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Abstract 

Rheumatic heart disease (RHD) is a complication of group A streptococcal infection 

that results from a complex interaction between the genetic make-up of the host, the 

infection itself, and several other environmental factors largely reflecting poverty. It is 

estimated that RHD affects 33.4 million people and results in 10.5 million disability-

adjusted life-years lost globally. The disease has long been considered heritable but 

still little is known about the host genetic factors that increase or reduce the risk of 

developing RHD. Since the 1980s, there have been several reports linking the 

disease to the human leukocyte antigen (HLA) locus on chromosome 6 followed by, 

since the 2000s, reports implicating selected candidate regions elsewhere in the 

genome. More recently, the search for susceptibility loci has been reinvigorated 

through the use of genome-wide association studies (GWAS) through which millions 

of variants can to be tested for association in thousands of individuals. Early findings 

implicate not just HLA, particularly the HLA-DQA1 to HLA-DQB1 region, but also the 

immunoglobulin heavy chain locus, including the IGHV4-61 gene segment, on 

chromosome 14. In this review, we assess the emerging role of GWAS in RHD 

outlining both the upsides and downsides of this approach. We also highlight the 

potential use of large-scale publicly available data and the value of international 

collaboration to enable large-scale studies to produce findings that have ramification 

for clinical practice.  



Introduction 

Streptococcus pyogenes also known as group A streptococcus (GAS) is believed to 

be the critical first step in the development of rheumatic fever (RF) and rheumatic 

heart disease (RHD)1 with pharyngitis considered the dominant trigger of RF in most 

regions of the world.2  Streptococcus pyogenes is also known to be responsible for 

several other diseases confined to humans3 including superficial infections such as 

pyoderma, toxin-mediated diseases such as scarlet fever, invasive infections which 

include necrotising fasciitis as well as other post-streptococcal complications such as 

glomerulonephritis.4  

 

Rheumatic heart disease remains a public health priority in low- and middle-income 

countries, despite being nearly eliminated from high-income countries.5-10 In 2005, it 

was estimated that approximately 471,000 cases of RF occur each year, of which 

336,000 were children between 5 and 14 years of age.11 Current global estimates 

suggest that in 2015 there were 33,194,900 patients living with RHD in endemic 

countries, while there were only 221,600 affected in non-endemic countries.12 The 

total disability-adjusted life-years (DALYs) lost to RHD globally in the same year was 

estimated at 10.5 million globally.12 The highest age-standardised mortality due to 

RHD occurs in Oceania, South Asia, and central sub-Saharan Africa.12 Estimated 

RHD prevalence in low- and middle-income countries range from 2.7 cases per 1000 

population of clinically apparent RHD to 51 cases per 1000 of clinically silent RHD.12-

15 

 

The role of the genetic susceptibility in developing RF and RHD has been highlighted 

in familial studies as well as in the observation of different clinical outcomes following 



GAS infections.16,17 The unexplained susceptibility to RHD among certain individuals 

in the population suggests genetic contribution to the condition.18 In this review, we 

assess the emerging role of genome-wide association studies (GWAS) in RHD 

outlining both the advantages and disadvantages of this approach. We also highlight 

the potential use of large-scale publicly available datasets and the opportunity for 

large-scale collaborative studies which are substantially more likely to produce 

findings that have ramification for clinical practice. 

 

Non-genetic factors 

A combination of risk factors can influence susceptibility to GAS, RF and ultimately 

RHD (FIG. 1). Group A streptococcal infections, such as streptococcal pharyngitis, 

the socio-economic status of the patient and community, access to primary health 

care, and genetic susceptibility likely interact to define the  risk of developing 

RHD.1,17,19 

 

Individuals who are exposed to GAS infections and go on to develop RF are at risk 

of developing RHD.19 RHD is among a few autoimmune diseases in which the 

aetiopathogenic agent is known.1,20,21 Regions of the globe with high streptococcal 

infections are also known to have the highest prevalence of RHD.11 In diseases such 

as streptococcal pharyngitis, which is believed to be the primary trigger of RHD, it is 

estimated that 0.1 - 5% cases proceed to RF a few weeks following infection22, while 

GAS skin infection has also been implicated to trigger RF development.23 Estimates 

suggests that up to 60% of individuals with RF will proceed to develop RHD.11 

 



Genetic susceptibility 

Estimates of heritability 

Family-based studies offer an important starting point in genetic epidemiology 

through which the genetic determinants of a trait of interest can be assessed.24 

Familial aggregation can be defined as the occurrence of a disorder at a higher 

frequency in relatives of affected persons than in the general population, whether for 

genetic or environmental reasons or both.25 If established, familial aggregation may 

indicate genetic inheritance, aggregation of risk factors or gene-environment 

interaction related to the disease.26,27  

 

Earlier studies describing RF and RHD recognise the frequent occurrence of multiple 

cases in the same household or family.28,29 As early as 1889, Cheadle noted that the 

risk of RF in an individual with a family history of the disease was nearly five times 

greater than that of an individual who has no family history.16 The relative risk of 

developing RHD in children raised separately from their parents who had RHD has 

been estimated at 2.93 compared to children whose parents did not have a history of 

RHD.30 

 

Twin studies present an important opportunity to study heritability in presence of 

suspected genetic influence in a context where exposure to the environment is 

generally the same. Accordingly, there is greater concordance amongst monozygotic 

twins compared with dizygotic twins in traits which genetics play a substantive role.31 

In RHD, a pooled analysis of twin studies found monozygotic twins of index cases at 

six-fold greater risk than dizygotic twins, with heritability estimated at 60%.17  

 



Collectively, familial and twin studies suggest a significant contribution of host 

genetics to RHD although it is important to note the pattern of inheritance in RHD 

does not follow that of a single gene Mendelian condition.16,17  

 

Candidate gene studies 

Since the 1980s, several investigators linked specific human leukocyte antigen 

(HLA) markers to susceptibility to RF and RHD. Initially this was based on 

serological typing using the two-stage microcytotoxicity method.32 Later, with the 

inception of molecular methods, this approach was superseded by methods based 

on sequence specific primers.32 From the 1990s onwards, the molecular methods 

became the preferred HLA typing method.  

 

HLA genes are found within the major histocompatibility complex on chromosome 6, 

a complex region of the genome containing ~260 genes and spanning ~4Mb.33 The 

role of the HLA molecules themselves is to bind peptides and present them to 

receptors on T cells but the locus also contains numerous other immune genes with 

a variety of functions. Importantly, the locus is subdivided into three regions termed: 

the class I region containing three highly variable classical class I genes (i.e. HLA-A, 

HLA-B, HLA-C); the class II region containing the classical class II genes (i.e. HLA-

DR, HLA-DQ, HLA-DP) as well as several genes involved in antigen processing; and 

the class III region which is the most gene-dense region of the human genome 

containing number of non-immune and immune genes including those encoding TNF 

and several components of the complement cascade.33 The nomenclature of the 

HLA locus is complex although the designation of alleles has been standardised 

such that an allele is designated by the name of locus followed by an asterisk (e.g. 



DQA1*) followed by numbers referring to the allele itself (e.g. DQA1*01:03). HLA 

polymorphisms linked to RF and RHD in the candidate gene era have been reviewed 

previously and are not discussed further.  

 

Since the 2000s, several studies have reported associations with variants in selected 

genes known as candidates (FIG. 2). Selection of such genes and variants is based 

on prior knowledge of the gene function. It is also vital to appreciate that even for 

diseases with a substantially better starting point such as malaria the reappraisal of 

candidate gene studies in large sample sizes has been very disappointing.34  

 

Regrettably, the majority of RHD genetic studies have been undertaken in very small 

sample sizes (typically ~100 cases). Moreover, because the analysis is based on 

single or small numbers of variants, there is very limited scope for quality control and 

the analyses are liable to bias due to population structure (See Box 1). 

 

Nonetheless, a recent RF and RHD systematic review comprehensively reviewed 

the candidate gene literature using the HuGENetTM 35,36 approach including a total of 

54 studies. The authors identified nine variants for which sufficient data were 

available to pool the association statistics in a meta-analysis. Of these nine loci, two 

(TGF-β1 [rs1800469], and IL-1β [rs2853550] SNPs) were associated with 

susceptibility to RHD using a random-effects model based on p-values less than 

0.05. Notably the association statistics for most of these variants showed a high 

degree of heterogeneity. The limitation of some candidate gene studies, is that in 

most cases the study will not have genotyped the putative causal variant but rather a 

variant that tags underlying causal variant. Consequently, because the linkage 



disequilibrium structure of the genome differs from population to population, a 

genetic marker that tags an underlying causative variant in one population (e.g. 

Europeans) may often not do so in a second population (e.g. Africans).37 

 

 
 

Genome-wide association studies 

For over a decade genome-wide association studies (GWAS) have been widely and 

successfully used to study a range of human traits.38,39 While there have been 

criticisms and limitations, there is a strong consensus that GWAS provide the best 

approach currently available to study complex disease.39  These studies aim to 

implicate genomic loci in pathogenesis by comparing the distribution of genotypes in 

cases and controls at a sufficient number of common single nucleotide 

polymorphism (SNP) markers to tag most common variants across the genome. 

They are thereby dependent on the highly structured nature of the human genome 

relying on identifying variants in linkage disequilibrium with an underlying causal 

variant involved in pathogenesis (FIG. 3). While coding variants that change amino 

acid sequence may be implicated, a key theme in the GWAS literature is the 

dominant role of non-coding regulatory variation.40 Moreover, defining the 

downstream functional effects of such non-coding variants remains difficult and is 

Box 1: Limitations of Candidate Gene studies for RHD 

1. Limited literature from which to select candidates 

2. Variable case definitions with inclusion of both RF and RHD 

3. Variable use of and limited reporting of genotyping approaches 

4. Limited reporting of laboratory quality control procedures 

5. No or limited scope for quality control of genotype data  

6. No scope for control of population structure 

 



highly dependent on publicly available databases of regulatory annotations and gene 

expression patterns.41 Most of the publicly available functional data have been 

derived in populations of European ancestry while RHD is predominantly found in 

other ancestral groups which limits the utility of such information to studies of RHD.  

 

Why use a GWAS approach? 

While GWAS have been employed to study a very wide range of human traits, the 

first few years of GWAS discovery were most successful for diseases of autoimmune 

aetiology.42,43 They have also been successful in the study of a number of infectious 

diseases including leprosy which is likely to have a significant inflammatory 

component.44 Interestingly, variants predisposing to autoimmunity may be 

maintained in the population if they are under positive selection, reducing, for 

example, the risk of infection.45 Indeed, infectious pathogens are amongst the 

strongest agents of natural selection and thus is it is notable that the bacterial trigger 

of RHD, GAS, is associated with dangerous invasive infections.46  

 

However, the majority of GWAS including those for autoimmune diseases have been 

undertaken in Europe and the USA where there were pre-existing large-scale 

collections of genetic material from suitable cases and controls. In contrast, for RHD, 

it has been necessary to generate these collections as a first step before preceding 

to genetic analysis. This included collaborative ventures such as the RHDGen 

Network which were based on previous studies including the REMEDY Consortium47 

that made it feasible for the first time to obtain sufficient numbers of samples for 

genetic research.  

 



How is a GWAS designed? 

Disease-focused GWAS uses a case-control study approach comparing the 

frequency of genetic variants in cases of a disease to controls without the disease. 

Like all epidemiological studies, therefore, investigators choose a suitable case 

definition that strikes the right balance between sensitivity (i.e. allows recruitment of 

sufficient numbers) and specificity (i.e. is sufficiently precise such that most if not all 

cases are truly have the disease) (Box 2). For RHD, the publication of the WHF 

echocardiographic criteria was crucial because it provided a standard definition for 

RHD that could be used across studies.48  

 



Box 2: Key stages in a genome-wide association study 
GWAS steps Description   
Recruitment49 Phenotyping • Health data pertaining to the phenotype of interest are 

compiled for cases and controls.  
• Where feasible standard diagnostic criteria should be 

employed to facilitate comparison of the results with 
other studies as well as collaborative meta-analysis. 

 DNA quality • Standard checks of DNA quality including quantification 
are done so that poor quality samples can be excluded. 

Quality control50,51 Sample and variant 
quality control 

• Genotyping efficiency and marker quality need to be 
assessed to avoid aberrant genotype calling.  

• Samples and variants with low genotyping performance 
should be excluded (e.g. less than 98-99%) . 

 Sex checks  • Inconsistency between the phenotypic sex and the 
genotypic sex typically indicates sample handling or data 
entry errors so generally such samples are removed.  

 Minor allele 
frequency (MAF) 
and Hardy-
Weinberg 
Equilibrium (HWE) 

• Statistical power at low frequency or rare variants (e.g. 
MAF < 0.05) will be limited and so these are best 
removed from the analysis. 

• Extreme HWE deviation is usually indicative of 
genotyping errors and so variants which this is apparent 
are generally removed. Since more moderate deviation 
be apparent in disease-associated loci assessments of 
HWE are often limited to controls.  

 Ancestry and 
cryptic relatedness  

• Information on ancestral background of study the 
participants is essential to understand the underlying 
structure of the study population.  Typically individuals 
with outlying ancestry are removed from the analysis. 

• Confounding can also result from including related 
individuals in the analysis (e.g. second-degree or closer). 
Therefore one individual from each related pair is also 
removed from the analysis.one of each pair of related 
individuals. 

• Alternatively analytical approaches such as linear mixed 
models can be used to adjust for ancestry and 
relatedness at the analytical stage. 

Imputation52  Genotype 
imputation 

• The number of genotyped markers available for analysis 
can be increased using imputation which enables 
inference of variants that have not been genotyped from 
the genotyping data (See Fig. 6). ensure imputation 
quality. 

Analysis49,50,53 Association 
analysis 

• Association analyses are conducted by comparing the 
minor allele frequency at each variant in cases with that 
in controls.  

• Approaches such as logistic regression are used to 
calculate an effect size estimate, standard error and p-
value at each variant.  

• To interpret the results analysts generally examine the 
p-values but because so many tests are performed 
stringent thresholds are used to declare statistical 
significance (e.g. genome-wide significance  p<5x10-8)  

 Post-GWAS 
analysis 

• Subsequently computational tools can be used to 
interrogate associated variants with a view to explaining 
the link to the phenotype of interest.  



 

Typically patients with RHD have been selected from existing cohorts or registries. 

Two GWAS of susceptibility to RHD have been published to date, the first set in the 

Pacific region and the second set in Australia.54,55 The results of both studies are 

discussed in detail below under “What has been found so far?”. Both the 

investigators relied on the results of previous echocardiography with the Pacific 

study reported by Parks et al.54 adding an additional criteria based on the area of the 

mitral valve (MV area < 2.0 cm2) to increase ascertainment of cases of mitral 

stenosis since this parameter was more frequently recorded in clinical records than 

the mean gradient. Additionally with the aim of increasing ascertainment of severe 

cases that study included patients who were documented to have undergone valve 

surgery for RHD irrespective of the findings at echocardiography. This approach is 

most relevant to low resource settings where RHD is endemic in which clinical record 

keeping may be less thorough than in settings where more complete records 

including electronic systems are available.  

 

Another issue to consider whether to include ARF cases. In the Australian study 

reported by Gray et al.55 cases of RF were included if associated with carditis based 

on the updated 2015 Jones Criteria. In contrast the Pacific study used a slightly 

different approach including individuals aged less than 20 years with a history of RF 

providing they had a minimum of WHF borderline changes on their 

echocardiogram.54  The original protocol had restricted this to cases of RF 

diagnosed using the Jones Criteria but this proved impractical as the RF had 

typically occurred during at an earlier date often at a different facility and 

documentation was usually scanty. Overall the majority of patients recruited to these 



studies had confirmed RHD rather than RF but it is noteworthy that there may be 

less precision in the diagnosis of RF in some settings. In addition there may be albeit 

subtle differences in the genetic architecture of RF and RHD whereby some risk 

variants confer risk of an acute febrile inflammatory process while others lead to 

indolent chronic inflammatory that does not necessarily manifest clinically as RF.  

 

While there are likely to be ongoing discussions about exactly who should and 

should not be included in genetic studies of RHD, we would advocate the use of a 

set of standard criteria in order that the case definition is consistent for future 

collaborative meta-analysis (Box 3).  

 

 
 

Selection of healthy controls 

One further interesting consideration is how to select controls and different 

investigators have used different approaches. One option is to follow the approach of 

the Wellcome Trust Case Control Consortium and use controls from the general 

population with relatively phenotypic information available.56 The proponents of this 

approach argue that power is increased because it becomes feasible to include 

larger numbers of individuals often by including samples collected during earlier 

studies. The loss of precision attributable to including a small number of individuals 

with RHD amongst the controls can theoretically be remedied by increasing the total 

Box 3: Recommended inclusion criteria for RHD cases for GWAS 

1. RHD based on surgical findings 

2. RHD based on MS with MV area < 2.0 cm2 

3. RHD based on MS with mean gradient ≥ 4 mmHg 

4. Other “Definite RHD” based on WHF echocardiographic criteria  



size of the study.57 Moreover, if the cases and controls are unbalanced in terms of 

genetic ancestry or included related individuals, this can typically be addressed at 

the analytical stage using approaches that specifically account for population 

structure and cryptic relatedness (see below).  

 

Alternatively, if resources allow, a study can be undertaken that more closely 

resembles that of a case-control study used by epidemiologists to assess non-

genetic risk factors for disease. This may include not only performing 

echocardiography to confirm the absence of RHD in the controls but also 

documenting extensive additional information regarding non-genetic risk factors. 

Such a strategy, particularly if it includes echocardiography, does make recruitment 

more costly, but it does provide a much richer dataset, which could also potentially 

be used for secondary studies including investigation of the genetic determinants of 

key echocardiographic features. Also this strategy might allow exploration of gene-

environment interactions or indeed the potential validation of environmental risk 

factors (e.g. overcrowding) through approaches such as Mendelian randomisation 

although both analyses remain dependent on large sample sizes. That said, even at 

a smaller scale, such richer datasets including at least some echocardiographic data 

from controls can be helpful for sensitivity analyses to validation the finding of the 

primary association analysis. For example, in a subset of samples, the Pacific study, 

the results of which are discussed below, identified a clear relationship between 

diagnostic certainty and effect size of the risk variant, which added further supporting 

to their findings (FIG. 4).54  

 

Sample size considerations 



Fundamental to GWAS is sufficient sample size to allow adequate power to detect 

signals despite the stringent statistical thresholds (i.e. very small p-values) needed to 

avoid the problems of multiple testing (FIG. 5). A typical starting point might be 1000 

cases and 1000 controls but with this size study only signals power remains limited 

for all but very large effects (i.e. odds ratio > 1.3) and the more common variants (i.e. 

minor allele frequency > 0.2). Thus studies undertaken in very small numbers 

provide very little information.  

 

 

How is the analysis performed? 

Analysis of GWAS has been reviewed elsewhere and is a specialist subject in its 

own right.51 Fundamental to the process is rigorous quality control which gets the 

investigator to a clean dataset for analysis.58 This process is absolutely mandatory 

given the scale of these datasets involving millions of points of data because without 

it spurious findings will emerge due to chance alone.   

 

One valuable approach that is now widely used is imputation which involves 

statistical estimation of variants that fall between those assayed on the genotyping 

array (FIG. 6). This can dramatically increase the number of variants available for 

analysis with little or no additional cost.  A dilemma for RHD is that the reference 

data required for imputation are often not available for the populations where RHD is 

endemic. For example, the Pacific study had to produce these data using whole 

genome sequencing from a subset of individuals but found this process increased 

accuracy by 5% in the Oceanian populations.54  

 



One of the key challenges in genetic association studies is overcoming the effect of 

population structure (see Box 1). This can substantially bias the results due to 

differences in the ancestry of cases and controls. However, remarkable process has 

been made in analytical approaches that overcome this issue. In particular, 

investigators are increasingly using a statistical approach called linear mixed models 

which explicitly control for ancestry and relatedness by including a random effect 

parameter in the regression model.50 This is particular relevance to the populations 

in which RHD is endemic because typically there is more substantial population 

structure reflecting the natural divisions in the population due to factors such as 

geography, ethnicity or religions.  

 

The downsides of GWAS 

Crucially GWAS remain expensive and there is a certainly a debate to be had about 

the merits of spending $100,000s on genetic research for a disease of impoverished 

and marginalised communities. While costs have fallen dramatically most genotyping 

arrays cost upwards of $30 per sample before any costs for recruitment, sample 

processing, analysis etc. That said, research on RHD genetics has and may 

continue to attract large amounts of funding from sources that have not historically 

been involved in funding RHD research (e.g. Wellcome Trust, British Heart 

Foundation) as well as helping to raise the profile of the disease bringing it to the 

attention of a wider audience.  

 

Additionally, the majority of communities in which RHD is endemic will have had little 

prior exposure to genetic research. While undoubtedly there is a need careful to 

ensure sufficient understanding in any context, careful consideration needs to be 



given to the way in which the study is explained such an informed decision can be 

reached. In certain settings it may be prudent to undertake prior to engage and 

consent the wider community, develop culturally appropriate consent materials, and 

establish an appropriate governance structure, as exemplified by the RHDAustralia 

consortium.55 Ultimately, in certain contexts, genetics research remains a highly 

controversial issue, especially in minority indigenous populations.  

 

Finally, there remain relatively few examples when genetic research for neglected or 

infectious diseases has brought knowledge that can be translated into clinical 

advances such as vaccines or drug therapy. That said this is unlikely to be achieved 

in RHD until substantially larger numbers of sample sizes become available through 

large-scale collaborative meta-analyses.  

 

What about existing datasets?  

One emerging possibility for the study of RHD genetics is the use of existing large 

datasets including those compiled for other purposes. One key example of this was a 

study undertaken by 23&Me, a direct-to-consumer genetics company. In a study of 

the genetic determinants of several common childhood infectious diseases, the 

investigators used data from 1,115 individuals who reported a history of RF and 

88,076 controls drawn from more than 200,000 individuals who have paid for 23&Me 

services.59 No signals were identified at genome-wide significance with the top signal 

genome-wide found at a variant on chromosome 4 in an intron of SLIT2 (p=2x10-7), a 

gene with no obvious link to an autoimmune disease process. The top HLA signal in 

was located in the class I region at HLA-C*16:02 (p=7x10-4) while there was only a 

weak signal in class II at HLA-DQB1*03:03 (p=0.02). While the overall approach is 



perhaps valid given the investigators found several strong signals for relevant genes 

across the other diseases studied there are undoubtedly limitations. Of particular 

relevance is the accuracy of the history of RF especially given in all but the most 

elderly users of 23&Me would undoubtedly be at very low risk of RHD. Moreover, 

despite its scale, the study does not actually involve a formal replication, and may be 

at risk of confounding due to residual population structure and relatedness.  

 

However, other large-scale publicly available datasets are increasingly becoming 

available, which potentially allow for study of RHD. This includes the UK Biobank 

dataset which is a study of 500,000 individuals from the UK coupled with very 

extensive phenotypic and genotypic data.60 Investigators have therefore begun 

selecting groups of individuals from UK Biobank in whom it is reasonable to presume 

a diagnosis of RHD with some certainty (e.g. ICD-10 codes for rheumatic mitral 

stenosis). Moreover, the rich dataset allows selection of controls matched for a range 

of factors including age, locality, genetic ancestry, as well as factors known to be 

associated with RHD such as deprivation indices.  

 

These data are not a substitute for carefully assembled prospective collections, not 

least because it is highly likely that many of the ICD-10 codes for RHD are over-used 

in non-endemic populations.61 That said, with careful use, these data can help 

confirm or refute association signals identified in other populations. Excitingly, large-

scale Biobank datasets are increasingly becoming available for other populations 

including those in which RHD occurs more frequently.   

 



What has been found so far? 

The first GWAS of susceptibility to RHD to be reported was set in the Pacific region 

involving individuals of Oceanian and South Asian ancestry totalling 946 RHD cases 

and 1,846 controls. A novel susceptibility variant was identified in the 

immunoglobulin heavy chain (IGH) gene on chromosome 14q32.33.54 The IGH is a 

complex region of the genome containing the gene segments that compromise the 

variable region of the heavy chain of antibodies.62 This finding is of particular interest 

because it represents the first time coding variants in the IGH locus has been linked 

to disease susceptibility in the GWAS era. One reason for this is the IGH locus is to 

date poorly understood and is poorly covered by currently available genotyping 

arrays.62  Fine-mapping linked the signal to a known classical allele of the IGHV4-61 

termed IGHV4-61*02 which included a number of amino-acid changes that may 

impact structure. The IGH locus was the only region of the genome reaching 

genome-wide significance and in particular there was no signal in the HLA region. 

While the role of HLA in susceptibility to RHD in individuals of Oceanian ancestry 

remains to be determined, it is very likely that any HLA signals present in these 

populations were diluted out due to the diverse ancestries of individuals in the study.   

 

The next study to be published was set in Aboriginal Australians including 398 RHD 

cases and 865 controls.55 The strongest association was identified in intron 1 of 

HLA-DQA1 in the class II region. Fine-mapping suggested that the signal tagged a 

number of haplotypes across the HLA-DQA1 to HLA-DQB1 region which could 

plausibly influence antigen binding. Haplotype analysis suggested that HLA-

DQA1*0101_DQB1*0503 (OR 1.44; 95% CI, 1.09–1.90; P = 9.56 × 10−3) and HLA-

DQA1*0103_DQB1*0601 (OR 1.27; 95% CI, 1.07–1.52; P = 7.15 × 10−3) were risk 



haplotypes; HLA_DQA1*0301-DQB1*0402 (OR 0.30, 95%CI 0.14–0.65, P = 2.36 × 

10−3) was protective. 55   Further analysis showed that human myosin cross-reactive 

N-terminal and B repeat epitopes of Group A Streptococci M5/M6 bound with higher 

affinity to DQA1/DQB1 alpha/beta dimers for the risk haplotypes than the protective 

haplotype.  

 

However, further evidence for the involvement of the HLA locus comes from an 

emerging study of the locus set in South Asians recruited in Northern India and Fiji.63 

Interestingly, this analysis reveals a complex signal stretching across the class I, II 

and III regions which likely reflects more than one underlying causal variant 

(Personal Communication, TP). Moreover, while in linkage disequilibrium with 

classical class II alleles, the signal in the class III locus appears to be independent, 

which may go some way to explaining the inconsistency observed in earlier studies. 

That said, delineating the HLA variants that impact susceptibility to RHD across 

populations remains a considerable challenge although the availability of reference 

data to enable HLA imputation in diverse populations may aid mapping of underlying 

causal variants.64  

 
What is coming next? 

Overall the field of RHD genetics is gaining momentum and it is likely the a number 

of reports will emerge in the coming months to years yielding findings outside the 

IGH and HLA loci including biological pathways not previously linked to RHD that are 

potentially amenable to drug therapy.  

 

For example, the Genetics of Rheumatic Heart Disease (RHDGen) Network, a 

collaborative multicentre study of the genetics of RHD in Africa, which set out 2,700 



cases and 2,700 healthy controls, has now completed recruitment and analysis is 

ongoing. When reported this study is not only expected to be the largest GWAS of 

RHD published to date but also a leading example of a disease-focused GWAS set 

in Africa of which there remain few. Given the large burden of RHD in Africa it is vital 

that efforts to understand the genetic architecture of the disease in African 

populations continue so that African populations are not left behind in the application 

of novel therapies or vaccines.65  

 

Other approaches are also likely to be employed including whole-exome and whole-

genome sequencing. At least one study of RHD using exome sequencing has been 

undertaken (ClinicalTrials.gov Identifier: NCT02118818) although recruitment is 

ongoing and no results have so far been released. A major benefit of these 

approaches is their ability to reveal the contribution of rare as opposed to common 

variants. That said there are considerable challenges to overcome including the 

added complexity of the data and the lack of reference or control data from RHD 

endemic populations. For example, exome sequencing studies in the European 

populations relying on large-scale resources including ~64,000 individuals such as 

the ExAC database while resources on this scale are simply not yet available for 

other global populations. Overall the most significant short term gains are likely to 

come from GWAS focused on defining the contribution of common variants to RHD.  

 

Moreover, large-scale collaborative efforts to combine GWAS datasets have the 

potential to reach sample sizes of ~10,000 individuals relatively quickly. While the 

sample sizes are likely to remain smaller than the 10,000s of individuals involved in 

studies of diseases that predominantly effect European populations this will 



nonetheless bring about substantial gains in power. Overall, while challenges 

remain, studies of this number of individuals have excellent potential to refine 

putative associations because by combining data from several ancestral groups and 

searching out variants that show consistent effects can help reveal the underlying 

causal variant.66  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Discussion 

RHD is an autoimmune disease with a well-established aetiological trigger, yet the 

disease pathophysiology is not well characterised. Recent years have seen an 

intensification of efforts to identify susceptibility loci following unexplained high 

incidence of RHD in certain individuals, populations, and geographic regions. 

Although some of the findings of candidate gene studies remain plausible, the high 

levels of inconsistency in the findings underscore the limitations of this approach. 

 

The inception of data from GWAS from endemic regions, however, has brought 

about a new and exciting era in the study of genetic susceptibility to RHD. Employing 

robust approaches with stringent statistical thresholds, these studies have not only 

provided substantially greater insight into the role of the HLA locus in susceptibility 

but also uncovered the role for other regions of the genome not previously 

considered such as the IGH region. Although these findings continue to require 

replication, we are starting to understand more about the pathophysiology of these 

diseases which should in turn reveal novel therapeutic targets as well as insights that 

could aid development of a vaccine to prevent GAS infection. 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Glossary 

Allele – A version of a gene or other genetic sequence.   

Dizygotic twins – Often termed “non-identical”, dizygotic twins result from fertilisation of two 

separate eggs during the same pregnancy. Like most other siblings, they share approximately 

50% of their genetic material. 

Familial aggregation – The occurrence of a disorder at a higher frequency in relatives of 

affected persons than in the general population, whether for genetic or environmental reasons or 

both. 

Imputation – A process used in genetics research to statistically estimate genotypes that are not 

directly assayed in a sample of individuals.  

Haplotype – A collection of genetic variants that occur in close proximity on a single 

chromosome and are inherited together. 

Mendelian randomisation – A method of using measured variation in genes of known function 

to examine the causal effect of a modifiable exposure on disease in observational studies. 

Key Points 
• Rheumatic Heart Disease remains a public health priority in low- and middle-income 

countries, despite being nearly eliminated in high-income countries 

• A combination of risk factors can contribute to increased susceptibility to Group A 
Streptococci, Rheumatic Fever and ultimately Rheumatic Heart Disease 

• The risk of Rheumatic Fever in an individual with a family history of the disease is nearly 

five times 

• Plausible susceptibility loci have been evaluated on chromosome 6 in the HLA region, and 

elsewhere in the human genome 

• Studies undertaken in very small numbers provide very little information 

• Genome-wide association studies through which millions of variants can to be tested for 

association in thousands of individuals, early findings implicating not just HLA, particularly 

the HLA-DQA1 to HLA-DQB1 region, but also the immunoglobulin heavy chain locus, 

including theIGHV4-61 gene segment on chromosome 14 

• Large-scale collaborative efforts to combine Genome-wide association studies data have 

the potential to advance our understanding of the genetics of Rheumatic Heart Disease  



Monozygotic twins – Often termed “identical”, monozygotic twins result from the fertilisation of a 

single egg that spilts in two and share close to 100% of their genetic material. 

Linkage disequilibrium - statistical association between particular alleles at separate but linked 

loci, normally the result of ancestral haplotype being common in population studies 

Traits – A character or phenotype in genetic research. 

 

 

 
 
 
 
 
 
 
 
 
 
 



References 
1 Erdem, G. et al. Group A streptococcal isolates temporally associated with acute 

rheumatic fever in Hawaii: differences from the continental United States. Clin Infect 
Dis 45, e20-24, doi:10.1086/519384 (2007). 

2 Carapetis, J. R., McDonald, M. & Wilson, N. J. Acute rheumatic fever. Lancet 366, 
155-168, doi:10.1016/S0140-6736(05)66874-2 (2005). 

3 Steer, A. C., Danchin, M. H. & Carapetis, J. R. Group A streptococcal infections in 
children. J Paediatr Child Health 43, 203-213, doi:10.1111/j.1440-1754.2007.01051.x 
(2007). 

4 Ferretti, J. & Kohler, W. in Streptococcus pyogenes : Basic Biology to Clinical 
Manifestations   (eds J. J. Ferretti, D. L. Stevens, & V. A. Fischetti)  (2016). 

5 Longo-Mbenza, B. et al. Survey of rheumatic heart disease in school children of 
Kinshasa town. Int J Cardiol 63, 287-294 (1998). 

6 Meira, Z. M., Goulart, E. M., Colosimo, E. A. & Mota, C. C. Long term follow up of 
rheumatic fever and predictors of severe rheumatic valvar disease in Brazilian 
children and adolescents. Heart (British Cardiac Society) 91, 1019-1022, 
doi:10.1136/hrt.2004.042762 (2005). 

7 Massell, B. F., Chute, C. G., Walker, A. M. & Kurland, G. S. Penicillin and the marked 
decrease in morbidity and mortality from rheumatic fever in the United States. The 
New England journal of medicine 318, 280-286, doi:10.1056/NEJM198802043180504 
(1988). 

8 Gordis, L. The virtual disappearance of rheumatic fever in the United States: lessons 
in the rise and fall of disease. T. Duckett Jones memorial lecture. Circulation 72, 
1155-1162 (1985). 

9 Carapetis, J. R. et al. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis 
Primers 2, 15084, doi:10.1038/nrdp.2015.84 (2016). 

10 Yusuf, S., Narula, J. & Gamra, H. Can We Eliminate Rheumatic Fever and Premature 
Deaths From RHD? Global heart 12, 3-4, doi:10.1016/j.gheart.2017.05.001 (2017). 

11 Carapetis, J. R., Steer, A. C., Mulholland, E. K. & Weber, M. The global burden of 
group A streptococcal diseases. Lancet Infect Dis 5, 685-694, doi:10.1016/S1473-
3099(05)70267-X (2005). 

12 Watkins, D. A. et al. Global, Regional, and National Burden of Rheumatic Heart 
Disease, 1990-2015. N Engl J Med 377, 713-722, doi:10.1056/NEJMoa1603693 
(2017). 

13 Rothenbuhler, M. et al. Active surveillance for rheumatic heart disease in endemic 
regions: a systematic review and meta-analysis of prevalence among children and 
adolescents. The Lancet. Global health 2, e717-726, doi:10.1016/S2214-
109X(14)70310-9 (2014). 

14 Bhaya, M., Panwar, S., Beniwal, R. & Panwar, R. B. High prevalence of rheumatic 
heart disease detected by echocardiography in school children. Echocardiography 
27, 448-453, doi:10.1111/j.1540-8175.2009.01055.x (2010). 

15 Paar, J. A. et al. Prevalence of rheumatic heart disease in children and young adults 
in Nicaragua. Am J Cardiol 105, 1809-1814, doi:10.1016/j.amjcard.2010.01.364 
(2010). 

16 Cheadle, W. Harveian lectures on the various manifestation of the rheumatic state as 
exemplified in childhood and early life. Lancet (London, England) 133 (1889). 



17 Engel, M. E., Stander, R., Vogel, J., Adeyemo, A. A. & Mayosi, B. M. Genetic 
susceptibility to acute rheumatic fever: a systematic review and meta-analysis of 
twin studies. PLoS One 6, e25326, doi:10.1371/journal.pone.0025326 (2011). 

18 Bryant, P. A., Robins-Browne, R., Carapetis, J. R. & Curtis, N. Some of the people, 
some of the time: susceptibility to acute rheumatic fever. Circulation 119, 742-753, 
doi:10.1161/circulationaha.108.792135 (2009). 

19 Okello, E. et al. Socioeconomic and environmental risk factors among rheumatic 
heart disease patients in Uganda. PloS one 7, e43917, 
doi:10.1371/journal.pone.0043917 (2012). 

20 Guilherme, L. & Kalil, J. Rheumatic Heart Disease: Molecules Involved in Valve Tissue 
Inflammation Leading to the Autoimmune Process and Anti-S. pyogenes Vaccine. 
Front Immunol 4, 352, doi:10.3389/fimmu.2013.00352 (2013). 

21 Guilherme, L. et al. Rheumatic fever: how S. pyogenes-primed peripheral T cells 
trigger heart valve lesions. Annals of the New York Academy of Sciences 1051, 132-
140, doi:10.1196/annals.1361.054 (2005). 

22 Madsen TH, K. K. Investigation on rheumatic fever subsequent to some epidemics of 
septic sore throat (Especially Milk Epidemics). Octa Pathologica Microbiologica 
Scandinavica 37, 305-327 (1940). 

23 Parks, T., Smeesters, P. R. & Steer, A. C. Streptococcal skin infection and rheumatic 
heart disease. Curr Opin Infect Dis 25, 145-153, 
doi:10.1097/QCO.0b013e3283511d27 (2012). 

24 Wang SS, B. T., Khoury MJ in Vogel and Motulsky’s Human Genetics. Problems and 
Aproaches Vol. 4th  (ed SE Antonarakis MR Speicher, AG Motulsky)  (Springer-Verlag, 
2010). 

25 Susser, E. & Susser, M. Familial aggregation studies. A note on their epidemiologic 
properties. Am J Epidemiol 129, 23-30 (1989). 

26 A, A. M. Genetic Epidemiology:Methods and Applications.  10 - 12 (2013). 
27 Wilson, M. G. & Schweitzer, M. D. Rheumatic Fever as a Familial Disease. 

Environment, Communicability and Heredity in Their Relation to the Observed 
Familial Incidence of the Disease. The Journal of clinical investigation 16, 555-570, 
doi:10.1172/JCI100882 (1937). 

28 Washburn, A. H. Rheumatic Heart Disease-Factors in Its Prognosis. California and 
western medicine 27, 781-786 (1927). 

29 Ferguson, J. Valvular Disease of the Heart, Accompanied by Rheumatic Subcutaneous 
Nodules. British medical journal 1, 1150 (1885). 

30 Davies, A. M. & Lazarov, E. Heredity, infection and chemoprophylaxis in rheumatic 
carditis: an epidemiological study of a communal settlement. The Journal of hygiene 
58, 263-276 (1960). 

31 Denbow, C. E., Barton, E. N. & Smikle, M. F. The prophylaxis of acute rheumatic fever 
in a pair of monozygotic twins. The public health implications. The West Indian 
medical journal 48, 242-243 (1999). 

32 Olerup, O. & Zetterquist, H. HLA-DR typing by PCR amplification with sequence-
specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in 
clinical practice including donor-recipient matching in cadaveric transplantation. 
Tissue Antigens 39, 225-235 (1992). 



33 Trowsdale, J. & Knight, J. C. Major Histocompatibility Complex Genomics and Human 
Disease. Annu Rev Genom Hum G 14, 301-323, doi:10.1146/annurev-genom-091212-
153455 (2013). 

34 Malaria Genomic Epidemiology, N. & Malaria Genomic Epidemiology, N. Reappraisal 
of known malaria resistance loci in a large multicenter study. Nat Genet 46, 1197-
1204, doi:10.1038/ng.3107 (2014). 

35 Ioannidis, J. P. et al. A road map for efficient and reliable human genome 
epidemiology. Nat Genet 38, 3-5 (2006). 

36 Khoury, M. J. & Dorman, J. S. The Human Genome Epidemiology Network. Am J 
Epidemiol 148, 1-3 (1998). 

37 Ntzani, E. E., Liberopoulos, G., Manolio, T. A. & Ioannidis, J. P. Consistency of 
genome-wide associations across major ancestral groups. Hum Genet 131, 1057-
1071, doi:10.1007/s00439-011-1124-4 (2012). 

38 Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS 
discovery. Am J Hum Genet 90, 7-24, doi:10.1016/j.ajhg.2011.11.029 (2012). 

39 Visscher, P. M. et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. 
Am J Hum Genet 101, 5-22, doi:10.1016/j.ajhg.2017.06.005 (2017). 

40 Knight, J. C. Approaches for establishing the function of regulatory genetic variants 
involved in disease. Genome Med 6, 92, doi:10.1186/s13073-014-0092-4 (2014). 

41 Zerbino, D. R., Wilder, S. P., Johnson, N., Juettemann, T. & Flicek, P. R. The ensembl 
regulatory build. Genome Biol 16, 56, doi:10.1186/s13059-015-0621-5 (2015). 

42 Lettre, G. & Rioux, J. D. Autoimmune diseases: insights from genome-wide 
association studies. Hum Mol Genet 17, R116-121, doi:10.1093/hmg/ddn246 (2008). 

43 Hu, X. & Daly, M. What have we learned from six years of GWAS in autoimmune 
diseases, and what is next? Current Opinion in Immunology 24, 571-575, 
doi:10.1016/j.coi.2012.09.001 (2012). 

44 Chapman, S. J. & Hill, A. V. S. Human genetic susceptibility to infectious disease. 
Nature Reviews Genetics 13, 175-188, doi:10.1038/nrg3114 (2012). 

45 McClellan, J. & King, M. C. Genetic heterogeneity in human disease. Cell 141, 210-
217, doi:10.1016/j.cell.2010.03.032 (2010). 

46 Steer, A. C., Lamagni, T., Curtis, N. & Carapetis, J. R. Invasive Group A Streptococcal 
Disease Epidemiology, Pathogenesis and Management. Drugs 72, 1213-1227 (2012). 

47 Zuhlke, L. et al. Characteristics, complications, and gaps in evidence-based 
interventions in rheumatic heart disease: the Global Rheumatic Heart Disease 
Registry (the REMEDY study). Eur Heart J 36, 1115-1122a, 
doi:10.1093/eurheartj/ehu449 (2015). 

48 Remenyi, B. et al. World Heart Federation criteria for echocardiographic diagnosis of 
rheumatic heart disease--an evidence-based guideline. Nat Rev Cardiol 9, 297-309, 
doi:10.1038/nrcardio.2012.7 (2012). 

49 Gumpinger, A. C., Roqueiro, D., Grimm, D. G. & Borgwardt, K. M. Methods and Tools 
in Genome-wide Association Studies. Methods Mol Biol 1819, 93-136, 
doi:10.1007/978-1-4939-8618-7_5 (2018). 

50 Yang, J., Zaitlen, N. A., Goddard, M. E., Visscher, P. M. & Price, A. L. Advantages and 
pitfalls in the application of mixed-model association methods. Nat Genet 46, 100-
106, doi:10.1038/ng.2876 (2014). 

51 Anderson, C. A. et al. Data quality control in genetic case-control association studies. 
Nat Protoc 5, 1564-1573, doi:10.1038/nprot.2010.116 (2010). 



52 Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. 
Nat Rev Genet 11, 499-511, doi:10.1038/nrg2796 (2010). 

53 Fike, A. J., Elcheva, I. & Rahman, Z. S. M. The Post-GWAS Era: How to Validate the 
Contribution of Gene Variants in Lupus. Curr Rheumatol Rep 21, doi:ARTN 3 

10.1007/s11926-019-0801-5 (2019). 
54 Parks, T. et al. Association between a common immunoglobulin heavy chain allele 

and rheumatic heart disease risk in Oceania. Nat Commun 8, 14946, 
doi:10.1038/ncomms14946 (2017). 

55 Gray, L. A. et al. Genome-Wide Analysis of Genetic Risk Factors for Rheumatic Heart 
Disease in Aboriginal Australians Provides Support for Pathogenic Molecular 
Mimicry. J Infect Dis 216, 1460-1470, doi:10.1093/infdis/jix497 (2017). 

56 Wellcome Trust Case Control, C. Genome-wide association study of 14,000 cases of 
seven common diseases and 3,000 shared controls. Nature 447, 661-678, 
doi:10.1038/nature05911 (2007). 

57 Colhoun, H. M., McKeigue, P. M. & Davey Smith, G. Problems of reporting genetic 
associations with complex outcomes. Lancet 361, 865-872, doi:Doi 10.1016/S0140-
6736(03)12715-8 (2003). 

58 Turner, S. et al. Quality control procedures for genome-wide association studies. 
Curr Protoc Hum Genet Chapter 1, Unit1 19, doi:10.1002/0471142905.hg0119s68 
(2011). 

59 Tian, C. et al. Genome-wide association and HLA region fine-mapping studies identify 
susceptibility loci for multiple common infections. Nat Commun 8, 599, 
doi:10.1038/s41467-017-00257-5 (2017). 

60 Allen, N. E., Sudlow, C., Peakman, T., Collins, R. & Biobank, U. K. UK biobank data: 
come and get it. Sci Transl Med 6, 224ed224, doi:10.1126/scitranslmed.3008601 
(2014). 

61 Katzenellenbogen, J. M. et al. Low positive predictive value of International 
Classification of Diseases, 10th Revision codes in relation to rheumatic heart disease: 
a challenge for global surveillance. Intern Med J 49, 400-403, doi:10.1111/imj.14221 
(2019). 

62 Watson, C. T. & Breden, F. The immunoglobulin heavy chain locus: genetic variation, 
missing data, and implications for human disease. Genes Immun 13, 363-373, 
doi:10.1038/gene.2012.12 (2012). 

63 Auckland, K. Host genetic susceptibility to rheumatic heart disease, <http://lisssd-
2017.p.asnevents.com.au/days/2017-10-17/abstract/46611> (2017). 

64 Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS 
One 8, e64683, doi:10.1371/journal.pone.0064683 (2013). 

65 Bustamante, C. D., Burchard, E. G. & De la Vega, F. M. Genomics for the world. 
Nature 475, 163-165, doi:10.1038/475163a (2011). 

66 Morris, A. P. Transethnic meta-analysis of genomewide association studies. Genet 
Epidemiol 35, 809-822, doi:10.1002/gepi.20630 (2011). 

67 Spencer, C. C., Su, Z., Donnelly, P. & Marchini, J. Designing genome-wide association 
studies: sample size, power, imputation, and the choice of genotyping chip. PLoS 
Genet 5, e1000477, doi:10.1371/journal.pgen.1000477 (2009). 

 

  



 

 

 

 

 

 

 

 

 
 

Fig. 1 | Graphical depiction of rheumatic fever and rheumatic heart disease pathogenesis. 
Superficial group A streptococcal infections such as pharyngitis and impetigo can trigger an 

inflammatory process that leads to scarring of the heart valves. Several factors contribute to 

this process including multiple non-genetic factors such as the socio-economic status of the 

patient and community and access to affordable medical care. Key complications of 
rheumatic heart disease include heart failure, atrial fibrillation, stroke and premature death.  

 

 

 

 

 

 



 

 
 
Fig. 2 | Reported rheumatic fever and rheumatic heart disease susceptibility genes. Multiple 

reports dating from the candidate gene era (White textbox) link human leukocyte antigen 

(HLA) and other genetic loci to susceptibility. However, the inconsistency of these reports 

couple with the limitations of this approach bring these findings into question. More recently 

two genome-wide associations studies (Blue textbox) set in Oceania and Australia have 

confirmed the role of the HLA locus and revealed a new signal in the immunoglobulin heavy 

chain (IGH) locus. 
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Fig 1 Reported human leukocyte antigen (HLA) al leles and candidate genes in RF/RHD 
studies. Genes in bold highl ight establ ished associations, while f i l led text-box 
indicate genome-wide association studies (GWAS).
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Fig. 3 | Overview of detection of underlying causal variation. Genome-wide association studies 

exploit the structured nature of the human genome to identify genetic regions (loci) which 
contribute to disease susceptibility in a hypothesis free manner. Typically, approximately half 

a million variants are assayed scattered across the genome are “genotyped” using microarray 

technology (i.e. “genotyped variants”) scattered across the genome. Association signals are 

detected when a “genotyped” variant “tags” an underlying “causal” variant involved in 

pathogenesis (e.g. a missense or regulatory variant). Thus the presence of an association 

signal near to a specific gene often indicates that gene plays a role in the disease of interest. 

The reason this works is because the genotypes of the “tag” and “causal” variants are 

correlated due to a phenomenon called linkage disequilibrium (see: Glossary). Often it is 
possible to “impute” the underlying causal variant using external reference data (see: Fig 6). 
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Fig. 4 | Effect sizes for the IGHV4-61*02 risk allele by diagnostic certainty. In the study reported 

by Parks et al.54, children recruited in Samoa were categorised into those with: mild non-

diagnostic valve abnormalities, World Heart Federation (WHF) borderline disease; or WHF 

definite disease. In a sensitivity analysis, the frequency of the IGHV4-61*02 risk allele in each 
of these groups was compared to the same group of Samoan controls. For each analysis, the 

black squares center on the odds ratio estimate from linear mixed models on a logarithmic 

scale. The horizontal line through each square corresponds to the confidence intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 | Power calculations for genome-wide association studies.67 For theoretical variants with 

minor allele frequencies (MAF) ranging 0.05 to 0.4, estimated statistical power is plotted 

against the odds ratio under an additive genetic model. The dashed horizontal line indicates 

80% power. Notably power increases with sample but remains limited for variants at lower 

MAF despite the larger sample size.  
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Fig. 6 | Schematic illustration of statistical estimation of variants using imputation. Imputation 

attempts to identify sharing between underlying haplotypes of the study individuals and the 

haplotypes in a reference set.52 The figure shows how the “genotype” variants correlate with 

nearby variants that occur on the same haplotype. As a consequence the genotypes at these 

variants which would otherwise be “missing” from the dataset can by “imputed” and used for 

analysis.  
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