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A B S T R A C T

Due to its computational robustness and versatility, the phase field fracture model has become the preferred
tool for predicting a wide range of cracking phenomena. However, in its conventional form, its intrinsic
tension–compression symmetry in damage evolution prevents its application to the modelling of compressive
failures in brittle and quasi-brittle solids, such as concrete or rock materials. In this work, we present a
general methodology for decomposing the phase field fracture driving force, the strain energy density, so
as to reproduce asymmetrical tension–compression fracture behaviour. The generalised approach presented
is particularised to the case of linear elastic solids and the Drucker–Prager failure criterion. The ability of
the presented model to capture the compressive failure of brittle materials is showcased by numerically
implementing the resulting strain energy split formulation and addressing four case studies of particular
interest. Firstly, insight is gained into the capabilities of the model in predicting friction and dilatancy effects
under shear loading. Secondly, virtual direct shear tests are conducted to assess fracture predictions under
different pressure levels. Thirdly, a concrete cylinder is subjected to uniaxial and triaxial compression to
investigate the influence of confinement. Finally, the localised failure of a soil slope is predicted and the results
are compared with other formulations for the strain energy decomposition proposed in the literature. The
results provide a good qualitative agreement with experimental observations and demonstrate the capabilities
of phase field fracture methods to predict crack nucleation and growth under multi-axial loading in materials
exhibiting asymmetric tension–compression fracture behaviour.
1. Introduction

The application of the phase field paradigm to fracture mechanics
has enabled predicting cracking phenomena of arbitrary complexity [1,
2]. These include not only hitherto complex crack trajectories but also
crack branching, nucleation and merging, without ad hoc criteria and
cumbersome tracking techniques, in both two and three dimensions [3,
4]. In phase field methods, the crack–solid interface is not explicitly
modelled but instead smeared over a finite domain and characterised
by an auxiliary phase field variable 𝜙, which takes two distinct values
in each of the phases (e.g., 𝜙 = 0 in intact material points and
𝜙 = 1 inside of the crack). Hence, interfacial boundary conditions
are replaced by a differential equation that describes the evolution
of the phase field 𝜙. Phase field fracture methods have become the
de facto choice for modelling a wide range of cracking phenomena.
New phase field formulations have been presented for ductile frac-
ture [5,6], composite materials [7–9], shape memory alloys [10,11],
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functionally graded materials [12,13], fatigue damage [14,15] and
hydrogen embrittlement [16,17], among others (see Refs. [18,19] for
an overview).

Most frequently, the phase field is defined to evolve in agreement
with Griffith’s energy balance [20] - crack growth is predicted by the
exchange between elastic and fracture energies. While thermodynami-
cally rigorous, this leads to a symmetric fracture behaviour in tension
and compression, implying that crack interpenetration can occur in
compressive stress states, and that the compressive strength is assumed
to be equal to the tensile strength. In metals, which often fail in
compression by buckling, crumbling or 45-degree shearing, this leads
to nonphysical predictions of crack nucleation in compressive regions,
such as the vicinity of loading pins in standardised experiments like
three-point bending or compact tension. For brittle and quasi brittle
solids, such as concrete or geomaterials, the assumption of tension–
compression symmetry is unrealistic as compressive-to-tensile strength
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ratios typically range between 𝜎𝑐∕𝜎𝑡 = 2 and 𝜎𝑐∕𝜎𝑡 = 25 [21]. In brittle
aterials, compressive failure takes place due to the linkage of pre-

xisting micro-cracks growing under local tensile stresses [22], while
ensile brittle fractures are typically due to unstable crack propagation.
hus, extending the use of phase field to the prediction of compressive
ailures in brittle solids requires the development of new formulations
hat can accommodate appropriate failure surfaces. To achieve this
oal, we here present a general approach for decomposing the phase
ield fracture driving force, the strain energy density. We then partic-
larise such approach to the case of a Drucker–Prager failure surface
nd numerically show that it can adequately capture cracking patterns
n concrete and geomaterials.

. The variational phase field fracture framework

We shall begin by providing a brief introduction to the variational
hase field fracture formulation; the reader is referred to Ref. [1] for a
omprehensive description. Considering a body 𝛺 with a crack surface
, where the displacement field 𝐮 might be discontinuous, the energy

unctional can be formulated as the sum of the elastic energy stored in
he cracked body and the energy required to grow the crack [23]:

= ∫𝛺
𝜓 (𝜺 (𝐮)) d𝑉 + ∫𝛤

𝐺𝑐 d𝛤 , (1)

here 𝜓 is the elastic strain energy density, which is a function of the
train tensor 𝜺 (𝐮), and 𝐺𝑐 is a measure of the energy required to create
wo new surfaces, the material toughness. Eq. (1) postulates Griffith’s
inimality principle in a global manner and its minimisation enables
redicting arbitrary cracking phenomena solely as a result of the ex-
hange between elastic and fracture energies. However, minimising
riffith’s functional  is hindered by the unknown nature of the crack

urface 𝛤 . This can be overcome by the use of the phase field paradigm;
iffusing the interface over a finite region and tracking its evolution by
eans of an auxiliary phase field variable 𝜙. Accordingly, Eq. (1) can

e approximated by the following regularised functional:

𝓁 = ∫𝛺
𝑔 (𝜙)𝜓0 (𝜺 (𝐮)) d𝑉 + ∫𝑉

𝐺𝑐𝛾 (𝜙,∇𝜙,𝓁) d𝑉 , (2)

here 𝜓0 denotes the elastic strain energy density of the undamaged
olid, 𝑔(𝜙) is a degradation function to reduce the stiffness of the solid
ith increasing damage, and 𝛾 (𝜙,∇𝜙,𝓁) is the so-called crack density

unction. For simplicity, and without loss of generality, we adopt the
onstitutive choices of the so-called conventional or AT2 phase field
odel [24], such that

(𝜙) = (1 − 𝜙)2 and 𝛾(𝜙,∇,𝓁𝜙) = 1
2𝓁
𝜙2 + 𝓁

2
|∇𝜙|2 (3)

where 𝓁 is the phase field length scale, inherently arising due to the
non-local nature of the model. The strong form of the balance equations
can be derived by taking the first variation of 𝓁 with respect to the
primal kinematic variables (𝐮, 𝜙) and making use of Gauss’ divergence
theorem, rendering

∇ ⋅
[

(1 − 𝜙)2𝝈0
]

= 𝟎 in 𝛺

𝐺𝑐

(

𝜙
𝓁

− 𝓁∇2𝜙
)

− 2(1 − 𝜙)𝜓0 = 0 in 𝛺 (4)

here 𝝈0 is the undamaged stress tensor. As seen in (4)b, the evolution
f the phase field is governed by the (undamaged) elastic strain energy
ensity which, for linear elastic isotropic solids, is given by

0 =
1
2
𝜆tr (𝜺)2 + 𝜇 𝜺 ∶ 𝜺 , (5)

where 𝜆 and 𝜇 are the Lamé coefficients. It follows that the phase field is
insensitive to the compressive or tensile nature of the mechanical fields
(tension–compression symmetry in damage evolution). To enforce a
2

distinction between tension and compression behaviour, several formu-
lations have been proposed. Initially, the motivation was the need to
avoid crack interpenetration and achieve the resistance to cracking un-
der compression observed in some materials such as metals. Examples
of strain energy decompositions formulated with this objective include
the volumetric–deviatoric split by Amor et al. [25], the spectral decom-
position by Miehe and co-workers [26], and the purely tensile splits
(so-called ’no-tension’ models) of Freddi and Royer-Carfagni [27,28]
and Lo et al. [29]. On the other hand, rising interest in using phase
field methods to model fracture in concrete and geomaterials has led
to the development of driving force definitions that accommodate non-
symmetric failure surfaces [30]. Zhou et al. [31] and Wang et al. [32]
developed new driving force formulations based on Mohr–Coulomb
theory. And very recently, de Lorenzis and Maurini [33] presented an
analytical study where the strain energy split was defined based on a
Drucker–Prager failure surface. The majority of these works adopt the
following structure. The elastic strain energy density is decomposed
into two parts: (i) a part affected by damage, 𝜓𝑑 , and (ii) a stored
residual elastic part 𝜓𝑠, which is independent of the damage variable
and thus not susceptible to dissipation. Accordingly,

𝜓0 (𝜺) = 𝜓𝑑 (𝜺) + 𝜓𝑠 (𝜺) , and 𝜓 (𝜺, 𝜙) = 𝑔 (𝜙)𝜓𝑑 (𝜺) + 𝜓𝑠 (𝜺) , (6)

which necessarily implies,

𝜓 (𝜺, 𝜙) = 𝑔 (𝜙)𝜓0 (𝜺) + (1 − 𝑔 (𝜙))𝜓𝑠 (𝜺) . (7)

And this decomposition of the strain energy density gives rise to an
nalogous decomposition of the Cauchy stress tensor, such that

(𝜺, 𝜙) = 𝑔 (𝜙)
𝜕𝜓𝑑 (𝜺)
𝜕𝜺

+
𝜕𝜓𝑠 (𝜺)
𝜕𝜺

= 𝑔 (𝜙)𝝈𝑑 + 𝝈𝑠 . (8)

where 𝝈𝑑 and 𝝈𝑠 respectively denote the damaged and non-degraded
parts of the Cauchy stress tensor.

The aim of this work is to present a generalised approach to identify
𝜓𝑠 (𝜺) (and subsequently 𝜓𝑑 (𝜺)) as a function of the failure surface
nd the constitutive behaviour of the pristine material. This is pre-
ented below, in Section 3, where the framework is exemplified with a
rucker–Prager [34] failure surface.

. A general approach for decomposing the strain energy density
ased on failure criteria

We proceed to present a general approach for decomposing the
train energy density so as to incorporate any arbitrary failure criterion
n the phase field fracture method. As the strain energy density is
he driving force for fracture, a suitable choice of strain energy de-
omposition can enable reproducing the desired failure surface. Such
choice must satisfy the failure criterion assumed while recovering

he constitutive behaviour of the pristine material. Here, for simplicity,
e choose to focus on solids exhibiting linear elastic behaviour in the
ndamaged state. However, the framework is general and can be ex-
ended to other constitutive responses, such as hyperelasticity. We shall
irst derive the partial differential equation (PDE) that characterises the
ossible solutions for the non-dissipative stored strain energy density
𝑠 in linear elastic solids. Then, we consider the failure envelope

unction that provides the constraint required to obtain a solution to
his PDE. The process is exemplified with a Drucker–Prager failure
urface, and the section concludes with brief details of the numerical
mplementation.

As in Ref. [27], the Theory of Structured Deformations [35] is applied
o a damaged continuum solid. We confine our attention to infinitesi-
al deformations, such that the total strain tensor can be estimated

rom the displacement vector as,

= 1 (

∇𝐮𝑇 + ∇𝐮
)

(9)

2
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Fig. 1. Meso-scale Representative Volume Element (RVE) of a damaged solid, showing regions of micro-cracks and intact material in the: (a) undeformed, and (b) deformed states,
ith the latter emphasising the effect of micro-crack opening and sliding.
w
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Representative Volume Element (RVE) can be defined, see Fig. 1,
uch that the meso-scale representation of the material involves regions
f intact material and micro-cracks. In this context, the phase field 𝜙

is akin to a damage variable, and describes the integrity of the RVE
(the extent of dominance of intact and cracked regions, within the two
limiting cases of 𝜙 = 0 and 𝜙 = 1). The macroscopic deformation is
hen the sum of two contributions: an elastic straining of the intact
aterial regions, and the opening and sliding of micro-cracks, that can

oalescence into macroscopic cracks. Accordingly,

= 𝜺𝑒 + 𝜺𝑑 , (10)

where 𝜺𝑒 are the elastic (recoverable) strains due to the deformation
of the undamaged structure, while 𝜺𝑑 denotes the inelastic strains
associated with microscopic damage mechanisms.

The elastic strain tensor 𝜺𝑒 is related to the Cauchy stress tensor
through the inverse of the elastic stiffness matrix 𝜺𝑒 =

(

0
)−1 𝝈 and, if 𝜺𝑒

and 𝜺𝑑 are orthogonal, the stored and damaged strain energy densities
of effective configuration (see Section 2) can be estimated as,

𝜓𝑠 =
1
2
𝜺𝑒𝐶0𝜺𝑒 and 𝜓𝑑 = 1

2
𝜺𝑑𝐶0𝜺𝑑 (11)

with the total strain energy density 𝜓 being computed from 𝜓𝑠 and 𝜓𝑑
using Eq. (6). Now, let us consider the strain energy density of pristine
material as a function of the effective stress invariants (𝐼1(𝝈0), 𝐽2(𝝈0));

𝜓0(𝜺) =
1

18𝐾
𝐼21 (𝝈0(𝜺)) +

1
2𝜇
𝐽2(𝝈0(𝜺)) , (12)

where 𝐾 is the bulk modulus, 𝜇 is the shear modulus, 𝐼1 is the first
invariant of a tensor, and 𝐽2 is the second invariant of the deviatoric
part of a tensor. Eq. (12) holds for any linear elastic isotropic solid.
The stiffness and material behaviour associated with the non-degraded
strain energy density 𝜓𝑠 and stress 𝝈𝑠 corresponds to that of intact
material and, accordingly,

𝜓𝑠 =
1

18𝐾
𝐼21 (𝝈

𝑠) + 1
2𝜇
𝐽2(𝝈𝑠) . (13)

hen, for any choice of 𝜓(𝐼1(𝜺), 𝐽2(𝜺)), it is possible to describe the
relation between the invariants of strain and stress as follows (see
Appendix A):

𝐼1(𝝈(𝜺)) = 3
𝜕𝜓(𝜺)
𝜕𝐼1(𝜺)

, 𝐽2(𝝈(𝜺)) = 𝐽2(𝜺)
(

𝜕𝜓(𝜺)
𝜕𝐽2(𝜺)

)2
(14)

By substituting Eq. (14) into Eq. (13), one can obtain the PDE for
the stored strain energy density,

𝜓𝑠 =
1

(

𝜕𝜓𝑠
)2

+
𝐽2(𝜺)

(

𝜕𝜓𝑠
)2

(15)
3

2𝐾 𝜕𝐼1(𝜺) 2𝜇 𝜕𝐽2(𝜺)
Upon the appropriate constraints and boundary conditions, one can
solve the PDE (15) to obtain the non-dissipative stored part of the
strain energy density for any level of material damage. The additional
constraint needed comes from the definition of the failure criterion
under consideration. Any arbitrary failure envelope can be defined in
terms of the stress invariants for the fully damaged state. For illus-
tration, let us consider a failure surface defined in terms of 𝐼1 and
𝐽2; i.e., 𝑓

(

𝐼1(𝝈𝑓 ), 𝐽2(𝝈𝑓 )
)

= 0, where 𝝈𝑓 = 𝝈(𝜺, 𝜙 = 1). Accordingly,
considering Eq. (14), the following failure envelope function can be
defined:

𝑓
(

𝜕𝜓𝑠(𝜺)
𝜕𝐼1(𝜺)

,
𝜕𝜓𝑠(𝜺)
𝜕𝐽2(𝜺)

)

= 0 (16)

and 𝜓𝑠 can be found from the common solution to Eqs. (15) and
(16) upon the application of appropriate boundary conditions. This is
showcased below for a Drucker–Prager failure envelope.

3.1. Particularisation to the Drucker–Prager failure surface

Drucker–Prager’s failure criterion was developed for
pressure-dependent materials like rock, concrete, foams and poly-
mers. In terms of invariants of stress, the Drucker–Prager criterion is
expressed as follows,
√

𝐽2(𝝈) = 𝐴 + 𝐵𝐼1(𝝈) , (17)

here 𝐴 and 𝐵 are a function of the uniaxial tensile (𝜎𝑡) and compres-
ive (𝜎𝑐) strengths, such that

= 2
√

3

(

𝜎𝑐𝜎𝑡
𝜎𝑐 + 𝜎𝑡

)

; 𝐵 = 1
√

3

(

𝜎𝑡 − 𝜎𝑐
𝜎𝑐 + 𝜎𝑡

)

. (18)

A material point sitting inside the Drucker–Prager failure envelope
can be assumed to behave in a linear elastic manner, with damage-
driven non-linear behaviour being triggered when the stress state
reaches the failure surface. Assuming that the same degradation func-
tion 𝑔(𝜙) applies to the tensile and compressive strengths, then the
sensitivity of the parameters 𝐴 and 𝐵 to the phase field variable is
haracterised by,

(𝜙) = 2
√

3

(

𝑔(𝜙)𝜎𝑐𝑔(𝜙)𝜎𝑡
𝑔(𝜙)𝜎𝑐 + 𝑔(𝜙)𝜎𝑡

)

= 𝑔(𝜙) 2
√

3

(

𝜎𝑐𝜎𝑡
𝜎𝑐 + 𝜎𝑡

)

= 𝑔(𝜙)𝐴(𝜙 = 0)

𝐵(𝜙) = 1
√

3

(

𝑔(𝜙)𝜎𝑡 − 𝑔(𝜙)𝜎𝑐
𝑔(𝜙)𝜎𝑐 + 𝑔(𝜙)𝜎𝑡

)

= 1
√

3

(

𝜎𝑡 − 𝜎𝑐
𝜎𝑐 + 𝜎𝑡

)

= 𝐵(𝜙 = 0)
(19)

Accordingly, for the fully damaged state (𝜙 = 1), the Drucker–Prager
parameters read,
𝐴(𝜙 = 1) = 0 ; 𝐵(𝜙 = 1) = 𝐵(𝜙 = 0) . (20)
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I.e., 𝐴 is degraded as the phase field evolves, while the parameter
𝐵 is insensitive to the damage state. This can be physically inter-
preted through the cohesion parameter 𝑐 and the friction angle 𝜃
of Mohr–Coulomb’s criterion, and their relationship with Drucker–
Prager’s coefficients:

𝐴 (𝜃, 𝑐) = 6𝑐 cos 𝜃
√

3(3 + sin 𝜃)
; 𝐵 (𝜃) = 2 sin 𝜃

√

3(3 + sin 𝜃)
. (21)

As seen in Eq. (21), 𝐵 is only a function of the friction angle, while 𝐴
s also a function of 𝑐, exhibiting a linear relationship with the cohesion
arameter. Since damage translates into a loss of cohesion, both 𝐴 and
degrade with evolving damage, and eventually vanish in fully cracked

tate.
In addition, consistent with Eq. (17), the stress state in the fully

damaged configuration satisfies,
√

𝐽2(𝝈𝑓 ) = 𝐵𝐼1(𝝈𝑓 ) , (22)

s the stress state goes back to the failure envelope for 𝜙 = 1 (see Fig. 2).
As discussed above, our general approach requires a function de-

cribing the failure condition in terms of the strain energy density and
he strains—see Eq. (16). This can be achieved by combining Eqs. (14)

and (22), reaching

𝑓
(

𝜕𝜓𝑠(𝜺)
𝜕𝐼1(𝜺)

,
𝜕𝜓𝑠(𝜺)
𝜕𝐽2(𝜺)

)

=
√

𝐽2(𝜺)
𝜕𝜓𝑠(𝜺)
𝜕𝐽2(𝜺)

− 3𝐵
𝜕𝜓𝑠(𝜺)
𝜕𝐼1(𝜺)

= 0 (23)

An isotropic linear elastic material must satisfy Eq. (15) and, if
obeying the Drucker–Prager failure criterion, also Eq. (23). Hence, the
common solution to these two PDEs will give us the stored (elastic)
strain energy density 𝜓𝑠. Let us obtain this common solution by first
finding the general solution of Eq. (23), which is of the form

𝜓𝑠 = 𝑎1
(

𝐼1(𝜺) + 6𝐵
√

𝐽2(𝜺)
)2

+ 𝑎2 (24)

here 𝑎1 and 𝑎2 are unknowns. These can be estimated by applying
uitable boundary conditions and substituting the general solution into
he second PDE. Hence, considering the boundary condition 𝜓𝑠(𝐼1(𝜺) =
, 𝐽2(𝜺) = 0) = 0, one finds that 𝑎2 = 0. Then, the remaining unknown
s obtained by deriving Eq. (24) with respect to 𝐼1(𝜺) and 𝐽2(𝜺) and
ubstituting into Eq. (15), rendering

1 =
𝐾𝜇

18𝐵2𝐾 + 2𝜇
. (25)

Accordingly, upon substitution in Eq. (24), the stored (elastic) strain
nergy density associated with the Drucker–Prager failure envelope is
4

ound to be:

𝑠 =
𝐾𝜇

18𝐵2𝐾 + 2𝜇

(

𝐼1(𝜺) + 6𝐵
√

𝐽2(𝜺)
)2

(26)

However, one should note that Eq. (26) is only valid for stress states
hat are above the failure envelope. Three potential scenarios exist: (1)
he first invariant of stress is positive, 𝐼1(𝝈) > 0; (2) the stress state is
bove the failure criterion,

√

𝐽2(𝝈) ≥ 𝐵𝐼1(𝝈); and (3) the stress state
s below the failure criterion,

√

𝐽2(𝝈) < 𝐵𝐼1(𝝈). With scenarios (2) and
3) being only relevant when 𝐼1(𝝈) < 0. We then proceed to generalise
q. (26) to encompass those three regimes (see Appendix B), such that

𝜓𝑠 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for − 6𝐵
√

𝐽2(𝜺) < 𝐼1(𝜺)
𝐾𝜇

18𝐵2𝐾+2𝜇

(

𝐼1(𝜺) + 6𝐵
√

𝐽2(𝜺)
)2

for − 6𝐵
√

𝐽2(𝜺) ≥ 𝐼1(𝜺)

& 2𝜇
√

𝐽2(𝜺) ≥ 3𝐵𝐾𝐼1(𝜺)
1
2𝐾𝐼

2
1 (𝜺) + 2𝜇𝐽2(𝜺) for 2𝜇

√

𝐽2(𝜺) < 3𝐵𝐾𝐼1(𝜺)

(27)

nd the damaged part of the strain energy density can be readily
stimated using Eq. (6), rendering

𝑑 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2
𝐾𝐼21 (𝜺) + 2𝜇𝐽2(𝜺) for − 6𝐵

√

𝐽2(𝜺) < 𝐼1(𝜺)
1

18𝐵2𝐾+2𝜇

(

−3𝐵𝐾𝐼1(𝜺) + 2𝜇
√

𝐽2(𝜺)
)2

for − 6𝐵
√

𝐽2(𝜺) ≥ 𝐼1(𝜺)

& 2𝜇
√

𝐽2(𝜺) ≥ 3𝐵𝐾𝐼1(𝜺)
0 for 2𝜇

√

𝐽2(𝜺) < 3𝐵𝐾𝐼1(𝜺)

(28)

The different stress states are illustrated in Fig. 2 in terms of their
location in the

(

𝐼1(𝝈),
√

𝐽2(𝝈)
)

space, where the colour contours denote
he magnitude of the total strain energy (increasing as we move away
rom the origin). The loading path illustrated with blue dots, path
a), illustrates the case where the first invariant of stress is positive
1(𝝈) > 0. In such a scenario, the failure process is driven by 𝜓𝑑 , with
he fully damage state achieved by returning to the origin (where the
oading path intersects the Drucker–Prager failure criterion). In regards
o the stress states on the left side of the figure (𝐼1(𝝈) < 0), their
ehaviour is differentiated by their location relative to the Drucker–
rager criterion, which is represented by the

√

𝐽2(𝝈) = 𝐵𝐼1(𝝈) line.
Thus, the red loading path (b) is above the Drucker–Prager criterion
and both 𝜓𝑠 and 𝜓𝑐 are active, see Eqs. (27)b and (28)b. Eventually, the
oading path intersects again the

√

𝐽2(𝝈) = 𝐵𝐼1(𝝈) line, reaching the
fully damaged state and the associated residual strain energy density
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Fig. 3. Sketch showcasing the dilatancy effect on geomaterials, also known as Reynolds dilatancy. Bulk expansion takes place due to the lever motion that occurs between
eighbouring grains as a result of interlocking.
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𝑠. Finally, loading paths within the 𝐼1(𝝈) < 0 domain can also lie
below the failure criterion, as showcased by the purple circles, path
(c). In this case, 𝜓𝑑 = 0, see Eq. (28)c, and consequently 𝜙 = 0. As
shown in Fig. 2, changes in stress state associated with the loading
path might lead to an intersection with the Drucker–Prager failure line,
in what would constitute a micro-fracturing nucleation event (𝜙 > 0).
Subsequently, final rupture (𝜙 = 1) would be attained when the loading
path intersects again with the failure line, rendering a residual strain
energy density 𝜓𝑠.

This phase field fracture formulation built upon Drucker–Prager’s
failure criterion is numerically implemented using the finite element
method. Retaining unconditional stability, we solve in a monolithic
fashion the coupled system of equations that results from restating the
local force balances,

∇ ⋅
[

(1 − 𝜙)2
𝜕𝜓𝑑 (𝜺)
𝜕𝜺

+
𝜕𝜓𝑠 (𝜺)
𝜕𝜺

]

= 𝟎 in 𝛺

𝐺𝑐

(

𝜙
𝓁

− 𝓁∇2𝜙
)

− 2(1 − 𝜙) = 0 in 𝛺 (29)

into their weak form. Here,  = max𝜓𝑑 (𝑡) is a history field introduced
to enforce damage irreversibility [26]. As described in Appendix C,
we take advantage of the analogy between the phase field evolution
law and the heat transfer equation to implement the model into the
finite element package ABAQUS using solely a user-material subroutine
(UMAT) (see Refs. [36,37]).

4. Representative results

Now, we shall illustrate the potential of enriching the phase field
fracture description with a failure envelope of our choice. Specifically,
through numerical examples, we will showcase how a formulation
based on the Drucker–Prager failure criterion can capture the com-
pressive failure of brittle materials such as concrete or geomaterials,
along with capturing frictional behaviour and the dilatancy effect.
Firstly, in Section 4.1, we gain insight into the material behaviour
resulting from the Drucker–Prager strain energy split adopted by inves-
tigating the response of a single element undergoing shear. Secondly,
numerical experiments using the Direct Shear Test (DST) configuration
are conducted in Section 4.2. The goal is to investigate the fracture
predictions obtained under the conditions relevant to the determination
of the failure properties of frictional materials. The third case study,
shown in Section 4.3, involves conducting virtual uniaxial and triaxial
compression tests on concrete, so as to investigate the confinement
effect. Finally, in Section 4.4, the predictions obtained from three
strain energy splits are compared in the modelling of the localised
failure of a soil slope. Our finite element calculations extend the very
recent analytical study by de Lorenzis and Maurini [33], where a
Drucker–Prager failure surface was also adopted.
5

Fig. 4. Configuration of a single element under pressure and shear stress.

.1. Single element under shear deformation

We begin our numerical experiments by conducting shear tests on
single element. The aim is to investigate the ability of the Drucker–
rager based formulation presented in capturing frictional behaviour
nd the dilatancy effect. The latter is the volume change observed
n granular materials subjected to shear deformations, due to the
nterlocking between grains and interfaces (see Fig. 3).

As shown in Fig. 4, a single plane strain element is considered
ndergoing both shear and uniaxial pressure. Specifically, a vertical
onstant pressure is first applied, followed by shear displacement at
he top and bottom edges. In this and all other case studies, the
eumann boundary condition ∇𝜙 ⋅ 𝐧 = 0 is adopted for the phase field.
he constitutive behaviour of the element is characterised by linear
lasticity, with a Young’s modulus of 𝐸 = 25 GPa and a Poisson’s ratio
f 𝜈 = 0.2. The fracture behaviour is described by a material toughness
f 𝐺𝑐 = 0.15 kJ/m2 and a phase field length scale of 𝓁 = 2 mm.

We aim at assessing the frictional behaviour of the model, for which
t is convenient to formulate the relation between the shear strain 𝜀𝑥𝑦
nd the shear stress 𝜎𝑥𝑦, as a function of the pressure and Drucker–
rager’s 𝐵 parameter. For the fully damaged state (𝜙 = 1), this relation
eads

𝜎𝑓 )𝑥𝑦 =
𝜕𝜓𝑐 (𝜺)
𝜕𝜀𝑥𝑦

=
𝐾𝜇

9𝐵2𝐾 + 𝜇

(

𝐼1(𝜺)
√

𝐽2(𝜺)
+ 6𝐵

)

𝜀𝑥𝑦 (30)

First, let us consider the case of no pressure (𝑃 = 0). Fig. 5(a)
shows the shear stress versus shear strain curves obtained for different
𝐵 values. The role played by damage evolution can be readily observed,
with calculations obtained for low absolute 𝐵 values exhibiting a peak
in the shear stress response. For the fully cracked state (𝜙 = 1), the
shear stress drops to zero only if 𝐵 = 0. Hence, the expected influence
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Fig. 5. Single element under shear deformation. Results obtained without vertical pressure (𝑃 = 0 MPa) for selected choices of 𝐵: (a) shear stress 𝜎𝑥𝑦 versus shear strain 𝜀𝑥𝑦, and
(b) 𝐼1(𝜺)∕

√

𝐽2(𝜺) versus shear strain 𝜀𝑥𝑦.
Fig. 6. Single element under shear deformation. Shear stress versus shear strain predictions as a function of 𝑃 for selected values of the 𝐵 parameter: (a) 𝐵 = 0, (b) 𝐵 = −0.1, (c)
= −0.3, and (c) 𝐵 = −0.57.
f dilatancy on the stress–strain curve is attained for 𝐵 ≠ 0, and the
ffect increases with increasing its absolute magnitude (|𝐵|). This load
earing capacity that is retained after reaching the fully cracked state
ue to dilatancy arises due to two contributions. One is the term 6𝐵
n Eq. (30). The second one is the term 𝐼1(𝜺)∕

√

𝐽2(𝜺) - as shown in
Fig. 5(b), it attains a positive constant value for 𝜙 = 1 and 𝐵 ≠ 0.
However, the relation between 𝐵 and 𝐼1(𝜺)∕

√

𝐽2(𝜺) is non-linear.
6

Next, the influence of vertical pressure is examined. The results
obtained for selected values of 𝑃 and 𝐵 are shown in Fig. 6. For the case
of 𝐵 = 0 (Fig. 6(a)), the shear stress shows a negligible sensitivity to the
vertical pressure and no frictional effect (𝜎𝑥𝑦 drops to zero as 𝜙 → 1).
The peak stress value shows some sensitivity to 𝑃 due to the interplay
between damage and the applied pressure. The results seen for 𝐵 = 0
contrast with those obtained for non-zero 𝐵 values (Figs. 6b–d). For
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Fig. 7. Single element under shear deformation. Volumetric strain versus shear strain predictions as a function of 𝑃 for selected values of the 𝐵 parameter: (a) 𝐵 = 0, (b) 𝐵 = −0.1,
c) 𝐵 = −0.3, and (c) 𝐵 = −0.57.
≠ 0, friction plays a noticeable role with the shear stress increasing
ith 𝑃 . Also, the slope of the shear stress–strain curve increases with

he absolute value of 𝐵.
The ability of the Drucker–Prager based split model to capture the

ilatancy effect is further explored by plotting the predictions of volu-
etric strain 𝜀𝑣𝑜𝑙 = 𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧 for selected values of the parameter
and the applied pressure 𝑃 . As shown in Fig. 7, the volumetric strain

𝑣𝑜𝑙 increases with the shear strain 𝜀𝑥𝑦 in all cases except for that of
= 0. The effect of dilatancy is clear in all 𝐵 ≠ 0 calculations (Fig. 7b–

). In addition, the results show that higher pressures lead to reductions
n volume as a result of material damage.

.2. Virtual Direct Shear Tests (DST)

Next, the Direct Shear Test (DST) is simulated to evaluate the model
ehaviour in an experimental configuration that is widely used for
inding the frictional parameters of soil and rock materials, such as
ohesion and friction angle. The geometry and boundary conditions
f the model are shown in Fig. 8. A vertical pressure 𝑃 is applied at
he top edge, followed by a horizontal displacement 𝑢𝑥 over a 24 mm
ong region of the left edge. We consider three scenarios to assess
he role of the vertical pressure: 𝑃 = 20 MPa, 𝑃 = 10 MPa and no
ressure (𝑃 = 0). The elastic properties are taken as 𝐸 = 25 GPa and
= 0.2, while the fracture parameters are given by 𝐺𝑐 = 0.15 kJ/m2

and 𝓁 = 0.2 mm. The model is discretised with approximately 80,000
4-node plane strain quadrilateral elements with full integration. The
mesh is refined along the expected crack propagation region, such that
7

Fig. 8. Direct shear test (DST) model. Geometry and boundary conditions.

the characteristic element size is at least half of the phase field length
scale 𝓁.
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a

Fig. 9. Direct shear test (DST). Shear load versus applied displacement results as a
function of the applied pressure 𝑃 .

The results obtained are shown in Fig. 9, in terms of the shear
force versus the applied displacement 𝑢𝑥, and as a function of the
applied pressure 𝑃 . The case of no pressure shows a complete drop of
the load carrying capacity as a result of damage, in agreement with
experimental DST observations on geomaterials. However, a residual
load is retained when a vertical pressure is applied, and this increases
with the magnitude of 𝑃 . Also, in all cases some oscillations can be seen
in the force versus displacement response, which can be attributed to
the effect of grain interlocking.

Finally, the predicted crack trajectories are shown in Fig. 10, as a
function of 𝑃 , by plotting contours of the phase field order parameter 𝜙.
The results reveal an influence of the applied pressure on the cracking
pattern. The lower the vertical pressure the more tortuous the crack
path. Also, increasing the applied pressure leads to an accumulation of
damage at the edges of the loading region, which are then connected
through a crack that propagates across the sample.

4.3. Uniaxial and triaxial compression testing of concrete

The third case study involves the failure of concrete samples under-
going uniaxial and triaxial compression. The aim is to investigate the
abilities of the Drucker–Prager formulation presented to capture the ef-
fect of confinement. Mimicking the commonly used experimental setup,
a cylindrical specimen is subjected to a compressive displacement at
the top, while its surface is subjected to a confinement pressure. In the
numerical model, we take advantage of axial symmetry and simulate a
2D section of the sample. The dimensions and loading configuration
8

of the model are given in Fig. 11. To reproduce with fidelity the
experimental conditions, we choose to simulate the contact between
the jaws and the concrete sample. The jaws are assumed to be made
of steel, with elastic properties 𝐸 = 210 GPa and 𝜈 = 0.3. The contact
between the jaws and the disc is defined as a surface to surface contact
with a finite sliding formulation. The tangential contact behaviour is
assumed to be frictionless while the normal behaviour is based on a
hard contact scheme, where the contact constraint is enforced with
a Lagrange multiplier representing the contact pressure in a mixed
formulation. The material properties of concrete are taken to be 𝐸 =
25 GPa, 𝜈 = 0.2, 𝓁 = 0.4 mm, 𝐺𝑐 = 0.15 kJ/m2, and 𝐵 = −0.12. Linear
quadrilateral axisymmetric elements are used to discretise the model.
In particular, approximately 35,000 elements are used to discretise the
concrete sample while 1500 elements are employed in each of the jaws.
The characteristic element size in the areas of interest is below 0.2 mm,
half of the phase field length scale. The ratio between the applied
pressure and the prescribed displacement equals 𝑃∕𝑢𝑦 = 10 MPa/mm.

The force versus displacement responses predicted with and without
a confinement pressure are shown in Fig. 12. It can be seen that, in
agreement with expectations, the application of a confinement pressure
increases the magnitude of the critical load. The ultimate strength of
the sample with confinement is found to be almost 40% higher than
the unconfined one. Also, a more brittle behaviour is observed in the
unconfined sample, with a sharper drop in the load carrying capacity
at the moment of failure.

Qualitative differences are found between the cracking patterns
observed for the confined and unconfined experiments. As shown in
Fig. 13, in the unconfined specimen the crack starts from the edge
and propagates gradually towards the centre, creating a cone shape
fracture. This is in agreement with the cracking patterns observed
experimentally for brittle solids in the absence of confinement [38,39].
However, in the confined specimen, see Fig. 14, the crack nucleates
at the centre of the sample and then propagates towards the surface,
exhibiting a double shear failure mode. Such a cracking pattern has
also been reported in experiments conducted under confinement pres-
sures [39]. Of interest for future work is the analysis of the influence
of friction between the sample and the compression plates, which can
be readily be incorporated into the present framework and has been
argued to influence cracking patterns [28,40].

4.4. Localised failure of a soil slope

Finally, in our last case study, we compare the predictions of
the Drucker–Prager strain energy decomposition formulation to those
obtained with what are arguably the most widely use strain energy
decompositions in the literature: the volumetric–deviatoric split by
Amor et al. [25] and the spectral decomposition by Miehe and co-
workers [26]. First, the damaged and stored (elastic) strain energy
Fig. 10. Direct shear test (DST). Predicted cracking patterns, as shown through contours of the phase field 𝜙 for selected values of the applied pressure: (a) 𝑃 = 0, (b) 𝑃 = 10 MPa,
nd (c) 𝑃 = 20 MPa.



Theoretical and Applied Fracture Mechanics 121 (2022) 103555Y. Navidtehrani et al.

𝜓

w
𝜺
s

t

s
b
F
l
b
t
a
O
t
s
p
t

5

d
d
i
f
c
a
m
D
w
a
g
t
n
t
t
a
b
w
c
i
c
d
t
g
m
p
t

Fig. 11. Compressive failure of concrete. Model geometry, dimensions and boundary
conditions.

Fig. 12. Compressive failure of concrete. Predicted load versus displacement curves for
a sample without confinement pressure and one with a confinement pressure-prescribed
displacement ratio of 𝑃∕𝑢𝑦 = 10 MPa/mm.

densities are defined for these two approaches, following the terminol-
ogy of Section 2. Thus, the volumetric–deviatoric split is characterised
by,

𝜓𝑑 (𝜺) =
1
2
𝐾⟨tr (𝜺)⟩2+ + 𝜇

(

𝜺′ ∶ 𝜺′
)

, 𝜓𝑠 (𝜺) =
1
2
𝐾⟨tr (𝜺)⟩2− . (31)

Here, ⟨𝑎⟩± = (𝑎 ± |𝑎|) ∕2, and 𝜺′ = 𝜺− tr (𝜺) 𝑰∕3. While the strain energy
decomposition by Miehe et al. [26] reads,

𝜺 = 1 𝜆⟨tr 𝜺 ⟩

2 + 𝜇tr
[

(

𝜺+
)2
]

, 𝜓 𝜺 = 1 𝜆⟨tr 𝜺 ⟩

2 + 𝜇tr
[

𝜺− 2] , (32)
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𝑑 ( )
2

( ) + 𝑠 ( )
2

( ) − ( ) c
here a spectral decomposition is applied to the strain tensor, such that
± =

∑3
𝑎=1⟨𝜀𝐼 ⟩±𝐧𝐼⊗𝐧𝐼 , with 𝜀𝐼 and 𝐧𝐼 being, respectively, the principal

trains and principal strain directions (with 𝐼 = 1, 2, 3).
The boundary value problem under consideration is inspired by

he work by Regueiro and Borja [41], where a strong discontinuity
approach was used to predict the stability of a soil slope. This problem
was also recently investigated by Fei and Choo [42] using a phase field-
based frictional shear fracture model. The geometry, dimensions and
boundary conditions are given in Fig. 15. A rigid foundation is placed
at the crest of the slope, as shown in Fig. 15. First, a gravity load is
applied, followed by a vertical displacement that is prescribed at the
centre of the rigid foundation. The material properties of the soil are
given by 𝐸 = 10 MPa, 𝜈 = 0.4, 𝓁 = 0.1 m, 𝐺𝑐 = 0.2 kJ/m2, and
𝐵 = 0.12. Approximately 50,000 quadrilateral linear elements are used,
with the mesh being refined in the crack propagation region through
an iterative process. In all cases, the characteristic size of the elements
in the damaged region is five times smaller than the phase field length
scale 𝓁.

The results obtained are given in Fig. 16. The cracking patterns are
hown for each of the three strain energy decompositions considered,
y means of contours of the phase field order parameter 𝜙. As shown in
ig. 16a, the volumetric–deviatoric split by Amor et al. [25] predicts a
ocalised failure under the rigid foundation. The spectral decomposition
y Miehe and co-workers [26] is also unable to adequately capture
he localised failure of the soil slope. As shown in Fig. 16b, damage
ccumulates under the rigid foundation, showing a V-type of failure.
n the other hand, the Drucker–Prager formulation presented in Sec-

ion 3 is able to appropriately simulate the localised failure of the soil
lope. Cracking initiates from the right corner of the foundation and
ropagates towards the edge of the slope, in a very similar pattern to
hat reported by other numerical experiments [41,42].

. Discussion

The aim of the present work is to present a general approach to
ecompose the phase field fracture driving force, the strain energy
ensity, so as to encompass any arbitrary choice of failure criteria. One
mportant motivation for this work lies in the need to enrich the phase
ield fracture method to go beyond its assumed symmetric tension–
ompression fracture behaviour to adequately predict crack nucleation
nd growth in multi-axial stress states. The potential of the general
ethodology presented is demonstrating by particularising it to the
rucker–Prager failure surface. In doing so, we establish a connection
ith the recent work by De Lorenzis and Maurini [33]. De Lorenzis
nd Maurini [33] showed analytically that phase field fracture can be
eneralised to accommodate arbitrary multiaxial failure surfaces and
hus faithfully predict crack nucleation without the need to recur to
on-variational models. They also chose to particularise their approach
o a Drucker–Prager failure surface. Thus, both works reach the same
heoretical outcome from different angles. Since our paper also includes

numerical implementation, it complements and extends the work
y De Lorenzis and Maurini [33], confirming their findings. It is also
orth noting that our analysis is not limited to nucleation but also

onsiders the propagation of cracks until failure. To achieve this, it
s here assumed that the same surface in the multiaxial stress space
haracterises the limit of the elastic domain (𝜙 > 0) and the fully
amaged state (𝜙 = 1). Several numerical experiments are reported
o showcase the ability of the model to predict crack nucleation and
rowth in boundary value problems exhibiting multi-axial loading and
ixed-mode fracture conditions. An alternative approach is that pro-
osed by Kumar et al. [43], where an external driving force is defined
o recover a Drucker–Prager failure surface. However, this comes at the

ost of losing the variational consistency.
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Fig. 13. Compressive failure of concrete. Cracking patterns for the unconfined sample, as described by the phase field 𝜙 contours: (a) axisymmetric 2D results, and (b) 3D
visualisation.

Fig. 14. Compressive failure of concrete. Cracking patterns for the confined sample, as described by the phase field 𝜙 contours: (a) axisymmetric 2D results, and (b) 3D visualisation.
The ratio between the applied pressure and the prescribed displacement equals 𝑃∕𝑢𝑦 = 10 MPa/mm.
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Fig. 15. Localised failure of a soil slope. Geometry and boundary conditions.

6. Conclusions

We have presented a general framework for determining the strain
energy decomposition associated with arbitrary choices of constitutive
behaviour and failure criterion. This is of importance for phase field
fracture modelling as it opens a new avenue for incorporating multi-
axial failure surfaces and thus appropriately capturing crack nucleation
in a wide range of materials. In particular, this is needed to predict the
compressive failure of brittle and quasi-brittle solids such as concrete
and geomaterials. Accordingly, we chose to illustrate our framework
by particularising it to the case of a Drucker–Prager failure surface.
We numerically implemented the resulting formulation for the strain
energy decomposition and used it to simulate fracture phenomena in
brittle materials. Specifically, the potential of the Drucker–Prager based
formulation presented was showcased by addressing four paradigmatic
case studies. The behaviour of a single element undergoing shear
deformations and vertical pressure was investigated first. The results
showed that the model is capable of capturing the role of friction and
dilatancy. The magnitude of the shear stresses attained was highest
11
for higher values of the pressure and of Drucker–Prager’s parameter
𝐵. Direct Shear Tests (DST) were subsequently simulated showing a
noticeable influence of the applied pressure. The lower the pressure,
the more tortuous the crack path and the lower the magnitude of
the residual load predicted. Thirdly, the failure of cylindrical samples
under uniaxial and triaxial compression was investigated. The results
revealed a qualitative impact of the confinement pressure on both the
cracking patterns and the force versus displacement response predicted.
Cracking predictions appear to agree with experimental observations,
shifting from a cone shape fracture to a double shear failure mode
with increasing confinement. Finally, we simulated the localised failure
of a soil slope using three different strain energy splits: our Drucker–
Prager approach and the widely used volumetric–deviatoric [25] and
pectral [26] decompositions. The results show that only the Drucker–
rager based formulation is able to adequately predict the fracture
ehaviour. Accordingly, the present work: (i) opens a new avenue
or incorporating multi-axial failure criteria in phase field fracture
odelling, and (ii) demonstrates the potential of Drucker–Prager based
hase field formulations for predicting compressive failures in materials
xhibiting asymmetric tension–compression fracture behaviour.
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Fig. 16. Localised failure of a soil slope. Failure patterns as described by the contours of the phase field order parameter for: (a) the volumetric–deviatoric split, Eq. (31), (b) the
spectral decomposition, Eq. (32), and (c) the Drucker–Prager based split presented, Eqs. (27)–(28).



Theoretical and Applied Fracture Mechanics 121 (2022) 103555Y. Navidtehrani et al.

w

t

𝐼

W

𝐼

t
i
√

W

𝐼

Acknowledgements

The authors acknowledge financial support from the Ministry of
Science, Innovation and Universities of Spain through grant PGC2018-
099695-B-I00. E. Martínez-Pañeda was supported by an UKRI Future
Leaders Fellowship (grant MR/V024124/1).

Appendix A. The relation of stress and strain invariants

In the following, we shall show how Eq. (14) can be derived for any
choice of strain energy density in the form of 𝜓(𝐼1(𝜺), 𝐽2(𝜺)). First, let
us express the Cauchy stress as:

𝝈 (𝜺) =
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝜺

=
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝐼1(𝜺)
𝜕𝐼1(𝜺)
𝜕𝜺

+
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝐽2(𝜺)
𝜕𝐽2(𝜺)
𝜕𝜺

. (A.1)

The variations of the first two invariants of the strain tensor are
ritten as,
𝜕𝐼1(𝜺)
𝜕𝜺

= 𝑰 ,
𝜕𝐽2(𝜺)
𝜕𝜺

= 𝜺′ (A.2)

where 𝑰 denotes the identity tensor and 𝜺′ is the deviatoric part of strain
tensor. On the other side, the first invariant of the Cauchy stress tensor
is given by

𝐼1(𝝈) = tr(𝝈) = tr
(

𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))
𝜕𝜺

)

=
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝐼1(𝜺)
tr
(

𝜕𝐼1(𝜺)
𝜕𝜺

)

+
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝐽2(𝜺)
tr
(

𝜕𝐽2(𝜺)
𝜕𝜺

)

(A.3)

Eq. (A.3) can be simplified by considering tr
(

𝜕𝐼1(𝜺)∕𝜕𝜺
)

= 3 and
r
(

𝜕𝐽2(𝜺)∕𝜕𝜺
)

= 0, such that

1(𝝈) = 3
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝐼1(𝜺)
. (A.4)

which corresponds to Eq. (14)a, the equation relating the first invariant
of stress 𝐼1(𝝈) with the first invariant of strain 𝐼1(𝜺). Next, we use
Eqs. (A.1) and (A.4) to formulate the deviatoric part of the Cauchy
stress tensor 𝝈′ as

𝝈′ = 𝝈 − 1
3

tr (𝝈) 𝑰 = 𝜺′
𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))

𝜕𝐽2(𝜺)
. (A.5)

Then, Eq. (14)b, relating the second stress invariant 𝐽2(𝝈) with its
strain-based counterpart 𝐽2(𝜺) can be obtained by substituting Eq. (A.5)
into the definition of 𝐽2(𝝈), rendering

𝐽2(𝝈) =
1
2

tr
(

(𝝈′)2
)

= 1
2

tr
(

(𝜺′)2
)

(

𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))
𝜕𝐽2(𝜺)

)2

= 𝐽2(𝜺)
(

𝜕𝜓(𝐼1(𝜺), 𝐽2(𝜺))
𝜕𝐽2(𝜺)

)2
. (A.6)

Appendix B. Strain-based mapping of the stress state scenarios

Any relevant stress state can be classified as one of three potential
scenarios in the (𝐼1(𝝈),

√

𝐽2(𝝈)) stress space. However, for numerical
reasons, the stored (reversible) 𝜓𝑠 and damaged 𝜓𝑑 strain energy
densities are formulated in terms of the strain tensor 𝜺, see Eqs. (27)–
(28). Thus, for completeness, we proceed to describe the derivation of
Eqs. (27)–(28) for the stress scenarios discussed in Section 3.

Consider first the third regime, given by Eqs. (27)c and (28)c, where
𝐼1(𝝈) < 0 and the stress state is below the failure envelope. Under these
conditions, damage does not evolve and consequently the stored part of
the strain energy density equals the total one 𝜓𝑠(𝜺) = 𝜓0(𝜺). Specifically,
the stress state in this regime fulfils the following:

√

𝐽 (𝝈) < 𝐵𝐼 (𝝈) and 𝐼 (𝝈) ≤ 0 . (B.1)
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2 1 1
here the stress invariants can be written as,

1(𝝈) = 3
𝜕𝜓(𝜺)
𝜕𝐼1(𝜺)

= 3 𝑔(𝜙)
𝜕𝜓0(𝜺)
𝜕𝐼1(𝜺)

+ 3(1 − 𝑔(𝜙))
𝜕𝜓𝑠(𝜺)
𝜕𝐼1(𝜺)

,

𝐽2(𝝈) = 𝐽2(𝜺)
(

𝜕𝜓(𝜺)
𝜕𝐽2(𝜺)

)2
= 𝑔(𝜙)𝐽2(𝜺)

(

𝜕𝜓0(𝜺)
𝜕𝐽2(𝜺)

)2

+ (1 − 𝑔(𝜙))𝐽2(𝜺)
(

𝜕𝜓𝑠(𝜺)
𝜕𝐽2(𝜺)

)2
.

(B.2)

Considering that, in this scenario, 𝜓𝑠(𝜺) ≡ 𝜓0(𝜺) and inserting Eq. (B.2)
into the first condition of Eq. (B.1), one reaches
√

𝐽2(𝜺)
𝜕𝜓0(𝜺)
𝜕𝐽2(𝜺)

< 3𝐵
𝜕𝜓0(𝜺)
𝜕𝐼1(𝜺)

(B.3)

Now, recalling the definition of 𝜓0, Eq. (13), Eq. (B.3) can be re-
formulated as

2𝜇
√

𝐽2(𝜺) < 3𝐵𝐾𝐼1(𝜺) (B.4)

On the other side, the second condition of Eq. (B.1) can be described
as a function of the strain tensor as follows,

3
𝜕𝜓0(𝜺)
𝜕𝐼1(𝜺)

≤ 0 (B.5)

Implying that 𝐼1(𝜺) ≤ 0. However, this has already been satisfied by
Eq. (B.4) as

√

𝐽2(𝜺) is a positive value and the parameter 𝐵 is always
zero or negative, such that 𝐼1(𝜺) must be negative to satisfy Eq. (B.3).

The second regime in the (𝐼1(𝝈),
√

𝐽2(𝝈)) stress space corresponds to
hat where 𝐼1(𝝈) ≤ 0 and the stress state is above the failure criterion;
.e.,

𝐽2(𝝈) ≥ 𝐵𝐼1(𝝈) and 𝐼1(𝝈) ≤ 0 . (B.6)

Given that Eq. (B.3) provides the strain condition for the case where the
stress state is below the failure criterion, it follows that the relevant
condition for the second regime where the stress state is above the
failure criterion is given by

2𝜇
√

𝐽2(𝜺) ≥ 3𝐵𝐼1(𝜺) (B.7)

Then, the second condition in Eq. (B.6) can be expressed as:

𝑔(𝜙)𝐾𝐼1(𝜺) +
𝐾𝜇

9𝐵2𝐾 + 𝜇
(1 − 𝑔(𝜙))

(

𝐼1(𝜺) + 6𝐵
√

𝐽2(𝜺)
)

≤ 0 . (B.8)

hich, considering that 𝑔(𝜙 = 1) = 0, can be reduced to,

1(𝜺) ≤ −6𝐵
√

𝐽2(𝜺) (B.9)

Accordingly, the conditions for the second regime, in terms of the strain
tensor, are given by (B.7) and (B.9).

The remaining conditions are applicable for the first regime in the
stress space, where 𝐼1(𝝈) is positive:

𝜇
√

𝐽2(𝜺) ≥ 3𝐵𝐾𝐼1(𝜺) ; −6𝐵
√

𝐽2(𝜺) < 𝐼1(𝜺) , (B.10)

where the first condition can be neglected as it is satisfied by the second
one.

Appendix C. Additional details of the finite element implementa-
tion

C.1. Strong and weak formulations

Considering Eq. (2) and the constitutive choices in Eq. (3), Griffith’s
regularised energy functional can be formulated as,

𝓁 = ∫𝛺
𝜓𝑠 (𝜺 (𝐮))+ (1 − 𝜙)2 𝜓𝑑 (𝜺 (𝐮)) d𝑉 +∫𝑉

𝐺𝑐

(

1
2𝓁
𝜙2 + 𝓁

2
|∇𝜙|2

)

d𝑉

(C.1)
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The stationary of 𝓁 with respect to the primal kinematic variables
enders,

𝓁 = ∫𝛺

{[

(1 − 𝜙)2
𝜕𝜓𝑑 (𝜺)
𝜕𝜺

+
𝜕𝜓𝑠 (𝜺)
𝜕𝜺

]

𝛿𝜺 − 2(1 − 𝜙)𝛿𝜙𝜓𝑑 (𝜺)

+ 𝐺𝑐
[ 1
𝓁
𝜙𝛿𝜙 + 𝓁∇𝜙 ⋅ ∇𝛿𝜙

]

}

d𝑉 (C.2)

Accordingly, the strong form can be readily derived by considering
he variation in the external work,

𝑊𝑒𝑥𝑡 = ∫𝛺
𝐛 ⋅ 𝛿𝐮d𝑉 + ∫𝜕𝛺ℎ

𝐡 ⋅ 𝛿𝐮d𝐴 (C.3)

nforcing equilibrium of the external and internal virtual works,

𝓁 − 𝛿𝑊𝑒𝑥𝑡 = 0 (C.4)

nd making use of Gauss’ divergence theorem,

⋅
[

(1 − 𝜙)2
𝜕𝜓𝑑 (𝜺)
𝜕𝜺

+
𝜕𝜓𝑠 (𝜺)
𝜕𝜺

]

+ 𝐛 = 𝟎 in 𝛺

𝐺𝑐

(

𝜙
𝓁

− 𝓁∇2𝜙
)

− 2(1 − 𝜙)𝜓𝑑 = 0 in 𝛺 (C.5)

.2. Heat transfer analogy

As discussed in Refs. [36,37], we exploit the analogy with heat
ransfer to facilitate the numerical implementation of the phase field
volution equation. In the presence of a heat source 𝑟, the steady state
quation for heat transfer has the following form,

∇2𝑇 = −𝑟 (C.6)

here 𝑇 is the temperature, and 𝑘 is the thermal conductivity. Eq. (C.6)
s analogous to the phase field evolution equation ((C.5)b) upon as-
uming 𝑇 ≡ 𝜙, 𝑘 = 1, and defining the heat source 𝑟 as follows:

=
2(1 − 𝜙)

𝓁𝐺𝑐
−
𝜙
𝓁2

(C.7)

here, as discussed in Section 3,  = max𝜓𝑑 (𝑡) is a history field
introduced to enforce damage irreversibility. Finally, the variation of
the heat source with respect to the phase field (temperature) is derived
as,
𝜕𝑟
𝜕𝜙

= − 2
𝓁𝐺𝑐

− 1
𝓁2

(C.8)

.3. Finite element discretisation

By exploiting the heat transfer analogy, one can implement the
hase field formulation described in this paper into the finite element
ackage ABAQUS using only a user material subroutine (UMAT). I.e.,

there is no need to explicitly define and implement the element stiffness
matrix 𝑲𝑒 and the element residual vector 𝑹𝑒. However, these are
derived here for completeness. Consider the equilibrium of the external
and internal virtual works presented in Appendix C.1. Decoupling the
displacement and phase field problems, the weak form equations read,

∫𝛺

{

[

(1 − 𝜙)2
𝜕𝜓𝑑 (𝜺)
𝜕𝜺

+
𝜕𝜓𝑠 (𝜺)
𝜕𝜺

]

∶ 𝛿𝜺 − 𝐛 ⋅ 𝛿𝐮
}

d𝑉 − ∫𝜕𝛺ℎ
𝐡 ⋅ 𝛿𝐮d𝐴 = 0 .

(C.9)

𝛺

{

−2(1 − 𝜙)𝛿𝜙 + 𝐺𝑐
[ 1
𝓁
𝜙𝛿𝜙 + 𝓁∇𝜙∇𝛿𝜙

]}

d𝑉 = 0 . (C.10)

Now, consider the following finite element discretisation. Adopting
oigt notation, the nodal variables for the displacement field 𝐮̂, and the
hase field 𝜙̂ are interpolated as:

=
𝑚
∑

𝑵 𝑖𝐮̂𝑖, 𝜙 =
𝑚
∑

𝑁𝑖𝜙̂𝑖 , (C.11)
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𝑖=1 𝑖=1
where 𝑁𝑖 is the shape function associated with node 𝑖 and 𝑵 𝑖 is
he shape function matrix, a diagonal matrix with 𝑁𝑖 in the diagonal
erms. Also, 𝑚 is the total number of nodes per element and 𝐮̂𝑖 and
̂𝑖 respectively denote the displacement and phase field at node 𝑖. In
similar manner, the associated gradient quantities can be discretised
sing the corresponding B-matrices, containing the derivative of the
hape functions, such that:

=
𝑚
∑

𝑖=1
𝑩𝒖
𝑖 𝐮̂𝑖, ∇𝜙 =

𝑚
∑

𝑖=1
𝐁𝑖𝜙̂𝑖 . (C.12)

The discretised residuals for each primal kinematic variable are then
iven by:

𝐮
𝑖 = ∫𝛺

{

(1 − 𝜙)2
(

𝑩𝐮
𝑖
)𝑇 𝜕𝜓𝑑 (𝜺)

𝜕𝜺
+
(

𝑩𝐮
𝑖
)𝑇 𝜕𝜓𝑠 (𝜺)

𝜕𝜺

}

d𝑉

− ∫𝛺

(

𝐍u
𝑖
)𝑇 𝐛d𝑉 − ∫𝜕𝛺ℎ

(

𝐍u
𝑖
)𝑇 𝐡d𝐴, (C.13)

𝐑𝜙𝑖 = ∫𝛺

{

−2(1 − 𝜙)𝑁𝑖 + 𝐺𝑐

[

1
𝓁
𝑁𝑖𝜙 + 𝓁

(

𝐁𝜙𝑖
)𝑇

∇𝜙
]}

d𝑉 (C.14)

And the consistent tangent stiffness matrices 𝑲 are obtained by
ifferentiating the residuals with respect to the incremental nodal
ariables:

𝐮
𝑖𝑗 =

𝜕𝑹𝒖
𝑖

𝜕𝒖𝑗
= ∫𝛺

{

(1 − 𝜙)2(𝑩𝒖
𝑖 )
𝑇𝑪𝑑 𝑩𝒖

𝑗 + (𝑩𝒖
𝑖 )
𝑇𝑪𝑠 𝑩𝒖

𝑗

}

d𝑉 , (C.15)

𝑲𝜙
𝑖𝑗 =

𝜕𝑅𝜙𝑖
𝜕𝜙𝑗

= ∫𝛺

{(

2 +
𝐺𝑐
𝓁

)

𝑁𝑖𝑁𝑗 + 𝐺𝑐𝓁 𝐁𝑇𝑖 𝐁𝑗
}

d𝑉 , (C.16)

Here, the material Jacobian 𝑪𝑠 can be defined as:

𝑪𝑠 =
𝜕𝜓𝑠
𝜕𝜺𝜕𝜺

=

⎧

⎪

⎨

⎪

⎩

0 for − 6𝐵
√

𝐽2(𝜺) < 𝐼1(𝜺)
𝑪𝐷𝑃
𝑠 for − 6𝐵

√

𝐽2(𝜺) ≥ 𝐼1(𝜺) & 2𝜇
√

𝐽2(𝜺) ≥ 3𝐵𝐾𝐼1(𝜺)
𝑪0 for 2𝜇

√

𝐽2(𝜺) < 3𝐵𝐾𝐼1(𝜺)

(C.17)

where 𝑪0 is undamaged elastic tangent stiffness and 𝑪𝐷𝑃
𝑠 can be written

as:

(𝐶𝐷𝑃𝑠 )𝑖𝑗𝑘𝑙 =
𝐾𝜇

9𝐵2𝐾 + 𝜇

(

𝜕𝐼1
𝜕𝜀𝑖𝑗

+ 3𝐵
√

𝐽2

𝜕𝐽2
𝜕𝜀𝑖𝑗

)(

𝜕𝐼1
𝜕𝜀𝑘𝑙

+ 3𝐵
√

𝐽2

𝜕𝐽2
𝜕𝜀𝐾𝑙

)

+

⎛

⎜

⎜

⎜

⎝

6𝐵𝑎1
(

𝐼1 + 6𝐵
√

𝐽2
)

√

𝐽2

⎞

⎟

⎟

⎟

⎠

(

𝜕2𝐽2
𝜕𝜀𝑖𝑗𝜕𝜀𝑘𝑙

− 1
2𝐽2

𝜕𝐽2
𝜕𝜀𝑖𝑗

𝜕𝐽2
𝜕𝜀𝑘𝑙

)

(C.18)

Finally, 𝑪𝑑 is obtained by exploiting the fact that 𝜓𝑑 = 𝜓0 − 𝜓𝑠:

𝑪𝑑 =
𝜕𝜓𝑑
𝜕𝜺𝜕𝜺

=
𝜕𝜓0
𝜕𝜺𝜕𝜺

−
𝜕𝜓𝑠
𝜕𝜺𝜕𝜺

= 𝑪0 − 𝑪𝑠 (C.19)
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