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Multiple myeloma is an incurable cancer of plasma cells that is predominantly

located in the bone marrow. Multiple myeloma cells are characterized by

distinctive biological features that are intricately linked to their core function,

the assembly and secretion of large amounts of antibodies, and their diverse

interactions with the bone marrow microenvironment. Here, we provide a

concise and introductory discussion of major metabolic hallmarks of plasma

cells and myeloma cells, their roles in myeloma development and progression,

and how they could be exploited for therapeutic purposes. We review the role

of glucose consumption and catabolism, assess the dependency on glutamine

to support key metabolic processes, and consider metabolic adaptations in

drug-resistant myeloma cells. Finally, we examine the complex metabolic

effects of proteasome inhibitors on myeloma cells and the extracellular

matrix, and we explore the complex relationship between myeloma cells and

bone marrow adipocytes.
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proteostasis, bone marrow (BM) adipocytes
Introduction

Multiple myeloma (MM) is a cancer of plasma cells, the terminally differentiated

effector cells of the humoral immune system whose main function is the provision of

immunoglobulins. To fulfil this task, plasma cells dispose of a well-developed organellar

apparatus that enables them to assemble and secrete large amounts of protein (1–3).

Plasma cells, and MM cells, are also defined by their intricate interactions with the bone

marrow microenvironment (4–6). Their highly specialized function and their distinct

habitat shape the characteristic metabolic hallmarks of plasma cells and MM cells. Here,

we aim to provide a concise introductory review of key metabolic features and

adaptations of MM cells, discussing how their metabolic characteristics may contribute
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to resistance to anti-myeloma therapies, but also how they may

be exploited for therapeutic purposes.
Metabolic adaptations in
non-malignant plasma cells

When naïve B cells are stimulated with antigen, they

undergo a striking metamorphosis. Within days, their

cytoplasm expands dramatically to accommodate a rapidly

expanding endoplasmic reticulum and Golgi apparatus that

push aside an increasingly heterochromatic nucleus (2). These

morphologically distinct features reflect the highly specialized

function of plasma cells, the synthesis and secretion of

immunoglobulins. This complex process is resource-

demanding and requires a broad range of metabolic

adaptations, which are discussed comprehensively in several

recently published reviews (7–9). Briefly, the bursts of

proliferation and organelle biogenesis that occur during B cell

activation and in germinal centers are supported by high levels of

nutrient uptake, in particular of glucose and glutamine, which

serve as major contributors to a diverse range of metabolic

processes such as mitochondrial ATP generation, lipid synthesis,

and ribonucleoside generation. Once plasma cell differentiation

is complete, and the extensive secretory apparatus has been

assembled, metabolic pathways are optimized again, and

resources are pooled towards high levels of antibody synthesis

and secretion, including extensive post-translational

modifications. Glucose remains an important nutrient and is

used primarily for antibody glycosylation and energy generation.

In particular, the provision of pyruvate through glycolysis to

enhance the ability to maximize ATP production through

mitochondrial respiration and appears to be an important

factor in promoting plasma cell longevity (10). While it

remains to be established if and how plasma cells fine-tune

lipid metabolism, it seems unlikely that this major part of

cellular metabolism would not require any adaptations to

high-level immunoglobulin production and maintenance of an

extensive ER and Golgi network (7, 11). The complex metabolic

demands of plasma cells to maintain energy homeostasis while

assembling and secreting antibodies are also highlighted by the

intricate role of autophagy to sustain long-lived humoral

immuni ty and by the i r enhanced dependence on

mitochondrial energy generation (10, 12, 13).
Multiple myeloma dependency on
glucose and glutamine

MM cells retain many of the metabolic features of plasma

cells and further adapt them to meet the increased demands of
Frontiers in Immunology 02
malignant cells (14). This includes the heavy reliance of MM

cells on glucose and glycolysis for energy generation (15–18).

Clinically, the increase in glucose uptake underlies the use of

18F-F luorodeoxyg lucose (FDG)-pos i t ron emiss ion

tomography (PET) scanning to quantify and localize MM

load in patients (19). MM cells also highly depend on

glutamine, the most abundant amino acid in humans, not

only as a protein building block but also as an anaplerotic

substrate to replenish tricarboxylic acid (TCA) cycle

components Glutamine depletion and inhibition of glutamine

metabolism have already been shown to inhibit MM cell

growth and to enhance sensitivity to anti-MM drugs (20–23).

MM cells show high expression levels of glutaminase but not

glutamine synthetase, a characteristic that renders the cells

particularly dependent on extracellular glutamine. This

dependency points to glutamine transporters as potentially

useful therapeutic targets. While the expression of glutamine

transporters such as LAT1, SNAT1 and ASCT2 increases with

MM progression, the evidence so far indicates that MM cells

mainly rely on ASCT2 for glutamine uptake. In particular,

experiments combining the proteasome inhibitor, carfilzomib,

with ASCT2 inhibitors have shown a synergic induction of

proteotoxic stress and ROS generation suggesting a possible

new therapeutic strategy (24, 25). Moreover, MM cells highly

depend on mitochondrial energy generation (26–28). Thus,

while the metabolic networks that support MM cell survival

and proliferation and promote resistance to approved and

investigational treatment approaches are only beginning to

be understood, it is becoming increasingly clear that they

may provide a plethora of novel opportunities for

therapeutic interventions.
Are proteasome inhibitors
metabolic drugs?

Among the many anti-MM drugs that now form the

therapeutic armamentarium that has dramatically improved

outcomes for MM patients over the past 2 decades,

proteasome inhibitors are a particularly intriguing class of

drugs. Developed in the 1990 as experimental tools to better

understand the function of the ubiquitin-proteasome system

(UPS) in cell biology, they rapidly became the backbone of

multiple regimens and are now widely used for the treatment of

newly diagnosed and relapsed MM, in combination with

essentially all other drug classes (29–31). Initially, their highly

selective toxicity for MM cells was attributed to the high

dependency of plasma cells on the UPS to clear so-called

misfolded proteins (32–36), the toxic by-products of the

complex and error-prone post-translational modification

processes that secreted proteins undergo in the endoplasmic
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reticulum (ER). It has been widely assumed that proteasome

inhibitors block the degradation of misfolded proteins, leading

to their accumulation in the ER and overwhelming ER stress,

and that this effect is particularly pronounced in MM cells,

because their secretory load is exceptionally high (37). While ER

stress may indeed represent one mechanism of action of

proteasome inhibitors, it does not take into account the

downstream effects of UPS inhibition on protein breakdown,

namely the potentially lethal drop in intracellular amino acid

availability and the wider metabolic consequences of such as

effect (38–40). Not surprisingly, resistance to proteasome

inhibition has been linked to hyperactivation of amino acid

synthetic pathways. MM cell lines resistant to the proteasome

inhibitor bortezomib show higher serine synthesis pathway

( S SP ) a c t i v i t y t h an bo r t e z om ib - s en s i t i v e c e l l s .

Phosphoglycerate dehydrogenase (PHGDH), the first rate-

limiting enzyme in the SSP, was found to be significantly

elevated in CD138+ cells derived from patients with relapsed

MM, and high PHGDH expression conferred inferior survival.

Mechanistically, PHGDH promotes proliferation and

bortezomib resistance through increasing glutathione

synthesis, thereby decreasing bortezomib-induced ROS

generation, increasing effective protein folding, and promoting

MM cell survival (41, 42). Metabolic reprogramming also

supports regeneration of NAD(P)H and TCA cycle

components to promote oxidative phosphorylation, and

proteasome inhibitor-resistant cells contain structurally

adapted mitochondria and have a different lipid content.

These observations support the notion that proteasome

inhibitors are complex metabolic drugs, and that targeting

metabolic processes might offer novel therapeutic approaches

to overcome proteasome inhibitor resistance (43, 44). To better

understand the metabolic responses of MM cells to proteasome

inhibition, we used a time-resolved integrated systems-level

approach based on an in vitro model of proteasome inhibitor

stress build-up and recovery that closely replicates typical

clinical pharmacokinetics and antitumor responses in patients

(45). These multi-omics time course studies allowed us to define

the transcriptional, proteomic, and metabolic changes that occur

in dying MM cells, and, perhaps more importantly, in MM cells

that recovered from proteasome inhibition. These cells are

relevant because they provide a faithful model for clinically

proteasome inhibitor-resistant MM cells that ultimately cause

relapse or progression. What we found was that surviving and

resolving proteasome inhibitor-induced stress is a surprisingly

protracted process during which MM cells undergo complex and

dynamic changes of multiple metabolic pathways. These include

a decrease in glucose uptake, a persistent drop in mitochondrial

energy generation, enhanced lipid catabolism, and reduced

intracellular levels of amino acids such as glutamine

throughout and beyond immediate stress resolution.
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Importantly, the temporal patterns and functional connections

of these waves of biological processes support a model in which

at least some of the challenges that arise in surviving cells are

directly linked to the mechanisms of stress resolution rather than

the initial insult. As such, the cellular recovery processes

generate potential therapeutic Achilles’ heels in the sense of

dynamic trade-offs - temporarily increased vulnerabilities that

are triggered specifically by the processes of stress resolution (46,

47). One of those vulnerabilities, in line with the proteasome

inhibitor-induced prolonged depletion of intracellular amino

acids, is that someMM cells depended on GCN2, the only kinase

known to be activated by low amino acid levels (48–50), to

recover from proteasome inhibition. Moreover, and highlighting

the complex layers of metabolic regulation in MM cells in the

wake of proteasome inhibition, we found GCN2 to be a major

regulator of lipid metabolism during stress resolution. More

recently, MM cell dependency on GCN2 has been linked to

oncogenic MYC signaling (51), and observations that amino

acid depletion sensitizes MM cells to proteasome inhibition by

inducing compound mitochondria damage (52) provide further

evidence for complex metabolic processes linked to proteasome

inhibitors. We also found that drugs that target different aspects

of mitochondrial function, such as the electron transport chain

or mitochondrial translation, largely triggered a greater

reduction in cell viability in recovering cells than in acutely

stressed cells. These observations also raise the question

if and how proteasome inhibitors or other drugs targeting

cellular protein homeostasis might affect the myeloma

microenvironment, in particular the formation of the

extracellular matrix (ECM). We therefore applied a

combination of materials science characterization techniques

to an in vitro model of bone-like tissue formation by human

bone-marrow derived mesenchymal stromal cells (hMSC).

Intermittent and low-level inhibition of key UPS components,

which triggered only very mild stress in the differentiating

hMSCs, had surprisingly distinct effects on the bone-like

material they formed, altering its stiffness and the amount of

protein and crystalline mineral it contains, and affecting its

micro- and ultra-structural organization (53). It remains to be

established if such effects occur in vivo, and how they may affect

MM cell behavior. However, the well-established crosstalk

between physical tissue traits and cancer biology, for example

the often-observed correlation of tissue stiffness with cancer

aggressiveness and treatment resistance (54), raises the

possibility that proteasome inhibitors might have effects on

physical ECM characteristics that in turn alter MM cell

responses to anti-cancer agents.

Additional evidence of the metabolic consequences of

proteasome inhibitors is also provided by their interaction

with mTOR, an integrator of environmental signals to regulate

protein synthesis, autophagy, cell proliferation, growth and
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survival that plays a key role in MM and other cancers (55, 56).

One of the signals that mTOR responds to is the availability of

amino acids but, opposite to GCN2, mTOR activation by

adequate amino acid availability promotes protein synthesis.

Under conditions of amino acid deprivation, GCN2 has been

shown to negatively regulate mTOR (57), indicating a functional

interaction between both signaling pathways that is supported

by observations that the discordant regulation of GCN2 and

mTORC1 can adversely affect cell viability (58). It is therefore

not surprising that experimental observations suggest that

mTOR inhibition and proteosome inhibition may be

synergistically toxic to MM cells (59, 60). However, clinical

investigations into combining mTOR and proteasome

inhibition have not resulted in major breakthroughs (61).
Bone marrow adipocytes
and myeloma

The bone marrow has a unique cellular composition, with

cells such as bone marrow adipocytes, bone marrow stromal cells

and immune cells ideally placed to interact with MM cells and

modify their metabolic activity. Bone marrow stromal cells have

been found to be the source of intercellular mitochondrial

transfer, facilitated through tumor-derived tunneling

nanotubes connecting stromal cells to MM cells (62). The
Frontiers in Immunology 04
consequence of this mitochondrial transfer was the promotion

of oxidative phosphorylation, demonstrating MM metabolic

plasticity driven by the bone microenvironment. There is

increasing evidence to support the dysregulation of bone

marrow adipocytes in MM, with reciprocal cross-talk between

bone marrow adipocytes and MM cells not only promoting MM

growth, chemoresistance and bone disease (63–67), but also

inducing metabolic plasticity in both tumor cells and adipocytes.

Bone marrow adipocytes are a major source of adiponectin, a

key adipokine which we have previously shown to be decreased

in MM, contributing to disease pathogenesis (68). More recently,

we have shown that MM cells can downregulate adiponectin in

bone marrow adipocytes, at least partly through TNFa signaling,

providing a mechanism driving the hypoadiponectinemia

associated with MM progression (69). MM cells have also

been found to damage the mitochondria of adipocytes and

preadipocytes, driving abnormal cytokine production, a

senescence-like phenotype and disease progression (70, 71).

While the role of lipid-uptake by MM cells and any functional

consequences is unclear, recent studies demonstrate that

myeloma-associated bone marrow adipocytes undergo

lipolysis, associated with the uptake of secreted free fatty acids

by adjacent MM cells (69, 70, 72). Obesity is one of the major

risk factors for MM, with increased adiposity associated with the

development of MM in preclinical models (73). The increase in

adiposity has been associated with metabolic changes in MM
FIGURE 1

Schematic representation of selected key metabolic pathways in multiple myeloma cells and their interaction with bone marrow adipocytes.
3PG, 3-phosphoglycerate; ACSS2, acetyl-CoA synthetase 2; aKG, a-ketoglutarate; Ang II, angiotensin II; ASCT2, sodium-dependent neutral
amino acid transporter type 2; AT1, angiotensin II receptor type 1; FFA, free fatty acids; GLUT1/4, glucose transporter 1/4; GSH, glutathione;
PHGDH, phosphoglycerate dehydrogenase; ROS, reactive oxygen species; SLC1A4, solute carrier family 1 member 4; SSP, serine synthesis
pathway; TCA cycle, tricarboxylic acid cycle; TNFa, tumor necrosis factor alpha. Created in BioRender.
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cells, such as an increase in the metabolite acetyl-coA synthetase

2 (ACSS2) in MM cells, induced by adipocyte-secreted

angiotensin II and driving MM growth in vitro and in vivo at

least partly by enhancing the stability of the myeloma

oncoprotein IRF4 (74). An increased understanding of the

symbiotic relationship between tumor cells and bone cells can

be gained by turning to solid tumor metastases such as breast

and prostate cancer bone metastases, where commonalities in

key mechanisms have led to similar approaches in combating the

associated bone disease. There is increasing evidence to support

the metabolic plasticity of tumor cells within the bone

microenvironment (75). Our own recent observations used

metabolomic profiling to identify elevation of the pentose

phosphate pathway in prostate cancer cells, driven by

interactions with bone cells. The rate-limiting enzyme of the

pentose phosphate pathway, G6PD, was found to contribute to

prostate cancer growth within the skeleton, representing a

potential metabolic target for the treatment of bone

metastasis (76).

As such, dissecting the metabolic cross-talk between MM

cells and their surrounding microenvironment may reveal new

therapeutic opportunities to disrupt the symbiotic relationship.

Moreover, it will be fascinating, albeit far from straightforward,

to explore if dietary interventions can have an impact on MM

progression or the response to anti MM drugs.

In summary, a plethora of metabolic adaptations that occur

in MM cells and in the myeloma microenvironment (Figure 1)

may offer various approaches to delay the development or

progression of MM, and to optimize treatment outcomes.
Frontiers in Immunology 05
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