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Introduction

Deep neural networks (NNs) are usually trained with unconstrained optimisa-
tion algorithms [3]. With a reasoning similar to the constrained Kalman filter [4],
incorporating known information in the form of equality constraints at certain
checkpoints can potentially improve prediction accuracy. For continuous-time
dynamical systems, the state constraints should be enforced in an ordinary dif-
ferential equation (ODE) model which embeds NNs to represent a learned part
of dynamics or a control policy. To this end, incremental correction methods
are developed for post-processing of the dynamical systems modelled with NNs
for which the parameters are determined by previous optimisation process. The
proposed approach is to find a small amount of local correction needed to satisfy
given state constraints with the updated solution. Algorithms for updating the
neural network parameters and the control function are considered.

Incremental Correction Methods

Consider the continuous-time system dynamics given by

ẋ (t) = f (t,x (t) ,θ) (1)

where t, x, and θ denote the time, the state, and a vector of parameters, re-
spectively. In control problems, the mathematical description for the dynamic
system has the control input as its argument while the parameters enter Eq. (1)
through the policy π:

ẋ (t) = f (t,x (t) ,u (t)) , u (t) = π (t,x (t) ,θ) (2)

The state constraints are expressed as

x (ti) = xi (3)

for i = 1, · · · , N . The NN policy can be obtained through gradient-descent-based
unconstrained optimisation in order to minimise a certain cost/loss function with
the gradients computed by using the adjoint method [2]. The resulting NN can
provide sufficient performance in terms of state constraint violation, however,
the focus of this study is to incorporate Eq. (3) as the hard constraints. The aim
of this study is to correct θ in Eq. (1) or u (t) in Eq. (2) to satisfy Eq. (3).
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Parameter Correction. A NN embedded in the ODE function is implicit in
Eq. (1). Suppose that the pre-trained NN has its optimised, nominal parameters
denoted by θ∗. Given the nominal parameters, the corresponding nominal solu-
tion can be obtained by propagating the system model ẋ∗ (t) = f (t,x∗ (t) ,θ∗)
with a given initial condition x∗ (t0) = x0. The system dynamics can be lin-
earised around the nominal trajectory and the nominal parameter, leading to a
linear time-varying form of the perturbation dynamics:

˙δx (t) ≈ A (t) δx (t) +Bθ (t) δθ (4)

By using linear control design techniques, one can find the parameter correction
δθ to achieve δx (ti) = xi − x∗ (ti) so that Eq. (3) holds.

Control Function Correction. In controlled dynamical systems, one can con-
sider perturbations in the control input instead of the neural network parameters,
which brings about another form of linear time-varying perturbation dynamics:

˙δx (t) ≈ A (t) δx (t) +Bu (t) δu (t) (5)

Again, the control function correction δu (t) can be designed to achieve Eq. (3)
by using various linear control methods.

Concluding Remarks

This study presents refinement methods for improving the prediction accuracy of
continuous-time dynamic systems involving neural networks. Depending on the
application, the proposed methods can be useful for dynamic model learning as
well as finite-horizon control purposes. The control function correction approach
can be useful for online implementation with its relative advantage in compu-
tational efficiency. We show practical applications of the methods developed in
this work to spacecraft guidance problems, such as planetary entry, descent, and
landing [1] and low-thrust transfers.
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