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Abstract

The motion of N particles interacting by a smooth repelling potential and confined

to a compact d-dimensional region is proved to be, under mild conditions, non-ergodic

for all sufficiently large energies. Specifically, choreographic solutions, for which all

particles follow approximately the same path close to an elliptic periodic orbit of the

single-particle system, are proved to be KAM stable in the high energy limit. Finally,

it is proved that the motion of N repelling particles in a rectangular box is non-ergodic

at high energies for a generic choice of interacting potential: there exists a KAM-stable

periodic motion by which the particles move fast only in one direction, each on its own

path, yet in synchrony with all the other parallel moving particles. Thus, we prove

that for smooth interaction potentials the Boltzmann ergodic hypothesis fails for a

finite number of particles even in the high energy limit at which the smooth system

appears to be very close to the Boltzmann hard-sphere gas.
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1 Introduction

Can a large number N of repelling particles moving rapidly in a d (> 2)-dimensional domain

D, remain forever bounded away from each other? We prove that such stable motion that

avoids collisions occurs with positive probability. Borrowing the terminology from Celestial

Mechanics [31, 10, 9, 16], the solutions we construct are of a choreographic type, i.e., the

particles move essentially synchronously along the same path (or, along a family of parallel

paths) with nearly constant phase shifts between them. It follows that systems of repelling

particles are not ergodic, and have, in fact, KAM-stable states. In other words, for this class
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of N -particle systems, the ergodic hypothesis of Boltzmann fails for any finite N in the high

energy limit.

Establishing ergodicity of the Liouville measure (the Lebesgue measure restricted to a

constant level of the Hamiltonian in the phase space) is a long-standing problem for conser-

vative many-particle systems. The question is related to principal issues of the foundation

of statistical mechanics, see e.g. [4, 24]. Classical statistical mechanics is based on the

assumption, sometimes called Gibbs postulate, that macroscopic quantities describing the

state of a large system of microscopic particles are averages over the Liouville measure in

the phase space (the so-called micro-canonical ensemble). This postulate is supported by

an overwhelming experimental evidence; the question is whether it can be inferred from

the Hamiltonian formulation of dynamics by logical reasoning. Are there general properties

of the Hamiltonian dynamics which make a general, yet finite system choose the Liouvile

measure over all other invariant measures?

The ergodicty of the Liouville measure could be such a property1. However, by Kolmogorov-

Arnold-Moser theorem, the ergodicity is violated for an open set of smooth Hamiltonians -

for example, it is violated for energy levels near any non-degenerate minimum or maximum

of the Hamiltonian function. Therefore, one cannot simply postulate ergodicity - it has to be

justified by certain additional properties of the class of systems under consideration. Below

we summarize some of the relevant works on the N -particle problem: proving ergodicity

within the Sinai program of studying the (billiard) dynamics of the gas of hard balls, or,

on the contrary, proving non-ergodicity by studying the emergence of stability islands. As

we mentioned, at low energy, near local minima of the potential (i.e., near “ground states”)

one expects, by KAM theory, that the system will be generically non-ergodic. Therefore,

the mathematical question is to study ergodic properties of many-particle systems at high

energies.

Hard spheres in a container: The idea going back to Boltzmann is that one can

neglect the interactions between particles when the potential energy of the interaction is

much smaller than their kinetic energy. This means that in the gas of sufficiently energetic

particles, the particles motion is essentially free except for the short instances when the

distance between some particles becomes small enough to create a strong repulsion force

resulting in the fast change of the momenta. In the limit, one obtains the Boltzmann gas of

N -hard spheres of diameter ρ, which interact only via momentarily elastic collisions and are

1One may argue that macroscopic quantities are, in fact, time-averages, so they are indeed equal to the
averages over the Liouville measure for a full-measure set of initial conditions when the Liouville measure is
ergodic, by Birkhoff-Khinchin theorem.
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confined to a d-dimensional container of the characteristic size L such that Nρd � Ld. This

provides a universal model for any system of N particles in such a container for large values

of the kinetic energy per particle, irrespective of the precise form of the repelling interaction

potential.

Thus, proving the ergodicity of the Boltzmann gas – the Boltzmann-Sinai ergodic con-

jecture – is a corner-stone problem in the foundations of statistical mechanics. The Sinai

program [46, 47, 48] was inspired by ideas of Krylov [26] and culminated in a series of works

[41, 42, 43, 8, 44]. By this program, the ergodicity of the Boltzmann gas is inferred from

the characteristic “Krylov-Sinai” instability of the elastic collision of spheres (or any con-

vex bodies) in Rd for d > 2: a small change in the momentum of the particle increases

exponentially with the number of collisions. One can view the N -particle hard-sphere gas

in d dimensions as a billiard in an Nd-dimensional domain [49]. The pair-wise collisions of

the spheres correspond to boundaries of the domain – Krylov-Sinai instability means that

these boundaries are (semi)-dispersing, which, for hard spheres moving on a flat torus or

in a rectangular box, implies the hyperbolicity of the dynamics [8, 44, 41] and leads to the

ergodicity of the Liouville measure [42, 43].

The Sinai program has led to seminal works in dynamical systems theory – it was one

of the main sources for the development of ergodic theory of smooth dynamical systems,

the theory of billiards and of general dynamical systems with singularities [21, 5, 11, 23].

However, it has also revealed the inherent difficulties in relating the Boltzmann gas dynamics

to the problem of the ergodicity of multi-particle systems.

A well-recognized difficulty is the strong dependence of the hard-sphere dynamics on

the container shape, see [6, 27, 25]. When the container boundary has a convex piece, the

Nd-dimensional billiard representing the hard-spheres gas acquires a non-dispersing (focus-

ing) boundary component, which makes the establishment of the hyperbolicity problematic.

Notably, even in the case of a concave container, the ergodicity of the Boltzmann gas has

been established only in a quite special geometrical set-up, for spheres of a sufficiently large

diameter ρ [7].

The grander problem is the singularity of the hard-sphere system: the interaction po-

tential jumps from zero to infinity when the distance between particles becomes equal to ρ.

The Boltzmann gas serves as a universal limit of smooth multi-particle systems. Since this

limit is singular, the question of which of its dynamical and statistical properties survive a

regularization must be addressed.

Smooth billiard-like Hamiltonians provide a natural regularization of billiard dy-

namics. Such a Hamiltonian H is the sum of the kinetic energy term (a positive-definite
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quadratic function of momenta) and a steep potential V (q; δ) associated with a billiard do-

main D ⊂ Rd. The potential is a smooth function of q ∈ D and it also depends on a

small parameter δ (the inverse steepness), so that when δ → 0, the potential vanishes in the

interior of D while staying bounded from below on the billiard boundary ∂D.

For example, in the present paper, we consider N -particle systems with a smooth inter-

action potential W which tends to +∞ when the distance between the particles approaches

ρ; the particles are confined to an open bounded d-dimensional region by a smooth potential

V which gets infinite on the boundary of this region. When we restrict the system to the

energy surface H = 1
2
Nh and scale the momenta by

√
h (so the energy is scaled by h), we

obtain a billiard-like system with the steep potential δ(V + W ), where δ = 1/h; see the

precise setup in Section 2.4. The limit δ → 0 for the fixed value of the rescaled energy

H = 1
2
N corresponds to the high energy limit of the unscaled system.

In [37, 52, 40, 51], we described a large class of billiard-like Hamiltonians with steep

potentials that satisfy some natural growth and smoothness conditions. We proved for this

class that the limit billiard dynamics which are represented by regular orbits – i.e., those

which hit the billiard boundary ∂D away of its singularities and at angles away from zero –

persist for sufficiently small δ. Namely, near the regular orbits, the local return maps of the

smooth Hamiltonian flows to cross-sections that are bounded away from ∂D tend with all

derivatives to those of the billiard as δ → 0 [37, 40, 51]. This implies that regular uniformly-

hyperbolic sets and KAM-nondegenerate elliptic orbits of the billiard persist for sufficiently

small δ in the smooth billiard-like system [37, 40].

On the other hand, we also showed that the regularization of dispersing billiards changes

drastically their dynamics near singular orbits, such as orbits which are tangent to ∂D or

which enter corner points in ∂D. Namely, the inherent hyperbolic structure of dispersing

billiards cannot survive the regularization [51, 40]. In particular, singular periodic orbits of

dispersing billiards give rise to stable periodic motions – hence to non-ergodic behavior – in

the smooth system at arbitrarily small δ. Indeed, we proved, under quite general conditions,

the loss of ergodicity due to the regularization for two-dimensional dispersing billiards [52, 51]

and also for billiards with specific types of corners in any dimension [36, 38]. Applying

this logic to the billiard that represents the Boltzmann gas, one concludes that the same

dispersing geometry that creates the Krylov-Sinai instability of the colliding spheres is also

responsible for the destruction of the associated hyperbolic structure – when the hard-spheres

model is replaced by a more realistic model of particles interacting via a smooth potential.

It is thus natural to conjecture that orbits of the system of N hard spheres which undergo

sufficiently many instances of brushing (zero angle) collisions between the spheres or end at

multi-collision points (simultaneous collisions of more than 2 particles) can produce islands of
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stability of the corresponding system of N smoothly interacting particles at sufficiently high

energy (see, e.g., discussion in [38]). However, proving the non-ergodicity of the N -particle

problem in this fashion was not realized yet.

In this paper, we explore a new and different mechanism of the ergodicity loss of the

hard-spheres system due to the smoothing. We establish the existence and stability of chore-

ographic solutions for which highly-energetic particles, placed on the same periodic path or

parallel paths, never come close to collisions. One can find such motions in the hard-spheres

system as well (just take the diameter ρ small enough to ensure the spheres on the same

path do not overlap and let them move with the same speed). However, they are unstable,

as small discrepancies in the speed eventually lead to collisions of the spheres. As we show, if

the speed of the synchronous motion of the particles is sufficiently high, a generic smoothing

of the repulsive interaction potential stabilizes such type of solutions for some discrete set of

particles phases.

The N-body problem of Celestial Mechanics has much in common with the N -particle

problem discussed here, with the difference that theN -body problem usually refers to attract-

ing interactions. In both cases, the pairwise interaction decays at large distances, whereas, at

very small distances, the interaction potential is singular (see e.g. [15]). The full character-

ization of the mixed phase space dynamics for N > 3 is intractable due to non-integrability

[22, 30, 50, 18]. Thus, finding special type of solutions, in particular KAM-stable periodic mo-

tions, is an achievement for such problems [3, 12, 13, 34, 45]. Choreographic solutions for the

N -body problem were found by fixing the phase shift between the bodies to be constant and

utilizing symmetries to establish that such solutions minimize the action [54, 10, 9, 32, 33, 17].

The avoidance of collisions for the attracting potential case follows from the observation that

the action becomes infinite for sufficiently strong singularities (in particular, the Newtonian

potential is not included). Numerically, the choreographic solutions with small N were found

by continuation schemes also for the Newtonian potential [9, 35] and for the Lennard-Jones

potential [16]. In these works, the choreographic solution is not induced by an external field,

it is a genuine outcome of the particles interaction. Here, we propose to study choreographic

solutions that follow a path dictated by a common background potential that governs the

uncoupled dynamics. The method we use for proving the existence and stability of choreo-

graphic solutions is based on averaging. While we mostly focus on repelling potentials, the

case of attracting potentials is covered by our scheme too, see Remarks 1 and 2 in Section 2.

The paper is ordered as follows. In Section 2 we list our main results regarding the

existence and stability of choreography-type solutions in a system ofN interacting particles in
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a common background potential. We consider four different settings. Theorem 1 states that

such KAM-stable motion exists in the case of N identical, weakly interacting particles when

the particles are subject to a smooth background potential which admits a non-degenerate

elliptic periodic orbit. Theorem 2 states that under some additional conditions the same

result applies when the interaction potential is repelling - i.e. it diverges to +∞ when

the particles get close to each other. Theorem 3 states that the same result applies in the

high energy limit for interacting particles with a repelling interaction potential when the

background potential is billiard-like and the limiting billiard admits a KAM non-degenerate

periodic orbit. Finally, Theorems 4 and 5 state that under some explicit non-degeneracy

conditions there exist KAM-stable periodic motions of N repelling particles in a rectangular

box. Sections 3 -5 contain the proofs of these theorems. Following the discussion section,

the appendix establishes, by applying the results of [39], the existence of KAM-tori in Fermi-

Pasta-Ulam type chains, which naturally arise in the averaging of identical particles systems.

2 Setup and Main results

By a particle, we mean a d degrees of freedom, autonomous Hamiltonian system with a

Hamiltonian function H0(q, p), i.e.,

q̇ = ∂pH0(q, p), ṗ = −∂qH0(q, p), (q, p) ∈ R2d. (1)

Let this system have, at a certain energy value H0 = E∗, an elliptic periodic orbit L∗ with

period T = 2π
ω0

. Let the equation of L∗ be (q, p) = (q∗(ω0t), p
∗(ω0t)) where (q∗, p∗) are some

2π-periodic functions.

Consider the system of N identical particles, each controlled by the same Hamiltonian

H0, and allow the particles to interact with each other. We define the system of interacting

particles by the Hamiltonian

H =
∑

n=1,...,N

H0(q(n), p(n)) + δ
∑

n,m=1,...,N

n6=m

W (q(n) − q(m)) (2)

where (q(n), p(n)) are the coordinates and momenta of the n-th particle, δ > 0 is a small

coupling parameter, and W is the interaction potential. We assume that the particles are

identical, so the interaction potential is the same for any pair of particles; similar results

hold true also when the pairwise interaction potentials vary from pair to pair. Note that in

(2) we sum over each pair twice and take the interaction to depend only on the difference
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between the particles coordinates. With this choice, the potential is translation invariant

and even. Such properties are natural from a physical point of view, yet, mathematically,

they make the question of genericity more delicate. The proofs of Theorems 1 - 4 do not

use these properties (rather, overcome them) so these theorems remain valid for arbitrary

pair-wise interaction potential.

For δ = 0, Hamiltonian (2) describes the motion of N non-interacting particles. It has

“choreography” type solutions, for which each particle moves along the same periodic path

L∗ with a given phase shift:

L∗(θ) = {q(n) = q∗(ω0t+ θ(n)), p(n) = p∗(ω0t+ θ(n)), n = 1, . . . , N} (3)

for an arbitrary set of fixed phases θ = (θ(1), . . . , θ(N)) ∈ TN . Below, we formulate conditions

which ensure that for sufficiently small δ > 0 choreographic motions persist for all time: the

particles, modulo small oscillations, perpetually orbit L∗ with the same frequency and with

certain individual phase shifts θ.

The “equilibrium phases” θ are found as minima of the interaction potential averaged over

the synchronous collective motion of the particles along L∗. We first perform the averaging

for the case of uniformly bounded, smooth (C∞) potential W ; after that we generalize the

results to the case of repelling potentials, i.e., those which tend to +∞ as q(n) − q(m) → 0.

Then we consider high-energy particles in a container of a generic shape. This corresponds

to the single-particle Hamiltonian H0 depending on δ in a singular way – the limit motion

is a billiard in the domain where the particles are confined. The singularity in H0 requires

amendments to the averaging procedure and, also, additional conditions on the interaction

potential for the persistence of choreographic motions along an elliptic periodic orbit of

the billiard. Finally, we consider the special case of interacting high-energy particles in a

rectangular box. The limit billiard does not have elliptic orbits in this case, however we show

that a generic repelling interaction stabilizes choreographic motions along parabolic periodic

orbits in the box.

2.1 Local assumptions on the single-particle system

First, we impose non-degeneracy conditions on the periodic orbit L∗ of the one-particle sys-

tem (1). We call these conditions single-particle (SP) assumptions. Recall that elliptic orbits

exist in families parameterized by energy E = H0(q, p). Thus, by the assumption that the

one-particle system (1) has at energy E∗ an elliptic periodic orbit L∗, it follows that it has a

smooth family (q, p) = (q(t, E), p(t, E)) of elliptic periodic orbits L(E) such that the energy

value E = E∗ corresponds to the original periodic orbit L∗ = L(E∗).
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SP1: Acceleration assumption. The period of L(E) decreases with energy.

Note that this assumption holds for billiard-like potentials [37, 40, 51], geodesic flows,

and other settings where higher energy corresponds to a higher speed of the motion along

the same (or almost the same) path in the configuration space.

Let us introduce symplectic coordinates (I0, θ, z) where I0 ∈ R, θ ∈ S1 = R1/2πZ,

z ∈ R2(d−1), such that the surface filled by the periodic orbits L(E) is given by z = 0.2

Moreover, we choose (I0, θ) such that they give action-angle variables for system (1) restricted

to the surface z = 0. This means that on any of the periodic orbits L(E) that foliate this

surface the value of I0 stays constant and equal to the signed area between L(E) and L(E∗)

(and the variable θ is symplectic conjugate to I0). Thus, the Hamiltonian restricted to this

surface is a function of I0 only and the frequency of the periodic orbit L(E∗) is equal to

ω0 = ∂I0H0(I0, θ, 0)|H0=E∗ .

Thus, Assumption SP1 reads as

a = ∂I0I0H0(I0, θ, 0)|H0=E∗ > 0. (4)

Let the multipliers3 of L∗ be e
±i 2π

ω0
ω1 , . . . , e

±i 2π
ω0
ωd−1 .

SP2: Non-resonance assumption. The frequencies ω = (ω0, . . . , ωd−1) are not in a strong

resonance:

m0ω0 +
d−1∑
j=1

mjωj 6= 0 (5)

for every integer m0 and every integer vector (m1, . . . ,md−1) such that 1 6
d−1∑
j=1

|mj| 6 4.

By this assumption, system (1) can be brought to Birkhoff normal form up to fourth

2This is done as follows: one first straightens this surface by a smooth coordinate transformation which
is not necessarily symplectic; this transformation may change the symplectic form – then one brings the
symplectic form back to the standard form by a smooth transformation which leaves the surface z = 0
invariant.

3Recall that the multipliers of the periodic orbit L∗ are defined as follows. Consider a restriction of the
system to the (2d − 1)-dimensional energy level H0 = E∗, take a (2d − 2)-dimensional cross-section to L∗

in this energy level, and consider the Poincaré map (the map defined by the orbits of the system) on the
cross-section. The intersection point of the periodic orbit with the cross-section is a fixed point of the map.
The eigenvalues of the linearization matrix of the Poincaré map at this point are called the multipliers of
L∗. Since L∗ is elliptic, all its multipliers are not real and lie on the unit circle.
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q1

q2

(a)                  (b)                 

Figure 1: (a) An elliptic periodic orbit of a 2 degrees of freedom system on the fixed energy
level H0 = E∗. The elliptic periodic orbit L∗ (red curve) is surrounded by KAM tori - the
blue curves correspond to the intersection of these tori with a transverse cross-section. The
pink curve shows the projection of L∗ to the two-dimensional configuration space - here the
projected curve has a single self-intersection point. (b) Theorem 1 shows that for a generic
smooth interaction potential, any number of weakly interacting particles can orbit the same
path in the configuration space. Theorem 2 shows that the multi-particle choreography is
KAM-stable also for repelling potentials.
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order [3]. Namely, in a sufficiently small neighborhood of L∗ one can perform a symplectic

coordinate transformation

(q, p) = (q̂(I0, θ, z), p̂(I0, θ, z))

where (I0, θ, z) ∈ R× S1 × R2(d−1), such that the Hamiltonian H0 takes the form

H0(I0, θ, z) = E∗ + ωI +
1

2
I>AI + g(I0, θ, z), (6)

where g(I0, θ, z) = g0(I0) + g1(I0)Î + O(‖z‖4|I0| + ‖z‖5) with g0 = O(I3
0 ), g1 = O(I2

0 ).

Here we use the notation z = (z1, . . . , zd−1) where zj = (xj, yj) ∈ R2, I = (I0, Î), where

Î = (I1, . . . , Id−1) and Ij = 1
2
z2
j denote the actions in the directions transverse to the orbit

L∗, j = 1, . . . , d − 1. We think of I as a column vector, the frequency vector, ω, is the row

vector with components ω0, ω1, . . . , ωd−1, and A is a symmetric d × d matrix with constant

coefficients. We denote

A =

(
a b

b> Â

)
, (7)

where a is a scalar (it is given by (4) and is strictly positive by Assumption SP1), b ∈ Rd−1

is a row vector, and Â is a symmetric (d− 1)× (d− 1) matrix with elements {akj}k,j=1,...,d−1.

The system of differential equations defined by the Hamiltonian (6) has the form

İ0 = O(‖I‖5/2), θ̇ = ω0 + aI0 +
∑d−1

j=1 bjIj +O(I2),

ẋj = (ωj + bjI0 +
∑d−1

k=1 akjIj) yj +O(I2),

ẏj = −(ωj + bjI0 +
∑d−1

k=1 akjIj) xj +O(I2), j = 1, . . . , d− 1.

To the main order, the motion is a nonlinear rotation – the rotation of the phase θ corre-

sponds to the motion along the orbit L∗ (the circle I = 0 in these coordinates), and the

rotation of (xj, yj) describes the transverse oscillations. The frequencies of the oscillations

depend on the actions I0, . . . , Id−1, and we assume that this dependence is non-degenerate:

SP3: Twist assumption. The orbit L∗ satisfies the twist condition and the iso-energetic

twist condition:

detA = det

(
a b

b> Â

)
6= 0 (8)

and

detAω = det

 0 ω0 ω̂

ω0 a b

ω̂> b> Â

 6= 0, (9)
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where ω̂ = (ω1, . . . , ωd−1).

This completes the list of assumptions on the single-particle motion, assuring that L∗ is

surrounded by KAM tori.

2.2 Conditions on the coupling potential

Next, we impose a non-degeneracy condition on the coupling potential in the multi-particle

system (2). We call such conditions Interacting Particles (IP) assumptions. Consider the

motion of N uncoupled particles over the same periodic orbit L∗, as given by (3), and

introduce the averaged interaction potential

U(θ(1), . . . , θ(N)) =
∑

n,m=1,...,N

n6=m

Wavg(θ
(n) − θ(m)), (10)

where

Wavg(θ
(n) − θ(m)) =

1

T

∫ T

0

W (q∗(ω0t+ θ(n))− q∗(ω0t+ θ(m)))dt. (11)

Note that U is invariant under translations: U(θ(1), . . . , θ(N)) = U(θ(1) + c, . . . , θ(N) + c) for

any constant c. As U is a continuous function on the torus TN , it must have a point of

minimum. By the translation invariance, the minima of U form lines in TN :

θ(n) = θ
(n)
min + c, n = 1, . . . , N. (12)

We take any such line; by varying c, we can always make θ
(1)
min+ . . .+θ

(N)
min = 0 in (12). Intro-

duce coordinates (ϕ, ψ1, . . . , ψN−1) in a small neighborhood of this line on TN such that ϕ =
1
N

(θ(1) + · · ·+ θ(N)) and the transformation (θ(1)− θ(1)
min, . . . , θ

(N)− θ(N)
min) 7→ (ϕ, ψ1, . . . , ψN−1)

is linear and, up to the factor 1√
N

, orthogonal. In the new coordinates, the line of minima is

the line ψ = 0 and the averaged potential U is independent of ϕ, so we denote

Û(ψ) = U(θ(1)(ϕ, ψ), . . . , θ(N)(ϕ, ψ)). (13)

We show in Section 3 that for small δ, the evolution of phases of interacting particles moving

along the path L∗ is, to the main order, governed by the potential U . We are looking for

stable motions, therefore, we make the following assumption on the interaction potential.

IP1: KAM assumption. The local minimum of Û(ψ) at the origin is non-degenerate;
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namely, the eigenvalues of the Hessian matrix
(
∂ψjψkÛ

)
j,k=1,...,N−1

are strictly positive, so

the origin is an elliptic equilibrium point for the system defined by the Hamiltonian

H =
a

2N
J2 + Û(ψ), J ∈ RN−1. (14)

Moreover, in any neighborhood of the equilibrium this system has KAM-tori.

In view of the symmetries of Û(ψ) we explain this assumption in more details. The

eigenvalues of the Hessian matrix
(
∂ψjψkÛ

)
j,k=1,...,N−1

are the squares of the frequencies

of the small oscillations near the equilibrium configuration of the phases. The existence

of KAM-tori (by definition they form a set of positive measure) is, for example, achieved

when there are no resonances up to order four between the frequencies of small oscillations,

and the corresponding Birkhoff normal form satisfies the twist condition. This is a natural

requirement for a generic potential Û .

However, since we consider the system of identical particles, the averaged potential U =∑
m 6=nWavg(θ

(n) − θ(m)) is symmetric with respect to any permutation of the phases θ (in

particular, since the sum is made over all pairs of different phases, we can always think

of Wavg as an even function). If the line (12) of minimum of U is not preserved by the

symmetry, then, as in the general case, the absence of small resonances and twist suffice for

the existence of KAM tori. On the other hand, when the line (12) is symmetric with respect

to some permutation of phases, the potential Û inherits this symmetry, which may lead to

resonances. In this case, the question of the existence of KAM-tori in system (14) cannot be

reduced to the standard genericity assumptions and has to be specially addressed.

A natural example4 is given by the equidistant distribution of phases: θ(n) = 2π n
N

. It

is easy to see that the gradient of U vanishes for this choice of θ’s and, moreover, U in-

deed has a minimum at such configuration if, for example, the second derivative of Wavg

is positive at the points 2π j
N

, j = 1, . . . , N − 1 (which is natural for repelling forces).

The corresponding line of minima (12) is symmetric with respect to the cyclic permuta-

tion (θ(1), . . . , θ(N)) 7→ (θ(2), . . . , θ(N), θ(1)); this is responsible for the unavoidable creation

of strong resonances between the frequencies of small oscillations in system (14), similarly

to the Fermi-Pasta-Ulam (FPU) chain, see Appendix A. In this case one cannot bring the

system to the Birkhoff normal form. Yet, as explained in Appendix A, one can generalize

the theory that Rink built for the FPU [39] and show that system (14) has KAM-tori near

the minimum of Û for a generic pairwise interaction potential Wavg (i.e., Assumption IP1

4A simpler example is the symmetric configuration θ(1) = . . . = θ(N) (all the particles are at the s0ame
point), yet it is not very relevant in our setting – we are interested in the case of repelling potentials, so
having all particles glued together for all time should not give a minimum of the averaged potential.

13



holds generically for the minimum line of U corresponding to the equidistant distribution

of phases). The genericity assumption may be checked by calculating the coefficients of the

Rink normal form. Thus, even though Assumption IP1 could be difficult to check in general

(system (14) has (N − 1) degrees of freedom, which can be arbitrarily large), it is not very

restrictive.

2.3 Choreographic solutions of smooth multi-particle systems

The next theorem establishes the existence of KAM-stable choreographic solutions in the

multi-particle system (2) near L∗(θmin), the choreographic solution (3) of the uncoupled

system, where θmin is a minimum of the averaged potential. For a positive measure set of

initial conditions, all particles follow approximately the same path with the phase difference

between particles n and m remaining close to θ
(n)
min − θ

(m)
min for all time.

Theorem 1. Consider the system (2) where the single-particle system (1) has a periodic orbit

L∗ satisfying the acceleration (SP1), no-resonance (SP2), and twist (SP3) assumptions, and

let the C∞-smooth bounded pairwise interaction potential W (q) be such that its averaged

interaction potential Û admits a minimum satisfying the KAM Assumption (IP1). Then,

for all sufficiently small δ > 0, system (2) admits a positive measure set of initial conditions

corresponding to quasi-periodic solutions which satisfy, uniformly for all time t,

(q(n)(t), p(n)(t)) = (q∗(ω̄t+ θ
(n)
min), p∗(ω̄t+ θ

(n)
min)) +O(δ1/4), n = 1, . . . , N, (15)

with some constant ω̄ (which may depend on initial conditions) such that ω̄ = ω0 +O(δ1/2).

The theorem is proven in Section 3.

Remark 1. The conclusion of Theorem 1 about the existence of a positive measure set of

quasiperiodic choreographic motions also holds near non-degenerate maxima of Û , provided

the acceleration assumption SP1 is reversed to deceleration, i.e., if the period of L∗ increases

with energy (as is the case near homoclinic loops, see Figure 3). Indeed, the quasiperiodic

choreographic solutions remain such if we reverse the direction of time. This corresponds

to changing the sign of the Hamiltonian (2), i.e., of both H0 and W . The change of the

sign of H0 makes the period of L∗ grow with energy (so the coefficient a in (14) becomes

negative, cf. (4)), while changing the sign of W makes a minimum of the averaged potential

a maximum.
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2.4 Choreographic solutions for repelling coupling potentials

As the single-particle system (6) near the elliptic orbit is nearly-integrable, the multi-particle

system (2) near the set of choreographic solutions (3) is also nearly-integrable for small δ.

Therefore, the existence of KAM-tori established by the above theorem is not surprising.

However, this result admits a generalization to systems with singularities, where the concept

of near-integrability is not automatically applicable.

The simplest case corresponds to a singularity in the interaction potential.

Definition 2.1. We call a potential W (q) repelling, if it is smooth and bounded from

below for all ‖q‖ > ρ > 0 and W (q) → +∞ as ‖q‖ → ρ. For ‖q‖ 6 ρ, the function W is

infinite.

Note that the repulsion assumption is made only for small distances, at large distances

the potential may be attracting (e.g. the theory applies to the Lennard-Jones potential). If

the pairwise interaction potential W in (2) satisfies this definition, the perturbation term

δ
∑

n6=mW (q(n) − q(m)) can become large for arbitrary small δ - this occurs if q(n) gets suffi-

ciently close to q(m) for some n 6= m. In particular, the averaged potential Wavg in (11) may

have singularities when two particles moving on the same path L∗ collide. When ρ = 0, this

happens when two phases are identical (θ(n) = θ(m) for some m 6= n) or when the orbit L∗

has self-crossings in the q-space, see 1 (i.e., q∗(θ(n)) = q∗(θ(m)) for some θ(n) 6= θ(m)). If the

dimension d of the q-space is larger than 2, then a typical periodic orbit has no self-crossings.

However, the existence of self-crossings is a robust phenomenon when d = 2, or, in higher

dimensions, when there are certain symmetries.

In general, we define the collision set Θc ⊆ TN as the set of all initial phases (θ(1), . . . , θ(n))

for which the motion of uncoupled particles along the same path L∗ (see (3)) leads to a

collision at a certain time tc:

Θc = {(θ(1), . . . , θ(n)) | ‖q∗(ω0tc+θ
(n))−q∗(ω0tc+θ

(m))‖ 6 ρ for some n 6= m and some tc ∈ [0, T ]}.

The collision set is closed. For ρ = 0, it is, typically, a union of codimension-1 hypersurfaces

in TN , whereas for ρ > 0 this set has a non-empty interior, see Figure 2. For too large ρ it

coincides with the torus. For (θ(1), . . . , θ(n)) outside the collision set, the averaged potential

U(θ(1), . . . , θ(N)) is well-defined and is a smooth function, bounded from below. Therefore,

if Θc is not the whole torus TN , then U attains a finite minimum.

IP2: No-collision assumption. There exists a minimum line (of the form (12)) of the

averaged potential U(θ(1), . . . , θ(N)) which is collision free, i.e., this line does not intersect

the collision set Θc.
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q1

q2

(a)                  (b)                 

 

(c)                 



(d)                 

Figure 2: A two-particle system for an orbit with one self-intersection (a-c) and averaged
potential U for the case of no self-intersection (d). (a) The collision set for ρ = 0: dashed
blue line corresponds to the two particles coalescing, θ(1) = θ(2); the dashed green and brown
lines correspond to the two possible collisions at the intersection point, θ(1) = θ(2) + θc and
θ(1) = θ(2) − θc, respectively. (b) The two particles on the self-intersecting curve. (c) The
averaged potential is infinite at the collision set. Provided the collision set does not include
θc = π, it must have at least 3 minima (it may attain additional minima points). As the
averaged potential is even, π must be an extremal point, here a minimum. (d) If there is no
self-crossing, the only singularity of U is at the blue line, so, if U has a single minimum, it
must be at θ = π. It is also possible that θ = π is a maximum of U (dashed curve), and then
non-symmetric minima must exist.
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If ρ = 0 and the elliptic periodic orbit (q∗(ω0t), p
∗(ω0t)) of (1) has no self-intersection

points, then Assumption IP2 automatically holds for any repelling potential and for any

minimum line of U . Indeed, in this case the set Θc is exactly the set where at least two

phases are equal. Then, at least two particles on the path L∗ have the same coordinate q

for all time, hence the corresponding integrand in (10) is infinite on the whole interval [0, T ],

making the average potential U infinite everywhere on Θc. This cannot be a minimum of U .

In order to conclude the same when L∗ has self-crossings or when ρ > 0, it is enough to

have the repelling interaction sufficiently strong. For example:

Lemma 2.2. If the pairwise interaction potential W satisfies, for ‖q‖ > ρ, the growth

condition

W (q) >
C1

‖q‖ − ρ
− C2, C1 > 0, (16)

with some constants C1,2, then the no-collision assumption IP2 holds, unless the collision set

coincides with the whole torus TN .

Proof. It is enough to show that the averaged potential U is infinite for all (θ(1), . . . , θ(n))

from the collision set Θc. If (θ(1), . . . , θ(n)) ∈ Θc, then for some n 6= m either ‖q∗(ω0t+θ(n))−
q∗(ω0t + θ(m))‖ 6 ρ for all t, or there exists a value of t = tc such that ‖q∗(ω0tc + θ(n)) −
q∗(ω0tc + θ(m))‖ = ρ and ‖q∗(ω0t+ θ(n))− q∗(ω0t+ θ(m))‖ > ρ when t approaches tc. In the

first case, an integrand in (10) is infinite on the whole interval [0, T ], thus making U infinite.

In the second case, since the derivative d
dt
q∗(ω0t + θ) is bounded, the distance between the

particles decays at least linearly in (t−tc), so the integrand W (q∗(ω0t+θ
(n))−q∗(ω0t+θ

(m)))

grows, by (16), proportionally to (t− tc)−1 or faster, hence the integral (11) diverges, i.e., U

is infinite in this case as well.

There can, however, be cases when Θc = TN and Assumption IP2 does not hold. For

example, if the system is reversible, then there can exist orbits (like period-2 orbits in

billiards) for which q∗(ω0t) = q∗(2π − ω0t) for all t. In this case, collisions are unavoidable

even for ρ = 0. Note, however, that generically, since the orbit L∗ is elliptic, around it one

can find resonant periodic orbits with at most finitely many self-crossings, and the previous

remarks apply for sufficiently small ρ.

The following result generalizes Theorem 1 to the case of repelling interaction potentials.

Theorem 2. Consider system (2) where the single-particle system (1) has a periodic orbit L∗

satisfying Assumptions SP1,SP2,SP3, and the C∞-smooth, repelling potential W (q) is such

that its averaged interaction potential Û admits a minimum satisfying the KAM assumption

IP1 and the no-collision assumption IP2. Then, for all sufficiently small δ, the system
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admits a positive measure set of initial conditions corresponding to quasi-periodic solutions

as in Theorem 1.

Proof. By Assumption IP2, we have that the uncoupled particles moving by the path L∗

(see (3)) stay away from collisions, i.e., the distances ‖q∗(ω0t+ θ
(n)
min)− q∗(ω0t+ θ

(m)
min)‖ stay

bounded away from ρ for any m 6= n and for all t. Therefore,

W (q∗(ω0t+ θ
(n)
min)− q∗(ω0t+ θ

(m)
min)) < K (17)

for some constant K.

Replace the potential W by smooth and everywhere bounded potential W cut which co-

incides with W when W < K + 1. The corresponding averaged potential U cut coincides

with U in a neighborhood of (θ(1), . . . , θ(N)) = (θ
(1)
min, . . . , θ

(N)
min), i.e., U cut has the same min-

imum (θ
(1)
min, . . . , θ

(N)
min). By Theorem 1 the multi-particle system (2) with potential W cut

has a positive measure set of quasiperiodic solutions for which q(t) remains O(δ1/4)-close

to q∗(ω̄t + θ
(1)
min), . . . , q∗(ω̄t + θ

(N)
min) where ω̄ = ω0 + O(δ1/4). For sufficiently small δ, these

solutions correspond to particles which stay away from each other for all times (because,

for all times, q∗(ω0t + θ
(n)
min) are bounded away from each other, thus, the same is true for

q∗(ω̄t+θ
(n)
min)). Hence, for such solutions, if δ is small enough, the potential W is bounded by

(17), so W cut coincides with W . Thus, they are also solutions of system (2) with the original

potential W .

Remark 2. The result stays true if we reverse time, as in Remark 1 of Theorem 1. This

means that we can replace the repelling potential W by a potential which attracting, i.e.,

bounded from above and tending to −∞ as particles come close to each other. Then, The-

orem 2 implies that a positive measure set of quasiperiodic choreographic motions exists

with phases close to the maximum of the averaged potential Û (if it satisfies IP1 and IP2),

provided the elliptic orbit L∗ of the single-particle system satisfies the non-degeneracy as-

sumptions SP2 and SP3, and the acceleration assumption SP1 is reversed to deceleration,

see Figure 3.

2.5 High-energy particles in a bounded domain

Next, we apply the above methodology to the case of a system of repelling particles which are

confined in a bounded domain. Let D ⊂ Rd be a domain with a smooth (C∞) or piecewise

smooth boundary ∂D (in the piecewise smooth case, we call the points where ∂D is smooth
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q2q1

p2p1

(a)                  (b)                 

(c)                 

Figure 3: Accelerating and decelerating families of elliptic orbits coexist near homoclinic loops
to a saddle-center. Consider a product system of a Duffing oscillator (a) and a center (b). Then,
in the vicinity of the homoclinic loop to the saddle-center there exist three families of periodic
orbits corresponding to (q2, p2) = 0. For the family of periodic orbits which are outside the
separatrix (red curve in the (q1, p1) space) the period decreases with energy, whereas for the two
families of periodic orbits which are inside the separtrix (blue curves in the (q1, p1) space) the
period decreases with energy. By Theorem 1 and Remark 1, for a smooth interaction potential,
choreographic solutions exist near the averaged potential minima lines for any fixed outer orbit,
and near the potential maxima lines for any given inner orbit. For smooth potentials, both
types of lines must exist. Similar conclusions apply to singular potentials, where here, when the
potential is repelling (red curve in (c)) a minimum line must exist, whereas, when the potential
is attracting (blue curve in (c)) a maximum line must exist, see Remark 2.
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non-singular). A particle confined in D is described by the Hamiltonian:

H =
p2

2
+ V (q),

where the potential V (q) is a C∞-function defined in the interior of D and tending to +∞
on ∂D (here, if the particle is a ball of a finite diameter ρ, the domain D is the set of

all possible positions of the ball center). When the growth of V at the approach to ∂D

is reasonably regular, the high-energy motion limits to the billiard in D, as described in

[40, 37]. In order to simplify the analysis of the transition to the billiard limit, we restrict

the class of confining potentials by assuming a power-law growth of V near ∂D (we use the

notation BD for assumptions we make on the single particle confined in the bounded domain).

BD1: Power-law growth assumption. Given any compact subset of the non-singular

part of ∂D, in a small neighborhood of this set the potential V is given by

V (q) =
1

Q(q)α
, (18)

where α > 0, and the C∞ function Q measures the distance to the boundary of D, i.e.,

Q(q)|q∈∂D = 0 and ∇Q(q) 6= 0; we also choose the sign of Q such that Q(q) > 0 inside the

domain D.

When we consider N mutually repelling particles moving in the potential field V , their

motion is described by the Hamiltonian

H =
∑

n=1,...,N

[
(p(n))2

2
+ V (q(n))

]
+

∑
n,m=1,...,N

n6=m

W (q(n) − q(m)), (19)

where (q(n), p(n)) are coordinates and momenta of the n-th particle and W is a repelling

potential, as in Definition 2.1 (note that we do not assume that the interaction potential is

small here).

We consider a limit of large energy per particle, namely, we study the behavior at the

energy level H((q(1), p(1)), . . . , (q(N), p(N))) = Nh for large h. We scale the momenta p(n) to√
2h, so the Hamiltonian transforms to

H =
∑

n=1,...,N

[
(p(n))2

2
+ δV (q(n))

]
+ δ

∑
n,m=1,...,N

n 6=m

W (q(n) − q(m)), (20)
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where δ = 1
2h

(the inverse temperature). Now, the goal is to study the behavior on the fixed

energy level H = N
2

in the limit δ → 0+.

System (20) is similar to system (2). However, here the single-particle system

H0(q, p; δ) =
p2

2
+ δV (q), (21)

depends on δ in a singular way. The formal limit of the potential energy term as δ → 0+

is the billiard potential, which is zero inside D and infinite at the boundary of D. The

corresponding dynamical system, the billiard in the domain D [11], is not smooth, so our

Theorems 1 and 2 cannot be directly applied. However, the method we used there can

be carried over to this case as well, with the help of an enhanced version of our theory of

billiard-like potentials [37, 40].

Recall that the billiard dynamics can be viewed as a motion of a particle along straight

segments with speed 1, interrupted by jumps in momenta as the particle reflects from the

boundary. The jumps are defined by the elastic reflection law, with the angle of incidence

equal to the angle of reflection. Equivalently, the dynamics are determined by the billiard

map, which records the position and the angle of reflection at impacts. The dynamics of

the smooth system at small δ can be quite different from the dynamics of the formal billiard

limit. Still, this formal limit provides good approximation for regular billiard orbits, which

are defined as orbits for which all impact points are bounded away from singularities of the

billiard boundary, and all the impact angles are bounded away from zero [37, 40, 51].

Thus, let L∗ = {(q∗(ω0t), p
∗(ω0t))} denote a regular periodic orbit of the billiard in D,

which hits the billiard boundary at points M1, . . . ,Mk∗ (we call them impact points, to

distinguish from multi-particle collision points). Let t1, . . . tk
∗

be the impact moments or

time, i.e., M j = q∗(ω0t
j), j = 1, . . . , k∗. The functions q∗ and p∗ are 2π-periodic. As this is

a billiard orbit, p∗ is a piece-wise constant function of time, with the jumps of p∗ happening

at t = tj mod2π, j = 1, . . . , k∗. The energy conservation implies that ‖p∗‖ stays constant:

‖p∗‖ = 1; thus, the frequency ω0 is such that 2π
ω0

equals the length of L∗. The function q∗

is continuous and piece-wise linear, since d
dt
q∗ = p∗ when t 6= tj mod2π, j = 1, . . . , k∗. The

regularity of the orbit L∗ means that the boundary of D is smooth at each of the points M j

and the vectors p∗(ω0t
j±0) are not tangent to the boundary of D at M j, j = 1, . . . , k∗. The

impact points M1, . . . ,Mk∗ comprise a periodic orbit of the billiard map BD: each of them

is a fixed point of the billiard return map (BD)k
∗
. Since the impact points are non-singular

and the impacts are non-tangent, this map is smooth in a small neighborhood of any of the

impact points.

BD2: Elliptic orbit assumption. The regular billiard periodic orbit L∗ is elliptic and
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Figure 4: Stable periodic orbit in a convex billiard table (L∗) and a nearby stable periodic
orbit (L∗

δ) for the smooth billiard-like potential at high energy (δ = 1
2h , see (21)).

KAM-nondegenerate. Namely, the point M1 is a KAM-nondegenerate elliptic periodic point

of the billiard map. This means that two conditions are fulfilled. First, the multipliers

(exp(±i2π
ω0
ω1), . . . , exp(±i2π

ω0
ωd−1)) (the eigenvalues of the derivative of (BD)k

∗
at the point

M1) are non-resonant up to order 4, namely m0ω0 +
d−1∑
j=1

mjωj 6= 0 for all integer m0 and

m1, . . . ,md−1 such that 1 6
d−1∑
j=1

|mj| 6 4. This implies that the Birkhoff normal form for

(BD)k
∗

in the action-angle coordinates (I,Φ) ∈ Rd−1 × Td−1 near M∗
1 is given by (I,Φ) 7→

(Ī , Φ̄), where

Ī = I + o(I), Φ̄ = Φ +
2π

ω0

ω̂ + ΩI + o(I), (22)

with constant ω̂ = (ω1, . . . , ωd−1) and ω0 = 2π
|L∗| , where |L∗| is the length of L∗. The second

KAM-nondegeneracy condition (the twist condition) is

det(Ω) 6= 0. (23)

The existence of a periodic orbit satisfying this assumption holds true for an open set of

billiards; for convex billiards in the plane this assumption is also open and dense [14].

The billiard return map (BD)k
∗

is smoothly conjugate (by the billiard flow) to the return

map to any small cross-section to L∗ chosen in the interior of D. As shown in [51, 37], in

the limit δ → +0, the return map of the smooth flow of (21) on such cross-section tends, in

C∞, to the return map of the billiard flow. Thus, up to a change of coordinates, the billiard
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return map describes the limit of the smooth dynamics defined by (21). In particular, with

Assumptions BD1 and BD2, the single-particle system (21) has, for all sufficiently small δ, a

KAM-nondegenerate elliptic periodic orbit L∗δ in the energy level H0 = 1
2
, which is close to L∗.

Now, we consider the product of N billiard flows in D, with the invariant set as in (3):

q(n) = q∗(ω0t+ θ(n)), p(n) = p∗(ω0t+ θ(n)), n = 1, . . . , N. (24)

The projection of this invariant set to the Nd-dimensional configuration space is an N -

dimensional torus (continuous, but only piece-wise smooth). The averaged potential on this

torus is defined as in (10):

U(θ(1), . . . , θ(N)) =
∑

n,m=1,...,N

n6=m

1

T

∫ T

0

W (q∗(ω0t+ θ(n))− q∗(ω0t+ θ(m)))dt. (25)

We assume that there exists a line (12) of minima of U :

θ(n) = θ
(n)
min + c, n = 1, . . . , N, (26)

which satisfies the KAM assumption IP1 of Section 2.2 and the no-collision assumption IP2

of Section 2.4.

The KAM assumption requires a sufficient smoothness of the averaged potential, which

does not, a priori, hold for billiard orbits because q∗(t) is not smooth at the impact points.

In general, the non-smoothness of the system at δ = 0 can make the averaging procedure

invalid and lead to dynamics different from those in the smooth case. However, we show

that these issues do not materialize (e.g. we prove the smoothness of the averaged potential,

see Lemma 4.7) if the non-interacting particles moving along the same billiard trajectory L∗

with the phase shifts θ
(n)
min never hit the billiard boundary simultaneously:

IP3: Non-simultaneous impacts assumption. The impacts of q∗(ω0t + θ
(n)
min) with the

billiard boundary do not happen simultaneously, namely, if ω0t + θ
(n)
min = ω0t

j (mod 2π) for

some j, then ω0t+ θ
(m)
min 6= ω0t

k (mod 2π) for all k and all m 6= n:

θ
(n)
min − θ

(m)
min 6= ω0(tj − tk) mod 2π. (27)
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For convenience, we can always assume (by redefining c in (12)) that

N∑
n=1

θ
(n)
min = 0; (28)

by a shift of time, we can also achieve that

θ
(n)
min 6= ω0t

j, for all n = 1, . . . , N, j = 1, ..k∗. (29)

Theorem 3. Consider N repelling particles that are confined to a region D by a trapping

potential satisfying the power-law assumption BD1. Assume that the billiard table D has a

regular elliptic periodic orbit L∗ which satisfies the elliptic orbit assumption BD2, and that

the averaged interaction potential has a minima line satisfying the KAM assumption IP1,

the no-collision assumption IP2, and the non-simultaneous impacts assumption IP3. Then,

for all sufficiently high values of the energy-per-particle h, the N-particle system (19) has

a positive measure set of initial conditions corresponding to quasi-periodic solutions as in

Theorem 1, with ω̄ = 2π
√

2h
|L∗| (1 + oh→∞(1)). In particular, this system is not ergodic for all

sufficiently high energies.

The proof is in Section 4. It is an empirical fact that Hamiltonian systems with low

number of degrees of freedom have elliptic periodic orbits easily, unless the system is specially

prepared to have a (partially) hyperbolic structure on every energy level. Therefore, a

common belief (and a challenging conjecture to prove) is that a generic Hamiltonian system

without the uniform partially-hyperbolic structure possesses a non-degenerate elliptic orbit.

The billiard counterpart of such claim would be that a generic billiard which is not of the

dispersing or defocusing type [53] has a non-degenerate elliptic orbit. Currently, no methods

are known for proving such conjecture in any reasonable regularity class. But, once we accept

this conjecture for systems with low number of degrees of freedom, Theorem 3 implies that

the gas of any number of repelling particles confined in a domain with a sufficiently smooth

boundary is generically non-ergodic for all sufficiently high temperatures.

2.6 Particles in a rectangular box

The single-particle billiard in a rectangular box has no elliptic periodic orbits: it is an

integrable system (with partial oscillatory motions parallel to different coordinate axes inde-

pendent of each other), so the periodic orbits are parabolic. The orbits of the same period

go in several continuous (d− 1)-parameter families; the orbits in the same family can be dis-

tinguished by the phase differences between the partial oscillations or by the coordinates of
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Figure 5: In a rectangular box, synchronized parallel motion by which all particles move
vertically and hit the boundary simultaneously is KAM-stable under the conditions of Theorem
5. Less ordered parallel motion, by which all particles have the same period yet each particle
turns at a different moment, is KAM-stable under the conditions of Theorem 4.

the impact points. Namely, if the box sizes are (l1, . . . , ld) and the conserved kinetic energies

of the corresponding partial oscillations are Ej = 1
2
p2
j , then the frequencies of the partial

oscillations are 2π
|pj |
lj

, and the single-particle motion is periodic if and only if the ratio of

each two of these frequencies is a rational number. Thus, we have a discrete set of possible

choices of partial energies, for which the motion with any initial point (q1, . . . , qd) in the box

is periodic with the same period (for any choice of the signs of pj).

While similar computations can be performed for any of these families, we choose the

simplest one, where all the particles move strictly along one of the coordinate axes, i.e., the

family is given by the equation p1 = . . . = pd−1 = 0. We call such oscillations vertical; the

particle moves up for a half of the period and it moves down for the other half. When the

energy is fixed, different periodic orbits in this family are distinguished by the values of the

“horizontal” coordinates (q1, . . . , qd−1), which do not change with time. In the same spirit as

before, one can place any number of non-interacting particles on this family (each particle

with the same kinetic energy, but on its own path, i.e., with different values of the horizontal

coordinates). The difference with the previous cases is that we now allow the particles to

spread over a continuous family and not over just one orbit. If the particle energy is high

enough, switching the repulsion between the particles on makes only a small perturbation of

the fast vertical motion. We show below that the slow evolution of the horizontal degrees of

freedom and the differences between the phases of the vertical oscillations are governed, to

the main order, by the averaged potential; its non-degenerate minima correspond to elliptic

orbits of the multi-particle system.
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Note that we have only one fast degree of freedom for the entire multi-particle system

in this setting (the sum of the phases of the vertical oscillations). This makes the averaging

procedure simpler than in the previous cases. However, the non-simultaneous impacts as-

sumption IP3, which is crucial for justification of the averaging in Theorem 3, can be violated

for the family of vertically oscillating particles for an open set of repelling potentials (see

below). We therefore develop a different approach for the case of simultaneous impacts.

Let us describe the assumptions we impose on the system in the box.

Box1: Separability assumption. The single-particle Hamiltonian is given by

H0(q, p) =
d∑
i=1

(
p2
i

2
+ Vi(qi)), (30)

with

Vi(qi) =
1

Qi(qi)α
, α > 0 (31)

where the C∞ function Qi measures the distance to the box boundary in the i-th coordinate

direction, i.e., Qi(0) = 0, Qi(li) = 0, Q′i(0) > 0, Q′i(li) < 0, and Qi(qi) > 0 for qi ∈ (0, li).

Finally assume that the potential is symmetric5 in the vertical direction: Qd(ld−qd) = Qd(qd).

Thus, the N -particle Hamiltonian has the form

H =
∑

n=1,...,N

d∑
i=1

[
(p

(n)
i )2

2
+ Vi(q

(n)
i )

]
+

∑
n,m=1,...,N

n6=m

W (q(n) − q(m)), (32)

where W is a repelling potential, C∞ for ‖q(n) − q(m)‖ > ρ (see Definition 2.1).

We consider the limit of large energy per particle, and look for motions which are fast

only in the last coordinate. Namely, we study the behavior at the energy level H = Nh for

a fixed N and large h where most of the particles’ energy is at the vertical motion. We scale

the vertical momenta p
(n)
d by

√
2h, and the Hamiltonian transforms to

H =
∑

n=1,...,N

[
(p

(n)
d )2

2
+ δVd(q

(n)
d )

]
+δ

∑
n=1,...,N

d−1∑
i=1

[
(p

(n)
i )2

2
+ Vi(q

(n)
i )

]
+δ

∑
n,m=1,...,N

n6=m

W (q(n)−q(m)),

(33)

where δ = 1
2h

; as in section 2.5, we study the behavior on the fixed energy level H = N
2

in

the limit δ → +0.

In the limit δ = 0, the Hamiltonian describes N independent vertical, constant speed,

5This symmetry assumption appears to be non-essential. It is not used at all in Theorem 4. We include
it here as it is natural and makes some notations and computations in the proof of Theorem 5 simpler.
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saw-tooth motions. Setting all the particles to have the same speed |p(n)
d | = 1 in the limit

δ = 0, and choosing the vertical size of the box ld = π, we obtain the limiting family of

solutions in the form q
(n)
i (t) = constant for i = 1, . . . , d− 1 and q

(n)
d (t) = q∗(t + θ(n)) where

q∗ is the 2π-periodic saw-tooth function:

q∗(t) =

{
t, for t ∈ [0, π],

2π − t, for t ∈ [π, 2π].
(34)

Denote the horizontal coordinates of the n−th particle by ξ(n) (so ξ(n) = (ξ
(n)
1 , . . . , ξ

(n)
d−1) =

(q
(n)
1 , . . . , q

(n)
d−1)). Define the averaged potential,

U(θ, ξ) =
∑

n,m=1,...,N

n6=m

Wavg(θ
(n) − θ(m), ξ(n) − ξ(m)) +

∑
n=1,...,N

d−1∑
i=1

Vi(ξ
(n)
i ) (35)

where

Wavg =
1

2π

∫ 2π

0

W (q∗(s+ θ(n))− q∗(s+ θ(m)), ξ(n) − ξ(m))ds, (36)

and θ = (θ(1), . . . , θ(N)), ξ = (ξ
(1)
1 , . . . , ξ

(1)
d−1, . . . , ξ

(N)
1 , . . . , ξ

(N)
d−1). Let ‖ξ(n) − ξ(m)‖ > ρ for

every n 6= m. We establish in Section 5 (see Lemma 5.2) that the averaged potential is

C∞-smooth if θ(n) 6= θ(m) mod π for every n 6= m. Moreover, we also show that under the

parity assumption Box4 below, the averaged potential is, along with all its derivatives with

respect to ξ, at least C2-smooth function of θ even if θ(n) = θ(m) mod π for some, or all,

n 6= m.

Since Vi and Wavg are bounded from below, the averaged potential U(θ, ξ) must have a

minimum line

θ(n) = θ
(n)
min + c, ξ(n) = ξ

(n)
min, (37)

where c is an arbitrary constant. Like in Section 2.2, we can introduce coordinates (ϕ, ψ, ξ) in

a small neighborhood of this line such that ϕ = 1
N

(θ(1) + · · ·+ θ(N)) and the coordinates ψ =

(ψ1, . . . , ψN−1) are linear combinations of the phase differences (θ(n) − θ(n)
min)− (θ(m) − θ(m)

min).

Since the averaged potential U depends only on the differences of the phases, we obtain that

it is independent of ϕ, so, as in (13), we set

U(θ, ξ) = Û(ψ, ξ).

Box2: Non-degenerate minimum assumption. The minimum of the averaged potential

Û corresponds to ‖ξ(n)
min−ξ

(m)
min‖ > ρ for all n 6= m. The Hessian matrix of Û at the minimum
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ψ = 0, ξ = ξmin is non-degenerate, and all its eigenvalues are simple.

The condition ‖ξ(n)
min−ξ

(m)
min‖ > ρ means that the particles stay away from each other, each

on its own path. This assumption is fulfilled automatically when, for example, W satisfies

(16). Indeed, then, by Lemma 2.2, the minimum of the averaged potential cannot correspond

to collisions, yet, two particles on the same vertical path collide unavoidably.

The non-degeneracy of the Hessian is a generic condition, implying that (ψ = 0, ξ = ξmin)

corresponds to the elliptic equilibrium of the Hamiltonian

H = 1
2N
J2 +

p2ξ
2

+ Û(ψ, ξ), (38)

where J and pξ denote the conjugate momenta to ψ and ξ, respectively.

Let us first consider the case of non-simultaneous impacts motion at which θ
(n)
min 6= θ

(m)
min

mod π for all n 6= m (a particle impacts to the boundary happen exactly at each half-period,

so this condition, obviously, means that no two particles hit the boundary simultaneously).

By Lemma 5.1 the averaged potential near the minimum is C∞-smooth, so we impose the

following genericity condition (which involves the Taylor expansion up to order 4).

Box3: KAM assumption (the case of non-simultaneous impacts). The local min-

imum of Û at (ψ = 0, ξ = ξmin) is KAM-non-degenerate: the corresponding elliptic equi-

librium of the Hamiltonian system (38) has no resonances up to order 4 and its Birkhoff

normal form satisfies the twist condition.

Theorem 4. Consider N repelling particles that are confined to a box by a trapping potential

satisfying the separability assumption Box1. Let the averaged interaction potential have a

minima line, corresponding to non-simultaneous impacts and satisfying the nondegeneracy

assumptions Box2 and Box3. Then, for all sufficiently high values h of the energy per particle,

the N-particle system (32) has a non-degenerate elliptic periodic orbit accompanied by a

positive measure set of quasi-periodic solutions. In particular, for this set of initial conditions,

each particle stays bounded away from all other particles for all time, so the system is not

ergodic.

The assumption of non-simultaneous impacts is generic when the interaction potential

has no special symmetries. However, for the most natural class of potentials which depend

only on the Euclidian distance between particles, there is an inherit symmetry which can

lock the impacts to become simultaneous. Such potentials satisfy

Box4: Parity assumption. The repelling interaction potential W is even in q
(n)
i − q

(m)
i

for each i = 1, . . . , d.

In this case, the average potential U is an even function of (θ(n) − θ(m)), for any pair of
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n and m. It is also 2π-periodic in (θ(n) − θ(m)). We conclude that if Box4 is satisfied, then

U(θ(n) − θ(m), ·) = U(θ(m) − θ(n), ·) and U(θ(n) − θ(m) − π, ·) = U(π − (θ(n) − θ(m)), ·). (39)

It follows that the first derivative of U with respect to θ vanishes when θ(n) = θ(m) mod π for

all m and n. Therefore, when the parity assumption holds, there can exist minima of U for

which all the particles hit the boundary walls simultaneously (each half-period, some particles

hit qd = 0 while, at the same time, the others hit qd = π); moreover, this simultaneous impacts

property can persist for small perturbations of the potential W within the class of potentials

satisfying Assumption Box4. The non-simultaneous impacts assumption, which is crucial for

the averaged procedure we use in Theorems 3 and 4, does not hold for such minima. We,

therefore, consider this case separately.

First note that the averaged potential U in the simultaneous impact case is not, in general,

C3-smooth with respect to θ (see Lemma 5.2). Hence, there cannot be a direct analogue

of the KAM-nondegeneracy assumption Box3, which involves derivatives of U up to order

4 (recall that the twist condition on quadratic terms in the action variables corresponds

to algebraic relation between the Taylor coefficients of the Hamiltonian up to order 4 [3]).

Instead of assumption Box3 which is formulated in terms of the Hamiltonian system (38),

we formulate KAM nondegeneracy assumption in terms of the two auxiliary Hamiltonians:

Hξ
0(pξ, ξ) =

p2
ξ

2
+ U(θmin, ξ), (40)

and

Hθ
0 (pd, θ) =

∑
n=1,...N

(p
(n)
d )2

2
+

∑
n,m=1,...,N

n 6=m

γnm(θ(n)−θ(m)−ϑnm)2−βnm(θ(n)−θ(m)−ϑnm)4, (41)

where ϑnm = θ
(n)
min − θ

(m)
min mod 2π is either 0 or π, and

γnm =

{
∂2W
∂q2d

(0, ξ
(n)
min − ξ

(m)
min) for ϑnm = 0,

− 1
π
∂W
∂qd

(π, ξ
(n)
min − ξ

(m)
min) for ϑnm = π,

βnm =

{
−∂2W

∂q2d
(0, ξ

(n)
min − ξ

(m)
min) for ϑnm = 0,

∂2W
∂q2d

(π, ξ
(n)
min − ξ

(m)
min) for ϑnm = π.

The quadratic part of the potential in Hθ
0 coincides with the quadratic term of the Taylor
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expansion of U(θ, ξmin) at θ = θmin (see Lemma 5.3). Due to the simultaneous impacts

property, by redefining the constant c in (37), if necessary, we can always make θ
(n)
min = 0

mod π. Then, by (39), the averaged potential U is an even function of (θ − θmin), so the

Hessian of U is block-diagonal: the derivatives ∂2U
∂θ∂ξ

vanish at the minimum with simul-

taneous impacts. Therefore, the non-degenerate minimum assumption Box2 implies that

both U(θmin, ξ) and Û(ψ, ξmin) have non-degenerate minima (at ξ = ξmin and at ψ = 0,

respectively). We conclude that, under Assumption Box2, Hamiltonian (40) has an elliptic

equilibrium at ξ = ξmin, pξ = 0, and Hamiltonian (41) has a family of elliptic periodic orbits

θ(n) = θ
(n)
min + ωt (n = 1, . . . , N), |p(1)

d | = . . . = |p(N)
d | = ω = const. This is a relative equilib-

rium, i.e., it becomes an equilibrium when we go to translation invariant (J, ψ)-coordinates,

like in Section 2.2. Denote the reduced Hamiltonian of (41) by Hθ,0(J, ψ).

Box5: KAM assumption (the case of simultaneous impacts). Let a nondegenerate

minimum line of U satisfy θ
(n)
min = θ

(m)
min mod π for all m and n. Assume that at the local

minimum of Û at (ψ = 0, ξ = ξmin) the frequencies of small oscillations have no resonances

up to order 4. Furthermore, assume that the elliptic equilibrium of Hξ
0 at pξ = 0, ξ = ξmin

and the elliptic equilibrium of Hθ,0 at (J, ψ) = 0 are KAM-non-degenerate, i.e. their Birkhoff

normal forms satisfy the twist condition.

Theorem 5. Consider N repelling particles that are confined to a box by a trapping potential

satisfying the separability assumption Box1 with α > 6. Assume the parity assumption Box4

holds. Assume the averaged interaction potential U has a minima line with simultaneous

impacts and let it satisfy the non-degeneracy assumptions of Box2 and Box5. Then, for

all sufficiently high values of the energy per particle, the N-particle system (32) has a non-

degenerate elliptic periodic orbit accompanied by a positive measure set of quasi-periodic

solutions. In particular, for this set of initial conditions, each particle stays bounded away

from all other particles for all time, so the system is not ergodic.

Thus, the gas of any number of highly-energetic repelling particles confined to a rectan-

gular box by a sufficiently steep potential is, generically, non-ergodic.

3 Smooth N-particle systems.

We present here the proof of Theorem 1. Its outline is as follows. First, we consider the N -

particle system (2) near L∗(θmin), the choreographic periodic orbit of the uncoupled system,

and scale the action coordinates by δ1/2. Then we average, i.e. we make a change of

coordinates, after which the angle-dependent terms become O(δ3/4), see Lemma 3.1. Next,

we show that near a line of minima, the Poincaré map of the system is O(δ3/4)-close to the
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flow map of the Hamiltonian system of a specific form (55) (Lemma 3.2). We need to take

O(1/δ1/2) iterates of the return map. In Lemma 3.3, we establish that taking O(1/δ1/2)

iterates of any map which is O(δ3/4) close to the return map of system (55) leads to a map

which is O(δ1/4) close to the time-1 map for the Hamiltonian (58) near the origin. In Lemma

3.4, we prove that the Hamiltonian (58) admits a positive measure set of KAM tori. By

Lemma 3.3, one infers the results of Theorem 1 from the KAM theorem.

Proof: Recall that (q(n), p(n)) denotes the coordinates and conjugate momenta of the n-

th particle, n = 1, . . . , N . We apply the same symplectic transformation that brings the

single-particle system to the normal form (6) to each of the N particles, namely, we let

(q(n), p(n)) = (q̂(I
(n)
0 , θ(n), z(n)), p̂(I(n), θ(n), z(n))). As for the single particle case, this change

of coordinates is smooth and preserves the standard symplectic form. In these coordinates

the N -particle system (2) takes the form:

H =
N∑
n=1

[ωI(n) +
1

2
I(n)AI(n) + g(I

(n)
0 , θ(n), z(n))]+

+ δ
∑
n6=m

W (q̂(I
(n)
0 , θ(n), z(n))− q̂(I(m)

0 , θ(m), z(m))),
(42)

where we denote I(n) = (I
(n)
0 , I

(n)
1 =

(
z
(n)
1

)2

2
, . . . , I

(n)
d−1 =

(
z
(n)
d−1

)2

2
). We will look at the motion of

the particles near the periodic trajectory L∗. Namely, we will write

q̂(I
(n)
0 , θ(n), z(n)) = q∗(θ(n)) +O(|I(n)

0 |+ ‖z(n)‖). (43)

Since the pairwise interaction potential W is smooth,

W (q̂(I
(n)
0 , θ(n), z(n))− q̂(I(m)

0 , θ(m), z(m))) = W (q∗(θ(n))− q∗(θ(m)))+

+O(|I(n)
0 |+ ‖z(n)‖+ |I(m)

0 |+ ‖z(m)‖).
(44)

We restrict our attention to the region of the phase space where the actions I(n) are of

order δ1/2. For that, we scale the variables z(n) to δ1/4 and the variables I
(n)
0 to δ1/2, i.e., we

make a replacement z(n) → δ1/4z(n), I
(n)
0 → δ1/2I

(n)
0 . With this scaling, we have

W = W (q∗(θ(n))− q∗(θ(m))) +O(δ1/4),

(see (44)) and so, by (6), the remainder terms in (42), g, satisfy

g(I
(n)
0 , θ(n), z(n)) = O(δ5/4).
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The motion in the rescaled variables is described by the rescaled Hamiltonian

Hscal = δ−1/2 H
(

(δ1/2I
(n)
0 , θ(n), δ1/4z(n))

n=1,...,N

)
=
∑N

n=1 ωI
(n) + δ1/2

∑N
n=1

1
2
I(n)AI(n) + δ1/2

∑
n 6=m W (q∗(θ(n))− q∗(θ(m))) +O(δ3/4),

(45)

We now average the Hamiltonian with respect to the motion along the periodic orbit.

Lemma 3.1. There exists a smooth symplectic change of coordinates which brings the Hamil-

tonian (45) to the form

H =
N∑
n=1

ωI(n) + δ1/2

N∑
n=1

1

2
I(n)AI(n) + δ1/2U(θ(1), . . . , θ(N)) +O(δ3/4), (46)

where the averaged potential U is given by (10).

Proof. Recall that the (non-averaged) interaction potential

W̃ (θ(1), . . . , θ(N)) =
∑
n6=m

W (q∗(θ(n))− q∗(θ(m)))

is 2π-periodic in each of the variables θ(n), n = 1, . . . , N . Therefore, we can write its Fourier

expansion:

W̃ (θ(1), . . . , θ(N)) =
∑
n 6=m

∑
(k1,k2)∈Z2

wk1,k2,n,me
i(k1θ(n)+k2θ(m)). (47)

The function W̃ is of class C∞, so the Fourier coefficients w decay fast as k1,2 grow. In

particular, the series

Ψ(θ(1), . . . , θ(N)) = −i
∑
n6=m

∑
k1+k2 6=0

wk1,k2,n,m
ω0(k1 + k2)

ei(k1θ
(n)+k2θ(m)) (48)

is absolutely convergent, and the sum is a C∞ function of θ(1), . . . , θ(N). By construction,

ω0(∂θ(1)Ψ + . . .+ ∂θ(N)Ψ) = W̃ − U, (49)

where

U =
∑
n 6=m

∑
k1+k2=0

wk1,k2,n,me
i(k1θ(n)+k2θ(m)) =

∑
n6=m

∑
k∈Z

wk,−k,n,me
ik(θ(n)−θ(m)).

Substituting (47) in (11) and integrating over time shows that the above U is indeed the

averaged potential given by (10).
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Now, we perform a symplectic coordinate change

I
(n)
0 → I

(n)
0 − δ1/2∂θ(n)Ψ, n = 1, . . . , N (50)

(all other variables remain unchanged). The first term in the Hamiltonian (45),

N∑
n=1

ωI(n) = ω0(I
(1)
0 + · · ·+ I

(N)
0 ) +

N∑
n=1

d−1∑
j=1

ωjI
(n)
j ,

after substituting (50), produces, by (49), the additional term −δ1/2(W̃ − U). Substituting

(50) in the O(δ1/2) terms leads only to O(δ) corrections. Hence, the Hamiltonian takes the

required form (46).

Now, as explained in Section 2, we utilize the translation symmetry of the averaged

potential U(θ(1), . . . , θ(N)) and introduce the collective phase ϕ = 1
N

(θ(1) + · · · + θ(N)) and

coordinates ψ = (ψ1, . . . , ψN−1) which measure small deviations of the longitudinal motion

from the line (12) of minima defined by θmin. The precise definition of the coordinates ψ is as

follows. We choose an (N ×N) orthogonal matrix R such that its first row is 1√
N

(1, . . . , 1),

and define

(ϕ, ψ)> =
1√
N
R


θ(1) − θ(1)

min
...

θ(N) − θ(N)
min

 . (51)

By construction, the second and further rows of R are all orthogonal to (1, . . . , 1), which

implies that ψ = 0 for every point of the line (12). Notice that while ϕ is an angle (the

O(δ3/4) term in (46) is periodic in ϕ), the variables ψn correspond to small deviations from

the minimum and we do not define them globally (so they are not angular variables). In the

new coordinates the averaged potential U is independent of ϕ, and is given by Û(ψ) of (13).

Next, we define conjugate momenta (P, J1, . . . , JN−1) corresponding to the variables (ϕ, ψ):

(P, J)> =
√
NR


I

(1)
0
...

I
(N)
0

 . (52)

In particular,

P =
N∑
n=1

I
(n)
0 .
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Since the first row of the orthogonal matrix R is 1√
N

(1, . . . , 1), it follows that

I
(n)
0 =

1√
N

(
P√
N

+
N−1∑
m=1

Rm+1,nJm)).

This transformation (θ
(1)
0 , . . . , θ

(N)
0 , I

(1)
0 , . . . , I

(N)
0 ) 7→ (ϕ, ψ, P, J) is defined by the generating

function
√
N(ϕ, ψ)R(I

(1)
0 , . . . , I

(N)
0 )>, so it is symplectic.

Therefore, we can perform this transformation in the Hamiltonian function (46) directly.

As a result, we obtain the new Hamiltonian (recall that the matrix A in (46) is given by

(7)):

H = ω0P +
∑N

n=1

∑d−1
j=1 ωjI

(n)
j +

+δ1/2( aP
2+J2

2N
+
∑N

n=1
1√
N

( P√
N

+
∑N−1

m=1 Rm+1,nJm)
∑d−1

j=1 bjI
(n)
j + 1

2

∑N
n=1

∑d−1
i,j=1 âijI

(n)
j I

(n)
i )+

+δ1/2Û(ψ) +O(δ3/4).

(53)

Denoting ω̂ = (ω1, . . . , ωd−1), Î(n) = (I
(n)
1 , . . . , I

(n)
d−1)> (recall that I

(n)
j =

(z
(n)
j )2

2
=

(x
(n)
j )2 + (y

(n)
j )2

2
),

and Rn = (R2,n, . . . , RN,n)>, the Hamiltonian recasts as

H(P, J, ϕ, ψ, {z(n)
j }j=1,..,d−1,n=1,..N)

= ω0P +
∑N

n=1 ω̂Î
(n)+ δ1/2

(
a P 2+J2

2N
+ 1√

N

∑N
n=1( P√

N
+R>n J)bÎ(n) +

∑N
n=1

1
2
Î(n)ÂÎ(n)

)
+

+δ1/2Û(ψ) +O(δ3/4).

(54)

Note that ϕ̇ = ∂PH = ω0 +O(δ1/2) > 0 in this system. Therefore, the Poincaré return map

from the hypersurface ϕ = 0 to ϕ = 2π (i.e., to itself) is well-defined.

Lemma 3.2. The Poincaré return map for system (54) restricted to the energy level H = h

is O(δ3/4)-close to the time-2π
ω0

map of the system

J̇ = −δ1/2 ∂ψÛ(ψ), ψ̇ = δ1/2 ( a
N
J + 1√

N

∑N
n=1(bÎ(n))Rn),

ẋ
(n)
j = Ω

(n)
j y

(n)
j , ẏ

(n)
j = −Ω

(n)
j x

(n)
j (j = 1, . . . , d− 1; n = 1, . . . , N),

(55)

where
Ω

(n)
j = h

ω0N
(bj − a

ω0
ωj) + 1

ω0

√
N

(R>n J)bj + Âj Î
(n)−

− 1
ω0N

∑d−1
l=1

∑N
m=1(ωjbl + bjωl − a

ω0
ωlωj)I

(m)
l ;

(56)

34



here bj stands for the j-th element of the vector b, and Âj for the j-th row of the matrix Â.

Proof. The system of differential equations defined by Hamiltonian (54) is

Ṗ = O(δ3/4),

ϕ̇ = ω0 + δ1/2 ( a
N
P + 1

N

∑N
n=1 bÎ

(n)) +O(δ3/4),

J̇ = −δ1/2 ∂ψÛ(ψ) +O(δ3/4),

ψ̇ = δ1/2 ( a
N
J + 1√

N

∑N
n=1(bÎ(n))Rn) +O(δ3/4),

ẋ
(n)
j = ∂

y
(n)
j
H = Ω̃

(n)
j y

(n)
j +O(δ3/4),

ẏ
(n)
j = −∂

x
(n)
j
H = −Ω̃

(n)
j x

(n)
j +O(δ3/4) (j = 1, . . . , d− 1; n = 1, . . . , N),

(57)

where Ω̃
(n)
j = ∂H

∂I
(n)
j

= ωj + δ1/2( 1√
N

( P√
N

+ R>n J)bj + Âj Î
(n)). Applying the inverse function

theorem to (54), we can express P as a function of all other variables on the energy level

H = h

P =
1

ω0

(h− ω̂
N∑
m=1

Î(m)) +O(δ1/2).

We substitute this expression into (57) and choose ϕ/ω0 as the new time variable (i.e., we

divide J̇ , ψ̇, ẋ
(n)
j , and ẏ

(n)
j to ϕ̇/ω0). One can see that the result is O(δ3/4)-close to system

(55). Since the sought Poincaré map is the time-2π
ω0

map in the new time, we immediately

obtain the lemma.

Lemma 3.3. Let K =
⌊

ω0

2πδ1/2

⌋
and ν = (ν1, . . . , νd−1), where νj = 2π

{
K

ωj
ω0

}
, j = 1, . . . , d−

1. Then, for all small h, the K-th iteration of any map which is O(δ3/4)-close to the time-2π
ω0

map of system (55), is O(δ1/4)-close to the time-1 map of the flow defined by the Hamiltonian

H̄ =
a

2N
J2 + Û(ψ) +

1√
N

N∑
n=1

(bÎ(n))(R>n J) + (ν +
h

ω0N
(b− a

ω0

ω̂))
N∑
n=1

Î(n)+

+
1

2

N∑
n=1

Î(n)ÂÎ(n) − 1

2

N∑
n=1

N∑
m=1

Î(n)SÎ(m),

(58)

where the symmetric matrix S is given by

S =
1

ω0N
(ω̂>b+ b>ω̂ − a

ω0

ω̂>ω̂), (59)
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namely

Sjl =
1

ω0N
(ωjbl + ωlbj −

a

ω0

ωlωj), j, l = 1, . . . , d− 1.

Proof. Denote (x
(n)
j , y

(n)
j ) =

√
2I

(n)
j (cosφ

(n)
j , sinφ

(n)
j ). For system (55), the actions I

(n)
j =

(x
(n)
j )2+(y

(n)
j )2

2
are constants of motion. So, for this system, the time-2π

ω0
map (J, ψ, I

(n)
j , φ

(n)
j ) 7→

(J̄ , ψ̄, Ī
(n)
j , φ̄

(n)
j ) (j = 1, . . . , d− 1;n = 1, . . . , N) is given by

J̄ = J − 2π
ω0
δ1/2 ∂ψÛ(ψ) +O(δ),

ψ̄ = ψ + 2π
ω0
δ1/2 ( a

N
J + 1√

N

∑N
n=1(bÎ(n))Rn) +O(δ),

Ī
(n)
j = I

(n)
j ,

φ̄
(n)
j = φ

(n)
j + 2π

ω0
ωj + 2π

ω0
δ1/2 Ω

(n)
j +O(δ).

(60)

This map is O(δ1/2)-close to an isometry (a rigid rotation of the variables (x
(n)
j , y

(n)
j )).

When iterating such maps, a small error added at each iteration will propagate linearly as

long as the number of iterations is of order 1/δ1/2. Since K = O
(

1
δ1/2

)
, it follows that the

K-th iteration of any map which is O(δ3/4)-close to the time-2π
ω0

map of the flow of (55) is

O(Kδ3/4)-close to the time-K 2π
ω0

map of (55), i.e., O(δ1/4)-close to the K-th iteration of (60).

Thus, to prove the lemma, it is enough to show that the K-th iteration of (60) is O(δ1/4)-

close to the time-1 map of (58) (in fact we prove that it is O(δ1/2)-close). We do this by

moving to a rotating coordinate frame. Denote

λj =
1

K

⌊
K
ωj
ω0

⌋
, νj = 2πK(

ωj
ω0

− λj)

(note that these are the same νj as in the statement of the lemma). The rotating coordinate

frame corresponds to the new variables:

α
(n)
j (k) = φ

(n)
j (k)− 2πkλj

i.e., at each iteration of the map (60) we subtract 2πλj from φ
(n)
j . This brings the map (60)

to the form:
J̄ = J − 1

K
∂ψÛ(ψ) +O(δ),

ψ̄ = ψ + 1
K

( a
N
J + 1√

N

∑N
n=1(bÎ(n))Rn) +O(δ),

Ī
(n)
j = I

(n)
j ,

ᾱ
(n)
j = α

(n)
j + 1

K
(νj + Ω

(n)
j ) +O(δ)

(61)
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(we use here that 1
K

= 2π
ω0
δ1/2 + O(δ)). This is a near-identity map which is O(δ)-close to

the time- 1
K

map of the system

J̇ = −∂ψÛ(ψ),

ψ̇ = a
N
J + 1√

N

∑N
n=1(bÎ(n))Rn,

İ
(n)
j = 0,

α̇
(n)
j = νj + Ω

(n)
j .

(62)

Therefore, the K-th iteration of the map (61) is O(Kδ)- (i.e., O(δ1/2)-) close to the time-1

map of this system. Returning to the non-rotating phases φ
(n)
j does not change the K-th

iteration of the map: since Kλj are integers by construction, φ
(n)
j coincides, after the K-th

iteration, with α
(n)
j modulo 2π, for all j.

It remains to note that system (62) with Ω
(n)
j defined by (56) indeed corresponds to the

Hamiltonian (58) (where α
(n)
j are the angular variables conjugate to the actions I

(n)
j ).

We show next that the twist Assumption SP2 and the KAM assumption IP1 imply:

Lemma 3.4. At h = 0, the system (62) (corresponding to the Hamiltonian (58)) has a

positive measure set of KAM tori near its equilibrium at the origin.

Proof. First, we make a change of coordinates which decouples the (J, ψ) and (Î , α) degrees

of freedom in (58). We achieve this goal by replacing

J → J −
√
N

a

N∑
n=1

(bÎ(n))Rn, (63)

where Rn = (R2,n, . . . , RN,n). Then, the right-hand side of the equation for ψ̇ will be inde-

pendent of Î (i.e., independent of (x, y)). In order to make this a symplectic transformation,

we write it as

Jj = J̃j −
√
N

a

N∑
n=1

d−1∑
l=1

blI
(n)
l Rj+1,n, j = 1, . . . , N − 1

and also transform the α-variables:

α
(n)
l = α̃

(n)
l + bl

√
N

a

N−1∑
j=1

ψjRj+1,n, l = 1, . . . , d− 1, n = 1, . . . N.

The simplecticity of the transformation (J, ψ, Î, α) to (J̃ , ψ̃ = ψ, Ĩ = Î , α̃) follows be-

cause it is defined by the generating function
∑N−1

j=1 ((Jj +
√
N
a

∑N
n=1

∑d−1
l=1 blI

(n)
l Rj+1,n)ψ̃j +∑N

n=1 I
(n)
j α̃

(n)
j ).
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Performing this change of variables directly in the Hamiltonian (58) at h = 0, the new

Hamiltonian is (omitting the tilde signs)

H =
a

2N
J2 + Û(ψ)− 1

2a

(
N∑
n=1

(bÎ(n))Rn

)2

+ ν
N∑
n=1

Î(n)+

+
1

2

N∑
n=1

Î(n)ÂÎ(n) − 1

2

N∑
n=1

N∑
m=1

Î(n)SÎ(m).

(64)

This is the sum of the Hamiltonian (14) that depends only on J and ψ and describes oscil-

lations around the equilibrium at (J = 0, ψ = 0), and the Hamiltonian

HI = ν
N∑
n=1

Î(n) − 1

2a

(
N∑
n=1

(bÎ(n))Rn

)2

+
1

2

N∑
n=1

Î(n)ÂÎ(n) − 1

2

N∑
n=1

N∑
m=1

Î(n)SÎ(m), (65)

which depends only on Î variables and describes rotations of the phases α. By the KAM

Assumption IP1, the Hamiltonian (14) has a positive measure set of KAM tori near the zero

equilibrium. This means we only need to check that the Hamiltonian HI also has a positive

set of KAM tori near the origin, which is proved next, in Lemma 3.5.

Lemma 3.5. The Hamiltonian HI of (65) satisfies the twist condition.

Proof. This condition is the requirement that the matrix of second derivatives of HI with

respect to Î
(n)
j is non-degenerate, i.e., the quadratic form

− 1

2a

(
N∑
n=1

(bÎ(n))Rn

)2

+
1

2

N∑
n=1

Î(n)ÂÎ(n) − 1

2

N∑
n=1

N∑
m=1

Î(n)SÎ(m) (66)

is non-degenerate. This is equivalent to the non-degeneracy of the quadratic form

a

2N
J2 − 1

2a

(
N∑
n=1

(bÎ(n))Rn

)2

+
1

2

N∑
n=1

Î(n)ÂÎ(n) − 1

2

N∑
n=1

N∑
m=1

Î(n)SÎ(m),

where we added the dummy variables J = (J1, . . . , JN−1)>. Replacing

J = J̃ +

√
N

a

N∑
n=1

(bÎ(n))Rn

(note that this is the inverse of (63)), and omitting the tilde sign, we obtain the quadratic
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form
a

2N
J2 +

1√
N

N∑
n=1

(bÎ(n))(R>n J) +
1

2

N∑
n=1

Î(n)ÂÎ(n) − 1

2

N∑
n=1

N∑
m=1

Î(n)SÎ(m);

Proving its non-degeneracy amounts to showing the non-vanishing of the determinant of the

following matrix

M =




a
N

. . . 0

0
. . . 0

0 . . . a
N

 1√
N
R1b . . . . . . . . . 1√

N
RNb

1√
N
b>R>1 Â− S −S . . . . . . −S
... −S Â− S −S . . . −S
...

... . . .
. . . . . .

...
...

...
. . .

1√
N
b>R>N −S . . . . . . −S Â− S


. (67)

Let us show that

detM = − 1

ω2
0

(
1

N
detA

)N−1

detAω. (68)

so, by the single particle twist Assumption, SP3,

detM 6= 0,

which will prove the lemma and the theorem.

Recall that Rn’s in the expression (67) are the columns of an orthogonal matrix R without

its first row. The first row of R equals to 1√
N

(1, . . . , 1). Hence, it follows from R>R = id

that

R>nRm =

{
−1/N if m 6= n,

1− 1/N if m = n,
(69)

and since RR> = id

R1 + . . .+RN = 0. (70)

Subtract the last column in formula (67) from each other column, except for the first one.
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The resulting matrix


a
N

. . . 0

0
. . . 0

0 . . . a
N

 1√
N

(R1 −RN)b 1√
N

(R2 −RN)b . . . . . . 1√
N
RNb

1√
N
b>R>1 Â 0 . . . . . . −S
... 0 Â 0 . . . −S
...

... . . .
. . . . . .

...
... 0 . . . 0 Â −S

1√
N
b>R>N −Â . . . . . . −Â Â− S


has the same determinant as M . We again get a matrix with the same determinant when,

in the last formula, we add all rows, except for the first one, to the last row. The result is


a
N

. . . 0

0
. . . 0

0 . . . a
N

 1√
N

(R1 −RN)b 1√
N

(R2 −RN)b . . . . . . 1√
N
RNb

1√
N
b>R>1 Â 0 . . . . . . −S
... 0 Â 0 . . . −S
...

... . . .
. . . . . .

...
1√
N
b>R>N−1 0 . . . 0 Â −S

0 0 . . . . . . 0 Â−NS


.

Note that the utmost left bottom block in this matrix equals to 1√
N
b>(R1 + . . .+RN)> and

is zero by (70).

Next, for each n = 1, . . . , N − 1 we multiply the first row in this formula by
√
N
a
b>R>n

and subtract the result from the (n + 1)-th row (so we do not change the first and the last
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rows). By (69), this gives us the block-triangular matrix


a
N

. . . 0

0
. . . 0

0 . . . a
N

 1√
N

(R1 −RN)b 1√
N

(R2 −RN)b . . . . . . 1√
N
RNb

0 Â− 1
a
b>b 0 . . . . . . −S + 1

aN
b>b

... 0 Â− 1
a
b>b 0 . . . −S + 1

aN
b>b

...
... . . .

. . . . . .
...

... 0 . . . 0 Â− 1
a
b>b −S + 1

aN
b>b

0 0 . . . . . . 0 Â−NS


.

By construction, its determinant equals to the determinant of M , which gives

detM =
( a
N

)N−1

det(Â− 1

a
b>b)N−1 det(Â−NS).

Now, formula (68) follows, since

detA = det

(
a b

b> Â

)
= det

(
a 0

b> Â− 1
a
b>b

)(
1 1

a
b

0 I

)
= a det(Â− 1

a
b>b),

and, by (59),

−ω2
0 det(Â−NS) = −ω2

0 det(Â− 1

ω0

(ω̂T b+bT ω̂ − a

ω0

ω̂T ω̂)) = det


−ω2

0

a
ω0 ω̂

0 a b

0 0 Â+ a
ω2
0
(ω̂> − ω0

a
b>)ω̂ − ω̂>b

ω0



= det


−ω2

0

a
ω0 ω̂

0 a b

0 b> + a
ω0

(ω̂> − ω0

a
b>) Â+ a

ω2
0
(ω̂> − ω0

a
b>)ω̂

 = det

 −ω2
0

a
ω0 ω̂

0 a b

ω̂> − ω0

a
b> b> Â

 =

= det

 0 ω0 ω̂

ω0 a b

ω̂> b> Â

 = detAω.

This completes the proof of Lemma 3.4, showing that the Hamiltonian system (58) has

a positive measure set of KAM tori.

Now, the claim of Theorem 1 follows. Indeed, as KAM-tori persist at small perturbations,
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Lemmas 3.2 and 3.3 imply that system (54) also has a positive measure set of KAM-tori on

every energy level H = h with small h. Since the system defined by (54) is smoothly conju-

gate to the original N -particle system (42) near L∗(θmin), with a scaling factor O(δ1/4), the

KAM theory implies that there are quasi-periodic orbits that are O(δ1/4)-close to L∗(θmin).

By (57), on such tori, the return time to the cross-section ϕ = 0 is O(δ1/2)-close to 2π
ω0

. It

follows that the averaged return time, 2π
ω̄

is also O(δ1/2)-close to 2π
ω0

, completing the proof of

Theorem 1.

4 Mutually repelling particles in a container

The motion of mutually repelling particles confined in a bounded domain D is described by

the Hamiltonian (19). In the limit of high energy per particle (i.e. for δ = 1
2h
→ 0), one can

view the system as a set of weakly interacting particles in a steep billiard-like potential as

described by (20), with the single-particle dynamics governed by (21).

The singularity of the single-particle system at δ = 0 makes the proof of Theorem 3 more

involved than for Theorem 1. The outline of the proof is as follows. In Section 4.1, we study

the single-particle system (21) in the small δ limit. Recall that this system has an elliptic

periodic orbit for δ = 0, and hence, by assumptions Box1 and Box2, this orbit persists

also for sufficiently small δ. By studying the singular behavior near impacts, we construct

a transformation to action-angle coordinates near this periodic orbit, with a singularity of

the transformation near the billiard boundary. We prove that the Hamiltonian expressed in

these coordinates has a smooth limit at δ = 0 (see Section 4.1.3). We then show that for

all sufficiently small δ > 0 this periodic orbit satisfies Assumptions SP1-SP3 (Lemma 4.4).

In Section 4.2, we study the multi-particle dynamics. Here, using the analysis of Section

4.1, we show that the return map to a cross-section at which all particles are away from the

billiards’ boundary is not singular at δ = 0 and is o(δ1/2)-close to the return map of a certain

truncated system (system (100), see Lemma 4.5). We then analyze the return map of the

truncated system by averaging (Lemma 4.7). Due to the singular nature of the impacts, we

use the pair-wise structure of the interaction terms and not the Fourier expansion which was

used in Lemma 3.1. We then establish that the return map of the truncated system (100) is

close to that of the truncated averaged system (117). This system is of the same form as the

truncated averaged system considered in Section 3 (cf. (46)), with the only difference that

the coefficients now depend on δ. Since the dependence of the coefficients is non-singular

(continuous) for all δ > 0, we can conclude the proof as in Theorem 1.
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4.1 A single particle at high energy.

Here we study the solutions of (21) for small δ. Away from the boundary, δV (q) is uniformly

small, so the trajectories follow closely the corresponding billiard trajectories. Near the

billiard boundary, a more precise analysis is needed.

4.1.1 The boundary layer dynamics

By the boundary layer, we mean a sufficiently small neighborhood of the boundary of D

where we have V (q) = 1/Q(q)α, with Q(q) measuring the distance to the boundary of D

(see Assumption BD1).

Lemma 4.1. Take a small neighborhood of a regular point M ∈ ∂D. Then, one can define

functions q̃, p̃, qimpact, tin such that the following holds. Given any initial condition (q0, p0)

which is close to a regular impact (i.e., q0 is in the small neighborhood of M but is bounded

away from ∂D, and p0 · ∇Q(M) is negative and bounded away from zero), the trajectory

(q(t, q0, p0), p(t, q0, p0)) of (q0, p0) can be written, in the boundary layer, in the following

form:

q(t, q0, p0) = qimpact + δ1/αq̃(ts, q0, p0; δ),

p(t, q0, p0) = p̃(ts, q0, p0; δ),
(71)

where ts denotes the rescaled time

ts =
t− tin(q0, p0; δ)

δ1/α
. (72)

The functions p̃, q̃ depend smoothly on (ts, q0, p0) and, along with the derivatives, depend

continuously on δ for all δ > 0: the function p̃, along with the derivatives, is uniformly

bounded and uniformly continuous for all ts and δ > 0, and the function q̃ is given by

q̃(ts, q0, p0; δ) = q̃(0, q0, p0; δ) +

∫ ts

0

p̃(u, q0, p0; δ)du, (73)

where q̃(0, q0, p0; δ) depends continuously on δ, along with the derivatives, for all δ > 0.

The function qimpact(q0, p0) is smooth and independent of δ, and is determined by the billiard

impact event:

qimpact(q0, p0) ∈ ∂D. (74)

The function tin(q0, p0; δ) depends smoothly on (q0, p0) and, along with the derivatives, de-

pends continuously on δ for all δ > 0. In the limit δ → 0, the trajectory approaches the

billiard trajectory, i.e.,

q0 + tinp0 = qimpact for δ = 0, (75)
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and

lim
ts→−∞

p̃(ts, q0, p0; 0) = p0, lim
ts→+∞

p̃(ts, q0, p0; 0) = p0 − 2(p0 · ~n)~n (76)

(the billiard reflection law) where ~n is the outer normal to ∂D at the impact point qimpact(q0, p0; 0).

Proof. We follow the strategy of [37, 51]. Put the origin of the coordinate system at the

point M , and let q‖ denote coordinates corresponding to directions tangent to the boundary

at the origin, and the q⊥-coordinate axis be orthogonal to the boundary at M . So, near the

origin, we can write

Q(q‖, q⊥) = q⊥ +O(q2
‖ + q2

⊥). (77)

The equation of motion for the single-particle Hamiltonian (21) are

d
dt
q‖ = p‖,

d
dt
q⊥ = p⊥,

d
dt
p‖ =

αδ∇‖Q
Qα+1 ,

d
dt
p⊥ = αδ∇⊥Q

Qα+1 .
(78)

We take a small η > 0 and consider an O(η)-neighborhood of M . In this region, q =

O(η), and ∇Q(q) = (∇‖Q,∇⊥Q)q = (O(η), 1 + O(η)). Then, we see that the value of p⊥

monotonically increases with time and the change in p‖ is much smaller than the change of

p⊥ (because dp‖/dp⊥ = O(η) which is small). Since the range of possible values of p⊥ is

bounded by the energy conservation, it follows that p‖ is an almost conserved quantity (can

change at most by O(η)).

Take a sufficiently large constant K. Define the outer boundary layer as the region

δ1/αK < Q(q) < η (in particular, we consider sufficiently small δ so that δ1/α � η). For

sufficiently small δ, the initial value q0 belongs to this region. In this outer layer, the value

of the potential energy δ
Qα

is small of order O(K−α), so the maximal possible change in the

kinetic energy is O(K−α) as long as the trajectory stays in the layer. Thus, the velocity vector

p = q̇ remains almost constant, p(t) = p0 +O(K−α + η), by the approximate conservation of

the kinetic energy and of p‖. It follows that the trajectory is close to a straight line (i.e., to the

billiard trajectory) and q(t) moves inward, towards the impact. Therefore, there exists some

time, tin(q0, p0; δ) = O(η) at which the trajectory crosses the surface SK,δ : Q(q) = δ1/αK.

Let us obtain more precise estimates for (q(t), p(t)) for t ≤ tin. On this time interval,
dQ
dt

= ∇Q(q) · p = p⊥(t) + O(η) = p⊥(0) + O(K−α + η) < 0. Hence, we can choose Q as a

new time. In fact, it is more convenient to choose s = δ−1/αQ as the new rescaled time, so

the equations become:
dq
ds

= δ1/α p
f(q,p)

,
dp
ds

= α
sα+1

∇Q(q)
f(q,p)

,
dt
ds

= δ1/α 1
f(q,p)

,

(79)
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M3

1/α
(q0,p0)

qimpact

qin

Figure 6: Boundary layers near impact for small δ. The outer boundary layer lies between the
level sets Q = η and Q = Kδ1/α whereas the inner layer is defined by Q < Kδ1/α.

where f = ∇Q(q) · p is a smooth function of (q, p). Hence,

q(s) = q0 + δ1/α

∫ s

s0

p(σ)

f(q(σ), p(σ))
dσ = q0 +

∫ δ1/αs

δ1/αs0

p(σ)

f(q(σ), p(σ))
d(δ1/ασ),

p(s) = p0 +

∫ s

s0

∇Q(q(σ), p(σ))

f(q(σ), p(σ))

αdσ

σα+1
= p0 −

∫ s−α

s−α0

∇Q(q(σ), p(σ))

f(q(σ), p(σ))
d(σ−α),

t(s) = δ1/α

∫ s

s0

1

f(q(σ), p(σ))
dσ =

∫ δ1/αs

δ1/αs0

d(δ1/ασ)

f(q(σ), p(σ))

(80)

where s ∈ [K, δ−1/αη]. The solution of this system of integral equations is obtained by the

contraction mapping principle: the integrands are bounded with all derivatives with respect

to q, p and the integration intervals are small (of order O(η) in the first and third equations

and O(K−α) in the second equation). It follows that, for any fixed s0, s in the outer boundary

layer, we have smooth dependence of (q, p, t) on (q0, p0), for all small δ, including the limit

δ = 0. The smoothness with respect to s0, s follows from the system (79), as s is bounded

away from zero.

We denote the solution of this system by (qint(s, q0, p0; δ), pint(s, q0, p0; δ), tint(s, q0, p0; δ)).

Note that (qint(s0, q0, p0; δ), pint(s0, q0, p0; δ), tint(s0, q0, p0, t0; δ)) = (q0, p0, 0). Since the time

tin corresponds to the time instance the trajectory hits the cross-section SK,δ, i.e., it corre-

sponds to s = δ−1/αQ = K, we obtain that

tin(q0, p0; δ) = tint(K, q0, p0; δ).
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We also define

qin(q0, p0; δ) = qint(K, q0, p0; δ),

i.e., the point where the orbit of (q0, p0) hits SK,δ : Q(q) = Kδ1/α. As we have shown, these

are smooth functions of (q0, p0), uniformly for all δ > 0.

Introducing the rescaled time ts by formula (72), we find that ∂
∂s
ts = ∂

∂s
tint

δ1/α
= 1

f(qint,pint)
,

which is bounded with all derivatives and is bounded away from zero. Hence, s(ts, q0, p0; δ)

is a smooth function of its arguments for all δ > 0 (large s corresponds to approaching the

outer boundary of the boundary layer, where ts → −∞). Therefore, in the outer boundary

layer, the function

p̃(ts, q0, p0; δ) = pint(s(ts, q0, p0; δ), q0, p0; δ) (81)

is a smooth function of its arguments. Since q̇ = p, and q(tin, q0, p0) = qin, we have

q(t; q0, p0) = qin +

∫ t

tin

p̃(ts, q0, p0; δ)dt = qimpact + (qin − qimpact) + δ1/α

∫ ts

0

p̃(u, q0, p0; δ)du.

Note that qin is the point on SK,δ, i.e., Q(qin) = Kδ1/α. We also have Q(qimpact) = 0 (see

(74)), hence Q(qin) − Q(qimpact) = Kδ1/α. Since the gradient of Q is bounded away from

zero, it follows that (qin − qimpact) is δ1/α times a smooth function of (q0, p0), continuously

depending on δ > 0 with all derivatives. Hence it can be incorporated into q̃ :

q̃(ts, q0, p0; δ) = δ−1/α(qin − qimpact) +

∫ ts

0

p̃(u, q0, p0; δ)du.

As we see, the claim of the lemma, including formulas (71),(73), follows for the initial segment

of the orbit (i.e., as long as it stays in the outer layer).

Let us now prove formula (75). By (71), (72), (73), we have

q0 + p0tin(q0, p0; δ) = qimpact +O(δ1/α) + δ1/α

∫ −δ−1/αtin

0

(p̃(ts, q0, p0; δ)− p0)dts.

This implies (75) because the last term in the above formula tends to zero, along with all

derivatives, as δ → 0. Indeed, by (81) and by the second equation of (80) we have

p̃(ts, q0, p0; δ)− p0 = O(s−α), (82)

along with derivatives up to any given order. So, since dts
ds

= dts
dt

dt
ds

is uniformly bounded with

derivatives (by (72) and the third equation of (79)), we have that (recall that s0 is bounded
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by ηδ−1/α):

δ1/α

∫ s0

K

(p̃(ts, q0, p0; δ)− p0)
dts
ds
ds =


δ1/αO(s1−α

0 ) = O(δ), α < 1,

δ1/αO(ln(s0)) = O(δ1/α ln δ), α = 1,

O(δ1/α), α > 1,

(83)

as required.

Next, we study the trajectory in the inner layer Q(q) 6 δ1/αK. Here, p⊥ changes rapidly,

so the trajectory quickly exits this inner layer, intersects the surface SK,δ again, and returns

back to the outer layer. After the rescaling q̄ = δ−1/α(q − qin), ts = δ−1/α(t − tin), the

Hamiltonian (21) becomes

H0 =
p2

2
+ Q̄(q̄, δ)−α (84)

where

Q̄(q̄, δ) =
Q(qin + δ1/αq̄)

δ1/α
. (85)

Note that Q̄(q̄, δ) is a smooth function of q̄ with bounded derivatives for all δ > 0. By

construction, the inner layer is given by K > Q̄ > H
−1/α
0 > 0 (where H0 is the conserved

energy, see (84)).

The rescaled system, as given by the Hamiltonian (84), is

dq̄

dts
= p,

dp‖
dts

=
α∇‖Q̄
Q̄α+1

,
dp⊥
dts

=
α∇⊥Q̄
Q̄α+1

, (86)

where ∇‖Q̄ = ∇‖Q = O(‖qin‖ + δ1/α) and ∇⊥Q̄ = ∇⊥Q = 1 + O(Kδ1/α) > 0. Since Q̄

is uniformly bounded in the inner layer, it follows that d
dts
p⊥ is positive and bounded away

from zero. By the conservation of energy, p⊥ cannot grow unbounded, hence the orbit must

leave the inner layer in a finite time, which we denote ts,out. This time is bounded for all

small δ > 0 (so the unscaled passage time is of order O(δ1/α)).

The system (86) is well-defined at δ = 0, so the solution on any finite interval of the

integration time ts is a smooth function of the initial conditions and parameters, continuously

depending on δ for all small δ > 0. Note that the initial condition at ts = 0 is q̄ = 0,

p = pint(K, q0, p0; δ); the right-hand side also depends smoothly on the value of qin, which

is a smooth function of q0, p0. Thus, we have a smooth dependence on q0, p0 and the scaled

time ts for all small δ > 0, i.e., the claim of the lemma continues to hold as long as the

solution is in the inner layer.

Let us show that the exit time ts,out is a smooth function of the initial conditions and

parameters of the system, i.e., it is a smooth function of q0 and p0. This moment of time
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corresponds to arriving at the cross-section SK,δ : Q̄ = K, so we just need to show that d
dts
Q̄

is bounded away from zero. To do that, note that since the time in the boundary layer is

bounded, the change in p‖ is small, of order O(∇‖Q̄) = O(‖qin‖ + δ1/α). Since the energy

(84) is conserved and the value of Q̄ at the entrance and the exit from the boundary layer is

the same, the kinetic energy 1
2
(p2
‖ + p2

⊥) is also the same. Hence |p⊥| at the moment of exit

is O(‖qin‖+ δ1/α)-close to the value of |p⊥| at the moment of entrance, so it is O(K−α)-close

to |p0⊥| by (82) (the sign of p⊥ must change since the orbit is going away from the billiard

boundary now). It follows that

d

dts
Q̄ = ∇⊥Q · p⊥ +∇‖Q · p‖ = −p0⊥ +O(‖qin‖+ δ1/α +K−α) > 0

is bounded away from zero, as required.

As ts,out depends smoothly on q0 and p0 for all δ > 0, the values of q = qout and p = pout

at the moment of exiting the inner layer also depend smoothly on q0 and p0. Note that we

have just shown that

pout = (p0‖,−p0⊥) +O(‖qin‖+ δ1/α +K−α). (87)

Once the trajectory crosses SK,δ towards the outer boundary layer (i.e., p⊥ > 0 now), we

can again use the integral equations (80) to establish the smooth dependence on the initial

conditions (qout, pout) - hence on (q0, p0) - and the scaled time. So, the solutions in this final

segment also satisfy the claim of the lemma.

It remains to establish the reflection law (76). For a given initial condition, we choose

the origin of coordinates to be the billiard impact point. The billiard reflection law then is

that p‖ remains the same and p⊥ changes sign. By (82), we have that

p̃ = (p0‖, p0⊥) +O(K−α)

before entering the inner layer and, taking into account the change in p in the inner layer,

as given by (87) we find that in the limit δ → 0

p̃ = (p0‖,−p0⊥) +O(K−α)

after exiting the inner layer (we have qin → 0 as δ → 0 because we put the coordinate origin

at the billiard impact point qimpact = limδ→0 qin). Thus, except for the bounded interval of

the rescaled time ts for which the orbit is in the inner layer, the deviation from the billiard

reflection law is bounded by O(K−α) as δ → 0. Since K can be chosen as large as we want,
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and the result cannot depend on K, this means that the deviation from the billiard law in

the limit δ = 0 is zero, i.e., the billiard reflection law is approached indeed.

4.1.2 Flow-box coordinates in the boundary layer

Consider a billiard trajectory near a regular impact point M ∈ ∂D.

Lemma 4.2. One can choose cross-sections S−δ and S+
δ in the phase space such that the

billiard trajectory intersects, transversely, the cross-section S−0 before the impact (at a point

(q′0, p
′
0)) and the cross-section S+

0 after the impact, and the following holds. For all (q0, p0) ∈
S−δ the impact time tin(q0, p0; δ) of Lemma 4.1 is constant and equal to tin(q′0, p

′
0; δ) > 0,

and the flight time from S−δ to S+
δ is constant for the orbits of system (21) and equals to

2tin(q′0, p
′
0; δ). Such cross-sections are bounded away from the billiard boundary and depend

continuously on δ. The Poincaré map S−δ → S+
δ by the orbits of the system tends, with all

derivatives, to the Poincaré map S−0 → S+
0 by the billiard flow.

Proof. For the billiard flow, the function tin(q0, p0; 0) satisfies Q(q0 + p0 · tin) = 0. Since the

impact at point M is regular, we have p0 · ∇Q(q0) 6= 0, hence the equation tin(q, p; 0) =

tin(q′0, p
′
0; 0) defines a smooth hypersurface, which is the cross-section S−0 . By the continuous

dependence of tin(q, p; δ) and its derivatives on δ, the equation tin(q, p; δ) = tin(q′0, p
′
0; δ)

defines a smooth hypersurface, which is the cross-section S−δ .

To satisfy the lemma, we must choose S+
δ as the image of S−δ by the time-2tin flow map.

Therefore, by Lemma 4.1, the cross-section S+
δ consists of the points (q, p) satisfying

q = qimpact + δ1/αq̃(tinδ
−1/α, q0, p0; δ), p = p̃(tinδ

−1/α, q0, p0; δ), (88)

where (q0, p0) is in S−δ . Formula (88) defines the Poincaré map S−δ → S+
δ . By (73),

q = qimpact + ptin +O(δ1/α) + δ1/α

∫ tinδ
−1/α

0

(p̃(u, q0, p0; δ)− p)du.

As in Lemma 4.1, it follows (similar to (83)) that the last term in this formula tends to zero

as δ → 0, along with all derivatives with respect to (q0, p0). Therefore, q and p in (88) have

a well-defined limit as δ → 0, and S+
δ tends to S+

0 , the time-2tin image of S−0 by the billiard

flow. For regular impacts, S+
0 is a well-defined smooth hypersurface and is bounded away

from the boundary. By continuity, the same is true for S+
δ for all small δ > 0.

Next, we introduce flow-box coordinates [1] for the union of trajectory segments that are

close to the billiard trajectory (q∗, p∗) in the boundary layer. Precisely, let Uδ denote the

union of the segments of trajectories of system (21) that cross S−δ at t = 0 and correspond
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to an open time-interval containing the flight-time interval [0, 2tin] (at δ = 0, we take U0 as

the union of the corresponding billiard trajectories).

Lemma 4.3. In Uδ, one can make a symplectic change of coordinates (q, p) → (τ, E ,P) ∈
R1×R1×Rd−2, such that (τ, E) is the symplectic time-energy pair, τ = 0 at S−δ and τ(q, p; δ) =

2tin at S+
δ , and the system in Uδ acquires the form

τ̇ = 1, Ė = 0, Ṗ = 0. (89)

The coordinate transformation is smooth and depends continuously on δ, along with the

derivatives, for δ > 0. Moreover, uniformly for all δ > 0, the variable q depends C∞-

smoothly on (E ,P) for every fixed τ , and it depends continuously on τ and δ, along with all

derivatives with respect to (E ,P).

Away from the billiard boundary (in particular, near S−δ and S+
δ ), the transition maps

between the coordinates (q, p) and (τ, E ,P) are smooth, and depend on δ continuously, in

C∞, for all δ > 0.

Proof. We use the standard flow-box construction: Given a point in Uδ, we take the value

of the Hamiltonian (21) at this point and define E as this value minus 1
2
; we define τ as

the time it takes a trajectory of system (21) to reach this point from S−δ . The coordinates

P are taken constant along the trajectory and, hence, equal to the coordinates P of the

intersection point of the trajectory with S−δ . One can choose coordinates P on S−δ such that

the resulting coordinate system (τ, E ,P) is symplectic in Uδ [1]. Formula (89) is immediate

from the construction (recall that the energy E is conserved).

Let us examine the regularity of the coordinate transformation in the limit δ → 0.

Away from the billiard boundary, the flow of (21) has a regular limit (the billiard flow). It

follows that if we remove from Uδ the points whose q-component belongs to a given small

neighborhood of the boundary, then the resulting set will have two connected components

for all sufficiently small δ. One component is comprised by trajectory pieces that intersect

S−δ , and the other by pieces that intersect S+
δ . It is immediate by construction that in the

first connected component the flow-box coordinate transformation is regular up to δ = 0, as

required.

For each point of the second component, one has well-defined (for all δ > 0) correspon-

dence between the (q, p) coordinates of the point and the flow-box coordinates (τ ′, E ′,P ′),
where (E ′,P ′) are the coordinates of the intersection of the orbit of the point with S+

δ and

τ ′ is the time the orbit needs to arrive to S+
δ . We have τ = 2tin − τ ′, so since tin is a

constant, it follows that to establish the regularity of the transformation (q, p)→ (τ, E ,P) in
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the second connected component, we just need to show the regularity of the transformation

(E ′,P ′)→ (E ,P) for the points on the cross-section S+
δ only.

It remains to note that the coordinates (E ,P) stay constant along a trajectory, so for

any point on S+
δ the correspondence (E ,P) → (E ′,P ′) defines the Poincaré map S−δ → S+

δ

whose regularity for all δ > 0, is established by Lemma 4.2.

We have shown the regularity of the flow-box coordinates away from the billiard boundary.

Now, to finish the lemma, we discuss the dependence of q on the flow-box coordinates. Since

τ is the time variable and (E ,P) give the initial conditions on the cross-section S−δ,j, we can

write (71) as

q = qimpact + δ1/αq̃(
τ − tin
δ1/α

, E ,P ; δ). (90)

Since the value of tin is independent of (E ,P) ∈ S−δ,j, the required regularity of q follows

immediately from Lemma 4.1.

4.1.3 The periodic orbit L∗δ

Choose, near each regular impact point M j, j = 1, . . . , k∗, of the billiard orbit L∗, the cross-

sections S−δ,j and S+
δ,j as in Lemma 4.2. The cross-sections depend continuously on δ and

stay bounded away from the billiard boundary. Therefore, in a neighborhood of the piece

of L∗ between the consecutive cross-sections S+
δ,j and S−δ,j+1, the potential tends to zero as

δ → 0 and the motion tends to the constant speed motion, as in the billiard. Hence, for the

orbits of system (21) the flight time from S+
δ,j to S−δ,j+1 tends to the billiard flight time and

the Poincaré map S+
δ,j → S−δ,j+1 tends to the corresponding Poincaré map of the billiard flow,

along with the derivatives with respect to the initial conditions.

By Lemma 4.2, the same is true for the Poincaré map and the flight time between S−δ,j
and S+

δ,j (the flight time does not depend on initial conditions and equals to 2tin, so it tends

to the billiard flight time by Lemma 4.1). Thus, we obtain that the return map to S−δ,1 for

the flow (21) is Cr close, for all r, to the return map of the billiard flow (the return map is

the composition of the Poincaré maps S−δ,j → S+
δ,j and S+

δ,j → S−δ,j+1 mod k∗ for j = 1, . . . , k∗).

Also, the return time to S−δ,1 is Cr close to the return time for the billiard flow.

By Assumption BD2, the intersection point of L∗ with S−0,1 is a non-degenerate non-

resonant (up to order 4) elliptic fixed point of the billiard return map at the energy level

H = 1
2

(this corresponds to the motion with the speed 1). Such fixed points persist at small

perturbations, so the return map to S−δ,1 also has a KAM-non-degenerate elliptic fixed point

at the energy level to H = 1
2

for all small δ.

This gives us an elliptic periodic orbit L∗δ of system (21) such that L∗δ∩S−δ,1 tends to L∗∩S−0,1
as δ → 0. By the continuous dependence of the return time on δ, the period of L∗δ tends to the
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period of the billiard orbit L∗. Recall that we use the notation L∗ = (q∗(ω0t), p
∗(ω0t), where

ω0 = 2π
|L∗| and (q∗, p∗) are 2π-periodic functions, q∗ is continuous and piece-wise linear, and

p∗ is discontinuous and piece-wise constant. We denote L∗δ = (q∗δ (ω0(δ)t), p∗δ(ω0(δ)t) for some

smooth 2π-periodic functions (q∗δ , p
∗
δ). Here, ω0(δ) → ω0 as δ → 0, and (q∗δ , p

∗
δ) → (q∗, p∗),

with derivatives, if q∗ stays away from the billiard boundary. Since q∗δ is uniformly Lipshitz

and the time spent in the boundary layer is small, it follows that q∗δ → q∗ in C0 for all t.

The same holds true in every energy level close to H = 1
2
. The billiard has a periodic

orbit L∗(E) in the energy level H = E which follows the same path as L∗ in the q- space,

with the speed ‖p‖ =
√

2E and period T (E) = |L∗|√
2E

. By the same arguments as above, the

system (21) for all sufficiently small δ has an elliptic periodic orbit L∗δ(E) in the energy level

H = E, and the family of the orbits L∗δ(E) approaches L∗(E) as δ → 0. In particular, the

period Tδ(E) tends to T (E) along with derivatives with respect to E (because the return

time to S−δ,1 tends to the billiard return time with derivatives with respect to the initial

conditions).

For every δ > 0, for each impact point M j, j = 1, . . . , k∗, let us choose the region Uδ,j as

in Lemma 4.3 (i.e., this region consists of the orbits of (21) that connect the cross-sections

S−δ,j and S+
δ,j). Since L∗ is regular periodic orbit, its impacts are distinct, so the regions Uδ,j

do not overlap for different j. Let U0 be a sufficiently small, yet independent of δ, open

neighborhood of the part of L∗δ which is not covered by the union of Uδ,j.
We use (q, p) as coordinates in U0; note that for the points (q, p) ∈ U0, the q-component is

bounded away from the billiard boundary. In Uδ,j, we use the flow-box coordinates (τ, E ,P)j

given by Lemma 4.3. We restrict the freedom in the choice of the flow-box coordinates by

the requirement that (E ,P)j = 0 on the periodic orbit L∗δ .

Thus, we have covered a neighborhood of L∗δ by a system of coordinate charts for all δ > 0.

The overlap region between U0 and Uδ,j near the cross-sections S−δ,j and S+
δ,j stays bounded

away from the billiard boundary. Therefore, by Lemma 4.3 the transition map between

the (q, p)-coordinates in U0 and the flow-box coordinates in Uδ,j in the overlap region is

symplectic, depends continuously on δ, and has a well-defined limit, in C∞, as δ → 0.

In other words, we have introduced the structure of a smooth symplectic manifold in the

neighborhood of L∗δ for δ > 0, and this structure has a regular limit at δ = 0. The equations

of motion also have a regular limit in these coordinates: in U0 the equations converge to

q̇ = p, ṗ = 0
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at δ = 0, and in Uδ,j the equations are the same for all δ:

τ̇ = 1, Ė = 0, Ṗ = 0.

The elliptic periodic orbit L∗δ tends, as δ → 0, to the billiard periodic orbit L∗ = L∗0,

which is a smooth curve in these coordinates (for every δ > 0, the curve L∗δ has the same

equation (E ,P) = 0 in the flow-box coordinates). As in Section 2.1, we can introduce action-

angle coordinates near L∗δ for all δ > 0, with the resulting Hamiltonian as in (6), yet here

the coefficients depend (continuously) on δ:

H0(I0, θ, z; δ) =
1

2
+ ω(δ)I +

1

2
I>A(δ)I + g(I0, θ, z; δ), (91)

where g = g0(I0; δ) + g1(I0; δ)Î + O(‖z‖4|I0| + ‖z‖5) with g0 = O(I3
0 ), g1 = O(I2

0 ) (see

notations after (6)). We stress that the symplectic transformation between the action-angle

coordinates (I0, θ, z) and the energy-time coordinates (τ, E ,P) defined in the near-impact

regions, Uδ,j, is smooth for all δ > 0.

Similar to Section 2.1, we denote the relation between the action-angle coordinates and

the (q, p)-coordinates as (q, p) = (q̂(I0, θ, z), p̂(I0, θ, z)). Away from the billiard boundary,

i.e., in U0, this coordinate transformation is well-defined in the limit δ = 0. However, near

the impacts (in the regions Uδ,j) the relation between (q, p) and the action-angle coordinates

acquires singularities at δ = 0.

The periodic orbit L∗δ corresponds to (I0, z) = 0. We have θ̇ = ω0(δ) on L∗δ , i.e., θ =

ω0(δ)t. Thus, in our notations, L∗δ = (q∗δ (θ), p
∗
δ(θ)) = (q̂(0, θ, 0), p̂(0, θ, 0)). On L∗δ , equation

(90) near the j-th impact point, where for δ = 0 the impact occurs at θj, becomes

q∗δ (θ) = M j + δ1/αq̃j,δ

(
θ − θj

ω0(δ)δ1/α

)
, (92)

where q̃j,δ has all derivatives bounded, see Lemma 4.1. So, near impacts, the k-th derivative

of q∗δ (θ) is of order δ−(k−1)/α.

Like in Section 3, we will also perform the scaling z → δ1/4z, I0 → δ1/2I0. In the scaled

variables, the motion in a small neighborhood of L∗δ is described by the scaled single-particle

Hamiltonian

H0,scal = δ−1/2

(
H0(δ1/2I0, θ, δ

1/4z; δ)− 1

2

)
= ω(δ)I +

1

2
δ1/2I>A(δ)I +O(δ3/4). (93)
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Note that away from the billiard boundary, we have

q̂(δ1/2I0, θ, δ
1/4z)− q∗δ (θ) = O(δ1/4), (94)

with all derivatives with respect to θ and the scaled variables z and I0. Note also that the

scaling of I0 and z induces the scaling (E ,P) → (δ1/2E , δ1/4P) for the flow-box coordinates

near impacts; the scaled energy E equals to H0,scal in (93). Recall that the symplectic

transformation between the unscaled (I0, θ, z) and (τ, E ,P) is smooth for all δ > 0. By (93),

scaling I0 and E by δ1/2 remains a smooth transformation in the limit δ = 0. Similarly,

since P depends smoothly on (δ1/2I0, δ
1/4z) and vanishes at the origin, it follows that its

scaling by δ1/4 also remains smooth in this limit. Therefore, we conclude that the symplectic

transformation between the scaled (I0, θ, z) and the scaled (τ, E ,P) is smooth for all δ > 0.

4.1.4 Conditions SP1-SP3 for the orbit L∗δ.

Lemma 4.4. Under Assumptions BD1 and BD2 on the billiard orbit, the periodic orbit L∗δ
satisfies Assumptions SP1-SP3 for all sufficiently small δ > 0.

Proof. For the family L∗(E) of billiard periodic orbits that follow, with the speed ‖p‖ =
√

2E,

the same path as L∗0 in the q- space, the period T (E) equals to |L∗|√
2E

. It decreases with the

energy E. Since for small δ the period of L∗δ(E) is close to the period of L∗(E) with the

derivatives with respect to E (see Section 4.1.3), the period of L∗δ(E) also decreases with E,

i.e., Assumption SP1 is verified.

By the closeness of the return maps near L∗δ and L∗0, the multipliers of L∗δ are close to

the multipliers of L∗0. Hence, by assumption BD2, there are no low-order resonances for all

small δ, i.e., assumption SP2 is satisfied.

The twist assumption SP3 for the orbit L∗δ is an open condition on coefficients of system

(91). Because of the continuity in δ, it is enough to check this condition at δ = 0. We

evaluate the necessary coefficients of (91) at δ = 0 by analyzing the return map near L∗0 =

(I0 = 0, z = 0).

The system of differential equations defined by the Hamiltonian (91) is, in restriction to

the energy level H0 = E close to E = 1
2
, given by

ω0I0 = E − 1
2
− ω̂Î +O(Î2),

θ̇ = ω0 + (aI0 + bÎ) +O(I2),

ẋj = (ωj + bjI0 + (ÂÎ)j +O(I2
0 ))yj +O(‖z‖3|I0|+ ‖z‖4),

ẏj = −(ωj + bjI0 + (ÂÎ)j +O(I2
0 ))xj +O(‖z‖3|I0|+ ‖z‖4) (j = 1, . . . , d− 1),

(95)
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where all the coefficients are taken at δ = 0. Recall the notation: I = (I0, Î), zj = (xj, yj),

Ij = 1
2
z2
j , ω = (ω0, ω̂), A =

(
a b

b> Â

)
, see Section 2.1.

For each value of E, the line (x, y) = 0 (equivalently Î = 0) corresponds to a periodic

orbit. Its period equals to the travel time from θ = 0 to θ = 2π, i.e.,

T (E) =
2π

ω0 + a
E− 1

2

ω0
+O((E − 1

2
)2)

=
2π

ω0

(1− a
E − 1

2

ω2
0

+O((E − 1

2
)2))

The linear part of the system for (xj, yj) is rotation with the frequency ωj(E) = ωj+bj
E− 1

2

ω0
+

O((E − 1
2
)2). It follows that the linearization of the return map (x, y) 7→ (x̄, ȳ) at the fixed

point (x, y) = 0 is the rotation of (xj, yj), j = 1, . . . , d− 1, by the angle

∆j = T (E)ωj(E) =
2π

ω0

(ωj +
E − 1

2

ω0

(bj −
ωja

ω0

) +O((E − 1

2
)2)). (96)

System (91) at δ = 0 describes the billiard flow, so its return map is the return map of

a billiard flow. The billiard flow is invariant with respect to the energy and time scaling, in

particular the return map at the energy level E = 1
2

is conjugate to the return map at any

E by the scaling (q, p)→ (q, p/
√

2E). The conjugacy implies that the rotation angles ∆j in

(96) are independent of E. Therefore,

bj =
ωja

ω0

, j = 1, . . . , d− 1. (97)

Now, at E = 1
2

we rewrite system (95) as

θ̇ = ω0 +O(‖z‖4),

ẋj = (ωj − bj
ω0
ω̂Î + (ÂÎ)j)yj +O(‖z‖4),

ẏj = −(ωj − bj
ω0
ω̂Î + (ÂÎ)j)xj +O(‖z‖4) (j = 1, . . . , d− 1),

The return map (θ = 0)→ (θ = 2π) for this system coincides, up to O(‖z‖4)-terms with the

(nonlinear) rotation of (xj, yj), j = 1 . . . , d− 1, to the angles

2π

ω0

(ωj −
bj
ω0

ω̂Î + (ÂÎ)j).

Thus, the map coincides, up to O(Î2)-terms, with the normal form (22) where the action-

angle coordinates (Ij,Φj) are introduced such that (xj, yj) =
√

2Ij(cos(Φj), sin(Φj)), and the
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matrix Ω is given by

Ωjk =
2π

ω0

(Âjk −
ωkbj
ω0

) =
2π

ω0

(Âjk −
aωjωk
ω2

0

).

We have det Ω 6= 0 by Assumption BD2. This implies that conditions (8) and (9) of As-

sumption SP3 are satisfied. Indeed, using (97), we find

detA = a det(Â− 1

a
b>b) = a det(

ω0

2π
Ω) 6= 0,

and

detAω = det

 0 ω0 ω̂

ω0 a a
ω0
ω̂

ω̂> a
ω0
ω̂> Â

 = det

 −
ω2
0

a
0 0

ω0 a a
ω0
ω̂

ω̂> a
ω0
ω̂> Â

 = −ω
2
0

a
detA 6= 0.

4.2 Multi-particle system

Now we analyze the multi-particle system (20) near the minimal line (26) of the averaged

interaction potential U of (25). We have established that for all small δ > 0 the single-

particle Hamiltonian can be brought to the form (91). In these variables the multi-particle

system is of the form

H =
N∑
n=1

[
ω(δ)I(n) +

1

2
I(n)>A(δ)I(n) + g(I

(n)
0 , θ(n), z(n); δ)

]
+δ

∑
n,m=1,...,N

n6=m

W (q(n)−q(m)), (98)

where, as δ → 0, the dependence q(n) = q̂(I
(n)
0 , θ(n), z(n)) becomes singular near impacts,

as described in Section 4.1. This singularity is quite mild in the flow-box coordinates

(τ (n), E (n),P(n)): we have, uniformly for all δ > 0, continuous dependence of q(n) on (τ (n), E (n),P(n))

and, for every fixed value of τ (n), smooth dependence on (E (n),P(n)), see Lemma 4.3.

Let us make the scaling z(n) → δ1/4z(n), I
(n)
0 → δ1/2I

(n)
0 . By (93), we obtain the scaled
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version of (98):

Hscal = δ−1/2 H
(

(δ1/2I
(n)
0 , θ(n), δ1/4z(n))

n=1,...,N

)
=
∑
n

[
ω(δ)I(n) + δ1/2 1

2
I(n)>A(δ)I(n) +O(δ3/4)

]
+δ1/2

∑
n6=m

W (q̂(δ1/2I
(n)
0 , θ(n), δ1/4z(n))− q̂(δ1/2I

(m)
0 , θ(m), δ1/4z(m))).

(99)

As we consider a neighborhood of the minimal line (26) which satisfies the collision-free

Assumption IP2, we can assume that W is bounded with its derivatives (as in Theorem 2).

Therefore, away from the impacts,

W (q̂(I
(n)
0 , θ(n), z(n))− q̂(I(m)

0 , θ(m), z(m))) = W (q∗δ (θ
(n); δ)− q∗δ (θ(m); δ)) +O(δ1/4),

see (94).

Thus, when all the particles stay away from the billiard boundary, the Hamiltonian (99)

is O(δ3/4)-close, with all derivatives, to the truncated Hamiltonian

Htrun =
∑
n

ω(δ)I(n) + δ1/2
∑
n

1

2
I(n)>A(δ)I(n) + δ1/2

∑
n6=m

W (q∗δ (θ
(n); δ)− q∗δ (θ(m); δ)). (100)

Note that we cannot claim the same near impacts, so there we need a more accurate com-

parison of systems (99) and (100).

We consider the Hamiltonians (99) and (100) close to the line

L∗min = {(I(n)
0 = 0, θ(n) = θ

(n)
min + c, z(n) = 0)n=1,..N , c ∈ S1},

the phase space image of the minima line (26), i.e. the solution curve (3) in action angle

coordinates). Take the codimension-one hypersurface

Σ0 :
N∑
n=1

θ(n) = 0 mod 2π. (101)

By (28), this surface intersects the line L∗min at θ(n) = θ
(n)
min. By (29), in the neighborhood

of this intersection point, all q(n) are bounded away from the billiard boundary. As ϕ̇ =
1
N

∑N
n=1 θ̇

(n) = ω0(δ) + O(δ1/2) 6= 0 , the hyper-surface (101) is transverse to the flows of

both Hamiltonians (99) and (100). Now we show that despite the fact that we can guarantee

the closeness of these Hamiltonians to each other only away from the billiard boundary, their

Poincaré return maps to the cross-section (101) are sufficiently close to each other.
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Lemma 4.5. When Assumption IP3 (non-simultaneous impacts) is satisfied, the Poincaré

return map of system (99) to the cross-section
∑N

n=1 θ
(n) = 0 is o(δ1/2)-close, along with all

derivatives, to the corresponding return map of the truncated system (100).

Proof. We take several cross-sections Σck : 1
N

∑N
n=1 θ

(n) = ck, 0 = c1 < c2 < . . . < cK = 2π,

and consider the return map of the flow of (99) to Σ0 as a composition of the maps from

each consecutive cross-section to the next one (intermediate Poincaré maps). We show that

each of these maps is well defined in the neighborhood of L∗min and is sufficiently close to

the corresponding map for (100).

In a small neighborhood of L∗min, by the non-simultaneous impacts Assumption IP3, when

q(n) is close to an impact with the billiard boundary for particle n, all the other particles

stay away from the billiard boundary. Therefore, we can choose the cross-sections Σck in

such a way that when the phase point travels between Σck and Σck+1
, either all the particles

are bounded away from the billiard boundary, or one particle gets close to a regular impact

while all the other particles stay away from the boundary. In the first case, systems (99) and

(100) are uniformly O(δ3/4)-close in Cr for any r in the region of the phase space between

these cross-sections. Since the flight time between the cross-sections is bounded, this implies

that the corresponding intermediate Poincaré maps are also O(δ3/4)-close, as required.

It remains to consider the second case, when one of the particles gets close to an impact.

Let it be particle n0. Let the cross-sections before and after the impact be Σck and Σck+1
,

and let the value of q(n0) on these cross-sections stay at a distance of order η > 0 from the

impact for all small δ. Let us show that the map Σck → Σck+1
by system (99) is O(ηδ1/2)

close, in Cr for any r, to the corresponding map by the system

Ĥscal =
∑
n

[
ω(δ)I(n) + δ1/2 1

2
I(n)>A(δ)I(n) +O(δ3/4)

]
+ δ1/2

∑
n,m 6=n0

n6=m

W (q̂(δ1/2I
(n)
0 , θ(n), δ1/4z(n))− q̂(δ1/2I

(m)
0 , θ(m), δ1/4z(m))) (102)

(i.e., we switched off the interaction with the particle n0), and, similarly, the map Σck → Σck+1

by system (100 ) is O(ηδ1/2)-close, in Cr for any r, to the corresponding map by the system

Ĥtrun =
∑
n

[
ω(δ)I(n) + δ1/2 1

2
I(n)>A(δ)I(n))

]
+ δ1/2

∑
n,m 6=n0

n6=m

W (q∗δ (θ
(n))− q∗δ (θ(m)). (103)

Indeed, since the particle n0 between Σck and Σck+1
is close to impact, we can use the

scaled flow-box coordinates (τ (n0), E (n0),P(n0)) for the n0-th particle. As explained at the
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end of section 4.1.3, the transformation between the scaled (τ (n0), E (n0),P(n0)) coordinates

and the scaled (θ(n0), I
(n0)
0 , z(n0)) is non-singular in the limit δ = 0. We use the notation

(τ = τ (n0), E = E (n0),P = P(n0), X = {(I(n)
0 , θ(n), z(n))}n6=n0) in the layer between Σck and

Σck+1
. The Hamiltonian (99) in these scaled coordinates can be schematically written as

Hscal = E +H1(X; δ) + δ1/2H2(τ, δ1/2E , δ1/4P , X; δ), (104)

and the Hamiltonian (102) is given by

Ĥscal = E +H1(X; δ). (105)

Here H1 is the Hamiltonian of the subsystem corresponding to all the particles but n0:

H1 =
∑
n 6=n0

[
ω(δ)I(n) + δ1/2 1

2
I(n)>A(δ)I(n) +O(δ3/4)

]
+ δ1/2

∑
n,m 6=n0

n6=m

W (q̂(δ1/2I
(n)
0 , θ(n), δ1/4z(n))− q̂(δ1/2I

(m)
0 , θ(m), δ1/4z(m))).

Since these particles stay away of impacts, H1 is Cr for any fixed r, uniformly for all small

δ > 0. The term H2 describes the interaction of the particle n0 with the rest of the particles6:

H2 = 2
∑
m 6=n0

W (q(τ, δ1/2E , δ1/4P)− q̂(δ1/2I
(m)
0 , θ(m), δ1/4z(m)))

where we denote q(τ, δ1/2E , δ1/4P) = q̂(δ1/2I
(n0)
0 , θ(n0), δ1/4z(n0)). By Lemma 4.3, H2 is a C∞

function of (δ1/2E , δ1/4P , X) and depends continuously, in C∞, on τ and δ > 0. Moreover,

as long as q(n0) stays away from the billiard boundary, H2 depends smoothly on τ as well,

for all δ > 0.

Since Σck and Σck+1
stay bounded away from the impact, one obtains that near these

cross-sections
d

dt
τ = ∂EHscal = 1 +O(δ)

uniformly for all δ > 0, i.e., it stays bounded away from zero. Hence, hypersurfaces of

constant τ are cross-sections to the flow of Hscal for all δ > 0; the same is true for the flow of

Ĥscal. Thus, we choose constant-τ cross-sections, Στ
k and Στ

k+1 close to Σck and, respectively,

Σck+1
. Because all these cross-sections are bounded away from impacts, the flows of Hscal

and Ĥscal are O(δ1/2)-close in Cr in between Σck and Στ
k and in between Στ

k+1 and Σck+1
,

6Recall that for the convenience of notation each term W (q(n) − q(m)) appears twice in the double sum
in (98).
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for any r. Since the flight time from Σck and Σck+1
is O(η), the flight times between the

cross-sections Σck and Στ
k and between Στ

k+1 and Σck+1
are also bounded by O(η), so the

corresponding maps for Hscal and Ĥscal between these cross-sections are O(ηδ1/2)-close.

We are left to show that the maps from Στ
k to Στ

k+1 for system (104) (Hscal) and system

(105) (Ĥscal) on any given energy level are O(ηδ1/2)-close in Cr for any r. The equations of

motion defined by (104) on the energy level Hscal = E are given by

τ̇ = 1 + δ1/2∂EH2,

Ṗ = δ1/2{P , H2},
Ẋ = {X,H1}+ δ1/2{X,H2},

where {·, ·} are the Poisson brackets in the (P , X) space. To have the equations in a closed

form, we substitute the energy E of particle (n0) by its expression which can be found from

(104) by the implicit function theorem:

E = E −H1(X; δ)− δ1/2H2(τ, δ1/2E , δ1/4P , X; δ) = E −H1(X; δ)− δ1/2H3(τ, δ1/4P , X; δ),

where H3 is continuous in τ and C∞-smooth in δ1/4P , X uniformly for all τ and δ > 0.

Choosing τ as the time variable, we obtain a non-autonomous system of the form

d

dτ
Ṗ = O(δ3/4),

d

dτ
X = {X,H1}+O(δ1/2),

where the right-hand sides are continuous in the new time τ and C∞ in P , X for all small

δ > 0. The right-hand side of this system is O(δ1/2)-close with all derivatives with respect

to P , X, to
d

dτ
Ṗ = 0,

d

dτ
X = {X,H1},

which is the system (105) restricted to any constant energy level. The constant-∆τ maps of

these systems are therefore O(∆τδ1/2)-close in Cr for any r. This is what we need since ∆τ ,

the flight time from Στ
k to Στ

k+1, is O(η).

This proves that the Poincaré map Σck → Σck+1
for the Hamiltonian Hscal of (99) is

O(ηδ1/2)-close, in Cr for any r, to the corresponding map for the Hamiltonian Ĥscal of (102).

Next we show that the corresponding maps for systems (100) and (103) are also O(ηδ1/2)-

close in Cr for any r. Here, we do not use the flow-box coordinates and instead of showing

the O(ηδ1/2)-closeness of the Poincaré maps between constant-τ cross-sections we show the

O(ηδ1/2)-closeness of the Poincaré maps between constant-θ(n0) cross-sections, Σθ
k before

impact and Σθ
k+1 after impact. Recall that only the particle n0 is near impact for the

flow between Σck → Σck+1
. Hence the flows of (100) and (103) between Σck and Σθ

k and
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between Σθ
k+1 and Σck+1

are O(δ1/2)-close, with derivatives, for all δ > 0. Since the flight

time between these cross-sections is bounded by η, the difference between the corresponding

Poincaré maps for systems (100) and (103) is O(ηδ1/2) small. So we need to examine only the

flow between Σθ
k and Σθ

k+1. As explained in Section 4.1.3, the terms W (q∗δ (θ
(n)) − q∗δ (θ(m)))

in Htrun of (100) and Ĥtrun of (103) are C∞ functions of all the variables if n,m 6= n0.

The terms W (q∗δ (θ
(n0))− q∗δ (θ(m))) with m 6= n0 in (100) are C∞ functions of θ(m) uniformly

for all θ(n0) and δ > 0. Restricting the flow to a constant energy level and choosing θ(n0)

as a new time variable, the right-hand sides of the corresponding non-autonomous systems

obtained from (100) and (103) are O(δ1/2)-close with derivatives with all the variables but

θ(n0). This implies the O(ηδ1/2)-closeness of their constant-θ(n0) maps, which implies the

required O(ηδ1/2)-closeness of the maps Σck → Σck+1
for the Hamiltonians Htrun and Ĥtrun.

Because there is no dependence on the q-coordinates of the particle n0 in equations (102)

and (103), and this is the only source of singularity at δ = 0 (all the other particles are

away from the impacts), the Hamiltonians Ĥscal and Ĥtrun are O(δ3/4)-close in Cr for any

r. Therefore, their Poincaré maps are also O(δ3/4)-close. This, finally, proves that the maps

Σck → Σck+1
by system (99) and system (100) are O(ηδ1/2)-close.

Taking the composition of the Poincaré maps from each consecutive cross-section to the

next one, we obtain that the return maps to Σ0 for systems (99) and (100) are O(ηδ1/2)-

close, in Cr for any r. Since η can be taken as small as we want, we can also allow it to go

sufficiently slowly to zero as δ → 0, thus completing the proof of the lemma.

We now evaluate the Poincaré map for the truncated system (100). We average the

truncated Hamiltonian Htrun with respect to the motion along the periodic orbit L∗δ to

establish an analogue of Lemma 3.1, but, due to the loss of smoothness at impacts, the proof

is different – we utilize explicitly the pairwise structure of the interaction potential instead

of using the Fourier expansion of Lemma 3.1.

First, we introduce the following terminology:

Definition 4.6. A function G of
(

(I
(1)
0 , θ(1), z(1)), . . . , (I

(N)
0 , θ(N), z(N))

)
is called weakly reg-

ular if it is C∞ at δ > 0 and satisfies the following conditions (i) and (ii) in the limit δ → 0:

(i) When all q(n)(I
(n)
0 , θ(n), z(n)) stay bounded away from the billiard boundary, the func-

tion G is of class C∞ for all δ > 0 and depends continuously, in C∞, on δ > 0;

(ii) When exactly one of the particles is in the billiard boundary layer, i.e., for some

n0, q(n0)(I
(n0)
0 , θ(n0), z(n0)) is near an impact point, the function G is C∞ with respect to

(I(n0), z(n0)) and ({I(n)
0 , θ(n), z(n)}n6=n0) for each fixed θ(n0) and all δ > 0, and it depends

continuously, as a C∞ function of (I(n0), z(n0)) and ({I(n)
0 , θ(n), z(n)}n6=n0), on θ(n0) and δ > 0.

In particular, since we showed that if the particle n0 is close to impact q∗δ (θ
(n0)) depends
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continuously on θ(n0), the functions W (q∗δ (θ
(n))− q∗δ (θ(m))) in (100) are weakly regular. Note

that we do not consider the case when there are more than one particle in the boundary

layer because it is not possible by the non-simultaneous impacts assumption IP3.

Lemma 4.7. There exists a weakly regular, symplectic change of coordinates which brings

the truncated Hamiltonian (100) to the form

H =
N∑
n=1

ω(δ)I(n) + δ1/2

N∑
n=1

1

2
I(n)A(δ)I(n) + δ1/2U(θ(1), . . . , θ(N); δ) + δ3/4G. (106)

Here G is a weakly regular function, and the averaged potential is given by:

U(θ(1), . . . , θ(N); δ) =
∑

n,m=1,...,N

n6=m

Wavg(θ
(n) − θ(m); δ), (107)

where

Wavg(θ
(n) − θ(m); δ) =

1

2π

∫ 2π

0

W (q∗δ (s+ θ(n))− q∗δ (s+ θ(m)))ds. (108)

All the derivatives of Wavg with respect to θ depend continuously on δ for small δ > 0.

Proof. Let (u, v) = (1
2
(θ(n) + θ(m)), 1

2
(θ(n) − θ(m))). Define

Ψ0(u, v;u0, δ) =
1

ω0(δ)

[∫ u

u0

W (q∗δ (s+ v)− q∗δ (s− v))ds− (u− u0)Wavg(2v; δ)

]
, (109)

so Ψ0(u,−v;u0, δ) = Ψ0(u, v;u0, δ). It follows from (108) and the 2π-periodicity of q∗δ that

Ψ0(u+ 2π, v;u0, δ) = Ψ0(u, v;u0, δ). (110)

Let

Ψ(θ(1), . . . , θ(N);u0, δ) =
∑

m1 6=m2

Ψ0(
1

2
(θ(m1) + θ(m2)),

1

2
(θ(m1) − θ(m2));u0, δ). (111)

For positive δ, it is identical to the function (48) of Section 3. Consider the symplectic

coordinate change (its smoothness properties in the limit δ → 0 are discussed below)

I
(n)
0 → I

(n)
0 − δ1/2∂θ(n)Ψ, n = 1, . . . , N. (112)

By (110), the right-hand side does not change when we add 2π to all phases θ(1), . . . , θ(N),

i.e., this is indeed a well-defined coordinate transformation in a neighborhood of L∗min. Dif-
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ferentiating (109), we obtain

ω0(δ)∂uΨ = ω0(δ)∂θ(n)Ψ + ω0(δ)∂θ(m)Ψ = W (q∗δ (θ
(n))− q∗δ (θ(m)))−Wavg(θ

(n) − θ(m); δ).

As ∂θ(n)Ψ =
∑

m 6=n ∂uΨ0(1
2
(θ(n) + θ(m)), 1

2
(θ(n)− θ(m));u0, δ), the transformation (112) makes

N∑
n=1

ω0(δ)I
(n)
0 →

N∑
n=1

ω0(δ)(I
(n)
0 − δ1/2

∑
m 6=n

∂uΨ0(
1

2
(θ(n) + θ(m)),

1

2
(θ(n) − θ(m));u0, δ)

so it brings the Hamiltonian (100) to the required form (106).

We need to show that one can choose u0 such that the expression

∂θ(n)Ψ0(
1

2
(θ(n) + θ(m)),

1

2
(θ(n) − θ(m));u0, δ)

in the formula for the coordinate transformation (112) is weakly regular for all n and m. Let

Ψ1(u, v;u0, δ) =

∫ u

u0

W (q∗δ (s+ v)− q∗δ (s− v))ds.

Lemma 4.8. For u0 chosen such that (u0 ± 1
2
(θ

(n)
min − θ

(m)
min))/ω0 are bounded away from

the impact moments tj for all m, n, and j, the function Ψ1( θ
(n)+θ(m)

2
, θ

(n)−θ(m)

2
;u0, δ) and its

derivatives with respect to θ(n), θ(m) are weakly regular.

Proof. Let us divide the interval of integration to subintervals [uj, uj+1], j = 0, . . . , J such

that the following holds: the last interval is [uJ , uJ+1 = θ(n)+θ(m)

2
]; on each sub-interval

at most one of the particles is in the boundary layer (i.e., for all s in each sub-interval,

either q∗δ (s + 1
2
(θ(n) − θ(m))), or q∗δ (s − 1

2
(θ(n) − θ(m))), or both are outside the boundary

layer); and all end points but the last one are at a finite distance from the impact points:

(uj ± 1
2
(θ

(n)
min − θ

(m)
min))/ω0 are bounded away from the impact moments for j = 0, . . . , J .

Such choice of sufficiently small intervals is possible: because we consider θ(n) and θ(m)

close to θ
(n)
min and θ

(m)
min, the non-simultaneous impacts assumption IP3 implies that θ(n)−θ(m)

can not get close to ω0(tj − tk) for n 6= m, hence it is impossible that s1 + 1
2
(θ(n)− θ(m)) and

s2 − 1
2
(θ(n) − θ(m)) get simultaneously close to the impact phases ω0t

j and ω0t
k if s1 and s2

belong to the same small interval.

By construction,

Ψ1(
θ(n) + θ(m)

2
,
θ(n) − θ(m)

2
;u0, δ) =

J∑
j=0

Ψ1(uj+1,
θ(n) − θ(m)

2
;uj, δ). (113)
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For all j < J , we show that Ψ1(uj+1,
θ(n)−θ(m)

2
;uj, δ) is C∞ for all small δ > 0 (hence it is

weakly regular, and its derivatives are weakly regular as well). Indeed, if both q∗δ (s± θ(n)−θ(m)

2
)

are not in the boundary layer, for all s from the integration interval [uj, uj+1], then the

integrand W (q∗δ (s + θ(n)−θ(m)

2
) − q∗δ (s − θ(n)−θ(m)

2
; δ)) is a C∞ function for all δ > 0 and the

claim follows. If, say, the first term, q∗δ (s+ θ(n)−θ(m)

2
) is in the boundary layer for some value

of s ∈ (uj, uj+1), then we shift the integration interval by 1
2
(θ(n) − θ(m)) to establish

Ψ1(uj+1,
θ(n) − θ(m)

2
;uj, δ) =

∫ uj+1+ 1
2

(θ(n)−θ(m))

uj+
1
2

(θ(n)−θ(m))

W (q∗δ (s
′)− q∗δ (s′ − (θ(n) − θ(m))))ds′. (114)

The term q∗δ (s
′−(θ(n)−θ(m))) is away from the billiard boundary for the integration interval,

q∗δ (s
′) is away from the boundary layer at the limits of integration. Therefore, the integrand

W (q∗δ (s
′)− q∗δ (s′ − (θ(n) − θ(m)))) is a C∞-function of θ(n) and θ(m), uniformly continuous in

C∞ for all s′ and all δ > 0. Moreover, it is C∞ in s also near the limits of integration. It

immediately follows that Ψ1 given by (114) is C∞ as required. Similarly, if the second term,

q∗(s − θ(n)−θ(m)

2
) is near an impact, we shift the integration interval by −1

2
(θ(n) − θ(m)) and

establish the same smoothness result.

For the last segment, since uJ+1 = θ(n)+θ(m)

2
, and v = θ(n)−θ(m)

2
, if both θ(n)/ω0 and

θ(m)/ω0 are bounded away from the impact moments, the same arguments as above show

that Ψ1( θ
(n)+θ(m)

2
, 1

2
(θ(n)−θ(m));uJ , δ) are smooth as required. On the other hand, if, say, the

particle n is in the boundary layer (and hence the particle m is not in the boundary layer)

we write the integral in the form of (114):

Ψ1(uJ+1,
θ(n) − θ(m)

2
;uJ , δ) =

∫ θ(n)

uJ+ 1
2

(θ(n)−θ(m))

W (q∗δ (s
′)− q∗δ (s′ − (θ(n) − θ(m))))ds′. (115)

As above, we have that W (q∗δ (s
′)− q∗δ (s′ − (θ(n) − θ(m)))) is a C∞-function of θ(n) and θ(m),

uniformly continuous in C∞ for all s′ and all δ > 0. Moreover, it is C∞ in s also near the

lower limit of integration. The upper limit of integration does not depend on θ(m), so we

conclude that the integral is C∞ with respect to θ(m), i.e., Ψ1 and ∂θ(m)Ψ1 given by (115) are

weakly regular, and

∂θ(n)Ψ1(uJ+1,
θ(n)−θ(m)

2
;uJ , δ) = W (q∗δ (θ

(n))− q∗δ (θ(m)))

−1
2
W (q∗δ (uJ+ 1

2
(θ(n)−θ(m)))−q∗δ (uJ− 1

2
(θ(n)−θ(m))))

−
∫ θ(n)
uJ+ 1

2
(θ(n)−θ(m))

W ′(q∗δ (s
′)− q∗δ (s′ − (θ(n) − θ(m))))∂θ(n)q

∗
δ (s
′ − (θ(n) − θ(m)))ds′

is also weakly regular since s′ − (θ(n) − θ(m)) is away from impact along this integration
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interval. The similar weakly regularity results hold true if the particle m, and not the

particle n, is in the boundary layer.

Thus, all the terms in (113) are weakly regular, along with the derivatives with respect

to θ(n) and θ(n), which gives the lemma.

Note that by the periodicity of q∗δ ,

Wavg(θ
(n) − θ(m); δ) =

1

2π
Ψ1(u0 + 2π, u0,

θ(n) − θ(m)

2
; δ), (116)

and so the right-hand side does not depend on u0. In particular we can choose u0 as needed

for Lemma 4.8, so the average potential Wavg is weakly regular. Since we can always shift

both θ(n) and θ(m) away from the impacts, the weak regularity of the average potential Wavg

means that it is is C∞ for all small δ > 0.

Now, by Lemma 4.8, we obtain that since

Ψ0(u, v;u0, δ) =
1

ω0

Ψ1(u, u0, v; δ)− u− u0

ω0

Wavg(2v; δ),

the transformation (112) is also weakly regular.

Like in Lemma 4.5, omitting the weakly regular O(δ3/4)-term in the Hamiltonian (106)

results only in O(δ3/4) corrections to the return map to an interior cross-section near L∗min.

Thus, the return map for the truncated averaged Hamiltonian

H(I, θ) =
N∑
n=1

ω(δ)I(n) + δ1/2

N∑
n=1

1

2
I(n)A(δ)I(n) + δ1/2U(θ(1), . . . , θ(N); δ) (117)

near L∗min is o(δ1/2)-close the return map for the scaled Hamiltonian (99).

This Hamiltonian has the same form as the truncated Hamiltonian of (46). The parame-

ters ω(δ), A(δ), and the averaged potential U(θ(1), . . . , θ(N); δ) depend continuously on δ and

satisfy, for all small δ > 0, the non-degeneracy assumptions as in Theorem 1. So we finish

the proof of Theorem 3 in the same way as in Theorem 1. Namely, applying Lemma 3.2,

we find that the Poincaré return map for system (117) is O(δ3/4)-close, with all derivatives,

to the time-2π
ω0

map for system (55). Hence, the return map for (99) is o(δ1/2)-close to the

time-2π
ω0

map for system (55). Now, the same arguments as in Lemma 3.3 show that if we

make O(δ−1/2) iterations of the Poincaré map of (99), the result is o(1)δ→0-close to the time-1

map for the Hamiltonian (58). The latter map has, by Lemma 3.4, a positive measure set of

invariant KAM tori, hence so does the rescaled system (99), as well as the original system

(98).
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5 Gas in a rectangular box

Here we study the motion near the family of fast vertical periodic orbits in a box, proving

Theorem 4 (the non-simultaneous impacts case, see Sections 5.1, 5.2 and 5.3) and Theorem

5 (the simultaneous impacts case, Sections 5.1, 5.3 and 5.4).

5.1 Action-angle coordinates near vertical periodic orbits.

Since the single-particle degrees of freedom decouple, and only the vertical direction dynamics

are fast and billiard-like, the single-particle theory developed in Section 4.1 applies to the

one-dimensional vertical motion, where q = qd ∈ R1 and the billiard corresponds to a particle

bouncing between the end points of the interval [0, π]. At positive δ, the vertical motion of

a single particle is described by the Hamiltonian

Hd =
p2

2
+ δVd(q) =

p2

2
+

δ

Qd(q)α
, (118)

see (30), (31). One can introduce action-angle variables (I, θ) for this system. The periodic

orbit that lies in the energy level H = 1
2

is denoted as q = q∗δ (θ); it tends to the saw-tooth

(36) as δ → 0. The vertical action I is a one-to-one, smooth function of the vertical energy

and is a constant of motion. Thus, the single-particle vertical motion is governed by

Hd(I; δ) =
(p̂d(I, θ; δ))

2

2
+δVd(q̂d(I, θ; δ))−

1

2
= ω0(δ)I+

1

2
a(δ)I2+O(I3), I ∈ R1. (119)

This is analogous to formula (91) of Section 4.1 but, contrary to the multidimensional single-

particle theory, there are no z-variables nor the corresponding P-variables.

Using the action-angle coordinates in the vertical direction, the multi-particle Hamilto-

nian (33) takes the following form:

H =
N∑
n=1

Hd(I
(n); δ) + δ

∑
n=1,...,N

d−1∑
i=1

[
(p

(n)
ξ,i )2

2
+ Vi(ξ

(n)
i )

]
+ δ

∑
n,m=1,...,N

n6=m

W (q̂d(I
(n), θ(n); δ)− q̂d(I(m), θ(m); δ), ξ(n) − ξ(m)));

(120)

recall that(ξ, pξ) denote the non-vertical coordinates: ξ
(n)
i = q

(n)
i , p

(n)
ξ,i = p

(n)
i , i = 1, . . . , d −

1, n = 1, . . . N .
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Scaling the vertical actions as δ1/2I and dividing the Hamiltonian by δ1/2, we obtain

Hscal =
N∑
n=1

ω0(δ)I(n) + δ1/2

N∑
n=1

(
1

2
a(δ)(I(n))2 +

d−1∑
i=1

[
(p

(n)
ξ,i )2

2
+ Vi(ξ

(n)
i )

])
+O(δ)

+ δ1/2
∑

n,m=1,...,N

n 6=m

W (q̂d(δ
1/2I(n), θ(n); δ)− q̂d(δ1/2I(m), θ(m); δ), ξ(n) − ξ(m))).

(121)

Below, we establish the existence of an elliptic periodic orbit for system (121) by com-

paring it with the averaged system defined by the Hamiltonian

Havg =
N∑
n=1

ω0(δ)I(n) + δ1/2

N∑
n=1

(
1

2
a(δ)(I(n))2 +

d−1∑
i=1

[
(p

(n)
ξ,i )2

2
+ Vi(ξ

(n)
i )

])
+ δ1/2

∑
n,m=1,...,N

n6=m

Wavg(θ
(n) − θ(m), ξ(n) − ξ(m); δ) + δG̃(θ, I, ξ, p; δ).

(122)

This is an analogue of the averaged system (106) (just the higher order terms are of order δ

and not of order δ3/4 as in (106)). Here Wavg is the pairwise interaction potential averaged

over the vertical oscillations in the system where the interaction between particles is switched

off (see (120)):

H =
N∑
n=1

Hd(I
(n); δ) + δ

∑
n=1,...,N

d−1∑
i=1

[
(p

(n)
ξ,i )2

2
+ Vi(ξ

(n)
i )

]
.

The vertical oscillations at I(n) = 0 correspond to the choreographic solution (cf. (3)):

L∗(θ, ξ) = {q(n)
1,...d−1 = ξ

(n)
i , q

(n)
d = q∗δ (ω0t+θ

(n)), p
(n)
1,...d−1 = 0, p

(n)
d = p∗δ(ω0t+θ

(n))}Nn=1. (123)

Thus,

Wavg(θ
(n)− θ(m), ξ(n)− ξ(m); δ) =

1

2π

∫ 2π

0

W (q∗δ (s+ θ(n))− q∗δ (s+ θ(m)), ξ(n)− ξ(m))ds. (124)

We denote the potential of the averaged system (122) by

Uδ(θ, ξ) =
∑

n,m=1,...,N

n6=m

Wavg(θ
(n) − θ(m), ξ(n) − ξ(m); δ) +

N∑
n=1

d−1∑
i=1

Vi(ξ
(n)
i ), (125)

so U0(θ, ξ) = U(θ, ξ) of (25). The regularity properties of the potential Uδ and of the
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correction term δG in (122) in the limit δ → 0, and their influence on the dynamics, are

evaluated differently in the case of non-simultaneous and simultaneous impacts.

5.2 The non-simultaneous impacts case

The proof of Theorem 4 is, essentially, the same as for Theorem 3 - we just do not have

here the fast variables z but, instead, have slow variables ξ (which, in fact, makes the

situation simpler). As in Lemma 4.5 of Section 4.2, in the case where the impacts are non-

simultaneous, the Poincaré map for the Hamiltonian (121) is o(δ1/2)-close to the Poincaré

map for the truncated Hamiltonian Htrun:

Htrun =
N∑
n=1

ω0(δ)I(n) + δ1/2

N∑
n=1

(
1

2
a(δ)(I(n))2 +

d−1∑
i=1

[
(p

(n)
ξ,i )2

2
+ Vi(ξ

(n)
i )

])
+ δ1/2

∑
n,m=1,...,N

n6=m

W (q∗δ (θ
(n))− q∗δ (θ(m)), ξ(n) − ξ(m)).

(126)

As in Lemma 4.7, we average the truncated Hamiltonian Htrun by performing the symplectic

coordinate transformation defined by the δ1/2-time map for the Hamiltonian Ψ defined as in

(111), where Ψ0 is defined as in (109), i.e.,

Ψ(θ(1), . . . , θ(N), ξ(1), . . . , ξ(N);u0, δ) =
∑

m1 6=m2

Ψ0(
1

2
(θ(m1)+θ(m2)),

1

2
(θ(m1)−θ(m2)), ξ(m1)−ξ(m2);u0, δ),

(127)

where

Ψ0(u, v, w;u0, δ) =
1

ω0(δ)

[∫ u

u0

W (q∗δ (s+ v)− q∗δ (s− v), w; δ)ds− (u− u0)Wavg(2v, w; δ)

]
.

The only difference with Section 4.2 is that now Ψ also depends on the ξ variables. The

same computations as in Lemma 4.7 show that the resulting near-identity transformation

(I(n), p
(n)
ξ )→ (I(n), p

(n)
ξ )−δ1/2(∂θ(n) , ∂ξ(n))Ψ is weakly regular and brings the truncated Hamil-

tonian (126) to the averaged form (122), where the error term δG is weakly regular (see

Definition 4.6); the potential Wavg is a C∞ function and depends continuously on δ, along

with all derivatives, for al δ ≥ 0.

Like in Theorem 3, since no more than one particle can be near the box boundary at

any given moment of time (this is the non-simultaneous impacts assumption), the weak

regularity of G implies that omitting the δG terms in the averaged system (122) results only

in O(δ)-corrections to the Poincaré return map. Thus, we obtain that the Poincaré return
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map of the original system (121) is o(δ1/2)-close to the Poincaré return map for the system

H =
N∑
n=1

ω0(δ)I(n) + δ1/2

N∑
n=1

(
1

2
a(δ)(I(n))2 +

d−1∑
i=1

(p
(n)
ξ,i )2

2

)
+ δ1/2Uδ(θ, ξ) (128)

where Uδ(θ, ξ) is defined by (125). Since Uδ(θ, ξ) and all its derivatives depend on δ con-

tinuously, the non-degeneracy assumption Box2 implies that the minimal line at δ = 0 is

non-degenerate and persists for small δ. So, we introduce local normal coordinates near this

line:

(θ(n), I(n))→ (ϕ, ψ, P, J),

in the same way as in (51),(52). By the translation invariance of Uδ, it is independent of ϕ:

Uδ(θ, ξ) = Ûδ(ψ, ξ). (129)

The potential Ûδ has a non-degenerate minimum at (ψ = 0, ξ = ξmin). The Hamiltonian H

of (128) becomes

H(P, ϕ, J, ψ, pξ, ξ; δ) = ω0(δ)P + δ1/2

(
1

2N
a(δ)P 2 +

1

2N
a(δ)J2 +

p2
ξ

2
+ Ûδ(ψ, ξ)

)
. (130)

This Hamiltonian is similar to that in (53) but it is simpler, as there is only one fast degree

of freedom (ϕ, P ). Moreover, H is independent of ϕ, so P is an integral which controls the

period of the fast motion.

With this simplification in mind, let us follow the same procedure as is applied in Section

3 to Hamiltonian (53) and compute the Poincaré return map from ϕ = 0 to ϕ = 2π. Since

the flight time depends only on P , the restriction of this map onto a fixed level of P is a

constant-time map for the Hamiltonian (130) or, equivalently, an O(δ1/2)-time map for the

Hamiltonian

HP (J, ψ, pξ, ξ; δ) = 1
2N
a(δ)J2 +

p2ξ
2

+ Ûδ(ψ, ξ). (131)

Thus, as in Lemma 4.5, the Poincaré map of (121) is o(δ1/2)-close to the O(δ1/2)-time map

for the Hamiltonian (131). Since Ûδ(ψ, ξ) depends continuously on δ with all derivatives, it

follows from the non-degeneracy assumption Box2 and the KAM non-degeneracy assump-

tion Box3 that the Hamiltonian (131) has a KAM-non-degenerate elliptic fixed point near

(J, ψ, pξ, ξ) = (0, 0, 0, ξmin) with a positive measure set of KAM tori around it. Hence the

Poincaré map of the Hamiltonian (121) also has such elliptic fixed point, proving Theorem

4.
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5.3 Smoothness properties of the averaged potential

Before proceeding to the proof of Theorem 5 (the case of simultaneous impacts) we investigate

regularity properties of the averaged potential Wavg in (124). We start with the case δ = 0,

i.e., let the function q∗ in (124) be the billiard’s saw-tooth solution (34).

Lemma 5.1. Provided ||ξ(n)−ξ(m)|| > ρ, the averaged potential along the saw-tooth solution,

Wavg of (36), is C∞ for θ(n) − θ(m) 6= 0 mod π. Under the parity assumption Box4, at the

singularities θ(n)−θ(m) = 0 mod π, the potential Wavg is C2-smooth, yet it is not C3 smooth

in general.

Proof. Setting the shorthand notation ϑ = θ(m) − θ(n) and ζ = ξ(n) − ξ(m), and using the

periodicity of q∗, the averaged potential of (36) becomes

Wavg(ϑ, ζ) =
1

2π

∫ 2π

0

W (q∗(s)− q∗(s+ ϑ), ζ)ds.

By (34), for ϑ ∈ (0, π),

2πWavg(ϑ, ζ) =
∫ π−ϑ

0
W (−ϑ, ζ)ds+

∫ π
π−ϑ W (2s− 2π + ϑ, ζ)ds

+
∫ 2π−ϑ
π

W (ϑ, ζ)ds+
∫ 2π

2π−ϑW (4π − 2s− ϑ, ζ)ds

= (π − ϑ)(W (−ϑ, ζ) +W (ϑ, ζ))

+
∫ π
π−ϑ(W (2s− 2π + ϑ, ζ) +W (−2s+ 2π − ϑ, ζ))ds

(132)

so for ‖ζ‖ > ρ it is C∞ for ϑ ∈ (0, π). Now, recall that Wavg(ϑ, ζ) is an even function, so its

extension to ϑ ∈ (−π, 0) is simply Wavg(ϑ, ζ) = Wavg(−ϑ,−ζ), hence it is C∞ for all ϑ away

from the matching points ϑ = 0 mod π.

It remains to prove the C2-smoothness at the matching points. By the periodicity and

the parity assumption Box4,

Wavg(ϑ, ζ) = Wavg(−ϑ, ζ) = Wavg(2π − ϑ, ζ),

so it is enough to verify only that the first derivatives of Wavg in (132) vanish at ϑ = 0, π.

By the parity assumption the interaction potential W is even in ϑ, so (132) becomes

2πWavg(ϑ, ζ) = 2(π − ϑ)W (ϑ, ζ) + 2
∫ π
π−ϑW (2s− 2π + ϑ, ζ)ds

= 2πW (ϑ, ζ) + 2
∫ ϑ

0
(W (−2u+ ϑ, ζ)−W (ϑ, ζ))du.

(133)
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Therefore,

∂

∂ϑ
Wavg(ϑ, ζ) =

∂

∂ϑ
W (ϑ, ζ) +

1

π

∫ ϑ

0

∂

∂ϑ
(W (−2u+ ϑ, ζ)−W (ϑ, ζ))du = (1− ϑ

π
)
∂

∂ϑ
W (ϑ, ζ),

so ∂
∂ϑ
Wavg(ϑ, ζ)|ϑ=0,π = 0, as required.

Differentiating further, we find

∂2

∂ϑ2
Wavg(ϑ, ζ) = (1− ϑ

π
)
∂2

∂ϑ2
W (ϑ, ζ)− 1

π

∂

∂ϑ
W (ϑ, ζ). (134)

Next, we obtain

∂3

∂ϑ3
Wavg(ϑ, ζ) = (1− ϑ

π
)
∂3

∂ϑ3
W (ϑ, ζ)− 2

π

∂2

∂ϑ2
W (ϑ, ζ),

so ∂3

∂ϑ3
Wavg(ϑ, ζ)|ϑ→0,π = − 2

π
∂2

∂ϑ2
W (ϑ, ζ)|ϑ→0,π. Generically, these values do not vanish, so

the even extension of Wavg to negative ϑ cannot be C3 (i.e., it is only piecewise smooth).

Let us now consider the case of δ > 0. As in the lemma above, we use the notation

ϑ = θ(n) − θ(m) and ζ = ξ(n) − ξ(m).

Lemma 5.2. Away from ϑ = 0 mod π, the averaged potential Wavg(ϑ, ζ; δ) is C∞-close, for

small δ to the saw-tooth averaged potential Wavg(ϑ, ζ; 0).

When the parity assumption Box4 is satisfied, the averaged potential near ϑ = 0 mod π

is C2-close to Wavg(ϑ, ζ; 0), along with the derivatives with respect to ζ. The higher order

derivatives with respect to ϑ do not, in general, have a continuous limit near the singular

values ϑ = 0 mod π as δ → 0. The following estimates hold true:

∂3

∂ϑ3
Wavg(ϑ, ζ; δ) = O(1),

∂4

∂ϑ4
Wavg(ϑ, ζ; δ) = O(δ−

1
α ),

∂5

∂ϑ5
Wavg(ϑ, ζ; δ) = O(δ−

2
α );

differentiation with respect to ζ does not affect these estimates:

∂i+k

∂ϑi∂ζk
Wavg(ϑ, ζ; δ) = O(δ−

i−3
α ), i = 3, 4, 5; k > 0.

Proof. In order to establish the regularity for ϑ 6= 0 mod π (i.e., for non-simultaneous

impacts), we take ϑ ∈ (0, π) and let η > 0 be a sufficiently small number so that η <
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min(ϑ, π − ϑ). By the periodicity of q∗δ , we write (124) as

2πWavg(ϑ, ζ; δ) =
∫ 2π−η
−η W (q∗δ (s)− q∗δ (s+ ϑ), ζ)ds

= (
∫ π−ϑ−η
−η +

∫ π−ϑ+η

π−ϑ−η +
∫ 2π−ϑ−η
π−ϑ+η

+
∫ 2π−η

2π−ϑ−η)W (q∗δ (s)− q∗δ (s+ ϑ), ζ)ds

=
∫ π−ϑ−η
−η W (q∗δ (s)− q∗δ (s+ ϑ), ζ)ds+

∫ π+η

π−η W (q∗δ (s− ϑ)− q∗δ (s), ζ)ds

+
∫ 2π−ϑ−η
π−ϑ+η

W (q∗δ (s)− q∗δ (s+ ϑ), ζ)ds+
∫ 2π+ϑ−η

2π−η W (q∗δ (s− ϑ)− q∗δ (s), ζ)ds.

The function q∗δ is C∞ for all δ > 0 when its argument is bounded away from 0 mod π, so

every integral in this sum is C∞ function of ϑ for all δ > 0 (this is an explicit version of a

similar statement in Lemma 4.7). Similarly, one proves the regularity of Wavg for ϑ ∈ (π, 2π).

Let us now examine the case where ϑ is close to 0 or π. We have

2πWavg(ϑ, ζ; δ) =

∫ 2π

0

W (q∗δ (s)− q∗δ (s+ ϑ), ζ)ds := S(ϑ, ζ; δ, η) +R(ϑ, ζ; δ, η), (135)

where S, the “singular part”, corresponds to the integration intervals with both particles

η-close to impacts:

S(ϑ, ζ; δ, η) =

∫ η

−η
W (q∗δ (s)− q∗δ (s+ ϑ), ζ)ds+

∫ π+η

π−η
W (q∗δ (s)− q∗δ (s+ ϑ), ζ)ds, (136)

and R, the “regular part”, corresponds to the integration intervals for which both particles

are at a distance larger than η from impacts:

R(ϑ, ζ; δ, η) =

∫ π−η

η

W (q∗δ (s)− q∗δ (s+ ϑ), ζ)ds+

∫ 2π−η

π+η

W (q∗δ (s)− q∗δ (s+ ϑ), ζ)ds. (137)

For small η, and ϑ close to 0 (both particles have the same phase) or π (the anti-phase

state), the term R(ϑ, ζ; δ, η) is C∞ for all δ > 0. Thus, we need to evaluate the singular

term, S, and its derivatives. Recall that q∗δ (s) → q∗0(s) in C0, so S converges in C0 to the

billiard limit S(ϑ, ζ; 0, η). We will show that up to order 3 the derivatives of S are uniformly

bounded for all small δ. This proves, by compactness argument, the C2-closeness of S and,

hence, of Wavg, to their C0 limits at δ = 0, as claimed.

So, to prove the lemma, we only need to estimate the derivatives of S. In order to do

this, we use formula (92) for q∗δ , where the first impact is at M1 : q = 0 (this corresponds

to θ1 = 0) and the second impact is at M2 : q = π (this corresponds to θ2 = π). Recall

that q∗δ is the periodic orbit in the energy level H = 1
2

of the system (118). Since this

system has one degree of freedom and is reversible, the periodic orbit q∗δ (θ) is even and 2π-

periodic. Moreover, by the symmetry of the potential Vd(q) (see Assumption Box1), we have
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q∗δ (θ) = q∗δ (π − θ). Thus, we may write (92) as

q∗δ (θ) = δ1/αq̃δ

(
θ

ω0(δ)δ1/α

)
near θ = 0,

q∗δ (θ) = π − δ1/αq̃δ

(
θ − π

ω0(δ)δ1/α

)
near θ = π.

(138)

where q̃δ(·) is an even function with bounded derivatives (uniformly for all δ > 0). By (118)

d

dt
q∗δ = p∗δ ,

d

dt
p∗δ = −δV ′d(q∗δ ).

Therefore, if we denote

p̃δ

(
θ

ω0(δ)δ1/α

)
= q̃′δ =

d

dt
q∗δ (139)

(see (71) and (92)), then

p̃′δ = − αδ1+1/α

Qd(δ1/αq̃)α+1
Q′d(δ

1/αq̃) = − 1

q̃α+1
δ

(
α

(Q′d(0))α
+O(δ1/α)

)
. (140)

Notice that by Lemma 4.1, the behavior of q̃ is asymptotically linear at large u:

q̃δ(u) = |u|+ o(u), (141)

so

p̃
(k)
δ (u) = O(|u|−α−k), k > 1. (142)

Note also that the frequency ω0 of the vertical oscillations tends to that of the billiard motion,

i.e.,

ω0(0) = 1. (143)

Now we can return to analyze the behavior of the singular term S. For ϑ close to 0, using

formulas (138) and that W is even, we write (136) as

S(ϑ, ζ; δ, η) = (

∫ η

−η
+

∫ π+η

π−η
) W (q∗δ (s)− q∗δ (s+ ϑ), ζ)ds = 2

∫ η

−η
W

(
δ1/αq̃δ(

s

ω0δ1/α
)− δ1/αq̃δ(

s+ ϑ

ω0δ1/α
), ζ

)
ds

= 2ω0δ
1/α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

W

(
δ1/αq̃δ(u)− δ1/αq̃δ(u+

ϑ

ω0δ1/α
), ζ

)
du.
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Similarly, near ϑ = π, we have

S(ϑ, ζ; δ, η) = (

∫ η

−η
+

∫ π+η

π−η
)W (q∗δ (s)− q∗δ (s+ ϑ), ζ)ds

=

∫ η

−η
W (δ1/αq̃δ(

s

ω0δ1/α
) + δ1/αq̃δ(

s+ ϑ− π
ω0δ1/α

)− π, ζ)ds+

∫ π+η

π−η
W (π − δ1/αq̃δ(

s− π
ω0δ1/α

)− δ1/αq̃δ(
s− 2π + ϑ

ω0δ1/α
), ζ)ds

= 2ω0δ
1/α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

W

(
π − δ1/αq̃δ(u)− δ1/αq̃δ(u+

ϑ− π
ω0δ1/α

), ζ

)
ds.

These two formulas can be written in a unified way:

S(ϑ, ζ; δ, η) = 2ω0δ
1/α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

W

(
σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+

ϑ̂

ω0δ1/α
), ζ

)
du,

where one chooses σ = 0, ϑ̂ = ϑ and the plus sign in front of δ1/αq̃δ(u) in the case of ϑ close

to zero, and σ = π, ϑ̂ = ϑ− π and the minus sign in front of δ1/αq̃δ(u) in the case of ϑ close

to π.

The first derivative of S with respect to ϑ is

∂

∂ϑ
S(ϑ, ζ; δ, η) = −2δ1/α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂W

∂q

(
σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+

ϑ̂

ω0δ1/α
), ζ

)
p̃δ(u+

ϑ̂

ω0δ1/α
)du,

where p̃δ is the derivative of q̃δ (see (139)), so it is bounded with all derivatives by Lemma

4.1. Since the integrand is bounded (along with all derivatives with respect to ζ), it follows

that ∂S
∂ϑ

= O(η), along with its derivatives with respect to ζ.

Next, we check the second derivative:

∂2

∂ϑ2
S(ϑ, ζ; δ, η) = 2ω−1

0 δ1/α
∫ η/(ω0δ

1
α )

−η/(ω0δ
1
α )

∂2W
∂q2

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) p̃δ(u+ ϑ̂
ω0δ1/α

)2du

−2ω−1
0

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂W
∂q

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) p̃′δ(u+ ϑ̂
ω0δ1/α

)du.

As before, the first line of the right-hand side is O(η). Since p̃′ decays as |u|−α−1 (see (142)),

the integral in the second line is uniformly convergent. Thus, ∂2S
∂ϑ2

is uniformly bounded for

all small δ. The same is true for its derivatives with respect to ζ.
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Differentiating further, we obtain that

∂3

∂ϑ3
S(ϑ, ζ; δ, η) = −2ω−2

0 δ
1
α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂3W
∂q3

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) p̃δ(u+ ϑ̂
ω0δ1/α

)3du

+6ω−2
0

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂2W
∂q2

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) p̃δ(u+ ϑ̂
ω0δ1/α

)p̃′δ(u+ ϑ̂
ω0δ1/α

)du

−2ω−2
0 δ−

1
α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂W
∂q

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) p̃′′δ(u+ ϑ̂
ω0δ1/α

)du.

(144)

As above, the first term in the right-hand side is O(η). Integrating the last term by parts,

we obtain

∂3

∂ϑ3
Sj(ϑ, ζ; δ, η) = O(η)+

+2ω−2
0

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂2W
∂q2

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) (2p̃δ(u+ ϑ̂
ω0δ1/α

)± p̃δ(u)) p̃′δ(u+ ϑ̂
ω0δ1/α

)du

−2δ−
1
α [∂W

∂q
(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂

ω0δ1/α
), ζ) p̃′δ(u+ ϑ̂

ω0δ1/α
)]
η/(ω0δ

1
α )

−η/(ω0δ
1
α )

Since p̃′δ decays as |u|−α−1, all the terms here are uniformly bounded, i.e., ∂3

∂ϑ3
S(ϑ, ζ; δ, η) is

uniformly bounded, with all its ζ-derivatives.

Similarly, differentiating (144) and integrating by parts, we obtain:

∂4

∂ϑ4
S(ϑ, ζ; δ, η) = 2ω−3

0 δ
1
α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂4W
∂q4

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) p̃δ(u+ ϑ̂
ω0δ1/α

)4du

−12ω−3
0

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂3W
∂q3

(δ1/ασ ± q̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) p̃δ(u+ ϑ̂
ω0δ1/α

)2p̃′δ(u+ ϑ̂
ω0δ1/α

)du

+6ω−3
0 δ−

1
α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂2W
∂q2

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) (p̃′δ(u+ ϑ̂
ω0δ1/α

))2du

+2ω−3
0 δ−

1
α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂2W
∂q2

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) (3p̃δ(u+ ϑ̂
δ1/α

)± p̃δ(u)) p̃′′δ(u+ ϑ̂
ω0δ1/α

)du

−2ω−3
0 δ−

2
α [∂W

∂q
(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂

ω0δ1/α
), ζ) p̃′′δ(u+ ϑ̂

ω0δ1/α
)]
η/(ω0δ

1
α )

−η/(ω0δ
1
α )

As before, the first term is O(η). By (142), we have p̃′δ(u) ≈ 1/|u|α+1 and p̃′′δ(u) ≈ 1/|u|α+2

at large |u|. This implies that the integrals in the 2-4 lines are uniformly bounded, so the

second line is O(1) and the third and fourth lines are O(δ−
1
α ). The fifth line is of order

O(δ−
2
α δ

α+2
α ) = O(δ). So the fourth order derivative with respect to ϑ diverges, along with its

derivatives with respect to ζ, at most as O(δ−
1
α ), in agreement with the claim of the lemma.

Namely

∂4

∂ϑ4
S(ϑ, ζ; δ, η) = 2ω−3

0 δ−
1
α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂2W
∂q2

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ)

×(3(p̃′δ(u+ ϑ̂
ω0δ1/α

))2 + (3p̃δ(u+ ϑ̂
δ1/α

)± p̃δ(u))p̃′′δ(u+ ϑ̂
ω0δ1/α

))du+O(1).
(145)

Finally, we evaluate the fifth derivative, using the same procedure as above (i.e., twice
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differentiating (144), integrating by parts, and using the estimate (142) for the decay of the

derivatives of p̃ at large |u|):

∂5

∂ϑ5
S(ϑ, ζ; δ, η) = −2ω−4

0 δ
1
α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂5W
∂q5

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) p̃δ(u+ ϑ̂
ω0δ1/α

)5du

+20ω−4
0

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂4W
∂q4

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) p̃δ(u+ ϑ̂
ω0δ1/α

)3p̃′δ(u+ ϑ̂
ω0δ1/α

)du

−30ω−4
0 δ−

1
α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂3W
∂q3

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) p̃δ(u+ ϑ̂
ω0δ1/α

)(p̃′δ(u+ ϑ̂
ω0δ1/α

))2du

−20ω−4
0 δ−

1
α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂3W
∂q3

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) p̃δ(u+ ϑ̂
ω0δ1/α

)2p̃′′δ(u+ ϑ̂
ω0δ1/α

)du

+20ω−4
0 δ−

2
α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂2W
∂q2

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ) p̃′δ(u+ ϑ̂
ω0δ1/α

)p̃′′δ(u+ ϑ̂
ω0δ1/α

)du

+2ω−4
0 δ−

2
α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂2W
∂q2

(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂
ω0δ1/α

), ζ)(4p̃δ(u+ ϑ̂
ω0δ1/α

)± p̃δ(u))p̃′′′δ (u+ ϑ̂
ω0δ1/α

)du

−2ω−4
0 δ−

3
α [∂W

∂q
(σ ± δ1/αq̃δ(u)− δ1/αq̃δ(u+ ϑ̂

ω0δ1/α
), ζ) p̃′′′δ (u+ ϑ̂

ω0δ1/α
)]
η/(ω0δ

1
α )

−η/(ω0δ
1
α )

= O(δ−
2
α )

This completes the proof of the lemma.

Lemma 5.3. Under the parity assumption, the second derivative of the averaged potential

satisfies

∂2

∂ϑ2
Wavg(0, ζ; 0) =

∂2W

∂q2
(0, ζ),

∂2

∂ϑ2
Wavg(π, ζ; 0) = − 1

π

∂W

∂q
(π, ζ). (146)

The fourth derivative satisfies

∂4

∂ϑ4
Wavg(0, ζ; δ) = − δ−

1
α Q′d(0)K(α) ∂2W

∂q2
(0, ζ) (1 + o(1)δ→0),

∂4

∂ϑ4
Wavg(π, ζ; δ) = δ−

1
α Q′d(0)K(α) ∂2W

∂q2
(π, ζ) (1 + o(1)δ→0),

(147)

where

K(α) =

∫ ∞
21/α

4α2

q2α+2
√

1− 2
qα

dq > 0. (148)

Proof. Since Wavg(ϑ, ζ; δ) tends to the billiard limit in C2 as δ → 0, formulas (146) are

just given by (134). So, in order to prove (146), we only need to calculate the fourth order

derivative. As shown in Lemma 5.2, the derivatives of the regular part (R in (135)) are

uniformly bounded for all δ > 0, and the fourth order derivative of Wavg at 0 and π is

dominated by the derivative of S. It follows from (145) at ϑ = 0 (hence, ϑ̂ = 0 and σ = 0)
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that

∂4

∂ϑ4
S(ϑ, ζ; δ, η)|ϑ=0 = 2ω−3

0 δ−
1
α
∂2W
∂q2

(0, ζ)
∫ η/(ω0δ

1
α )

−η/(ω0δ
1
α )

(3p̃′δ(u)2 + 4p̃δ(u)p̃′′δ(u))du+O(1)

= −2ω−3
0 δ−

1
α

∂2W
∂q2

(0, ζ)
∫ η/(ω0δ

1
α )

−η/(ω0δ
1
α )

(p̃′δ(u))2du+ 8ω−3
0

∂2W
∂q2

(0, ζ)δ−
1
α [p̃δ(u)p̃′δ(u)]ηω0δ

− 1
α

−ηω0δ
− 1
α

+O(1).

Since p̃′δ decays sufficiently fast by (142),

∂4

∂ϑ4
S(ϑ, ζ; δ, η)|ϑ=0 = −2ω−3

0 δ−
1
α

∂2W
∂q2

(0, ζ)
∫∞
−∞(p̃′δ(u))2du+O(1). (149)

Using (140) ∫ ∞
−∞

(p̃′δ(u))2du =
α2

Q′d(0)2α

∫ +∞

−∞
q̃0(u)−2α−2 du+ o(1), (150)

where (q̃0(u), p̃0(u)) is the solution of the limit of the Hamiltonian system (118), namely

H =
p̃2

2
+

1

(Q′d(0)q̃)α

at H = 1
2
. Choosing symmetric parameterization of the time u (so p̃0(0) = 0, hence q̃0(0) =

21/α/Q′d(0)), we obtain∫ +∞

−∞
q̃0(u)−2α−2 du = 2

∫ +∞

21/α/Q′d(0)

q̃−2α−2
0

dq̃0

p̃0

= 2Q′d(0)2α+1

∫ +∞

21/α
q−2α−2

√
1− 2

qα
dq,

so ∫ ∞
−∞

(p̃′δ(u))2du = 2Q′d(0)α2

∫ +∞

21/α
q−2α−2

√
1− 2

qα
dq + o(1).

Finally, by (149), and since ω0(0) = 1,

∂4

∂ϑ4
S(ϑ, ζ; δ, η)|ϑ=0 = −4δ−

1
α
∂2W

∂q2
(0, ζ) Q′d(0)α2

∫ +∞

21/α
q−2α−2

√
1− 2

qα
dq + o(δ−

1
α ),

and (147) follows at ϑ = 0.

When ϑ = π (hence, ϑ̂ = 0 and σ = π in (145)), equation (145) gives

∂4

∂ϑ4
S(π, ζ; δ, η) = 2ω−3

0 δ−
1
α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂2W
∂q2

(π − 2δ1/αq̃δ(u), ζ) (3(p̃′δ(u))2 + 2 p̃δ(u)p̃′′δ(u))du+O(1)

= 2ω−3
0 δ−

1
α

∫ η/(ω0δ
1
α )

−η/(ω0δ
1
α )

∂2W
∂q2

(π, ζ) (3(p̃′δ(u))2 + 2 p̃δ(u)p̃′′δ(u))du+O(1)

= 2ω−3
0 δ−

1
α
∂2W
∂q2

(π, ζ)
∫ η/(ω0δ

1
α )

−η/(ω0δ
1
α )

(p̃′δ(u))2du+ 4ω−3
0 δ−

1
α
∂2W
∂q2

(π, ζ) [ p̃δ(u)p̃′δ(u)]
η/(ω0δ

1
α )

−η/(ω0δ
1
α )

+O(1)

= 2ω−3
0 δ−

1
α
∂2W
∂q2

(π, ζ)
∫∞
−∞ (p̃′0(u))2du+O(1).
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The last line differs from (149) only by a factor, so (147) follows at ϑ = π.

The above results allow us to characterize the behavior of the averaged potential U(θ, ξ; δ)

defined by (125). It is given by Lemma 5.2 that U(θ, ξ; δ) depends on δ > 0 continuously

with the derivatives up to order 2. Therefore, by the non-degenerate minimum assumption

Box2, it has a non-degenerate minimum line near the line (37) for all small δ:

θ(n) = θ
(n)
min(δ) + c, ξ(n) = ξ

(n)
min(δ).

Lemma 5.4. The potential U(θ, ξ; δ) has the following expansion near the minimum line:

U(θ, ξmin(δ); δ) =
N∑
n=2

n−1∑
m=1

γnm(δ)(θ(n) − θ(m) − θ(n)
min − θ

(m)
min)2

+ δ−
1
αK(α)Q′d(0)βnm(δ)(θ(n) − θ(m) − θ(n)

min − θ
(m)
min)4 + . . . ,

(151)

where γnm(δ) and βnm(δ) tend, as δ → 0, to γnm and, respectively, βnm defined by (41); the

positive coefficient K(α) is given by (148), and the dots stand for sixth and higher order

terms of the expansion in powers of (θ(n) − θ(m) − θ(n)
min − θ

(m)
min).

Proof. By (125), the derivatives of U(θ, ξ; δ) with respect to θ(n) are given by the sum over

the corresponding derivatives of Wavg(θ
(n)− θ(m), ξ(n)− ξ(m); δ). The second derivatives tend

to those of Wavg(θ
(n) − θ(m), ξ(n) − ξ(m); 0) by Lemma 5.2, so the values of γnm follow from

Lemma 5.3. Since Wavg(ϑ, ζ; δ) is even and 2π-periodic in ϑ, the third order derivatives

with respect to ϑ vanish at ϑ = 0 mod π, whereas the fourth order derivatives are given by

Lemma 5.3, which determines the values of βnm.

5.4 The simultaneous impacts case

Since the billiard choreographic solution in the case of simultaneous impacts satisfies, for

any pair of particles, θ
(n)
min − θ

(m)
min = 0 mod π, the averaged potential in the limit δ = 0 is

not, in general C3 smooth, as explained in Section 5.3. Therefore, the limit δ = 0 is singular

in this case. Indeed, we estimated the derivatives of the averaged potential up to order 5

and showed that starting with order 4 they tend to infinity as δ → 0.

To deal with this difficulty, we prove Theorem 5 by using different arguments from those

used to prove Theorems 3 and 4. In Sections 5.4.1 and 5.4.2 we bring the system to the

averaged form (122) and estimate the correction term δG̃. In Section 5.4.3 we bring the

truncated averaged system to a Birkhoff normal form; the coefficients of the 4-th order terms

in the normal form diverge as δ → 0, nevertheless we show that it has a KAM non-degenerate
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elliptic periodic orbit for all small δ > 0. In Section 5.4.4 we estimate the difference between

the Birkhoff normal form for the full and truncated systems and, under the requirement

α > 6 show that the full system has an elliptic periodic orbit surrounded by KAM tori.

5.4.1 Expansion near the orbit L∗(θ, ξ) of the uncoupled system.

Lemma 5.5. In the case of simultaneous-impacts, provided α > 2 and ‖ξ(n) − ξ(m)‖ > ρ for

all n 6= m, the expansion of the scaled Hamiltonian (121) near L∗(θ, ξ) of (123) is of the

form

H =
N∑
n=1

ω0(δ)I(n) + δ1/2

N∑
n=1

(
1

2
a(δ)(I(n))2 +

d−1∑
i=1

[
(p

(n)
ξ,i )2

2
+ Vi(ξ

(n)
i )

])
+ δ1/2

∑
n,m=1,...,N

n6=m

W (q∗δ (θ
(n))− q∗δ (θ(m)), ξ(n) − ξ(m)) + δĜ(I, θ, ξ; δ),

(152)

where the derivatives of δĜ which include exactly k differentiations with respect to θ are

bounded by O(δ1−k/α).

Proof. In the box case, for α > 2, the expansion (94) can be improved to

q̂d(δ
1/2I, θ; δ) = q∗δ (θ) + δ1/2Gd(θ, I; δ) (153)

where derivatives of Gd which include exactly k differentiations with respect to θ are bounded

by O(δ−k/α). Indeed, since I = 0 corresponds to the periodic orbit L∗δ , we have that

q̂(0, θ, 0) := q∗δ (θ). Away from impacts q̂d(δ
1/2I, θ; δ) is a uniformly smooth function of

(δ1/2I, θ), so (153) follows immediately. Near impacts, as the vertical dynamics are one-

dimensional, equation (90) becomes, in the scaled coordinates (recall that here there are no

P variables):

q̂d(δ
1/2I, θ, δ) = qimpact + δ1/αq̃(

τ(δ1/2I, θ; δ) − tin(δ)

δ1/α
, E(δ1/2I); δ),

where qimpact is either 0 or π. Since (τ, E) are smooth functions of (θ, I), we can expand the

above expression at I = 0 :

q̂d(δ
1/2I, θ, δ) = q∗δ (θ) + δ1/2IḠd(θ, δ

1/2−1/αI; δ).

Each derivative with respect to θ generates a δ−1/α factor whereas each derivative with

respect to I generates a δ1/2−1/α factor. Hence, for α > 2, the derivatives of Gd = IḠd which
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include exactly k derivatives with respect to θ are bounded by O(δ−k/α), as claimed.

Since ‖ξ(n) − ξ(m)‖ > ρ for all n 6= m, the interaction potential W at any point along L∗

is smooth, so, plugging (153) in the interaction term of (121) gives

W (q̂d(δ
1/2I(n), θ(n); δ)−q̂d(δ1/2I(m), θ(m); δ), ξ(n)−ξ(m))) = W (q∗δ (θ

(n))−q∗δ (θ(m)), ξ(n)−ξ(m)))+

+δ1/2Ĝd(θ
(n), θ(m), δ1/2I(n), δ1/2I(m), ξ(n) − ξ(m); δ),

where derivatives of Ĝd which include exactly k derivatives with respect to θ(n) or θ(m) are of

order δ−k/α. Hence, (121), becomes of the required form (152), where Ĝ is the sum of such

functions Ĝd and regular terms coming from the O((δ1/2I(n))3) terms of (119).

5.4.2 Regularity of averaging

We average the Hamiltonian (152) by using the same transformation (111) as in the non-

simultaneous impacts case. To this aim, we establish that Ψ of (111) and its derivatives have

the correct regularity as δ → 0. We first show that

Ψ1(u, u0, v; ξ(n) − ξ(m); δ) =

∫ u

u0

W (q∗δ (s+ v)− q∗δ (s− v), ξ(n) − ξ(m))ds (154)

satisfies the following result (the weak regularity of Lemma 4.8 is replaced by weaker es-

timates on the derivatives, thus allowing both particles to visit simultaneously the impact

regions):

Lemma 5.6. Provided ‖ξ(n)−ξ(m)‖ > ρ, the derivatives of the function Ψ1( θ
(n)+θ(m)

2
, u0,

θ(n)−θ(m)

2
, ξ(n)−

ξ(m); δ) which include k > 0 differentiations with respect to θ(n), θ(m) are of order δ−(k−1)/α.

Proof. Since ‖ξ(n)−ξ(m)‖ > ρ, and the ξ variables are fixed along the integration interval, W

is smooth and bounded function of its arguments. So all the derivatives with respect to ξ are

bounded. When both particles are away from impacts (i.e. when the argument of q∗δ is away

from {0, π}), all the derivatives of q∗δ are bounded. Otherwise, by (92), the k-th derivative

of q∗δ (θ) is of order δ−(k−1)/α, so, the same property is shared by W (q∗δ (s+ θ(n)−θ(m)

2
)− q∗δ (s−

θ(n)−θ(m)

2
), ξ(n) − ξ(m)) and its integral, Ψ1.

By (116), the function Wavg has the same regularity properties as Ψ1. Now perform the

transformation defined by Ψ(; δ) of (111): (I(n), p
(n)
ξ )→ (I(n), p

(n)
ξ )−δ1/2(∂θ(n) , ∂ξ(n))Ψ. Notice

that here (as opposed to the non-simultaneous impacts case) we apply the transormation

to the non-truncated Hamiltonian (152) (i.e. we do not drop the correction term δĜ).

Though we formally obtain the same averaged system (122), now the δG̃ term includes the

transformed δĜ term. The derivatives with respect to ξ and I of the δG̃ term remain of
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order δ whereas its derivatives which include exactly k differentiations with respect to θ(n),

n = 1, . . . , N , are of order δ1−k/α. In particular, for α > 6 the correction term δG̃ in (122)

and its derivatives up to order 3 are o(δ1/2).

5.4.3 Normal form of the truncated averaged system.

Let us study now the truncation of system (122), namely the system (128) for the case of

simultaneous impacts. This system is translation-invariant (the Hamiltonian does not change

when the same constant is added to all θ(n)). By Lemma 5.2, the potential Uδ(θ, ξ) in (128)

has, even for the simultaneous impacts case, a C2 limit at δ = 0. By the non-degeneracy

assumption Box2, the potential U has a non-degenerate line of minima for all small δ. This

line corresponds to an elliptic periodic orbit7 of system (128). Our goal here is to establish

the KAM-nondegeneracy of it. This amounts to bringing the Poincaré map near the periodic

orbit to the 4-th order Birkhoff normal form (Lemma 5.8 below) and verification of the twist

condition (Lemma 5.9).

We introduce local normal coordinates (θ(n), I(n)) → (ϕ, ψ, P, J) near the periodic orbit

in the same way as in (51),(52). Here ϕ = 1
N

(θ(1) + . . . + θ(N)), and P is symplectically

conjugate to ϕ. The variables ψ vary near zero and are linear combinations of ((θ(n) −
θ

(n)
min)− (θ(m) − θ(m)

min)), n,m = 1, . . . , N ; the variables J are symplectically conjugate to ψ

and also vary near zero. As in Section 5.2, the Poincaré return map of (128) at the level of

fixed P , equals to the O(δ1/2)-map of the flow defined by the Hamiltonian

HP (J, ψ, pξ, ξ; δ) =
1

2N
a(δ)J2 +

p2
ξ

2
+ Ûδ(ψ, ξ), (155)

where Ûδ is the reduced potential of (129). This Hamiltonian is exactly of the same form as

HP of (131), yet, the regularity properties of the reduced potential Ûδ(ψ, ξ) are different in

the simultaneous impacts case.

By the parity assumption Box4, Wavg(θ
(n) − θ(m), ξ(n) − ξ(m); δ) is even and 2π-periodic

in θ, so the phase differences along the minimum line remain locked at θ(n) = 0 mod π,

n = 1, . . . , N , for all small δ. Therefore, as ψ is a linear function of θ(n)− θ(m)− θ(n)
min− θ

(m)
min,

the reduced potential is even in ψ:

Ûδ(ψ, ξ) =ˆ̂Uδ(−ψ, ξ). (156)

7This orbit is translation invariant, i.e., it is a relative equilibrium.
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By this symmetry,

∂j+l

(∂ψ)j(∂ξ)l
Ûδ(ψ, ξ)|ψ=0,ξ=ξmin = 0 for odd j. (157)

In particular, ∂2

∂ψ∂ξ
Ûδ(ψ, ξ)|ψ=0,ξ=ξmin = 0, so at ψ = 0, ξ = ξmin the quadratic part of the

Hamiltonian (155) is block-diagonal. Therefore, the expansion of the Hamiltonian (155) up

to order four terms is of the form

H4jet = Hz
2 (z, p; δ)+Hθ

2 (ψ, J ; δ)+Hθz
3 (ψ, z; δ)+Hz

3 (z; δ)+Hz
4 (z; δ)+Hθz

4 (ψ, z; δ)+δ−
1
αHθ

4 (ψ; δ),

(158)

where, hereafter, z = ξ − ξmin, p = pξ, and Hj denotes a homogeneous polynomial of order

j. By Lemma 5.4, the coefficients of Hj are uniformly bounded for all δ > 0.

Define the z-Hamiltonian:

Hz(z, p; δ) =
p2

2
+ Ûδ(0, ξmin + z) = Hz

2 (z, p; δ) +Hz
3 (z; δ) +Hz

4 (z; δ) +O(z5), (159)

and the θ-Hamiltonian:

Hθ(ψ, J ; δ) =
1

2N
aJ2 + Ûδ(ψ, ξmin) = Hθ

2 (ψ, J ; δ) + δ−
1
αHθ

4 (ψ; δ) + . . . , (160)

where, hereafter, the dots stand for terms of order 5 and higher (with coefficients that may

diverge as δ → 0). Then the Hamiltonian (155) is of the form

HP = Hz(z, p; δ) +Hθ(ψ, J ; δ) +Hθz
3 (ψ, z; δ) +Hθz

4 (ψ, z; δ) + . . . , (161)

where, by the symmetry ψ → −ψ (see (156)), the polynomials Hθz
3,4(ψ, z; δ) have only mono-

mials which are quadratic in ψ.

Denote the fourth order Birkhoff normal form of the Hamiltonian (159) near the fixed

point at the origin by Hz
NF (z, p; δ) and the Birkhoff normal form of the Hamiltonian (160)

by Hθ
NF (ψ, J ; δ). Recall that in such normal forms all the terms up to order 4 are resonant –

all non-resonant terms up to order 4 are eliminated by a sequence of symplectic coordinate

transformations. Each of these transformations is a time-1 map of a certain polynomial

Hamiltonian whose coefficients depend smoothly on the coefficients of the 4-jet of the original

system, see e.g. Chapter 7 of [3]. It is a well-known fact that the normalizing transformations

can be chosen such that the linear symmetries of the system are preserved. In particular,

the symmetry (ψ, J)→ −(ψ, J) survives the transformations we describe below.

Lemma 5.7. There exists a symplectic transformation which depends continuously on δ > 0
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and brings the Hamiltonian Hθ of (160) to the normal form

Hθ
NF (ψ, J ; δ) = H̃θ

2 (ψ, J ; δ) + δ−
1
αK(α)H̃θ

4 (ψ, J ; δ) + . . . , (162)

where H̃θ
k are homogeneous polynomials of (ψ, J) of degree k (k = 2, 4) with bounded coef-

ficients depending continuously on δ. The polynomials H̃θ
2,4 have a limit at δ = 0 such that

the normal form of the Hamiltonian Hθ,0 of Assumption Box5 is

Hθ,0
NF (ψ, J) = H̃θ

2 (ψ, J ; 0) + H̃θ
4 (ψ, J ; 0) + . . . . (163)

Proof. The normal form transformation we are going to describe is a composition of sev-

eral symplectic transformations. First, we do a linear transformation which diagonalizes

the quadratic part of the θ-Hamiltonian (160). By Lemma 5.4, the quadratic part of the

Hamiltonian (160) is, in the limit δ = 0, identical to the quadratic part of Hθ,0. Therefore,

by Assumption Box2, all the frequencies are distinct for small δ; hence the quadratic part of

(160) is indeed symplectically diagonalizable and the limit of the diagonalizing transforma-

tion at δ = 0 also diagonalizes the quadratic part of Hθ,0. Since the transformation is linear,

it does not introduce third order terms.

Thus, the Hamiltonian (160) becomes Hθ(ψ, J ; δ) = H̃θ
2 (ψ, J ; δ) + δ−

1
αK(α)Ĥθ

4 (ψ, J ; δ) +

. . ., where Ĥθ
4 (ψ, J ; 0) coincides with the 4-th order terms of Hθ,0 after the diagonalization.

Next, we do a symplectic transformation in order to eliminate all non-resonant fourth order

terms, i.e., to bring the θ-Hamiltonian to its normal form Hθ
NF . It is well-known (see [3],

Chapter 7) that such normalizing transformation does not alter the resonant terms of order 4

or lower, hence, H̃θ
4 (ψ, J ; δ) is obtained from Ĥθ

4 (ψ, J ; δ) by throwing away the non-resonant

terms. It follows that even though the normalizing transformation does not have a limit8

at δ = 0, the term H̃θ
4 (ψ, J ; δ) has a limit, equal to the resonant part of Ĥθ

4 (ψ, J ; 0), so the

lemma follows.

Lemma 5.8. The Birkhoff normal form of the reduced Hamiltonian (155) is the sum of the

normal forms of the Hamiltonians (159) and (160) with bounded corrections of order 4 which

vanish at (J, ψ) = 0:

HNF = Hz
NF (z, p; δ) +Hθ

NF (ψ, J ; δ) +HψJ
2 (ψ, J ; δ)Hzp

2 (z, p; δ) +HψJ
4 (ψ, J ; δ) + . . . . (164)

8The transformation is the time-1 map, (ψ, J)→ (ψ, J)+δ−
1
αK(α)(∂JS,−∂ψS)+O((ψ, J)4), of a Hamil-

tonian flow defined by the Hamilton function δ−
1
αK(α)S(ψ, J ; δ), where S is a fourth-degree homogeneous

polynomial with bounded coefficients which solves the equation {H̃θ
2 , S} = H̃θ

4 − Ĥθ
4 . The normalizing

transformation for Hθ,0 is the time-1 map for the Hamiltonian S(ψ, J ; 0).
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Proof. Consider the symplectic transformation which brings the HamiltonianHz = Hz
2 (z, p; δ)+

Hz
3 (z; δ) +Hz

4 (z; δ) + . . . to its Birkhoff normal form up to order 4:

Hz
NF (z, p; δ) = H̃z

2 (z, p; δ) + H̃z
4 (z, p; δ) + . . . . (165)

Since, by Lemma 5.2, the coefficients of all monomials in Hz up to order 4 have well-defined

finite limits as δ → 0, this transformation also has a well-defined finite limit. Applying this

transformation to HP of (155) (equivalently, to (161)), we obtain, in the new coordinates,

HP = H̃z
2 (z, p; δ) + H̃z

4 (z, p; δ) +Hθ
2 (ψ, J ; δ) + Ĥθz

3 (ψ, z, p; δ)

+Ĥθz
4 (ψ, z, p; δ) + δ−1/αHθ

4 (ψ; δ) + . . . ,
(166)

where all monomials in Ĥθz
3,4(ψ, z, p; δ) are quadratic in ψ (because of the symmetry ψ →

−ψ). Since all the terms in Ĥθz
3 (ψ, z, p; 0) are non-resonant by Assumption Box5 (as at

the minimum of Û , the frequencies have no resonances of third order), they remain non-

resonant for small δ. Therefore, there exists a symplectic transformation (z, p) → (z, p) +

O((ψ, J)2), (ψ, J) → (ψ, J) + O((z, p)) · (ψ, J) which eliminates the cubic terms and brings

the Hamiltonian HP to the form

)HP = H̃z
2 (z, p; δ)+H̃z

4 (z, p; δ)+Hθ
2 (ψ, J ; δ)+H̄θz

4 (ψ, J, z, p; δ)+H̄θ
4 (ψ, J ; δ)+δ−1/αHθ

4 (ψ; δ)+. . . ,

(167)

where H̄θz
4 (ψ, J, z, p; δ) is a sum of monomials quadratic in (ψ, J)2 and (z, p)2.

Now, we apply to HP the transformation of Lemma 5.7, which brings the Hamiltonian

Hθ
2 (ψ, J ; δ) + δ−1/αHθ

4 (ψ; δ) + . . . to its Birkhoff normal form. This brings HP to the form

(164), with some of the 4th order terms in HψJ
2 , Hzp

2 , and HψJ
4 possibly non-resonant. All

such non-resonant terms are eliminated by a symplectic transformation without changing all

other terms up of order four or less.

Because there are no resonances up to order 4 by Assumption Box5, the 4-jets of the

Birkhoff normal forms depend only on actions. Namely, we introduce actions

Izj = 1
2
(z2
j + p2

j), j = 1, . . . N(d− 1),

Iψk = 1
2
(ψ2

k + J2
k ), k = 1, . . . , N − 1.

(168)

Then
Hz
NF = ωz(δ)Iz + ITz Bz(δ)Iz + . . . ,

Hθ
NF = ωψ(δ)Iψ + δ−1/αK(α)ITψBψ(δ)Iψ + . . . ,

where, by Lemmas 5.2 and 5.7 ωz(δ), ωψ(δ), Bz(δ), Bψ(δ) all are continuous functions with
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bounded limits at δ = 0. By Assumption Box5, the determinants of Bz(0) and Bψ(0) are

non-zero.

Moreover, by Lemma 5.7, the Hamiltonian Hθ,0
NF is of the form

Hθ,0
NF = ωψ(0)Iψ + ITψBψ(0)Iψ + . . . .

Also, by Lemma 5.8, the Birkhoff normal form HNF of (155) is given by

HNF = Hz
NF +Hψ

NF +O(‖Iz‖+ ‖Iψ‖) · Iψ + . . . .

Lemma 5.9. The Birkhoff normal form of the Hamiltonian (155) is non-degenerate.

Proof. We need to check that the twist condition for HNF is satisfied. Indeed,

det(∂
2HNF
∂I2

) =

∣∣∣∣∣Bz(δ) O(1)

O(1) δ−1/αK(α)Bψ(δ) +O(1)

∣∣∣∣∣ = δ−2N/αK(α)2N

∣∣∣∣∣ Bz(δ) O(1)

O(δ1/α) Bψ(δ) +O(δ1/α)

∣∣∣∣∣
= δ−2N/αK(α)2N(|Bz(δ)| · |Bψ(δ)|+O(δ1/α)).

(169)

Since the determinants |Bz(δ)| and |Bψ(δ)| are bounded away from zero for all sufficiently

small δ, we have det(∂
2HNF
∂I2

) 6= 0, i.e. the twist condition is satisfied, so HNF is non-

degenerate.

5.4.4 Normal form of the full system.

We have shown that the truncation of system (122), namely system (128) for the case of

simultaneous impacts, has a stable KAM non-degenerate elliptic periodic orbit for all δ > 0.

To complete the proof of Theorem 5, we need to show that the periodic orbit persists in the

full system (122), which includes the error term δG̃, and also remains KAM-non-degenerate.

This is non-trivial, as both the normal form and the error term δG̃ diverge in C4 as δ → 0.

While the persistence of the periodic orbit follows from the C2 regularity of the normal form

and the error term, the KAM non-degeneracy is established by revisiting the normal form

computation of Section 5.4.3 applied to the full system.

Rewriting (122) with the use of the coordinates (P, ϕ, J, ψ, pξ, ξ) of (130), we obtain the

perturbed Hamiltonian:

H(P, ϕ, J, ψ, pξ, ξ; δ) = ω0P + δ1/2( 1
2N
aP 2 + 1

2N
aJ2 +

p2ξ
2

+ Ûδ(ψ, ξ))

+δG̃(P, ϕ, J, ψ, pξ, ξ; δ).
(170)
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The corresponding system is:

ϕ̇ = ω0 + 1
N
aδ1/2P + δ ∂

∂P
G̃(P, ϕ, J, ψ, pξ, ξ; δ),

Ṗ = −δ ∂
∂ϕ
G̃(P, ϕ, J, ψ, pξ, ξ; δ),

ψ̇ = 1
N
aδ1/2J + δ ∂

∂J
G̃(P, ϕ, J, ψ, pξ, ξ; δ),

J̇ = −δ1/2 ∂
∂ψ

Ûδ(ψ, ξ)− δ ∂
∂ψ

G̃(P, ϕ, J, ψ, pξ, ξ; δ),

ξ̇ = δ1/2 pξ + δ ∂
∂pξ
G̃(P, ϕ, J, ψ, pξ, ξ; δ),

ṗξ = −δ1/2 ∂
∂ξ
Ûδ(ψ, ξ)− δ ∂

∂ξ
G̃(P, ϕ, J, ψ, pξ, ξ; δ).

(171)

Restricting to a given energy level (so P is determined by all other variables) and using

ϕ̄ = δ1/2ϕ as a new time:

dψ
dϕ̄

= 1
Nω0

aJ + δ1/2G1(ϕ̄, J, ψ, pξ, ξ; δ),
dJ
dϕ̄

= − 1
ω0

∂
∂ψ

Ûδ(ψ, ξ)− δ
1
2
− 1
αG2(ϕ̄, J, ψ, pξ, ξ; δ),

dξ
dϕ̄

= 1
ω0
pξ + δ1/2G3(ϕ̄, J, ψ, pξ, ξ; δ),

dpξ
dϕ̄

= − 1
ω0

∂
∂ξ
Ûδ(ψ, ξ)− δ1/2G4(ϕ̄, J, ψ, pξ, ξ; δ),

(172)

where ∂
∂ψk

Gi(ϕ̄, J, ψ, pξ, ξ; δ) = O(δ−k/α), see the end of Section 5.4.2. The reduced system

(172) is a fast-oscillating non-autonomous Hamiltonian system with the Hamilton function

Hreduced(ϕ̄, J, ψ, pξ, ξ; δ) = 1
2Nω0

aJ2 + p2

2ω0
+ 1

ω0
Ûδ(ψ, ξ) + δ1/2G5(ϕ̄, J, ψ, pξ, ξ; δ)

= 1
ω0
HP (J, ψ, pξ, ξ; δ) + δ1/2G5(ϕ̄, J, ψ, pξ, ξ; δ),

(173)

where HP is the Hamiltonian (155). As above, G5 is a function with bounded derivatives

with respect to J, pξ, ξ, whereas making k differentiations of G5 with respect to ψ introduces

a factor of O(δ−k/α). Now, as apposed to (155), Hreduced is a periodic function of the time

variable ϕ̄, with the period 2πδ1/2.

Lemma 5.10. Provided that α > 6, the system (172) has a KAM-nondegenerate elliptic

periodic orbit.

Proof. As we mentioned in Section 5.4.3, due to the non-resonance assumption of Box2 and

the continuous dependence of the quadratic part of the Hamiltonian HP (J, ψ, pξ, ξ; δ) on δ,

the truncated system (155) has a non-resonant elliptic fixed point at the origin. Since for α >

4 the perturbation to (155), i.e. the term δ1/2G5 in the Hamiltonian (173), is C2-small, the

system (172) has, for all small δ, an elliptic periodic orbit (J, ψ, pξ, ξ) = δ
1
2
− 1
αXp(ϕ̄; δ) where

Xp(ϕ̄; δ) is a continuous bounded function for all δ > 0. Let (J, ψ, pξ, ξ) = δ
1
2
− 1
αXp(ϕ̄; δ)+X.
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Then

H(ϕ̄, X; δ) := Hreduced(δ
1
2
− 1
αXp(ϕ̄; δ) +X; δ) = HP (X; δ) +G6(ϕ̄, X; δ), (174)

where the non-autonomous term G6 is given by

G6(ϕ̄, X; δ) = HP (δ
1
2
− 1
αXp(ϕ̄; δ) +X; δ)−HP (X; δ) + δ

1
2G5(ϕ̄, δ

1
2
− 1
αXp(ϕ̄; δ) +X; δ).

Next we show that if α > 6, the term G6(ϕ̄, X; δ) and its derivatives with respect to X

including up to 3 derivatives with respect to ψ are small, while its 4th derivatives with

respect to ψ are o(δ−1/α):

∂k+l

∂ψk∂(J, pξ, ξ)l
G6 = O(δ

1
2
− k
α ), k = 0, 1, 2, 3, 4. (175)

Indeed, first recall that ∂
∂ψk

G5 is O(δ−
k
α ), so for α > 6 the term δ

1
2G5 gives a correct

contribution to the estimates (175). Next, by Lagrange formula,

HP (δ
1
2
− 1
αXp(ϕ̄; δ) +X; δ)−HP (X; δ) = δ

1
2
− 1
αXp(ϕ̄; δ) ·

∫ 1

0

∇HP (X + sδ
1
2
− 1
αXp(ϕ̄; δ); δ)ds.

Recall that by Lemma 5.2 the potential Ûδ(ψ, ξ), hence the Hamiltonian HP , has bounded

derivatives up to order 3, yet its fourth derivatives with respect to ψ are of order δ−
1
α and its

fifth derivatives are of order δ−
2
α . Hence, by (176), ∂

∂ψk
(HP (δ

1
2
− 1
αXp(ϕ̄; δ)+X; δ)−HP (X; δ)))

for k = 0, 1, 2 is of order O(δ
1
2
− 1
α ), whereas for k = 3 the derivatives are of order δ

1
2
− 2
α , and

for k = 4 they are of order δ
1
2
− 3
α , all in agreement with (175).

In order to align with the notations of Section 5.4.3, we denote hereafter the coordinates

of X by (J, ψ, p, z). Then, by (161) and (174)

H(ϕ̄, X; δ) = Hz
2 (z, p; δ) +Hz

3 (z; δ) +Hz
4 (z; δ) +Hθ

2 (ψ, J ; δ) +Hθz
3 (ψ, z; δ)

+Hθz
4 (ψ, z; δ) + δ−1/αHθ

4 (ψ; δ) +G6(ϕ̄, X; δ),
(176)

where the functions Hj of (161) are homogeneous polynomials of degree j with bounded

coefficients (continuous in δ) and Hθz
3,4(ψ, z; δ) have only monomials quadratic in ψ.

Recall that HP was brought to its normal form by a sequence of coordinate transforma-

tions described in Lemma 5.8. Next, we apply similar transformation to the full Hamilto-

nian H(ϕ̄, X; δ) of (174). The difference is that H is periodic in time ϕ̄, so the normalizing

transformations are also periodic in ϕ̄. It is well-known that one can make the coordinate

transformations such that the resulting Hamiltonian will become autonomous up to any
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given order in X, i.e. such a transformation corresponds to averaging to any given order [3].

Our goal is to bring H(ϕ̄, X; δ) to an autonomous normal form up to order 4 and compare

it with the 4-th order normal form HNF (see (164)) of the autonomous Hamiltonian HP .

Since the period is small, of order δ1/2, there are no additional resonant terms due to the

dependence on ϕ̄. Still, one needs to check that the singular terms in (176) do not destroy

the twist condition.

Let us make the linear symplectic transformations which bring the HamiltoniansHθ
2 (ψ, J ; δ)

and Hz
2 (z, p; δ) to the diagonal form H̃θ

2 (ψ, J ; δ) and H̃z
2 (z, p; δ) as in (162) and (165), re-

spectively. Applying these transformations to (176), we obtain a new Hamiltonian

H(ϕ̄, X; δ) = H̃z
2 (z, p; δ) +Hz

3 (z, p; δ) +Hz
4 (z, p; δ) + H̃θ

2 (ψ, J ; δ) +Hθz
3 (ψ, J, z, p; δ)

+Hθz
4 (ψ, J, z, p; δ) + δ−1/αHθ

4 (ψ, J ; δ) +G7(ϕ̄, X; δ),

(177)

where Hj are different functions from those in (176), yet they keep the same structure - they

are homogeneous polynomials of degree j with bounded coefficients (continuous in δ), and

Hθz
3,4 have only monomials quadratic in (ψ, J). Note also that since the linear normalizing

transformations have bounded coefficients for all δ > 0, the derivatives of the function G7

are of the same order as the derivatives of G6, as given by (175).

Since X = 0 is a periodic orbit of the Hamiltonian H(ϕ̄, X; δ), it follows that the expan-

sion of G7(ϕ̄, X; δ) in powers of X starts with quadratic terms. Moreover, the terms of the

expansion which are independent of (ψ, J) are of order δ1/2, the terms linear in (ψ, J) are of

order δ1/2−1/α, and so on, e.g. the 4-th order terms in (ψ, J) are O(δ1/2−4/α), i.e., o(δ−1/α)

since α > 6. Therefore, expanding G7 in powers of X we can rewrite (177) as

H(ϕ̄, X; δ) = H̃z
2 (z, p; δ) + H̃θ

2 (ψ, J ; δ) + Ĥθz
2 (ϕ̄, ψ, J, z, p; δ)

+Ĥz
3 (ϕ̄, z, p; δ) + Ĥθz

3 (ϕ̄, ψ, J, z, p; δ) + Ĥz
4 (ϕ̄, z, p; δ) + Ĥθz

4 (ϕ̄, ψ, J, z, p; δ)

+δ−1/αĤθ
4 (ϕ̄, ψ, J ; δ) + . . . ,

(178)

where, hereafter, the dots stand for the terms of order higher than 4 (i.e., they are irrelevant

for our purposes). The terms Ĥj are homogeneous polynomials of X of degree j with periodic

in ϕ̄ coefficients, continuous and bounded for all δ > 0. Moreover, Ĥθz
2 is O(δ

1
2
− 2
α )-close to

zero. The polynomials Ĥz
3 and Ĥz

4 are the cubic and, respectively quartic part of H(ϕ̄, X; δ)

at (ψ, J) = 0, so they are O(δ1/2)-close to Hz
3,4(z, p; δ) of (177). The polynomial Ĥθz

3 is

O(δ
1
2
− 3
α )-close to Hθz

3 of (177) (indeed, it has a linear in (ψ, J) part which is O(δ
1
2
− 1
α )-close

to zero, since Hθz
3 has no linear part in ψ, a quadratic in (ψ, J) part which is O(δ

1
2
− 2
α )-

close to Hθz
3 , and the cubic in (ψ, J) part is, again, O(δ

1
2
− 3
α )-close to zero). Similarly, the

polynomials Ĥθz
4 and Ĥθ

4 are O(δ
1
2
− 3
α )-close to Hθz

4 and Hθ
4 , respectively. Since α > 6, all
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these corrections are small, i.e., they vanish at δ = 0.

Since Ĥθz
2 = O(δ1/2−2/α), the ϕ̄-periodic, linear symplectic transformation of the variables

X which diagonailzes the quadratic part (H̃z
2 + H̃θ

2 (ψ, J ; δ) + Ĥθz
2 ) of H and makes the

quadratic part independent of ϕ̄ is O(δ
1
2
− 2
α )-close to identity: X → (Id + δ

1
2
− 2
αM(ϕ̄; δ))X,

for some periodic in ϕ̄ matrix M , continuous and bounded for all δ > 0.

After this transformation, the Hamiltonian (178) becomes

H(ϕ̄, X; δ) = Ĥz
2 (z, p; δ) + Ĥθ

2 (ψ, J ; δ) + Ĥz
3 (ϕ̄, z, p; δ) + Ĥθz

3 (ϕ̄, ψ, J, z, p; δ) + Ĥz
4 (ϕ̄, z, p; δ)

+Ĥθz
4 (ϕ̄, ψ, J, z, p; δ) + δ−1/αĤθ

4 (ϕ̄, ψ, J ; δ) + . . . ,

(179)

where Ĥz
2 and Ĥθ

2 are O(δ
1
2
− 2
α )-close to H̃z

2 and, respectively, H̃θ
2 ; the new homogeneous

third degree polynomials Ĥz
3 and Ĥθz

3 acquire O(δ
1
2
− 2
α )-corrections in comparison with Ĥz

3

and Ĥθz
3 of (178), and the new homogeneous fourth degree polynomials Ĥz

4 , Ĥθz
4 , and Ĥθ

4

acquire O(δ
1
2
− 3
α )-corrections. It is only important for us that these corrections vanish at

δ = 0.

Next, we follow the same steps as in Lemma 5.8. We make a periodic in ϕ̄, sym-

plectic transformation of the (z, p)-coordinates which brings the Hamiltonian Ĥz
2 (z, p; δ) +

Ĥz
3 (ϕ̄, z, p; δ) + Ĥz

4 (ϕ̄, z, p; δ) to its Birkhoff normal form, independent of ϕ̄ up to order 4

(recall that no new resonances can be created here by the ϕ̄-dependence because the fre-

quency is large). This Hamiltonian is close to the z-Hamiltonian of (159), therefore the

resulting normal form Ĥz
NF (z, p; δ) is close to the normal form Hz

NF , see (165); in particular,

Ĥz
NF = Ĥ2(z, p; δ)+Ĥ4(z, p; δ) does not contain cubic terms, its quadratic and quartic terms

Ĥz
2,4 depend only on the actions Iz (see (168)), and their limit as δ → 0 coincides with the

limit of H̃z
2,4.

After this transformation Hamiltonian (177) becomes

H(ϕ̄, X; δ) = Ĥz
2 (z, p; δ) + Ĥz

4 (z, p; δ) + Ĥθ
2 (ψ, J ; δ) + Ĥθz

3 (ϕ̄, ψ, J, z, p; δ)

+Ĥθz
4 (ϕ̄, ψ, J, z, p; δ) + δ−1/αĤθ

4 (ϕ̄, ψ, J ; δ) + . . . ,
(180)

where the modified functions Ĥ3,4 have the same structure as before and are close to their

counterparts in (166). Since the third order terms in the Hamiltonian are all non-resonant

(by Assumption Box 5 and by the fact that the period in ϕ̄ is small), they are eliminated

by a normalizing symplectic transformation of X, which equals to the identity plus higher

order ϕ̄-dependent terms and is close to that employed in Lemma 5.8 (the transformation
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from (166) to (167)). The Hamiltonian (180) becomes

H(ϕ̄, X; δ) = Ĥz
2 (z, p; δ) + Ĥz

4 (ϕ, z, p; δ) + Ĥθ
2 (ψ, J ; δ)

+Ĥθz
4 (ϕ̄, ψ, J, z, p; δ) + δ−1/αĤθ

4 (ϕ̄, ψ, J ; δ) + . . . ,
(181)

where Ĥ4, the fourth-degree polynoimials in X, are close to their counterparts in (167)

(note that applying the transformation to the singular term, δ−1/αĤθ
4 of (179), introduces

additional singularities but only to the terms of order 5 or higher in (181)).

The last step is to bring the 4-th order terms to the autonomous normal form. This

is done by a symplectic transformation and the result is equivalent to throwing away the

non-resonant 4-th order terms and taking the average of the resonant ones over ϕ̄. Since all

terms Ĥ in (181) coincide with their counterparts in (167) at δ = 0, we immediately obtain

that the resulting 4-th order Birkhoff normal form of the Hamiltonian (173) is

HNF4 = Hz
2 (z, p; δ) +Hz

4 (z, p; δ) +Hθ
2 (ψ, J ; δ) + δ−1/αK(α)Hθ

4 (ψ, J ; δ) +Hθz
4 (ψ, J, z, p; δ),

(182)

where Hx
j (; δ) have bounded coefficients, and, as δ → 0 they approach the corresponding

terms of (164). Hence, the KAM-nondegeneracy of the elliptic orbit of the system (172) at

X = 0 follows from Lemma 5.9.

This completes the proof of Theorem 5.

The divergence as δ → 0 of the terms or order 5 and higher in X does not alter the KAM

nondegeneracy result, yet, it implies that quantitative estimates regarding the size of the

stability island require analysis of the asymptotic δ-dependence of such terms.

6 Discussion

While the lack of ergodicity in Hamiltonian systems is expected, here we found a specific

mechanism for breaking the ergodicity, which persists for arbitrarily high energy for any finite

number of particles that interact by repelling forces. We constructed coherent states of the

multi-particle gas that correspond to collision-free choreographic solutions which are stabi-

lized at high energies. We have also built similar solutions for systems of weakly interacting

particles and systems of attracting particles.

Let us list several future research directions.

Non-ergodicity of the gas of repelling particles in containers of dispersive

geometry. We have established the existence of KAM-stable choreographic solutions for

generic multi-particle systems in containers that support a stable periodic billiard motion
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of one particle. Conjecturally, this includes any generic container with a sufficiently smooth

convex boundary. Yet, there are open classes of billiards with piece-wise smooth boundaries

which do not allow for stable single-particle motions – the main example is given by dispersive

billiards whose boundary is built of strictly concave smooth pieces. We propose that it

should be possible to apply our method for finding KAM-stable choreographies for such

containers as well. Indeed, smoothing the billiard potential destroys the hyperbolic structure

of the dispersive billiard, and there are several known mechanisms for creating elliptic, KAM

non-degenerate periodic motions of a single particle in the billiard-like Hamiltonian (21) at

arbitrary small δ for the case of dispersive d(> 2)-dimensional containers [51, 52, 36, 38]. It is

conjectured that such islands appear for dispersive billiard-like Hamiltonians generically [51].

The phase space volume of the islands in these cases vanishes with δ, yet, its scaling with

δ is known, and depends on the asymptotic behavior of the container smoothing potential,

V , near the boundary. Our techniques imply that such stability islands of the single particle

motion can produce also choreographic solutions of the N particle system provided the

perturbations induced by the interaction potential, W , are much smaller than the islands

size. Hence, the results regarding the existence of KAM-stable choreographic solutions in

containers that support stable motion can probably be extended to any container.

Physical relevance of the coherent states. Under which conditions can the con-

structed choreographic solutions be observed in realistic multi-particle systems? General

estimates on the probability for an initial condition to belong to a KAM-torus of a Hamilto-

nian system with N -degrees of freedom are quite pessimistic even for small N [12, 13], but

examples of such systems where stability islands are well-noticeable are also known [2, 45],

e.g. in numerical experiments of [38] the islands are seen for N as large as 20. Therefore,

Nekhoreshev-type estimates on the life time of the coherent states are, probably, most rel-

evant for the physical realizability question. Sufficiently long living (i.e., effectively stable)

coherent states can be of direct interest when N is not very large. For example, for a gas

in a three-dimensional rectangular box, the construction of N < (l1l2)/ρ2 particles moving

vertically in synchrony, as in Theorem 5, corresponds to pulsating fronts. For a gas in a

convex container, the states of N < |L∗|/ρ particles constructed in Theorem 3 corresponds

to rings of current of a specific non-trivial spatial form. For each such state, the effective

stability imposes limitations on N and the parameters of the system. Additional classes of

choreographic solutions may allow to study coherent states with a larger number of particles.

Multi-path choreographic solutions provide such a class. When the single-particle

system is non-integrable and has an elliptic periodic orbit, it has, typically, infinitely many

elliptic orbits (e.g. around an elliptic periodic orbit there are typically many resonant elliptic

orbits, around which there are secondary resonances, and so on [3]). Similarly, near a
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homoclinic loop to a saddle center of a non-integrable system many stable periodic orbits

co-exist [29, 28]. When the corresponding periodic paths in the configuration space do not

intersect, one can obtain KAM-stable motions of repelling particles along several such paths:

the particles on the same path must have the same frequency to avoid collisions, but the

particles on different paths may have different frequencies. When the paths do intersect,

one needs the frequencies of the motion along the different paths to be in resonance. This

condition is not actually restrictive: given any finite set of elliptic orbits with arbitrary

periods, one can tune the partial energies such that for every two paths the ratio of the

periods would become rational. For particles in the billiard this is done just by normalizing

the motion speed for each path by the path length.

Choreographies in the box. The billiard in the box is integrable, and therefore we

build choreographic multi-particle regimes based on families of parabolic periodic solutions

(instead of elliptic orbits). We have considered only one of such families in this paper, of

parallel vertical motion, but there are many types of them, for example, diamond shaped

orbits. In our construction of Section 5, to avoid collisions, a single particle sits on each

periodic path. However, for other types of parabolic families, such as diamond shape orbits

in a d > 3 box, many particles may occupy the same path and parallel paths without any

collisions. In particular, it may be possible to create KAM-stable choreographic motions of

N ∝ (l/ρ)3 particles in a three-dimensional box of characteristic size l. Similar solutions

can be built for particles in ellipsoidal billiard, and for other systems of weakly-interacting

particles whose individual dynamics is integrable.

Dynamics of the averaged system. We have shown that the stable choreographic

motions are controlled by effective potentials defined on the torus corresponding to the set

of phases of the individual particles. Our main result only refers to the fact that near the

minimum of such potential the dynamics are, generically, KAM stable. However, one may

also ask a question of the global dynamics: can the averaged system be completely integrable,

or can one find additional stable motions far from the minimum of the potential? Various

types of KAM-stable solutions of the averaged system should generate new types of non-

trivial coherent states which may depend differently on physical parameters and be relevant

for a larger variety of physical settings than the dynamically simplest types of choreographies

we found here. Also, as explained in Appendix A, in the particular case of the equidistant

particles’ phases, our effective potentials share the same symmetries as the potentials of the

classical Fermi-Pasta-Ulam chains, yet they form a larger class, and it may be interesting to

study this broader class of systems.

Solid coherent states in a high temperature gas. In this paper, we operate in the

limit where the motion along the periodic orbit is faster than the oscillations of the phase
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differences between the particles. For highly energetic particles in a container, if the non-

averaged interaction potential has a minimum (like the Lennard-Jones potential), one can

think of an opposite limit where the frequencies ω of the small oscillations of the particles

near this minimum are much faster than the frequency of the periodic billiard-like motion

of the center of mass: ω �
√

2h
L∗

(the kinetic energy of the center-of-mass motion can still be

much larger than the energy of the fast but small oscillations of the particles: I � h/ω). It

may be interesting to study whether this can also lead to stable choreographic motions of

molecules.

Large N limit. As one can see, different types of coherent states can correspond to

different scaling of the number of particles as a function of the size of the container. In

general, when considering the limit N → ∞, one should also decide how the parameters

of the system (the system size l, the energy per particle h, effective particle diameter ρ,

etc.) scale with N : different types of scalings correspond to different physical situations.

Determining which type of scalings correspond to various stable coherent states is the key

for resolving the question of the realizability of such states in physically relevant settings.
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Appendix

A Choreographic solutions with equidistant phases.

The evolution of the phases of the choreographic solutions is described, in the first-order

approximation, by the averaged Hamiltonian

H =
1

2
(I0)2 + U(θ), (θ, I0) ∈ TN × RN , (183)

see Lemma 3.1 (here we scale I0 such that a = 1 in the matrix A of (46), see (7)). The

averaged potential U is given by

U(θ(1), . . . , θ(N)) =
∑

n,m=1,...,N

n6=m

Wavg(θ
(n) − θ(m)),
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where Wavg is an even, 2π-periodic function defined by (11).

System (183) is a generalization of the classical Fermi-Pasta-Ulam chain: the difference

is that in the FPU we have only m = n+ 1 mod N in the sum describing the potential U ,

i.e., the interaction between the phases θ is short-range, while in our case all phases typically

interact with each other. Like in the FPU, any uniformly distributed particle configuration

θ = θeq, where

θ(2)
eq − θ(1)

eq = . . . = θ(N)
eq − θ(N−1)

eq = θ(1)
eq + 2π − θ(N)

eq =
2π

N

is an equilibrium of system (183). Indeed, it is always an extremum of U since ∂U
∂θ(n)
|θeq = 0

for each n:
∂U

∂θ(n)
|θeq =

∑
m6=n

W ′
avg(θ

(n)
eq − θ(m)

eq ) =
N−1∑
k=1

W ′
avg(

2π

N
k) = 0,

where the last equality follows because W ′
avg is an odd and 2π-periodic function.

Such configurations form a line of extrema of U (parameterized by the choice of θ
(1)
eq ). It

is a line of minima of U when the Hessian matrix at θ = θeq is positive semi-definite. We

have

∂2U

∂θ(n)∂θ(m)
(θeq) =

−W ′′
avg(

2π(n−m)
N

) = un−m for n 6= m∑N−1
j=1 W ′′

avg(
2π
N
j) = u0 = −

∑N−1
k=1 uk for n = m.

(184)

Note that the numbers uk satisfy uk = u−k = uN−k because W ′′
avg is even and 2π-periodic.

The Hessian matrix (184) is a circulant matrix, so its eigenvectors are the Fourier modes

vj = (1, exp(i
2πj

N
), exp(i

4πj

N
), . . . , exp(i

2(N − 1)jπ

N
)), j = 0, . . . , N − 1.

The corresponding eigenvalues are:

λj = u0+u1 exp(i
2πj

N
)+u2 exp(i

4πj

N
)+. . .+uN−2 exp(i

2πj(N − 2)

N
)+uN−1 exp(i

2πj(N − 1)

N
),

i.e.,

λj = 2
∑

16k<N/2

uk(cos(k
2πj

N
)− 1) + ((−1)j − 1)uN/2 (185)

(we take uN/2 = 0 in this formula when N is odd).

As we see, λ0 = 0, which is due to the translational symmetry of the Hamiltonian

(183). When all other λj are strictly positive, the line of uniformly distributed particles’

configurations consists of minima of the potential U . This happens, for example, when
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uk < 0 for all k 6= 0, i.e., when Wavg is a convex function, which is consistent with the

repelling nature of the interaction.

The frequencies of small oscillations around the line of minima are equal to
√
λj. It

follows from (185) that

λj = λN−j

for all 1 6 j 6 N/2. Hence, the standard non-resonance assumption on the interaction

potential breaks at θ = θeq. In particular, adding a small perturbation to (183) (without

breaking the translational symmetry) would result, in general, in the destruction of the

ellipticity.

Yet, we show next that the KAM Assumption IP1 still holds generically. Notice that

the resonance relations are due to the discrete symmetries of the potential near θ = θeq.

Namely, the system in a small neighborhood of the minima line is symmetric with respect to

the transformations T : θ(n) → θ(n+1) (where n is taken mod N) and S : θ(n) → θ(N+1−n).

The maps S and T generate the so-called N -th dihedral group. This is the same group

of symmetries as in the FPU. The normal form theory for the FPU was built by Rink

[39]. In fact, he derived the normal form near an equilibrium of a general S, T -symmetric

Hamiltonian provided the Hamiltonian has no additional resonances. His work applies to our

Hamiltonian (even though the interactions here are for all particle pairs whereas in [39] the

FPU chain with only nearest neighbors interactions was considered). Indeed, notice that for

any prescribed sequence uk, k = 1, . . . , N−1 there is a smooth even and 2π-periodic potential

Wavg satisfying W ′′
avg(

2π
N
k) = uk, so, generically, for our system, no additional independent

resonance relations appear.

The symmetric Rink normal form is given by Theorem 8.2 in [39] and for odd N is written

as follows:

HRink =
∑

16j<N
2

√
λj aj +

1

2

∑
16j,k<N

2

(Ca
jkajak + Cb

jkbjbk) (186)

whereas for even N

HRink =
∑

16j6N
2

√
λj aj +

1

2

∑
16j,k6N

2

Ca
jkajak +

1

2

∑
16j,k<N

2

Cb
jkbjbk +

∑
16j6N

4

Cd
j (djdN

2
−j − cjcN

2
−j).

(187)

The terms a, b, c, d are quadratic functions, so the normal form is of order 4 (the C’s are

constant coefficients such that C∗jk = C∗kj, ∗ ∈ {a, b, c, d}). The transition to the normal form

is done as follows. First, one makes a linear symplectic coordinate transformation which
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diagonalizes the quadratic part of the Hamiltonian near (θ = θeq, I0 = 0). One defines

for 1 6 j < N/2 :

zj =
1√
2N

N∑
n=1

e−2πi j
N
n(I

(n)
0 + i

√
λj (θ(n) − θ(n)

eq )),

ζj =
1√

2Nλj

N∑
n=1

e2πi j
N
n(I

(n)
0 − i

√
λj (θ(n) − θ(n)

eq )),

zN−j = − 1√
2N

N∑
n=1

e−2πi j
N
n(I

(n)
0 − i

√
λj (θ(n) − θ(n)

eq )),

ζN−j =
1√

2Nλj

N∑
n=1

e2πi j
N
n(I

(n)
0 + i

√
λj (θ(n) − θ(n)

eq )),

and, if N is even :

zN
2

=
1√

2NλN
2

N∑
n=1

(−1)n(I
(n)
0 + i

√
λj (θ(n) − θ(n)

eq )),

ζN
2

= − 1√
2N

N∑
n=1

(−1)n(I
(n)
0 − i

√
λj (θ(n) − θ(n)

eq )),

cf. [39], formulas (7.2),(7.3). By the translational invariance of the average potential U , the

Hamiltonian (183) in these coordinates is the sum of the term 1
2N

∑N
n=1(I

(n)
0 )2 and a function

which depends only on (zj, ζj) with j = 1, . . . , N−1. This function is the Hamiltonian of the

system reduced by the translation symmetry group (θ(n) 7→ θ(n) + c, c ∈ R1, n = 1, . . . , N).

Since (z, ζ) = 0 is an equilibrium of the reduced system, the Taylor expansion of the reduced

Hamiltonian at zero starts with quadratic terms – these terms coincide with the quadratic

part of HRink in (186) and (187), i.e., with
∑

16j6N
2

√
λj aj. Next, one does a symplectic

transformation (identity plus terms of the second order and higher) of the variables (zj, ζj),

j = 1, . . . , N − 1, which brings the reduced Hamiltonian to the form which coincides with

the normal forms (186) or (187) up to terms of order 5. It is a standard fact that this system

has KAM-tori if the normal form has KAM-tori in an arbitrarily small neighborhood of zero,

so we further focus on finding KAM-tori in the normal forms.

In the new variables (z, ζ) the functions a, b, c, d in HRink are given by

aj = i(zjζj − zN−jζN−j), bj = i(zjζj + zN−jζN−j),

cj =
1√
λj

(zjzN−j + λjζjζN−j), dj =
−i√
λj

(zjzN−j − λjζjζN−j),
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for 1 6 j < N
2

; we also have, for even N ,

aN
2

= izN
2
ζN

2
.

Note that a, b, c, d are real and satisfy

a2
j = b2

j + c2
j + d2

j , (188)

see [39], formulas (8.6),(8.7). The coefficients C∗jk in HRink are polynomials of the coefficients

of the original Hamiltonian depending rationally on
√
λj. One can check that a generic

potential U corresponds to a generic choice of C’s.

For odd N , the normal form (186) is completely integrable and generically has KAM tori

[39]. This gives us that the the KAM assumption IP1 is fulfilled generically for system (183)

for odd N . Let us consider the case of even N . By [39], Corollary 9.3, the (N −1) degrees of

freedom system (187) has a number of quadratic integrals in involution: aj, j = 1, . . . , N
2

and

bj − bN
2
−j, 1 6 j < N

4
. This set is incomplete; while the normal form HRink for the nearest-

neighbor FPU chain with an even N has additional integrals and is completely integrable

[19, 20], it is not known whether this normal form is completely integrable for a generic

choice of coefficients C and λ in (187), or for a general choice of the potential U in (183).

However, the restriction of (187) to the invariant subspace {as = 0, 1 6 s 6 N
4
} is

completely integrable: since bs, cs and ds all vanish for 1 6 s 6 N
4

by (188), the restricted

Hamiltonian is given by

H =
∑

N
4
<j6N

2

√
λj aj +

1

2

∑
N
4
<j,k6N

2

Ca
jkajak +

1

2

∑
N
4
<j,k<N

2

Cb
jkbjbk,

and the quadratic functions aj (N
4
< j 6 N

2
) and bj (N

4
< j < N

2
) give a complete set of its

integrals. The restricted Hamiltonian has the same structure as the completely integrable

normal form (186). So, in the same way as it was done in [39] for system (186), one establishes

that for a generic choice of non-zero values of the integrals aj (N
4
< j 6 N

2
) and bj (N

4
< j <

N
2

) the corresponding joint level set of these integrals is a KAM-torus T of the restricted

system. Moreover, these integrals aj and bj are the action variables (see formula (9.3) in

[39]). The dynamics in a small neighborhood of such torus are described, in the main

approximation, by the Hamiltonian (187) averaged over the angle variables conjugate to the

actions. The only terms in (187) that depend on these angle variables are dN
2
−j and cN

2
−j

with j < N
4

; let us show that their averaged values are zero.

Indeed, by the ergodicity of the flow on the invariant torus T , we can replace the averaging
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over the angle variables by the time averaging. Due to the commutation relations (see formula

(9.1) in [39])

{bk, cm} = 2dmδkm, {bk, dm} = −2dm, {ak, cm} = {ak, dm} = 0,

where {·, ·} is the Poisson bracket and δkm is the Kronecker delta, we have that for N
4
< m <

N
2

d

dt
cm = {cm, HRink} = −Ωm dm,

d

dt
dm = {dm, HRink} = Ωm cm,

where

Ωm = 2
∑

N
4
<k<N

2

Cb
kmbk.

For a generic choice of the actions bk (N
4
< k < N

2
), the frequencies Ωm are all non-zero,

hence cm and dm perform harmonic oscillations and their time-average is zero. Thus, the

averaged system (187) is

H =
∑

16j6N
2

√
λj aj +

1

2

∑
16j,k6N

2

Ca
jkajak +

1

2

∑
16j,k<N

2

Cb
jkbjbk.

This system has the same structure as (186) and is completely integrable (the integrals are aj

and bj). It follows that the invariant torus T is normally elliptic. As in [39], one checks that a

generic Liouville torus of this systems satisfies the twist condition, hence T is surrounded by

KAM-tori and these tori persist when we proceed from the averaged system to the original

system HRink in a neighborhood of T .
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