 30d / sec, decreased after adjustment for subgroups in model2 

than before adjustment for subgroups in model1. However, the AMY1 CN p-value 

increased after adding height to the interaction of subgroups and AMY1 in model3. 

Moreover, the AMY1 CN p-value for Measures of Strength-Isokinetic Right leg, peak 

knee Flexion including 90d / sec, decreased after adjustment for subgroups in model2 

than before adjustment for subgroups and after adding height to the interaction of 

subgroups and AMY1 CN in model1 and model3. 90d/sec. In contrast, the AMY1 p-

value for Measures of Strength-Isokinetic Right leg, peak knee Flexion including 180d 

/sec, increased after adjustment for subgroups than before adjustment for subgroups 

and after adding height to the interaction of subgroups and AMY1 CN in model1 and 

model3.  But all of thesis associations were not significant (Table 3-3). 
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The AMY1 CN p-value for Measures of Strength-Isokinetic Left leg, peak knee 

Extension including 30d / sec, 90d / sec and 180d / sec, consistently increased after 

adjustment for subgroups in model2 than before adjustment for subgroups and after 

adding height to the interaction of subgroups and AMY1 CN model1 and model 3. But 

all of thesis associations were not significant (Table 3-3). 

 

The AMY1 CN p-value for Measures of Strength-Isokinetic Left leg, peak knee Flexion 

including 30d / sec, 90d / sec and 180d / sec, uniformly decreased after adjustment for 

subgroups than before adjustment for subgroups. However, the AMY1 CN p-value for 

Measures of Strength-Isokinetic Left leg, peak knee Flexion including 30d / sec, 90d / 

sec and 180d / sec, uniformly increased after adding height to the interaction of 

subgroups and AMY1 CN. But all of thesis associations were not significant (Table 3-

3). 

 

The AMY1 CN p-value for sprint total uniformly increased after adjustment for 

subgroups than before adjustment for subgroups and after adding height to the 

interaction of subgroups and AMY1. The detected substantial associations in Model 1 

and were disappeared after adjusted for subgroups and after height in model 2 and 

model 3(Table 3-3). 

Table 3-3 The p-values from GLM Analysis of the Associations Between AMY1 CN and Measures of 

Anthropometrics, Strength and Speed.  

 

Variables Model 1  Model 2  Model 3  

BMI (kg.m-2) 0.429 0.334 0.939 

Height (cm) 0.034* 0.013* -- 

Weight (kg) 0.668 1.000 0.911 

Body Fat (%) 0.887 0.460 0.396 
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FFM (kg) 0.395 0.206 0.869 

Pubic bone (cm) 0.021* 0.007* 0.105 

Sitting height (cm) 0.047* 0.023* 0.712 

Chin height (cm) 0.033* 0.014* 0.046 

Upper sternum (cm) 0.082 0.036 0.138 

Right femur (cm) 0.038* 0.006* 0.056 

Left femur (cm) 0.025* 0.005* 0.051 

Arm span (cm) 0.099 0.051 0.743 

Isokinetic Right leg, peak knee Extension 

30d/sec 0.622 0.656 0.869 

90d/sec 0.409 0.372 0.982 

1800d/sec 0.431 0.462 0.582 

Isokinetic Right leg, peak knee Flexion  

30d/sec 0.516 0.358 0.596 

90d/sec 0.983 0.839 0.780 

180d/sec 0.786 0.805 0.857 

Isokinetic Left leg, peak knee Extension 

30d/sec 0.245 0.460 0.796 

90d/sec 0.224 0.395 0.848 

1800d/sec 0.143 0.220 0.982 

Isokinetic Left leg, peak knee Flexion  

30d/sec 0.169 0.113 0.949 

90d/sec 0.250 0.186 0.549 

180d/sec 0.192 0.100 0.916 

Sprint Total 0.041* 0.078 0.092 

(*) p < 0.05 was considered statistically significant. Model 1: unadjusted, Model 2: adjusted for athletes’ groups 

according to type of sport SSP; strength - sprint athletes, END; endurance athlete, and TEA; team sports Player 

athletes, and controls and Model 3: adjusted for height.  

 

3.4.4.2 Prediction of Anthropometric and Body Composition from AMY1 CNV 

A hierarchical linear regression analysis was carried out to evaluate the utility of AMY1 

in the prediction of anthropometric and body composition including BMI, height, 

weight, body fat and FFM. For the first model (Model1) the predictor variables were 

analysed without adjusting for subgroups and heights. The results indicated that the 

model was not statistically significant F (5, 382) = 1.93, p >0.05. Additionally, the R2 
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value of (0.025) associated with the regression model suggests that the predictor 

variables account for (2.5 %) variation in the AMY1, which mean that (97.5 %) of the 

variation in BMI, height, weight, body fat and FFM cannot be explained by the 

predictor AMY1 CNV alone. Further, the findings indicated that despite the model was 

not statistically significant the body fat (β = 0.34, p < 0 .05), and FFM (β = 0.32, p < 

0.05) significantly predicted by the AMY1.  

 

Similarly, for the second model (Model 2) the predictor variables were analysed with 

adjustment for subgroups. The results indicated that the model was not statistically 

significant F (6, 381) = 1.70, p > 0.05. Additionally, the R2 value of (0.026) associated 

with the regression model suggests that the predictor variables account for (2.6 %) 

variation in the AMY1, which means that (97.4 %) of the variation in BMI, height, 

weight, body fat and FFM cannot be explained by the predictor variable alone. Further, 

the findings indicated that despite the model was not statistically significant and after 

adjustment for subgroups the body fat (β = 0.36, p < 0.05), and FFM (β = 0.33, p < 

0.05) significantly predicted by the AMY1.  

 

Moreover, for the third model (Model 3) the predictor variables were analysed with 

adjusting for height. The results indicated that the model was not statistically significant 

F (5, 382) = 1.93, p > 0.05. Additionally, the R2 value of (0.025) associated with the 

regression model suggests that the predictor variables account for (2.5 %) variation in 

the AMY1, which means that (97.5 %) of the variation in the AMY1 cannot be 

explained by the predictor variables alone. Further, the findings indicated that despite 

the model was not statistically significant and after adjusting for height two of the 
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predictors including body fat (β = .34, p < 0.05), and FFM (β = .32, p < 0.05) 

significantly predicted the AMY1 (Table 3-5). 
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Table 3-4 A Hierarchical Linear Regression Analysis Results of Associations between AMY1 copy 

number and Anthropometric and Body Composition.  

Phenotype 

Model 1 Model 2 Model 3 

β Coefficient 

(95% CI) 

β Coefficient 

(95% CI) 

β Coefficient 

(95% CI) 

BMI (kg.m-2) 0.43 (-0.92, 1.77) 0.45 (-0.90, 1.80) 0.43 (-0.92, 1.77) 

Height (cm) 0.14 (-0.20, 0.49) 0.15 (-0.20, 0.50)  

Weight (kg) -0.41 (-0.85, 0.04) -0.43 (-0.88, 0.02) -0.41 (-0.85, 0.04) 

Body Fat (%) 0.34 (0.03, 0.64) * 0.36 (0.05, 0.67) * 0.34 (0.03, 0.64) * 

FFM (kg) 0.32 (0.04, 0.60) * 0.33 (0.04, 0.61) * 0.32 (0.04, 0.60) * 

R2 0.025 0.026 0.025 

β coefficient and 95% Confidence interval, and p < 0.05 was considered statistically significant (*). Model 1: 

unadjusted, Model 2: adjusted for athletes’ groups according to type of sport SSP; strength - sprint athletes, END; 

endurance athlete, and TAE; team sports Player athletes, and controls and Model 3: adjusted for height and 

subgroups. 

 

3.4.4.3 Prediction of Anthropometric Measurements from AMY1 CNV 

A hierarchical linear regression analysis was carried out to evaluate the prediction of 

AMY1 from anthropometric measurements, including pubic bone, sitting height, chin 

height, upper sternum, right femur, left femur, and arm span. For the first model (Model 

1) the predictor variables were analysed without adjusting for subgroups and heights. 

The results indicated that the model was not statistically significant F (7, 380) = 1.45, 

p > 0.05. Additionally, the R2 value of (0.026) associated with the regression model 

suggests that the predictor variables account for (2.6 %) variation in the AMY1, which 

mean that (97.4 %) of the variation in the AMY1 cannot be explained by the predictor 

variables alone. 

 

Similarly, for the second model (Model 2) the predictor variables were analysed with 

adjusting for subgroups. The results indicated that the model was not statistically 
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significant F (8, 379) = 1.27, p > 0.05. Additionally, the R2 value of (0.026) associated 

with the regression model suggests that the predictor variables account for (2.6 %) 

variation in the AMY1, which mean that (97.4 %) of the variation in the AMY1 cannot 

be explained by the predictor variables alone.  

 

Moreover, for the third model (Model 3) the predictor variables were analysed with 

adjusting for height. The results indicated that the model was not statistically significant 

F (8, 379) = 1.28, p > 0.05. Additionally, the R2 value of (0.026) associated with the 

regression model suggests that the predictor variables account for (2.6 %) variation in 

the AMY1, which mean that (97.4 %) of the variation in the AMY1 cannot be explained 

by the predictor variables alone (Table 3-5).  

 

Table 3-5 A Hierarchical Linear Regression Analysis Results of Associations Between AMY1 Copy 

Number and Anthropometric Measurements.  

Measurements 

Model 1 Model 2 Model 3 

β Coefficient 

(95% CI) 

β Coefficient 

(95% CI) 

β Coefficient 

(95% CI) 

Pubic bone (cm) 0.09 (-0 .02, 0.20) 0.09 (-0 .02, 0.20) 0.09 (-0 .02, 0.20) 

Sitting height (cm) 0.07 (-0.06, 0.19) 0.07 (-0.05, 0.20) 0.06 (-0.09, 0.20) 

Chin height (cm) 0.08 (-0.09, 0.26) 0.09 (-0.09, 0.26) 0.07 (-0.14, 0.28) 

Upper sternum (cm) -0.18 (-0.37, 0.01) -0.18 (-0.38, 0.01) -0.19 (-0.40, 0.02) 

Right femur (cm) -0.07 (-0.41, 0.27) -0.07 (-0.41, 0.27) -0.07 (-0.42, 0.27) 

Left femur (cm) 0.16 (-0.19, 0.52) 0.16 (-0.19, 0.52) 0.16 (-0.19, 0.52) 

Arm span (cm) -0.01 (-0.06, 0.05) -0.01 (-0.06, 0.05) -0.01 (-0.06, 0.05)  

R2 0.026 0.026 0.026 

β coefficient and 95% Confidence interval, and p < 0.05 was considered statistically significant (*). Model 1: 

unadjusted, Model 2: adjusted for athletes’ groups according to type of sport SSP; strength - sprint athletes, 

END; endurance athlete, and TEA; team sports Player athletes, and controls and Model 3: adjusted for height 

and subgroups. 
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3.4.4.4 Prediction Measures of Strength from AMY1 CNV 

A hierarchical linear regression analysis was carried out to evaluate the prediction of 

AMY1 from measure of strength, including Isokinetic Right leg, peak knee Extension 

(30d/sec, 90d/sec, 180d/sec), Flexion (30d/sec, 90d/sec, 180d/sec) and Isokinetic Left 

leg, peak knee Extension (30d/sec, 90d/sec, 180d/sec), Flexion (30d/sec, 90d/sec, 

180d/sec), and total sprint. For the first model (Model 1) the predictor variables were 

analysed without adjusting for subgroups and heights. The results indicated that the 

model was not statistically significant F (13, 374) = 1.26, p > 0.05. Additionally, the 

R2 value of (0.042) associated with the regression model suggests that the predictor 

variables account for (4.2 %) variation in the variables, which mean that (95.8 %) of 

the variation in the variables cannot be explained by the AMY1 CN alone. Further, the 

findings indicated that despite the model was not statistically significant one of the 

predictors including sprint total (β = 1.11, p < 0.05) significantly predicted by the 

AMY1 CN.  

 

Similarly, for the second model (Model 2) the predictor variables were analysed with 

adjusting for subgroups. The results indicated that the model was not statistically 

significant F (14, 373) = 1.22, p > 0.05. Additionally, the R2 value of (0.044) associated 

with the regression model suggests that the AMY1 CN account for (4.4.6 %) variation 

in the variables, which mean that (95.6 %) of the variation in the variables cannot be 

explained by the predictor AMY1 CN alone. Further, the findings indicated that despite 

the model was not statistically significant one of the predictors after adjusting for 

subgroup which was sprint total (β = 1.25, p < 0 .05) significantly predicted the AMY1 

CN. 



Chapter 3: Copy Number of AMY1 and Athletes     115 

 

Moreover, for the third model (Model 3) the predictor variables were analysed with 

adjusting for height. The results indicated that the model was not statistically significant 

F (14, 373) = 1.23, p > 0.05. Additionally, the R2 value of (0.044) associated with the 

regression model suggests that the predictor AMY1 CN account for (4.4 %) variation 

in the variations, which mean that (95.6 %) of the variations in the variables cannot be 

explained by the predictor AMY1 CN alone. Further, the findings indicated that after 

adjusting for height the total sprint which was significant (in model 1 and model 2) was 

become non-significant (p > 0.05) in this model (Table 3-6). 
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Table 3-6 A Hierarchical Linear Regression Analysis Results of Associations Between AMY1 Copy 

Number and Performance Measures.  

Measurements 
 

Model 1 Model 2 Model 3 

 

β Coefficient 

(95% CI)  

β Coefficient 

(95% CI)  

β Coefficient 

(95% CI)  

Isokinetic Right leg, peak knee  

Extension 30d/sec -0.01 (-0.02 -0.01) -0.01 (-0.03 -0.01) -0.01 (-0.02 -0.01) 

 
90d/sec 0.01 (-0.02, 0.04)  0.01 (-0.02, 0.04)  0.01 (-0.02, 0.04)  

 
180d/sec -0.01 (-0.04, 0.02) -0.01 (-0.04, 0.02) -0.01 (-0.04, 0.02) 

Flexion 30d/sec 0.01 (-0.01, 0.03)  0.01 (-0.01, 0.03)  0.01 (-0.01, 0.03)  

 

90d/sec -0.01 (-0.04, 0.02)  -0.01 (-0.04, 0.02)  -0.01 (-0.04, 0.02)  

 

180d/sec -0.02 (-0.05, 0.01)  -0.02 (-0.05, 0.01)  -0.02 (-0.05, 0.01)  

Isokinetic Left leg, peak knee 
   

Extension 30d/sec 0.01 (-0.01, 0.02)  0.01 (-0.01, 0.02)  0.01 (-0.01, 0.02)  

 
90d/sec -0.01 (-0.04, 0.02)  -0.01 (-0.04, 0.02)  -0.01 (-0.04, 0.02)  

 
180d/sec 0.02 (-0.01, 0.05)  0.02 (-0.01, 0.05)  0.02 (-0.01, 0.05)  

Flexion 30d/sec 0.01 (-0.01, 0.03)  0.01 (-0.01, 0.03)  0.01 (-0.01, 0.03)  

 
90d/sec -0.02 (0.05, 0.03) -0.01 (-0.05, 0.03) -0.01 (0.05, 0.03) 

 
180d/sec 0.03 (-0.01, 0.07)  0.03 (-0.01, 0.06)  0.03 (-0.01, 0.07)  

Sprint Total (s) 1.11 (0.04, 2.18) * 1.25 (0.13, 2.36) * 1.02 (-0.06, 2.11) 

R2  0.042 0.044 0.044 

β coefficient and 95% Confidence interval, and p < 0.05 was considered statistically significant (*). Model 1: 

unadjusted, Model 2: adjusted for athletes’ groups according to type of sport SSP; strength - sprint athletes, END; 

endurance athlete, and TEA; team sports Player athletes, and controls and Model 3: adjusted for height and 

subgroups. 
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3.5 Discussion 

To the best of our knowledge, this research was the first to evaluate variations in AMY1 

copy numbers in the athletic population. The aim was to assess whether a higher AMY1 

copy number was linked to BMI, body fat percentage, anthropometric measures of body 

fat, strength, and FFM in a group of athletes as compared to non-athlete controls. For 

the first time, our study reports that increases in AMY1 copy number is positively 

linked with strength and height variations in athletes.  

 

3.5.1 Copy Number and Athlete Body Composition 

AMY1 is the gene encoding salivary amylase. Recently, a high CNV AMY1 has been 

investigated as a newly identified genetic variant that could explain BMI's missing 

heritability not related to single nucleotide polymorphisms. However, the contribution 

of AMY1 copy numbers on BMI remains controversial. The first study conducted in a 

large adult population indicated a remarkably strong  association between AMY1 copy 

numbers and increased BMI, with a significantly increased risk of obesity in subjects 

with low compared to those with high AMY1 copy numbers (Falchi et al., 2014). 

Subsequently, several studies supported this association among different populations  

and age groups (Viljakainen et al.,2016; Benitezet et al., 2015; Yong et al., 2016; León-

Mimila et al., 2018). 

 

This study found a similar variation in the number of copies between all groups, even 

though the AMY1 copy number ranged between 1 and 14. No association was found 

with increasing AMY1 copy number and lower BMI, healthy body fatness, and FFM 

in the investigated population. However, significant variations in all the tested 
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variances were detected among athlete’s groups and controls study participants, which 

make the association harder to be observed. Our study reproduces the findings reported 

by Ushar et al. (2017), who found no association between AMY1 copy numbers and 

BMI in two cohorts of ~3,500 individuals, 569 individuals from phase 1 of the 1000 

Genomes Project, and 114 parent-offspring trios from HapMap. Ushar et al. (2017) 

suggested that this result may be due to the use of ddPCR, a potentially more accurate 

method to detect copy numbers than that used in previous studies. In this study, similar 

results were found when the TaqMan assay was applied, suggesting that the difference 

in the reported observation likely comes from dissimilarities in the populations, as most 

of the participants in this study were athletes. However, Marcovecchio et al. (2016) did 

not detect an overall difference in AMY1 relative copy number between obese and lean 

school children. Still, this study showed significant association between high AMY1 

copies and increased BMI in boys when gender-based analyses were performed 

(Marcovecchio et al., 2016).  

 

3.5.2 Height and Copy Number of AMY1 

CNVs have been recognized as a significant contributor to the genetic variation 

between individuals in addition to single-nucleotide polymorphisms (Kang et al., 

2010). Dauber et al. (2011) suggested that CNVs may contribute to genetic variations 

in stature among the general population (Dauber et al., 2011). Kang et al. assessed the 

relationship between 405 and 431 (unfortunately not including AMY1 gene) commonly 

segregating CNV regions (frequency > 5 %) and height or BMI in genome-wide 

association analysis of anthropometric traits in ~ 2,000 individuals of African-ancestry, 

finding no significant associations (Kang et al., 2010).  The current study’s finding was 

the first to link high CN of AMY1 with height. 



Chapter 3: Copy Number of AMY1 and Athletes     119 

 

Anthropometric measurements were tested to understand further the influence of high 

copy number of AMY1 in relation to height. Increased leg length, sitting height, chin 

height, upper sternum, femur, and arm span were significantly associated with a higher 

copy number. But, after adjustment for height, these associations were no longer 

significant. This is likely to be due to their strong correlation with height. Arm span is 

positively correlated with height (Steele & Chenier,1990), and height can also be 

predicted reliably from arm measurement (Jarzem & Gledhill, 1993). Stature was 

associated with leg length and sitting height. Adult height is determined by both genetic 

and environmental factors, including nutrition, illness, socioeconomic status, and 

psychosocial stress in early life (Bogin and Varela-Silva, 2009; Batty et al., 2009; 

Sawada and Takasaki, 2017).  

 

The early childhood linear growth appears to be highly predictive of adult height. A 

recent cohort study was conducted to estimate the associations between exposure to 

early life growth faltering at the population level and adult height in 425 birth cohorts 

across 126 regions in 21 low-and-middle countries. The study found decreasing growth 

in the most malnourished populations and reported average Height for Age Z- scores 

(HAZ) < − 3, which translates in an increase of 8.8 cm in adult male height and a 5.6 cm 

increase in adult female height (Karra & Fink 2019).  

 

These variations in height seem to be significant from a cross-country perspective; a 

study of European populations of 10 countries found a height range of 170 to 179 cm 

in males and 160 to 167 cm in females (Cavelaars et al., 2000). Given that the average 

adult in the presented study population included an average height mean ± SD in cm of 
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180.2 ± 5.8 in control, 179.3 ± 5.4 in END 186.58 ± 7.4 in TEA, and 180.6 ± 5.4 in 

SSP.  

 

Karra & Fink suggested that these individual-level correlations may reflect, to a large 

extent, genetic differences that impact both childhood and adult outcomes and, 

therefore, should not be interpreted as an indication for a causal effect of nutrition on 

development (Karra & Fink, 2019). The association between height and CNV of a gene 

like AMY1 CN, linked with carbohydrate intake, may explain more of a causal link to 

catch-up growth or rapid growth in adolescence and height in future research.  

 

A possible explanation is that AMY1 interacts with other gene (s) variants. If that is so, 

AMY1 copy number influence on BMI is more evident in users with a specific set of 

gene variants. Such gene variants may trigger changes in energy metabolism or adipose 

tissue development. For instance, a recent meta-analysis evaluated gene expression in 

obese and non-obese individuals, finding 821 gene variants predominant in the adipose 

tissue of obese subjects (Goutzelas et al., 2022). A combination of such genes could 

potentially modulate the interaction between AMY1 copy number and BMI. However, 

no research up to this date has evaluated the interaction between previously identified 

obesity-associated genes and AMY1 copy number in modulating BMI. Moreover, 

studies correlating AMY1 CN and other amylase genes located in the same region 

report that AMY1 copy number is independent of the other two amylase genes, 

AMY2A and AMY2B, and the evidence suggests that the genetic link can be found in 

carbohydrate metabolism genes, especially those involving gut microbiota (Nakajima, 

2016). 
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The link between AMY1 copy number, energy metabolism genetics, and gut microbiota 

is further demonstrated by metagenomic sequencing and short-chain fatty acid 

quantification in the faecal material of individuals with low and high AMY1 copy 

number. The investigators found that participants with low AMY1 copy number 

displayed a higher predominance of complex carbohydrate degradation enzymes in 

their gut microbiota. Still, the same study transplanted the gut microbiota from low and 

high AMY1 copy number individuals in mice, reporting higher weight gain in mice 

transplanted with high AMY1 copy number gut microbiota. This only reveals the 

complexity of AMY1 genetics in combination with diet, microbiome, and other gene 

variants to modulate BMI and adiposity (Poole et al., 2019). 

 

Another explanation of these equivocal results involves an unassessed or unrecognised 

environmental interaction. In the same line of thinking, Rukh et al. (2017) evaluated 

the link between diet and AMY1 copy number, revealing a significant interaction 

between starch intake and BMI in 4800 Swede nondiabetic adults (Rukh et al., 2017). 

The participants in another study were subject to randomized low-calorie diet 

interventions, resulting in significantly higher central adiposity and weight loss in 

rs11185098-A allele carriers, which has been recognized as a proxy of higher AMY1 

copies and activity) (Usher et al., 2015) in The POUNDS Lost Trial, which included 

692 European subjects (Heianza et al., 2018). Taking together the evidence, the studies 

bring forward environmental factors as modulators in the association between adiposity 

and AMY1 copy number, especially when it comes to dietary choices. Further, Rossi 

et al. (2021) evidenced the impact of lifestyle and environment in selecting the amylase 

loci in their study of the relationship between pancreatic and salivary amylase gene 

copy number, performed in 2935 Qatari individuals. 
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Understanding the cause of height is important in sports and health filed.  Height is now 

used as an indicator in epidemiology studies to estimate the association of one's early 

life exposure and diseases. Emerging Risk Factors Collaboration conducted a meta-

analysis of 121 cohort studies comprising over 1 million participants and stated that 

short stature is a well-documented risk factor for death from circulatory diseases such 

as coronary disease, stroke, and heart failure (Emerging Risk Factors Collaboration, 

2012). In contrast, height was positively associated with the risk of death from 

melanoma and cancers of the pancreas, endocrine and nervous systems, ovary, breast, 

prostate, colorectum, blood, and lung (The Emerging Risk Factors Collaboration, 

2012).  

 

A large prospective study of 409,748 adult individuals found that overall height is 

positively associated with deaths from cancer but inversely associated with deaths from 

circulatory disease (Sawada et al., 2017). However, shorter males showed increased 

risk of cardiovascular mortality (HR per 5 cm increase: 0.81, 95 % CI: 0.72–0.91), and 

all-cause mortality (HR per 5 cm increase: 0.89, 95 % CI: 0.83–0.96. Further, shorter 

females showed increased risk of non-cardiovascular, non-cancer mortality (HR per 5 

cm increase: 0.82, 95 % CI: 0.71–0.96), and all-cause mortality (HR per 5 cm increase: 

0.88, 95 % CI: 0.81–0.96) (Zhao et al., 2019). Furthermore, a large cohort of 22,809,722 

Korean men and woman adults confirmed positive associations between height and risk 

of all site-combined cancers, including malignancy in the oral cavity, larynx, lung, 

stomach, colorectum, liver, pancreas, biliary tract and gallbladder, breast, ovary, cervix 

and corpus uteri, prostate, testes, kidney, bladder, central nervous system, thyroid, skin, 

and lymphatic and hematopoietic systems. The positive association between height and 

cancer has been estimated, and the hazard ratios (HRs) for all-site cancers per 5 cm 
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increment in height is 1.09 (95 % CI: 1.086–1.090), especially in thyroid, breast, 

lymphoma, testicular, and renal cancers (Choi et al., 2019).  

 

Several potential underlying mechanisms explain the opposing association of adult 

height with cancer mortality. Positive associations may result from the fact that taller 

people have larger organs, and therefore a greater number of cells are at risk of 

proliferation. Another explanation is an increased level of insulin-like growth factor 

(IGF) which is the primary mediator of growth hormone activity and a hormone that 

has been positively associated with cancers at several anatomic sites (Choi et al., 2019). 

It has been reported that each 10 cm increase in height corresponded to a 4 % increase 

in circulating IGF-1 levels (Crowe et al., 2010). Finally, several genetic factors are 

related to height, cancer, and cardiovascular disease. Identifying such genetic variants 

might shed light on potential mechanisms underlying the associations between height 

and mortality (Sawada et al., 2017). Further research is needed to confirm the 

association between increasing CNV of AMY1 and height. 

 

This study has several limitations, including the low variance of age, fat mass, BMI 

within groups of athletes, and controls. Also, some of the control individuals can be 

considered physically active or even participating in planned training sessions as their 

𝑉̇O2 max values were high. Further research is needed to evaluate the association 

between increasing AMY1 copy number and BMI and body fatness in the general adult 

population compared to the active population.   
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3.6 Conclusion 

Individuals with a higher copy number of AMY1 are more likely to be taller. This may 

underlie the inconsistent associations with BMI observed in less active population 

groups. Further studies are needed to confirm this finding in large-scale studies of active 

and non-active populations. Further, the strong association between increasing AMY1 

and height may suggest further research investigating AMY1 as a height-related gene 

and assessing its relationship to cancer risk and other diseases associated with height. 
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Chapter 4 Copy Number of AMY1, and Body Composition of Adult 

Male and Female University Students in Scotland 

4.1 Abstract 

BACKGROUND: A 2014 publication reported for the first time a possible link 

between higher BMI and lower copy number (CN) of the salivary amylase 1 (AMY1) 

gene. Since then, several replication studies have been conducted. The results are 

inconsistent despite being well-powered studies with a consistent methodology. 

Different study designs and not considering gender as a covariate may explain the 

current discrepancy in the literature. 

 

AIM: To evaluate the association between AMY1 CN, anthropometrics, and body 

composition measures in males and females.  

 

METHODS: A total population of 228 (males n = 108 and females n = 120) were 

recruited from the University of Stirling's student population.  Ages ranged from 18 to 

40 years. Height, weight, BMI, and other anthropometric measurements were taken. A 

DXA scan was performed, and the participants completed a 3-day self-reported food 

questionnaire to assess macronutrient and energy intake. Physical activity level was 

assessed by the Scottish Physical Activity Questionnaire (SPAQ). An independent 

sample t-test was used to assess the difference between the mean characteristics of both 

groups. Linear regression analysis was used to predict the anthropometric and body 

composition from AMY1 CNV. 

 

RESULTS: AMY1 CN distribution did not differ between males and females (p = 

0.942). No association was detected between AMY1 CN and adiposity markers in the 
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study population (Height, p = 0.326 Weight, p = 0.241; BMI, p = 0.438; Total Body 

Fat %, p = 0.644;). WC (cm) was negatively associated with high AMY1 CN in females 

only (β = -0.473, p = 0.005). The reginal body fat distribution and lean mass distribution 

did not correlate with AMY1 CN in either gender with all (p = > 0.05). Increased total 

EI was associated with decreased AMY1 CN in males (r = -0.964, p = 0.001), and 

females (r = -0.902, p = 0.001). However, no such association were observed between 

and AMY1 CN and EI from CHO, fat, or protein in males or females. Physical activity 

level (PAL) did not associate with AMY1 CN in either gender. 

 

CONCLUSION: The gender differences is detected in the associations between 

AMY1 CN and WC: this association was significant in females but not in males. In 

addition, this study found a link between dietary intake and AMY1 CNVs in adult males 

and female. More research in larger populations is warranted to confirm these results.   

 

4.2 Introduction 

The increasing prevalence of obesity (defined in adults as a BMI ≥ 30; kg/m2) has 

become a major public health concern throughout the globe. According to the WHO 

report in 2018, the prevalence of obesity in adults has approximately tripled worldwide 

since 1975 (WHO, 2018). In the UK, the majority of English adults in 2018 were 

overweight, with a prevalence of 63 %, and 28 % of those overweight individuals were 

obese (NHS, 2020). Similarly, Scotland’s statistics in 2019 show that 66 % of adults 

were overweight, and 29 % of those were obese (NatureScot, 2021). In each report, 

gender differences were noticeable in both groups of overweight and obese individuals. 

In the overweight category, there was a significantly higher number of males compared 
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with females in England (67 % and 60 % respectively) and Scotland (69 % and 63 % 

respectively). However, obesity or morbid obesity was more common in females than 

males in England (29 % and 26 % respectively); although, no significant difference was 

found between obese males and females in Scotland (29 % and 30 % respectively). If 

the current trends continue, overweight and obesity will have important economic and 

social implications. 

 

A study across 26 European countries including the UK and the USA suggests that 

increasing overweight/obesity rates will result in a decline in life expectancy, ranging 

from 0.66 to 1.54 years for men and 0.86 to 1.67 years for women (Vidra, Trias-Llimós 

and Janssen, 2019). Obesity predisposes to several chronic diseases including 

cardiovascular disease (CVD), type 2 diabetes mellitus (DM) (Mokdad et al., 2003; 

Aung et al., 2014), and some types of cancers, including thyroid and breast cancer (He 

et al., 2019). Furthermore, obesity may also produce psychological morbidity, 

especially depression among females (Stunkard et al., 2003). Gender differences appear 

to suggest that females suffer more than males from the impact of obesity on length and 

quality of life (Muennig et al., 2006). 

 

Obesity is a multifactorial disease driven by modern Western lifestyles in which 

individuals find themselves living in an obesogenic environment characterised by high 

fat hypercaloric diets combined with low physical activity levels (PAL) and sedentary 

jobs (Nurwanti et al., 2019; Choi et al., 2010). Western diets cause a high level of 

postprandial insulin production and can produce insulin hypersecretion and 

hyperinsulinemia. This endocrine modification stimulates fat storage, prevents 
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lipolysis, and causes increased appetite, hyperphagia, and weight gain (Kopp, 2019). 

However, there is also a genetic component to obesity; some individuals are more 

susceptible to weight gain than others when exposed to the same obesogenic 

environment (Albuquerque et al., 2017).  Several studies have identified genetic factors 

that influence the development of obesity, with estimates of obesity heritability ranging 

from 40% to 80% (Stunkard et al., 1990; Maes et al., 1997; Herrera and Lindgren, 2010) 

(Hjelmborg et al., 2008; Malis et al., 2005). Furthermore, gene-environment 

interactions explain why certain obesogenic behaviours are more problematic for some 

individuals than they are for others (Francis, Shodeinde, Black and Allen, 2018; Nan et 

al., 2012). Understanding the genetic component of obesity is vital to understanding an 

individual’s risk of obesity. 

 

The genetic component of obesity is complex. It comprises hundreds of genes and their 

individual effects, which are usually small but overlap and become relevant when 

combined with environmental triggers. Genome-wide association studies (GWAS) 

have recently identified a large number of significant genome-wide loci with an impact 

on BMI, obesity, Body Composition, and body fat distribution (Peters et al., 2020). For 

BMI, 941 single-nucleotide polymorphisms (SNPs) at 536 polygenic loci were detected 

as significant near-independent genome-wide loci, explaining ~ 6.0 % of the variance 

of BMI in the Health and Retirement Study (Yengo et al., 2018). A very recent GWAS 

on whole-body lean body mass (LBM; adjusted for gender, age, and height with or 

without fat mass adjustments) revealed seven loci associated with LBM (Karasik et al., 

2019). Another GWAS on the percentage of body fat distribution in arms, legs, and 

trunk on 362,499 individuals from the UK Biobank identified 98 independent loci, 29 

of which had not previously been associated with anthropometric traits, including BMI 
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(Rask-Andersen, Karlsson, and Johansson, 2019). The most recent GWAS on body fat 

distribution as measured by waist-to-hip ratio adjusted for BMI reported 463 

independent loci (Pulit et al., 2019). However, the influence of all known SNPs taken 

together only explains 1-3 % of BMI variance (Ahmad and Imam, 2015). Hence, there 

is a gap between the amount of BMI variation due to observable SNPs and the estimated 

heritability of the BMI variance (40-80 %). 

 

Recently, attention has turned to copy number variation (CNV) as a factor that may 

close the gap. CNV can modify thousands of nucleotides, often including multiple 

genes. Therefore, it has the potential of a much larger effect than individual SNPs. One 

such CNV is the Salivary α-Amylase 1 gene (AMY1). Whilst humans carry two copies 

of most genes, AMY1 has been reported to range from 1 to 20 copies (Falchi et al., 

2014; Marcovecchio et al., 2016). Increased/decreased AMY1 copy number (CN) has 

been associated with the low / the high risk of obesity through modifications in BMI 

measured at 0.15 kg/m² per copy and obesity risk changes of 1.19 per copy in European 

and Asian adults (Falchi et al., 2014). That would be the most substantial heritable 

factor yet to be discovered as a modifier of the obesity epidemic. 

 

Follow-up studies have had inconsistent results: several confirm the significant 

association between low AMY1 CN and lowering BMI which reported by Falchi et al. 

(e.g., Mejia-Benitez et al., 2015; Atkinson et al., 2018; Leon-Mimila et al., 2018; 

Venkatapoorna et al., 2019; Vázquez-Moreno et al., 2020; Barber et al., 2020; 

Mayneris-Perxachset al., 2020; Selvaraju et al., 2020); while other studies reported no 

association (e.g., Usher et al., 2015; Viljakainen et al., 2015; Marcovecchio et al., 2016; 



Chapter 4: Copy Number of AMY1, and Body Composition   130 

 

Pinho et al., 2018; Shwan et al., 2019; Al-Akl et al., 2020) or a positive association 

between AMY1 gene CN and BMI (Ruch et al., 2017). However, these studies 

evaluated different population groups and age groups or used indirect measures of 

adiposity such as bioelectric impedance. Carefully controlled studies with direct 

measurements of adiposity in well-defined phenotypic groups are essential to confirm 

and understand the contribution of AMY1 CNV to obesity. 

 

Dietary CHO quantity and quality have been associated with weight gain and risks of 

obesity complications, such as type 2 diabetes (Ludwig et al., 2018). The digestion of 

polysaccharide CHOs begins in the oral cavity with the generation of smaller 

saccharides by the action of salivary α-amylase. Individual differences in salivary 

amylase function are attributed to the amount and activity of AMY1 CN variations 

(Atkinson et al.,2018). Individuals with higher salivary amylase levels have been shown 

to display faster oral starch digestion (Mandel, 2010). Higher AMY1 CN is also related 

to improved starch digestion (Mandel, 2012; Atkinson et al., 2018). Falchi et al. in 2014 

found the first link between low AMY1 CN, carbohydrate (CHO) metabolism, and BMI 

in European and Asian populations (Falchi et al., in 2014). Rukh et al. reported that 

AMY1 CNV is associated with body fat only when taking into consideration the starch 

intake of individuals in a Swedish cohort (Rukh et al.,2017). AMY1 copy variations 

are likely caused by human genetic adaptation to starch-rich diets. Individuals from 

populations with high-starch diets have on average, more AMY1 copies compared to 

those with traditionally low-starch diets (mean = 6.7; mean = 5.44 respectively) (Parry 

et al., 2007; Santos et al., 2012). Notably, the increase of AMY1 CN is significantly 

correlated with levels of salivary amylase protein and serum amylase (Parry et al., 2007; 
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Mandel, 2010; Carpenter et al., 2017). This suggests a genetic link between CHO 

metabolism and obesity (more details will be presented in the next chapter).  

The genetic adaptation to improve starch digestion, reflected by changes in AMY1 CN, 

may also have an impact on oral and gut microbiome profiles (Poole et al., 2019; León-

Mimila et al., 2018). Gut microbiota alterations have been related to energy balance, 

weight gain, and adiposity via interactions with dietary factors (Lazar et al., 2019). 

Further, Salivary α-amylase concentration is regulated by circadian rhythms and the 

nervous system. Physical exercise activates the sympathetic nervous system (Paterson, 

1996). Antoon et al. found that high-intensity exercise leads to the anticipated increase 

in amylase secretion and salivary flow rate (Antoon et al., 2015). Thus, the current 

study will assess the intake of CHO and other macronutrients in the study sample and 

its association with AMY1 CN.  

 

In 1956, Vague observed that men tend to gain fat in the upper body (android pattern), 

and women store fat in the lower body (gynoid pattern). These gender differences in fat 

distribution have become clear and are closely associated with whole-body metabolism 

and long-term health (Vague 1947; Vague 1956). Women have consistently been found 

to display higher levels of total body adiposity than men (Jensen MD, 2002). Women 

preferentially deposit fat subcutaneously with greater accumulation in the 

gluteofemoral region. This fat distribution pattern may provide a buffer for fat storage 

during periods of positive energy balance and improve glucose metabolism, partially 

protecting against the development of type 2 diabetes in premenopausal women 

(Mauvais-Jarvis, 2018).  In contrast, men tend to accumulate fat in the abdominal region 

and the visceral compartment, where it contributes to an increased risk for metabolic 

disease (Mathieu et al., 2014). These differences in total lipid storage may have evolved 
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to favour the energy needs of reproduction and lactation in women and suggest 

fundamental differences in the handling of metabolic fuels by the two genders. 

Although these sex-based differences in fat distribution could respond to genetics 

(O'Sullivan, 2009), and there are many studies about AMY1 CNV in association with 

body fat, few of these studies have investigated sex differences in body fatness, and 

those that have done so, have generally been inconclusive. Significant correlation of 

AMY1 with BMI was reported in young Finnish obese adult women (n = 29; p = 0.045), 

but not in men (Viljakainen et al., 2015). One year later, another study reported a 

significant increase of BMI z-score by decreasing AMY1 CN in Italian boys (n = 744; 

P = 0.033), but not in girls (Marcovecchio et al., 2016). These data suggest that the 

association of AMY1 CNV with obesity measures might vary with gender.  

 

Body fat distribution associated with the burden of disease attributable to obesity also 

varies by sex (Muennig, Lubetkin, Jia and Franks, 2006). Sex-specific designed studies 

of obesity-associated genes are of value to improve precision in medicine, guide sex-

stratified clinical trials, and make progress towards treating and ultimately stemming 

the obesity epidemic worldwide. Therefore, this study aimed to evaluate whether the 

associations between AMY1 CN and adiposity measures are influenced by gender via 

assessment of the body fatness percentage and the lean mass percentage by Dual-energy 

X-ray Absorptiometry (DXA). This study also aimed to investigate the link between 

AMY1 CN and body fatness in specific body regions of males and females. 

 



Chapter 4: Copy Number of AMY1, and Body Composition   133 

 

4.3 Methodology 

4.3.1 Ethical Considerations 

The study protocol was approved by the research committee at West of Scotland 

Research Ethics Service, Glasgow; REC reference: 12/WS/0240 and IRAS project ID: 

114700. 

 

4.3.2 Study Participants 

The study recruited 228 participants, comprised of males n = 108 and females n = 120 

aged 18 – 40 years, from the University of Stirling's student population as part of an 

ongoing 10-year longitudinal study of body composition changes in students. The data 

used in this study was collected in the period between February 2016 and April 2019.  

Participants were asked to arrive at the laboratory in the morning, having fasted for at 

least 8 hours and rested overnight. The body composition measurements were taken of 

girth, height, weight, BMI, and DXA scans. Each participant completed a self-reported 

dietary intake form using a 24-hour dietary recall (24HR). (Figure 4-1). 

 

 

Figure 4-1 Diagram of a laboratory visit 
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4.3.3 Anthropometry Measurements 

Anthropometric measurements including body weight and height, were used to 

calculate BMI and body composition. Weight (kg) was measured to the nearest 0.1 kg 

using a digital scale (Seca Quadra 808, Birmingham, UK), in light sport clothes and 

without footwear. Height (cm) was measured using a stadiometer to the nearest 

millimetre. BMI was calculated as body weight (kg) divided by height (m) squared 

(kg.m2). Waist circumference (WC) was measured in cm. All anthropometric 

measurements were taken in duplicate, and if a difference of > 10 % was observed 

between the two measurements, a third measurement was taken. 

 

4.3.4 Assessment of Body Composition by DXA 

Body composition was measured by DXA (Lunar DXA GE Healthcare) with analysis 

performed using GE Encore software v. 13.6 (GE Healthcare). All scans were 

performed and analysed by DXA, which was calibrated with phantoms as per the 

manufacturer’s guidelines before measurement. All scans were performed using the 

standard thickness mode as automatically selected by the software. Participants were 

instructed to drink 500 ml of water before they came for the scan (Rodriguez-Sanchez 

and Galloway, 2015). Just before the scan, they were asked to empty their bladder, wear 

minimal clothing and remove any metallic objects and jewellery. Female participants 

took a pregnancy test prior to scanning and took part in the DXA only if they were not 

pregnant. DXA measures body composition in three fundamental components of bone-

free mass, which are fat-free mass (FFM), fat mass (FM), and bone mineral content, as 

explained by Blake (1997).  At the end of the scan, a total body and regional analysis 

is automatically made by the software and presented as percentages of FM and FFM, 
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in whole-body and distinct body regions, including arms, legs, trunk, android (a portion 

of the abdomen included between the line joining the two superior iliac crests and 

extending cranially up to 20 % of the distance between this line and the chin), and 

gynoid region (a portion of legs stretching caudally from the femoral great trochanter 

to a distance double that of the android region).  

 

4.3.5 Diet and Physical Activity Measures 

Total Energy Intake and macronutrient intake (kJ/day) were measured with a 3-day 

food diary: two days from normal weekdays (Monday to Friday) and one day from a 

weekend day (Saturday or Sunday). Participants were provided with digital food scales 

and full instructions on how to fill in the food diary. Nutritional analysis of three-days 

food records was performed using the Nutritics Nutrition Analysis Software (Academic 

Edition, Nutritics, Dublin, Ireland). Macronutrients from dietary supplements were 

included in the analysis based on the manufacturer’s specifications from brand 

websites. Macronutrient intakes were calculated in (kJ/24hurs). Reported EI was 

evaluated against presumed energy requirements (Goldberg et al, 1991; Black, 2000a). 

This procedure is known as the Goldberg cut-off technique, and a sensitivity analysis 

was undertaken to examine the impact of low energy reporting. The Goldberg cut-off 

for EI to the calculation of estimated Basal Metabolic Rate (BMR) (Black et al, 1991; 

Goldberg et al, 1991) was applied to exclude under-reporters and over-reporters of 

(EIrep) based on physical activity level (PAL) and compared with the ratio of EIrep: 

BMR. as recommended by the Goldberg cut-off method (Black, 2000a), is based on 

different categories of physical activity (low, moderate and vigorous physical activity). 

BMR was estimated for each individual using the Schofield equations for adults based 

on age, gender, height and weight (Schofield et al., 1985). Statistically if mean reported 
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EIrep: BMR is less than the lower 95 % confidence limit or lower cut- off then it has 

low probability (< 2.5 %) that the EIrep could represent genuinely low intakes obtained 

by chance. Similarly, if reported mean EI: BMR is greater than the upper 95 % 

confidence limit or upper cut-off then it has low probability (< 2.5 %) that the reported 

intake could represent genuinely high intakes obtained by chance. Participants with 

individual EIrep: BMR < 0.89 are categorised as under-reporters, and subjects with 

individual EIrep: BMR > 2.24 are categorised as over-reporters. 

 

Physical activity (hours / week) was assessed using the Scottish Physical Activity 

Questionnaire (SPAQ), which uses a 7-day recall of leisure time and occupational 

physical activity as a measure of physical activity (Lowther et al., 1999).  

 

4.3.6 Saliva-Sample Collection 

Before saliva collection, participants were instructed to rinse their mouths using water 

only or water and a toothbrush to reduce remaining food, bacteria and fungi (Sun & 

Reichenberger, 2014; Ooi et al., 2017). The Oragene® DNA Self-collection Kit (DNA 

Genotek; Ottawa, ON, Canada) was used to collect saliva samples following the 

manufacturer's instructions (Chartier and Pinard ,2006). Participants were instructed to 

deposit 2 ml of saliva through a funnel into the collection tube until the amount of liquid 

saliva, excluding bubbles, reached the fill line. When an adequate sample had been 

collected, the funnel lid was firmly closed. The collection tubes are designed so that a 

stabilising liquid attached to the lid mixes with the saliva when the funnel lid is securely 

fastened, stabilizing the saliva sample for long-term storage and beginning the initial 

phase of DNA isolation. As recommended by the manufacturer, saliva samples were 
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stored at room temperature until DNA extraction (Nunes et al., 2012). (DNA Genotek, 

2014) 

 

4.3.7 DNA Extraction and Quantification by Quantitative Polymerase Chain 

Reaction (qPCR) for the AMY1 

As explained in Chapter 2 (Section 2) 

 

4.3.8 Statistical Analysis 

Statistical analyses were performed using SPSS (version 25, IBM, Armonk, NY, USA). 

Data was assessed for normality of distribution using the Shapiro-Wilk test (Shapiro 

and Wilk, 1965). Any data which were not normal were transformed using the Box-

Cox transformation to give better approximations of the normal distribution (using 

version 20.2, Minitab, State College, PA.), and normality was confirmed. Data are 

expressed as mean ± standard deviation (SD). An independent sample t-test was used 

to assess the difference between the mean characteristics of both groups. A Non-

parametric median test, the Mann Whitney U test, was used to analyse the difference 

between the median values of the two groups. Correlation and Linear regression 

analysis was performed using phenotype data with and without group corrections to 

identify associations between AMY1 CN and the examined variables. As before 

performing the regression analysis, a correlation structure is essential to observe the 

association (relationship) between the underlying variables. When considering an 

interaction, a p-value of < 0.05 was considered significant. Standardized β-coefficient 

was used to quantify the association and R- squared to describe the explanatory rate 

given for subgroups.  
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4.4 Results 

4.4.1 Participant’s Characteristics 

The study cohort consisted of 228 independent adults (108 males and 120 females) from 

the University of Stirling, with a mean ± SD age of 22.3 ± 3.7 years (range: 17 – 40 

years) and a mean ± SD AMY1 CN of 7.0 ± 2.3 (range: 2–14). Table 4-1 presents the 

descriptive characteristics of the participants from the two groups.  The study did not 

record any significant differences in Age, CNVs, BMI, and PA between males and 

females (p = 0.694, p = 0.942, p = 0.994, and p = 0.615 respectively). Expected 

differences were found between males and females in weight, height, waist 

circumference (WC), and Body Fat Percentage (BF %) as the corresponding p-values 

are less than 0.05. 

 

Table 4-1 Descriptive Characteristics of the Participants in this Study Grouped According to their 

Gender. 

 

Characteristic 
Males  Females All 

p-value 
(n=108) (n=120) (n=228) 

Age (year) 22.0 ± 3.3 22.4 ± 3.9 22.3 ± 3.7 0.694B 

CNV 7.0 ± 2.4 6.9 ± 2.2 7.0 ± 2.3 0.942A 

Weight (kg) 77.5 ± 12.9 65.1 ± 11.1 70.2 ± 13.4 <0.001 A 

Height (cm) 179.6 ± 6.5 165.2 ± 6.1 172.2 ± 9.5 <0.001 A 

WC (cm) 82.3 ± 8.1 73.5 ± 8.9 77.5 ± 9.6 <0.001 A 

BMI (kg/m2) 23.9 ± 3.4 23.7 ± 3.4 23.8 ± 3.5 0.994 A 

Body Fat (%) 20.2 ± 7.5 32.3 ± 6.4 26.5 ± 9.2 <0.001B 

PA (Hour/w) 17.16±13.6 16.26±11.9 16.68±12.7 0.615 A 

All values are expressed as mean ± SD and CN, copy number; WC, waist circumference; BMI, body mass index; 

body fat %; PA, physical activity. (A) p-values < 0.05 independent sample t- test. (B) p-values < 0.05 Mann-

Whitney U test for comparison between males and females. 
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4.4.2 Copy Number Detection in Each Group 

The distribution of AMY1 CN in male and female participants is shown in Figure 4-

2A. The mean AMY1 CN did not significantly differ between males and females (p = 

0.100). The AMY1 CN distribution ranged from 2-14 for males with a mean of 7.05; 

while in females, it ranged from 3-14 with a mean of 7.03. (Figure 4-2 B.). 

 

 

All Males Females p-value 

7.0 ± 2.3 7.0 ± 2.4 6.9 ± 2.2 0.942 

Figure 4-2 Distribution of AMY1 Copy Number in the Study Population. (A) Shows AMY1 copy 

number percentage distribution for all participants. (B) Shows AMY1 copy number percentage 

distribution for males (n= 108) and females (n= 120). For this figure estimates of copy number have been 

rounded to the nearest integer.  Mean ± SD data presented under the figures.  p-values < 0.05 indicates a 

significant.  
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4.4.3  Body Composition and Copy Numbers of AMY1 

In this study, the correlation analysis is carried out to check the inter relationships 

between AMY1 CN and height, weight, BMI, WC, and Fat percentage. As the 

correlation analysis is the best statistical tool to find the relationship between the 

quantitative variables. Once the underlying correlation between the variables is 

observed, regression analysis is performed to investigate the functional relationship 

between the dependent (AMY1 CN) and independent variables (height, body weight, 

BMI, WC, and BF %). The results of correlation and regression analysis are reported 

in Tables 4-2. Under the men category of Gender, no significant relationship was found 

between AMY1 CN and height (r = -0.073, p = 0.367), body weight (r = 0.215, p = 

0.324), BMI (r = 0.297, p = 0.282), WC (r = 0.303, p = 0.838) and BF % (r = 0.236, p 

= 0.471).  Similarly, for females, no significant correlations were observed between 

AMY1 CN for height (r = 0.009, p = 0.599), weight (p = 0.579, r = -0.015), BMI (r = -

0.018, p = 0.497) and BF (r = -0.259, p = 0.628). A significant association was detected 

between AMY1 CN and WC (r = -0.259, p = 0.005) in the females. Further, no 

significant association was detected between the whole population AMY1 CN with 

height, weight, BMI, WC or BF (p > 0.05 for all) (Table 4-2). 

 

The below Figures 4-3 and Figures 4-4 show the scatter plots depicting the relationship 

between AMY1 CN and anthropometrics measurements including weight, weight, BMI 

and WC in males (circles and solid lines) and females (diamonds and dotted lines). The 

R2 value is used to measure the percent of variation due to the respective independent 

variables separately.  Figure 4-3 shows that only 2.9 % in males and< 0.001 % in 

females of the variation in weight (kg) can be explained if the AMYI CN included in 

the model. Similarly, the R2 for height (cm) (Figure 4-4) alone in the regression model 

for the males and females are 0.7 % and < 0.001 % respectively. For BMI, the R2 for 

males and females are 5.9 % and < 0.001 % respectively. The R2 value reported in 

Figure 4-4 shows that when WC is considered alone, only 7.6 % and 0.3 % variation 
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is explained by AMY1 CN. All the above results regarding R2 values suggests that very 

little portion of variation is explained when only a single independent variable is 

included in the model.  It is also observable that under the female category of gender, 

the R2 value is smaller as compared to the male category for all related variables. 

 

Table 4-2 R value From Correlation Analysis Results Between AMY1 Copy Number and Body 

Composition.  

 

Groups  
Height Weight BMI Waist Body Fat 

(cm) (kg) (kg/m2) (cm) (%) 

Males -0.073 0.215 0.297 0.303 0.236 

Females 0.009 -0.015 -0.018 -0.259 -0.015 

All -0.018 0.097 0.129 -0.036 0.085 

Body composition measurements includes height and markers of adiposity including weight, BMI, WC, waist 

circumference, and body fat percentage in males and females and total participants. Data shows no significant 

differences p- value = > 0.050. 
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Figure 4-3 Scatter Plots Depicting the Relationship Between AMY1 Copy Number and Anthropometrics 

Measurements (A) Weight and (B) Height by linear regression with best fit lines, males (circles and solid 

lines) and females (diamonds and dotted lines). 

B 

 

A 
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Figure 4-4 Scatter Plots Depicting the Relationship Between AMY1 Copy Number and Anthropometrics 

Measurements including, BMI (C) and waist circumference (WC) (D) by linear regression and best fit 

lines, males (circles and solid lines) and females (diamonds and dotted lines).  

 

 
 

 

C 

D 
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Table 4-3 Linear Regression Results Between AMY1 Copy Number and Height and Markers of 

Adiposity. 

Measurements Males Females All 

 
β p-value β p-value β p-value 

Height (cm) 1.023 0.367 0.450 0.599 -0.529 0.326 

Weight(kg) -2.701 0.324 -1.163 0.579 1.102 0.241 

BMI (kg:m2) 2.619 0.282 1.298 0.497 -0.596 0.438 

WC (cm) -0.063 0.838 -0.473 0.005* -0.270 0.050* 

Body Fat (%)  0.136 0.471 0.085 0.628 0.056 0.644 

R2 0.377 0.351 0.024 

Males (n= 108), Females (n = 120), and all (n=228). Adiposity markers includes weight, BMI, waist 

circumference (WC), and fat percentage. (*) p -values < 0.05 indicates a significant coefficient (β), corr. Denotes 

the correlation coefficient between the AMY1 copy number and other variables, Adjusted R-squared (R2) is also 

reported for each model. 

 

In the above Table 4-3, a linear regression analysis was carried out to evaluate the 

utility of AMY1 in the prediction of anthropometric and body composition including 

Height, Weight, BMI, WC and BF % on the dependent variable AMYI CN. It is 

observable that under the male’s category of the gender, a change of one copy in AMY1 

gene results into increase in Height, BMI, and BF % the unite of 1.023, 2.619 and 0.136, 

respectively. Similarly for a unit change in AMY1 CN results in a decline in Weight 

and WC by 2.701 and 0.063, respectively. The R2 value of (0.377), associated with the 

regression model suggests that the predictor variables for the subgroup men account for 

37.7 % variation in the AMY1 CN, which mean that 63.3 % of the variation in BMI, 

height, weight, body fat and FFM cannot be explained by the predictor AMY1 CNV 

alone. Similarly, under the category of the females the R2 value of (0.351) associated 

with the regression model suggests that the predictor variables account for 35.1 % of 

the variation in BMI, height, weight, body fat and FFM cannot be explained by the 

predictor AMY1 CNV alone (Table 4-3). For the total category of the participants the 

R2 value of (0.024) associated with the regression model suggests that the predictor 

variables account for 2.4 % variation in the AMY1 CN, which mean that 92.6 % of the 
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variation in BMI, height, weight, body fat and FFM cannot be explained by the 

predictor AMY1 CNV alone.  

4.4.4 Regional Fat Distribution and AMY1 Copy Number  

The correlation analysis cared out to evaluate the association between AMY1 CN and 

body fat distribution (reginal BF %) (Table 4-4). There was no significant association 

observed between all measured reginal BF% and AMY1 CN in total population, males 

or females (p > 0.05 for all). In males no significant associations were found between 

AMY1 CN and the percentage of Arm Fat % (r = 0.222), Trunk Fat % (r = 0.251), 

Android Fat % (r = 0.218), Gynoid Fat % (r = 0.226) and Leg Fat % (r = 0.251).  

Similarly, no significant associations were observed between AMY1 CN and the 

percentage of Arm Fat % (r = 0.007), Trunk Fat % (r = -0.023), Android Fat % (r = -

0.017), Gynoid Fat % (r = -0.036) and Leg Fat % (r = 0.010) in females. 

 

Figures 4-5 and Figures 4-6 show the scatter plots of the regional BF: Arms Fat %, 

Legs Fat %, Trunk Fat %, Android Fat %, and Gynoid Fat % in male and females. The 

value of R2 for the male and female under the linear regression models are 9 % and 

0.035 % respectively showing that a very small amount of the variation in Arm Fat can 

be explained if we include AMYI CN in the model. Similarly, the R2 for Legs Fat alone 

when included AMYI CN in the regression model for the male and female categories 

are 6.2 % and 0.010 % respectively. Form the above Figure 4-6, the values of the R2 

for Trunk Fat under both categories of gender showing that 5 % and 0.0001 % variation 

respectively explained by in the AMYI CN. The R2 value reported in Figure 4-6 shows 

that when alone Gynoid Fat % only 5.2 % and 0.055 % variation is explained AMYI 

CN. All the above results regarding R2 values suggests that very little portion of 

variation is explained when the single independent variable regarding AMY1 CN is 
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included in a model.  It is also observable that under the female category of gender, the 

R2 value is smaller as compared to the male category for all reginal Fat distribution 

related variables. 

Table 4-4 R alue From Correlation Analysis Results of Associations Between AMY1 Copy Number 

with Regional Fat Distributions.  

Groups 
Arms Legs Trunk Android Gynoid 

% % % % % 

 Males 0.222 0.251 0.222 0.218 0.226 

 Females 0.007 0.010 -0.023 -0.017 -0.036 

 All 0.068 0.086 0.085 0.089 0.068 

Males (n = 108), Females (n = 120), and All (228).  Regional fat distributions in Arms, Legs, Trunk, Android Fat 

%, and Gynoid Fat % in male and females and total participants. Data shows no significant differences p- value = 

> 0.050. 

 

 

 

 

 

 

 

A 
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Figure 4-5 Scatter Plots Depicting the Relationship Between AMY1 Copy Number and Percentage Fat 

Distribution including, Arm Fat (A) and Leg Fat (B) obtained from linear regression analyses and best 

fit lines, males (circles and solid lines) and females (diamonds and dotted lines).  

 

A 



Chapter 4: Copy Number of AMY1, and Body Composition   148 

 

 

Figure 4-6 Scatter Plots Depicting the Relationship Between AMY1 Copy Number and Percentage Fat 

Distribution including, Trunk Fat (C) and Gynoid Fat (D) obtained from linear regression analyses and 

best fit lines, males (circles and solid lines) and females (diamonds and dotted lines).  

 

 

 

 

D 

C 
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Table 4-5 Linear Regression Results of Associations Between AMY1 Copy Number with Regional Fat 

Distributions. 

Measurements Males  Females  All  

β p-value β p-value β p-value 

Arms Fat % 
-0.114 0.774 0.097 0.731 -0.205 0.491 

Trunk Fat % 
0.557 0.722 0.088 0.932 0.295 0.749 

Android Fat % 
-0.391 0.775 0.036 0.967 -0.028 0.970 

Gynoid Fat % -0.537 0.402 -0.928 0.078 -1.008 0.078 

Legs Fat % 0.724 0.144 0.729 0.098 1.049 0.035* 

R2 0.074 0.039 0.030 

Males (n = 108), Females (n= 120), and All (n = 220). Regional fat distributions: Arms (%), Trunk (%), Android 

(%), Gynoid (%), and Legs (%) in all participants, male and females. (*) p -values < 0.05 indicates a significant 

coefficient (β). Denotes the correlation coefficient between the AMY1 copy number and other variables, Adjusted 

R-squared (R2) is also reported for each model. 

 

 

The above Table 4-5 a linear regression analysis was carried out to evaluate the utility 

of AMY1 CN in the prediction of regional BF %. It was observed that under 

subcategory of males, a copy changes in AMY1 CN resultants an increase a one unit in 

the Trunk Fat (%) and Leg Fat (%) results into the 0.557 and 0.724 respectively. 

However, a copy changes in AMY1 CN resultants a decline in the unit of the Arms Fat 

(%), Android Fat (%) and Gynoid Fat (%) by 0.114, 0.0391 and 0.537 respectively. The 

overall goodness of fit measurement R2 (0.074) indicates that the predictor variables 

for the subgroup males account for 7.4% variation in the AMY1 CN, which mean that 

the rest of the variation (92.6 %) in the Arms Fat (%), Trunk Fat (%), Android Fat (%), 

Gynoid Fat (%), and Legs Fat (%) cannot be explained by the predictor AMY1 CNV 

alone. For the subgroup female the value of R2 value of (0.039), which mean that 3.9 

% indicating that a very low proportion of the variation in the dependent variables of 

Arms Fat (%), Trunk Fat (%), Android Fat (%), Gynoid Fat (%), and Legs Fat (%) is 

explained by the AMY1 CNV only.  For the total population the value of R2 for the 
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total participants is (0.030) indicating that 3 % of the variation in the dependent 

variables is explained by the AMY1 CNV only.   

 

4.4.5 Fat Free Mass Distribution and AMY1 Copy Number 

Table 4-6 shows the results for the correlation analysis of body distributions of reginal 

FFM (g) and AMY1 CN according to the participant’s gender. No association were 

observed between total LM and AMY1 CN in males or females (r = 0.072, p = 0.966 

for males, and r = -0.028, p = 0.195 for females). Reginal FFM (g) distribution in Arm, 

Android, Gynoid and legs were also not associated with AMY1 in males (r = 0.085, p 

= 0.721; r = 0.056, p = 0.638, r = 0.079, p = 0.581; r = 0.103, p = 0.261; and r = 0.076, 

p = 0.890, respectively). For females, Arm, Android, Gynoid and legs were also not 

associated with AMY1 (r = 0.008, p = 0.164; r = -0.013 p = 0.157; r = -0.011, p = 0.673; 

r = -0.023, p = 0.148; and r = -0.047, p = 0.499) (Table 4-6 and Table 4-7). 

 

Table 4-6 R value From Correlation Analysis Between AMY1 Copy Number and Regional FFM 

Distributions 

Measurements 
Arms Trunk  Android Gynoid  Les Total 

g g g g g g 

Males 0.085 0.056 0.079 0.103 0.076 0.072 

Females 0.008 -0.013 -0.011 0.023 -0.047 -0.028 

Total 0.035 0.017 0.027 0.047 0.014 0.020 

Males (n = 108), Females (n= 120), and All (n = 220). Regional FFM distributions. : Arms (g), Trunk (g), Android 

(g), Gynoid (g), Legs (g) and Total (g) in male and females and total participants. Data shows no significant 

differences p- value = > 0.050. 
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Table 4-7 Linear Regression Analysis Results for Associations of AMY1 Copy Number with Reginal 

Fat Free Mass. 

Measurements 
Males  Females  All 

β p- value β P- value β p- value 

Arms lean mass (g) 0.205 0.721 0.488 0.164 0.768 0.081 

Trunk lean mass (g) -0.583 0.638 0.842 0.157 0.861 0.164 

Android lean mass (g) 0.158 0.581 -0.120 0.673 -0.035 0.905 

Gynoid lean mass (g) 0.370 0.261 0.481 0.148 0.548 0.075 

Legs lean mass (g) -0.151 0.890 0.425 0.499 0.760 0.192 

Total lean mass (g) 0.110 0.966 -1.874 0.195 -2.770 0.094 

R2 0.180 0.192 0.148 

Males (n = 108), Females (n= 120), and All (n = 220). Reginal fat free mass distributions. Arms (g), Trunk (g), 

Android (g), Gynoid (g), Legs (g) and Total (g) in all participants, male and females. p -values < 0.05 indicates a 

significant coefficient (β), Denotes the correlation coefficient between the AMY1 copy number and other 

variables, Adjusted R-squared (R2) is also reported for each model. Data shows no significant differences p- 

value = > 0.050. 

 

The above Table 4-7 a linear regression analysis was carried out to evaluate the utility 

of AMY1 CN in the prediction of regional LM (g). It was observed that under 

subcategory of males, a copy changes in AMY1 CN resultants an increase a one unit in 

the Arms LM, Android LM, Gynoid LM, and total LM by 0.205, 0.158, 0.370, and 

0.110 respectively. However, a copy changes in AMY1 CN resultants a decline in the 

unit of the Trunk LM, Legs LM by 0.583 and 0.151 respectively. The R2 value of 

(0.180), associated with the regression model suggests that the predictor variables for 

the subgroup males account for 18 % variation in the AMY1 CN, which mean that 80.2 

% of the variation in the Arms LM, Trunk LM, Android LM, Gynoid LM, legs LM and 

Total LM cannot be explained by the predictor AMY1 CNV alone. Similarly, under 

subcategory of females, a copy changes in AMY1 CN resultants an increase a one unit 

in the Arms LM, Trunk LM, Gynoid LM, and Legs LM by 0.488, 0.842, 0.481, and 

0.425 respectively.  However, a copy changes in AMY1 CN resultants a decline in the 

unit of the Android LM and Total LM by 0.120 and 1.874 respectively. The R2 value 

of (0.192), associated with the regression model suggests that the predictor variables 
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for the subgroup females account for 19.2 % variation in the AMY1 CN, which mean 

that 81.8 % of the variation in the Arms LM, Trunk LM, Android LM, Gynoid LM, 

legs LM and Total LM cannot be explained by the predictor AMY1 CNV alone. For 

the total population The R2 value of (0.148), associated with the regression model 

suggests that the predictor variables for 14.8 % variation in the AMY1 CN, which mean 

that 86.2 % of the variation in the Arms LM, Trunk LM, Android LM, Gynoid LM, 

legs LM and Total LM cannot be explained by the predictor AMY1 CNV alone. 

 

4.4.6 Energy Intake and AMY1 Copy Number  

Table 4-8 shows the association between AMY1 CN and the Total EI (KJ), Energy 

from macronutrient intakes (KJ), and PA (Hours / week) in a total of 67 participants 

(males n= 36 and females n= 31) met the under reported and over reported cut-off 

criteria. It has been observed that inverse significant association was detected between 

AMY1 CN and Total EI in total participants, males and females with P = < 0.001 for 

all, r = -921, r = -964, and r = -902 respectively. Further, a negative significant 

association was detected between AMY1 CN and EI from CHO (R = -0.330) and 

protein (R= -0.0385) in female only with P = < 0.05. 

Table 4-8 R value From Correlation Analysis Between AMY1 copy Number and Energy Intake. 

Measurements 
EI CHO Protein Fat PA 

kJ/ day kJ/ day kJ/ day kJ/ day kJ/ day 

 Females -.964** 0.107 0.245 0.287 0.448 

 Males -.902** -.330* -.385* -0.061 0.161 

 All -.921** -0.149 -0.131 0.025 0.325 

Males (n = 36), Females (n = 31), and All (n = 67). Total EI (kJ) , and energy intake from CHO (kJ), Protein(kJ), 

Fat(kJ) and PA. Significant corelation p -values < 0.05 (*) and p = < 0.001(**).  

 

The below Figures 4-7 to Figures 4-11 show the scatter plots of the Total EI (KJ), 

Energy from CHO(KJ), Protein (KJ), Fat (KJ), and PA (Hours / week) in males and 
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females. From Figure 4-7 it is observable that the value of R2 for the male and female 

under the linear regression models are 11.1 % and 8.1 % respectively showing that a 

very small amount of the variation in Total EI can be explain if include the AMY1 CN 

in the model. Similarly, the R2 for CHO EI reported in Figure 4-8 alone when included 

in the regression model for the male and female categories are 8.2 % and 0.6 % 

respectively showing the small percent of variation explained by AMY1 CN the 

underline model. The R2 value reported in Figure 4-9 shows that when alone protein 

EI only 14.8 % and 6 % variation is explained by AMY1 CN. From Figure 4-10, the 

values of R2 for AMYI CN under both categories of gender show that 0.04 % and 8.2 

% variation in the Fat EI respectively. Similarly, the R2 reported in Figure 4-11when 

PA (Hours / week) is included in the model is 2.6 % and 20.1 % respectively for males 

and females showing the percentage of variation explained by AMY1 CN. 

 

 

Figure 4-7 Scatter Plots Depicting the Relationship Between AMY1 CNV and Energy Intake, obtained 

from linear regression analyses and best fit lines.  R2 value = 0.111, p = 0.001 in males (circles and solid 

lines) and R 2 value = 0.081, p = 0.001 in females (diamonds and dotted lines).  
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Figure 4-8 Scatter Plots Depicting the Relationship Between AMY1 CNV and Energy Intake, obtained 

from linear regression analyses and best fit lines R2 value = 0.092, p = 0.322 in males (circles and solid 

lines) and R 2 value = 0.006, p = 0.827 in females (diamonds and dotted lines).  

 

 

 

Figure 4-9 Scatter Plots Depicting the Relationship Between AMY1 CNV and Protein, obtained from 

linear regression analyses and best fit lines.  R2 value = 0.148, p = 0.941 in males (circles and solid lines) 

and R 2 value = 0.060, p = 0.795 in females (diamonds and dotted lines).  
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Figure 4-10 Scatter Plots Depicting the Relationship Between AMY1 CNV and Fat, obtained from 

linear regression analyses and best fit lines.  R2 value = 0.004 p = 0.477 in males (circles and 

solid lines) and R 2 value = 0.082, p = 0.722 in females (diamonds and dotted lines).  

 

 

 

Figure 4-11 Scatter Plots Depicting the Relationship Between AMY1 CNV and SPAQ, obtained from 

linear regression analyses and best fit lines R2 value = 0.026 p = 0.686 in males (circles and solid lines) 

and R 2 value = 0.201, p = 0.118 in females (diamonds and dotted lines).  
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Table 4-9 Linear Regression Analysis Results for Associations of AMY1 Copy Number with Energy 

Intake. 

Measurements 
Males Females All 

β p- value β p- value β p- value 

Total Energy intake (kJ) -32.0 0.001* -32.95 0.001* -32.032 0.001* 

Carbohydrate (kJ) -0.001 0.322 -0.0021 0.827 -0.0011 0.600 

Protein(kJ) 0.004 0.941 0.0060 0.795 0.0045 0.277 

Fat(kJ) -0.0016 0.477 -0.0013 0.722 -0.0016 0.609 

Physical Activity (h/w) 0.0168 0.686 0.0173 0.118 0.0168 0.114 

R2 0.907 0,968 0.924 

Males (n = 36), Females (n = 31), and All (n = 67). Total EI (kJ), and energy intake from CHO (kJ), Protein(kJ), 

Fat(kJ) and PA. (*) p -values < 0.05 indicates a significant coefficient (β), Denotes the correlation coefficient 

between the AMY1 copy number and other variables, Adjusted R-squared (R2) is also reported for each model.  

 

 

Table 4-9 above contains the results of the regression analysis, β coefficients and p-

values of the Total EI (KJ), Energy from CHO(KJ), Protein (KJ), Fat (KJ), and PA 

(Hours / week) in total population, males, and females. It was observed that under 

subcategory of males, a copy changes in AMY1 CN resultants an increase a one unit in 

the Protein EI and PA by 0.004 and 0.0168 respectively. However, a copy changes in 

AMY1 CN resultants a decline in the unit of the total IE, CHO EI, Fat EI by 0.320, 

0.001, and 0.0016 respectively. Further, from the overall goodness of fit for the 

subgroup males, the higher R2 show that 90.7 % of variation in the dependent variables 

is explained by the underlying predictor AMY1 copy number and the rest of the 

variation 9.3 % is not explained by the considered predictor. 

 

It was observed that under subcategory of females, a copy changes in AMY1 CN 

resultants an increase a one unit in the Protein EI and PA by 0.0060 and 0.0173 

respectively. However, a copy changes in AMY1 CN resultants a decline in the unit of 

the total IE, CHO EI, Fat EI by 32.95, 0. 0021, and 0.0013 respectively. For the 
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subgroup females, the overall goodness of fit measure R2 is 96.8 % showing that larger 

amount of variation in Total EI, CHO EI, Protein EI, Fat EI, and PA is due to the AMY1 

CN.  

 

It was observed that under subcategory of females, a copy changes in AMY1 CN 

resultants an increase a one unit in the Protein EI and PA by 0.0045 and 0.0168 

respectively. However, a copy changes in AMY1 CN resultants a decline in the unit of 

the total IE, CHO EI, Fat EI by 32.032, 0.0011, and 0.0016 respectively. For the total 

data, the R2 value is 92.4 % showing that the included predictors in the regression model 

explains 92.4 % of variation in the AMYI copy number and the rest of the variation 7.6 

% of variation is not explained by the predictor.  

 

4.5 Discussion 

This study demonstrated an absence of a link between AMY1 CN and adiposity 

markers, including weight, BMI, WC, FM, and FFM in males and females. The study 

also evidenced the lack of association between AMY1 CN and reginal FM % 

distribution and reginal LM % distribution in both genders. Notably, Total EI shows a 

significant inverse correlation with AMY1 CN in males and females. In contrast, IE 

from CHO, Protein, and Fat intakes were not associated with AMY1 CN in either 

gender. PA was not associated with AMY1 in either males or females. 

 

Several studies have investigated the relationship between AMY1 CN and the 

predisposition to metabolic disorders, including obesity, T2DM, and insulin resistance, 

in both children and adults. However, contradictory results have been reported. The 
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reported discrepancies remain unexplained. However, possible explanations may 

include the different techniques used to estimate AMY1 CN and the different ethnicities 

and ages of the studied the differences between the genders will be consider in the 

following sections including CNV, body composition differences, energy intake, and 

PA.  

 

The distribution of AMY1 CN in this study sample (2–14 copies) is comparable to what 

has been reported previously across modern human populations (Table 1-2).  AMY1 

CN did not differ between genders mean was 7 copies in males and 6.9 copies in 

females, which agreed with a recently reported study (Alakl et al., 2020).   

 

This study reported an absence of the influence of AMY1 on height in males and 

females. However, a strong association between high AMY1 CN and male height was 

detected in the athlete’s study, as reported in Chapter 3. Two reasons might explain 

the inconsistent result in the association between AMY1 and height. Firstly, by 

considering height (cm) variances in the two populations. For instance, in the study 

conducted on Lithuanian athletes and non-exercising controls only males are included 

however, this study is mixture of males and females. The height (mean ± SD) consisted 

of 181.1 ± 6.6 cm compared to total population mean height 172.2 ± 9.5 cm in this 

study. However, similar mean height observed, if the mean height of Lithuanian 

athletes (males only) compared to only male’s height in this study (mean ± SD) 179.6 

± 6.5 cm.  The second potential reason may explain the inconsistent result in the 

association between AMY1 and height is the limited cohort sample size, which mean 

that the association between AMY1 CN and height is weak to detected in 108 males 
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compared to 388 males in Lithuanian athlete’s study. Further, in a broader context the 

hight AMY1 CN distribution might be random in the examined populations which may 

make the associations stronger or weaker. 

 

No association was observed between BMI, BF % and other measurement of adiposity 

with AMY1 CN in the examined populations of the current study. Even though the 

limited sample size of the current study, these results are in line with other studies with 

big samples size reporting a lack of association between AMY1 and obesity  such as 

Ushar et al. conducted in 4,500 adults,  Yong et al. in 1077 adults,  Rukh et al. in 4,800 

adults, Shwan & Armour in 4,235 in  adults 923 Al-Akl et al. in 923( Ushar et al., 2015; 

Yong et al., 2016 ; Rukh et al., 2017; Shwan & Armour, 2019; Al-Akl et al., 2020). In 

contrast, several other studies did find this association between BMI, BF % and other 

measurement of adiposity with AMY1 CN in a gig sample size   including Falchi et al. 

conducted in 6,200 in adults, León-Mimila et al. in 920 adults, Heianza et al.  2,054 

adults, Rossi et al. 2935 adults and similer to our sample size Pinho et al. in 262 adults 

(Falchi et al., 2014; León-Mimila et al., 2018; Pinho et al., 2018; Heianza et al., 2020; 

Rossi et al., 2021). One of those did not show a significant association between AMY1 

CNV and the risk of being overweight or obese in the whole population (p = 0.489). 

However, after testing case-control data in the sub-set of samples above the third 

quartile (CN ≥10), a significant association is found between lower AMY1 copy 

number and risk of obesity (OR = 0.532; p = 0.034), even when adjusted for age and 

gender (OR = 0.527; p = 0.039), adults’ participants with >10 AMY1 copies are normal 

weight controls (n = 20) or overweight (n = 6) (Pinho et al., 2018). In children Mejia-

Benitez et al. identified a marked effect of AMY1 copy number on reduced risk of 

obesity (OR per estimated copy 0.84. All children with AMY1 copies >10 was from 
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controls normal weight (Mejia-Benitez et al., 2015). The current study found no 

association between body fat percentage and CN of AMY1, even among those with a 

high CN (≥10) (Appendix 1). 

 

The study aimed to assess the association between AMY1 and reginal BF and reginal 

LM distributions between the two genders across the general adult population.  Thus, 

weight or BMI cut-off criteria were not applied in the selection of the sample or the 

analysis as the mean comparison was conducted between males and females. Sex- 

specific differences in the association between AMY1 CN and adiposity markers, 

including weight, total BF % or reginal BF distribution, BMI, and WC, were not found 

in this study. In a previous observation, Viljakainen et al. (2015) examined the 

association between AMY1 CN and 61 males and females with a history of childhood-

onset obesity and 71 matched controls according to their body weight. The study 

reported a lack of association between AMY1 CN and body fatness in normal-weight 

females and males. However, an inverse correlation was found between AMY1 CN and 

whole-body fat% (r = -0.512, p = 0.013) and BMI (r = -0.416, p = 0.025).in obese 

females only. Although Viljakainen and his colleagues found that obese males carried 

the highest number of AMY1 copies and obese women had the lowest (p = 0.045), no 

such observation was observed in normal normal-weight males and females. 

Viljakainen et al. explained the increase in the number of AMY1 copies between groups 

as random distribution (Viljakainen et al., 2015).  

 

Additionally, Heianza et al. investigated whether AMY1 CN is associated with two-

year changes in adiposity among 692 overweight and obese considering dietary CHO 
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intake. The study found that those who were obese, and overweight had higher AMY1 

copies and higher amylase activity. These obese with high CN may have greater weight 

loss and decreased central adiposity on low-energy diet interventions (Heianza et al., 

2017). In contrast, the reported results were inconsistent, not only in the association 

between high AMY1 CN and obesity but also in explaining the influence of AMY1 on 

these individuals and whether AMY1 correlated with body fatness markers inversely 

or positively. 

 

The full implications of the influence of AMY1 on adiposity are still not completely 

understood. Falchi et al. provided the first study to find a significant association 

between low AMY1 CN with increased BMI in a cohort of more than 6,000 adult 

participants of both genders with a median age of 53 years compared to the median age 

of 22 years in this study’s population (Falchi et al., 2014). Marcovecchio et al. reported 

a significant increase of BMI z-score by decreasing AMY1 CN in boys (β = -0.117, p 

= 0.033), but not in girls (Marcovecchio et al., 2016). Another recent cross‐sectional 

study of 923 Qatari adults compared the association between salivary α-amylase 

activity (psAA) and AMY1 CN with adiposity  in males and females. Significant inverse 

correlations were found between adiposity markers and psAAa, in both gender and in 

males is stronger (Alakl et al., 2020). 

 

It should, nevertheless, be noted that there is a difference in descriptive BF % between 

males and females in this study; 20.2±7.2 % (mean ± SD) in males compared to 32.2 ± 

6.4 in females. This places males in the normal range and females just above it 

according to WHO criteria (WHO, 1995): normal is defined as 18 % to 24 % in females 
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and 25 % - 31 % in males. The percentage of adipose tissue is higher in females than 

males, and males more commonly have central obesity (Power & Schulkin, 2008; 

Stevens, Katz, and Huxley, 2011). However, the low variability in fat percentage 

between males and females and within the same gender group is considered one of the 

limitations of this study. Generally, these differences stem from metabolic and 

hormonal variations between sexes. The differences between males and females are 

partly explained by the anatomic distribution of adipose tissue throughout the human 

body and the proportions and pattern of distribution. Body fat tissue is mainly 

distributed into two compartments with different metabolic characteristics: 

subcutaneous adipose tissue (SAT), which is more common in females, and visceral 

adipose tissue (VAT) present in the abdominal cavity (Power & Schulkin, 2008). In a 

study of 483 Caucasian adults in the US, they found that women had 1.8kg more SAT 

than men in any given WC, and males have greater VAT than females (Kuk et al., 

2005). Females have greater adipose stores in the thighs than males. Lower body 

adiposity is associated with a less unhealthy metabolic profile in both genders 

(Goodpaster et al., 2005). 

 

It should be noted that there is a significant difference in WC between men and women 

(mean ± SD WC was 82.3 ± 8.1 cm in males compared to 73.5 ± 8.9 cm in females), 

even though the group mean of WC for both genders was in a healthy range.  WC cut-

off points are 94 cm and 80 cm for European men and women, respectively, according 

to WHO criteria (WHO, 2008), which sets higher WC estimates in males than females 

(Adegbija, Hoy, and Wang, 2015). In contrast, other epidemiological studies report an 

association between low serum concentrations of amylase and increased WC 

(Nakajima et al., 2011; Lee et al., 2015; Aldossari et al., 2019; Gabry and Gawish, 
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2019) as well as abdominal fat (Dias et al., 2016). In this study, WC (cm) was 

negatively associated with high AMY1 in female only (β = -0.473, p = 0.005). An 

association between low AMY1 CN with WC has also been reported in other studies 

(Falchi et al., 2014; Leon-Mimila et al., 2018; Venkatapoorna et al., 2019).  

 

In this study, low AMY1 CN was significantly associated with high total EI in males 

and females by increasing one copy of AMY1 decreases 33 KJ of total EI. However, 

no such association were observed between and AMY1 CN and EI source whether it 

comes from CHO, fat, or protein in males or females. Also, there was an association 

between AMY1 CN and central adiposity measured by WC (cm)in females only.  

Further, there was no association between AMY1 CN and others adiposity 

measurements in males or females. Gender-specific differences in the influence of 

AMY1 CNV on adiposity related to dietary intake and CHO in food, in particular, have 

been reported in previous studies. For instance, a cross-sectional study of European 

individuals found that higher AMY1 CN was related to lower BMI among people with 

lower starch intake. At the same time, the trend was reversed among people with higher 

starch intake (Rukh et al., 2017). A very recent meta-analysis investigating interactions 

between AMY1 genetic risk score (GRS) and dietary intake for changes in general and 

abdominal adiposity found that CHO intake significantly altered associations of AMY1 

GRS with changes in BMI and WC among 32,054 adults from four prospective cohort 

studies. The study found that, in males, higher AMY1-GRS was associated with lower 

gains in adiposity when the dietary CHO intake was low while, among women, higher 

AMY1-GRS was associated with higher increases in adiposity if dietary CHO food 

intake was high (Heianza et al., 2020). Both studies of Rukh et al. and Heianza et al. 

did observe significant associations between AMY1 and adiposity when differences in 
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dietary intake of starch or CHO foods were not considered. In our study we are 

conforming that we detected a significant association between female’s AMY1 CN and 

low WC along with low total EI disparate of the course of energy. We can pointe that 

the negative direction of associations AMY1 CN and EI from CHO protein, and fat 

with more than 90 % the proportion of variances explained by the CN of AMYI.   As 

noted, there remains controversy within the literature regarding the association between 

AMY1 CN and adiposity. Variation in dietary preferences (starch ingestion) between 

studied populations may explain some differences in the strength of the association 

between AMY1 CN and obesity markers. 

 

In this study, only 67 participants were matched with EI: BMR cut-offs out of 112 

participants who reported their intake. Further studies are needed to confirm the inverse 

correlation between CHO intake and CNV of AMY1 in males, especially since an 

inverse correlation between males and body fatness has been reported in two studies 

 

This study demonstrated a lack of association between AMY1 CN on fat distribution 

and LM among males and females, which is novel and merits further investigation in 

additional cohorts. The strengths of this study include a well-characterised cohort, 

gender-based analysis, a reasonable sample size, and considerable phenotypic detail. 

The gold standard method of DXA for body composition measurement was used. This 

study also has several limitations. The differences between males and females in 

weight, height, BMI, and fat % were not considered. Further, it is difficult to compare 

the results with other studies because of differences in the fat measurement methods 
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and the characteristics of the groups. There was also a lack of detailed SAT and VAT 

characterisation because of limitations in the DXA software.  

 

4.6 Conclusion 

This study did not report associations between AMY1 CNVs and BMI, body fatness, 

and lean mass in either male or female individuals. Gender differences were found in 

the energy and macronutrient intake in relation to AMY1 CNVs.  The data in this study 

suggests that high AMY1 CNVs do not predispose young male or female individuals 

to obesity. Future investigation is needed in larger samples to confirm these results. 
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Chapter 5  Impact of Copy Number of AMY1 on Postprandial 

Glucose Response during Rest: A Pilot Study   

5.1 Abstract 

AIM: The aim of this pilot study was to generate data that would inform future research 

to understand potential reasons behind the gaps in the conflicting results of the influence 

of AMY1 CN on glycaemic response after starch ingestion compared to glucose loading 

during rest in healthy individual adults.  

 

METHODS: A pilot study was conducted at University of Stirling and recruited fifteen 

healthy adult male and female following the inclusion and exclusion criteria and 

divided them into two groups. (I) high AMY1 CN ≥ 9 (n=10) and (II) low AMY1 CN 

≤5 (n= 5). A blood sample was drawn at 0 min (fasted state) and at 15, 30, 45, 60, 90 

and 120 min following ingestion of a starch solution (OPTT) and a dextrose solution 

(OGTT). An automated Aries ILab benchtop analyser was used to assess plasma 

glucose and lipid levels, and commercial ELISA kit was used to measure plasma insulin 

concentrations. G* Power software was used for sample size calculation. 

 

RESULTS: The plasma glucose iAUC and plasma insulin iAUC were significantly 

different between the two groups. Plasma glucose iAUC after starch ingestion was 

significantly higher in the low AMY1 CN group compared to the high AMY1 CN 

group. Plasma insulin iAUC after starch ingestion was significantly higher in the high 

AMY1 CN group compared to the low AMY1 CN group. No significant differences 

were found in plasma TG and NEFA concentrations. The total sample size of 62 adults 

would be adequate number to detect differences between the groups in tested variables.  
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CONCLUSION: AMY1 CN showed a potential association with glycaemic levels in 

healthy adults upon ingestion of starch and glucose. Further research is needed to 

confirm this finding with a total sample size of 36 healthy adults. Sex differences and 

lifestyle factors should be taken into consideration in future research while assessing 

associations between glycaemic response and AMY1 CN. 

 

5.2 Introduction  

Various risk factors and aetiologies explain the incidence of obesity and diabetes in 

different ethnic groups and populations. However, the topic is and requires a broad 

outlook to cover a wide range of complex associations of different factors including 

poor diet, activity levels, body mass index and diabetes which creates a serious health 

burden. Among the different factors, genetic predisposition has been postulated as one 

of such risk factors, but our current understanding of specific genetic markers is still 

incomplete.  

 

The salivary amylase gene (AMY1) has been implicated in the onset of obesity, and 

copy number variation (CNV) of AMY1 is associated with obesity and impaired 

glucose metabolism (Mandel and Bresline, 2012; Falchi et al., 2014; Mejia-Benitez et 

al., 2015; Choi et al., 2015; Nakajima et al., 2016; Elder et al., 2018; Pinho et al., 2018; 

Leon-Mimila et al., 2018; Venkatapoorna et al., 2019; Higuchi et al., 2020; Barbar et 

al., 2020; Rossi et al., 2021). However, the findings of these studies are inconsistent 

with evidence from other reports that show no association of AMY1 copy number with 

obesity and impaired glucose metabolism (Tan et al., 2016; yong et al., 2016; Atkinson 

et al., 2018; Marquina et al., 2019; Valsesia et al., 2019; Shwan et al., 2019). These 
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inconsistent results may be due to methodological differences between studies or the 

heterogeneity in participant samples in terms of number, ethnicity and genetic 

background (Ooi et al., 2017, Ushar et al., 2016). 

 

Dietary carbohydrate (CHO) quantity and quality have been associated with weight 

gain and risks of obesity complications, such as type 2 diabetes (Ludwig et al., 2018). 

The digestion of polysaccharides begins in the oral cavity with its breakdown into 

smaller saccharides by the action of salivary α-amylase. The copy number variation and 

activity of AMY1 are responsible for individual differences in salivary amylase 

function (Atkinson et al., 2018). Individuals with higher salivary amylase levels have 

been shown to display faster oral starch digestion (Mandel et al., 2010). Higher AMY1 

CN is also related to improved starch digestion (Almandel and Breslin, 2012; Atkinson 

et al., 2018). In 2014, Falchi et al. found the first link between CHO metabolism, low 

AMY1 CN, and BMI in European and Asian populations (Falchi et al., 2014). Rukh et 

al. reported that AMY1 CNV is associated with body fat only when taking into 

consideration the starch intake of individuals in a Swedish cohort (Rukh et al., 2017). 

AMY1 copy variations are likely caused by human genetic adaptation to starch-rich 

diets. Individuals from populations with high-starch diets have on average, more 

AMY1 copies compared to those with traditionally low-starch diets (mean = 6.7; mean= 

5.44 respectively) (Parry et al., 2007; Santos et al., 2012). Notably, the high CN of 

AMY1 is significantly correlated with higher levels of salivary amylase protein and 

serum amylase (Parry et al., 2007; Mandel et al, 2010; Carpenter et al., 2017). This 

suggests a genetic link between CHO metabolism and obesity, as the next chapter will 

provide a pilot study to begin to address this goal.   
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The genetic adaptation to improve starch digestion, reflected by changes in AMY1 CN, 

may also have an impact on oral and gut microbiome profiles (Poole et al., 2019; León-

Mimila et al., 2018). Gut microbiota alterations have been related to energy balance, 

weight gain, and adiposity via interactions with dietary factors (Lazar et al., 2019). 

Further, salivary α-amylase concentration is regulated by circadian rhythms and the 

nervous system. Physical exercise activates the sympathetic nervous system (Paterson, 

1996), Antoon et al. (2015) found that high-intensity exercise leads to the anticipated 

increase in amylase secretion and salivary flow rate. Thus, the current study will assess 

the association of AMY CN with glycaemic control in healthy adults after intake of 

starch and glucose intake of CHO and other macronutrients in the study sample and its 

association with AMY1 CN.  

 

AMY1 may provide a genetic link between carbohydrate metabolism and BMI (Falchi 

et al., 2014), which leads us to hypothesize about the association between AMY1 CNV 

and metabolic status. However, this link is not yet completely understood. In Almandel 

& Breslin’s study (n= 7), the authors suggest a potential role of salivary amylase activity 

in initiating glucose homeostasis pathways (Almandel and Breslin, 2012). These 

findings have been confirmed by another small crossover study (n= 10) which showed 

that individuals with high amylase activity may have a higher and earlier increase in 

plasma insulin concentration, and low glycaemic response after the ingestion of 

gelatinised starch food compared with the low amylase activity group (Alberti et al., 

2015). The two studies failed to find an association between AMY1 CN and glycaemic 

response, but they showed that the salivary amylase activity and concentration 

significantly influenced the glycaemic response. It is important to note that the 

expression, activity, and enzyme concentration of amylase are partially correlated with 
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increasing AMY1 copy numbers and vice versa (Mandel and Breslin, 2012; Perry et 

al., 2007). A very recent study in sixty healthy non-obese young women in showed that 

the low AMY1 CNV is associated with chronic unfavourable glucose metabolism 

(Higuchi et al., 2020). It has been reported that high AMY1 CN associates significantly 

with a favourable metabolic profile, including lower visceral fat volume, higher serum 

levels of adiponectin and HDL-cholesterol, and enhanced glucose absorption following 

an oral glucose load, although the association was not found to be significant in terms 

of insulin sensitivity (Barber et al., 2020). 

 

It is documented that after ingestion of glucose and subsequent insulin signalling there 

is an increase in the adipocyte lipid storage via two mechanisms, one includes 

stimulation of triacylglycerol synthesis and the other inhibition of lipid breakdown. The 

reverse happens in participants who present with lower AMY CN and subsequent 

decreased insulin/insulin resistance thereby leading to lipid breakdown and increased 

levels of TAG (Ormazabal et al., 2018). 

 

Insulin resistance exhibits as a decreased utilization of glucose at the cellular level as 

well as a decline in muscle glycogenesis and lipolysis. Insulin sensitivity is also 

decreased in different cells obtained from obese individuals, in the presence of lipids 

derived from lipolysis from the fat cells. This supports the theory of accumulation of 

excessive fat thereby clearly exhibiting the correlation of obesity, insulin resistance and 

altered lipid profile (Hardy, Czech and Corvera, 2012). 
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Reduced amylase 1 (AMY1) copy numbers are associated with obesity, insulin 

resistance, and inflammation. Although mechanisms linking AMY1 copy number with 

metabolic disorders are poorly understood. The aim of this study is to contribute to the 

clarification the conflicting results of previous studies by examining AMY1 copy 

number variation and glucose metabolism in a homogenous group of healthy 

participants. The study data can be used for effect size estimation and subsequent power 

calculation for future, larger studies. We addressed the following research questions: 

 

1- What sample size is required to examine the interaction between AMY1 CN 

(high AMY1 CN ≥ 9 and low AMY1 CN ≤ 5) and postprandial glucose response 

after glucose or starch ingestion? 

 

2- Is there preliminary evidence that individuals with high CN have higher glucose 

concentrations after starch ingestion compared to the low CN group?  

 

3- Is there preliminary evidence that individuals with high CN have low insulin 

concentrations after starch ingestion compared to the low CN group? 

 

4- What factors may affect high CN / low CN individuals’ impaired postprandial 

glucose response in this pilot study?  
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5.3 Methods  

5.3.1 Ethical Approval  

The study protocol was performed in accordance with the Declaration of Helsinki and 

was approved by the Health Science and Sports School Ethics Committee at the 

University of Stirling (the SSREC No #880). All the information about the participants’ 

identities was anonymous.  

 

5.3.2 Study Participants   

Fifteen healthy male and female adults, aged 18-40 years, were recruited from the 

University of Stirling to participate in this investigation. Participants were asked to sign 

consent forms after being provided with the full details of the study. Participants were 

also asked to fill out a health questionnaire, including questions about their medical 

history and physical activity, and were given the opportunity to ask questions. 

Participants in the DXA study (reported in Chapter 4) were classified into the top and 

bottom 10 % of the AMY1 copy number distribution: high AMY1 copy number ≥ 9 

and low AMY1 copy number ≤ 5. All potential participants were contacted to take part 

in the current study. 10 % of DEXA study participants had high AMY1 CN with an 

eightfold greater risk of obesity based on their copy number distribution and the study 

results by Falchi and colleagues who published the first report of an inverse association 

between human AMY1 CN and BMI using a quantitative polymerase chain reaction 

(qPCR) approach. These study results were replicated in > 6000 participants from 

cohorts that included European and Singaporean Chinese ethnicities, demonstrating 

that each additional copy of AMY1 reduced obesity risk by 1.2-fold, and there was an 

eightfold greater risk of obesity in individuals with an AMY1 CN ≤ 4, compared to 
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those with an AMY1 CN ≥ 9 (Falchi et al., 2014).  Every participant who met the study 

inclusion criteria was contacted. The study included only participants who were not on 

medications during the study period (including thyroid drugs, obesity treatment drugs 

and antipsychotics), as well as participants with a fasting blood glucose (FBG) ≥ 

7mmol/l (126 mg/dl) during the study. Only fifteen participants agreed to take a part in 

this study. All DNA extraction and AMY1 CN amplification were explained 

in Chapter 2. The assessment of total Energy Intake (EI; kJ/day), macronutrient intake 

(g/day), physical activity level (Hours/week) were explained in Chapter 4. 

 

5.3.3 Study Design   

The participants were asked to attend the laboratory in the morning on five separate 

occasions, having fasted for 8-12-hours and rested overnight. Additionally, they were 

asked to abstain from alcohol consumption for 24 hours prior to their arrival. On the 

first visit, the participants were instructed to fill in a 24-hour dietary record for the last 

24 hours before the samples were taken and were asked to repeat the same diet the day 

before each subsequent visit in order to minimise the influence of their diet on the 

results. In the first and second sessions, the participants completed either the Oral 

Glucose Tolerance Test (OGTT) or Oral Polymers Tolerance Test (OPTT).  

 

5.3.4 Oral Glucose Tolerance Test (OGTT) and Oral Polymer Tolerance Test 

(OPTT) 

A 1.1x32mm Cannula (BD Nexiva, USA) was inserted into the participant’s vein for 

blood sampling. The participants then drank either a dextrose solution as a control for 

OGTT (My Protein, UK) or a waxy maize starch solution for OPTT (My Protein, UK). 

40g of starch was mixed with 500ml water to get a final concentration of 8 
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%. However, to get 8% concentration of dextrose and equal energy, 35.4 g of dextrose 

was mixed with 442.5 ml water (Table 5-1).  The participant was instructed to finish 

the drink within two minutes. Both solutions were prepared 30 minutes before the trial.  

A sample (5 ml) of venous blood was drawn at correspond time points, 0, 15, 30, 45, 

60, 90 and 120-mins. Blood samples were collected in Lithium Heparin tubes (Becton, 

Dickinson & Company, NJ, USA) and kept on ice until the end of the session.  

Table 5-1 Nutritional Information of Carbohydrate Solutions 
 

DRINK 
CONTROL   TRIAL   

Glucose (single unit)  Polymer (long-chain)  

SOURCE 100% Dextrose Glucose 100% Waxy Maize Starch 

SERVING 35.4 40 

CONCENTRATION (%) 8.0 8.0 

ENERGY (KCAL) 141.6 141.6 

CARBOHYDRATE(G) 35.4 35.2 

OF WHICH SATURATES(G) 35.4 0 

FAT(G) 0 0.08 

PROTEIN (G) 0 0.08 

WATER (ML) 442.5 500 

  

  

5.3.5 Plasma Analysis  

After each session, the plasma fraction was immediately separated by centrifugation at 

3500 rpm for 15 min at 4ºC. The supernatant plasma was removed, aliquoted into 

Eppendorf tubes, and stored at -80°C for later analysis. An automated Aries ILab 

benchtop analyser with associated reagents (Table 5-1) (Instrumentation Laboratories, 

MA, US) was used to estimate plasma glucose concentrations (mmol/l), and a lipid 

panel to detect significant associations in test results. Serum lipid measurements 

included total cholesterol (mg/dl, converted to mmol/l), HDL‐C (mmol/l), LDL‐C 

(mmol/l), triacylglycerol (mmol/l), and non-esterified fatty acids (NEFA) (mmol/l). 
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These lab tests were taken at 8-time points as a part of their OGTT and OPTT tests (-5 

to 120 min). To ensure the reliability of the obtained study data, the Ilab Aries was 

calibrated using a multicomponent calibrator ReferrIL G (00018257000) (Werven, 

Milano, Italy) to ensure the accuracy of substrate assays (listed in Table 2-2).  A 

reaction volume of 200 μL of each plasma sample was run in duplicate. Analyte 

concentration was automatically calculated by the instrument against the calibrator. 

Controls SeraChem® Control Level 1 (Cat. No.0018162412) and SeraChem® Control 

Level 2 (Cat. No. 0018162512) (Werven, Milano, Italy) were used to establish mean 

and standard deviations and provide a quality control method. Data out of the reference 

range were excluded and samples re-analysed. 

 

Plasma insulin concentrations were measured at the same time points as the plasma 

glucose and lipids using commercial ELISA kits and according to the manufacturer’s 

instructions (Demeditic, DE2935, Germany).  The insulin results are reported in SI 

units: pmol/L as recommended by (Knopp et al., 2018). 

 

5.3.6 Insulin Sensitivity Index (ISI) 

Insulin sensitivity Index (ISI) was obtained after collecting plasma glucose levels and 

serum insulin concentration in a fasted state and as a part of the measurements provided 

by the OGTT and OPTT tests. After obtaining this data, whole-body insulin sensitivity 

was estimated through the Matsuda index using the formula outlined below (Matsuda 

and DeFronzo, 1999; DeFronzo and Matsuda, 2010; Hayashi et al. ,2013): 

Matsuda insulin sensitivity index. (Matsuda and DeFronzo, 1999) 
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(10,000/square root of [fasting glucose (mg/dL) × fasting insulin (μU/mL)] × [mean 

glucose (mg/dL) × mean insulin (μU/mL)] using the data derived from both OGTT and 

OPTT. FPG = fasting plasma glucose, FPI = fasting plasma insulin. 

 

Based on the emerging literature on different cut-off values for the Matsuda index, we 

use the 25th percentile as a lower level of insulin resistance and set a Matsuda cut-off 

of ≤ 4.1 as a clinically reasonable value to differentiate between individuals with and 

without insulin resistance in our study. 

 

HOMA-IR 

Homeostasis model assessments of insulin resistance (HOMA-IR) was computed using 

the formula provided by Matthews et al. (1985):  

[fasting glucose (mg/dL)] × [fasting insulin (μU/mL)]/405 

 

Elevated HOMA-IR levels account for low insulin sensitivity, which is indicated by a 

value of 1.9 or more.  The cut off HOMA-IR in this study calculating according to 

participants conditions.  The results for each insulin resistance values were ranked and 

divided into percentiles. As HOMA-IR correlates directly with insulin resistance, the 

75th percentile was selected as the best cut-off value (HOMA-IR ≥ 3.4). 

 

5.3.7 Statistical Analysis 

Statistical analyses were performed on data from the 15 participants who completed the 

study by using IBM SPSS Statistics Version 28 (SPSS Inc. Chicago, USA).  Data was 
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assessed for normality of distribution using the Shapiro-Wilk test (Shapiro and Wilk, 

1965). All values are presented as mean ± standard deviation (SD). Independent sample 

t-tests were run at baseline to compare possible mean differences in measured variables 

between the high CN and low CN groups. A two-way repeated measures ANOVA was 

used to determine whether there were significant differences between the two groups 

(high CN and low CN) during OGTT/OPTT periods (trials × time).  

 

The error variance for each study variable was estimated from the corresponding 

intrasubject coefficient of variations (CVs) based on two replicates total 15 non obese 

subjects (Table 5-4). The CV is ratio of the standard deviation of the mean. It is 

calculated based on the average values of the respective level (0-120 min). 

 

The incremental glucose response vs time was evaluated by area under the curve 

(iAUC). To measure the glucose response vs time during an OGTT / OPTT the 

trapezoidal method was applied (Purves, 1992). The tAUC depends on basal glucose 

values while the iAUC and pAUC are not related to basal glucose value. Since the 

tAUC is independent of the ever-changing baseline glucose or insulin levels, it might 

be the preferred method for evaluation of the response during OGTT (Khan and 

Thorsten, 2017; Cheng et al., 2018). 

 

In clinics, for the diagnostic purpose of impaired glucose tolerance, the area under the 

curve (AUC) defines the glycaemic index following OGTT. It is helpful in estimating 

blood glucose total rise during OGTT. Later on, incremental area under curve (iAUC) 

was established due to presence of different levels of fasting glucose among different 
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subjects. But it created a problematic challenge when it yielded negative values while 

subtracting baseline value of fasting plasma glucose. Hence, after that positive 

incremental AUC (pAUC) established utilizing the values above the base line. Above 

all it is recommended recently that the total area under the curve (tAUC) best expresses 

the correlation with glucose concentration at two hours of OGTT and tAUC is better to 

be used in preference to iAUC and pAUC (Cheng et al., 2018). Because of the big 

variance in baseline plasma glucose between individuals in the same group, iAUC of 

plasma glucose and insulin curves during OGTT / OPTT were calculated using 

GraphPad Prism version 8 (Graphpad Software Inc., AC, USA).  

 

G*Power3 software used to generate the power calculations for future studies based on 

current study data sample size offered 80 % power (α = 0.05) need to change of plasma 

concentration of glucose, insulin, TG, and NEFA in healthy adults with high / low copy 

number of AMY1. G*Power is a power analysis software used for estimating sample 

size for research studies. Contrary to other sample size calculation softwares, G*Power 

offers the ability to calculate power for a wide variety of statistical tests including T-

tests, F-tests, and chi-square-tests. G*Power has a built-in tool for determining effect 

size for calculating sample size. G*Power was first introduced in 1996 as a completely 

interactive, menu-driven program performing high-precision statistical power analysis, 

nonetheless the modern version of G*Power was developed in 2007 (Erdfelder et al, 

1996; Faul et al., 2007; Faul et al., 2009). 

 

The commonly general assumptions used to include, type 1 error value is 5% therefore 

we used α err prob as 0.05. Furthermore, we assumed the power of the study as 80% 

with two groups and seven number of measurements. We used the default values of 
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correlation among repeated measures (0.05) and non-sphericity correction (1). The used 

assumptions for calculating sample size from the pilot study, we had seven time-points 

of measurements after OGTT, therefore ANOVA (repeated measurement) used for 

calculating sample size. To estimate sample size based on ANOVA, the most 

appropriate test family is F-test, therefore we select F-test as test family. The calculated 

effect size based on partial η2. Based on multivariate tests for different variables 

(Glucose, total-Cholesterol, Insulin, TG, NEFA), partial η2 of 0.016, 0.022, 0.039, 

0.059 and 0.065 were used for calculating effect sizes. 

 

5.4 Results 

5.4.1 Study Participants 

Fifteen healthy adult participants were included in the study. They were divided 

according to their CNV of AMY1: high AMY1 CN group ≥ 9 n =10 (30 % females); 

low AMY1 CN group ≤ 5 n = 5 (80 % females). There were no significant differences 

(p-value > 0.05) in demographic and basic biochemical characteristics of the two groups 

(Table 5-2). 

 

Mean ± SD of BMI in was 27.1 ± 3.9 kg/m2 in low CN group and 23.1 ± 2.7 in high 

CN group but was not statistically significant (p = 0.060). The Mean ± SD of PAL 

(hour/week) was 16.9 ± 10.09 in low CN group and 8.39 ± 5.66 in high CN group but 

was not statistically significant (p = 0.053) (Table 5-2).   
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Table 5-2 Descriptive Characteristics of the Participants in this Study Grouped According to Copy 

Number of AMY1.  

 

Though there was no significant differences (p-value > 0.05) between mean fasting 

plasma glucose (FPG)  concentrations of high CN group (5.54 ± 0.73 mmol/ml) and 

low CN group (5.2 ± 0.39 mmol/ml), nevertheless, 6 (60 %) participants in the high CN 

group and 1( 20 %) participant in the low CN group demonstrated impaired fasting 

Characteristic 

High CN  

 

Low CN 

    p = value 
n=10 (m=7 and f=3) n=5 (m=1and f=4) 

AGE (year) 26.8 ± 6.42 22.2 ± 1.64 0.145 

CN of AMY1 10.6 ± 1.50 4.4 ± 0.50 <0.0001 

Weight (kg)  70.79 ± 13.11 73.32 ± 4.57 0.687 

Height (cm)  152.59 ± 53.61 169.86 ± 5.07 0.493 

BMI (kg/m2) 23.6 ± 2.69 27.12 ± 3.89 0.060 

Body Fat % 23.4 ± 6.75 30.82 ±13.21 0.169 

Macronutrients and Physical Activity  

EI (kJ) 4112 ± 3657.6 3401.0 ± 2744.4 0.801 

Carbohydrate (g) 242.53 ± 43.96 214.4 ± 22.09 0.379 

Fat (g) 76.76 ± 29.65 64.17 ± 19.89 0.574 

Protein (g) 85.73 ± 13.38 76.52 ± 22.92 0.580 

PA (h/w) 8.39 ± 5.66 16.9 ± 10.09 0.053 

Fasting Blood Markers 

FPG (mmol/ml) 5.54 ± 0.73 5.2 ± 0.39 0.395 

FPI (pmol /ml) 62.40 ± 30.94 

 

99.00 ± 89.43 

 

0.253 

TOTAL- COLESTROL (mmol/ml) 4.40 ± 0.90 4.81 ± 0.74 0.399 

HDL (mmol/ml) 1.72 ± 0.46 1.53 ± 0.23 0.414 

LDL (mmol/ml) 2.65 ± 0.718 3.08 ± 0.35 0.234 

TG (mmol/ml) 1.15 ± 0.66 0.860 ± 0.34 0.371 

NEFA (mmol/ml) 1.81 ± 1.08 1.01 ± 0.82 0.172 

(High- CN = ≥ 9 of AMY1 and Low- CN = ≤ 5 of AMY1). BMI, body mass; EI, Energy Intake; FPG, Fasting Plasma 

Glucose; FPI, Fasting Plasma Insulin; HOMA- IR, Homeostasis of Model Assessment Insulin Resistance; OGTT, Oral 

Glucose Tolerance Test; PGTT, Oral Polymer Tolerance Test. All values are expressed as mean ± SD. p -value <0.05 

considered significant differences by one-way ANOVA test. 
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glucose (IFG) (≥ 5.6 mmol/L - < 7.0 mmol/L) according to the WHO diagnostic criteria 

for diabetes and impaired glucose tolerance (Table 5-3). 

Table 5-3 Percentage of Normal Participants, Prediabetes, and Diabetes Among High CN and Low CN 

group. 

Diagnostic Criteria 
High CN (n= 10) Low CN (n= 5) 

NO % NO % 

Fasting Plasma Glucose (FPG) 

WHO 

Normal (<5.6 mmol/L) 4 40% 4 80% 

 Prediabetes (≥5.6 mmol/L) 6 60% 1 20% 

Diabetes (≥7.0 mmol/L) - - - - 

ADA     

Normal (<5.5 mmol/L) 4 40% 4 80% 

Prediabetes (≥5.5 mmol/L) 6 60% 1 20% 

Diabetes (≥7.0 mmol/L) 
- - - - 

 

2-hour Plasma Glucose Concentration (OGTT) 

WHO     

Normal (<7.8 mmol/L) 8 80% 5 100 

Prediabetes (>7.8 mmol/L) 2 20% - - 

Diabetes (≥ 11.1 mmol/L) - - - - 

ADA     

 Normal (<7.7 mmol/L) 8 80% 5 100 

 Prediabetes (≥7.7 mmol/L) 2 20% - - 

Diabetes (≥11.1 mmol/L) - - - - 

(High- CN = ≥ 9 of AMY1 and Low- CN = ≤ 5 of AMY1). Data display in fasting plasma glucose (FPG) and 2- 

h fasting plasma glucose from OGTT (2-h FPG). in high CN group and low CN group using the World Health 

Organisation (WHO) and American Diabetes Association (ADA) criteria. 

 

The coefficient of variation % (CV) (SD*100/mean) is basically a relative measurement 

which is the ratio of the standard deviation to the mean. Higher values of CV indicate 

greater dispersion around the central value. It is useful to compare the values of 

variables having different measurement units. The lesser the CV value the greater the 

precision level of estimate. Generally, results indicate that the blood markers after 

starch ingestion are observed with lesser CV than after starch ingestion in the high CN 
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group compared to the low CN group (Table 5-4). It signifies that there exists higher 

degree of variation among the values. Total CV% of glucose concentration during the 

OGTT was 23.16 % in high CN and 20.19 % in low CN; in OPTT was 6.64 % in the 

high CN group and 5.07 % in the low CN group. The total CV % for plasma insulin 

concentration during OGTT was high in both groups, CV= 52.30 % in high CN and 

52.31 % in low CN. 

 

Table 5-4 Coefficient of Variations (CV) for Plasma Concentration in Different Variables. 

Variables 
Glucose Starch 

Mean ± SD CV (%) Mean ± SD CV (%) 

Glucose  High CN 6.52 ± 1.51 23.16 6.13 ± 0.41 6.64 

 Low CN 6.30 ± 1.28 20.19 5.60 ± 0.29 5.07 

Insulin  High CN 160.61± 84 52.30 77.09 ± 13.68 17.74 

 Low CN 228.04 ± 199.30 52.31 84.72 ± 8.11 9.567 

Total- C  High CN 4.49 ± 0.14 3.15 4.55 ± 0.15 3.31 

 Low CN 4.50 ± 0.15 3.30 4.60 ± 0.20 4.48 

LDL-C  High CN 2.96 ± 0.74 24.83 2.72 ± 0.09 3.35 

 Low CN 3.10 ± 0.04 1.45 3.10 ± 0.14 4.45 

HDL-C  High CN 1.77 ± 0.08 4.35 1.79 ± 0.05 2.88 

 Low CN 1.40 ± 0.11 7.97 1.50 ± 0.09 5.61 

TG  High CN 1.26 ± 0.12 9.34 1.28 ± 0.09 6.98 

 Low CN 0.90 ± 0.05 6.11 0.90 ± 0.07 7.73 

NEFA  High CN 1.97 ± 0.18 9.01 2.04 ± 0.19 9.57 

 Low CN 1.40 ± 0.23 16.38 1.60 ± 0.20 12.60 

Data display in Mean ± SD and CV (%). High CN (n = 10), Low CN (n = 5). 
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5.4.2 Power Calculations 

The effect size was calculated based on partial η2. Based on the current study results of  

ANOVA (repeated measurement) for different variables concentrations (Glucose, 

Total-Cholesterol, Insulin, TG, NEFA),  the lowest partial η2 of 0.016, 0.022, 0.039, 

0.059 and 0.065  were used for calculating effect sizes (Appendix 2-6). Based on partial 

η2 for glucose (0.016), a total of 62 participants (31 participants in each group) will be 

required for the study. Because partial η2 for remaining variables (Total-Cholesterol, 

Insulin, TG, NEFA) was higher than glucose, therefore a smaller number of participants 

will be required, if we assume other variables for estimating sample size. (Table 5-5) 

Table 5-5 The Result of Sample Size From Glucose, Cholesterol, Insulin, TG, NEFA 

Variable partial η2 Effect size Sample size 

Glucose 0.016 0.1275153 62 

Cholesterol 0.022 0.1499830 46 

Insulin 0.039 0.2014515 26 

TG 0.059 0.2503982 18 

NEFA 0.065 0.2636640 16 

 

 

5.4.3  Plasma Glucose Responses following Carbohydrate Ingestion  

The plasma glucose curves for the high AMY1 CN and low AMY1 CN groups are 

presented in Figure 5-1. Figure 5-1 A. shows that plasma glucose concentration 

following glucose ingestion was comparable between the high CN and low CN groups. 

Following glucose ingestion an increase was observed from the baseline to a peak at 30 

minutes, followed by a decrease to 90 mins, and then stable increase from 90 min 

continuing to 120 min. Figure 5-1 B. shows that plasma glucose concentration after 

starch ingestion was comparable between low and high CN groups. The mean plasma 

glucose post- starch was lower in low CN group than high CN group (p = 0.048) only 



Chapter 5: Pilot Study         184 

 

at 60 min time point. However, there were no significant statistical differences between 

groups at the remaining time points (p = > 0.050; two- way ANOVA). 

 

Peak plasma glucose concentrations and the corresponding total time- points in both 

tests (following the glucose solution and starch solution) were not significantly altered 

between groups (p-value = 0.781; two- way ANOVA) (Table 5-6). Figure 5-1 C. 

shows that the plasma glucose iAUC has non-significant difference post-glucose 

ingestion (p-value = 0.831; t-test), and plasma glucose iAUC over 120 min has 

significantly higher post-starch ingestion in high CN group then low CN groups (p-

value = 0.013; t-test). 
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Figure 5-1 Comparing Plasma Glucose Concentrations in of Two Examined Groups (Mean ± SEM): the 

high CN (n=10) group and the low CN(n=5). (A) shows Plasma Glucose concentrations between the two 

groups in post-glucose ingestion during OGTT (0-120 min), (B) shows Plasma Glucose concentrations 

between the two groups in post-starch ingestion during OPTT (0-120 min). (C) comparand Plasma 

Glucose iAUC between high CN group and low CN group in post-glucose ingestion and post-starch 

ingestion. (*) considered significant p <0.05 (t-test).  

 

5.4.4 Plasma Insulin   

Plasma insulin curves for the high CN and low CN groups are presented in Figures 5-

2. Figure 5-2 A. shows plasma insulin after glucose ingestion; a large increase occurred 

in the high CN group plasma insulin from the baseline to 30 mins post-ingestion and 

steadily decreased up to 120 minutes. The low CN group’s plasma insulin concentration 

increased from the baseline to 30 minutes, followed by a decrease at 45 mins to 90 

mins. The mean plasma insulin post- glucose was higher in low CN group than high 

CN group (p = 0.038) only at 15 min time point. However, there were no significant 

statistical differences between groups at the remaining time points (p = > 0.050; two- 

way ANOVA). 
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Figure 5.2 B. shows plasma insulin after starch ingestion; were not stable in high CN 

group compared to low CN group. Peak plasma insulin concentrations and the 

corresponding total time-points in both test (following the glucose solution and starch 

solution) was not significantly altered between groups (p-value = 0.342; two- way 

ANOVA) (Table 5-6).  

Figure 5-2 C. shows that the plasma insulin iAUC over 120 min has significant higher 

in low CN group then high CN group (p-value = 0.003; t-test) post glucose ingestion 

and non-significant difference after starch ingestion (p-value = 0.430; t-test) among 

high and low CN groups.  
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Figure 5-2 Comparing Plasma Insulin Concentrations in of Two Examined Groups (Mean ± SEM): the 

high CN (n= 10) group and the low CN (n= 5) (A) shows Plasma Insulin concentrations between the two 

groups in post-glucose ingestion during OGTT (0-120 min), (B) shows Plasma insulin concentrations 

between the two groups in post-starch ingestion during OPTT (0-120 min). (C) comparand Plasma 
Insulin iAUC between high CN group and low CN group in post-glucose ingestion and post-starch 

ingestion. (*) considered significant p <0.05 (t-test).  

 

Table 5-6 Glucose and Insulin Concentrations Over 120 Minutes of OGTT and OPTT. 

Glycaemic 

response  

  

High CN  Low CN     
p-value 

Post-Glucose Post-Starch Post-Glucose Post-Starch 

Glucose(mmol/l)  

0.781A 

0.480B 
-5 min 5.54 ± 0.72 5.61 ± 0.77 5.23 ± 0.39 5.86 ±0.79 

0 min  5.53 ± 0.75 5.67 ± 0.73 5.62 ± 0.36 5.41 ± 0.51 

15 min  7.76 ± 2.10 6.20 ± 1.31 7.68 ± 1.78 6.00 ± 0.81 

30 min 8.97 ± 2.19 5.82 ± 0.22 8.35 ± 2.85 5.82 ± 0.22 

45 min 7.85 ± 3.10 6.56 ± 1.49 7.28 ± 2.46 5.39 ± 0.90 

60 min 6.35 ± 1.63 6.60 ± 1.45 6.31 ± 2.91 5.75 ± 0.39 

90 min 4.59 ± 1.30 6.52 ± 1.40 5.20 ± 1.99 6.05 ± 1.60 

120 min 5.54 ± 1.82 6.05 ± 1.82 5.03 ± 1.33 5.23 ± 1.08 

Insulin (pmol/l)  

0.342A 

0.136B 
-5 min 71.30 ± 41.36 45.76 ± 22.37 99.00 ±89.43 77.76 ± 50.96 

0 min  109.29 ± 123.3 60.45 ± 38.96 95.88 ±63.30 78.96 ± 49.67 

15 min  198.20 ± 133.5 86.26 ± 54.97 357.0 ± 323.6 92.76 ± 54.50 

30 min 274.51 ± 163.2 84.10 ± 62.62 381.0 ±298.38 84.36 ± 41.99 

45 min 267.32 ± 217.74 92.28 ± 65.29 384.60 ± 290.59 82.56 ± 50.28 

60 min 153.36 ± 152.0 79.16 ± 36.09 304.60 ± 248.41 81.48 ± 46.16 
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5.4.5 Plasma Lipids  

The concentrations of plasma triglycerides (TG) and NEFA were not significantly 

different between high CN and low CN group, and the values in each group did not 

differ following starch ingestion (p-value > 0.05) or glucose ingestion (p-value > 0.05). 

The two-way repeated measures ANOVA was used to test the significant difference 

among test, time and groups. The Triglycerides and NEFA have a non-significant 

difference among test, time and groups (Table 5-7). 

 

Triglycerides iAUC post glucose and post starch ingestion have a non-significant 

difference (p-value > 0.05) for high and low CN groups. NEFA iAUC post glucose 

ingestion and post starch ingestion have a non-significant difference (p-value > 0.05) 

for high and low CN groups (Figure 5-3). 

 

Table 5-7 Triglyceride and NEFA Concentrations Responses of Over 120 Minutes of OGTT and OPTT.  

90 min 88.40 ± 49.59 81.78 ± 47.03 176.28 ± 128.8 77.76 ± 48.04 

120 min 81.74 ± 44.13 70.24 ± 39.99 115.59 ± 94.32 71.64 ± 46.48 

High CN (n = 10), Low CN (n = 5). OGTT, Oral Glucose Tolerance Test; PGTT, Oral Polymer Tolerance Test. 

Data presented in mean ± SD. p- values; two-way ANOVA repeated measurement. A (time x CN groups), B (time 

x  test x CN groups). 

Lipids response 
High CN  Low CN  

p=value 
Post-Glucose Post-Starch Post-Glucose Post-Starch 

Triglycerides (mmol/l)  
0.925A 

0.122B  
-5 min 1.15 ± 0.66 1.42 ± 0.72 0.86 ± 0.34 1.0 ± 0.08 

0 min  1.27 ± 0.63 1.32 ± 0.60 0.9 ± 0.34 0.97 ± 0.95 

15 min  1.27 ± 0.73 1.28 ± 0.51 0.99 ± 0.30 0.95 ± 0.28 

30 min 1.21 ± 0.6 1.21 ± 0.49 0.95 ± 0.44 0.86 ± 0.17 

45 min 1.32 ± 0.71 1.31 ± 0.58 0.86 ± 0.32 0.90 ± 0.21 

60 min 1.50 ± 0.89 1.22 ± 0.51 0.90 ± 0.38 0.88 ± 0.19 

90 min 1.20 ± 0.64 1.33 ± 0.50 0.82 ± 0.34 0.97 ± 0.18 

120 min 1.18 ± 0.58 1.13 ± 0.53 0.87 ± 0.34 1.10 ± 0.45 

NEFA (mmol/l)  
0.891A 

0.118B 
-5 min 1.81 ± 1.08 2.12 ± 0.97 1.01 ± 1.05 1.99 ± 0.87 

0 min  1.87 ± 0.88 2.20 ± 0.86 1.33 ± 0.67 1.68 ± 0.62 



Chapter 5: Pilot Study         191 

 

 

 

 

Figure 5-3 Comparing iAUC Triglycerides and NEFA Concentration Over 120 Minutes of in Post-

glucose Ingestion During OGTT (0-120 min) and Post-starch Ingestion During OPTT (0-120 min). 

OGTT and OPTT. (*) considered significant p <0.05 (t-test). (Mean ± SEM): 
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15 min  2.04 ± 1.04 2.30 ± 1.00 1.40 ± 0.60 1.38 ± 0.90   
30 min 1.94 ± 0.93 2.15 ± 1.21 1.46 ± 0.90 1.19 ± 0.58 

45 min 1.78 ± 0.92 1.89 ± 1.17 1.68 ± 0.68 1.19 ± 0.43 

60 min 2.27 ± 1.10 1.84 ± 1.03 1.07 ± 0.56 1.56 ± 0.91 

90 min 1.97 ± 0.87 2.01 ± 1.17 1.57 ± 0.69 1.32 ± 0.46 

120 min 2.11 ± 0.85 1.74 ± 1.01 1.48 ± 0.70 1.40 ± 0.56 

High CN (n = 10), Low CN (n = 5). OGTT, Oral Glucose Tolerance Test; PGTT, Oral Polymer Tolerance Test. 

Data presented in mean ± SD. p- values; two-way ANOVA repeated measurement. A (time x CN groups), B (time 

x  test x CN groups). 
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5.4.6 AMY1 Copy Number and Insulin Resistance 

Of the total 15 participants, 4 participants had diagnosis of insulin resistance (IR). Out 

of 4 participants with diagnosis of IR, 3 (30 %) were from high CN group and 1 (20 %) 

participant was from low CN group (Table 5-8). Results showed that mean HOMA-IR 

for participants in low CN group were just below the threshold value for diagnosis of 

IR. Nonetheless, mean HOMA-IR for participants in high CN group were far below the 

threshold value for diagnosis of IR (Figure 5-4). 
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Figure 5-4 Comparing HOMA -IR Values Between High CN Group (n= 10) and Low CN Group (n= 5).  

(A) presented insdiviuals values from both groups (B) explained the Mean ± SEM of l HOMA -IR values 

in high CN low CN group. 

 

5.4.7 AMY1 Copy Number and Insulin Sensitivity  

Results showed that 3 (30%) participants in high CN group and 1 participants (10 %) 

in low CN group were below the thresold value for impered insulin sensitivity/ inulin 

resestance. Remaining participants were above the thresold value for IS Figure 5-6 A 

(Table 5-8). The mean ISI (Matsuda Index) for participants in high CN group and low 

CN groups were above the threshold value for diagnosis of IR. Indicated that the study 

participates individuals with low insulin sensitivity and high insulin sensitivity Figure 

5-6 B. 
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Figure 5-6 Comparing Matsuda Index Values Between High CN Group (n= 10) and Low CN Group 

(n= 5). (A) presented insdiviuals values from both groups (B) explained the Mean ± SEM of l Matsuda 

Index values in high CN low CN group. 
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Table 5-8 Displayed the Mean ± SD for HOMA-IR and ISI for the High and Low CN Groups. 

Insulin Resistance Index 
High CN Low CN 

mean ± SD / n-%  mean ± SD / n-% 

HOMA-IR 2.25 ± 1.17 3.29 ± 2.95 

Normal:   ≤ 3.4 7 (70 %) 4 (80 %) 

IR:     ≥ 3.4 3 (30 %) 1 (20 %) 

ISI (Matsuda Index) 9.94 ± 9.27 6.95 ± 5.63 

Normal:   ≥ 4.1 7 (70%) 4 (80 %) 

IR:     ≤ 4.1 3 (30 %) 1 (20 % 

Number and percentage of patricians according insulin resistance diagnoses. Participants below HOMA- IR = 

≥3.2 consider insulin resistant, Matsuda Index = ≤ 3.9 consider insulin resistance. 

 

5.5 Discussion and Prospects for the Future 

Fifteen healthy adult adults took part in this pilot study. Participants were grouped 

according to AMY1 CN; high CN ≥ 9 n =10, and low CN ≤ 5 n = 5. The aim of the 

present pilot study was to generate data that would inform future research to understand 

potential reasons behind the gaps in understanding of AMY1 CN influence on the 

glycaemic response after starch ingestion compared to glucose loading during rest in 

healthy individual adults. Further, we aimed for assimilating an appropriate sample size 

to achieve that goal. 

 

The baseline characteristic did not defer between participants. However, age was 

different between our examined groups (high CN mean ± SD age = 26.8 ± 6.42, low 

CN group = 22.2 ± 1.64), with non- significant (p = 0.145). Further, Low CN 

participants had a higher (mean ± SD BMI = 27.12 ± 3.89) than the high CN group 

(mean ± SD BMI = 23.6 ± 2.69), but the data did not reach statistical significance (p = 

0.060). Higher PA Level (h/w) noticed among Low CN group (mean ± SD PAL = 16.9 

± 10.09) than high CN group (mean ± SD PAL = 168.39 ± 5.66). 
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5.5.1 Plasma Glucose and Insulin Responses Following Carbohydrate Ingestion  

The influence of AMY1 CNV and/or salivary α-amylase enzyme on glycaemic 

response and glucose homeostasis after starch and glucose ingestion has been a topic 

of interest in the last ten years and a potential explanation for the link between AMY1 

CNV and obesity (Fernandez and Wiley, 2017). In the current study, glycaemic 

responses following ingestion of a glucose solution did not differ between the AMY1 

CN groups using two-way ANOVA with repeated measurements of time x CNV or 

time x trials x CNV. However, low CN groups had significant higher insulin 

concentration at 15 min compared to high CN groups (p = 0.038). Furthermore, the 

iAUC of insulin concentration after glucose ingestion increased significantly in the low 

CN group compared to the high CN group. Moreover, iAUC glucose concentration after 

starch ingestion was significantly higher in the high CN group compared to the low CN 

group. The Glucose concentration at 60 min post – starch was higher in the high CN 

group compared low CN group. These results come in agreement with a study by Barbar 

et al. with subgroups: high AMY1 CN 9 –12, n = 10; low AMY1 CN 4–6, n = 7, which 

showed a high AMY1 CN association with enhanced glucose absorption following an 

oral glucose load (Barbar et al., 2020).  

 

The study showed a low variance in fasting plasma glucose concentration between 

individuals, as noted by the CV = 6.64 % in the high CN group versus CV = 5.07 % in 

the low CN group. However, there was a high variance between individuals in plasma 

insulin concentration, as noted by the CV = 52.30 % in the high CN group versus CV 

= 52.31 % in the low CN group. Thus, we examined both individual groups in the 

following points. 
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1- Two methods and two sets of criteria (FPG and 2- h FPG from OGTT) were 

used to diagnose diabetes according to the WHO and ADA (Table 5-3). Two 

individuals (20 %) of the high CN group were diagnosed with prediabetes using 

the WHO and ADA methods, and all individuals (100 %) of the low CN group 

were normal.  Both WHO and ADA criteria were valid with the examined 

groups as the same results provided FPG and 2- h FPG from OGTT (Table 5-

3). Here, we suggest that both WHO and ADA criteria are valid for the 

examined groups as the same results provided FPG and 2- h FPG from OGTT 

(Table 5-3). 

 

2- iAUC was used in the study to examine the glycaemic response in the groups. 

The suggestion for future research is to continue using iAUC to highlight the 

differences between groups, which showed clearly in iAUC but not in the two-

way ANOVA analysis of actual concentrations. Also, the differences between 

groups in the two-way ANOVA analysis of actual concentration might be 

explained by the low sample size and variance between individuals in the same 

testing group, which makes the differences difficult to detect from the direct 

result.  

 

5.5.2 Plasma Lipids Responses Following Carbohydrate Ingestion  

Fasting blood lipid levels did not vary between the high and low CN groups.  The 

groups had a healthy fasting concentration of total- Cholesterol, LDL- C, TG, and 

NEFA, but low HDL-C concentration. It is important to highlight that TG concentration 

and NEFA concentrations were not statistically significant between the study groups in 

both trials. 
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A novel understanding of lipid changes considers these alterations both a cause and a 

consequence of impaired glucose metabolism, especially in terms of TG and HDL-C 

levels. An elevation in TG is associated with free fatty acids and induces ß-cell 

dysfunction and insulin resistance. The exact mechanism is not entirely understood, but 

free fatty acid increases appear to modulate or disrupt normal ß-cell function (Sobczak 

et al., 2019). This evidences the interaction between lipid and glucose metabolism 

(Parhofer, 2015). According to recent studies, AMY1 CN affects the gut microbiome, 

inflammatory markers, and lipid and glucose homeostasis, modulating obesity and 

cardiometabolic disorders. Thus, lipids can be essential in explaining why AMY1 CN 

influences obesity and metabolic disorders (Hariharan, Mousa and Courten, 2021).   

 

The lipidomic signature was negatively associated with AMY1 CN in overweight and 

obese subjects without diabetes, suggesting a link between chronic low-grade 

inflammation and obesity (Mayneris-Perxachs et al., 2020). In previous reports, 

subjects with low AMY1 CN showed higher ß-oxidation levels and reduced cell 

glucose uptake (Arredouani et al., 2016). The association between AMY1 CN and 

metabolic disorders is not yet entirely understood. Still, the previous findings listed 

above prompt the recommendation of including plasma lipid concentration in future 

research of this type. 

 

5.5.3  Insulin Sensitivity/ Resistance  

This study also evaluated insulin sensitivity / resistance in subjects from both groups. 

We did not find an association between AMY1 CN with either insulin sensitivity or 

insulin resistance. This is in accordance with previous research by Albirti et al. (2015) 
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and Courten et al. (2019), who reported no association between AMY1 CN and insulin 

sensitivity. Additionally, our results confirm a very recent study by Barbar et al., which 

found an association between AMY1 CN and differences in measures of insulin 

sensitivity in males and females. 

 

Low insulin sensitivity was detected in pilot study participants of both groups from the 

beginning of the study. The selected sample of this pilot study are adults with insulin 

sensitivity/resistance after OGTT, but this was not confirmed when the FPG and FPI 

results were collected. Further, insulin sensitivity/resistance assessment should be 

considered during the exclusion and inclusion criteria phase. 

 

The estimation of insulin resistance can be done using various techniques and indices. 

The most trustworthy procedures for determining insulin resistance are the oral glucose 

tolerance test (OGTT) and the hyperinsulinemia euglycemic clamp; both are considered 

benchmarks. A few straightforward techniques have been verified, such as the 

homeostasis model assessment (HOMA-IR) developed by Mathews and the 

quantitative insulin sensitivity check index (QUICKI). HOMA-insulin resistance, 

QUIKI, and Matsuda are appropriate for research and therapeutic use (Gutch et al., 

2015). At present, however, the glucose clamp technique is used to quantify beta-cell 

sensitivity to glucose and insulin. The hyperinsulinemic/euglycemic clamp (glucose 

clamp) technique offers a highly reproducible method of assessing sensitivity to 

glucose and tissue sensitivity to insulin, but it is complex and difficult to use. The 

Matsuda index is an index of whole-body insulin sensitivity derived from a frequent 
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assessment of insulin and glucose concentrations during an OGTT and was developed 

by Matsuda and Defronzo. 

 

HOMA-IR and QUICKI are the simplest indirect techniques for measuring fasting 

serum insulin and glucose. Both are the most commonly used surrogate measures and 

provide a reliable alternative to the glucose clamp. However, 60 % of the high CN 

group and 20 % of the low CN group had abnormal FPG concentrations ≥ 5.5 mmol/L. 

So, as a fasting insulin-resistant test, the insulin sensitivity surrogate marker, Matsuda 

index based on OGTT, was validated against the hyperinsulinemic-euglycemic clamp 

(Otten, Ahrén, and Olsson, 2014). 

 

HOMA-IR cut-off values differ according to gender, age, ethnicity, disease, and 

complications. Even so, they are not consistent across studies. Bonora et al. (1998) 

suggested a top quintile for the HOMA-IR of ≥ 2.77 to detect isolated insulin resistance 

without metabolic disorders. Tripaty et al. (2000) reported that insulin resistance was 

more severe in individuals with impaired fasting glucose than in those with normal 

glucose tolerance (HOMA-IR, 2.64 vs. 1.73). Yeni-Komshian et al. (2000) suggested a 

HOMA-IR cut-off value of 2.7 after examining steady-state plasma glucose in 490 

healthy non-diabetic subjects. Ascaso et al. (2004) defined a HOMA-IR cut-off point 

of 2.6 to determine insulin resistance according to the 75th percentile value. 

 

In this pilot study, results for each insulin resistance values were ranked and divided 

into percentiles. As HOMA-IR correlates directly with insulin resistance, the 75th 

percentile was selected as the best cut-off value (HOMA-IR ≥ 3.4). 3 out of 10 (30 %) 
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individuals of the high CN group were insulin resistant compared to 1 out of 5 (20 %) 

individuals of the low CN group. 

 

Across the literature, the suggested cut-off values to define insulin resistance using the 

Matsuda index are not consistent. They range from < 2.5 to 6.417, including measures 

of < 3.530 and < 4.331. Based on the diverging literature on different cut-off values for 

the Matsuda index, we use the 25th percentile as a lower level of insulin resistance and 

set a Matsuda cut-off of ≤ 4.1 as a clinically reasonable value to differentiate between 

individuals with and without insulin resistance in our study. Three of 10 (30 %) 

individuals of the high CN group were low insulin sensitive / insulin resistance 

compared to 1 out of 5 (20 %) individuals of the low CN group. The outcomes from 

HOMA-IR values were identical to the Matsuda index values in the low CN group and 

in the high CN group. The study had total of 4 insulin resistant individuals in both 

groups, that may explain the higher insulin secretion in low CN group at 15 min post – 

glucose. The results showed that high CN group might have healthier glycaemic 

response. It has been notated that high CN group might have more ability to digested 

starch in first two hours compered to low CN group. We had inconsistent results in 

insulin concentration and high intra-assay average CV among individuals, which can 

indicate that the significant differences lifestyle factors that can play a key role in the 

collected biological sample in the study.  

 

5.5.4 Lifestyle Factors 

Here are the lifestyle factors which may cause high variance in the glycaemic response 

among the individuals in our study. These factors are also well-known determinants of 
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obesity and T2DM. More attention should be given to designing future research, 

including lifestyle factors such as heavy alcohol consumption, smoking status, dietary 

intake, and physical activity level, as well as additional parameters such as gender, 

weight, diastolic blood pressure, and blood cholesterol.  

 

Heavy alcohol consumption plays a vital role in the process of weight gain as it 

provides a potential source of energy that increases body fat, and consumption amplifies 

the harmful effect of BMI on lipid profiles (Gao et al., 2021).  

 

Smoking increases fasting glucose levels (Nakanishi et al., 2000). It also affects factors 

that modulate lipid and glucose metabolism, including adiponectin, lipoprotein lipase, 

tumor necrosis factor-alpha, and peroxisome proliferator-activated receptors. These 

outcomes of smoking and the associated metabolic risk can sometimes be reversed with 

smoking cessation, but the risk may increase initially after smoking cessation, which is 

likely a result of weight gain (Jeong, Joo, Kwon, and Park, 2021; Behl, Stamford and 

Moffatt, 2022). Still, it is evident that not all smokers develop T2DM, and the link 

between T2DM and smoking is heterogeneous, possibly modulated by genetic factors 

(Erzurumluoglu et al., 2019; Wu et al., 2020). 

 

An interesting study by Choi et al. found that AMY1 CN correlated negatively with 

HOMA–IR in 1257 asymptomatic Korean men even after adjusting for covariates, e.g., 

BMI, systolic blood pressure, triacylglycerol, alcohol consumption, smoking, and 

physical activity. When the participants were divided according to current smoking and 

alcohol consumption habits, negative correlations between AMY1 CNVs and HOMA–
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IR was more evident among non-smokers and regular drinkers and were non-significant 

among smokers and non-regular drinkers. Such a relationship presented differently 

according to the status of smoking and alcohol consumption (Choi et al.,2015).   

 

Our participants were asked to avoid alcohol consumption 24 hours before attending 

the lab and avoid smoking overnight. However, smoking status was not recorded. Such 

data is recommended to be collected in future research to understand the interaction 

between smoking status and AMY1 CN to develop insulin resistance and weight gain 

in a healthy population. 

 

Gender and biological sex impact the pathogenesis of numerous diseases, including 

metabolic disorders such as diabetes. There are accepted sex-specific differences that 

influence substrate metabolism. Whereas the current study recruited both male and 

female participants, it did not adjust for gender as we only have one man and four 

females in the low AMY1 CN group.  

 

A previous study has shown that adult males have higher insulin resistance and a greater 

risk for type 2 diabetes (Mauvais-Jarvis, 2018). Women with normal glucose tolerance 

have lower levels of FPG and HBA1c and higher levels of 2hPG-OGTT compared with 

men with normal glucose tolerance. Such differences remain after challenging 

participants with the same glucose load, regardless of physical fitness and body size 

(Faerch et al., 2010). Insulin sensitivity differences between genders have been 

attributed to sexually dimorphic body composition and sex hormones (Tramunt et al., 

2020). The lower proclivity of insulin resistance among women is conflicting, 
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considering that they tend to have higher circulating NEFA levels, higher lipid content 

in myocytes, increased fat mass, and lower skeletal muscle mass. A likely mechanism 

is that females are more resistant to lipotoxicity and protected from NEFA-induced 

insulin resistance, which has been found experimentally in skeletal muscle tissue (Frias 

et al., 2001). 

 

Further, sex hormones have been implicated in this gender difference in glucose 

homeostasis. Indeed, menopausal estrogen therapy decreases fasting glucose while 

impairing glucose tolerance (van Genugten et al., 2006; Mauvais-Jarvis, 2018). Further 

research is needed to examine the role of gender-related factors influencing glycaemic 

homeostasis in AMY1 CN. 

 

Physical Activity Level, it is noticeable that participants in this study were active. The 

low CN group (four females and one male) was more active than the high CN group (3 

females and seven males). Nevertheless, both groups were very active. High CN group 

PAL (h/w) mean ± SD = 8.39 ± 5.66, and low CN group PAL (h/w) mean ± SD =16.9 

± 10.09. A good assessment method (SPAQ) was used for assessing PAL, which uses 

a 7- day recall of leisure time and occupational physical activity as a measure of 

physical activity (Lowther et al., 1999). It was recorded that several participants 

involved in part-time jobs reported running in Stirling during data collection time. We 

asked these participants to record a week before to reflect on their usual activity, but 

according to the results, the subjective influence is clear.  
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Generally, APL data are essential for our study and future related research.  It is known 

that during physical exercise, glucose uptake by the working muscles rises 7 to 20 times 

over the basal concentration, depending on the intensity of the work performed. 

Physical exercise improves the reduced peripheral tissue sensitivity to insulin in 

impaired glucose tolerance, abnormal lipid metabolism, and Type II diabetes (Helmrich 

et al., 1994; Sato, Nagasaki, Nakai, and Fushimi, 2003). In our study the low CN group 

were more active than the high CN groups. It has been that may partially explain why 

noticed that low CN group in this study may has a healthier glycaemic control 

comparing than high CN group.  

 

Dietary intake, the majority of the CHO and other macronutrients enter the 

bloodstream as glucose to be used for energy, stored as glycogen in the liver and the 

muscles, or converted into fat. The fate of the glucose circulating in the bloodstream is 

determined by the relative concentrations of the hormone insulin. Insulin is released 

from the β-cells of the pancreas in response to glucose absorption and stimulates the 

liver cells and muscle tissue to receive glucose, which is used as an energy source or 

stored. Insulin modulates liver metabolism and suppresses the conversion of amino 

acids into glucose. Thus, blood glucose concentrations will reduce when the tissues 

respond to insulin appropriately (Lunn and Buttriss, 2007) (as discussed in Chapter 1). 

 

Postprandial studies show that common meals may have significant adverse effects 

(Shapira, 2019), including the promotion of chronic inflammation, especially in people 

at high risk (Biobaku et al., 2019). This effect can be sustained by multiple meals and 
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last for many hours daily, potentially covering 18 hours or a major part of the day 

(Jackson, Poppitt, and Minihane, 2012; Vries et al., 2014). 

 

The proinflammatory effects of macronutrients, such as high-fat, high-calorie (HFHC) 

meals, are essential in the pathogenesis of the pro-inflammatory states of insulin 

resistance, obesity, and type 2 diabetes. On the contrary, fiber-rich meals exert anti-

inflammatory effects that can significantly suppress the inflammation caused by HFHC 

meals when these meals are compared (Ghanim et al., 2017). HFHC intake predisposes 

to visceral adiposity and intrahepatic fat accumulation, creating the milieu for 

inflammation, which leads to insulin resistance. Intrahepatic fat accumulation is even 

more strongly correlated to the metabolic derangements associated with obesity 

compared with visceral adiposity (Fabbrini et al., 2009). 

 

This study showed no differences in macronutrient intake between the high and low 

AMY1 CN groups. This agrees with study findings by Arredouani et al. (2016) and 

Barbar et al. (2020). Shin and Lee found that AMY1 influences the incidence of type 2 

diabetes in Korean women after considering their dietary carbohydrate intake (Shin and 

Lee, 2021). It has been suggested that high AMY1 CN with increased carbohydrate 

intake resulted in enhanced salivary digestion of starch to maltose, followed by its 

conversion into glucose. This enhancement optimized the efficiency of glucose 

absorption across the upper gastrointestinal tract. Thus, increasing serum insulin levels 

following oral glucose ingestion occurred in response to enhanced early glucose 

absorption in those with a high AMY1 CN (Barbar et al., 2020).   
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This pilot study performed three-day food records using the Nutritics Nutrition 

Analysis Software (Academic Edition, Nutritics, Dublin, Ireland). Macronutrient 

intakes were calculated in (kJ/24hurs). Reported EI was evaluated against presumed 

energy requirements in a procedure known as the Goldberg cut-off technique.  

(Goldberg et al, 1991; Black, 2000a). It is also important to note that the disadvantage 

of self-reported 24-h food records is that it relies upon memory and can be affected by 

subjective error. However, the dietary assessment method in this study helped assess 

the participants’ dietary intake. 

 

Salivary α- amylase activity levels (sAA). This enzyme processes starch in the mouth 

and converts this substrate into di-saccharides, tri-saccharides, and some glucose 

(Peyrot des Gachons and Breslin, 2016). A function of sAA on starch digestion in the 

small intestine was also proposed, given the significant passage of sAA through the 

stomach due to incomplete inactivation by low pH. In vitro, amylase was inactivated in 

the gastric juice as pH fell between 3.8 and 3.3 (Fried, Abramson, and Meyer, 1987). 

 

A study by Mandel and colleagues (2010) found that individuals with higher amylase 

activity levels exhibited faster starch digestion in the oral cavity. Thus, they expected a 

decrease in salivary amylase pre-digestion would also decrease starch digestion, 

resulting in a lower glycaemic response. Mandel and colleagues study results in 2010 

and 2012 reported a strong link between amylase activity and increased AMY1 copy 

number (Perry et al., 2017; Alberti et al.,2015). Mandel and Breslin (2012) suggested 

that AMY1 CN may play a role in the development of insulin resistance. They 

investigated the influence of salivary amylase and AMY1 CN on starch digestion in a 
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total of seven healthy, non-obese adults classified into high amylase concentration and 

low amylase concentration groups and found that individuals with more elevated 

salivary amylase had significantly lower postprandial blood glucose responses to starch 

ingestion, and a more pronounced postprandial excursion of insulin within the first 9 

minutes following starch ingestion (Mandel and Breslin, 2012).  

 

Other related genes, insulin resistance and other metabolic disorders result from an 

interaction of environmental or lifestyle variables and genetic predisposition. For 

instance, insulin sensitivity can be lowered by changes to genes coding for a protein in 

the insulin-signalling pathway and/or factors that cause elevated levels of circulating 

substances that interfere with insulin-signalling system and metabolic pathways. 

Despite having no signs of metabolic syndrome, it is widely established that people 

with a family history of type 2 diabetes are more likely to be insulin resistant than those 

without a history (Kendall et al., 2003).  

 

However, the superposition of modifiable factors, common in many Westernised 

societies, such as increased energy consumption and decreased physical exercise is 

believed to be responsible for the rising prevalence of insulin resistance. Humans have 

evolved systems that encourage fat storage during times of abundance and induce 

lipolysis in times of food scarcity because fat is a very effective way to store energy 

(Lebovitz, 2006). Insulin resistance is linked to adipose tissue accumulation, such as in 

obesity. A lack of fatty tissue, such as that seen in lipodystrophy, is also connected with 

insulin sensitivity (Frayn, 2001). 
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A recent genetic study conducted by Shin and Lee (2021) evaluated individual 

differences in AMY1 protein expression by six genetic SNPs variants of the AMY1 

gene: rs10881197, rs4244372, rs6696797, rs1566154, rs1930212, and rs1999478. This 

was a large-scale prospective research based on the Korean Genome and Epidemiology 

Study. It found that T2DM incidence in the high carbohydrate-intake group influenced 

the A allele of rs6696797, A allele of rs4244372, and G allele of rs10881197 in females 

but not Korean males (Shin and Lee, 2021).   

 

5.5.5 Experiment Methods 

It should be noted that this study had a significant variation in insulin concentrations 

with intra- and inter-assay (17.8 % in the high CN group and 9.5 % in the low CN 

group). This inter-variance in insulin concentration might be due to the assessment 

method of plasma insulin.  

 

Several methods are prompting a good selectivity towards insulin detected with fewer 

interferences and high throughputs, e.g., ELISA, chemiluminescence immunoassay 

(CLIA), radioimmunoassay (RIA) and on-chip immunoassay. The ELISA, in 

particular, sandwich ELISA is the most popular for insulin determination for clinical 

purposes (Shen, XU, 2019). Moreover, Chromatographic assays, including high-

performance liquid chromatography coupled with ultraviolet detection (HPLC-UV), 

micellar electrokinetic capillary chromatography (MECC), and liquid chromatography 

with tandem mass spectrometry (LC-MS/MS) are highly sensitive and capable of 

simultaneous detection of insulin. 
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This pilot study used a Demeditec ELISA kit based on the sandwich principle. The 

sandwich ELISA has the highest sensitivity among all the ELISA types, direct ELISA, 

indirect ELISA, and competitive ELISA. However, sandwich ELISA has disadvantages 

e.g., the time and expense and the necessary use of a "matched pair" 

(divalent/multivalent antigen) and secondary antibodies (Engvall, 2010; Alhajj and 

Farhana, 2022). The high sensitivity of ELISA reflects the measurement sensitivity for 

target proteins. Thus, it might be a suitable choice for the practical analysis of plasma 

insulin in repeated collection samples such as OGTT or among diabetes participants, 

where the biological plasma sample can be adequate. However, it also affected by 

common ELISA issues, e.g., weak or no signal in ELISA because of incorrect storage 

of components or reagents are at room temperature. 

 

Further, the excessively high signal in ELISA is due to insufficient washing, testing 

time, or wells contamination. Also, the inconsistent pipetting between samples or other 

regular laboratory technical issues resulted in poor standard curve linearity. The insulin-

detected methods should be selected according to target participant characteristics.  

 

Further, our participants did complain about the glucose drink. However, they find the 

starch drink is inconvenient to sallow, which is expected because of its starchy texture. 

We recommended using starch for eating in a regular human diet instead of row starch 

powder and / or sport's polymers powder solution. The next chapter (Chapter 6) will 

provide experimental design, including further details and recommendations for future 

research. 
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5.5.6 Power Calculations 

Based on partial η2 for glucose (0.016), a total of 62 participants (31 participants in 

each group) will be required for the statistical study power (>80%) to find a significant 

association between the copy number variation of the AMY1 gene and glucose 

concentration within and between CNV AMY1 groups. Because partial η2 for 

remaining variables (Cholesterol, Insulin resistance, TG, NEFA) was higher than 

glucose; therefore, a lower number of participants will be required if we assume other 

variables for estimating sample size.  

 

Mandel and Breslin's (2012) study included seven participants. It relied on data by Perry 

et al. (2007), according to which a sample size of n=10 is required to provide adequate 

statistical power (>80%) with a confidence of 95% to find a significant association 

between AMY1 CN with salivary amylase activity/concentration. 

 

Mandel and Breslin (2012) investigated the influence of salivary amylase and AMY1 

CN on starch digestion in a total sample size of 7 healthy adults who were classified as 

having high amylase concentrations and low amylase concentrations and found that 

those individuals with higher salivary amylase had significantly lower postprandial 

blood glucose responses to starch ingestion. Two years before, Mandel and colleagues 

(2010) expected a decrease in salivary amylase pre-digestion would also decrease starch 

digestion, resulting in a lower glycaemic response. Perry et al.2017; Alberti et al., 2015 

reported a strong link between amylase activity and increased AMY1 copy number. 

Thus, Mandel and Breslin's study included seven participants and based on data by 

Perry et al. (2007), a sample size of n=10 is required to provide adequate statistical 
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power (>80 %) with a confidence of 95 % to find a significant association between the 

copy number variation of AMY1 gene with salivary amylase activity/concentration. 

The assuming that adequate sample size for detecting differences between salivary 

amylase enzyme and glycaemic response can be used to detect glycaemic response 

differences among healthy adults according to their AMY1 CNV. However, both 

studies reported a significant statistical association between salivary starch digestion 

and high salivary amylase enzyme activity but not AMY1 copy number. It is essential 

to note the low sample size of the previously published experiments, behind the 

inconsistency in the result of the association between CNV and insulin resistance and 

glycaemic response after starch ingestion. We recommended that future related 

research include 62 participants to conforming the role of the result of the AMY1 CN 

starch digestion or insulin resistance.  

 

This study has several limitations. First, the study did not include data on salivary 

amylase concentration, which limited the study from further exploring the link between 

AMY1 CNV and salivary amylase concentrations and comparing the influence of 

salivary amylase with AMY1 CN on substrate metabolism of starch. The activity of the 

salivary amylase is the factor that best reflects its current capacity and determines the 

degradation rate of polysaccharides like starch. Therefore, despite the positive link 

between salivary amylase activity and high AMY1 CNV, salivary amylase is the most 

suitable parameter to investigate the relationship between salivary amylase and the 

association of metabolic disorders. Further, the low CN group comprised four females 

and one male, which may influence gender-related differences in body composition of 

the group, such as fat % and BMI, all factors related to impaired glucose response. 
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Moreover, 4 of study participants had higher than expected HOMA-IR values and low 

Matsuda insulin sensitivity indexes. 

 

Our findings may be applicable as recommendations to design future related studies. 

The number of subjects in each group was not equal, and the statistical difference might 

be hard to confirm. Future studies should investigate lifestyle factors and conduct a 

follow-up study of the influence of AMY1 CNV in insulin and glucose response groups. 

 

5.6 Conclusion 

Individuals with low AMY1 CN tend to be more sensitive to insulin, according to 

OGTT. AMY1 CN was associated with starch digestion in adult individuals with a high 

copy number. Further research is needed to confirm this finding with a sample size of 

more than 62 adults. Gender differences and the abnormal glucose concentration were 

the most challenging factors, which should be considered in future research to assess 

the associations between glycaemic response and AMY1 CN. 
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Chapter 6 General Discussion 

Phenotypic variations due to a change in gene copy number were first identified in 1936 

in the Bar gene of Drosophila melanogaster species (HARLAND, 1936). For decades, 

geneticists have also found copy number variations in the human genome. They were 

unaware of their significance for many years until much more recently. Since the public 

domain release of the human genome sequencing, several reports have described copy 

number variation (CNV) of DNA segments. It became clear that CNV research is 

essential for a complete understanding of genetic variability and evolution. Current 

CNV research will eventually be extended to various areas of health and disease to 

delineate complex genetic phenomena. CNV can significantly affect phenotype by 

altering gene transcription levels (Hegele, 2007). AMY1 is a gene of interest, and 

recent studies have thrown conflicting results regarding the effect of AMY1 CNV on 

obesity and glucose/starch metabolism. This thesis has attempted to contribute to the 

nutrigenetic field by examining the influence of AMY1 CNV on body composition and 

CHO metabolism.  

 

This thesis aimed to address the current knowledge gap regarding the influence of 

AMY1 CNV on adiposity and body composition among athletes, controls, and non-

obese adults. It also aimed to consider whether a higher AMY1 copy number impacts 

CHO metabolism and consider this from a clinical perspective. These two primary aims 

were achieved by the completion of the following four key objectives:  

• To determine the association between AMY1 CNV and BMI, anthropometric 

measures of body composition, and strength in male athletes (Chapter 3). 
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• To determine the influence of AMY1 copy number (CN) on body fat and lean 

mass distribution in adult males and females (Chapter 4). 

• To investigate the impact of AMY1 CNV on the glycaemic response after 

starch/glucose ingestion in a pilot study (Chapter 5). 

The principal findings of this research have been discussed in detail throughout 

the four experimental chapters and were primarily fivefold:  

• We observed that AMY1 CN did not differ between adult athletes and non-

athletes in Chapter 3 or between male and female non-obese adults in Chapter 

4. 

• As a novel finding, a significant association was found between AMY1 CN and 

athletes’ height. However, no such associations were observed between AMY1 

CN and athletes’ fat mass percentage and lean mass. 

• AMY1 CN was not associated with measures of adiposity and lean mass 

measurements in male and female normal-weight adults.  

• In a pilot study, plasma glucose concentration, insulin concentration, and 

plasma lipid concentration following starch ingestion did not differ 

significantly between the high AMY1 CN (≥ 9 copies) and low AMY1 CN (≤ 

5 copies) groups. The iAUC plasma insulin concentration post-starch was 

significantly higher in the low CN group compared to the high CN group. The 

high CN group was also found to have significant higher glucose concentration 

post-glucose ingestion. Other than that, no significant differences were found 
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in the case of remeasurements performed in the study. Sample size of 62 healthy 

adults is recommended for repeated future research.  

From these principal findings, the AMY1 CN was not associated with BMI or body 

composition measures among athletes, recreationally active males, and the general 

male and female adult population with average body weight. For the past seven years, 

five studies have reported an association between AMY1 CN and obesity presence 

among adult males, females, and children (Falchi et al., 2014; Marcovecchio et al., 

2016; Pinho et al., 2018; Leon-Mimila et al., 2018; Venkatapoorna et al., 2019). In 

contrast, another five well-powered replication studies did not find an association 

between AMY1 copy number and obesity measurements (Usher et al., 2015; Yong et 

al., 2016; Rukh et al., 2017; Shwan et al., 2019; Valsesia et al., 2019). The present 

studies in this thesis are in alignment with these well-powered negative findings. These 

inconsistent results may be due to the heterogeneity in patient samples in terms of 

number, ethnicity, genetic background, age, gender, and the use of different study 

designs and methods, including the CNV detection method, as well as data collection 

of diet and physical activity. This thesis covers a number of these methods. 

 

Sex differences can also play a role in these inconsistencies. The probable causes of 

these differences between males and females could be attributed to several factors. The 

hormonal surges in females, the level of stress hormones, and the apparent differences 

in physiology and metabolism all contribute to causing inconsistencies in the data, 

which are otherwise a normal part of either gender. The same could be applied to the 

differences reported in adults and children. Children have a significantly different 

physiology than adults, making it easy to compare differences between age groups. A 
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study on Italian school children found that AMY1 CNV did not associate with girls’ 

BMI. However, it found that BMI was negatively associated with AMY1 copy number 

in boys (Marcovecchio et al., 2016). In another study in Finland, Viljakainen et al. 

(2015) found no difference in AMY1 copy number between healthy subjects and 

subjects with a history of childhood-onset obesity. Still, they reported that obese men 

had a higher copy number than obese females. In our non-obese adult study reported in 

Chapter 4, we examined gender differences between healthy-weight males and 

females. We found that AMY1 CN was not associated with BMI and body composition 

measurements (the amount and distribution of BF % and FFM (g) in either males or 

females). However, clear and significant expected differences were present between 

males and females in the baseline measurements of weight, height, WC, BMI, and BF 

%, which is taken as a limitation of the study.  

 

The CN distributions of AMY1 did not differ between experimental groups in this 

thesis. Males and females in chapter 4 or male athletes and controls in Chapter 3 were 

not reported to display significant differences in CN distribution. This was expected, 

as comparable results had been reported in previous studies. The mean AMY1 CN in 

athletes’ study (Chapter 3) was mean = 6:80 (range: 1-14), and the mean AMY1 copy 

number among the non-obese adults’ study (Chapter 4) was mean = 6.98 (range: 2–

14). This thesis's average copy number distribution agrees with the mean copy number 

in previous AMY1 copy number studies, mean = 6.8 (Chapter 1, Table 1-2). However, 

the frequency of AMY1 copies in several studies was as high as 27 (Perry et al., 2007; 

Santos et al., 2012; Carpenter et al., 2015). 
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It is worth mentioning that a study of 597 obese and normal-weight Mexican children 

with a copy number ranging between 1 and 16 copies suggested benefits of a high 

number of AMY1 CN since normal-weight children had an AMY1 CN greater than ten 

copies (Mejia-Benitez et al., 2015). We considered this result and assessed the 

association between fat % and AMY1 among people with >10 copies of AMY1 in the 

healthy weight adults’ study (Chapter 4) (Appendix 1). However, no evidence was 

observed about the high copy number of AMY1 with adiposity. 

 

It has been suggested that these conflicting results may be due to different study 

genotyping methods to detect the CNV of AMY1. This explanation is possible in the 

case of complex CNV such as that exhibited in the AMY1 loci (Ooi et al., 2017). In 

such cases, it may be difficult to estimate CN variation using traditional methods for 

CNV assessment (Usher et al., 2015).  

 

Height has been examined as a separate component of BMI to comprehend further the 

influence of AMY1 copy number on this measure. The thesis has found for the first 

time a link between increasing AMY1 copy number and height in athletes and controls 

(Chapter 3). Height is highly heritable, with 90 % of heritability estimates (Hirschhorn 

& Lettre, 2009; Visscher et al., 2006; Silventoinen et al., 2012). CNVs have been 

recognized as a significant contributor to genetic variation between individuals in 

addition to SNPs (Kang et al., 2010). Dauber et al. (2011) suggested that CNVs may 

contribute to genetic variation in stature among the general population (Dauber et al., 

2011). For further confirmation of the association between height and AMY1 CN, we 

also evaluated this measure in the general population of the second study (Chapter 4).  
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However, we found no evidence of the influence of AMY1 on height. Two reasons can 

explain the inconsistent results in the association between AMY1 and height. Firstly, 

by considering height (cm) variances in the two populations. For instance, only males 

were included in the study conducted on Lithuanian athletes and non-exercising 

controls. 

 

In contrast, this study joins data from males and females. The mean height ± SD in this 

study was 181.1 ± 6.6 cm, compared to the total population mean height of 172.2 ± 9.5 

cm. However, a similar mean height was observed between Lithuanian athletes (males 

only) and male’s height in this study (mean ± SD) 179.6 ± 6.5 cm.  The second potential 

reason to explain the inconsistent result in the association between AMY1 and height 

is the limited cohort sample size, which makes the association between AMY1 CN and 

height weak in 108 males compared to 388 males in the Lithuanian athlete’s study. 

Further, in a broader context, the distribution of height and AMY1 CN might be random 

in the examined populations, making the associations stronger or weaker. 

 

Height is now used as an indicator in epidemiology studies to estimate the association 

between one's early life exposure and diseases. The Emerging Risk Factors 

Collaboration conducted a meta-analysis of 121 cohort studies comprising over 1 

million participants. They reported short stature as a well-documented risk factor for 

death from circulatory diseases such as coronary disease, stroke, and heart failure 

(Emerging Risk Factors Collaboration, 2012). In contrast, height was positively 

associated with the risk of death from melanoma and cancers of the pancreas, endocrine, 

and nervous systems, ovary, breast, prostate, colorectum, blood, and lung (The 
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Emerging Risk Factors Collaboration, 2012). A large prospective study of 409,748 

adult individuals found that overall height is positively associated with deaths from 

cancer but inversely associated with deaths from circulatory disease (Sawada et al., 

2017). Shorter men showed increased risk of cardiovascular mortality (HR per 5 cm 

increase: 0.81, 95 % CI: 0.72–0.91), and all-cause mortality (HR per 5 cm increase: 

0.89, 95 % CI: 0.83–0.96. For shorter women there was increased risk of non-

cardiovascular, non-cancer mortality (HR per 5 cm increase: 0.82, 95 % CI: 0.71–0.96), 

and all-cause mortality (HR per 5 cm increase: 0.88, 95 % CI: 0.81–0.96) (Zhao et al., 

2019). Furthermore, a large cohort of 22,809,722 Korean men and women adults 

positively associated height with the risk of all site-combined cancers and with 

malignancy in the oral cavity, larynx, lung, stomach, colorectum, liver, pancreas, biliary 

tract and gall bladder, breast, ovary, cervix and corpus uteri, prostate, testes, kidney, 

bladder, central nervous system, thyroid, skin, and lymphatic and hematopoietic 

systems. The positive association between height and cancer as hazard ratios (HRs) for 

all-site cancers per 5 cm increment in height was 1.09 (95 % CI: 1.086–1.090), and the 

highest association was found in thyroid, breast, lymphoma, testicular, and renal 

cancers (Choi et al., 2019). The influence of high CNV of AMY1 on height requires 

confirmation. Further studies are also warranted to build on the associations between 

CNV of AMY1 and height-related diseases such as cancers, coronary disease, stroke, 

and heart failure. 

 

This thesis also found that the high CN group showed significant higher iAUC glucose 

concentrations compared to the low CN group after glucose ingestion. However, iAUC 

plasma insulin was significantly higher among the group with low CN than those with 

high CN. No differences between groups were noticed after starch digestion. Overall, 
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the plasma TG concentration did not differ between the high and low CN groups after 

ingesting either the glucose or starch solution (Chapter 4). Several studies have shown 

that low serum amylase concentration but not CNV of AMY1 is associated with low-

speed starch metabolism and insulin resistance. It has been observed that insulin 

secretion occurs early after starch consumption, which is enhanced in subjects with 

higher salivary amylase activity. (Mandel & Breslin, 2012, Peyrot et al., 2016). 

(Chapter 1, Table 1-3). One thing worth mentioning about this study (Chapter 4) is 

the fact that it covers the significant calculations required to establish designs for future 

studies, along with providing substantial insight into what factors need to be considered 

when carrying out further research in the same domain. 

 

6.1 Thesis Limitations 

The data presented in this thesis adds important and novel findings to the literature that 

will facilitate advancing knowledge within the field. However, several limitations exist 

that warrant consideration. 

• The first observational study reported in Chapter 3 included a comparison 

analysis between low variance age, fat mass, and BMI between recruited 

athletes and controls. In this stage, some control participants in this study were 

included in the ‘active’ category after admitting to working out and training at 

least twice a week maximum.  

 

• This thesis addressed the association between male athletes’ body composition 

and height, but female athletes were not included in the cohort. This gap needs 

to be addressed and bridged accordingly in future research by doing another 
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large-scale study that includes both males and females in an equal ratio. Both 

inactive and active participants from either sex need to be part of any future 

study to bridge the knowledge gap and work out the associations between the 

females’ body composition and height, too.  

 

• As detailed in the first part of this discussion, the general population body 

composition study (Chapter 4) was designed based on sex-specific differences 

to examine variations in fat distribution within and between the sexes according 

to AMY1 copy number. However, there is a lack of details on the distribution 

of SAT and VAT because of the limitations of the DXA technique. These 

particular limitations can undoubtedly give rise to a gap in the study in terms of 

sex-related fat distribution in both males and females and the response of this 

fat distribution to insulin after ingesting starch. The differences in insulin 

sensitivity between genders have been attributed to sexual dimorphisms in the 

body, such as fat distribution and adipose tissue biology (e.g., men have more 

abdominal and VAT, which is associated with insulin resistance). In contrast, 

women have more SAT, which has been shown to be protective against insulin 

resistance. Increasing SAT is also associated with rising serum adiponectin 

levels. A practical way of addressing this could be to equally include both the 

genders in the same manner in future studies – both the control and participating 

groups should be built according to the same criteria, with similar inclusions 

and exclusions.  

 

• This thesis examined gender differences concerning the influence of high CN 

on the body composition of an adult population. However, the mean weight of 
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both groups was considered healthy, and the number of overweight or obese 

individuals in the study sample was deficient.  

 

• This present thesis did not consider carbohydrate foods in the assessment of the 

association between AMY1 and gender adiposity as a result of dietary intake, 

among those who reported their intake in chapter 4, 68 out of 112 participants 

matched with EI: BMR cut-offs.  

 

• A further limitation of this thesis is the low number of participants, especially 

in the low copy number group, which may play a role in the lack of statistical 

differences in Chapter 5. 

 

• A thorough and elaborate analysis of salivary amylase concentration is required. 

Thus, the study could not further explore the linkage between AMY1 CNV and 

salivary amylase concentrations. Additionally, Chapter 5 was limited to low 

AMY1 CNV participants to pick up the statistical differences. Therefore, our 

findings may serve as recommendations to design future plans to help put the 

AMY1 to its correct usage while avoiding unwanted limitations that interfere 

with the results. This study will also serve as a helping guide for future research 

programs that will take place to elaborate on or expand research in this domain. 

 

• The pilot studies did not consider the sex factor. This is regarded as a limitation 

because glucose tolerance can differ between males and females (Mauvais-

Jarvis, 2018).  In the experimental study in Chapter 5, the low AMY1 CN 

group comprised four females and one male to assess gender-related differences 
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in body composition measures of the group, such as BF% and BMI, all of which 

are associated with an impaired glucose response. The study also included an 

assessment of the insulin sensitivity index in the participants, which was 

calculated using OGTT. It was found that females had a higher insulin 

sensitivity index than males, even after adjusting for age and BMI (Kautzky-

Willer et al., 2012), which influences the results significantly since the low CN 

group has one male and four females. It is noticeable that our participants were 

active, and women carrying low CN were more active than the high CN group. 

The study by Lundsgaard and Kiens confirmed that healthy women are more 

sensitive to insulin than men when matched for physical fitness (41 % increase 

in whole-body insulin sensitivity) because of enhanced glucose uptake by the 

skeletal muscle in women (Lundsgaard and Kiens, 2014).  Generally, gender 

differences in this regard have been reported to respond to muscle 

characteristics. Women have a higher proportion of type I fibers and capillary 

density, which favours enhanced insulin action (Lundsgaard and Kiens, 2014).  

 

• This study did not assess the influence of AMY1 CN over glucose response 

during exercise or CHO metabolism at rest compared to exercise. Thus, we 

expect our study design to provide a direction for future research.  

 

• In pilot study Chapter 5, moreover, 4 of study participants had higher than 

expected HOMA-IR values and low Matsuda insulin sensitivity indexes. 

Further, significant inter- assay CV % in insulin concentration in both groups, 

with may influenced the reliability of our data.  
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6.2 Future Directions 

• Further research is needed to assess the association between increasing 

AMY1 copy number, BMI, and body fatness in the general adult population 

according to BMI classification and physical activity in males and females. 

 

• Further studies are needed to confirm the current findings about the 

glycaemic responses to CHO solutions using larger-scale active and non-

active samples. The relation between AMY1 CN and BMI depends on several 

other underlying factors, including weight, height, and metabolic responses. 

Therefore, it would be incorrect to hold response to dextrose or CHO 

solutions as the only factor responsible for this association. A more thorough 

approach should also be considered before any conclusions or theories are 

driven from the given data.  

 

• There remains controversy in the literature about the association between 

AMY1 CN and BMI. Variation in dietary preferences (starch ingestion) 

between study populations may explain some of the differences in the 

strength of the association between AMY1 CN and BMI.  Two studies found 

such an association between CNV of AMY1 and obesity only among people 

who consumed more starch. So, the influence of a healthy diet and the level 

of energy expenditure and physical activity needs to be examined as 

prevention tools to minimize the potential impact of low CN of AMY1 in 

increasing BMI. The AMY1 gene was also found to be responsible for 

influencing several other factors as well. A novel observation now includes 

the impact that AMY1 has on the development or progression of diabetes 
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mellitus and HbA1c. Age, alcohol consumption, gender, systolic and 

diastolic blood pressure, and blood cholesterol levels all seem to play one or 

the other role in interacting with AMY1 and causing possible incremental or 

decremented changes.  

 

• The link between salivary amylase enzyme activity and the increasing copy 

number of its gene has been confirmed in published studies. Salivary amylase 

enzyme activity has suggested predisposing to obesity. However, the study’s 

findings were still conflicting in the association between AMY1 CNV and 

obesity. Such conflicting results warrant a reassessment of the association 

between salivary amylase enzyme activity and CNV of AMY1. Also, a large 

sample size should assess the degree of association between the amylase 

enzyme, CNV, and obesity.  

 

• Besides insulin, many other hormones are associated with overweight, 

obesity, weight loss, and weight regain. For instance, previous studies have 

shown that fasting ghrelin concentration correlates with weight regain in 

patients trying to lose weight (Thom et al., 2020). Moreover, appetite-related 

hormones such as leptin and ghrelin are known to modulate not only 

perceived hunger but also perceived stress levels and adaptive thermogenesis 

(Thom et al., 2021).  

 

Here, we provide a study design as a background for further research. The study 

proposal comprised two phases: phase I included recommendations from our findings 

in the pilot study in Chapter 5, whereas phase II included suggestions to have in future 
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research topics to provide a more accurate comprehension of AMY1 CN and its role in 

carbohydrate metabolism (Figure 6-3). We suggest conducting the two phases of the 

proposal in one single study to compare the data of both phases in the same population.   

 

Phase 1 (CHO Metabolism During Rest Status) 

Repeating the pilot study design reported in Chapter 5 and taking the below list into 

consideration (Figure 6-3): 

• According to our power calculation results, a sample size of 62 (males n= 31 

and females n= 31) should be used.  

 

• The participants should be in similar categories regarding gender, age, BMI, 

body fat, alcohol consumption, smoking status, and physical activity level.  

 

• Insulin sensitivity/resistance rather than FBI and FBG should be assessed 

during inclusion and exclusion criteria. 

 

• The relation between AMY CN 1 and BMI / glycaemic responses to CHO 

solutions depends on several other factors, most of which rely solely on the 

people under observation. Therefore, it would be incorrect to hold response 

to dextrose or CHO solutions as the only responsible approach. Factors 

involving individual and lifestyle factors such as dietary intake, physical 

activity, alcohol consumption, systolic and diastolic blood pressure, and 

blood cholesterol levels should also be considered. 
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• The participants should follow the same diet according to each individual’s 

recommended daily intake for 24 hours before testing to control for dietary 

influences on metabolism during exercise and biomarker results.  

 

• OGTT is an excellent method to assess the glycaemic response during resting 

status.  But the glucose/starch ingestion should be increased to 75 g, and the 

time should be extended to an interval of 4 hours and 15 minutes.  

 

• A minimum of two days apart between experimental days. 

 

Phase II (CHO Metabolism During Exercise Status) 

Phase II is the second part of the study, including the research about AMY1 CNV on 

CHO metabolism during rest (Phase I). The participants are asked to attend the 

laboratory in the morning on three separate occasions, having fasted for 8-12 hours 

and rested overnight. Participants should perform each exercise session at the same 

time of the day, between 07:00 and 11:00 AM. There should be a minimum of two days 

apart from testing to minimize the influence of circadian variance.  Researchers should 

also request to avoid alcohol consumption, strenuous exercise, caffeine, and tobacco 

for 24 hours before each experimental exercise session. 

 

In the first session, a lactate threshold test should be carried out on each participant. In 

the second and third sessions, RMR and exercise metabolic testing should be 

completed with either glucose or starch ingestion. 
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Lactate Threshold (LT): This test aims to establish the individual’s lactate threshold 

and determine the level of energy they used from CHO through the anaerobic system. 

Consequently, it is possible to use 100 % force of the individual’s lactate threshold 

force in testing for their exercise metabolism. All participants will arrive at the lab at 

about 7:00 am - 8:00 am, rest for 15 minutes, then receive an attached heart rate monitor 

to allow continuous monitoring of their heart rate during exercise. A blood sample 

should be taken via a finger prick. Participants should then start their test on the 

resistance bicycle, with the starting power at 50 watts (suitable for both genders).  The 

degree of intensity of the test continues to rise until the participants become exhausted. 

The power increases should be set at 30w for males and 20w for females. There should 

be at least six levels, each lasting three minutes with no rest in-between. Towards the 

end of each level, a finger-prick blood sample should be taken (Figure 6-1).  

 

Figure 6-1 Diagram of Lactate Threshold Test in the First Session. 
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6.2.1 Metabolic Measurements  

6.2.1.1 Resting Metabolic Rate (RMR)  

Resting metabolic rate will measured by indirect calorimetry with Oxycon pro 

(Carefusion, CA). Flow-volume sensor calibration was performed to ensure the system 

measuring Oxycon (consisting of the amplifier, Triple V, and the pressure transducer) 

is functioning correctly. A calibrated 3-L syringe connected to the Triple V assembly 

should use for this purpose. A series of completed pumps of the syringe are repeated 

until the percentage difference between the current and the previous volume calibrations 

is less than 1%, as explained by Carter and Jeukendrup (2002). 

 

Participants will come to the lab between 7 and 10 am; a heart rate monitor (Polar H10) 

then will attach to their chest before being put in a supine position. A ventilation hood 

is placed over the head of the participant and while connect to an oxygen supply. 

Measurements from the first 15 minutes of recording are  not used in the analysis as 

this period reflects the participant coming to rest and getting acquainted with the 

experimental conditions. However, the following 30 minutes or more are recorded on 

the software. 

 

6.2.1.2 Exercise Metabolic Testing 

The participants will provide a glucose or starch solution (as explained in Table 5-2, 

Chapter 5). Five minutes after ingesting, a blood sample was taken. Participants then 

warm up on the power bicycle with a 50 % power of their lactate threshold force (as 

determined by the LT in the first session) for 2 minutes, followed by 100 % of the 

individual lactate threshold force. The duration and intensity of the exercise is 60 min 
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cycling at 100 % force LT (It will occur in untrained individuals at about 50-60 % of 

VO2 max and about 70-80 % of VO2 max in trained individuals). This methodology is 

in accordance with the American College of Sports Medicine guidelines for prescribing 

exercise for health benefits. As such, it was thought to reflect one type of exercise 

session typical of those undertaken by the general population rather than a performance 

trial, more typical in athletic performance. Blood samples are taken every 10-minute 

interval from the cannula during the formal test. A meal is provided after all the 

procedures are finished (Figure 6-2). 

 

Figure 6-2 Diagram of RMR Exercise Metabolic Testing in the Second and Third Sessions. 

6.2.1.3 Suggestions Calculations for Carbohydrate and fat oxidation during rest 

and exercise by Indirect Calorimetry (IC) 

IC allows measuring respiratory exchange ratio RER. It is the term utilised to represent 

fuel oxidation by IC made at the cellular level, similar to respiratory quotient (RQ), the 

ratio of CO2 produced / O2 consumed (Mtaweh et al., 2018). RQ is measured in the 

study reported in chapter 6 with other parameters that can be derived from IC, such as 

the substrate of fuel utilization (CHO and Fat). During CHO metabolism, there is an 

equal amount of CO2 produced for every O2 consumed (RER = 1.0). During fat 
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metabolism, there is less CO2 produced for every O2 consumed (Haugen et al., 2007; 

Gupta et al., 2017). 

 

The accuracy and reliability of CI in metabolic acquired data can lead to significant 

differences in the results. The following point should be considered.  

• The variables of age, gender, PA level, lean mass, and other metabolic 

variations should be considered during the studies' repetition to minimize 

possible confounding effects on the analysis of CHO metabolism. 

 

• Gas analysers should be calibrated flowing the manufactural instructions.  

 

• Alcohol burns should be performed when measuring energy expenditure 

(EE) and calculated substrate utilisation using the respiratory exchange ratio 

(RER = VCO2 / VO2) and calculating CHO and fat oxidation from the 

Oxycon instrument. A known volume of alcohol is burned, and the actual 

yield of O2 and CO2 should be compared to theoretical values calculated 

based on the moles of alcohol used. Thus, the study has an extensive 

variability within-subject data obtained on RQ substrate oxidation in the 

same group. 

 

• The accuracy and reliability of CI in metabolic acquired data can lead to 

significant differences in the results, following point should be considered.  
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The Resting metabolic rate (RMR) measured by indirect calorimetry is suggested to 

measure oxygen consumption during the resting state. Breathing generates rapid 

readings by measuring short intervals of gas samples (Delsoglio et al., 2019). This 

method can be used during exercise for the measurement of oxygen consumption (VO2, 

ml / min), carbon dioxide production (VCO2, ml / min), and respiratory exchange ratio 

(RER). It is a standard tool of exercise physiology used to assess aerobic capacity and 

energy expenditure. In this regard, one study performed in postmenopausal women 

showed that the respiratory quotient and substrate use accounts for up to 40.2% of the 

variance in energy expenditure and changes in fat mass (Barwell et al., 2009). RMR, 

CHO, and fat combustion can be calculated using the Weir formula and were expressed 

as follows (Frayn, 1983; Péronnet et al., 1991; Carter and Jeukendrup, 2002): 

RQ = (VCO2 / VO2) 

RMR (Kcal/24h) = {(3.9 x VO2) + (1.1 x VCO2) x 1.44} 

CHO-oxidation (g/min) = {(4.55*V’CO2 min/L) - (3.23*(VO2 min/L)} 

Fat oxidation (g/min) = {(1.69* VO2 min/L) - (1.69*(V’CO2 min/L)} 
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Figure 6-3 Flow Diagram of Recommendations for Future Research According to the Findings of the 

Pilot Studies in Chapter 5. 

 

6.3 Conclusion 

To summarise, after comparing data from the present studies with all the previous 

research on the topic, it is clear that some changes are required to build the 

methodology for future investigations. Several changes need to be made, such as 

including an equal ratio of both males and females in the same study.  The dietary 

intake of the glucose and starch solution also needs regulation in the context of 

adjusting their dosages and timings.  
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Additionally, the sample size criteria need to be strictly checked. Several other 

factors, ranging from the participants’ physiological factors to their dietary 

responses, should also be considered to improve the accuracy and relevance of the 

results of the upcoming studies. 
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Appendix 1 

1.1 Participant’s Characteristics  

The following (Table 4-1) contains the mean ± SD for the demographic variables for 

overall group, as well as in two categories of the gender for the respective variables 

along with the P-values. Furthermore, the data contains the respondents having the 

CNV greater than 10 copies of AMY1.  This study did not record any significant 

differences in age, CNVs, body fat and PA between males and females. Expected 

differences were found between males and females in weight, height, WC, BMI as the 

corresponding P-values were < 0.05. 

Table 1-1 Descriptive characteristics of the participants in this study grouped according to their gender.

Characteristic Male (n= 15) Female (n= 11) All (n= 26) p-value 

Age (year) 22.50 ± 4.2 23.60 ± 4.3 22.40 ± 3.7 0.551B 

Weight (kg) 82.31 ± 12.4 59.59 ± 7.5 70.22 ± 13.4 <0.001 A 

Height (cm) 178.1 ± 6.2 163.9 ± 8.0 172.1 ± 9.70 <0.001 A 

WC (cm) 86.55 ± 10.4 62.00 ±2 2.2 77.40 ± 9.41 0.004 A 

BMI (kg.m2) 25.89 ± 4.3 22.16 ± 2.6 23.94 ± 3.52 0.020 A 

Body Fat (%) 25.57±8.4 31.3 ± 5.4 26.70 ± 9.19 0.059B 

PA (Hour/w) 13.0 ± 8.9 19.19 ± 7.8 16.68 ± 12.76 0.081 A 

All values are expressed as mean ± SD and CN = copy number, WC = waist circumference, BMI = body mass 

index. Fat % from DEXA scan. PA = physical activity.  (A)P values < 0.05 independent sample t- test. (B) P 

values < 0.05 Maan-Whitney U test to comparison between males and females.   

 

 

1.2 AMY1 Copy number Detection in Each Group 

The distribution of CN in male and female participants is shown in Figure 1-1 and 1-

2 respectively. The mean CNs did not significantly differ between males and females 

(P = 0.614).  reported in below table 1-2 along with the number of patients having 

CNV>=10. 
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Figure 1-1 Distribution of CVN copy number>=10 number in the study population. 

 

 

 

Figure 1-1 Distribution of CNV copy number>=10 in males and females 

 

 



Appendix          286 

 

Table 1-2 Comparison of CNV>=10in two categories of gender 

Groups No Mean ± SD p– value 

Males 15 11.53 ± 1.356 
0.614 

Females 11 11.82 ± 1.471 

 

1.3 Body Composition and CNV greater than 10 (CNV>=10) 

The correlation and regression analysis results are showing in the following Table 1-3 

along with the goodness of fit measure for the underlined model having CNV >=10 as 

a dependent and Height, weight, BMI, WC, and Total BF% as dependent variables. 

Under the men category of Gender, no significant relationships were found between 

CNV>=10 and height (r = -0.362, p = 0.186), body weight (r = 0.186, p = 0.362), BMI 

(r = 0.227, p = 0.415), WC (r = -0.010, p = 0.977) and BF% (p = 0.661, r = -0.123).  

Furthermore, there exist a positive correlation between the CNV and Weight, BMI, but 

the correlation between the CNV and Height, WC and Body fat are negative. Similarly, 

for females, no significant correlations are observed between CNV for height (r = -

0.173, p = 0.661), weight (r = -0.173, p = 0.611); BMI (r = 0.136, p = 0.899), WC (r = 

-0.315, p = 0.409) and BF (r =- 0.109, p = 0.749). Further, no significant correlation 

has been detected between the whole population CNV and Height, Weight, BMI, WC 

and BF as the corresponding p -values for the β coefficients of linear regression are 

greater than or equals to 0.05. 
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Table 4-2: Linear regression results between CNV copy number greater than or equals to 10 and height, 

markers of adiposity. 

Measurements 
Males (n= 15) Females (n= 11)    All (n= 26) 

Β R Β R β R 

Height (cm) 1.985 -0.362 14.36 -0.173 1.055 -0.258 

Weight(kg) -7.687 0.362 -30.49 -0.173 -3.561 -0.023 

BMI (kg/m2) 7.376 0.227 29.75 0.136 3.419 0.122 

WC (cm) 0.174 -0.010 -0.309 0.315 -0.645 -0.082 

Body Fat (%)  -0.760 -0.123 -1.556 0.109 -0.293 -0.002 

R2 0.154 0.845 0.281 

Adiposity markers including weight, BMI, waist circumference (WC), and fat percentage in all participants, 

male and females. P values < 0.05 indicates a significant coefficient (β), corr. Denotes the correlation 

coefficient between the CNV copy number greater than or equals to 10, and other variables, R-squared (R2) is 

also reported for each model. 

 

The above Table 4-2 contains the results of the regression analysis used to check the 

effect of the independent variables namely Height, Weight, BMI, WC and Body fat on 

the dependent variable AMY1 CN greater than or equals to 10 copy number. It is 

observable that under the male category of the gender, a one unit change in the Height, 

BMI, and Body fat results into the 1.985, 7.376 and 0.174 unit increase in the value of 

CNV copy number. Similarly for a unit change in CNV CN resultants a decline in 

Weight and WC by 7.687 and 0.760, respectively. The value of the R2 (0.154) means 

that 15.4% of variation in Height, Weight, BMI, WC and Body fat explained by AMY1 

CN, but 84.6% variation in Height, Weight, BMI, WC and Body fat cannot be explained 

by AMY1 CNV only. Similarly, under the category of the female total of 84.5% 

variation in the variables is explained by AMY1 CN and the rest of the variation 15.5% 

of the variations cannot not explained the underline model. For the total population 

samples, only 28.1% variation in the Height, Weight, BMI, WC and Body Fat is 

explained by the AMY1 CN, and rest of the variation 71.9% of the variance cannot be 

explained by AMY1 CNV only. 
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Appendix 2  

Sample size calculation in the result of glucose in the pilot study, reported in Chapter 5 

Sample size was calculated using G Power software. A total of 62 participants (31 

participants in each group) will be required to conduct the study, based on following 

assumptions. 

 

 Effect size d = 0.1275 

 α err prob = 0.05 

 Power (1-β err prob) = 0.80 

 Number of groups = 2 

 Number of measurements  =7 

 Corr among repeated measures =0.5 

 

Effect size was calculated based on lowest Partial Eta2 for Glucose= 0.016 

 

 
(Screenshot for G*Power software)  
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Appendix 3  

Sample size calculation in the result of insulin in the pilot study, reported in Chapter 5 

Sample size was calculated using G Power software. A total of 26 participants (13 

participants in each group) will be required to conduct the study, based on following 

assumptions. 

 

 Effect size d = 0.2014515 

 α err prob = 0.05 

 Power (1-β err prob) = 0.80 

 Number of groups = 2 

 Number of measurements  =7 

 Corr among repeated measures =0.5 

 

Effect size was calculated based on lowest Partial Eta2 for Insulin= 0.039 

 

(Screenshot for G*Power software)  
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Appendix 4  

Sample size calculation in the result of  total- cholesterol in the pilot study, reported in 

Chapter 5 

Sample size was calculated using G Power software. A total of 46 participants (23 

participants each group) will be required to conduct the study, based on following 

assumptions. 

 

 Effect size d = 0.1499830 

 α err prob = 0.05 

 Power (1-β err prob) = 0.80 

 Number of groups = 2 

 Number of measurements  =7 

 Corr among repeated measures =0.5 

 

Effect size was calculated based on Partial Eta2 for Cholesterol= 0.022 

 

 
(Screenshot for G*Power software)  

  



Appendix          291 

 

Appendix 5  

Sample size calculation in the result of  TG in the pilot study, reported in Chapter 5 

Sample size was calculated using G Power software. A total of 18 participants (9 

participants in each group) will be required to conduct the study, based on following 

assumptions: 

 

 Effect size d = 0.2503982 

 α err prob = 0.05 

 Power (1-β err prob) = 0.80 

 Number of groups = 2 

 Number of measurements  =7 

 Corr among repeated measures =0.5 

 

Effect size was calculated based on Partial Eta2 for TG= 0.059 

 

(Screenshot for G*Power software)  
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Appendix 6  

Sample size calculation in the result of  NEFA in the pilot study, reported in Chapter 5 

Sample size was calculated using G Power software. A total of 16 participants (8 

participants in each group) will be required to conduct the study, based on following 

assumptions: 

 

 Effect size d = 0.2636640 

 α err prob = 0.05 

 Power (1-β err prob) = 0.80 

 Number of groups = 2 

 Number of measurements  =7 

 Corr among repeated measures =0.5 

 

Effect size was calculated based on Partial Eta2 for NEFA= 0.065 

 

 
(Screenshot for G*Power software)  
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