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The paper deals with the distributed minimum sharing problem: a set of decision-makers compute the
minimum of some local quantities of interest in a distributed and decentralized way by exchanging
information through a communication network. We propose an adjustable approximate solution which
enjoys several properties of crucial importance in applications. In particular, the proposed solution has
good decentralization properties and it is scalable in that the number of local variables does not grow
with the size or topology of the communication network. Moreover, a global and uniform (both in
the initial time and in the initial conditions) asymptotic stability result is provided towards a steady
state which can be made arbitrarily close to the sought minimum. Exact asymptotic convergence can
be recovered at the price of losing uniformity with respect to the initial time.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Problem description, objectives and context

We consider the problem of computing the minimum of a
et of numbers over a network, and we propose a distributed,
terative solution achieving global and uniform, albeit approximate,
symptotic stability. We are given a set N of N decision makers
or agents), where each agent i ∈ N is provided with a num-
er Mi ∈ R≥0 not known a priori by the others. The agents
xchange information over a communication network with only
subset of other agents (called their neighborhood). The approx-

mate minimum sharing problem consists in the design of an
lgorithm guaranteeing that each agent asymptotically obtains a
‘sufficiently good’’ estimate of the quantity
⋆

:= min
i∈N

Mi. (1)
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Clearly, ‘‘xi = M
⋆
, ∀i ∈ N ’’ is also the unique solution to every

constrained optimization problem of the form

max
∑
i∈N

ψi(xi)

xi ≤ Mi, ∀i ∈ N
xi = xj, ∀i, j ∈ N

(2)

obtained with ψi, i ∈ N , continuous and strictly increasing
functions. Therefore, the minimum sharing problem is equiv-
alent to the constrained distributed optimization problem (2),
thus intersecting the wide research field of distributed optimiza-
tion (Notarstefano, Notarnicola, & Camisa, 2019).

The problem of computing a minimum (or, equivalently, a
maximum) over a network of decision makers is a classical
problem in multi-agent control, with applications in distributed
estimation and filtering, synchronization, leader election, and
computation of network size and connectivity (see, e.g., Bullo,
Cortes, and Martinez (2009), Golfar and Ghaisari (2019), Iutzeler,
Ciblat, and Jakubowicz (2012), Nejad, Attia, and Raisch (2009),
Santoro (2006) and the references therein). Perhaps the most
elementary existing algorithms solving the minimum sharing
problem are the FloodMax (Bullo et al., 2009) and the Max-
Consensus (Golfar & Ghaisari, 2019; Iutzeler et al., 2012; Nejad
et al., 2009). In its simplest form, Max-Consensus1 requires each

1 For brevity, we only focus on Max-Consensus. However, the same
onclusions applies also to the FloodMax.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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gent i ∈ N to store an estimate xi ∈ R of M
⋆
which is updated

iteratively on the basis of the following update rule

xt+1
i = min

j∈[i]
xtj , ∀i ∈ N , (3a)

with the initialization

xt0i = Mi, ∀i ∈ N , (3b)

where t is the iteration variable, t0 its initial value, and [i] ⊂

N denotes the neighborhood of agent i (we assume i ∈ [i]).
The update law (3a) is decentralized and scalable, in that each
agent needs only information coming from its neighbors and each
agent stores only one variable. However, although (3a) guarantees
convergence of each xi to M

⋆
when the estimates xi are initialized

as specified in (3b), convergence is not guaranteed for an arbitrary
initialization. In fact, if

∃i ∈ N s.t. xt0i < M
⋆
, (4)

then the corresponding estimate xti produced by (3a) satisfies
xti < M

⋆
all subsequent t , so that xti → M

⋆
cannot hold.2

Therefore, since convergence to M
⋆
holds only for some specific

initial values xt0i , the Max-Consensus algorithm (3) is not glob-
ally convergent. While there are application domains for which
attaining global convergence is not strictly necessary, there are
many others in which it is a crucial requirement. This is the case,
for instance, when the quantities Mi can change at run time (see
he two use-cases illustrated in Section 1.2). To see how this may
e a problem for the update law (3), assume by way of example
hat the estimates xti have reached at a given t1 the value M

⋆
,

i.e. xt1i = M
⋆
for all i ∈ N , and assume that there is a unique

k ∈ N such that M
⋆

= Mk. Now, suppose that at some t2 > t1
the value of Mk increases, thus determining an increment also of
M
⋆
. Then, the condition (4) holds for t0 = t2 so as, in view of

the discussion above, the update law (3a) fails to track the new
minimum.

Global attractiveness is not the only desirable property one
may be interested in when the minimum sharing problem is con-
sidered over large networks with possibly changing conditions. In
fact, a crucial role is also played by

1. Uniformity of the convergence: the convergence rate does
not depend on the initial value t0 of the iteration variable
and is constant over compact subsets of initial conditions.

2. Stability of the steady state: ensures that small variations
in the parameters and initial conditions map into small
deviations from the unperturbed trajectories.

3. Scalability: the number of variables stored by each agent
does not grow with the network size or the number of
interconnections.

4. Decentralization of the updates: the update law of each
agent uses only local information and depends on pa-
rameters that are independent from those of the other
agents.

Indeed, uniform global attractiveness and stability of the steady
state confer robustness against uncertain and time-varying condi-
tions and parameters (see e.g. Goebel, Sanfelice, and Teel (2012,
Chapter 7)), making the minimum sharing method suitable for
applications in which the quantities Mi vary in time. Moreover,
scalability and decentralization enable the application to large-
scale networks. In this direction, in this paper we look for a

2 In this specific case, we also observe that any consensual configuration
i.e., xi = xj for all i, j ∈ N ) is an equilibrium of (3a). This, in turn, is
ntimately linked to the unfeasibility result of Santoro (2006, Theorem 3.1.1), and
o the detectability issues appearing in many control problems, such as Extremum
eeking (Ariyur & Krstić, 2003; Tan, Nešić, & Mareels, 2006).
2

novel solution to the minimum sharing problem having scala-
bility and decentralization properties similar to those of Max-
Consensus (3), but, in addition, possessing the aforementioned
globality, uniformity and stability properties.

1.2. Motivating applications

Our methodology is motivated by two application contexts
described below. In both cases, a key element consists in solving
an instance of the minimum-sharing problem (2) in which the
parameters Mi, hence the minimum M

⋆
, may change over time. In

his contexts, (i) global attractiveness allows to track the changing
inimum M

⋆
, (ii) uniformity of convergence guarantees that the

convergence rate is always the same and does not decrease with
time, and (iii) stability guarantees that relatively small variations
of the parameters lead to small transitory deviations from the
optimal steady state.

1.2.1. Cooperative control of traffic networks
Consider a traffic network consisting of a set of vehicles driv-

ing on a highway in an intense traffic situation. Some of the
vehicles have self-driving capabilities, and we can assign their
driving policies. The other vehicles are instead human-driven
and, thus, they are not controlled. The whole traffic network is
seen as a plant that, when not properly controlled, may exhibit
undesired behaviors, such as ghost jams. The control goal consists
in finding a control policy, distributed among the self-driving
vehicles, which guarantees that the ‘‘closed-loop’’ traffic network
behaves properly, leading to a smooth traffic flow where all the
vehicles hold a common maximal cruise speed. At each time, the
maximum attainable cruise speed of each vehicle i is constrained
by a personal maximum value, denoted by Mi, which may depend
on mechanical constraints, on the traffic conditions, on standing
speed limitations, or other exogenous factors. A key part of the
control task consists in the distributed computation of the maxi-
mum common cruise speed, M

⋆
, compatible with all the personal

velocity constraints. At each time, the problem of estimating M
⋆

is an instance of (2), whose solution is precisely (1).

1.2.2. Dynamic leader election
Another important motivating application is the distributed

leader election problem in dynamic networks, which shares many
similarities with the previous application. Single-leader election
has been proved to be an unsolvable problem in general, even
under bi-directionality, connectivity, and total reliability assump-
tions on the communication networks (Santoro, 2006, Theorem
3.1.1). A standard additional assumption making the problem
well-posed is that each agent is characterized by a unique iden-
tifier Mi. Hence, the problem of leader election can be cast as
finding the minimum, M

⋆
, of such identifiers. The agent whose

identifier coincides with M
⋆
declares itself the leader, the others

the followers.

1.3. Related works and state of the art

Classical algorithmic approaches to the minimum sharing prob-
lem in arbitrary networks have been developed in the context
of distributed algorithms and robotic applications. They include
the FloodMax (Bullo et al., 2009), the Max-Consensus (Golfar &
Ghaisari, 2019; Iutzeler et al., 2012; Nejad et al., 2009) (see (3)),
the MegaMerger (Gallager, Humblet, & Spira, 1983), and the Yo-Yo
algorithm. See Bullo et al. (2009) and Santoro (2006) for a more
detailed overview. Some of these approaches, such as the basic
Max-Consensus (3), have nice scalability and decentralization
properties: the update laws do not depend on centralized quanti-
ties, such as parameters that need to be known in advance by all
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he agents, and employ a number of local variables which does
ot grow with the network size or topology. However, all such
pproaches require a correct initialization or a pre-processing
ynchronization phase, which are undesired limitations in appli-
ations of interest such as, for example, the ones discussed in
ection 1.2.
If the minimum sharing problem is cast in terms of the

ptimization problem (2), then one can rely on a well-developed
iterature on discrete-time distributed optimization (see Notarste-
ano et al. (2019) for a recent overview). If the functions ψi
n (2) are convex, indeed, different approaches can be used, such
s consensus-based (sub)gradient methods (Lobel & Ozdaglar,
011; Nedic & Ozdaglar, 2009; Nedic, Ozdaglar, & Parrilo, 2010;
hi, Ling, Wu, & Yin, 2015a, 2015b; Yuan, Ling, & Yin, 2016),
econd-order methods (Mokhtari, Ling, & Ribeiro, 2017; Varag-
olo, Zanella, Cenedese, Pillonetto, & Schenato, 2016), projected
Xie, You, Tempo, Song, & Wu, 2018) and primal–dual (Chang,
edić, & Scaglione, 2014; Zhu & Martinez, 2012) methods with
nequality constraints, methods based on the distributed Alter-
ate Direction Method of Multipliers (ADMM) (Bastianello, Carli,
chenato, & Todescato, 2020; Boyd, Parikh, Chu, Peleato, & Eck-
tein, 2011; Chang, 2016; Jakovetić, Moura, & Xavier, 2015; Ling,
hi, Wu, & Ribeiro, 2015; Makhdoumi & Ozdaglar, 2017; Mota,
avier, Aguiar, & Püschel, 2013; Notarstefano et al., 2019; Shi,
ing, Yuan, Wu, & Yin, 2014), and methods based on gradient
racking (Bin, Notarnicola, Marconi, & Notarstefano, 2019; Nedić,
lshevsky and Shi, 2017; Nedić, Olshevsky, Shi and Uribe, 2017;
u & Li, 2018; Xi, Xin, & Khan, 2018; Xu, Zhu, Soh, & Xie,
015). Gradient methods typically achieve global attractiveness.
owever, among the cited references only (Nedic et al., 2010)
eals with constrained problems with different local constraints3
uch as (2). Yet, Nedic et al. (2010) require a vanishing stepsize,
hich makes convergence not uniform. Gradient methods em-
loying a fixed stepsize thus guaranteeing uniformity are given
n Lobel and Ozdaglar (2011), Mokhtari et al. (2017), Nedic and
zdaglar (2009), Shi et al. (2015a, 2015b), Varagnolo et al. (2016)
nd Yuan et al. (2016). However, they do not cover constrained
roblems of the kind (2). Moreover, the first-order methods
n Lobel and Ozdaglar (2011), Nedic and Ozdaglar (2009) and
uan et al. (2016) lead to an approximate convergence result
n which the convergence speed and the approximation error
eed to be traded off. This, in turn, is consistent with our results
n which a compromise is more generally established between
niformity, approximation error and convergence rate. The ap-
roaches (Chang et al., 2014; Xie et al., 2018; Zhu & Martinez,
012) deal with inequality constraints including Problem (2).
evertheless, they require a correct initialization and, hence, they
o not provide global attractiveness. The same issue applies to
radient-tracking methods (Bin et al., 2019; Nedić, Olshevsky
nd Shi, 2017; Nedić, Olshevsky, Shi and Uribe, 2017; Qu &
i, 2018; Xi et al., 2018; Xu et al., 2015) (which, anyway, are
eveloped for unconstrained problems), and also for the ‘‘node-
ased’’ formulations of ADMM (Jakovetić et al., 2015; Ling et al.,
015; Makhdoumi & Ozdaglar, 2017; Mota et al., 2013; Shi et al.,
014). Instead, the ‘‘edge-based’’ formulations of ADMM (e.g.
astianello et al. (2020) and Notarstefano et al. (2019, Section
.3)) do not suffer from this initialization issue, and they provide a
olution which is global and uniform. Nevertheless, the number of
ariables that each agent has to store grows with the dimension
f its neighborhood, thus incurring in scalability issues. Moreover,
tability is not usually considered in the analysis of the aforemen-
ioned designs, and typically the update laws employ coefficients

3 By the term ‘‘local constraints’’ we refer to private constraints an agent may
ave on its own variables that do not depend on the other agents’ variables,
.g. the constraints x ≤ M in (2).
i i w

3

(e.g. stepsizes) which must be common4 to all agent (i.e., they are
centralized quantities).

1.4. Contributions & organization of the paper

We propose a new approach to the minimum sharing problem
that provides an adjustable approximate (or sub-optimal in terms
of (2)) solution enjoying the globality, uniformity, scalability and
decentralization properties stated in Section 1.1, which do not
seem to be possessed altogether by any existing algorithm. The
proposed update laws have the form

xt+1
i = fi(t, xt ), (5)

for some suitable functions fi, where xi ∈ R represents the
estimate of M

⋆
stored by agent i, and x := (xi)i∈N is the aggre-

gate estimate. As formally specified later on in Section 2.2, the
actual structure of the functions fi encodes the decentralization
constraints, allowing an agent update to depend only on the
estimates of a subset of other agents (see Remark 1). We show
that all the estimates xi converge, globally and uniformly, to a
stable neighborhood of M

⋆
whose size can be reduced arbitrarily

around M
⋆
by suitably tuning some control parameters. More

precisely, the proposed approach enjoys the following properties:

(a) The algorithm is distributed and scalable, since the only
one variable is stored for each agent.

(b) The update law of each agent employs a gain which can be
tuned independently from the others.

(c) The estimates xi converge globally and uniformly to a stable
steady state which can be made arbitrarily close to M

⋆
.

(d) Exact convergence (i.e., all the estimates converge to M
⋆
)

can be achieved, at the price, however, of losing uniformity.

In view of Item (b), the proposed method has good decentraliza-
tion properties compared to most of the approaches mentioned in
Section 1.3. Nevertheless, we underline that the proposed method
is not fully decentralized, as the agents are supposed to know a
lower-bound on M

⋆
(Assumption 2) which explicitly enters in the

update laws.
The paper is organized as follows. After providing preliminary

definitions and remarks in Section 2, in Section 3 we formu-
late the minimum-sharing problem and we describe the pro-
posed solution methodology. The main convergence results are
given in Section 4 and proved in Section 7. Finally, numerical
results and concluding remarks are reported in Sections 5 and 6
, respectively.

2. Preliminaries

2.1. Notation

We denote by R and N the set of real and natural numbers
respectively. If a ∈ R, R≥a denotes the set of all real numbers
larger than or equal to a, and similar definitions apply to other
ordered sets and ordering relations. We denote by card A the
cardinality of a set A. If A, B ⊂ R, A\B := {a ∈ A | a /∈ B} denotes
the set difference between A and B. We identify singletons with
their unique element and, for a b ∈ R, we thus write A\b in place
of A \ {b}. We denote norms by |·| whenever they are clear from

4 Exceptions are given in the gradient-tracking designs of Nedić, Olshevsky,
hi and Uribe (2017) and Xu et al. (2015), where agents employ uncoordinated
tepsizes. In both the designs, the discrepancy between the stepsizes must be
mall enough. Hence, these results may be seen as a ‘‘robustness’’ property
elative to variations of the stepsizes with respect to their average. In turn, this
roperty comes for free if the algorithm is proved to be asymptotically stable
ith a common stepsize (see, e.g., Goebel et al. (2012, Chapter 7)).
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he context. With A ⊂ Rn and x ∈ Rn, dist (x, A) := infa∈A |x − a|
enotes the distance from x to A. Sequences indexed by a set S
re denoted by (xs)s∈S . For a non-empty interval [a, b] ⊂ R, we
efine the projection map Π[a,b] : R → [a, b] as Π[a,b](s) :=

in{max{s, a}, b}. A function f : Rn
→ Rm, n,m ∈ N, is locally

ounded if f (K ) is bounded for each compact set K ⊂ Rn. In
his paper, we consider discrete-time systems whose solutions
re signals defined on a non-empty subset dom x of N. For ease of
otation, we will use xt in place of x(t) to denote the values of a
ignal x. With t0 ∈ N, we say that x starts at t0 if min dom x = t0.

.2. Communication networks

Throughout the paper, N denotes the (finite) set of agents
n the network, and we let N := cardN . The network com-
unication constraints are formally captured by the concept of

‘communication structure’’ defined below.5

efinition 1. A communication structure on N is a sequence
= ([i])i∈N of subsets [i] of N which satisfy i ∈ [i].

For each i ∈ N , the set [i] is called the neighborhood of i. A
ommunication network is a pair (N , C), in which N is a set and
is a communication structure on N .
For a given I ⊂ N , we define the sequence of sets

I]0 := I
I]n :=

⋃
j∈[I]n−1 [j], n ∈ N≥1

(6)

o as, in particular, [{i}]1 = [i]. If I = {i} is a singleton, we use the
hort notation [{i}]n = [i]n. Moreover, for n,m ∈ N we let

I]nm := [I]n \ [I]m.

We consider networks that are connected according to the
ollowing definition.

efinition 2. With I ⊂ N , a communication network (N , C) is
aid to be I-connected if there exists nI ≤ N such that [I]nI = N .

The notion of I-connectedness is in general weaker than usual
trong connectedness, which requires the existence of a path be-
ween any two agents. Later on, we shall assume that N is
iven a communication structure C which is I

⋆
-connected for

specific subset I
⋆

⊂ N . For the purpose of analysis, this
ommunication structure is assumed static. Likewise also the
uantities Mi are supposed constant. In fact, this corresponds
o a well-defined ‘‘nominal setting’’ for the proposed method in
hich we can prove the desired uniform global attractiveness
nd stability properties. Proving such properties in the nominal
ase, in turn, guarantees that the proposed method can be applied
lso to relevant classes of problems where the communication
tructure and the parameters Mi (hence, their minimum M

⋆
) may

hange over time. Indeed, as already mentioned in Section 1.1,
niform global attractiveness and stability ensure a proper ap-
roximate tracking of a time-varying minimum M

⋆
provided that

ts dynamics is sufficiently slow. Moreover, classical results in the
ontext of control under different time-scales (see, e.g., Kokotović,
halil, and O’Reilly (1999), Tan et al. (2006), Teel, Moreau, and
ešić (2003) and Wang, Teel, and Nešić (2012)) also guarantee
ood tracking performances under changes of the communication
tructure C that are, on average, sufficiently slow with respect to
he dynamics of the update laws. In this respect, Section 5 pro-
ides numerical results in a scenario in which the communication
tructure and the numbers Mi are subject to impulsive changes
eparated by relatively large intervals of time.

5 A common way to define a communication structure on N is to consider an
ndirected graph (N , E) with vertices set equal to N and edges set E ⊂ N ×N
uch that if (i, j) ∈ E then agents i and j can communicate. In this case,
i] := {i} ∪ {j ∈ N | (j, i) ∈ E}.
4

.3. Stability and convergence notions

We consider discrete-time systems of the form
t+1

= f (t, xt ), (7)

with state xt ∈ Rn, n ∈ N. Given a closed set A ⊂ Rn, we say
that A is stable for (7) if for each ϵ > 0 there exists δ(ϵ) > 0
such that every solution of (7) satisfying dist

(
xt0 , A

)
≤ δ(ϵ) also

satisfies dist
(
xt , A

)
≤ ϵ, for all t ≥ t0. We say that A is attractive

or (7) if there exists an open superset O of A and, for every
0 ∈ N, every solution x to (7) with xt0 ∈ O, and every ϵ > 0,
here exists t

⋆
(t0, xt0 , ϵ) ∈ N, such that dist

(
xt , A

)
≤ ϵ holds

or all t ≥ t0 + t
⋆
(t0, xt0 , ϵ). Different qualifiers can enrich this

ttractiveness property. In particular, the set A is said to be:

• Globally attractive if O = Rn.
• Finite-time attractive if the condition ‘‘ϵ > 0’’ can be replaced

by ‘‘ϵ ≥ 0’’.
• Uniformly attractive in the initial time t0 if the map t

⋆
(·) does

not depend on t0.
• Uniformly attractive in the initial conditions xt0 if for each

(t0, ϵ) ∈ N × R≥0, the map t
⋆
(t0, ·, ϵ) is locally bounded.

• Uniformly attractive if it is both uniformly attractive in the
initial time and in the initial conditions.

• ϵ-approximately attractive (with ϵ > 0) if the set {x ∈ Rn
|

dist (x, A) ≤ ϵ} is attractive.

f A is both stable and attractive, it is said to be asymptotically
table. Moreover, with (fγ )γ∈Γ representing a family of functions
γ : N × Rn

→ Rn indexed by a set Γ , consider the family of
ystems
t+1

= fγ (t, xt ), γ ∈ Γ . (8)

hen, we say that the set A is practically attractive for the family
8), if for each ϵ > 0, there exists γ

⋆
(ϵ) ∈ Γ such that the set

is ϵ-approximately attractive for the system (8) obtained with
= γ

⋆
(ϵ).

. Distributed minimum sharing

.1. Problem formulation

We are given a communication network (N , C). Each agent
∈ N is provided with a number Mi, not known a priori by

he others, and it stores and updates a local estimate xi ∈ R
f the quantity M

⋆
defined in (1). Thus, the problem at hand

onsists in designing an update law for each agent i ∈ N of the
orm (5) such that the resulting estimates xti converge to M

⋆
, in

ome of the senses defined in Section 2.3. The resulting family
:= (fi)i∈N is called the distributed methodology. In the following,
e let x := (xi)i∈N and we compactly rewrite (5) as

t+1
= f (t, xt ). (9)

s each agent is allowed to exchange information only with the
gents belonging to its neighborhood [i], the functions fi must
espect this constraint. This is formally expressed by the following
efinitions.

efinition 3. With V ⊂ N , a function g on N × RN is said to be
dapted to V if it satisfies g(t, x) = g(t, z) for every t ∈ N, and
very x, z ∈ RN satisfying xi = zi for all i ∈ V .

efinition 4. The function f = (fi)i∈N is said to be C-decentralized
f, for each i ∈ N , the map f is adapted to [i].
i
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Then, the distributed minimum sharing problem is defined as
follows.

Problem 1. Design a C-decentralized function f , such that the
set

A := {M
⋆
}
N (10)

s globally attractive for (9).

emark 1. We stress that, if f is C-decentralized, then each
unction fi in (5) depends only on (xj)j∈[i] and not on the whole
tate x.

emark 2. Depending on the additional qualifiers that may
haracterize the attractiveness property of A in Problem 1, we
may have solutions to Problem 1 in ‘‘different senses’’. In the
forthcoming section, we propose a methodology obtaining both
global attractiveness and global uniform practical attractiveness
of A, depending on the value of some user-decided control pa-
rameters. We will show that a compromise between how close
we can get to A and uniformity in the initial time is necessary.
In particular, we show that attractiveness is possible only at the
price of losing uniformity in the initial time, and that, if such
property is needed, then global practical uniform attractiveness
is the best we can achieve.

3.2. Standing assumptions

We consider Problem 1 under two main assumptions specified
hereafter. We define the set

I
⋆

:= argmin
i∈N

Mi. (11)

ith the following assumption, we require the communication
etwork to be connected with respect to I

⋆
.

ssumption 1 (Connectedness). The communication network
N , C) is I

⋆
-connected in the sense of Definition 2.

The second assumption, instead, requires each agent to know
lower-bound on M

⋆
.

ssumption 2 (Consistency). Each agent i ∈ N knows a number
i ∈ R>0 such that µi ≤ M

⋆
.

It is worth noting that Assumption 2 is a ‘‘centralized’’ as-
umption, in that it asks each agent to know a lower bound on
he common, unknown quantity M

⋆
. Nevertheless, it introduces

lmost no loss of generality in different applications of inter-
st, including those mentioned in Section 1.2, where knowing a
ower-bound on M

⋆
is a mild requirement. For instance, in both

he traffic control and leader election problems we can assume
hat the quantities Mi are integers, so that ‘‘µi ∈ (0, 1) for all
∈ N ’’ is a feasible choice requiring no further knowledge on
⋆
. Furthermore, this assumption is not in principle needed if an

pproximate or practical attractiveness result is sought. In fact, if
or some I ⊂ N , ϵ := maxi∈I µi > M

⋆
, then M

⋆
∈ [0, ϵ), and, as

larified later on by the asymptotic analysis, we are able to claim
hat the set [0, ϵ]N (which includes M

⋆
) is practically attractive for

, with ϵ, however, that can be made arbitrarily small by choosing
i accordingly.
In the following we let

:= min
i∈N

µi. (12)
5

3.3. The update laws

The proposed update law is obtained by choosing f so that, for
each i ∈ N , Eq. (5) reads as follows6

x+

i = Π[µi,Mi]

⎡⎣eh
t
i xi + ki

∑
j∈[i]

(
xj − xi

)⎤⎦ , (13)

in which µi > 0 is the same quantity of Assumption 2, ki > 0 is
a free control gain chosen to satisfy

0 < ki ≤
1

card([i] \ i)
(14)

and hi : N → R≥0 is a time signal to be designed later on.
Notice that, as in Nedic et al. (2010), the update laws (13) have

the form of a projected (onto the interval [µi, Mi]) consensus-
like protocol. Unlike Nedic et al. (2010), however, the matrix
defining the estimates dynamics needs not be column or row-
stochastic, and the coefficients ki are only constrained by (14)
and, hence, they can be chosen in a completely decentralized way.
Moreover, unlike all the aforementioned distributed optimization
approaches, the restriction of the dynamics onto the consensus
manifold7 is not marginally stable. Rather, it is deliberately made
unstable by the terms eh

t
i .

3.4. Excitation properties

The signals hi will be chosen to guarantee one of the following
excitation properties.

Definition 5 (Sufficiency of Excitation). With t0 ∈ N, the family
hi)i∈N , is said to be sufficiently exciting from t0 if there exist
(t0) > 0 and ∆(t0) ∈ N≥1 such that, for each m ∈ N≥1 satisfying

≤
1

h(t0)
log

(
M
⋆

µ

)
(15)

nd each i ∈ N , there exists at least one si ∈ {t0 + 1 + (m −

)∆(t0), . . . , t0 + m∆(t0)} such that hsi
i ≥ h(t0).

In qualitative terms, given an initial time t0, sufficiency of exci-
ation implies that the signals hi are positive ‘‘frequently enough’’
or a ‘‘large enough’’ amount of time succeeding t0. When (hi)i∈N
s sufficiently exciting from every t0, and independently on it, then
e say that (hi)i∈N enjoys the uniformity of excitation property.

efinition 6 (Uniformity of Excitation). The family (hi)i∈N is said
o be uniformly exciting if it is sufficiently exciting from every t0,
ith h and ∆ not dependent on t0.

Uniformity of excitation can be seen as a ‘‘uniform in t0’’
version of sufficiency of excitation and, in particular, it implies
that all the signals hi take positive values infinitely often. Defined
in this way, both these properties are ‘‘centralized’’, in that they
employ quantities common to all the agents. However, both can
be easily obtained by means of decentralized design policies in
which the signals hi are chosen independently on each other. This
is the case, for instance, when the signals hi are periodic (with
possibly different periods) and not identically zero, as formalized
in the following lemma (proved in Appendix A).

Lemma 1. Suppose that, for each i ∈ N , hi is periodic and there
exists t ∈ N for which ht

i > 0. Then, the family (hi)i∈N is uniformly
xciting.

6 Recall that Π[a,b](s) := min{max{s, a}, b}.
7 That is, the set {x ∈ RN

| x = x , ∀i, j ∈ N }.
i j
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emark 3. If ht
i = 0 for all i ∈ N and t ∈ N, each of the infinite

oints of the consensus manifold M is an equilibrium for (13).
Since M

⋆
∈ M, this implies that M

⋆
is a well-defined steady state

for (13). However, in this case M
⋆
cannot be reached by any of

the initial conditions in M, as they are indeed equilibria. This, in
urn, is related to the impossibility result (Santoro, 2006, Theorem
.1.1) in the leader election problem in absence of unique identi-
iers, and is at the basis of the non-globality of the FloodMax and
ax-Consensus algorithms (see Section 1.1). In order to prevent

he consensual states in M to be equilibria, the signals ht
i must

arry enough excitation, in the sense of Definitions 5 or 6. As
ormally stated later on in Theorem 1, indeed, this permits to
ecover globality, although it ruins ‘‘exactness’’ of convergence
f each estimate xi to M

⋆
, being it a consensual state. In these

erms, the signals hi play the same role of the dithering signals in
xtremum Seeking approaches (Ariyur & Krstić, 2003; Tan et al.,
006).

. Convergence results

.1. Main result

For ease of notation, we write the update laws (13) in the com-
act form (9). The following theorem – which is the main result
f the paper – relates the excitation properties of the signals hi
o the asymptotic convergence of the estimates xi produced by
he update laws (13) to M

⋆
. In particular, it shows that sufficiency

f excitation implies convergence (possibly exact) and uniformity
f excitation implies uniform convergence, but ruins exactness.
urther remarks and insights on the results given in the theorem
ollow thereafter in Section 4.2.

heorem 1. Under Assumptions Assumptions 1 and 2, consider the
pdate laws (13), in which ki satisfies (14). Suppose that, for a given
0 ∈ N, the family (hi)i∈N is sufficiently exciting from t0 in the sense
f Definition 5. Then, the following claims hold:

1. There exists t
⋆

= t
⋆
(t0) such that every solution x to (9)

starting at t0 satisfies

xti ≥ M
⋆
, ∀t ≥ t

⋆
(t0), ∀i ∈ N \ I

⋆

xti = M
⋆
, ∀t ≥ t

⋆
(t0), ∀i ∈ I

⋆
,

with I
⋆
given by (11).

2. For each ϵ > 0, there exists δ(ϵ) > 0 such that, if

lim sup
t→∞

ht
i ≤ δ(ϵ), ∀i ∈ N , (16)

then each solution x starting at t0 satisfies

lim
t→∞

|xti − M
⋆
| ≤ ϵ, ∀i ∈ N . (17)

In particular, the set

Aϵ :=

∏
i∈N

[
M
⋆
, min{M

⋆
+ ϵ, Mi}

]
is globally attractive for (9).

3. If the family (hi)i∈N is uniformly exciting in the sense of
Definition 6, then Aϵ is globally uniformly attractive.

4. If all the signals hi are non-zero and periodic (with possibly
different periods), then there exists a compact set Au

ϵ ⊂

Aϵ which is globally uniformly attractive and stable, hence,
globally uniformly asymptotically stable.

5. If

lim
t→∞

ht
i = 0, ∀i ∈ N

then, the set A, given by (10), is globally attractive for (9), i.e.

lim
t→∞

xti = M
⋆
, ∀i ∈ N .
e

6

For the reader’s convenience, the proof of Theorem 1 is post-
oned to Section 7.

.2. Remarks on the result

Claim 1 of Theorem 1 states that, if the family (hi)i∈N is
ufficiently exciting, then, in a finite time t

⋆
the estimates xi of

he agents i ∈ I
⋆
satisfying Mi = M

⋆
reach the target value M

⋆
,

hile all the other estimates xi of the remaining agents i ∈ N \ I
⋆

ecome larger than M
⋆
. The time t

⋆
is, however, a centralized

uantity which depends on the excitation properties of all the
ignals hi.
Claim 2 characterizes the asymptotic behavior of the remain-

ng agents, by stating that the update laws (13) are able to
rive the estimates xi arbitrarily close to M

⋆
, provided that the

mplitude of the signals ht
i is eventually reduced accordingly. As

he approximation Aϵ can be made arbitrarily tight, by acting on
he asymptotic bounds of hi accordingly, it turns out that this is a
lobal practical attractiveness result of the target set A (defined in

(10)). More precisely, let Γ be the set of all the families γ :=

(hi)i∈N of functions hi : N → R≥0, and consider a family of
systems of the form (8), with xt ∈ RN and fγ := (f iγ )i∈N satisfying

i
γ (t, x) := Π[µi,Mi]

⎡⎣eh
t
i xi + ki

∑
j∈[i]

(
xj − xi

)⎤⎦ . (18)

Then, the second claim of the theorem can be restated as follows.

Corollary 1. Under the assumptions of Theorem 1, the set A is
globally practically attractive for the family (18).

Claim 3 of the theorem further strengthen Corollary 1 to a
uniform global practical asymptotic stability property of A in
presence of uniformity of excitation. Moreover, in the relevant
case in which the signals hi are periodic, Claim 4 guarantees
the existence of a compact set included in Aϵ which is globally
uniformly asymptotically stable.

Finally, Claim 5 states that, if all the signals ht
i converge to

zero, then a global attractiveness result of the target set A holds
(i.e. xti → M

⋆
for all i ∈ N ). However, we observe that, if ht

i → 0
for some i ∈ N , then the family (hi)i∈N fails to be uniformly
exciting, and thus the convergence of the estimates xi to M

⋆

is not in general uniform in the initial time t0. This underlines
an important difference between sufficiency and uniformity of
excitation: sufficiency of excitation allows exact convergence, but
prevents uniformity in the initial time. Uniformity of excitation,
instead, guarantees uniform convergence and stability but frus-
trates exact convergence, guaranteeing only a weaker practical
result. This, in turn, reveals a somehow necessary compromise
between complexity, uniformity and convergence.

4.3. On the design of the signals hi

The signals hi are the only degrees of freedom left to be
chosen in the update laws (13). In this respect, Theorem 1 links
their amplitude and excitation properties to the corresponding
asymptotic behavior of the estimates xi, thus providing guidelines
for their design. Based on the claims of Theorem 1, in this section
we discuss some possible designs guaranteeing sufficiency or
uniformity of excitation.

4.3.1. Sufficiently exciting designs
Sufficiency of excitation of the family (hi)i∈N is guaranteed if
ach hi takes ‘‘enough’’ positive values. According to Definition 5,
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nd in particular to (15), how much is ‘‘enough’’ depends on
entralized quantities. In turn, a design of the signals hi based
n the knowledge of t0 and of the quantities appearing in (15)
s undesirable as inevitably centralized and not robust. A simple
ecentralized way to design a sufficiently exciting family (hi)i∈N
mounts to choose bounded signals hi satisfying∑
t∈N

ht
i = ∞, ∀i ∈ N . (19)

his, for instance, can be achieved by simply letting ht
i = ai/(1+t)

or some arbitrary ai > 0.

emma 2. Suppose that, for each i ∈ N , the signal hi is bounded
nd satisfies (19). Then, the family (hi)i∈N is sufficiently exciting in
he sense of Definition 5.

The proof of Lemma 2 follows directly from (19), hence it is
mitted.
In view of Claim 5 of Theorem 1, exact convergence of the

stimates xi to M
⋆
is obtained if limt→∞ ht

i = 0 for all i ∈ N .
oreover, convergence of hi to zero is implied by (although not
quivalent to) the following property∑
t∈N

(
ht
i

)2
< ∞. (20)

t is interesting to notice that Properties (19)–(20) are standard
ssumptions asked to the stepsize in classical stochastic approxi-
ation algorithms (Kushner & Yin, 1997; Robbins & Monro, 1951),
s well as in modern distributed optimization algorithms using
anishing step sizes (Nedic et al., 2010; Notarstefano et al., 2019;
imonetto & Jamali-Rad, 2016). In the context of this paper, these
wo conditions are simply sufficient conditions for sufficiency of
xcitation, which can be easily satisfied by decentralized designs
f the signals hi.

.3.2. Uniformly exciting designs
In view of Definition 6, if every signal hi is periodic, then

(hi)i∈N is uniformly exciting. While periodicity is not necessary
for uniformity of excitation, it certainly is a relevant design choice
due its simplicity and effectiveness. Possible decentralized design
choices for periodic signals hi leading to a uniformly exciting
family (hi)i∈N are listed below, where the quantities Ai, Ti, ρi > 0
are arbitrary. From the theoretical viewpoint, all the following
options are equally fine. Depending on the application domain,
however, some choices may be more convenient than others.

1. Constant signals: is the simplest design choice and consists
in choosing ht

i = Ai for all i ∈ N .
2. Rectified sinusoids: different versions can be defined, for in-

stance ht
i = Ai|sin(π t/Ti)| and hi = Ai max{0, sin(2π t/Ti)}

both have period Ti.
3. Square waves: with ρi ∈ (0, 1] playing the role of a duty

cycle, square waves have the form

ht
i = Aistep (mod(t, Ti) − (1 − ρi)(Ti)) (21)

in which mod(s) := s − max{n ∈ N | n(Ti + 1) ≤ s}, and
step(·) denotes the step function satisfying step(s) = 0 for
s < 0 and step(s) = 1 for s ≥ 0. The signal (21) has period
Ti and ht

i = Ai holds for ρiTi seconds each period.

5. Numerical simulations

In this section, we present two illustrative numerical simu-
lation scenarios. In Scenario 1, a network with a time-changing
topology (see Fig. 1) is considered while in Scenario 2, for a fixed
network topology, the use of different signals h is evaluated.
i

7

Fig. 1. Communication structure of Simulation 1: (a) [1] = {1, 3, 4}, [2] =

2, 3, 4}, [3] = {1, 2, 3}, [4] = {1, 2, 4}; (b) [1] = {1, 3, 4}, [2] = {2, 4},
3] = {1, 3, 5, 6}, [4] = {1, 2, 4, 5}, [5] = {3, 4, 5} and [6] = {3, 6}; (c)
1] = {1, 4}, [4] = {1, 4, 5, 6}, [5] = {4, 5} and [6] = {4, 6}.

.1. Scenario 1: Uniform convergence

The first simulation, shown in Fig. 2, is obtained as follows.
he simulation starts with a network of 4 agents (Agents 1, 2,
, and 4), provided with a communication structure shown in
ig. 1-(a) and with numbers (M1, M2, M3, M4) = (10, 12, 13,
3), implying M

⋆
= M1 = 10. The update laws (13) are imple-

ented with µi = 1/2 for all i ∈ {1, . . . , 4}, with (k1, k2, k3, k4)
(0.1, 0.08, 0.05, 0.09), and with the signals hi chosen as the

quare waves discussed in Section 4.3.2 with parameters (T1, A1,

1) = (15, 10−3, 0.2), (T2, A2, ρ2) = (10, 5 · 10−4, 0.5), (T3, A3, ρ3)
(5, 10−3, 0.3), (T4, A4, ρ4) = (10, 5 · 10−4, 0.5).
At time t = 500, two new agents (Agents 5 and 6) are added

o the network, and the communication structure is changed
o the one shown in Fig. 1-(b). The new agents have numbers
M5,M6) = (7, 11), lower bounds µ5 = µ6 = 1/2, coefficients
k5, k6) = (0.07, 0.1), and signals hi given by the square waves
presented in Section 4.3.2 with (T5, A5, ρ5) = (5, 10−3, 0.4) and
(T6, A6, ρ6) = (7, 25 · 10−4, 0.1). Furthermore, the numbers of
agents 1 and 3 are changed to (M1,M3) = (11, 13). The new
optimum is thus M

⋆
= M5 = 7.

At time t = 1500, Agents 2 and 3 leave the network, and
the communication structure is changed to that depicted in
Fig. 1-(c). Moreover, the numbers of the agents are changed to
(M1,M4,M5,M6) = (12, 16, 11, 16), leading to M

⋆
= M5 = 11.

Finally, at time t = 5000, the number of Agent 4 is changed
to M4 = 8, so as M

⋆
= M4 = 8.

As Fig. 2 shows, convergence to the (time-varying) optimum
M
⋆
is approximate, and the trajectories of the agents show resid-

ual oscillations. Fig. 2 also underlines that convergence to M
⋆

‘‘from below’’ (i.e. when the initial values of the agent are smaller
than M

⋆
) is slower than convergence ‘‘from above’’ (i.e. when the

initial values of the agent are larger than M
⋆
). As shown in the

analysis of Section 7, this is due to the fact that (i) the conver-
gence rate ‘‘from below’’, proved in Section 7.1, is determined by
the values of the signals ht

i , while (ii) the convergence rate ‘‘from
above’’, proved in Sections 7.2–7.3, is determined by the values
of the coefficients ki.

For the sake of comparison, Fig. 3 shows a simulation in which
the Max-Consensus (3) is employed in the same setting. As shown
in Fig. 3, although showing a faster convergence for the first two
changes of M

⋆
, the Max-Consensus fails in tracking the other

changes. As illustrated in Section 1.1, this is due to the fact that
it is not globally attractive.

5.2. Scenario 2: Non-uniform convergence

In the second scenario, we compare two simple networks
having the same data and communication structures, but dif-
ferent signals hi. The first network, N , includes Agents 1, 2, 3
and 4, and it is given the communication structure depicted in

Fig. 1(a). Initially, the agents are given numbers (M1,M2,M3,M4)
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Fig. 3. Evolution of the Max-Consensus estimates (update law (3)) in the setting
f Scenario 1 (cf. Fig. 2). In abscissa: iteration variable t .

(3, 6, 9, 15), so as M
⋆

= M1 = 3. At time t = 500, M1 is
changed to 15, so as M

⋆
= M2 = 6. At time t = 20 000, M2 is

changed to 15, so as M
⋆

= M3 = 9. At time t = 35 000, M3 is
changed to 12, so as M

⋆
= M3 = 12. Finally, at time t = 150 000,

M3 is changed to 15, so as M
⋆

= M1 = M2 = M3 = M4 =

15. The update laws are implemented with (k1, k2, k3, k4) =

(0.1, 0.08, 0.05, 0.09), µ1 = µ2 = µ3 = µ4 = 1/2, and
with a family (hi)i∈N1 of uniformly exciting signals defined as
square waves with parameters (T1, A1, ρ1) = (15, 10−3, 0.2),
(T2, A2, ρ2) = (10, 5 · 10−4, 0.5), (T3, A3, ρ3) = (5, 10−3, 0.3),
(T4, A4, ρ4) = (10, 5 · 10−4, 0.5).

The second network, N ′, includes Agents 1′, 2′, 3′ and 4′ and
has the same communication structure and data of N . The update
laws have the same parameters ki′ = ki and µi′ = µi, i ∈ N ,
except for the family (hi′ )i′∈N ′ which is given by ht

i′ = (1 + t)−1

for all i′ ∈ N ′. The signals hi′ satisfy (19)–(20) and, thus, (hi′ )i′∈N ′

is sufficiently exciting. However, it fails to be uniformly exciting.
The simulation shown in Fig. 4 compares the time behavior of
the update laws xi, i ∈ N and xi′ , i′ ∈ N ′. As shown in the
figure, each ‘‘step’’ of M

⋆
is followed by the estimates xi with the

same convergence rate. On the contrary, M
⋆ ′

= M
⋆
is followed

by the estimates xi′ with a convergence rate which degrades in
time. This is due to the fact that the family (hi)i∈N is uniformly
exciting, while the family (hi′ )i′∈N ′ is only sufficiently exciting.
Thus, uniformity of convergence is not guaranteed for the esti-
mates xi′ . Nevertheless, the zoomed part of the plot clearly shows
that the estimates xi′ reach M

⋆ ′
with higher precision (by Claim

5 of Theorem 1, indeed, since ht
i′ → 0 the convergence of the

estimates x ′ is asymptotic if M
⋆ ′

remains constant), whereas the
i

8

estimates xi exhibit a non-zero residual error. The above simula-
tions underline the necessary compromise, already mentioned in
different parts of the paper, and formally characterized by Claims
3 and 5 of Theorem 1, between exact convergence and uniformity
in time, which characterizes the proposed methodology.

Finally, Fig. 5 shows a simulation of the Max-Consensus (3)
in the same setting (cf. Fig. 4). Again, the Max-Consensus fails in
tracking the time-varying M

⋆
. To see why this is the case, consider

for instance the change of value of M1 at t = 500. This determines
an increment of M

⋆
, bringing the Max-Consensus algorithm in a

situation in which (4) holds at t0 = 500. Hence, as explained in
Section 1.1, x500 falls outside the domain of attraction of the new
M
⋆
, and thus convergence fails.

6. Concluding remarks

As detailed in the proof of the main result (Section 7) and
shown in the numerical simulations, the proposed solution is
characterized by a necessary compromise between convergence
rate and asymptotic error, as both are determined in the worst
case by the signals hi. In particular, if (hi)i∈N is uniformly exciting,
uniform convergence is guaranteed, but the estimates will have
a non-zero steady-state error. We stress that this residual error
can be reduced arbitrarily by reducing the maximum value of
the signals hi accordingly. But we also remark that, in general,
this results in a reduction of the convergence rate. Larger values
of the signals hi are associated instead with faster convergence
but lead to larger steady-state errors. Moreover, in the limit case
in which ht

i → 0 for all i ∈ N , asymptotic convergence is ob-
tained whenever (hi)i∈N is sufficiently exciting. The convergence
rate, however, is superlinear and not lower-bounded, and thus
uniformity is lost.

Clearly, ‘‘smart’’ choices of the signals hi are possible adapting
heir value at run time to increase them when fast convergence
s needed and decrease them when, instead, we desire a low
esidual error. ‘‘Adaptive’’ design choices of this kind will be the
ubject of future research.
We prove all the proposed solution properties under the as-

umption that the communication structure and the parame-
ers remain constant during the execution. Although uniform
lobal asymptotic stability already guarantees a good behavior
or ‘‘slowly varying’’ structures (also shown by the numerical
imulations), additional work is needed to extend the analysis
o handle time-varying networks with communication delays and
oise. This extension, in turn, calls for a stochastic framework in
hich the aleatory nature of those phenomena is fully captured
nd is the subject of future research.
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Fig. 4. Evolution of the estimates xi in Scenario 2. The trajectory of the optimal value M
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is shown in dashed gray line. Dark to light orange lines depict the trajectory

f the estimates xi , i = 1, . . . , 4 of the first network. Dark to light blue lines depict the trajectory of the estimates xi , i = 1′, . . . , 4′ of the second network. In abscissa:
iteration variable t . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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7. Proof of Theorem 1

7.1. Proof of Claim 1

In this subsection we prove Claim 1. In particular, we show
that if the family (hi)i∈N is sufficiently exciting from some t0 ∈ N,
then there exists t

⋆
= t

⋆
(t0) > t0 such that, for each i ∈ N ,

xti ≥ M
⋆
holds for all t ≥ t

⋆
and, for each i ∈ I

⋆
, xti = M

⋆
holds

for all t ≥ t
⋆
.

Define the function i : RN
→ N , x ↦→ i(x) := argmini∈N xi.

Then, xj ≥ xi(x) holds for all j ∈ N . Moreover, ht
i ≥ 0 and (14)

mply eh
t
i − card([i] \ i)ki ≥ 0 for all i ∈ N . Since Π[µi,Mi] is

increasing, we have

xt+1
i = Π[µi,Mi]

⎡⎣(ehti − card([i] \ i)ki
)
xti + ki

∑
j∈[i]\i

xtj

⎤⎦
≥ Π[µi,Mi]

[ (
eh

t
i − card([i] \ i)ki

)
xti(xt )

+ card([i] \ i)kixti(xt )

]
= Π[µi,Mi]

[
eh

t
i xti(xt )

]
= max

{
µi,min

{
eh

t
i xti(xt ), Mi

}}
≥ min

{
eh

t
i xti(xt ), Mi

}
≥ min

{
eh

t
i xti(xt ), M

⋆
}

(22)

for all t ≥ t0 and all i ∈ N .
First, notice that, if for some t̄ ∈ N, xt̄

i(xt̄ )
≥ M

⋆
, then (22)

mplies xt̄+1
i(xt̄+1)

≥ M
⋆
, so that by induction it is possible to

conclude that xti ≥ M
⋆
holds for all t ≥ t̄ . Namely, the claim

olds with t
⋆

= t̄ . It thus suffices to show that such t̄ exists. In
doing so, we proceed by contradiction. We first assume that

xti(xt ) < M
⋆
, ∀t ≥ t0. (23)

Then, we show that, if the signals hi are sufficiently exciting from
t0 (in the sense of Definition 5), then (23) leads to a contradiction,
in this way proving the claim.
9

Fig. 5. Evolution of the Max-Consensus estimates (update law (3)) in the setting
of Scenario 2 (cf. Fig. 4). In abscissa: iteration variable t .

Thus, assume that (23) holds. Then, since ht
i ≥ 0 for all i ∈ N ,

22) yields
t+s
i ≥ eh

t
i xti(xt ), ∀t ≥ t0, s ≥ 1. (24)

Suppose that the signals hi are sufficiently exciting from t0, for
some parameters h(t0) and ∆(t0). Then, for each i ∈ N , there
xists si ∈ {t0 + 1, . . . , t0 +∆(t0)}, such that hsi

i ≥ h(t0). In view
of (24), this yields

xt0+1+∆(t0)
i ≥ eh(t0) xt0+1

i(xt0+1)
, ∀i ∈ N ,

and thus, in particular,

xt0+1+∆(t0)

i
(
xt0+1+∆(t0)

) ≥ eh(t0) xt0+1
i(xt0+1)

.

In the same way, in view of sufficiency of excitation of the signals
hi, for each i ∈ N , there exists si ∈ {t0+1+∆(t0), . . . , t0+2∆(t0)},
such that hsi

i ≥ h(t0). Then, in view of (24), one has
t0+1+2∆(t0)

i
(
xt0+1+2∆(t0)

) ≥ eh(t0) xt0+1+∆(t0)

i
(
xt0+1+∆(t0)

) ≥ e2h(t0) xt0+1
i(xt0+1)

.

y repeating the same arguments, it is thus possible to conclude
hat, for each m ∈ N satisfying (15), one has
t0+1+m∆(t0)

i
(
xt0+1+m∆(t0)

) ≥ emh(t0) xt0+1
i(xt0+1)

≥ emh(t0)µ, (25)

in which we used the fact that, by definition ofΠ[µi,Mi], x
t
i ≥ µi ≥

µ for all i ∈ N and all t ≥ t + 1. Since the latter relation holds
0
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n particular for

⋆
(t0) =

1
h(t0)

log

(
M
⋆

µ

)
.

hen, with t̄ := t0 + 1 + m
⋆
(t0)∆(t0), from (25) we obtain

t̄
i ≥ xt̄

i(xt̄ )
≥ em

⋆
(t0)h(t0)µ = M

⋆
, ∀i ∈ N

which contradicts (23) and, thus, proves that xti ≥ M
⋆
holds for

all i ∈ N and all t ≥ t
⋆

:= t̄ .
Finally, for all i ∈ I

⋆
, we have xti ∈ [µ,Mi] ≤ M

⋆
for all

t ≥ t0 + 1 and this, together with the bound xti ≥ M
⋆
above,

implies xti = M
⋆
for all i ∈ I

⋆
and t ≥ t

⋆
.

7.2. Proof of Claim 2

Since by Claim 1 each xi satisfies xti ≥ M
⋆
for all t ≥ t

⋆
, then, in

view of Assumption 2, each xi also satisfies xti ≥ µi for all t ≥ t
⋆
.

This, in turn, allows us to write

xt+1
i = min

⎧⎨⎩Mi, eh
t
i xti + ki

∑
j∈[i]

(
xtj − xti

)⎫⎬⎭
for all i ∈ N and all t ≥ t

⋆
, which implies both

xti ≤ Mi (26)

and

xt+1
i ≤ eh

t
i xti + ki

∑
j∈[i]

(
xtj − xti

)
(27)

for all i ∈ N and all t ≥ t
⋆
. From (26) we also obtain

lim sup
t→∞

|xti | ≤ Mi < ∞, ∀i ∈ N . (28)

In the following we rely on the forthcoming lemma, whose proof
is postponed to Appendix B.

Lemma 3. With n ∈ N, let x, y : N → Rn. Suppose that y is
bounded and that, for some t0 ∈ N and some λ : N → R≥0 fulfilling
λt ≤ ν ∈ [0, 1) for all t ≥ t0, x and y satisfy

xt+1
≤ λtxt + yt (29)

for all t ≥ t0. Then

lim sup
t→∞

|xt | ≤
1

1 − lim supt→∞ λ
t lim sup

t→∞

|yt |. (30)

With I
⋆
defined in (11), let n

⋆
be the least integer such that

I
⋆
]
n
⋆

= N (which exists finite in view of Assumption 1). The
ase in which n

⋆
= 0 (i.e. I

⋆
= N ) directly follows from Claim 1.

ence, we consider n
⋆
> 0.

Assume that, for some m ∈ {0, . . . , n
⋆
− 1}, there exist αm ∈

[0, 1) and βm > 0 such that8

max
i∈[I⋆ ]mm−1

lim sup
t→∞

|xti | ≤ αm max
j∈[I⋆ ]m+1

m

lim sup
t→∞

|xtj | + βmM
⋆
. (31)

e will now prove that, if this is the case, then a similar property
olds also for m + 1.
First notice that, for each i ∈ [I

⋆
]
m+1
m , every j ∈ [i] belongs to

exactly one among the sets [I
⋆
]
m+2
m+1, [I

⋆
]
m+1
m , and [I

⋆
]
m
m−1. Hence,

8 Here we let [I
⋆
]
−1

:= ∅.
10
in view of (27), we can write

xt+1
i ≤

(
eh

t
i − ki card([i] \ i)

)
xti + ki

∑
j∈[i]∩[I⋆ ]m

xtj

+ ki
∑

j∈([i]\i)∩[I⋆ ]m+1
m

xtj + ki
∑

j∈[i]∩[I⋆ ]m+2
m+1

xtj
(32)

for all i ∈ [I
⋆
]
m+1
m and all t ≥ t

⋆
, in which we used the fact that

[i] ∩ [I
⋆
]
m
m−1 = [i] ∩ [I

⋆
]
m, for all i ∈ [I

⋆
]
m+1
m . If (14) holds, then

1 + ki card([i] \ i) > 1. With ν1 > 0 sufficiently small so that
log(1 + ki card([i] \ i)) − 2ν1 > 0, let

h̄i,1 := log(1 + ki card([i] \ i)) − 2ν1.

If lim supt→∞ ht
i ≤ h̄i,1 for all i ∈ N , then there exists T

⋆
> t

⋆

such that

ht
i ≤ h̄i,1 + ν1 = log(1 + ki card([i] \ i)) − ν1 (33)

for all t ≥ T
⋆
and all i ∈ N . Thus, (14) and (33) imply

0 ≤ eh
t
i − ki card([i] \ i) ≤ eh̄i,1+ν1 − ki card([i] \ i) < 1,

for all t ≥ T
⋆
and all i ∈ N , so that (28), (32) and Lemma 3 imply

lim sup
t→∞

|xti | ≤ γi
∑

j∈[i]∩[I⋆ ]m

lim sup
t→∞

|xtj |

+ γi
∑

j∈([i]\i)∩[I⋆ ]m+1
m

lim sup
t→∞

|xtj |

+ γi
∑

j∈[i]∩[I⋆ ]m+2
m+1

lim sup
t→∞

|xtj |

(34)

for all i ∈ [I
⋆
]
m+1
m , in which we let

γi :=
ki

1 − lim supt→∞

(
eh

t
i − ki card([i] \ i)

) (35)

hich exists finite in view of Lemma 3. In view of (31), Eq. (34)
mplies

lim sup
t→∞

|xti | ≤
(
ci,1αm + ci,2

)
max

j∈[I⋆ ]m+1
m

lim sup
t→∞

|xtj |

+ ci,3 max
j∈[I⋆ ]m+2

m+1

lim sup
t→∞

|xtj | + ci,1βmM
⋆
.

(36)

for all i ∈ [I
⋆
]
m+1
m , in which we let for convenience

ci,1 := γi card
(
[i] ∩ [I

⋆
]
m
)

ci,2 := γi card
(
([i] \ i) ∩ [I

⋆
]
m+1
m

)
ci,3 := γi card

(
[i] ∩ [I

⋆
]
m+2
m+1

)
.

(37)

With ν2 > 0 sufficiently small so that ki(1 − αm) − ν2 > 0 for all
i ∈ N (recall that αm < 1 by assumption), define

h̄i := min
{
h̄i,1, log

(
1 + ki(1 − αm) − ν2

)}
.

If

lim sup
t→∞

ht
i ≤ h̄i (38)

for all i ∈ [I
⋆
]
m+1
m , then, since card([i] ∩ [I

⋆
]
m) ≥ 1, it holds that

1 − elim supt→∞ hti ≥ 1 − eh̄i ≥ −ki(1 − αm) + ν2

≥ −ki(1 − αm) card([i] ∩ [I
⋆
]
m) + ν2

(39)
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or all i ∈ [I
⋆
]
m+1
m . Since for all i ∈ [I

⋆
]
m+1
m ,

card
(
([i] \ i) ∩ [I

⋆
]
m+1
m

)
= card ([i] \ i)− card

(
[i] ∩ [I

⋆
]
m
)

− card
(
[i] ∩ [I

⋆
]
m+2
m+1

)
≤ card ([i] \ i)− card

(
[i] ∩ [I

⋆
]
m
)
,

then, we conclude that

ci,1αm + ci,2

≤
ki(αm − 1) card

(
[i] ∩ [I

⋆
]
m
)
+ ki card ([i] \ i)

1 − eh̄i + ki card([i] \ i)

≤
(αm − 1)ki card

(
[i] ∩ [I

⋆
]
m
)
+ ki card([i] \ i)

(αm − 1)ki card
(
[i] ∩ [I⋆ ]m

)
+ ki card([i] \ i) + ν2

< 1.

(40)

or all i ∈ [I
⋆
]
m+1
m .

Now, since (36) holds for each i ∈ [I
⋆
]
m+1
m , it in particular holds

or ī satisfying

∈ argmax
i∈[I⋆ ]m+1

m

lim sup
t→∞

|xti |, (41)

o that (36) implies

max
i∈[I⋆ ]m+1

m

lim sup
t→∞

|xti | ≤ (cī,1αm + cī,2) max
i∈[I⋆ ]m+1

m

lim sup
t→∞

|xti |

+ cī,3 max
j∈[I⋆ ]m+2

m+1

lim sup
t→∞

|xtj | + cī,1βmM
⋆

hich, in view of (40), yields

max
i∈[I⋆ ]m+1

m

lim sup
t→∞

|xti | ≤ αm+1 max
j∈[I⋆ ]m+2

m+1

lim sup
t→∞

|xtj |

+ βm+1M
⋆

(42)

ith

αm+1 =
cī,3

1 −
(
cī,1αm + cī,2

) ,
βm+1 =

cī,1
1 −

(
cī,1αm + cī,2

)βm.

(43)

urthermore, since lim supt→∞ ht
i ≤ h̄i, in view of (39), αm+1

atisfies

m+1 ≤
kī card

(
[ī] ∩ [I

⋆
]
m+2
m+1

)
kī card([ī] \ ī) − kī card(([ī] \ ī) ∩ [I⋆ ]m+1) + ν2

≤
kī card

(
[ī] ∩ [I

⋆
]
m+2
m+1

)
kī card

(
[ī] ∩ [I⋆ ]m+2

m+1

)
+ ν2

< 1.

Therefore, we claim that if (31) holds for somem ∈ {0, . . . , n
⋆
−1}

with αm < 1 and βm ≥ 0, then (42) holds as well for m + 1 with
αm+1 < 1 and βm+1 ≥ 0 given above. Since by Claim 1, Eq. (31)
trivially holds for m = 0 with β0 = 1 and α0 = 0, then we claim
by induction that, if

lim sup
t→∞

ht
i ≤ h̄ := min

i∈N
h̄i, ∀i ∈ N , (44)

then Eq. (31) holds for each m ∈ {0, . . . , n
⋆
}.

Now, for m = n
⋆
, we have [I

⋆
]
m+1

\ [I
⋆
]
m

= ∅, so that (31)
yields

lim sup
t→∞

xti ≤ βn⋆M
⋆
, ∀i ∈ [I

⋆
]
n
⋆

n⋆−1
.

Thus, iterating (31) backwards and using (26) yield

lim sup xti ≤ min
{
Mi, (1 + εi)M

⋆
}

(45)

t→∞

11
in which

εi = 0, ∀i ∈ I
⋆

and

εi =

n
⋆
−m∑
ℓ=0

⎛⎝ n
⋆
−m∏

k=ℓ+1

αn⋆−k

⎞⎠βn⋆−ℓ − 1, (46)

for all i ∈ [I
⋆
]
m
m−1 and all m = 1, . . . , n

⋆
. Moreover, (46) directly

implies that the quantities εi also satisfy

max
i∈[I⋆ ]mm−1

εi = αm

(
1 + max

i∈[I⋆ ]m+1
m

εi

)
+ βm − 1 (47)

for all m = 1, . . . , n
⋆
. We now prove that εi in (45)–(46) can

be reduced arbitrarily by reducing lim supt→∞ ht
i accordingly for

each i ∈ N . For convenience, let

υi := lim sup
t→∞

ht
i ∈ [0, h̄i]. (48)

Then, the quantities γi, defined in (35), satisfy

γi(υi) =
ki

1 − eυi + ki card([i] \ i)
.

hus, γi is continuous in [0,∞), and

lim
i→0

γi(υi) =
1

card([i] \ i)
.

In view of the definitions (37), also the quantities αm and βm, as
efined in (43), depend on υī through γī, in which ī satisfies (41).

We now prove by induction that, by letting υ := (υ1, . . . , υN ), the
following holds

lim
υ→0

αm(υ) + βm(υ) = 1, ∀m = 0, . . . , n
⋆
. (49)

irst notice that (49) trivially holds for m = 0, as indeed αm = 0
nd βm = 1 despite the value of υ . It thus suffices to show that

if (49) holds for a given m ∈ {0, . . . , n
⋆

− 1}, then the same
relation holds as well for m + 1. For, assume that (49) holds for
a given m ∈ {0, . . . , n

⋆
− 1}. Then, we can write limυ→0 βm(υ) =

1−limυ→0 αm(υ). Thus, by letting for convenience ρ1 := card([ī]∩
[I
⋆
]
m), ρ2 := card(([ī] \ ī) ∩ ([I

⋆
]
m+1
m )), ρ3 := card([ī] ∩ ([I

⋆
]
m+2
m+1)),

nd noting that card([ī] \ ī) − ρ2 = ρ1 + ρ3, we obtain

lim
υ→0

αm+1(υ) + βm+1(υ)

=
ρ3 + (1 − limυ→0 αm(υ)) ρ1

card([ī] \ ī) − limυ→0 αm(υ)ρ1 − ρ2

=
ρ3 + (1 − limυ→0 αm(υ)) ρ1
ρ3 + (1 − limυ→0 αm(υ)) ρ1

= 1.

hus, by induction, we claim (49) for all m ∈ {0, . . . , n
⋆
}.

Since for every i ∈ [I
⋆
]
n
⋆

n⋆−1
, ci,3 = 0 (in fact [I

⋆
]
n
⋆
+1

n⋆
= ∅), then

αn⋆ = 0. Thus,

lim
υ→0

βn⋆ (υ) = 1.

In view of (46), this implies

lim
υ→0

max
i∈[I⋆ ]n

⋆
−1

n⋆

εi(υ) = 0.

In view of (47), limυ→0 maxi∈[I⋆ ]m+1
m

εi(υ) = 0 implies

lim
υ→0

max
i∈[I⋆ ]mm−1

εi(υ) = lim
υ→0

(αm(υ) + βm(υ)) − 1 = 0,

so that, by induction, we conclude that

lim
υ→0

max
⋆ m−1

εi(υ) = 0, ∀m ∈ {0, . . . , n
⋆
},
i∈[I ]m
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lim
υ→0

εi(υ) = 0, ∀i ∈ N . (50)

he latter equation thus implies that, given any ϵ ≥ 0, there exists
′(ϵ) ≥ 0 such that |υ| ≤ δ′(ϵ) implies M

⋆
εi ≤ ϵ for all i ∈ N .

herefore, if

lim sup
t→∞

ht
i ≤ δ(ϵ) := min

{
h̄,
δ′(ϵ)
N

}
, ∀i ∈ N (51)

then |υ| ≤ δ′(ϵ), which implies M
⋆
εi ≤ ϵ. In turn, in view of (45),

this implies

lim sup
t→∞

xti ≤ min
{
Mi, M

⋆
+ ϵ

}
. (52)

Claim 2 thus follows from (52) and by noticing that Claim 1
implies lim supt→∞ xi ≥ M

⋆
.

7.3. Proof of Claim 3

The third claim of the theorem, i.e., that uniformity of exci-
tation (in the sense of Definition 6) of (hi)i∈N implies uniform
attractiveness of Aϵ :=

∏
i∈N

[
M
⋆
, min{M

⋆
+ ϵ, Mi}

]
, directly

follows by the fact that, if the family (hi)i∈N is uniformly exciting,
then in the above analysis t

⋆
does not depend on t0 and, therefore,

the convergence (52) is uniform in the initial time.

7.4. Proof of Claim 4

In this subsection we prove the fourth claim of the theorem.
With (τi)i∈N ∈ NN arbitrary, let Fi ∈ Rτi×τi and Ci ∈ R1×τi denote
the matrices

Fi :=

[
0(τi−1)×1 I(τi−1)×(τi−1)

1 01×(τi−1)

]
, Ci :=

[
1 01×(τi−1)

]
.

Then, each τi-periodic signal hi satisfies

ξ t+1
i = Fiξ ti , ht

i = Ciξ
t
i (53)

for a suitable initial condition ξ t0i ∈ Rτi . Moreover, if all the
signals hi are non-zero, then, by Lemma 1, (hi)i∈N is uniformly
exciting in the sense of Definition 6 for some h > 0. For a fixed
> 0, let δ(ϵ) be defined as above in (51), and let

Ξi :=

{
ξi ∈ Rτi | ∀j ∈ {1, . . . , τi}, ξi,j ∈ [0, δ(ϵ)], and

∃j ∈ {1, . . . , τi}, ξi,j ≥ h
}
,

here ξi,j denotes the jth component of ξi. Then, Ξi is compact
nd invariant for (53). We now consider the interconnection
etween (53) and the update laws (13) for all i ∈ N , with the

dynamics restricted to the invariant set Z := Ξ × RN , being
:=

∏
i∈N Ξi. We compactly rewrite this interconnections as

ollows
t+1

= φ(zt ), zt ∈ Z (54)

ith φ suitably defined and zt := (ξ t , xt ) ∈ Rr
× RN , being

:= (ξi)i∈N and r :=
∑

i∈N τi. Clearly, for every solution xa to
13) starting at a given t0 ∈ N and subject to the signals (hi)i∈N ,
here is a solution zb = (ξb, xb) to (54) starting at 0 and such that
b(t) = xa(t0 + t) for all t ∈ N. For each compact K ⊂ Ξ × RN ,
et S(K ) denote the set of solutions to (54) starting at 0 from K
nd, for each t ∈ N, define the reachable set from K as Rt (K ) :=

(ξ s, xs) ∈ Ξ × RN
| (ξ, x) ∈ S(K ), s ≥ t

}
. In view of the above

analysis, and since Ξ is invariant for (54), it follows that Rt (K ) is
ncluded inΞ×RN and bounded uniformly in K and t for each t ≥

. Thus, the limit set Ω(K ) :=
⋂

t∈N Rt (K ) (where Rt (K ) denotes
the closure of Rt (K )) is compact, non-empty, and included in
12
Ξ × RN . Moreover, since φ is continuous by construction, then
Ω(K ) is also forward invariant, uniformly globally attractive for
(54) from K (see e.g. Goebel et al. (2012, Proposition 6.26)), and
it is the smallest set having the above properties. Furthermore, we
notice that, by definition of the update laws (13), xti ∈ [µi,Mi] for
all t ≥ t0 despite the value of the initial conditions and of t0, so
that we conclude that Ω(K1) = Ω(K2) for all K1, K2 supersets of
⋆

:=
∏

i∈N [µi,Mi]. In the following we let Ω := Ω(K
⋆
).

As (hi)i∈N is uniformly exciting, by Claim 3 the convergence
52) holds uniformly in the initial time. By the properties of Ω ,
his implies thatΩ ⊂ Ξ×Aϵ , and the projection Au

ϵ :=
{
x ∈ RN

|

ξ, x) ∈ Ω
}
satisfies Au

ϵ ⊂ Aϵ . Therefore, it remains to show that
u
ϵ is stable for x, i.e. that for each ℓ > 0, there exists b(ℓ) > 0,
uch that every solution to (54) satisfying dist

(
x0, Au

ϵ

)
≤ b(ℓ)

lso satisfies dist
(
xt , Au

ϵ

)
≤ ℓ for all t ∈ N. This, in turn, can be

roved by similar arguments of Goebel et al. (2012, Proposition
.5)). In particular, suppose that the above stability property does
ot hold, and fix an ℓ > 0 arbitrarily. If Au

ϵ is not stable, then for
ach m ∈ N there exist τm ∈ N and a solution zm = (ξm, xm) ∈

(Z) such that dist
(
x0m, Au

ϵ

)
≤ 2−m and dist

(
xτmm , Au

ϵ

)
> ℓ. This,

n turn implies

dist
(
zτmm , Ω

)
> ℓ. (55)

ince X0 := {x ∈ RN
| dist

(
x, Au

ϵ

)
≤ 1} is compact, Z0 :=

Ξ × X0 is compact. Thus, since z0m ∈ Z0 for all m ∈ N, by
uniform attractiveness of Ω , there exists τ̄ = τ̄ (ℓ) ∈ N such that
τm ≤ τ̄ for all m ∈ N. We are thus given a sequence (zm|≤τ̄ )m∈N
of uniformly bounded signals zm|≤τ̄ , obtained by restricting the
solutions zm to {0, . . . , τ̄ }, which satisfies limm→∞ dist

(
z0m, Ω

)
=

. As φ is continuous, Z is closed, and sinceΩ is forward invariant,
hen in view of Goebel et al. (2012, Theorem 6.8) we can extract
subsequence of (zm|≤τ̄ )m∈N (which we do not re-index) that

atisfies limm→∞ dist
(
ztm, Ω

)
= 0 for all t ∈ {0, . . . , τ̄ }. This,

owever, contradicts (55) and proves the claim.

.5. Proof of Claim 5

The last claim of the theorem, i.e. that if (hi)i∈N is suffi-
iently exciting according to Definition 5 and limt→∞ ht

i = 0,
hen limt→∞ xti = M

⋆
for all i ∈ N , follows directly from

48)–(50). ■

ppendix A. Proof of Lemma 1

For each i ∈ N , let Ti ∈ N≥1 be the period of hi and, with t
⋆

i

nd h
⋆

i > 0 such that h
t
⋆

i
i ≥ h

⋆

i , let

i := t
⋆

i − Ti max{n ∈ N | Tin ≤ t
⋆

i }.

hen ri ∈ {0, . . . , Ti} and, since hi is Ti-periodic, for every i ∈ N
e have
ri+nTi
i ≥ h

⋆

i ∀n ∈ N. (A.1)

et ∆ := maxi∈N Ti + 1 and h := mini∈N h
⋆

i . Fix arbitrarily
∈ N≥1 and t0 ∈ N. Then we claim that, for each i ∈ N , there

xists ni ∈ N such that

i := ri + niTi ∈

{
t0 + 1 + (m − 1)∆, . . . , t0 + m∆

}
.

n fact, if this is not true, there exist m, t0, n ∈ N and i ∈ N such
hat ri + nTi < t0 + 1 + (m − 1)∆ and ri + (n + 1)Ti > t0 + m∆
hold. This, however, implies

∆ = (1 − m)∆+ m∆ < (1 − m)∆+ ri + (n + 1)Ti − t0
< Ti + 1,
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hich contradicts the fact that, by definition, ∆ ≥ Ti + 1 for all
∈ N . Since (A.1) implies that hsi

i ≥ h for all i ∈ N , then we
laim that, for every t0 ∈ N, m ∈ N≥1 (and thus, in particular,
or those satisfying m ≤ log(M

⋆
/µ)/h) and i ∈ N , there exists

si ∈ {t0 + 1 + (m − 1)∆, . . . , t0 + m∆} such that hsi
i ≥ h, which

roves the claim. ■

ppendix B. Proof of Lemma 3

As ν ∈ [0, 1), then for each ϵ ∈ (0, 1 − ν) there exists t
⋆

1 ≥ t0
uch that

t−t0xt0 ≤ ϵ, |yt | ≤ lim sup
t→∞

|yt | + ϵ, λt ≤ lim sup
t→∞

λt + ϵ

or all t ≥ t
⋆

1 . As λ
t

≤ ν < 1 for all t ≥ t0, by iterating (29), for
> t

⋆

1 , we obtain

|xt | ≤

(
t−1∏
s=t0

λs

)
|xt0 | +

t−1∑
s=t0

(
t−1∏
ℓ=s+1

λℓ

)
|ys|

≤ νt−t0 |xt0 | +

t
⋆

1 −1∑
s=t0

(
t−1∏
ℓ=s+1

λℓ

)
|ys| +

t−1∑
s=t

⋆

1

(
t−1∏
ℓ=s+1

λℓ

)
|ys|

≤ ϵ +

t
⋆

1 −1∑
s=t0

νt−s−1
|ys| +

t−1∑
s=t

⋆

1

(
t−1∏
ℓ=s+1

λℓ

)
|ys|.

(B.1)

As y is bounded, there exists c such that |yt | ≤ c for all t ∈ N.
Hence, the second term of the sum satisfies

t
⋆

1 −1∑
s=t0

νt−s−1ys = νt−t
⋆

1

t
⋆

1 −1∑
s=t0

νt
⋆

1 −s−1ys ≤ νt−t
⋆

1
c

1 − ν
.

Therefore, there exists t
⋆

2 ≥ t
⋆

1 such that

t
⋆

1 −1∑
s=t0

νt−s−1ys ≤ ϵ, ∀t ≥ t
⋆

2 .

Denote for convenience ȳ := lim supt→∞ |yt | and λ̄ :=

im supt→∞ λ
t . As λt ≤ ν for all t ≥ t0, then λ̄ ≤ ν. As ϵ < 1 − ν

y assumptions, then λ̄+ ϵ < 1. Therefore, since t ≥ t
⋆

1 , then the
ast term of (B.1) satisfies

t−1∑
s=t

⋆

1

(
t−1∏
ℓ=s+1

λℓ

)
|ys| ≤

t−1∑
s=t

⋆

1

(
λ̄+ ϵ

)t−s−1(ȳ + ϵ
)

≤
ϵ

1 − ν
+

ȳ
1 − (λ̄+ ϵ)

≤
ȳ

1 − λ̄
+

ϵ

1 − ν
+

ȳ
1 − (λ̄+ ϵ)

−
ȳ

1 − λ̄

≤
ȳ

1 − λ̄
+ ȳp(ϵ)

(B.2)

in which p : [0, 1 − ν) → R, defined as

p(ϵ) :=
ϵ

1 − ν
+

ϵ

(1 − λ̄)(1 − λ̄− ϵ)
,

s continuous and satisfies limϵ→0 p(ϵ) = 0. From (B.1) we get
xt | ≤ ȳ/(1 − λ̄) + 2ϵ + ȳp(ϵ) for all t ≥ t

⋆

2 , and the claim follows
y arbitrariness of ϵ. ■
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